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ABSTRACT 

 

We present a neural network model for familiarity recognition of different types of images in the 

perirhinal cortex (the FaRe model). The model is designed as a two-stage system. At the first stage, 

the parameters of an image are extracted by a pretrained deep learning convolutional neural 

network. At the second stage, a two-layer feed forward neural network with anti-Hebbian learning 

is used to make the decision about the familiarity of the image. FaRe model simulations 

demonstrate high capacity of familiarity recognition memory for natural pictures and low capacity 

for both abstract images and random patterns. These findings are in agreement with psychological 

experiments. 

 

Keywords: Recognition memory, Familiarity recognition, Deep learning, Anti-Hebbian rule, 

Memorization 

 

1. Introduction 

Recognition memory is a form of declarative memory. It is subdivided into two types 

[Mandler, 1980; Yonelinas, 2002]: recollection, when an object or event is recalled together with 

the context, and familiarity detection (recognition), when the judgment about knowing an object 

or event is made, but any context information is absent. Psychological experiments show that the 

time required for recollection is usually greater than for familiarity recognition. Thus, one can 

assume that familiarity recognition and recollection are two different processes that follow one 

after the other being dissociated at least at the behavioral level.  

Some aspects of familiarity recognition by humans are paradoxical in comparison to other 

forms of declarative memory. While the capacity of the short-term memory is usually estimated 



2 

 

as 7±2 elementary objects (chunks) (Miller, 1956), the capacity of memory for familiarity 

recognition seems to be unlimited (Standing, 1970; Standing, 1973). In Standing's experiments the 

memory for familiarity was created by presenting a large number of stimuli. Each stimulus was 

presented only once for 5 s. The accuracy achieved under these conditions for 10000 pictures was 

about 85%. It is surprising that the capacity of memory for familiarity recognition in the Standing's 

experiments is so radically greater than the capacity of the short-term memory.  

In the experimental and theoretical literature, there is no generally accepted view on 

whether the components of the recognition memory are two distinct cognitive processes or 

different stages of the same process. Some researchers support the single-process theory (SPT) 

that states that recollection is simply a more detailed version of familiarity recognition. The 

recognition memory is considered as a continuum where the strength of memory traces varies from 

weak to strong (Squire et al., 2007; Medina, 2008; Rutishauseret et al., 2008; Wixted & Squire, 

2011; Slotnick, 2013). Other researchers argue that the dual-process theory (DPT) is in better 

agreement with experimental evidence. They refer to fMRI data and the results of investigations 

of patients with different forms of amnesia.  

A review of theoretical arguments in favor of DPT can be found in the paper (Diana et al., 

2006). According to DPT, there are two regions in the brain where the processes of the recognition 

memory are implemented, namely, the hippocampus and the perirhinal cortex, which are 

responsible for recollection and familiarity detection, respectively (Aggleton et al., 2005; 

Eichenbaum et al., 2007; Bowles et al., 2010; Montaldi & Mayers, 2010). Some studies reveal that 

such a dichotomy is not exact: the hippocampus participates in both types of recognition memory 

(Wais et al., 2006; Merkow et al., 2015). The situation is even more complicated since the lesion 

of the entorhinal cortex leads to the deficit of familiarity detection but not recollection (Brandt et 

al., 2016). The difference between the structures that are responsible for recollection and 

familiarity recognition extends beyond the medial temporal cortex, in particular to the prefrontal 

cortex (Scalici et al., 2017).  

The recognition memory is evidently a complex phenomenon (Kafkas & Montaldi, 2018; 

Bastin et al., 2019). The neural network models (Norman & O'Reilly, 2003; Norman, 2010) were 

proposed to separate the hippocampal and neocortical contributions to the recognition memory. 

The main idea is that the neocortex assigns similar representations to similar stimuli, while the 

hippocampus assigns distinct patterns (separated representations) to stimuli, regardless of their 

similarity. The memory capacity for familiarity detection in these models is lower than in 

Standing’s experiments (Standing, 1973).  
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The relatively independent functioning of the perirhinal cortex during familiarity 

recognition proclaimed by the DPT is helpful for modeling familiarity recognition as an isolated 

process. Based on this idea, several computer models have been developed that correspond (more 

or less) to the Standing's results and neurophysiological data on the activity in the perirhinal cortex 

during familiarity recognition (Bogacz & Brown, 2003; Androulidakis et al., 2008).  

The models (Bogacz et al., 2001; Bogacz & Brown, 2002; Greve et al., 2010; Sacramento 

& Wichert, 2012) operate with artificial binary patterns. Their functioning is based on the energy 

function in Hopfield networks (Hopfield, 1982) or on a biologically plausible analogue of this 

function. The absolute value of this function is greater for known (learned) patterns than for novel 

patterns. This fact is used as a discrimination criterion.  

Some models are designed as two-layer networks with the feedforward flow of signals. 

Anti-Hebbian learning (Brown & Xiang, 1998; Bogacz & Brown, 2003) or the Info-max algorithm 

(Androulidakis et al., 2008, Lulham et al., 2011) were used for memorization since they weaken 

the connections between the layers and decrease the activity in the output layer (the perirhinal 

cortex) in response to familiar stimuli, which corresponds to neurophysiological evidence.  

It has been shown by analytical methods and computer simulations (Bogacz, Brown, 2002; 

Budilova et al., 2009, Cortes et al., 2010) that the capacity of memory for familiarity recognition 

provided by some models is of the order n2, where n is the number of units in the neural network. 

Note that the standard Hebbian learning in a Hopfield network gives the capacity of the order n 

(Amit, 1989). This is in agreement with the theoretical analysis (Frolov & Murav'ev, 1993) of 

informational characteristics of neural networks. These results can be considered as a 

mathematical explanation of the phenomenal memory capacity in familiarity recognition.  

The models that simulated Standing's experiments (Standing, 1970; Standing, 1973) used 

input binary patterns (Androulidakis et al., 2008). This was reasonable since one of the purposes 

of modeling was to compare information characteristics of different models for various parameter 

values. Analytical estimation of the memory capacity and error rates was only possible under 

significant simplification of real experimental conditions.  

In this work, we try to fulfill the gap between formal binary patterns and natural stimuli 

investigating how a model for familiarity recognition would function if it received the features of 

natural pictures as its inputs. We would also like to know whether modeling can demonstrate a 

difference in familiarity recognition between natural pictures and artificial random or abstract 

patterns. This difference was observed in the experiments of Bellhouse-King and Standing (2007). 

It has been shown that the performance of subjects in the familiarity recognition task is much better 

for natural than for abstract pictures.  
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Most of familiarity recognition models operate with formal input patterns. The paper (Ji-

An et al., 2019) is an exception. It uses real pictures of human faces as the input. The process of 

familiarity detection is divided into two stages. At the first stage, a picture is processed by a deep 

learning neural network that extracts the parameters of the picture. At the second stage, these 

parameters are used to determine the familiarity of the picture. The network for the first stage was 

pretrained on a large set of photographs of faces. The network for the second stage learned input 

pictures via a special type of synaptic plasticity between the feature extraction module and memory 

module. Each synapse is described by a set of hidden variables that determine the value of the 

connection strength. It is shown that the memory capacity for this model is of the order n2.  

Our familiarity recognition model (the FaRe model) is similar to the one in (Ji-An et al., 

2019) and also includes two stages (Fig. 1). The first stage reproduces information processing 

before the perirhinal cortex and provides input patterns for further processing at the second stage 

in the perirhinal cortex. At the first stage, the parameters of an image are extracted by a pretrained 

deep learning convolutional neural network. At the second stage, we use a two-layer feed forward 

neural network for familiarity recognition. Our recognition network is inspired by the models with 

the anti-Hebbian learning rule (Bogacz & Brown, 2002; Bogacz & Brown 2003, Androulidakis et 

al., 2008). Model simulations show high memory capacity for familiarity recognition when natural 

pictures are used as stimuli and low capacity when abstract images or random patterns are 

presented. This is in agreement with the results of psychological experiments. 

 

2. Methods 

 

2.1. The input and feature extraction 

 

The perirhinal cortex receives highly processed visual information. It is not known what 

kind of features describe the image at the input to this brain structure. It is reasonable to assume 

that these features are formed by brain structures related to the early development of the visual 

system of humans being adapted to the visual information in real surrounding. As a substitute of 

this experience, we use the features that are formed in a high layer of a pretrained deep learning 

neural network. Thus, the feature extraction module (Fig. 1) of the FaRe model is based on the 

large, deep convolutional neural network (CNN) called AlexNet (Krizhevsky et al., 2012). This 

network has been pretrained to classify images into 1000 classes. The training set included 1.3 

million of high-resolution natural images (photographs).  
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AlexNet consists of 25 layers. First nineteen layers combine convolutional, pooling and 

normalization modules to analyze the image and to define the features at different complexity 

levels. The 20th fully connected layer (fc7) represents the result of the multi-stage feature 

extraction procedure. Layers from 21st to 25th receive the features from the fc7 layer to classify the 

image by a back-propagation based algorithm with a 1000-way classifier. It has been proved that 

such image representation at the fc7 layer can be used to successfully train another classifier, e.g., 

the support vector machine, to classify natural pictures (see MATLAB R2020b: Feature Extraction 

Using AlexNet). 

We used the output of the 20th AlexNet layer as the vector of features representing the 

image. These features can be considered as a compressed representation of the image. Extracted 

image features are fed to the input of the memory module (Fig. 1) for training and recognition.  

 

 

Fig. 1. The diagram of information flow of the FaRe model. 

 

Before image processing, the RGB representation of each picture was normalized to the 

size 3x227x227, where 227x227 is the size of the image and 3 is the number of layers 

corresponding to RGB colors. Each image was processed by AlexNet implemented in the 

MATLAB software to define the corresponding vector of 4096 features.  

The performance of the model was tested on three types (groups) of images (Fig. 2).  

The first group is a collection of about 30,000 natural pictures (photographs) (Fig. 2a) 

selected from the CALTEX256 database (Griffin et al., 2007; CALTEX256 internet link).  

The second group contains abstract images (Fig. 2b) similar to those used by Bellhouse-

King and Standing (2007) (in their paper these images were called diverse abstract stimuli). An 

abstract image consists of rectangles, ovals, ellipses, and circles of different size and color. The 
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colors of the background, of all objects in the image, and of their edges were selected randomly 

from the RGB spectrum. The details of abstract image generation are presented in Appendix A.  

 

 

Fig. 2. Examples of images used in simulations.  
(a) Natural pictures and the histograms of their feature values.  

(b) Abstract images and the histograms of their feature values.  

(c) Left: natural pictures; center-top: random pattern of type 1; center-bottom: random pattern of 

type 2; right: histograms of feature values of random patterns. 

 

 

The third group contains random patterns (Fig. 2c) obtained from the photographs of the 

first group by a random permutation of pixels. We used two procedures to transform natural 

pictures into random patterns. According to the first procedure, the random pattern was obtained 

(a) 

   

 

(b) 

 

 

(c) 
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from a natural picture by randomly permuting rows first and then columns of pixels in the picture 

(random patterns of type 1, see the top row in Fig. 2c). In the second procedure, we restricted 

permutations to randomly rearranging columns of pixels only (random patterns of type 2, see the 

bottom row in Fig. 2c). 

In addition to images, Fig. 2 shows the histograms of feature values obtained at the output 

of the feature module. The shapes of distributions for different types of images are rather similar. 

All histograms are bell-shaped, resembling the Gaussian distribution, but they differ from the 

Gaussian distribution because they are not symmetrical about the mean. The shapes of distributions 

may give a hope that random patterns with the Gaussian distribution of feature values can be used 

as a suitable substitution of image features in testing the capacity of the memory module. Our 

computations show that this is not the case. For each image we normalized the vector of 4096 

features (real numbers) associated with the image and generated by the AlexNet. For the 

normalized vector of features the mean is zero and the standard deviation is 1. We use the 

normalized vector as an input to the memory module. 

 

2.2. The memory module for familiarity recognition 

 

The memory (familiarity recognition) module (Fig. 1) is a feedforward two-layer neural 

network with the anti-Hebbian learning rule which is adapted to the inputs of real numbers instead 

of binary values used in models by Bogacz & Brown (2003) and Androulidakis et al., (2008). The 

choice of the anti-Hebbian neural network is caused by the following reasons. First, such networks 

reproduce the experimental evidence about the decrease of the activity in the perirhinal cortex for 

familiar stimuli. Second, these models use a simple biologically plausible type of learning. Third, 

it has been shown that the memory with the anti-Hebbian learning rule works well in reproducing 

the Standing’s data for formal (binary) input patters (Androulidakis et al., 2008). 

Our FaRe model includes the following specifications:  

 The input layer contains n = 4096 neurons.  

 The output layer contains m = 4096 novelty detection neurons.  

 The layers are coupled by feedforward all-to-all connections.  

 Initial values of connection strengths are randomly distributed in the interval (-1, 1).  

 The connection strengths are modified during the learning stage. 

The activity of neurons in the output layer is determined by the formula: 

ℎ𝑗 = ∑ 𝑤𝑖𝑗𝑥𝑖
𝑛
𝑖=1 ,     j = 1, …, m, ,    i = 1, …, n,                (1)  
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where xi are the components of the input X, wij are connection strengths between neurons of the 

input and output layers. 

The output layer works in the regime of m/2-winners: only half of neurons with the highest 

activity levels are considered to be in active state, other neurons are in the rest state and they do 

not participate in the modification of connection strengths. This rule has earlier been used in 

modeling familiarity recognition using anti-Hebbian learning (Bogacz & Brown, 2002; Bogacz & 

Brown 2003, Androulidakis et al., 2008).  

During the learning stage, the connection strengths between active neurons are modified in 

such a way that the average activity of neurons in the output layer decreases (Brown et al., 1987; 

Li et al., 1993; Brown & Xiang, 1998; Bogacz & Brown, 2002; Bogacz & Brown 2003). This can 

be achieved by the anti-Hebbian learning rule, 

𝑤𝑖𝑗 → 𝑤𝑖𝑗 − 𝜂 𝑥𝑖,                                                                                                                          (2) 

where η > 0 denotes the learning rate. This modification of connection strengths is implemented 

for each pattern X of the learning set. 

The average output activity during the testing stage for a pair of images (X, Z) is computed 

as: 

𝑑(𝑋) =
1

𝑚
(∑ ∑ 𝑤𝑖𝑗𝑥𝑖

𝑛
𝑖=1𝑗∈𝑀1

− ∑ ∑ 𝑤𝑖𝑗𝑥𝑖
𝑛
𝑖=1𝑗∈𝑀2

),  

(3) 

𝑑(𝑍) =
1

𝑚
(∑ ∑ 𝑤𝑖𝑗𝑧𝑖

𝑛
𝑖=1𝑗∈𝑀1

− ∑ ∑ 𝑤𝑖𝑗𝑧𝑖
𝑛
𝑖=1𝑗∈𝑀2

),  

where M1 and M2 are the sets of m/2 "winners" and "losers" in the output layer, respectively, X is 

a known and Z is an unknown image.  

It is assumed that a familiar image elicits a lower activity in the output layer than an 

unknown image, so the correct decision about the familiarity of X is made if d(X) < d(Z), otherwise 

an error in familiarity recognition is registered. 

Simulations of the FaRe model are organized similar to psychological experiments 

(Standing, 1970; Standing, 1973; Bellhouse-King & Standing, 2007). First, we randomly collect 

from the whole pool of input images two sets of the same size N: the set L of target (learning) 

items and the set T of unknown (distractor) items. The patterns from L are learnt one by one via a 

proper adaptation of connection strengths between the input and output layers of the memory 

module using the anti-Hebbian type rule (2).  

Then comes the testing stage. During this stage the model receives a pair of items (Xk, Zk) 

(k = 1, …, N), where the first item belongs to L and the second one is selected from T. Running 

the test through all N pairs and making the decision about familiarity according to (3), we compute 

the whole number of errors and the probability of errors.  
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Remark. In the study by Androulidakis et al. (2008), input vectors are binary and the 

connection strengths are normalized after learning each pattern so that for each neuron the mean 

of incoming connection strengths is 0 and the Euclidian length of the vector of weights is 1. In the 

FaRe model, input vectors to the memory module are real numbers and our simulations have 

shown that such normalization increases the probability of errors especially in the case of large 

sets of natural pictures. Thus, the normalization of connection strengths was excluded.  

In our simulations of the FaRe model, we studied how the probability of errors depends on 

the number of tested pairs N, the model parameters, and the type of images. We show that the 

memory capacity for familiarity recognition significantly depends on the type of images. It can be 

high in the case of natural pictures, but the memory capacity is drastically reduced if either abstract 

or random patterns are memorized. This finding is in good agreement with psychological data 

(Bellhouse-King & Standing, 2007).  

 

3. Simulation results 

 

The performance of the anti-Hebbian model of familiarity recognition was analyzed in 

(Bogacz & Brown, 2002; Bogacz & Brown, 2003; Androulidakis et al., 2008). In particular, it has 

been shown that for random binary input patterns the probability of errors in familiarity recognition 

only weakly depends on the learning set size (see Fig. 7 in (Androulidakis et al., 2008)). We 

performed similar computations of the probability of errors for patterns with normally (the mean 

is 0, the standard deviation is 1) and independently distributed components as the inputs to the 

memory module. The errors were averaged through 20 runs of the module. The results of our 

computations are presented in Table 1 together with experimental data extracted from the paper 

(Standing, 1973).  

 

Table 1. The probability of errors in experiments and simulations. 

 

The number of 

stimuli N 

The probability of errors 

Experimental 

data (normal 

pictures) 

Simulation results 

η = 0.0003 η = 0.0004 η = 0.0005 

20 0.01 0.17 0.08 0.045 

40 0.045 0.15 0.11 0.05 

100 0.05 0.12 0.1 0.02 
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200 0.085 0.18 0.12 0.02 

400 0.14 0.14 0.1 0.03 

1000 0.115 0.11 0.05 0.02 

4000 0.189 0.17 0.05 0.02 

10000 0.17 0.11 0.05 0.02 

 

In contrast to the Standing's data and in agreement with the results of Androulidakis et al. 

(2008), the probability of errors is nearly stable when the size of the learning set increases. At the 

same time, there is significant sensitivity to the value of the learning rate η. In a reasonable range 

of η values the probability of errors decreases with the increase of η. 

Let us go to the assessment of the model performance where the features of natural (real) 

pictures are used as the input information for the FaRe model. The learning rates in simulation 

experiments were equal to η = 0.01 or η = 0.02. The considerations behind this choice are 

explained in Appendix B. The probability of errors was computed through 100 runs of the model 

and random selection of picture sets for learning and testing stages from the whole database for 

each run. After each run is completed, we compute the probability of errors during this run. These 

probabilities are averaged to find the mean and standard deviation. The number of learned pictures 

N varied as in the Standing’s experiments.  

Besides the probability of errors, we follow Standing’s approach to estimate the number of 

items Nret retained in memory after learning. This is computed according to the formula 

Nret = N (1 – 2 Per),                                                                                                                                       (4) 

where N is the number of learned items, Per is the probability of errors. 

The results of FaRe model simulations are shown in Fig. 3. The number of retained objects 

Nret vs the number of images N is shown in Figs 3a,c in log10 scale. The averaged probabilities of 

errors vs the number of images N  is shown in Figs 3b,d. Note, the values of N used in our 

simulations coincide with the values of N in Standing’s experiments (Standing, 1973).  

In contrast to the simulation results presented in Table 1, the probability of errors increases 

when the size of the learning set increases. In this respect our results are in agreement with 

experimental data. However, the experimental data are somewhat underestimated for N < 400 and 

overestimated for N >1000, especially in the case η = 0.02, so the behaviour of the experimental 

and simulated curves in Figs 3b,d are different. Radical increase of the number of neurons m in 

the output layer of the memory module does not significantly affect our results. The corresponding 

arguments are presented in Appendix C. 
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The results of FaRe model computations are shown in Fig. 4. Probabilities of familiarity 

recognition errors for random patterns of type 1 are shown in Figs. 4a,b and for abstract images in 

Figs. 4c,d. Colored graphs represent the mean probabilities of errors and vertical bars show the 

standard deviations. For the reference, the black graphs (the same graphs as in Figs. 3b,d) represent 

the Standing’s experimental data (Standing, 1973).  

Comparing Figs. 3 and 4, it can be seen that the performance of the model in the case of 

random patterns and abstract images is radically poorer than in the case of natural pictures. Even 

dozens of images present difficulties for familiarity recognition.  

 

 

Fig. 3. The results of simulations of familiarity recognition for natural pictures. 

(a), (c) The number of items retained in memory as a function of the number of presented items 

during learning in log10 scale.  

(b), (d) Averaged probabilities of errors during testing. Black lines correspond to experimental 

data (Standing, 1973).  

Blue lines in (a) and (b) correspond to computations with η = 0.01. Red lines in (c) and (d) 

correspond to computations with η = 0.02. Green dashed lines in (a) and (c) correspond to perfect 

recognition memory, where all the presented images are retained. Vertical bars in (b) and (d) show 

standard deviations. 

 

                              (a)                                                                  (b) 

  
 

                                         (c)                                                                 (d) 
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Fig. 5 allows us to compare the results of simulations with the experimental data of 

Bellhouse-King and Standing for diverse abstract stimuli (Bellhouse-King & Standing, 2007). The 

authors of this paper experimented with three types of images which they called concrete, regular 

abstract, and diverse abstract. Concrete pictures were the pictures of everyday objects and scenes 

similar to those which we used in our simulations with natural pictures. Regular abstract images 

were photographs of snowflakes. Diverse abstract stimuli were meaningless images constructed 

using a combination of geometrical shapes of different colour, size, and orientation. They are 

similar to our abstract images (Fig. 2b). The size of training and testing sets was N = 30.

 

Fig. 4. The probability of familiarity recognition errors for random patterns of type 1 and 

abstract images. 

(a-b) Computations for random patterns of type 1 with η = 0.01 (a) and η = 0.02 (b). 

(c-d) Computations for abstract images with η = 0.01 (c) and η = 0.02 (d).  

Colored lines show the results of computations. Black graphs represent psychological 

experimental data for natural pictures (Standing, 1973)). Vertical bars show standard deviations.  

 

Fig. 5 shows the average probability of errors in the Bellhouse-King and Standing 

experiments by green and magenta circles (see the part of the figure on the left from the vertical 

                            (a)                                                                  (b) 

  

                                  (c)                                                                                  (d) 
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dotted line). Green circles correspond to the experiments with the stimuli presented to the subject 

in the order Diverse Abstract – Regular Abstract – Concrete. Magenta circles correspond to the 

experiments with the stimuli presented in the reverse order: Concrete - Regular Abstract - Diverse 

Abstract. Vertical bars of the corresponding colour show standard deviations. 

Besides experimental data, Fig. 5 shows the results of FaRe model simulations with 

random patterns of types 1 and 2 and abstract images (see the part of the figure on the right from 

the vertical dotted line). There was no necessity for us to exactly follow the conditions of 

psychological experiments in the way of stimuli presentation since they have been adjusted for 

convenience of subjects. Note that the number of items retained in memory for both orders of 

presentation were qualitatively similar. Thus, in the simulations we presented only one type of 

stimuli (either random patterns of a particular type or abstract images).   

 

 

Fig. 5. The average number of items retained in memory of subjects (Experiment) and the 

FaRe model (random and abstract images).  

The learning set size is N = 30. Circles and stars show the mean values, vertical bars show standard 

deviations. Blue and red bars correspond to computations with η = 0.01 and η = 0.02, respectively. 

Experiment: Experimental data of Bellhouse-King and Standing (2007) for diverse abstract 

stimuli. The green bar shows the experimental results when the order of presentation of stimuli 

was Diverse Abstract – Regular Abstract – Concrete. The magenta bar corresponds to the order of 

presentation Concrete - Regular Abstract - Diverse Abstract.  

Random 1: Simulation results for random patterns of type 1. 

Random 2: Simulation results for random patterns of type 2. 

Abstract: Simulation results for abstract images. 
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As in the case of natural pictures, the average probabilities of errors and their standard 

deviations were computed through 100 runs of the model and random selection of items of a 

definite type for each run. The number of stimuli used in training and testing stages of simulations 

was as in the psychological experiments, N = 30. The results of simulations are shown in the right 

part of Fig. 5. Blue and red stars show the probabilities of errors under the parameter values η = 

0.01 and η = 0.02, respectively, and vertical bars show standard deviations.  

Our simulations are in a good agreement with psychological data of Bellhouse-King and 

Standing (2007). Simulations with abstract images and with random patterns show a relatively 

high number of errors and low number of items retained in memory in comparison with natural 

pictures. The random patterns of type 1 are more difficult to recognize as familiar than random 

patterns of type 2. This is in agreement with intuitive expectations. The number of retained items 

for η = 0.01 is slightly lower than for η = 0.02 for both types of random patterns. For abstract 

images the results of familiarity recognition are much better for η = 0.02 than for η = 0.01. For η 

= 0.01 the number of retained abstract images is similar to the experimental data with diverse 

abstract stimuli.  

 

4. Discussion 

 

Experimental evidence shows that visual recognition memory, in particular familiarity 

recognition, is more reliable and works faster if it operates with natural meaningful pictures in 

comparison to abstract, artificial meaningless images (Bellhouse-King & Standing, 2007; Boucher 

et al. 2016). This is usually explained by the dual-coding theory, according to which natural 

pictures are processed and memorized not in purely visual, but also in verbal categories. Not 

denying this concept, we would like to draw attention to another possible source of this 

phenomenon. We assume that the experience during the early stages of brain development (the 

childhood) forms the visual system in such a way that it allows for efficient coding everyday 

images, but it is inefficient in coding abstract, artificial images. 

The results of our modeling support this assumption. The deep learning neural network 

trained by natural pictures is inefficient in coding abstract images or random patterns, which is 

reflected in poor capability of the memory module in distinguishing between known and unknown 

images. Taking into account the results of (Bogacz & Brown, 2003) on the correlated patterns, one 

may suggest that low efficiency of familiarity recognition of random patterns and abstract images 

is due to higher correlations between their features. The results presented in Appendix D do not 

support this hypothesis. Averaged characteristics of correlations are similar for all types of images. 
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It seems that some deeper dependencies between particular pairs of features are responsible for the 

radical difference in the performance of the model for images of different types. 

Thus, we conclude that successful solution of the familiarity recognition task significantly 

depends on the pretraining, when the subject develops an efficient system of feature extraction for 

the analysis and representation of pictures. This feature system is not universal. For special types 

of images, e.g. random patterns and abstract images, it results in poor familiarity recognition.  

If the system of features is optimized by preliminary training, a relatively simple neural 

network for familiarity recognition can memorize and correctly recall thousands of natural pictures 

with the probabilities of errors similar to those observed in psychological experiments. The same 

model demonstrates that in familiarity recognition of random patterns and abstract images the 

probability of errors is as high as in psychological experiments for diverse abstract stimuli when 

the number of memorized images is about three dozen only.  

Our computations show that stimulation of the FaRe model by artificial random patterns 

can be misleading in assessing how well the model reproduces experimental data. For random 

Gaussian patterns the FaRe model failed to demonstrate the increase of the probability of errors 

with the increase of the training set size observed in psychological experiments. Nevertheless, such 

increase was demonstrated by the model in the case of natural pictures. The distribution of feature 

values in the latter case has a bell-shape form similar to the Gaussian distribution that we used in 

generating artificial random stimuli, but internal dependency between the features of natural 

pictures cannot be formulated in simple stochastic terms. This explains the difference in simulation 

results. 

Earlier computer experiments with random stimuli have shown that the anti-Hebbian 

learning, being biologically plausible in the perirhinal cortex upon familiarity recognition, 

provides the memory capacity of the order n2, where n is the size of the network (Bogacz & Brown, 

2002; Bogacz & Brown, 2003). Our simulations show that the high memory capacity of the anti-

Hebbian model is maintained under the stimulation by the features of natural pictures. Note that 

the high capacity is reached without complex synapses that were used in the paper (Ji-An et al., 

2019). Moreover, the paper (Ji-An et al., 2019) was devoted to the study of the capacity of their 

familiarity recognition model without any reference to psychophysical data. In contrast, our main 

results are directed to the reproduction of experimental data of (Standing, 1973; Bellhouse-King 

& Standing, 2007). 

Our computations show that the learning rate η is a critical parameter for anti-Hebbian 

model functioning. We have chosen the range of the values of this parameter that would allow us 

to minimize the probability of errors of familiarity recognition. The model is too abstract to justify 
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our choice by neurobiological observations. We can only hope that in real biological systems the 

optimization of features important for survival is achieved in the process of evolution.  

Qualitatively reflecting some aspects of experimental data, the anti-Hebbian network and 

its learning algorithm are far from being perfect in simulating the form of experimental error 

curves. Also the model was not able to reach subject’s results for large learning sets. We have done 

numerous computations in an attempt to reduce the probability of errors for large N, varying η and 

radically increasing the number of neurons in the output layer. Unfortunately, this did not lead to 

positive results. Evidently, the model is too simple to properly reflect complex process of human 

decision-making during familiarity recognition. To improve model performance, more detailed 

structure of the perirhinal cortex and its interaction with other brain structures such as the 

parahippocampal cortex and hippocampus should be taken into account. It is important to 

emphasize that the models should be tested on the features of real images, both natural and 

artificial.  

 

Appendix A. Generation of abstract images 

 

Each abstract image contained a large rectangle, two ovals (medium and small) and five 

ellipses (large, medium, and three small). All objects in the image were generated by a MATLAB 

program rectangle with various parameter values. The intervals of the parameters for the 

background and for objects are summarized in Table A1. The parameters (except curvature) were 

randomly selected from the specified intervals and rounded to the nearest integer. The colors of 

the background, of all objects in the image, and of their edges were selected randomly from the 

RGB spectrum. 

 

Table A1. Ranges of parameters for generation of abstract images.  

Objects Position 

x 

Position 

y 

Size  

x 

Size  

y 

Curvature 

x 

Curvature 

y 

Edge 

width 

Background 0 0 30 10 0 0 (0, 5) 

Large oval (1, 4) (1, 3) (12, 25) (7, 12) 0 0 (0, 12) 

Medium oval (1, 30) (1, 7) (5, 10) (3, 9) 0.1 0.2 (0, 12) 

Small oval (1, 30) (1, 10) (2, 5) (2, 4) 0.5 0.3 (0, 12) 

Large ellipse (1, 11) (1, 5) (7, 13) (5, 10) 1 1 (0, 12) 

Medium 

ellipse 

(15, 19) (0, 8) (4, 7) (4, 8) 1 1 (0, 12) 

Small  

ellipse 1  

(0, 30) (0, 10) (3, 5) (1, 4) 1 1 (0, 12) 

Small  (1, 11) (1, 4) (5, 6) (1, 2) 1 1 (0, 12) 
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ellipse 2 

Small  

ellipse 3 

(1, 9) (1, 5) (4, 6) (1, 3) 1 1 (0, 12) 
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Appendix B. Selection of the learning rate 

 

The error rates produced by the model critically depend on the learning rate η. In the paper 

(Androulidakis et al., 2008) a cost function was used to provide the best fit between simulation 

results and Standing’s experimental data. In our simulations our main aim was to explain the 

difference in recognition memory for both natural and artificial images, so we used a simpler 

approach to the selection of η that is based on minimization of the mean probability of errors. The 

mean probability of errors was computed for N=1000 natural pictures and for η varying in the 

range (0, 0.03) (Fig. B1). Averaging was done through 100 runs of the model. The minimal value 

was obtained for η = 0.01. The results of simulations presented in Figs. 3-5 allows one to compare 

the functioning of the model for the values η = 0.01 and η = 0.02 which are expected to be 

somewhere near the optimum. 

 

Fig. B1. The average probability of errors of familiarity recognition for natural pictures as 

a function of the learning rate.  

 

Appendix C. The influence of the size of the memory module on the probability of error  

 

The experience obtained with the familiarity recognition model FamE based on the energy 

in the Hopfield network (Androulidakis et al., 2008) may lead to the suggestion that restricted 

recognition memory capacity is a result of low size of the output layer of the memory module. To 

test this hypothesis, we varied the number of neurons m in the output layer and computed the 

average probability of errors. Averaging was done through 100 runs of the model. The results of 

computations are presented in Fig. C1. The graphs in the figure clearly show that though the 
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probability of errors gradually decreases with increasing m, even the radical increase of m does 

not significantly improve the performance of the model. 

 

 

Fig. C1. The average probability of errors of familiarity recognition for natural pictures as 

a function of m for m = 1000, 2000, 4000, 16000, 32000, η = 0.01.  

  

Appendix D. Dependences between the features of images 

 

The paper (Bogacz & Brown, 2003) shows that in the case of random binary input patterns 

the correlations between the components of the patterns increases the number of familiarity 

recognition errors. One may think that such correlations are the source of the increased number of 

errors for random and abstract images. To test this hypothesis, we computed various parameters 

that describe mutual dependences between the features of images that were used in our simulations.  

The computations were organized in the following way. First, we selected a large enough 

set of images of a particular kind. The size of each set is shown in the second column of Table D1. 

Each image is described by 4096 features. Then, the correlations between all 4096 x 4096 pairs of 

features (except of self-correlations) were computed. Averaging these values, we obtain the mean 

correlations which are shown in the third column (Mean 1) of Table D1 and in brackets we report 

the standard deviation. It is seen that there is no significant difference of this parameter for different 

types of images. 

In principle, low values of the mean correlations can be a result of mutual compensation of 

positive and negative correlations. To eliminate this effect, we computed the means of the absolute 

values of correlations (Mean 2). They are presented in the fourth column of Table D1. The last 

two columns of Table D1 show minimal and maximal values of the absolute values of correlations. 
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The data in Table D1 allow us to make the following conclusion:  the values in each of the 

columns 3-6 of Table D1 are too similar to explain the difference in the results of familiarity 

recognition. However, the correlation between some pairs of features is very strong. Averaging 

hides a complex structure of mutual dependences between the image features which is the source 

of radically different memory capacity for different image types. 

 

Table D1. Correlation of features  

 

 

Type of 

images 

The 

number of 

images 

Correlations 

Mean 1 (std)a Mean 2 (std)b Mine Maxd 

Natural 

pictures 
29,700 0.11 (0.14) 0.15 (0.11) 8.6e-08 0.86 

Random 

patterns 

of type 1 
19,720 0.13 (0.26) 0.25 (0.17) 5.7e-08 0.93 

Random 

patterns 

of type 2 
19,720 0.15 (0.24) 0.23 (0.16) 5.8e-0.8 0.89 

Abstract 

images 
21,000 0.12  (0.19) 0.18 (0.13) 6.2e-0.9 0.81 

 

a Mean 1 (std) – the mean and standard deviation of correlation values (in brackets);  
b Mean 2 (std) – the mean and standard deviation of correlation absolute values (in brackets);  
c Min - minimum of correlation absolute values;  
d Max - maximum of correlation absolute values. 
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