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Scalable Orchestration of Service Function Chains
in NFV-enabled Networks: A Federated

Reinforcement Learning Approach
Haojun Huang, Cheng Zeng, Yangmin Zhao, Geyong Min, YingYing Zhu, Wang Miao and Jia Hu

Abstract—Network function virtualization (NFV) is critical
to the scalability and flexibility of various network services in
the form of service function chains (SFCs), which refer to a
set of Virtual Network Functions (VNFs) chained in a specific
order. However, the NFV performance is hard to fulfill the ever-
increasing requirements of network services mainly due to the
static orchestrations of SFCs. To tackle this issue, a novel Scalable
SFC Orchestration (SSCO) scheme is proposed in this paper
for NFV-enabled networks via federated reinforcement learning.
SSCO has three remarkable characteristics distinguishing from
the previous work: (1) A federated-learning-based framework
is designed to train a global learning model, with time-variant
local model explorations, for scalable SFC orchestration, while
avoiding data sharing among stakeholders; (2) SSCO allows
for parameter update among local clients and the cloud server
just at the first and last epochs of each episode to ensure
that distributed clients can make model optimization at a low
communication cost; (3) SSCO introduces an efficient deep
reinforcement learning (DRL) approach, with the local learning
knowledge of available resources and instantiation cost, to map
VNFs into networks flexibly. Furthermore, a loss-weight-based
mechanism is proposed to generate and exploit reference samples
in replay buffers for future training, avoiding the strong relevance
of samples. Simulation results obtained from different working
scenarios demonstrate that SSCO can significantly reduce place-
ment errors and improve resource utilization ratio to place time-
variant VNFs compared with the state-of-the-art mechanisms.
Furthermore, the results show that the proposed approach can
achieve desirable scalability.

Index Terms—Network function virtualization, service function
chains, federated learning, deep reinforcement learning, resource
allocation.

I. INTRODUCTION

NETWORK Function Virtualization (NFV) has been con-
sidered as a promising network initiative to implement

network functions and services in an efficient and effective
manner [1], [2]. The main idea is to decouple network func-
tions, e.g., firewall, load balancing and video caching, from
dedicated hardware and run them on industry standard servers
in software, known as Virtual Network Functions (VNFs) [3],
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[4]. Being an innovative step toward executing a lower-cost
agile infrastructure, NFV has attracted tremendous interests
from academia and industry. Today, global telecom companies
and standardization groups are strongly supporting NFV [5],
and furthermore, most of them such as AT&T, BT, Telecom
Italia, and Telefonica, are releasing infrastructure to realize
NFV-based networks.

To realise desired network services, VNFs should be or-
chestrated into the appropriate virtualized infrastructure in
the form of software-based Service Function Chains (SFCs),
which include a set of VNFs chained in a specific order [2],
[6], under given resource constraints. Existing studies attempt
to resolve this issue with different goals like expense reduc-
tion [7], network utility maximization [6], and performance
acceleration [8]. However, in reality, the benefits of NFVs
often come with considerable compromise mainly due to the
static orchestrations of SFCs with these solutions. Specifi-
cally, most of them often instantiate SFCs in the underlaying
infrastructure with the fixed allocated resources in terms of
storage, computing, and bandwidths, etc. However, the real
resources required by the running VNFs always vary with time
[4], [9], [10], leading to a large-scale dimension of network
states and actions for SFC orchestration, which refers to
network resource, network-related factors, resource perception
and VNF mapping [11], [12]. As a result, the performance of
SFCs with static orchestration is greatly affected by the current
and future network states and actions [6], [9], [13], and comes
with the considerable compromise with ever-increasing NFV-
based applications.

More recently, Federated Reinforcement Learning (FRL)
has made significant breakthrough and impacted a variety of
fields such as digital manufacturing, intelligent control, and
energy management [14], [15], [16], which is expected to
become a promising paradigm to tackle the above-mentioned
challenges. However, the current FRL solutions suffer extreme
time issue when the dimension of either network states or
taken actions enlarges. Furthermore, it is becoming more
complicated for current FRL to make decisions on SFC
orchestrations with the ever-increasing continuous states and
discrete actions simultaneously. All of these will further hinder
the convergence of model training for SFC orchestration and
thus motivate new FRL-based approaches to orchestrate each
VNF into an appropriate infrastructure with the dynamically
available resources in an efficient and rapid manner.

To this end, in this paper, we propose a Scalable Service
Function Chain Orchestration (SSCO) solution via FRL, which
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introduces Federated Learning (FL) into the global model
training and Deep Reinforcement Learning (DRL) into local
model training for scalable SFC deployment with the available
resources in a distributed and efficient manner. FL in our
solution is used as the learning architecture and DRL as the
scalable feature extractor to build the relationships among
high-dimensional states, actions and rewards, related to net-
work configurations, SFC requests, our objective optimization
and constraints, for scalable SFC orchestration. SSCO works
as follows. First, SSCO divides the whole network into a
set of regions and assigns an agent in each region to train
a local mode for SFC orchestration. Then, the cloud server
specifies an initial pre-trained model and sends it to each
local client. After that, each agent trains its local model and
reports it to the cloud server for global model aggregation and
improving via federated learning, without data sharing among
them. This process will continue until a global model has been
learned. Finally, each VNF is deployed in networks following
the learned policy. The main contributions of this paper are
summarized as follows.
• The FRL-based framework is proposed to train a global

learning model for scalable SFC orchestration with the
dynamically available resources associated with VNFs
over time, through distributed learning in a set of clients.
Both placement-error-rate-based and reward-based fed-
erated weighted strategies are designed for clients to
participate in the global model training in an optimal
iterative manner with quick convergence. Furthermore,
the maximum-waiting-time and average-waiting-time ex-
plorations have been developed for the cloud server
to train the global model, enabling to deploy SFCs in
networks more flexibly than the traditional solutions.

• The DRL-based solution using DQN is introduced to rein-
force distributed local learning models for the upcoming
VNFs deployment with the available resources in an effi-
cient and scalable manner. Furthermore, the loss-weight-
based mechanism is proposed to generate and exploit
reference samples in replay buffer for future training,
avoiding the strong relevance of training samples.

• Extensive numerical analysis and simulation experiments
are carried out under various network configurations to
estimate the performance of the developed solution. The
results show that SSCO can flexibly orchestrate SFCs in
NFV-enabled networks.

The remainder of this paper is organized as follows. Sec-
tion II provides an overview of the related work. Section
III describes the system models and problem formulation.
Then, Section IV introduces in detail the proposed SSCO
for scalable deployment of SFCs in NFV-enabled networks.
After that, specific implementations, results and performance
comparisons are represented in Section V. Finally, we conclude
the paper in Section VI.

II. RELATED WORK

Over the past few years, many SFC orchestration approaches
have been proposed with different goals, including expense
reduction [7], network utility maximization [6], and perfor-
mance acceleration [8], [17], [18], [19], [20], [21], [22], [23].

A comprehensive survey of those investigations is presented
in [17], [18]. Generally speaking, these solutions with respect
to SFC orchestration can be classified into two categories: (a)
static and (b) dynamic orchestration.

Static orchestration: These approaches instantiate SFCs
in given physical equipment with the allocated resources like
storage, computing and bandwidths. All of these instantiated
VNFs and SFCs will be quantitatively allocated the resources
in their whole operations. Notice that the SFC orchestration is
a NP-hard problem [7], many studies have suggested approx-
imate or heuristic schemes to solve the static orchestration
with different concerns, including the number of servers [24],
network utility [25], and resource overhead [20]. In order to
minimize the number of servers, a hybrid network function
placement model has been proposed for small-scale networks
[24]. To decrease CAPEX and OPEX, a scalable orchestration
strategy has been proposed, while ignoring the changed pro-
cessing capacity of VNFIs [19]. In addition, a VNF migration
solution has been designed to increase network throughput
during traffic steering [20]. Due to static SFC orchestration,
all of these solutions cannot dynamically fulfill the service
requirements of SFCs with time.

Dynamic orchestration: These solutions instantiate SFCs
in the available network infrastructure, and dynamically al-
locate network resources for their operations [26]. Generally,
such solutions target the SFC orchestration problem with the
goal of providing enough resources (e.g., CPU, RAM and
storage) [27], service nodes (e.g., routing path between VNFs)
[28], [21], or a combination of them [22] for each VNF with
time as far as possible. For example, a dynamic SFC deploy-
ment and readjustment solution has been proposed to decrease
OPEX by Column Generation and Lyapunov optimization
[27]. However, this work merely adapts to the hitherto traffic
instead of subsequent requests. Thus, there are a few studies
[29], [10], [30], [23] reported in the direction of proactive
traffic forecasting. With proactively learning the traffic trend,
such solutions complete the auto-scaling of VNFs and better
utilize the re-aggregated SFCs to meet long-lasting demands.
Unfortunately, these dynamic schemes are still heuristic with
slow reactions and hard to train a large state space.

Currently, FRL and DRL [14], [31], [15], [16], [32], [33],
[34], which combine static and dynamic ideas, are becom-
ing attractive among the NFV community. Policy gradient
has been used for auto-scaling policy judgments [9], and
optimization models [13] have been developed to accelerate
training for VNF management but with slow convergence.
A specific Q-Learning [35] and DQN policy [11] have been
presented, respectively, to improve the QoS in auto-scaling
with an unsatisfactory reward. With this in mind, our proposed
SSCO focuses on scalable SFC orchestration via FRL to fulfill
the requirements of SFC with the available resources in a
distributed and efficient manner. Different from the existing
work, our DRL-based local models will be quickly aggregated
and improved at the FL-based cloud server for efficient SFC
deployment, without data sharing among local agents. Fur-
thermore, the weight-based and time-variant federated training
and weight-based sample exploration have been taken into
consideration to ensure a more adaptive VNF scalability and
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TABLE I: The Important Parameters and Notations

Notations Descriptions
V/E Set of nodes/links in the physical networks
F/L Set of virtual nodes/links of all SFCs
λfi Setup cost to place VNF fi
ϕfi Operation cost per unit time of VNF fi
ηuv Transport cost per unit over link uv
t/τ Federated time/time interval
xfi (t) The number of VNFs fi in G(V,E) at time t
x
fi
u (t) The i-th VNF deployment for node u

ysuv(t)/ysfi
(t) SFC s deployment for links uv and VNF fi

Ccpu
u /Cmem

u CPU and memory capacity of u
rcpuu /rmem

u The available ratios of CPU and memory capacity of u
Cbw

u /rbwu Bandwidth capacity/its available ratios of node u
C(t) Total weighted cost of SFC deployment
σ/δi Weight of different costs/clients

Θ(t)/θit Global federated model/local Q-network weight
S/St State space /state in local neural networks training
A/At Action space/action in local training
Rt Reward affected by action At

Q/Q̂ Predictive/target neural networks
εrd/εmin Exploration/minimum probability in ε−greedy policy

higher service availability.

III. PROBLEM STATEMENT

In this section, we present the preliminary knowledge of
network models and formulate the problem to solve. The
important parameters used in this paper are listed in Table
I.

A. Network Models

It is considered that the physical networks, which include
a large number of physical nodes and links to host SFCs, are
modeled as an undirected graph G=(V,E). Both V and E
denote the sets of nodes and links, respectively. The parameters
u and v ∈V stand for two physical nodes, while uv denotes a
link to connect them. The given CPU, memory, and bandwidth
are considered indicators for nodes and links to host all VNFs.
The bandwidth capacity of link uv is denoted as Cbwuv , while
the CPU and memory capacity of node u are defined as Ccpuu

and Cmemu , respectively.
Similar to [36], each type of VNF is just deployed in

virtualized server, which can host the corresponding network
functions. Notice that each VNF may consume a specific
number software/hardware resources, therefore, both Ccpuu,fi

and
Cmemu,fi

are leveraged to respectively denote the number of
CPU and memory resources required by VNF fi on u. Let
Cbwuv,sk denote the required bandwidth of the kth SFC sk
passing through link uv, and let ysuv(t) indicate whether SFC
s traverses link uv, defined as

ysuv(t) =

{
1, if s traverses uv,
0, otherwise.

(1)

Real-world link Embedding

wd
VNF

wξ
VNF

wo
VNF

Virtual SFC

Fig. 1: SFC orchestration in NFV-enabled networks.

Let xfiu (t) denote whether VNF fi is deployed in node u,
given by

xfiu (t) =

{
1, if fi is deployed in u,
0, otherwise.

(2)

Then, the available ratios of CPU, memory, and bandwidth
of node u and uv, denoted by rcpuu , rmemu and rbwuv , respec-
tively, can be defined as

rcpuu =

∑
i x

fi
u (t)Ccpuu,fi

Ccpuu
,

rmemu =

∑
i x

fi
u (t)Cmemu,fi

Cmemu

,

rbwuv =

∑
i y
si
uv(t)C

bw
uv,si

Cbwuv
.

(3)

A traffic flow will traverse a series of VNFs hosted on
different servers, scheduled in the form of a SFC illustrated in
Fig. 1. All SFCs are described as a weighted directed graph
Gf=(F,L), where F= ∪1≤i≤k{fi} and L denote two sets
of VNFs f1, f2, · · · , fk and virtual links connecting them,
respectively. The parameters ū and v̄ represent two virtual
nodes, while ūv̄ denotes a virtual link to connect them. Similar
to [2], the operation time of VNFs, T , i.e, the life cycle of
VNF instance, is fallen in several episodes T1· · ·Ti, each of
which consists of a series of epochs τ1· · · τk.

B. Problem Formulation

Essentially, the VNF orchestration in NFV-based networks,
as shown in Fig. 1, is closely related to the activation and
deactivation of all VNFs with the available resources at the
cost of setup, operation and communication, as described
below.

The setup cost Cset(t) is the total cost to activate all VNF
instances through booting the VM image in the networks,
defined as

Cset(t) =
∑
u∈V

∑
fi∈F

λfi max{[xfiu (t)− xfiu (t− 1)], 0}, (4)

where λfi denotes the cost to setup VNF fi in networks.
The operation cost Cop(t) is referred to as the cost to

run various types of VNFs in the whole operation time t,
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depending on VNF type, server locations and operation time,
and can be defined as follows:

Cop(t) =
∑
u∈V

∑
fi∈F

ϕfix
fi
u (t) =

∑
fi∈F

ϕfixfi(t), (5)

where xfi(t) represents the number of VNFs f1, f2, · · · , fn
in physical networks at time t, and ϕfi denotes the running
cost per unit time of fi.

The communication cost Ccom(t) is referred to as the
expenditure on traffic transmission among all servers hosting
VNFs, and can be given by

Ccom(t) =
∑
s∈Gf

∑
uv∈E

ηuvy
s
uv(t)ρ

s
uv(t), (6)

where, ρsuv(t) stands for the number of flows of SFC s passing
through link uv at time t, while ηuv denotes the transportation
cost per unit flow of link uv∈E.

Then, the total weighted cost of VNF orchestration in
networks can be expressed as

C(t) = σ1Cset(t) + σ2Cop(t) + σ3Ccom(t)

=
∑
fi∈F

∑
u∈V

σ1λfi max{[xfiu (t)− xfiu (t− 1)], 0}+∑
fi∈F

σ2ϕfixfi(t) +
∑
uv∈E

∑
s∈Gf

σ3ηuvy
s
uv(t)ρ

s
uv(t),

(7)

where σ1, σ2 and σ3 are three weighted parameters to tune
the tradeoff among Cset(t), Cop(t), and Ccom(t).

Built upon the above analysis, the scalable SFC orchestra-
tion problem in NFV-enabled networks can be formulated as
follows:

min:
∑
t∈T

C(t), (8)

s.t.



∑
u∈V

xfiu (t) = xfi(t), ∀t ∈ T, fi ∈ F∑
fi∈F

xfiu (t) = 1, ∀t ∈ T, 0 ≤ i ≤ xf (t)∑
fi∈F

xfiu (t)Ccpuu,fi
≤ Ccpuu , ∀u ∈ V, t ∈ T∑

fi∈F

xfiu (t)Cmemu,fi ≤ C
mem
u , ∀u ∈ V, t ∈ T∑

si∈Gf

ysiuv(t)C
bw
uv,si ≤ C

bw
uv , ∀uv ∈ E, t ∈ T

∑
u∈V

ysuv(t)ρ
s
uv(t) =

∑
w∈V

ysvw(t)ρsvw(t), ∀t ∈ T.

(9)
The first constraint in Eq. (9) ensures that one VNF can

only be deployed on a node. The second constraint in Eq. (9)
indicates that only VNF fi can be deployed on node n. The
following three constraints illustrate that the required resources
Ccpuu,fi

, Cmemu,fi
and Cbwuv,si of VNF fi and link uv are no more

than the maximum resource of node u and the bandwidth
capacity of link uv, respectively. Besides, the last constraint
indicates that any intermediate node, which a SFC s traverses
through, needs to follow the flow-conservation principle except
for its source node and destination node.

IV. SSCO: SCALABLE SFC ORCHESTRATION

This section presents in detail the proposed SSCO for
scalable orchestration of SFCs in NFV-enabled networks. First,
we present the essential 3-tuple for SSCO operations, and then
introduce the framework of SSCO. Finally, we describe the
local training process based on FRL in detail.

A. 3-Tuple Design

The specific learning framework of SSCO involves the close
cooperations of DQN, including the neural networks and Q-
learning networks, to implement iterative updates of a 3-
tuple <S,A,R>, which refers to the action, state and reward,
respectively, for scalable SFC orchestration. The environments
for the agents to take actions are referred to as the local
clients. The agent is the VNF orchestrator and management,
which mainly iteratively makes decisions to interact with the
environments at each epoch. Once executing action At at state
St, the agent steps into a new state St+1 along with an updated
reward Rt, which coincides with the optimization goal of
SSCO, defined in Eqs. (8) and (9). The details of 3-tuple
<S,A,R> associated with our scalable SFC orchestration are
described as follows.

The state St∈S at time t is referred to as the information of
all network resources and configurations, and can be denoted
as

St = < Ccpuu (t), Ccpuu,fi
(t), Cmemu (t), rcpuu (t), rmemu (t), rbwuv (t),

Cmemu,fi (t), Cbwuv (t), Cbwuv,si(t),∀uv ∈ E,∀u, v ∈ V,
∀si ∈ Gf > .

(10)
Eq. (10) clearly states that network resources and configura-

tions of node u∈V and link uv∈E, in terms of CPU, memory
and bandwidth, etc, will dynamically change with time.

The action At∈A at time t serves two different functions
Adt and Art , which specifies how to deploy VNFs flexibly
and demonstrates how to apperceive and take advantage of
available resources at the next epoch t, respectively. The action
space A can be expressed as

At =< Adt , A
r
t >,A

d
t ∩Art = ∅, (11)

where Adt∈A refers to the actions of VNF deployment vectors,
and Art∈A consists of the actions of VNF resource perception
and allocation. Each action adt taken at the local client is
responsible for an adaptive task, either VNF placement if
adt∈Adt or resource allocation if adt∈Art .

The first action subspace Adt includes a discrete action set,
and can be further divided into

Adt =< Acpufi,t, A
mem
fi,t , A

bw
ūv̄,t, fi ∈ F, ūv̄ ∈ L > . (12)

Both Acpufi,t and Amemfi,t
denote the action to deploy VNF fi

in networks, while Abwūv̄,t stands for the action to instantiate
virtual link ūv̄ in networks. Essentially, each action ads,t for
deploying SFC s = s̄− f1 − f2 − · · · − fk − d̄ in networks is
a 1× 2(k + 1) matrix vectors, and can be derived as

ads,t = ∪fi∈s,ūv̄∈s{a
cpu
fi,t
, amemfi,t , a

bw
ūv̄,t}. (13)
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Fig. 2: The training architecture of SSCO, which introduces two categories of training: local training and aggregation
training to realize scalable SFC orchestration.

The second action subspace Art is mainly associated with
the available CPU, memory, and bandwidth of nodes and links.
It includes a set of actions of VNF resource perception Ar,pt
and allocation Ar,at , given by

Art =< Ar,pt , Ar,at > . (14)

Specifically, Ar,pt can be defined as

Ar,pt =< Acpuu,t , A
mem
u,t , Abwuv,t,∀u ∈ V, uv ∈ E >, (15)

where Acpuu,t ,Amemu,t and Abwuv,t stand for the actions to apper-
ceive the remaining CPU, memory, and bandwidth of node
u ∈ V and link uv ∈ E. Another action Ar,at can be denoted
as

Ar,at =< Afi,cpuu,t , Afi,memu,t , Aūv̄,bwuv,t ,∀fi ∈ F, ūv̄ ∈ L > .
(16)

Both actions Afi,cpuu,t and Afi,memu,t are taken at node u with
the CPU and memory of Ccpuu [1−rcpuu (t−1)] and Cmemu [1−
rmemu (t − 1)], respectively, while action Aūv̄,bwuv,t is taken in
link uv with the bandwidth of Cbwuv [1 − rbwuv (t − 1)]. Each
action ars,t for resource perception and allocation of SFC s =
s̄−f1−f2−· · ·−fk− d̄ in networks is a 1×2(k+1) matrix
vectors, denoted by

ars,t = ∪fi∈s,ūv̄∈s {a
cpu
fi,t
, amemfi,t , a

bw
ūv̄,t,

afi,cpuu,t , afi,memu,t , aūv̄,bwuv,t }.
(17)

The reward Rt∈R, determined by action At and state St,
is consistent with our optimization goal, defined in Eq. (7), i.e,
to minimize the total weighted cost to deploy SFCs in NFV-
enabled networks. By decomposing our goal into a series of

local epoch decisions, the reward rt at time t in local regions
can be precisely modeled as a function of state st and action
at, given by

rt = −[σ1cset(t) + σ2cop(t) + σ3ccom(t)]. (18)

Here, cop(t), ccom(t) and cset(t), defined in Eqs. (4), (5) and
(6), represent the cost of VNF operation, traffic transmission
and VNF setup in local regions, respectively.

B. Training Framework Design

The main idea of SSCO is to design an intelligent frame-
work to implement a scalable orchestration of SFCs, by
utilizing FL to train a global SFC orchestration model with
dynamically available resources and deep reinforcement learn-
ing to find the local cost-efficient model to deploy VNFs in
networks.

Fig. 2 illustrates the training architecture of SSCO, which
includes local training and aggregation training. There are two
categories of nodes: agents and cloud server, who will perform
local training and aggregation training, respectively. The whole
network has been divided into m network regions, determined
by network scale, node density, the locations of potential
clients, and SFC requests, each of which has a client served
as a function node to communicate with the cloud server. This
means that there are m local clients c1, c2, · · · , cm as local
agents to perform local training. The local training is online
learning combined with Q-learning and neural networks to
update local model θit (1≤i≤m), related to distributed resource
perception and local VNFs deployment, within a time interval,
and report it to the cloud server. Each client will perform the
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local training in its region, and share its model with the cloud
server rather than other clients. The aggregation training is to
collect all local training models θ1

t , θ1
t , · · · , θmt to build a new

global model Θ(t) and then send it to local clients for further
cost-efficient VNFs deployment with the available resources
at a quick convergence of learning rate.

There are two different timescales in our architecture for
model training: federated episodes and epochs, as illustrated
in Fig. 3. A federated episode with the duration of T is used
to mark the time when the cloud server updates Θ(t), and
consists of a series of epochs τ1,τ2,· · · ,τk with the duration
of τ , i.e, T=∪1≤i≤k{τi} and |τi|=|τi+1|=τ . The epoch is
designed for each client ci to train local model θit for Θ(t)
update. In order to reduce the communication cost, the data
exchange between cloud server and clients is allowed just at
the first time epoch τ1 and the final epoch τk in each federated
episode.

In order to rapidly fulfill the requirements of different appli-
cations, two delay-aware solutions, i.e, maximum-waiting-time
and average-waiting-time explorations, have been developed to
pursue a tradeoff between the waiting time of cloud server and
the learning time of each local agent, for global model training
for SFC deployment in various application scenes, which
can tolerate the model update period of T . The maximum-
waiting-time solution is designed to collect all local models,
in the maximum waiting time with the duration of [ζ, 1]T ,
for the global federated model update in delay-insensitive
scenes. Meanwhile, the average-waiting-time solution is used
to aggregate local models from a set of all clients in the
average waiting time, with the duration of (0, ζ)T , for delay-
sensitive scenes with enough accuracy.

The operation of SSCO is generally divided into four steps:
1© model propagation, 2© local iteration, 3© model aggregation

and 4© VNFs allocation, as shown in Fig. 2. There are different
clients conducting scalable orchestration tasks of SFCs in
different environments which contains network resource states,
VNF deployment actions and our designed rewards. All local
clients share the same identical model structure, such that their
models can be aggregated by the cloud server. In the first
step, the cloud server specifies an initial pre-trained model
and sends it to local clients. Each model, consisting of a Q-
network with parameters θit for local clients, learns a policy
to deploy VNFs as network state changes. In the second
step, each participating client uses local data (e.g., available
CPU, bandwidth, and memory in networks) to iteratively train
its own model in each episode. It is noteworthy that only
updated models, not the original data, will be sent to the
cloud server for learning aggregation. In the third step, the
cloud server aggregates updated models into a new model
Θ(t + 1) through reward-based federated methods with the
probability of β or place-error-rate-based federated methods
with the probability of (1−β), described in Eqs. (19)-(21).
The update of model aggregation is dependent on the total
network costs and deployment efficiency. In the last step,
VNFs are placed in networks according to the current local
policy, as shown in Fig. 2. All the above is a repetitive process
to promote the evolution of the shared model.

In our FRL-based framework, each client, for example, ci,

...

...Epochs

Episodes

Upload dataDownload data Iterative training 

First epoch Final epoch

t

T jT)( 1j-

 i
...

k0 )( 1k

0

Fig. 3: Illustration of two different timescales.

Algorithm 1: FRL-based SFC Orchestration
Input: Initial model Θ(t)
Output: Improved model Θ(t+ 1)
Data: Initial local model θit, initial client weight δi

1 for t ∈ [(j − 1)T, jT ] do
2 Cloud Server does
3 Send Θ(t) to ci;
4 Local client does
5 for ci in parallel do
6 foreach τ do
7 if τ1 then
8 θit ← Θ(t);
9 end

10 ∇L(θ) ← Network training;
11 θit ← θit + α∇L(θ); ⇒ According to

Algorithm 2
12 if τk then
13 Upload θit;
14 end
15 end
16 end
17 Cloud server does
18 if 0 < T <ζT then
19 m ← ζ ×m;
20 end
21 i ∈ {1, 2, ...,m};
22 Gather δi, θit;
23 Θ(t+ 1) ←

∑
i δiθ

i
t;

24 return Θ(t+ 1).
25 end

where i is an index of participating clients [37], performs
iterative training to obtain a local model θit and then sends
this updated model to the cloud server for global training
aggregation. Within a given federated time, client ci will obtain
a local data container, which will include a number of samples.
The global updated federated model Θ(t+1) can be expressed
as

Θ(t+ 1) =

m∑
i=1

δiθ
i
t, (19)

where δi represents the weight of local client ci to participate
in the global model training, and

∑
i δi= 1. In order to obtain

an optimal global model, there are two weighted strategies,
i.e, placement-error-rate-based and reward-based, proposed to
set the weights of all clients. The placement-error-rate-based
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strategy takes the ratio of invalid placed SFCs to efficient place
SFCs of clients as the essential factors to give their weights
to participate in the global model training. Let χi denote the
placement error of client ci, then δi can be calculated as

δi =
1− χi

m−
∑m
i=1 χi

. (20)

The reward-based solution considers that the state-action re-
ward is proportional to their weights to train the global model.
Following this principle, δi, can be given by

δi =
χi∑m
i=1 χi

, (21)

where χi denotes the reward of client ci. All hyperparameters
of local training like the client replay buffer size and the
number of client epochs will be tuned to optimize the federated
model.

The pseudocode of our proposed intelligent framework,
which includes local training and aggregation training, is
described in Algorithm 1. Lines 2-3 and Lines 17-24 of Algo-
rithm 1 refer to the first step and the third step, respectively.
Lines 5-16 of Algorithm 1 describe the second and last steps
of local learning. The local model also directly affects the
accuracy and robustness of the predicted requests. We will
introduce this model in detail in next section.

C. Local Training via Deep Q-Network

The local training in each region is built on the action-value
function Q(St, At), which is a pair of state St and action At
taken from Adt or Art , to find a scalable SFC orchestration
solution with DQN. The action-value function Q(St, At) can
be described as

Q(St = s,At = a) = E[

∝∑
k=t

γk−tRt|St = s,At = a], (22)

where γ(0<γ<1) stands for the discount factor to indicate
the importance of all subsequent rewards in Q(St, At). The
optimal action-value function Q∗(St, At) follows the rule as

Q∗(St = s,At = a) =E[Rt + γmax
a′

Q∗(St+1, a
′

|St = s,At = a)].
(23)

There are two neural networks, i.e, predictive neural networks
and target networks, in DQN. Both networks are designed to
train Q(St, At; θ) with the built-in parameters θ step by step
such that this function can approximate the optimal action-
value function Q∗(St, At), i.e, Q(St, At; θ) ≈ Q∗(St, At).
Built on Eq. (23), the optimal action-value function can be
evaluated following the temporal-difference iterative manner,

Q(St = s,At = a)← Q(St = s,At = a) + α[Rt

+ γmax
a′

Q(St+1, a
′)−Q(St = s,At = a)],

(24)

where α is the learning rate.
In order to facilitate understanding, let Sit , A

i
t and Rit denote

the state, action and reward of local training in the i-th region.
To precisely learn Q∗(St, At), the loss function L(θ), used to
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Fig. 4: Training predictive networks and target networks
locally.

estimate the deviation of the predicted value in each local
training, has been introduced and defined as

L(θ) = E[Rit + γmax
a′

Q̂(Sit+1, a
′; θi−t+1)

−Q(Sit , A
i
t; θ

i
t)]

2.
(25)

The value of Q(Sit , A
i
t; θ

i
t) is obtained from the predictive

neural network, of which θit is the local training model
according to the current state Sit and the triggered action
(Adt , A

f
t ). The target network Q̂ is introduced to generate

target reward for taking action a′ in the state Sit+1, i.e.,
Git = Rit + γmaxa′ Q̂(Sit+1, a

′; θi−t+1). In each federated
episode, the local model θi−t+1 of target network will copy from
θit at the final time epoch τk. In order to minimize the loss
function defined in Eq. (25), gradient descent has been used
to update the local training model as

θit = θit + α
∂L(θ)

∂θ

∣∣∣∣
θ=θit

= θit + α
[
Rit + γmax

a′
Q̂(Sit+1, a

′; θi−t+1)

−Q(Sit , A
i
t; θ

i
t)
]∂Q(Sit , A

i
t; θ)

∂θ

∣∣∣∣
θ=θit

.

(26)

In order to provide more transition samples for the whole
training, a replay buffer Di with capacity Di has been intro-
duced into our local model θit, as shown in Fig. 4, following
the original training concept of DQN. Generally, all transition
samples are stored in Di in the form of < Sit , A

i
t, R

i
t, S

i
t+1 >,

updated on the first-come-first-served basis, and selected
randomly by action space for neural networks (<Sit ,A

i
t>)

and target networks (<Sit+1>) to train Q(Sit , A
i
t). Such an

exploring manner is closely interrelated in the state and action,
resulting in low convergence in local learning [8]. To address
this issue, we design a weight-based sample update and
selection solution for replay buffer exploration. The weight
of samples is dependent on the loss function, defined in Eq.
(25). The samples with small weights will be first replaced by
the incoming samples due to data overflow of replay buffer,
and later used for local learning to obtain Q(Sit , A

i
t) than the

samples with higher weights.
In addition, we adopt ε−greedy policy for ensuring that all

actions <Adt , A
r
t>∈A can be selected in two sequential steps.

At the beginning of each epoch, the local host management
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selects the action Ait through a random probability ε ∈ [0, 1],
with a better exploration probability εrd ∈ (0, 1). Then, the
local client makes a random choice from A with probability
ε, or chooses the greedy policy if εrd6ε61. A small value
of εrd indicates a greater probability to take optimal action
argmaxa′∈AQ(Sit , a

′; θit). Therefore, the exploration param-
eter gradually decreases over time. At the end of each epoch,
εrd is modified to εrd×εdecay until a stable minimum value
εmin, where εdecay denotes the decay rate of εrd.

The pseudocode of the local training procedure has been
lised in Algorithm 2. Lines 4-5 of Algorithm 2 randomly
select an action Ait using ε−greedy policy, and a temporary
state-action value is calculated in Line 6 of Algorithm 2. Line
7 of Algorithm 2 observes a reward and a new state from the
environment. In Lines 8-9 of Algorithm 2, the current data
tuple is stored in a replay buffer Di, while later, another data
tuple is randomly selected from the same buffer. We obtain
the loss function and a local training model in Lines 10-11
of Algorithm 2 according to Eq. (26). If τi is the last epoch
in federated time t, we upload training weights to the cloud
server in Lines 12-15 of Algorithm 2. The new state and the
ε parameter are updated for the next iteration in Lines 16-17
of Algorithm 2.

Algorithm 2: Local Online Training via DQN
Data: Initial predictive neural network Q,

< S,A,R > ⇒ Eqs. (10)-(18), target network
Q̂ ← Q, replay buffer Di, random probability
εrd

1 for t ∈ [(j − 1)T, jT ] do
2 for ci in parallel do
3 foreach τ do
4 Get random probability ε;
5 Select action Ait; ⇒ ε− greedy
6 Q(Sit , A

i
t; θ

i
t) ← < Sit , A

i
t >;

7 Obtain reward Rit and reach new state Sit+1;
8 Put < Sit , A

i
t, R

i
t, S

i
t+1 > into Di;

9 Choose a batch of training data from Di;
10 Git ← Rit + γmaxa′ Q̂(Sit , a

′; θi−t+1);
11 θit ← θit + α[Git −Q(Sit , A

i
t; θ

i
t)]∇Q;

12 if τk then
13 Q̂ ← Q;
14 Upload θit;
15 end
16 Sit ← Sit+1;
17 εrd ← εrd×εdecay until εmin.
18 end
19 end
20 end

V. EXPERIMENTAL EVALUATION AND RESULTS

In this section, we establish and conduct extensive sim-
ulations on a universal server, equipped with an Intel(R)
Core(TM) i5-8300 CPU 2.30 @ GHz and a Nvidia GeForce
GTX 1080Ti GPU, to evaluate the performance of our pro-
posed approach. First, we describe the experimental setup,

and then present our evaluation metrics. Finally, we illustrate
the results of performance comparison among SSCO, Neural
Combinatorial Optimization (NCO) [12], and Branch and
Bound (BAB) [38].

A. Simulation Setup

The networks used for simulation experiments are similar
to Geant project [19], which includes 10×5 nodes and 45×5
links. The whole network topology is divided into 5 network
regions, each of which has a client as a function node to com-
municate with the cloud server. This means that 5 nodes will
be chosen as the function nodes to instantiate SFCs through
FRL and the other 45 nodes are acted as the forwarding nodes.
There is no data exchange between clients. The experiments
are performed in two scenarios of different scales, i.e., a large
and a small scenario. In the large scenario, the capabilities of
CPU and memory of each node and bandwidth of each link
are set to be [12, 16] Cores, [12, 16] GB and 6 Gbps [6],
respectively. While in the small scenario, the capabilities of
the same resources are set to [6, 10] Cores, [4, 8] GB and 3
Gbps, respectively.

TABLE II: Descriptions of the VNF Parameters

VNFs
Resource CPU

(Core)
Memory

(Gb)
Bandwidth

(Gbps)
V NF1 1 1.0 [0.3,0.6]
V NF2 1 1.5 [0.3,0.6]
V NF3 2 1.0 [0.3,0.6]
V NF4 2 1.5 [0.3,0.6]
V NF5 2 2.0 [0.3,0.6]
V NF6 3 1.5 [0.3,0.6]
V NF7 3 2.0 [0.3,0.6]
V NF8 4 2.0 [0.3,0.6]

In our simulation experiments, there will be 8 types of VNFs
included in different SFCs [12]. Each VNF can be placed in
one physical node only. The capacity of CPU and memory
of each VNF is [1, 4] Core and [1.0, 2.0] GB, respectively.
The bandwidth capacity of each virtual link is set between
0.3 Gbps and 0.6 Gbps. There are 128 SFCs, either come
from pseudo-true dataset [39] or generated randomly, in the
simulations, which is accompanied by a large number of
resource consumptions used to schedule VNFs into various
nodes [6]. In order to simulate the traffic fluctuation, the
resource demands of a SFC are randomly generated from the
sum of Gaussian functions with different parameters. Unless
specially noted, the lifetime of each SFC is subject to the
normal distribution with an average of 10 epoches, and the
length of SFC |s| is set between 12 and 18. The pre-defined
VNF parameters are listed in Table II.

The experiments are executed in TensorFlow-gpu 1.10 ver-
sion to implement the neural networks. In our neural networks,
there are two fully connected layers with 800 neurons activated
by ReLU function each layer, and the target Q-network is
replaced each episode. The parameters of ε-greedy rule are
set to εmin = 0.01 and εdecay = 0.95 [11]. The discount
factor γ in Eq. (22) and learning rate α are set to be 0.99 and
0.0001, respectively. The capability of each replay buffer Di is
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TABLE III: Parameter Settings in Neural Networks

Hyperparameters Descriptions Value
α the learning rate 0.0001
γ the discount factor 0.99

εmin the minimal value of ε 0.01
εdecay the decay rate of ε 0.95
Di the capability of replay memory 10000
− the capability of batch size 64

10000, and each update of predictive networks applies a batch
of 64 samples. Following the training framework design, the
3-Tuple settings are as follows:
• The input state St at time episode t at each client can be

given as a high-dimensional vector, which refers to all
network resources and configurations as St=< Ccpuu (t),
Ccpuu,fi

(t), Cmemu (t), rcpuu (t), rmemu (t), rbwuv (t), Cmemu,fi
(t),

Cbwuv (t), Cbwuv,si(t) > in the dimension of 10× 4 + 45× 2
= 130.

• The output action At=< Adt , A
r
t > at time episode t at

each client consists of resource perception and allocation
in the dimension of 10 + 45 = 55.

Most parameter settings associated with neural networks are
listed in Table III [11].

In order to qualitatively execute evaluations, in addition to
SSCO, we have also implemented two related solutions: NCO
and BAB, described below.
• NCO: NCO is a dynamic DRL-based VNF placement

scheme built on neural combinatorial optimization theory.
Considering the constraints that indicate the restrictions
of network infrastructure and services, NCO formulates
the VNF placement as a constrained combinatorial opti-
mization problem with the aim of minimizing the overall
power consumption, and addresses it by exploring the
NFV infrastructure and learning optimal placement pol-
icy. The placement policy is trained through Long Short-
term Memory (LSTM), which is further adopted to the
RL agent architecture with policy gradients methods.

• BAB: BAB is a static NFV placement scheme based
on the classical Breadth First Search. It considers all
actions of SFC deployment satisfying Eqs. (8) and (9) as
a solution space tree. At a given state, each action will
be checked against the upper and lower estimated bounds
on the optimal solution by a branch along a space tree.
Finally, BAB explores the branches of candidate actions,
which represent the subsets of the solutions, to seek a
series of optimal actions for efficient NFV placement in
networks.

B. Evaluation Metrics

There are four evaluation metrics, i.e., loss function, net-
work cost, resource utilization ratio, and placement error ratio,
considered in all scenarios to investigate the performance of
SSCO.
• Loss function: The loss function L(θ) defined in Eq.

(25) is used to indicate the convergence performance of

a DQN model. The smaller the loss function is, the better
estimation performance a DQN model will have.

• Network cost: The network cost refers to the total cost of
VNF operations, setup and communications in networks
in each training epoch according to local rewards, and
can be defined as

Ct =

m∑
i=1

|Rit|. (27)

With the federated framework employed in our approach,
the environments will obtain an optimal reward, since it
merely transmits learning models instead of client data.

• Resource utilization ratio: This metric includes rcpuu (t),
rmemu (t), and rbwuv (t), defined in Eq. (3), and can be used
to measure the available resource of each node u∈V and
link uv∈E to host SFCs.

• Placement error ratio: This metric Pe is referred to as
the ratio of the number of invalid SFC deployment Ni to
the number of efficient SFC deployment Ne in networks,
and can be defined as

Pe =
Ni
Ne

. (28)

It is used to indicate the errors of SFC placement due to
resource exhaustion of physical nodes and links to host
all VNFs and their virtual links connecting them.

C. Simulation Results

1) Convergence of SSCO in Local Training: Fig. 5 evalu-
ates the convergence of SSCO, in the form of loss function,
during local training process over 45000 epochs in different
scenarios. The length of SFCs is set to 12. Both maximum-
waiting-time and average-waiting-time explorations, with the
duration of [0.6, 1]T and (0, 0.6)T , respectively, have been
exploited to train the global model. The learning rates are set
to either 0.001 or 0.0001.

Fig. 5 shows that the loss function of SSCO, which intro-
duces two time-based training explorations to global model
training, decreases closely to 0 when the learning rate is
set to be a reasonable value, for example, 0.0001, meaning
that all local training tends to converge. The final achieved
convergence indicates that the local DQN model has learnt
the hidden rules for evaluating actions. Fig. 5(a) illustrates
that the local DQN model has obtained an optimal learning
rate, which is equal to 0.0001, and thus is trained to be
convergent after about 4000 training epochs in the large
scenario with larger resources on nodes and links. In contrast,
in the small scenario as depicted in Fig. 5(b), the local DQN
model gradually converges after around 5500 epochs, where
the convergence rate drops slightly under a tightly constrained
resource. However, since the training time in both of the above
scenarios is short enough to be ignored, SSCO can achieve
efficient model training and update in the limited time.

2) Impact of Parameters of Federated Learning: Fig. 6
illustrates the network cost of SSCO with different federated
learning cycle and federated learning weights. The federated
learning cycle T , elaborated in Fig. 3, refers to a training
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Fig. 6: Impact of parameters of federated learning.

episode, in which the cloud server needs to update a global
training model for local model training. As stated, each
episode includes k epochs, one of which denotes a round of
local training. There are three basic strategies of federated
learning weights, i.e., average, reward-based and error-rate-
based strategies, designed for global model training in our
simulations. The first strategy gives clients the same weights,
while the second and last one tend to assign a higher weight
to the clients owning better reward and lower placement error
rate, respectively.

Fig. 6(a) demonstrates the network cost of our proposed
SSCO with different federated learning cycles, in which k is
set to be 500, 1000, 1500 and 2000, respectively. It is clear
to see that the federated learning cycle, which is proportional
to k, the number of epochs, has a great impact on network
cost during the federated training of our scheme. This is

because the duration of local model update cycle affects the
convergence of the reward of local training. Large duration of
cycles may ignore the global optimum of local learning, while
small duration of cycles will cause federated aggregation ahead
of local DQN convergence. It is noticeable in Fig. 6 (a) that
SSCO has gradually achieved a better network cost after about
5000 training epochs. This means that such a learning speed
is adequate and has reached the convergence range of local
learning.

Fig. 6 (b) illustrates the network cost of our proposed SSCO
with different federated learning weights of clients during local
training process over 9000 epochs. Five local clients have been
assigned different weights to train the global model, depending
on their state-action reward, VNF placement error ratio and
specific functions. It is clear to observe that the reward-based
federated learning strategy can greatly reduce the network cost,
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with up to 11.3% and 13.7% reductions, compared with the
error-rate-based and average federated learning strategies. This
is because the clients with more state-action rewards will be
assigned more weights to train global model.

3) Comparison in Resource Utilization Ratio: Fig. 7 shows
the resource utilization ratio of nodes and links in terms of
CPU, memory, and bandwidth with different SFCs. Figs. 7
(a), (b), (d) and (e) demonstrate the utilization ratio of node
resources of SSCO and NCO as the length and the number of
SFCs varies from 12 to 18 and 2 to 8, respectively. The results
illustrate that SSCO achieves the maximal utilization in most
epochs as desired, meaning that a great federated model has
been trained to well utilize the limited resources of nodes and
links for SFC deployment in networks. For example, SSCO
has up to 50% and 51% resource utilization ratio with respect
to CPU and memory of nodes when the length of SFC is
set to 14, compared with NCO. NCO almost always performs
the worse, but occasionally with a better performance. This is
because NCO always cannot take better actions to update the
state-value function, with Monte Carlo policy which relies on
all samples to work correctly. Figs. 7 (c) and (f) indicate the
utilization ratio of bandwidth as the length and the number
of SFCs increase, respectively. It shows that, SSCO leads
NCO with an average gap of 5.58% in bandwidth as the
SFC length increases from 12 to 18 and performs better when
there are a mass of SFCs. This is because our well-trained
SSCO can save more bandwidth for its effective adjusting
on traffic resources by federated learning to make a more
appropriate deployment, while NCO lacks consideration of this
traffic feature. In addition, it’s worth noting that SSCO finally
achieves a better resource utilization with the increasing SFCs,
which further confirms the scalability of SSCO in a wide range
of different traffic distributions.

4) Comparison in Placement Error Ratio and Network
Cost: Fig. 8 demonstrates the placement error ratio obtained
by SSCO, NCO and BAB as the length and the number of
SFCs increase in both large and small scenarios. It can be seen
from Figs. 8(a) and (c) that SSCO and NCO vastly decrease
placement errors than BAB when the length and the number
of SFCs ranges from 12 to 18 and 2 to 8, respectively. This is
due to that more feasible actions have been taken to orchestrate
even-increasing SFCs. There is slight increase on placement
error ratio for SSCO compared with NCO when the number
of SFCs changes from 6 to 8. This is because there are ever-
increasing SFCs to be instantiated, but more resources such
as CPU, memory and bandwidth already have been used to
host SFCs for SSCO, as shown in Fig. 7. Figs. 8 (b) and
(d) indicates the network cost of BAB, NCO and SSCO for
services which are successfully deployed as the length and the
number of SFCs increase. Obviously, BAB holds the highest
network cost at each length and each number of SFCs, which
is according to the performance shown in Figs. 8 (b) and (d).
In contrast, SSCO performs best with the lowest network cost
while NCO holds the medium one. This is because SSCO
takes federated learning into consideration and the return of
aggregation at each federated epoch helps clients optimizing
their local neural networks instead of using the original ones.
Furthermore, it is apparent that the range between upper and

lower bounds of SSCO is smaller than NCO and BAB, which
indicates that SSCO shows stronger stability and scalability
than others.

TABLE IV: The Complexity of SSCO and NCO

Solutions Time Complexity
SSCO O[IP (|V |+ |E|)(|V |+ |E|+ P )DK + JM ]

NCO O[I(P (|V |+ |E|)(|V |+ |E|+ P )+P 2(|V |+ |E|)2)]

5) Time Complexity: The time complexity of SSCO refers
to aggregated learning and local learning. The time complexity
of local learning is depended on the structure of neural
networks and the size of state and action spaces. Let P denote
the number of VNF requests at each epoch. Notice that the
network resources provided by node u∈V include CPU and
memory while the configurations of link uv∈E mainly refer to
bandwidth resources, thus the number of neurons in the input
layer, depending on the size of state space, can be expressed as
2|V |+|E|+P . Because the output layer of neural networks is
related to the action space, then the number of neurons in out-
put layer can be given by (P +1)(|V |+ |E|). Let K and D be
the number of middle layers in a DQN model and neurons in
each hidden layer, respectively. Built on the operation principle
of DQN, the time complexity of each local iteration can be
expressed as O[P (|V |+ |E|)(|V |+ |E|+P )DK]. In addition,
let J and M stand for the federated aggregation times and
the number of clients, respectively. Following the operation
principle of FL, the time complexity of the aggregated process
can be derived as O(JM). Thus, the total time complexity of
SSCO is O[IP (|V |+ |E|)(|V |+ |E|+P )DK +JM ], where
I represents the local training rounds.

As for NCO, the agent is a sequence-to-sequence model,
which is formed by an encoder-decoder design based on
stacked LSTM cells [12]. The time complexity of NCO can
be regarded as O[I(P (|V |+ |E|)(|V |+ |E|+ P )+P 2(|V |+
|E|)2)], as shown in Table IV.

VI. CONCLUSIONS

In this paper, a novel scalable SFC orchestration scheme
with the recent advances in FRL, namely SSCO, has been pro-
posed to dynamically fulfill the ever-increasing requirements
of different network applications. The proposed joint frame-
work involves online federated training and deep reinforce-
ment learning for scalable SFC deployment in NFV-enabled
networks, which can realise desired network services as far
as possible. Both placement-error-rate-based and reward-based
federated weighed strategies have been designed for local
agents to participate in global model training in an optimal it-
erative manner with quick convergence. Furthermore, the loss-
weight-based mechanism has been proposed to generate and
exploit reference samples in replay buffer for future training,
and are devoted to advancing the convergence performance
of the proposed scheme. Simulation results show that SSCO
exhibits the better convergence performance, higher average
reward, and smaller average resource consumption than other
reference policies over a variety of network scenarios, which
is coincident with our expected objective.
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Fig. 7: Resource utilizations of SSCO with different SFCs.

As a part of our future investigation, we will focus on the
implementation of SSCO on large-scale substrate networks
and practical NFV platforms, for example, OPNFV, especially
when constraints cannot be satisfied simultaneously, for further
increasing the scalability and feasibility of our model. Con-
sidering that the full NFV-based networks have not been built
in telecommunications, we hope to further extend our work
into hybrid NFV-based networks, where the full NFV-based
networks and traditional hardware-based networks will coexist.
The combination of them brings new opportunities to fulfill
the ever-increasing requirements of network applications with
less CAPEX and OPEX. To this end, the potential directions
include FRL acceleration, resource prediction and hybrid SFC
recombining built on our current investigations.

REFERENCES

[1] R. Yu, G. Xue, V. T. Kilari, and X. Zhang, “Network function virtual-
ization in the multi-tenant cloud,” IEEE Netw., vol. 29, no. 3, pp. 42–47,
2015.

[2] A. M. Medhat, T. Taleb, A. Elmangoush, G. A. Carella, S. Covaci, and
T. Magedanz, “Service function chaining in next generation networks:
State of the art and research challenges,” IEEE Commun. Mag., vol. 55,
no. 2, pp. 216–223, 2017.

[3] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Commun. Surveys Tuts.,
vol. 15, no. 4, pp. 1888–1906, 2013.

[4] M. H. Gao, B. Addis, M. Bouet, and S. Secci, “Optimal orchestration of
virtual network functions,” Comput. Netw., vol. 142, pp. 108–127, Jun.
2018.

[5] M. Mechtri, C. Ghribi, O. Soualah, and D. Zeghlache, “NFV orches-
tration framework addressing SFC challenges,” IEEE Commun. Mag.,
vol. 55, no. 6, pp. 16–23, 2017.

[6] J. Pei, P. Hong, M. Pan, J. Liu, and J. Zhou, “Optimal VNF placement
via deep reinforcement learning in SDN/NFV-enabled networks,” IEEE
J. Sel. Areas Commun., vol. 38, no. 2, pp. 263–278, 2020.

[7] S. Sahhaf et al., “Network service chaining with optimized network
function embedding supporting service decompositions,” Comput. Netw.,
vol. 93, pp. 492–505, Oct. 2015.

[8] A. Leivadeas, G. Kesidis, M. Falkner, and I. Lambadaris, “A graph
partitioning game theoretical approach for the VNF service chaining
problem,” IEEE Trans. Netw. Serv. Manag., vol. 14, no. 4, pp. 890–903,
2017.

[9] Y. Xiao et al., “NFVdeep: Adaptive online service function chain
deployment with deep reinforcement learning,” in Proc. Int. Symp. Qual.
Service (IWQoS), 2019, pp. 1–10.

[10] S. Rahman, T. Ahmed, M. Huynh, M. Tornatore, and B. Mukherjee,
“Auto-scaling VNFs using machine learning to improve QoS and reduce
cost,” in Proc. IEEE Int. Conf. Commun. (ICC), 2018, pp. 1–6.

[11] X. Xiong, K. Zheng, L. Lei, and L. Hou, “Resource allocation based
on deep reinforcement learning in IoT edge computing,” IEEE J. Sel.
Areas Commun., vol. 38, no. 6, pp. 1133–1146, 2020.

[12] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, “Virtual network function placement optimization with deep
reinforcement learning,” IEEE J. Sel. Areas Commun., vol. 38, no. 2,
pp. 292–303, 2020.

[13] L. Gu, D. Zeng, W. Li, S. Guo, A. Zomaya, and H. Jin, “Deep
reinforcement learning based VNF management in geo-distributed edge
computing,” in Proc. IEEE Int. Conf. Distrib. Comput. Syst. (ICDCS),
2019, pp. 934–943.

[14] S. Troia, R. Alvizu, and G. Maier, “Reinforcement learning for ser-
vice function chain reconfiguration in NFV-SDN metro-core optical
networks,” IEEE Access, vol. 7, pp. 167 944–167 957, 2019.

[15] S. Troia et al., “Machine learning-assisted planning and provisioning for
SDN/NFV-enabled metropolitan networks,” in Proc. Eur. Conf. Netw.
Commun. (EuCNC), 2019, pp. 438–442.



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, 2021 13

12 13 14 15 16 17 18
SFC length

0

10

20

30

40

50

60

70

80

90

100
Pl

ac
em

en
t e

rro
r r

at
io

(%
)

NCO
BAB
SSCO

(a) Placement error ratio with different SFC length

12 14 16 18
2

4

6
NCO

12 14 16 18
2

4

6
BAB

12 14 16 18
SFC length

2

4

6
SSCO

×103

×103

×103Ne
tw

or
k 

co
st

(b) Network cost with different SFC length

2 3 4 5 6 7 8
SFC number

0

10

20

30

40

50

60

70

80

90

100

Pl
ac

em
en

t e
rro

r r
at

io
(%

)

NCO
BAB
SSCO

(c) Placement error ratio with different SFC number

2 4 6 8
4
6
8

10
NCO

2 4 6 8
4
6
8

10
BAB

2 4 6 8
SFC number

4
6
8

10
SSCO

×103

×103

×103Ne
tw

or
k 

co
st

(d) Network cost with different SFC number

Fig. 8: Placement error and network cost with different SFCs

[16] S. Lee and D. H. Choi, “Federated reinforcement learning for energy
management of multiple smart homes with distributed energy resources,”
IEEE Trans. Ind. Informat., pp. 1–1, 2020.

[17] B. Yi and X. Wang and K. Li and S. K. Das and M. Huang, “A
comprehensive survey of network function virtualization,” Comput.
Netw., vol. 133, pp. 212–262, Mar. 2018.

[18] A. Laghrissi and T. Taleb, “A survey on the placement of virtual
resources and virtual network functions,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 2, pp. 1409–1434, 2019.

[19] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B.
Duarte, “Orchestrating virtualized network functions,” IEEE Trans.
Netw. Serv. Manag., vol. 13, no. 4, pp. 725–739, 2016.

[20] V. Eramo, E. Miucci, M. Ammar, and F. G. Lavacca, “An approach
for service function chain routing and virtual function network instance
migration in network function virtualization architectures,” IEEE/ACM
Trans. Netw., vol. 25, no. 4, pp. 2008–2025, 2017.

[21] B. Zhang, J. Hwang, and T. Wood, “Toward online virtual network
function placement in software defined networks,” in Proc. Int. Symp.
Qual. Service (IWQoS), 2016, pp. 1–6.

[22] R. Zhou, “An online placement scheme for VNF chains in geo-
distributed clouds,” in Proc. Int. Symp. Qual. Service (IWQoS), 2018,
pp. 1–2.

[23] H. Tang, D. Zhou, and D. Chen, “Dynamic network function instance
scaling based on traffic forecasting and VNF placement in operator data
centers,” IEEE Trans. Parallel Distrib. Syst., vol. 30, no. 3, pp. 530–543,
2019.

[24] H. Moens and F. De Turck, “VNF-P: A model for efficient placement

of virtualized network functions,” in Proc. 10th Int. Conf. Netw. Service
Manage. (CNSM), 2014, pp. 418–423.

[25] L. Gu et al., “Fairness-aware dynamic rate control and flow scheduling
for network utility maximization in network service chain,” IEEE J. Sel.
Areas Commun., vol. 37, no. 5, pp. 1059–1071, 2019.

[26] H. B. McMahan, “A survey of algorithms and analysis for adaptive
online learning,” J. Mach. Learn. Res., vol. 18, no. 1, pp. 3117–3166,
Jan. 2017.

[27] J. Liu, W. Lu, F. Zhou, P. Lu, and Z. Zhu, “On dynamic service function
chain deployment and readjustment,” IEEE Trans. Netw. Serv. Manag.,
vol. 14, no. 3, pp. 543–553, 2017.

[28] R. Cziva, C. Anagnostopoulos, and D. P. Pezaros, “Dynamic, latency-
optimal vNF placement at the network edge,” in Proc. IEEE Conf.
Comput. Commun. (INFOCOM), 2018, pp. 693–701.

[29] X. Zhang, C. Wu, Z. Li, and F. C. M. Lau, “Proactive VNF provisioning
with multi-timescale cloud resources: Fusing online learning and online
optimization,” in Proc. IEEE Conf. Comput. Commun. (INFOCOM),
2017, pp. 1–9.

[30] X. Fei, F. Liu, H. Xu, and H. Jin, “Adaptive VNF scaling and flow
routing with proactive demand prediction,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), 2018, pp. 486–494.

[31] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas, “Computation
offloading in multi-access edge computing using a deep sequential model
based on reinforcement learning,” IEEE Commun. Mag., vol. 57, no. 5,
pp. 64–69, 2019.

[32] V. Mnih et al., “Human-level control through deep reinforcement learn-
ing,” Nature, vol. 518, no. 7540, pp. 529–33, 2015.

[33] B. Kiumarsi, K. G. Vamvoudakis, H. Modares, and F. L. Lewis, “Optimal



IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. X, NO. X, 2021 14

and autonomous control using reinforcement learning: A survey,” IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 6, pp. 2042–2062, 2018.

[34] J. Wang, J. Hu, G. Min, A. Y. Zomaya, and N. Georgalas, “Fast
adaptive task offloading in edge computing based on meta reinforcement
learning,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 1, pp. 242–
253, 2021.

[35] P. Tang, F. Li, W. Zhou, W. Hu, and L. Yang, “Efficient auto-scaling
approach in the telco cloud using self-learning algorithm,” in Proc. IEEE
Global Commun. Conf. (GLOBECOM), 2015, pp. 1–6.

[36] S. Draxler, H. Karl, and Z. A. Mann, “Joint optimization of scaling and
placement of virtual network services,” in Proc. IEEE/ACM Int. Symp.
Cluster, Cloud Grid Comput. (CCGrid), 2017, pp. 365–370.

[37] A. Hard et al., “Federated learning for mobile keyboard prediction,”
2018, arXiv:1811.03604. [Online]. Available: http://arxiv.org/abs/1811.
03604

[38] G. T. C. Schulte, M. Lagerkvist, “Gecode,” [Online], http://www.gecode.
org.
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