
Tunable Dirac Polaritons in
Cavity-Embedded Metasurfaces

Charlie-Ray Mann
Department of Physics and Astronomy

University of Exeter

A thesis submitted for the degree of
Doctor of Philosophy in Physics

Supervisors: Eros Mariani & William L. Barnes

April 2021





Declaration

Tunable Dirac Polaritons in Cavity-Embedded Metasurfaces.

Submitted by Charlie-Ray Mann, to the University of Exeter as a thesis for the degree of
Doctor of Philosophy in Physics, April 2021.

This thesis is available for Library use on the understanding that it is copyright material and
that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that
any material that has previously been submitted and approved for the award of a degree by
this or any other University has been acknowledged.

Charlie-Ray Mann
April 2021





“A great deal of my work is just playing with equations and seeing what they give.”

Paul Dirac





Acknowledgements

Eros, I consider myself incredibly lucky to have had you as a supervisor, a mentor, and
a friend over the last few years – you are a wonderful human being. I vividly remember
the meeting where you encouraged me to do a PhD and you said “you’ll be dropped in the
middle of the ocean and you’ll either sink or swim” – I hope I didn’t sink. I am extremely
grateful that you gave me the freedom and autonomy to explore and develop my own ideas,
which has been an invaluable experience for me. I will always fondly remember the endless
espresso-fuelled rewrites of the papers, the expensive steaks and rum, and the fact that
you taught a Cornish boy proper English grammar. More importantly, you have always
believed in my abilities even when I didn’t, and you have always provided me with so many
opportunities. You even brought me croissants and coffee when I laid in hospital. Thank you
for everything, Eros, I consider you a true friend.

I am also very grateful to my second supervisor, Bill. You were the first physicist that I
ever encountered on my first day as an undergraduate at Exeter, and I remember you saying
that “doing physics is very different to studying physics” – this always stuck with me and
definitely steered me towards a PhD even in those early days. Your enthusiasm has always
been extremely infectious, and I always enjoyed our back-to-basics sessions. Sorry for not
sticking with the fabrication of nanoparticle arrays at the beginning of the PhD – I probably
would have been terrible at experiments anyway!

Towards the end of my PhD I also had the great privilege of collaborating with Simon
Horsley. Thank you for always being so generous with your time to discuss physics and
explain complex ideas in such an elegant and illuminating way. I was always astounded by
your seemingly boundless knowledge of physics and mathematics. Undoubtedly, it was your
brilliant course on wave physics that convinced me to reinterpret all of my results using a
Green’s function formalism!

I would also like to give a special mention to Peter Winlove, Gyaneshwar Srivastava, Pete
Vukusic and Andrey Shytov who have inspired me during my time at Exeter.

Over the last few years, I have met many other fantastic people that have made this PhD
experience so memorable. Thanks to Craig Tollerton for all the highly competitive squash
games (I think you probably won 55-54 in the end, or thereabouts), to Joseph Beadle, Josh
Hamilton and Miguel Camacho for all the joyful coffee breaks, and to all the crew on the
third floor for creating an enjoyable office environment; Tom Sturges, Tom McDermott, Iori
Thomas, Hai-Yao Deng, Angus Laurenson, Andy Wild, Jamie Le Signe and many others.



viii

A special thanks goes to Tom Collier for all the beers down the pub, the political
discussions, the many travel shenanigans, and for turning our office into an overgrown
vegetable patch (though the chilli chutney was beautiful). You are a truly lovely man and I
wish you and Laëtitia all the best in your new chapter together.

During my PhD I also had the great pleasure of supervising some brilliant Masters
students: Daniel Bosworth, Andy Wild, Jordan Meadows, Henry Wang, Angus Crookes,
Adam Chaou, Joshua Mitchell Cole and Isiah Rudkin-Crawford. I know that many of you
have gone on to start your own PhD journey and I sincerely wish you all the best in whatever
the future brings you.

I would also like to express my gratitude to everyone involved in the CDT who created
such an interesting and engaging PhD experience. I am particularly indebted to Anja Roeding
for supporting me through difficult periods of ill-health, and always being there to lend an
ear. You have such a calming influence and a wonderful ability to relieve stress and anxiety
in any situation.

To my family, you really are an odd bunch, but I love you all. Mum and Dad, thanks for
always encouraging me to fulfill my potential as a child, whether that be in sport or academic
work (I’m sorry that I chose physics over rugby in the end!). Stevie, Gavin and Clare, thanks
for all the laughter, memories and support over the years.

Finally, to my darling Amy. Although you are quite terrible at maths and physics, you
really should be a co-author of this thesis because none of this was possible without you.
When we fell in love all those years ago at school, I knew you were going to change the
course of my life forever. I didn’t come from an academic background and I found the idea
of university quite intimidating, but you encouraged me to follow my passion. You stayed
by my side every step of the way, you always gave me the confidence to explore beyond
my comfort zone, and you have always been there to put your arms around me when things
are not going so well. Most importantly, you make me smile and laugh every single day,
especially when you try to mimic my presentations without having a clue what a Dirac point
is (even after reading my thesis). Amy, you have made me happier than I ever thought I could
be and I love you so very much. I cannot wait to start the new chapter of our lives together.

“Physics isn’t the most important thing. Love is”

Richard Feynman



Thesis abstract

The physics of graphene has been aptly described as “QED in a pencil trace” because the
low-energy electrons behave like massless Dirac fermions – these exhibit pseudo-relativistic
phenomena that were once thought to be exclusive to the realm of high-energy physics.
Inspired by the rise of graphene, in this thesis we theoretically explore a range of novel
phenomena that can emerge in 2D hexagonal metasurfaces composed of subwavelength arrays
of dipole emitters/antennas. These metasurfaces exhibit Dirac polaritons whose properties
are not solely determined by the intrinsic structure of the emitters and the metasurface
geometry; in fact, their properties are also inextricably tied to the local photonic environment.
Exploiting this hybrid light-matter nature of the Dirac polaritons, we unveil that one can
dramatically alter their fundamental properties by structuring the photonic environment via a
cavity waveguide.

First, we show that a honeycomb metasurface is not merely a simple analog of graphene,
despite sharing the same underlying lattice structure. In particular, the metasurface exhibits
two distinct species of massless Dirac polaritons, type-I and type-II, where the latter emerge
from a non-trivial winding in the light-matter interaction. Moreover, by varying the cavity
width one can induce the multi-merging of the type-I and type-II Dirac points and the subse-
quent annihilation of the type-II Dirac points. Consequently, we unveil a morphing between a
linear and a quadratic spectrum which is accompanied by a change in the topological winding
number and an inversion of the chirality.

Unfortunately, because the polaritons are neutral particles they do not experience a
Lorentz force when subjected to a real magnetic field. Despite this fundamental drawback,
we show that one can generate a pseudo-magnetic field for the polaritons by straining the
honeycomb metasurface. Interestingly, by varying the cavity width one can tune the strength
of the pseudo-magnetic field and even switch it off entirely without modifying the strain
configuration. This enables one to emulate phenomena such as Landau quantization, where
varying the cavity width can induce a collapse and revival of the polariton Landau levels.

Finally, we show that one can generate non-trivial Berry curvature in momentum space
by breaking the inversion symmetry of a kagome metasurface. Crucially, the geometrical and
topological properties of the polaritons are not fixed by the symmetry-breaking perturbation
but also depend qualitatively on the local photonic environment in which the dipoles are
embedded. Specifically, we show that one can invert the valley-Chern numbers and thus
switch the chirality of the polariton valley-Hall edge states by varying the cavity width.
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1
Introduction

Niels Bohr: “What are you working on Mr. Dirac?”

Paul Dirac: “I’m trying to take the square-root of something.”

Soon after this curious exchange at the 5th Solvay conference in 1927, Paul Dirac published
his famous relativistic wave equation for the electron that now bears his name – the Dirac
equation [1]. Guided almost entirely by mathematical beauty, Dirac was able to reconcile
two fundamental pillars of theoretical physics, quantum mechanics and special relativity.
From this unification emerged a natural explanation of the spin-1/2 angular momentum of
the electron, without any ad-hoc assumptions. More striking, perhaps, was his outlandish
prediction of anti-particles and the fact that matter itself could fleet in and out of existence,
for which there was no empirical evidence at the time [2, 3]. Paul Dirac fundamentally
altered our understanding of nature, which led to him being duly awarded the Nobel Prize
for physics in 1933 and, despite the passing of many years, the Dirac equation remains a
cornerstone of the standard model of particle physics.

In recent years, the Dirac equation has experienced somewhat of a renaissance within the
unlikely field of condensed-matter physics. One would be forgiven for assuming that Dirac’s
relativistic description of the electron is only relevant for high-energy physics, and that
Schrodinger’s non-relativistic theory is entirely sufficient to describe the low-energy physics
of condensed-matter systems – the electrons certainly do not scoot around near the speed of
light. In fact, materials are extremely complex environments where electrons interact with
seemingly impenetrable lattices of atoms that are often plagued with defects and disorder.
As Wolfgang Pauli once famously remarked: “Festkörperphysik ist eine Schmutzphysik”,
that is “solid-state physics is the physics of dirt”. Nevertheless, physicists have discovered
a rapidly expanding catalog of condensed-matter systems whose low-energy quasiparticles
are effectively governed by a Dirac-like Hamiltonian – a novel class of systems called Dirac
materials [4].



2 Introduction

Figure 1.1 | Influential Nobel Prize winners. Paul Dirac (left [104]) was awarded the 1933 Nobel Prize in
physics along with Erwin Schrödinger “for the discovery of new productive forms of atomic theory”. Andre
Geim (middle [105]) and Konstantin Novoselov (right [106]) were jointly awarded the 2010 Nobel Prize in
physics “for groundbreaking experiments regarding the two-dimensional material graphene”.

Undoubtedly, the most celebrated and intensely studied Dirac material is graphene: a
two-dimensional (2D) monolayer of carbon atoms arranged in a honeycomb lattice [5]. The
underlying symmetries conspire to rid the electrons of their effective mass, giving rise to
linearly dispersing conduction and valence bands that touch at singular points in the Brillouin
zone [6] – the so-called Dirac points. Consequently, the electrons in graphene behave like
massless Dirac fermions which are effectively described by a massless Dirac Hamiltonian
in (2+1)-dimensions [7], and thus exhibit pseudo-relativistic phenomena – it has quite aptly
been described as “QED in a pencil trace” [8]. While its unique band structure had been
known for decades [6], graphene was presumed to be thermodynamically unstable in the
free state; it was generally viewed as a purely “academic material” [9] that was principally
used as a starting point to study other carbon allotropes such as bulk graphite and carbon
nanotubes.

However, after another round of their “Friday night experiments” at the University
of Manchester, Andre Geim and Konstantin Novoselov successfully isolated monolayer
graphene in 2004 by mechanically exfoliating bulk graphite [10]. This remarkable discovery,
for which they were awarded the Nobel prize for physics in 2010, sparked a flurry of research
that is still throwing up surprises till this very day. Any lab in possession of a pencil and
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scotch tape can explore pseudo-relativistic physics in simple table-top experiments without
having to pay the hefty price of a particle accelerator – an academic material no more.

The most iconic example is the Klein paradox [11–14], which refers to the bizarre
prediction that ultra-relativistic electrons would pass through extremely large potential
barriers with unit probability if it far exceeds the rest energy of the electron [11]. This
phenomenon has evaded experimental observation in high-energy physics because it is only
relevant in a few exotic scenarios such as collisions of ultra-heavy ions [15, 16] and particle-
antiparticle pair creation during black hole evaporation [17]. Yet, it turns out to underpin
many of the remarkable transport properties of graphene and renders it impossible to confine
the massless Dirac fermions using conventional electrostatic barriers [18].

Among a wealth of interesting phenomena in graphene, arguably the most spectacular
is that elastic strain deformations of the graphene membrane generate a fictitious gauge
field for the electrons [19–21]. Therefore, by judiciously engineering inhomogeneous strain
patterns one can generate pseudo-magnetic fields that can mimic some of the properties of
real ones [22–26]. For example, enormous pseudo-magnetic fields upwards of 300 tesla were
first observed in graphene nanobubbles [27], far greater than that which can be achieved
with real magnetic fields in a normal laboratory setting. Remarkably, scanning tunnelling
spectroscopy measurements revealed that the electronic spectrum was reconstructed into a
series of quantized Landau levels, despite the absence of a real magnetic field [27].

Interestingly, long before graphene was experimentally realized it also played a pivotal
role in developing the field of topological insulators – these are systems which are character-
ized by an insulating bulk but have gapless edge states [28]. While the integer quantum Hall
effect was the first topological phase of matter to be discovered in 1980 [29], it was generally
believed to be a rather special case since it required large magnetic fields to induce Landau
quantization. This naive view was overturned by Duncan Haldane who, in 1988, revealed
that time-reversal symmetry breaking was the key ingredient for topological order [30]. To
demonstrate this, he proposed an ingenious toy model that included a staggered magnetic flux
through a graphene membrane with a vanishing net magnetic field. This perturbation gaps
out the Dirac points and turns graphene into a Chern insulator which exhibits the quantum
anomalous Hall effect [30]. The Chern insulator is characterized by an integer topological
invariant known as the Chern number which, according to the bulk-boundary correspondence,
predicts the number of chiral edge states at the boundary which are topologically protected
against backscattering from disorder.

The next major theoretical advance came in 2005 from Charles Kane and Eugene Mele
who showed that topological order could emerge even in the presence of time-reversal
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symmetry [31]. Specifically, they demonstrated that spin-orbit coupling could gap out the
Dirac cones, turning graphene into a topological insulator which exhibits the quantum spin-
Hall effect. This topological insulator is characterized by a Z2 topological invariant [32],
which gives rise to a pair of spin-polarized chiral edge states that propagate in opposite
directions and are robust against defects that cannot flip the spin (i.e., non-magnetic defects).

In analogy with spin, graphene also boasts an additional valley degree of freedom which
labels energetically degenerate but inequivalent Dirac points at well-separated momenta in
the Brillouin zone. If one gaps out the Dirac points by breaking inversion symmetry then
one obtains an insulator which exhibits interesting valley-contrasting physics such as the
valley-Hall effect [33–35]. While, strictly speaking, a valley-Hall insulator is topologically
trivial it can be classified according to non-trivial valley-Chern numbers. If one then forms a
domain wall between two valley-Hall insulators with opposite valley-Chern numbers then
there is an associated bulk-boundary correspondence; the change in valley-Chern number
across the interface predicts the number of valley-polarized chiral edge states that are robust
against disorder that does not mix the two valleys [36–43].

It is important to stress that the emergence of Dirac points in the electronic spectrum of
graphene is by no means an accident, and certainly not restricted to the specific physics of
graphene; in fact, their existence is a direct manifestation of the underlying symmetries. This
realization inspired an extensive quest to emulate some of these fascinating properties in
a myriad of artificial Dirac systems [44–60], including ultracold atoms loaded into optical
lattices [57] and carbon monoxide molecules deposited on a copper substrate [56]. Within the
realm of photonics, graphene-related physics has been successfully simulated in honeycomb
arrays of dielectric waveguides [60], microwave resonators [58], and semiconductor micropil-
lars [59]. In these systems the evanescent coupling between lattice sites enables photons
to effectively hop between neighbouring sites, thereby directly emulating the tight-binding
physics of graphene.

One of the major attractions of these graphene simulators is that one can leverage the
exquisite control over the lattice parameters to explore Dirac-related physics in regimes that
are difficult, or even impossible to achieve in graphene itself. For example, a transition
to a gapped insulating phase via the strain-induced merging and annihilation of the Dirac
points attracted considerable theoretical attention as a possible mechanism to pinch off
current in bulk graphene [61–64]. However, to date, this tantalizing transition has evaded
experimental observation due to the very large strains required [62], but it has been observed
in photonic graphene systems where it is relatively simple to imprint any arbitrary strain
configuration into the lattice design [65–67]. Similarly, it remains extremely challenging to
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engineer the in-plane strain configurations in a graphene membrane that generate a uniform
pseudo-magnetic field over a large area. However, they can be easily engineered in photonic
lattices which provides a novel way of manipulating light [68–70].

Furthermore, given that photons are inert to real magnetic fields they do not undergo
Landau quantization and, as a result, there is no direct analog of the quantum Hall effect
for photons. Even so, pioneering theoretical work from Haldane and Raghu in 2005 demon-
strated that topological protection could indeed be afforded to photons [71, 72], sparking the
burgeoning field of topological photonics [73–75]. Shortly after, the first photonic analog of
the Chern insulator was experimentally realized at microwave frequencies by applying an
external magnetic field across a gyromagnetic photonic crystal [76]. However, with an eye
on exploiting topological protection in photonic devices, the challenges involved in breaking
time-reversal symmetry motivated the quest for passive topological photonic systems that
preserve time-reversal symmetry.

Unfortunately, there is no photonic analog of the Z2 topological insulator because it
relies on Kramer’s theorem for fermions with half-integer spin which photons do not possess.
Nevertheless, there have been many proposals for emulating the quantum spin-hall phase in
photonic systems by engineering a variety of pseudo-spin degrees of freedom. These systems
exhibit pseudo-spin polarized edge states with varying degrees of topological protection
depending on the type of disorder which mixes the pseudo-spins [77–81]. In contrast, the
valley degree of freedom is independent of the underlying particle statistics and emerges
naturally in hexagonal lattices. Therefore, the photonic analog of the valley-Hall insulator
can be easily induced by breaking certain lattice symmetries [82], and has been successfully
realized across the electromagnetic spectrum at microwave [83–85], terahertz [86, 87], and
optical [88–92] frequencies. Because these systems do not rely on magnetic fields or external
driving to break time-reversal symmetry they hold great promise for revolutionizing future
photonic devices.

1.1 Motivation of this thesis

Given the flexibility offered by photonic analogs of graphene, it is interesting to ask if one
can modify the fundamental properties of the massless Dirac quasiparticles while preserving
the underlying symmetries. It is evident that the symmetries place strict constraints on
the effective Hamiltonian. In particular, the presence of time-reversal symmetry (T ) and
spatial inversion symmetry (I) locally stabilizes the Dirac points [93], preventing a gap
from opening up, while the three-fold rotational symmetry (C3) pins the Dirac points to the



6 Introduction

Figure 1.2 |Dirac physics in two-dimensions. (a) The combination of T and I symmetry locally stabilizes the
Dirac points while the C3 symmetry pins them to the high-symmetry points. Consequently, the quasiparticles
are effectively described by a 2D massless Dirac Hamiltonian with Dirac velocity v. (b) Straining the lattice
breaks the C3 symmetry which decouples the Dirac points from the high-symmetry points, and the shift of the
Dirac cone is described by a pseudo-vector potential A. By judiciously engineering an inhomogeneous strain
pattern one can generate a uniform pseudo-magnetic field. (c) Breaking the I symmetry generates a mass m in
the effective Hamiltonian which gaps out the Dirac points, giving rise to a valley-Hall insulator that exhibits
interesting valley-contrasting physics. While the symmetries constrain the form of the effective Hamiltonian in
all three scenarios, they cannot tell us anything about the value of the Hamiltonian parameters such as the Dirac
velocity, pseudo-vector potential and Dirac mass – these depend sensitively on the details of the system which,
in principle, can be tuned.

high-symmetry points in the Brillouin zone as schematically shown in figure 1.2(a). However,
the symmetries cannot tell us anything about the parameters in the Hamiltonian as these
depend sensitively on the details of the system.

To leading order in momentum, the only parameter that enters the massless Dirac Hamil-
tonian is the Dirac velocity. Since the photonic graphene systems are intentionally designed
to emulate the tight-binding physics of graphene, the Dirac velocity is predominantly deter-
mined by the nearest-neighbour interaction strength. However, the underlying symmetries
do not preclude the existence of other Dirac points in the spectrum, nor do they protect the
massless nature of the Dirac quasiparticles. Unfortunately, there is usually little room to
modify the nature of the interactions between lattice sites, and consequently there exists no
mechanism to qualitatively tune the Hamiltonian parameters while preserving the underlying
symmetries.

A similar lack of tunability persists for the strain-induced pseudo-magnetic fields in
photonic graphene systems. While real magnetic fields that are applied across samples in
a lab can be tuned by varying external parameters, the pseudo-magnetic fields are usually
determined solely by the strain configuration. To change the pseudo-magnetic field one has
to precisely reconfigure the entire strain pattern – this is difficult, if not impossible to do and
therefore one needs to fabricate an entirely new structure with a different strain pattern each
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time [68]. While, in principle, one could envisage engineering a photonic lattice on a flexible
substrate, it would remain challenging to generate the required strain distribution across the
sample with a controllable amplitude by applying external forces.

This drawback motivated us to ask whether it is possible to tune the pseudo-magnetic field
without modifying the strain configuration at all. More interestingly, is it possible to switch
the pseudo-magnetic field off without removing the strain? Straining the lattice breaks the C3

symmetry which permits a pseudo-vector potential term to appear in the Dirac Hamiltonian
– this shifts the Dirac cone in momentum space away from the high-symmetry points as
shown in figure 1.2(b). While the symmetries dictate the dependence of the pseudo-vector
potential on the strain tensor [21], they cannot tell us anything about its magnitude for a
given strain configuration. While it is almost inevitable that straining the lattice will generate
a pseudo-vector potential, nothing in principle precludes us from tuning it to zero, there just
exists no mechanism to do so in photonic graphene systems.

Furthermore, while the topological phase of a photonic Chern insulator can be changed
by switching the direction of the applied magnetic field, the phase of the photonic valley-Hall
insulator is determined by the symmetry-breaking perturbation that is usually imprinted
into the lattice design. To deterministically change the valley-Chern numbers one needs to
somehow invert the symmetry-breaking perturbation. However, it is usually difficult, if not
impossible to reconfigure every unit cell in the photonic lattice after it has been fabricated,
and therefore the valley-Hall edge states are usually forced to propagate in a fixed direction.
This raises an interesting question: is it possible to induce topological transitions without
inverting the symmetry-breaking perturbation? While breaking the inversion symmetry
generates a mass term in the Dirac Hamiltonian that gaps out the Dirac points as depicted in
figure 1.2(c), the value of the Dirac mass depends sensitively on the details of the system.
Fundamentally, nothing prevents us from tuning the Dirac mass to zero and inverting the
valley-Chern numbers via some other mechanism, without restoring the symmetry.

1.2 Outline of this thesis

What happens if we replace each carbon atom in graphene with a dipole emitter or antenna?
Does the metasurface inherit some of the properties of graphene? Is this just another photonic
analog of graphene? In this thesis, we explore these questions by considering 2D hexagonal
metasurfaces composed of subwavelength arrays of interacting dipoles. We do not specialize
to any particular system because we envisage that the essential physics could be realized in a
variety of experimental set-ups, ranging from microwave metasurfaces composed of classical
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antennas to arrays of quantum emitters. These metasurfaces hybridize with the surrounding
photons giving rise to mixed light-matter polaritons which are evanescently bound to the
lattice. In stark contrast to the photonic analogs of graphene, the emitters do not simply
interact only with their nearest-neighbours; in fact, the photons can mediate long-range
dipole-dipole interactions whose strength oscillates with separation distance, thereby going
beyond the paradigm of conventional tight-binding physics.

As one might expect, the underlying symmetries of the hexagonal metasurfaces endow
the polaritons with Dirac-like properties – we refer to these as Dirac polaritons. However,
due to the hybrid nature of the Dirac polaritons, their properties are not determined solely
by the intrinsic structure of the emitters and the geometry of the metasurface; they are also
inextricably linked to the local photonic environment in which the dipoles are embedded.
Exploiting this, we show that one can modify the fundamental properties of the Dirac
polaritons by structuring the surrounding photonic environment via an enclosing cavity
waveguide.

Since the pioneering work by Edwin Purcell [94], it is well known that a cavity can
either enhance or inhibit the spontaneous decay rate of an emitter because it modifies the
availability and properties of the photonic modes that the emitter can couple to [95–99].
More importantly for this work, it follows that one can qualitatively modify the nature
of the dipole-dipole interactions between emitters by varying the cavity width. Utilizing
this mechanism, one can qualitatively tune the parameters in the effective Dirac polariton
Hamiltonian without modifying the lattice geometry. Therefore, while intense efforts are
devoted to designing photonic systems that emulate tight-binding models, this work hints at a
rich landscape of physics emerging from non-trivial long-range interactions that are prevalent
in electromagnetic systems.

The outline of this thesis is as follows:

Chapter 2: In this introductory chapter we provide a brief overview of some of the most
interesting graphene-related physics. Using a simple tight-binding model we derive the
massless Dirac Hamiltonian that describes the low-energy quasiparticles in graphene, and we
show how this gives rise to Klein tunnelling and a pseudo-relativistic Landau level spectrum.
Furthermore, we will unveil what constraints the underlying symmetries place on the form
of the Hamiltonian, and we will proceed to see how breaking these symmetries leads to
interesting phenomena. Specifically, we will show that straining the lattice gives rise to a
pseudo-vector potential which can be judiciously engineered to generate a pseudo-magnetic
field. For large uniform strains we show that one can induce the merging and annihilation of
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the Dirac points resulting in a trivial insulator. Finally, we will introduce two different models
of non-trivial insulators that arise from gapping out the Dirac points: the Haldane model
which breaks T symmetry and the Semenoff model which breaks I symmetry. The Haldane
model represents a topological insulator with a non-zero Chern number and therefore supports
unidirectional chiral edge states. In contrast, the Semenoff model represents a valley-Hall
insulator with non-trivial valley-Chern numbers and thus exhibits valley-polarized chiral
edge states along certain domain walls.

Chapter 3: In this technical chapter we lay the theoretical foundations that will be used as a
starting point throughout the rest of the thesis. We begin by deriving the longitudinal and
transverse components of the cavity Green’s function which encode the Coulomb and photon-
mediated interactions between the dipoles, respectively. Using a simple square metasurface
as a concrete example, we develop a self-consistent coupled-dipole theory using the Green’s
function formalism, which can be used to describe the collective dynamics of dipoles
embedded inside a cavity waveguide. Moreover, focusing on transverse dipolar excitations,
we show how one can modify the nature of the dipole-dipole interactions by varying the cavity
width. For relatively large cavity widths the short-range Coulomb interactions dominate
the physics near the corners of the Brillouin zone due to the subwavelength spacing of the
metasurface. However, for relatively small cavity widths the Coulomb interactions become
suppressed due to the screening effect of the cavity, while the long-range photon-mediated
interactions become dominant as the strength of the light-matter coupling is increased.

Chapter 4: In this chapter we explore the nature of the polaritons supported by a cavity-
embedded honeycomb metasurface. Despite its superficial similarity with graphene, we show
that the metasurface supports two distinct species of massless Dirac polaritons: type-I and
type-II. The latter, more exotic class are characterized by critically tilted Dirac cones and
have no counterpart in the standard model as they strongly break Lorentz invariance. While
the deterministic type-I Dirac points are enforced by the symmetry, and are the analogs of the
ones found in graphene, the type-II Dirac points are accidental and emerge from a non-trivial
winding in the light-matter interaction; consequently, their existence depends critically on
the nature of the dipole-dipole interactions. By varying the cavity width we show that one
can manipulate the location of the type-II Dirac points in the Brillouin zone which leads to
multiple phase transitions, including the multi-merging of type-I and type-II Dirac points
and the subsequent annihilation of type-II Dirac points.

This chapter presents original research that was published as follows:
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[100] Mann, C.-R., Sturges, T. J., Weick, G., Barnes, W. L. & Mariani, E. Manipulating
type-I and type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces. Nature

Communications 9, 2194 (2018).

Author contributions: C.-R.M. performed the theoretical calculations and wrote the manuscript;
T.J.S. contributed to the theoretical calculations; E.M. and G.W. initially conceived the idea;
E.M. and W.L.B. supervised the project. All authors commented on the manuscript.

Chapter 5: In this penultimate chapter we show that one can generate a pseudo-magnetic
field for the massless Dirac polaritons by straining the honeycomb metasurface. Without
altering the strain pattern, we unveil how one can tune the pseudo-magnetic field by modifying
the photonic environment via an enclosing cavity waveguide. In fact, there exists a critical
cavity width where the pseudo-magnetic field is completely switched off for any strain
configuration. Consequently, for small strains one can generate a Lorentz-like force that
deflects polariton wavepackets into effective cyclotron orbits whose radius can be controlled
via the cavity width. For larger strains one can induce Landau quantization of the polariton
cyclotron orbits, where modifying the cavity width can give rise to a collapse and revival of
the polariton Landau levels.

This chapter presents original research that was published as follows:

[101] Mann, C.-R., Horsley, S. A. R. & Mariani, E. Tunable pseudo-magnetic fields for
polaritons in strained metasurfaces. Nature Photonics 14, 669-674 (2020).

Author contributions: C.-R.M. conceived the idea, developed the theory, performed the
calculations and wrote the manuscript; S.A.R.H. contributed to the theoretical understanding;
E.M. contributed to the theoretical understanding and supervised the project. All authors
commented on the manuscript.

Chapter 6: In this final chapter we show how one can induce the valley-Hall phase for
polaritons supported by a metasurface composed of identical dipoles. Specifically, we
consider a kagome metasurface which exhibits deterministic Dirac points, and we proceed
to gap them out by expanding/shrinking the distance between the dipoles within each unit
cell which breaks the I symmetry. Crucially, the geometrical and topological properties
of the polaritons are not solely determined by the symmetry-breaking perturbation but also
depend critically on the surrounding photonic environment. By modifying the nature of the
dipole-dipole interactions via the cavity width, we show that one can tune the Dirac mass
and make it vanish at a critical cavity width, despite the broken I symmetry. Consequently,
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we demonstrate that one can invert the valley-Chern numbers and thus switch the chirality of
the polariton valley-Hall edge states by modifying only the cavity width.

This chapter presents original research that has been submitted for publication as follows:

[102] Mann, C.-R., & Mariani, E. Topological transitions induced by cavity-mediated inter-
actions in photonic metasurfaces. arXiv:2010.01636 (2020).

Author contributions: C.-R.M. conceived the idea, developed the theory, performed the
calculations and wrote the manuscript; E.M. contributed to the theoretical understanding and
supervised the project. All authors commented on the manuscript.

Other publications not discussed in this thesis:

[103] Lamowski, S. , Mann, C.-R., Hellbach, F., Mariani, E., Weick, G. & Pauly, F. Plasmon
polaritons in cubic lattices of spherical metallic nanoparticles. Physical Review B 97, 125409
(2018).





2
Dirac physics in two-dimensions

D IRAC materials have built a bridge between the realm of high-energy physics
and condensed-matter physics, enabling the exploration of pseudo-relativistic
phenomena in simple table-top experiments. In this chapter we present a

brief overview of some interesting physics related to the most celebrated Dirac mate-
rial: graphene. We begin by introducing Dirac’s relativistic equation for the electron
in (3+1)-dimensions, and we show how the low-energy quasiparticles in graphene are
effectively described by a massless Dirac Hamiltonian in (2+1)-dimensions. Further-
more, we demonstrate that the Dirac points correspond to topological defects in mo-
mentum space which are characterized by topological winding numbers, and we will
unveil the symmetries that stabilize their existence. Then we will proceed to show how
breaking these symmetries can give rise to intriguing phenomena. First, we demon-
strate how inhomogeneous strain deformations can generate a pseudo-magnetic field,
and we reveal how large uniform strains can induce the merging and annihilation of
the Dirac points. Finally, we will introduce two different models of non-trivial insula-
tors that exhibit interesting geometrical and topological properties and emerge from
gapping out the Dirac points: the Haldane model and the Semenoff model.
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2.1 Dirac’s relativistic equation for the electron

Paul Dirac was a peculiar man whose mind was not constrained by empirical observations,
but was almost entirely guided by the beauty of mathematical equations. In 1928, a few
years after graduating from the University of Bristol with a degree in electrical engineering,
Dirac published his relativistic theory of the electron [1]; one of the greatest achievements
in the history of theoretical physics which challenged our intuition about the very nature
of matter itself. As the result of his masterful leap of human imagination, Dirac was able
to explain the origin of the electron’s intrinsic spin-1/2 angular momentum and predict
the existence of anti-particles – an extraordinary consequence of reconciling relativity and
quantum mechanics.

To understand what motivated Dirac to develop his theory, it is natural to begin with the
non-relativistic wave equation for a free electron

iℏ∂ΨS

∂t
= − ℏ2

2m∇2ΨS , (2.1)

which was proposed by Erwin Schrödinger a couple years earlier in 1926 [107–112]. One can
build this wave equation from the non-relativistic energy-momentum relation E = |p|2/2m
(where E is the energy, p is the momentum and m is the mass) by promoting the classical
variables to operators via the identification p → −iℏ∇ and E → iℏ∂t, where ℏ is the
reduced Planck constant and ∇ = [ ∂x , ∂y , ∂z ]. These operators act on a complex scalar
wavefunction ΨS which is interpreted as a probability amplitude, and its square modulus as a
probability density.

In relativity theory, space and time are inextricably linked, and therefore a relativistic
generalization of Schrödinger’s equation demands that space and time derivatives must
enter symmetrically. In 1927, Oskar Klein [113] and Walter Gordon [114] first attempted
to reconcile relativity and quantum mechanics by promoting Einstein’s energy-momentum
relation E2 = c2|p|2 +m2c4 to a wave equation

1
c2
∂2ΨKG

∂t2
=
(

∇2 − m2c2

ℏ2

)
ΨKG , (2.2)

where c is the speed of light. Unfortunately, while the Klein-Gordon equation is Lorentz-
invariant, it was plagued with difficulties; in particular, the probability density was no longer
positive definite which meant that the relativistic scalar ΨKG could no longer be legitimately
interpreted as a probability amplitude as in Schrödinger’s theory. At the time, this was a
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seemingly fundamental flaw which saw the Klein-Gordon equation abandoned as a plausible
single-particle description of a relativistic electron.

To resolve this dilemma, Dirac sought after an equation that was first order in both space
and time, thereby obtaining a Lorentz-invariant theory that gave positive-definite probability
densities. Loosely speaking, he attempted to take the square-root of the Klein-Gordon
equation by postulating a first-order wave equation of the form [1]

iℏ∂ΨD

∂t
=
(

− iℏcα · ∇ + α0mc
2
)
ΨD , (2.3)

where α = [α1 , α2 , α3 ] and αi (i = 0, 1, 2, 3) are some mathematical objects to be unveiled.
The strict requirement of consistency with the Klein-Gordon equation places significant
conditions on the algebraic properties of the αi objects; that is, they must be involutory and
anticommute with one another

α2
i = 1 , {αi , αj } = 2δij1 , (2.4)

where 1 is the identity element and δij is the Kronecker delta function. While ordinary
numbers obviously fail to meet these requirements, Dirac immediately realised that the 2 × 2
Pauli spin matrices

σx =
 0 1

1 0

 , σy =
 0 −i

i 0

 , σz =
 1 0

0 −1

 , (2.5)

satisfied this anticommuting algebra – the first tantalizing glimpse that the union of quantum
mechanics and relativity naturally endows the electron with an intrinsic spin-1/2 angular
momentum.

However, there only exists three Pauli matrices, while four are needed to satisfy all of the
conditions in (3+1)-dimensions. Consequently, Dirac was compelled to use 4 × 4 matrices
which he constructed from the Pauli matrices

αx =
 0 σx

σx 0

 , αy =
 0 σy

σy 0

 , αz =
 0 σz

σz 0

 , α0 =
 12 0

0 −12

 ,
(2.6)

where 12 is the 2 × 2 identity matrix, with the immediate implication that the electron
wavefunction ΨD could no longer be a scalar, but rather a 4-component spinor. Crucially,
the low-energy limit of Dirac’s relativistic equation recovered Pauli’s phenomenological
theory of the electron [115], which explained the necessity of a 2-component wavefunction
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to account for its spin-1/2 angular momentum and correctly predicted the magnetic moment
with the anomalous gyromagnetic ratio – a remarkable achievement in its own right.

But what do the other two components correspond to in the full relativistic theory? This
extra doubling gives rise to solutions with negative energies – a serious difficulty which Dirac
was not immediately able to remedy. While negative energies can be simply disregarded in
a classical theory on the grounds of being unphysical, Dirac knew that they posed a more
fundamental problem in a quantum theory since perturbations could induce transitions from
the positive-energy states to negative-energy states. However, Dirac later proposed a radical
solution that empty space was, in fact, not very empty at all, but was filled entirely with
negative-energy electrons – the so-called Dirac sea – which stabilized the vacuum by virtue
of Pauli’s exclusion principle [2]. From this, he further hypothesized the existence of an
anti-electron which he viewed as a hole in the Dirac sea, and predicted that matter itself
could fleet in and out of existence [3]:

“A hole, if there were one, would be a new kind of particle, unknown to experimental physics,

having the same mass and opposite charge of the electron. We may call such a particle an

anti-electron. We should not expect to find any of them in nature, on account of their rapid

rate of recombination with electrons, but if they could be produced experimentally in high

vacuum they would be quite stable and amenable to observation.”

Indeed, this was a very bold prediction because, at the time, there was no empirical
evidence to suggest the existence of anti-particles. Yet, only a couple years later in 1932, Carl
Anderson observed anomalous cosmic-ray tracks through a cloud chamber that matched the
mass-to-charge ratio of an electron, but were bent in opposite direction due to their positive
charge [116] – this was unambiguous evidence of Dirac’s anti-electron which Anderson
dubbed the positron. Subsequently, both Dirac and Anderson were duly awarded the Nobel
Prize for physics in 1933 and 1936, respectively.

2.2 Graphene

It is entirely reasonable to suspect that Dirac’s relativistic description of the electron plays
little role in condensed-matter physics; after all, one is usually interested in energy scales
much smaller than the rest energy of the electron. However, materials can provide a very
complex environment – a renormalized vacuum, if you like – where the emergent electronic
quasiparticles can exhibit drastically different properties from their free space counterparts.
For example, many readers will be familiar with conventional band theory where the quasi-
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Figure 2.1 | Crystallographic structure of monolayer graphene. (a) Schematic of monolayer graphene which
is composed of two inequivalent hexagonal sublattices of carbon atoms which we label A and B. The primitive
lattice vectors are a1 and a2, while the three nearest-neighbour vectors are e1, e2 and e3, and a is the carbon-
carbon distance. The essential electronic properties of graphene can be captured with a simple tight-binding
model where t is the nearest-neighbour hopping parameter. (b) Corresponding first Brillouin zone in momentum
space where the high-symmetry points are labelled and b1 and b2 are the primitive reciprocal lattice vectors.

particles can be described by a Schrödinger equation with a renormalized effective mass,
which can even take negative values. In Dirac materials, we have a more exotic scenario
where the quasiparticles are governed by a pseudo-relativistic Dirac equation.

The most intensely studied Dirac material is graphene, which is a crystalline allotrope of
carbon consisting of a monolayer of atoms arranged in a 2D honeycomb array as schemat-
ically depicted in figure 2.1(a). This structure results from the sp2 hybridization of the 2s,
2px and 2py orbitals which form in-plane covalent σ-bonds between the neighbouring carbon
atoms. The remaining 2pz orbitals, which are oriented perpendicular to the graphene mem-
brane, hybridize to form half filled π-bands which are responsible for most of the remarkable
electronic properties exhibited by graphene.

Its unusual gapless spectrum was first calculated by Philip Wallace in 1947 [6], though
principally serving as a starting point to understand the properties of bulk graphite. While
graphene was a thriving theoretical toy model that was used to explore relativistic quantum
electrodynamics in (2+1)-dimensions [7, 30], this atomically-thin 2D structure was presumed
to be thermodynamically unstable until it was unexpectedly discovered by Andre Geim and
Konstantin Novoselov in 2004 [10]. Graphene immediately assumed a celebrity-like status
and its discovery was awarded the Nobel Prize only 6 years later, demonstrating the profound
impact it has had on material science and condensed-matter physics.
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2.2.1 Tight-binding model

The crystallographic structure of graphene is not a Bravais lattice. Instead, the carbon
atoms are located at periodic positions RA = R + dA and RB = R + dB, which form two
inequivalent hexagonal sublattices that we label A and B, respectively. Here, the basis vectors

dA = a

2
[

0 , −1
]
, dB = a

2
[

0 , 1
]
, (2.7)

locate the positions of the carbon atoms within the unit cell, where a ≈ 1.42Å is the
carbon-carbon separation distance. Furthermore, R = l1a1 + l2a2 represent the set of lattice
translation vectors describing the underlying hexagonal Bravais lattice, where l1, l2 ∈ Z are
integers, and

a1 =
√

3a
2
[

− 1 ,
√

3
]
, a2 =

√
3a
2
[

1 ,
√

3
]
, (2.8)

are the primitive lattice vectors. The corresponding set of reciprocal lattice vectors are
g = n1b1 + n2b2, where n1, n2 ∈ Z are integers, and

b1 = 2π
3a
[

−
√

3 , 1
]
, b2 = 2π

3a
[√

3 , 1
]
, (2.9)

are the primitive reciprocal lattice vectors which define the Brillouin zone shown in fig-
ure 2.1(b).

The essential electronic properties of graphene are captured by a single-orbital, spinless
tight-binding model which, in the language of second quantization, reads

H = −t
∑
RB

3∑
n=1

b†
RB
aRB+en

+ H.c. . (2.10)

Here, a†
RA

and b†
RB

create electrons in the 2pz orbitals located at RA and RB on the A and
B sublattices, respectively. Note, for convenience we have set the on-site energy of the 2pz

orbitals to zero. Furthermore, t ≈ 3eV is the nearest-neighbour hopping parameter that
determines the energy scale of the bands, and

e1 = a
[

0 , −1
]
, e2 = a

2
[√

3 , 1
]
, e3 = a

2
[

−
√

3 , 1
]
, (2.11)

are the nearest-neighbour vectors that connect the inequivalent sublattices.
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We can exploit the discrete translational symmetry of the lattice by introducing the
Fourier transform of the operators

a†(q) =
√

A
2π

∑
RA

a†
RA

eiq·RA , b†(q) =
√

A
2π

∑
RB

b†
RB

eiq·RB , (2.12)

which create Bloch functions that extend over the A and B sublattices, respectively. Here,
q = [ qx , qy ] is the 2D Bloch wavevector that is restricted to the first Brillouin zone shown
in figure 2.1(b), and A = 3

√
3a2/2 is the area of the unit cell shown in figure 2.1(a). Using

equation (2.12) we can block diagonalize the tight-binding Hamiltonian in momentum space
which can be written in matrix form as

H =
¨

BZ

d2qψ†(q)H(q)ψ(q) , (2.13)

where ψ†(q) = [ a†(q) , b†(q) ] is a spinor operator. The corresponding 2 × 2 single-particle
Bloch Hamiltonian in the sublattice space reads

H(q) =
 0 f(q)
f ∗(q) 0

 , (2.14)

where the off-diagonal matrix elements are given by

f(q) = −t
3∑

n=1
e−iq·en . (2.15)

Equation (2.14) can easily be diagonalized to yield the spectrum of the electronic bands

Eλ(q) = λ|f(q)| , (2.16)

where λ = ± labels the valence (λ = −) and conduction (λ = +) bands. The corresponding
spinor eigenstates

|ψλ(q)⟩ = 1√
2

 1
λeiφ(q)

 (2.17)

encode an emergent pseudo-spin degree of freedom, where the two components describe the
relative amplitude and phase of the wavefunction on the two inequivalent sublattices. We can
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Figure 2.2 | Pseudo-relativistic spectrum of graphene. (a) Electronic band structure of monolayer graphene
obtained with a nearest-neighbour tight-binding model. The conduction and valence bands coalesce at the
high-symmetry K/K′ points in the Brillouin zone which are called the Dirac points. (b) Within the vicinity
of the Dirac points, the bands disperse linearly forming massless Dirac cones that are effectively described
by a 2D massless Dirac Hamiltonian. The massless Dirac fermions are chiral because their pseudo-spin (gold
arrows) is inextricably linked to the their momentum. For example, in the K valley the pseudo-spin is locked
parallel/antiparallel to the momentum in the upper/lower bands. This chirality is responsible for many of
graphene’s remarkable electronic properties.

therefore represent the spinor eigenstates by a pseudo-spin vector on the Bloch sphere

Sλ(q) = ⟨ψλ(q)| σ |ψλ(q)⟩ = λ [ cosφ(q) , sinφ(q) , 0 ] , (2.18)

where σ = [ σx , σy , σz ] is the vector of Pauli matrices and the azimuthal angle is given by

φ(q) = arg[f ∗(q)] . (2.19)

In figure 2.2(a) we show the electronic band structure within the nearest-neighbour
approximation. The most notable feature is that the conduction and valence bands are
degenerate at the corners of the Brillouin zone which are the so-called Dirac points. While it
may appear that there are six unique Dirac points, only two of these are inequivalent since
the others are related by reciprocal lattice vectors and thus correspond to the same states. In
what follows we will focus on the inequivalent Dirac points located at

τK = τ

[
4π

3
√

3a
, 0
]
, (2.20)

where τ = ± is the valley index that corresponds to the high-symmetry K (τ = +) and K′

(τ = −) points.
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2.2.2 Emergent Dirac physics

In pristine graphene the two bands are half filled and therefore the Fermi energy resides
exactly at the Dirac points. To elucidate the nature of the electronic quasiparticles near the
Fermi energy we can derive an effective Hamiltonian that captures the essential physics within
the vicinity of the Dirac points. To do this we expand the matrix elements in equation (2.15)
near the K/K′ points to leading order in k = q − τK which yields

fτ (k) ≃ ℏvF(τkx − iky) , (2.21)

where vF = 3ta/2ℏ is the Fermi velocity. Therefore, we can write the effective Hamiltonian
near the Fermi energy as

Heff =
∑
τ=±

¨
d2kψ†

τ (k)Hτ (k)ψτ (k) , (2.22)

where ψ†
τ (k) = [ a†

τ (k) , b†
τ (k) ] is the spinor operator in each valley. Furthermore, the

effective single-particle Hamiltonian for the K valley reads

H+(k) = ℏvF

 0 kx − iky

kx + iky 0

 = ℏvFσ · k , (2.23)

while the effective single-particle Hamiltonian for the K′ valley reads

H−(k) = ℏvF

 0 −kx − iky

−kx + iky 0

 = −ℏvFσ∗ · k . (2.24)

We can see that the low-energy quasiparticles within each valley are effectively described
by a pseudo-relativistic Dirac Hamiltonian. Since the electrons in graphene exist within
an effective (2+1)-dimensional space, the effective Hamiltonians in equation (2.23) and
equation (2.24) are spanned by the 2 × 2 Pauli matrices which satisfy the anticommuting
algebra {σi , σj} = 2δij12 – we do not require the 4 × 4 Dirac matrices that are needed in
(3+1)-dimensions. Furthermore, the matrix structure of the Hamiltonian does not originate
from the real spin of the electron (which we have neglected in our treatment), but emerges
from the presence of the two inequivalent sublattices which endow the electrons with a
pseudo-spin degree of freedom – the Pauli matrices act within this sublattice space. Crucially,
the third Pauli matrix σz does not appear in the Hamiltonian. Therefore, the electronic
quasiparticles behave like massless Dirac fermions which exhibit a pseudo-relativistic linear
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spectrum near the K/K′ points

Eλ(k) = λℏvF|k| , (2.25)

as depicted in figure 2.2(b) – these are referred to as massless Dirac cones.

As a result, the massless Dirac fermions exhibit a kind of chirality where the pseudo-spin
is inextricably linked to the momentum. To see this, we can obtain the spinor eigenstates of
the effective Hamiltonian within each valley which read

|ψτλ(k)⟩ = 1√
2

 1
τλeiτϕk

 , (2.26)

and the corresponding pseudo-spin vector is

Sτλ(k) = ⟨ψτλ(k)| σ |ψτλ(k)⟩ = τλ [ cos(τϕk) , sin(τϕk) , 0 ] , (2.27)

where ϕk = arctan(ky/kx). For the K valley, the energy eigenstates are simultaneous
eigenstates of the chirality operator

σ · k̂ |ψ+λ(k)⟩ = λ |ψ+λ(k)⟩ , (2.28)

where the pseudo-spin vector is locked parallel/antiparallel to the momentum in the up-
per/lower band as depicted in figure 2.2(b). For the K′ valley, the energy eigenstates are
simultaneous eigenstates of a more generalized chirality operator

σ∗ · k̂ |ψ−λ(k)⟩ = −λ |ψ−λ(k)⟩ , (2.29)

where the pseudo-spin winds in the opposite direction to the momentum as depicted in
figure 2.2(b). This chiral nature of the massless Dirac fermions gives rise to many of
graphene’s remarkable properties, some of which we will discuss in the following sections.

2.2.3 Pseudo-relativistic Klein tunnelling

The quantum tunnelling of a massive Schrödinger particle through a finite potential barrier is
a typical exercise that every physics student encounters in an elementary quantum mechan-
ics course [117–119]. The wavefunction becomes evanescent in the classically forbidden
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region, leading to a finite probability for the particle to tunnel through the barrier which is
exponentially suppressed as the barrier width and height is increased.

However, in 1929, Oskar Klein applied Dirac’s new relativistic equation to the same
scattering problem and revealed a very counter-intuitive result: as the potential barrier is
increased beyond the rest energy of the electron the transmission probability tends to unity
[11]. This exotic prediction, which is often dubbed the Klein paradox [13, 14], caused a
lot of confusion at the time. Shortly after in 1931, Fritz Sauter replaced Klein’s infinitely
sharp barrier with a more realistic linearly-varying potential and showed that the tunnelling
probability is exponentially suppressed [12], as one might expect from the non-relativistic
case. Consequently, the Klein tunnelling phenomenon requires very sharp barriers with a
potential drop on the order of the electron rest energy (∼ mc2) over a Compton wavelength
(∼ ℏ/mc); this has rendered Klein’s Gerdanken experiment relevant only in a few exotic
scenarios within the realm of high-energy physics, such as collisions of ultra-heavy ions
[15, 16] and particle-antiparticle pair creation during black hole evaporation [17].

Enter graphene. It’s quite remarkable that such an elusive high-energy phenomenon would
have any relevance in a condensed-matter system, yet it plays an key role in the electronic
transport properties of graphene [18]. Let us consider a scenario where the massless Dirac
fermions in graphene are incident upon a potential barrier which is translationally invariant
along the y-direction V = V (x). We assume that the potential barrier is smooth on the scale
of the lattice constant so that intervalley scattering is negligible. Consequently, the valleys are
decoupled and in what follows we will focus on the K valley where the effective Hamiltonian
in real space reads

H+ = −iℏvFσ · ∇ + V (x)12 , (2.30)

where we have used the replacement k → −i∇ = −i[ ∂x , ∂y ]. The effective Hamiltonian
acts on the spinor envelope wavefunction ψ(r) = [ψA(r) , ψB(r) ], where ψA(r)/ψB(r)
describes the component on the A/B sublattice. Note, we have also assumed that the
potential is diagonal in the sublattice space, which is consistent with the approximation that
it varies slowly on the scale of the lattice constant. Finally, for simplicity we assume that
the potential is sharp on the scale of the Fermi wavelength λF = 2π/kF, where kF = EF/ℏvF

is the Fermi wavevector and EF > 0 is the Fermi energy that we take to be positive. This
allows us to approximate the potential barrier as a piece-wise constant function

V (x) = V0Θ(x)Θ(w − x) , (2.31)
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Figure 2.3 | Pseudo-relativistic Klein tunnelling in graphene. (a) Schematic of a npn-junction modelled as a
square potential barrier of height V0 and width w. We also depict the spectrum of the massless Dirac fermions in
regions 1-3 which are incident from the left and the Fermi energy is positive EF > 0. The pseudo-spin vectors
are depicted by red and blue arrows for the states that can take part in the scattering process at normal incidence,
where we have neglected intervalley scattering and considered only the K valley. (b) Transmission probability
at all incident angles through a barrier of height V0 = 3EF (blue line) and V0 = 3.3EF (red line). Due to the
chirality of the massless Dirac fermions, backscattering is suppressed because a smooth potential cannot flip
the pseudo-spin. Consequently, we observe perfect transmission through the barrier at normal incidence which
is independent of the barrier height and width. Results obtained with kF = 0.2/a and w = 4λF.

where Θ(x) is the Heaviside step function and w is the width of the barrier. Furthermore,
we specialize to the case where V0 > EF such that the barrier forms a npn-junction as
schematically depicted in figure 2.3(a).

To solve this tunnelling problem we simply need to match the appropriate eigenstates at
the interface using the relevant boundary conditions. The spinor envelope wavefunction in
region 1 is given by

ψ1(r) = 1√
2

 1
eiϕ1

 ei(kxx+kyy) + R√
2

 1
ei(π−ϕ1)

 ei(−kxx+kyy) , (2.32)

where the first term represents the incident wavefunction at an angle of incidence ϕ1 with
respect to the x-axis, and kx = kF cosϕ1 and ky = kF sinϕ1 are the corresponding wavevec-
tor components. The second term represents the reflected wavefunction, where R is the
unknown reflection coefficient. In region 2, which is inside the barrier, the spinor envelope
wavefunction reads

ψ2(r) = A1√
2

 1
−eiϕ2

 ei(k′
xx+kyy) + A2√

2

 1
−ei(π−ϕ2)

 ei(−k′
xx+kyy) , (2.33)
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where the first term represents the refracted wave through the first interface and the second
term represents the reflected wave from the second interface with unknown coefficients A1

and A2, respectively. Note, since the potential barrier is translationally invariant along the
y-direction, the transverse component of the wavevector ky will be preserved in each region.
Therefore, k′

x =
√
k′2

F − k2
y where k′

F = kF(V0/EF − 1) is the modified Fermi wavelength in
the barrier region, and ϕ2 = arctan(ky/k

′
x) is the refraction angle. Finally, in region 3 the

spinor envelope wavefunction reads

ψ3(r) = T√
2

 1
eiϕ1

 ei(kxx+kyy) , (2.34)

where T is the unknown transmission coefficient.

As the Dirac Hamiltonian is first order in spatial derivatives we only require the continuity
of the spinor wavefunction at the interfaces [18]

ψ1(r)
∣∣∣∣∣
x=0

= ψ2(r)
∣∣∣∣∣
x=0

, ψ2(r)
∣∣∣∣∣
x=w

= ψ3(r)
∣∣∣∣∣
x=w

, (2.35)

from which one can deduce the transmission coefficient

T = e−ikxw cosϕ1 cosϕ2

cos(k′
xw) cosϕ1 cosϕ2 + i sin(k′

xw)(1 + sinϕ1 sinϕ2)
. (2.36)

In figure 2.3(b) we plot the transmission probability |T |2 at all incident angles for barrier
heights of V0 = 3EF (blue line) and V0 = 3.3EF (red line), where we have used kF = 0.2/a
and w = 4λF. While we can observe Fabry-Pérot-like resonances at oblique angles of
incidence, these are strongly suppressed for smoother potential barriers [120]. The most
striking result is at normal incidence (ϕ1 = 0), where the massless Dirac particles are perfectly
transmitted through the barrier. Furthermore, unlike the Klein tunnelling phenomena for
relativistic electrons, in graphene this perfect transmission at normal incidence persists for
any barrier shape due to the massless nature of the Dirac fermions – there is no energy gap
where the wavefunction becomes evanescent inside the barrier (see appendix A.1 for more
details).

This absence of backscattering can also be shown by considering the elastic scattering
from a smooth impurity potential V (r). Within the first order Born approximation, the
scattering probability reads

P (∆ϕ) ∝ | ⟨ψ+λ(k′)|V (r)12 |ψ+λ(k)⟩ |2 ∝ |Ṽ (k′ − k)|2 cos ∆ϕ
2 , (2.37)
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where Ṽ (k − k′) is the Fourier transform of the impurity potential and ∆ϕ = ϕk − ϕk′ is
the angle between k and k′. The first term is the usual result of the Born approximation,
while the second term is called the chirality factor [121] and is given by the scalar product
of the initial and final spinors. For the special case k → −k the matrix element vanishes
identically, resulting in the complete suppression of backscattering – this has been shown to
hold true to all orders in the scattering potential [122]. Another intuitive way to see this is to
note that the chirality of the massless Dirac fermions means that the pseudo-spin is locked to
the momentum. Therefore, any backscattering must be accompanied by a pseudo-spin flip,
which is impossible if the potential varies smoothly on the scale of the lattice constant.

Signatures of the Klein tunnelling phenomenon have indeed been observed in transport
experiments on graphene devices that incorporate electrostatic barriers [123–125]. In fact,
it poses serious difficulties for electronic devices that require the charge transport to be
switched off on demand, because conventional confinement strategies that exploit potential
barriers fail spectacularly. However, it could also pave the way for novel graphene-based
electronic devices with new functionality. For example, electrons passing through a np-
junction exhibit negative refraction [126–128], in analogy with how light passes through a
left-handed metamaterial with a negative refractive index [129, 130]. Furthermore, it has
been proposed that one could exploit this for Veselago lensing of electrons [128].

2.2.4 Pseudo-relativistic Landau levels

The unexpected discovery of the integer quantum Hall effect by Klaus von Klitzing in
1980 [29], for which he was awarded the Nobel Prize in 1985, resulted in a paradigmatic
shift within condensed-matter physics. This novel phase of matter did not fit into Landau’s
classification scheme based on spontaneous symmetry breaking, but required a different
principal based on the notion of topological order. The quantum Hall effect arises when
a 2D electron gas is subjected to a strong perpendicular magnetic field at sufficiently low
temperatures, and it manifests as remarkably flat plateaus in the Hall conductivity that occur
at integer multiples of e2/h:

σxy = ge2

h
ν , ν = 0,±1,±2,±3, . . . (2.38)

Here, e is the electric charge, h is the Plank’s constant, and g = 2 is the degeneracy factor
that accounts for the two-fold spin degree of freedom. With improving sample quality over
the years, the quantization is now observed up to a remarkable precision of about 1 part in
109 [131]. In the enthusiastic words of Ady Stern [132]:
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Figure 2.4 | Pseudo-relativistic Landau levels and the unconventional quantum Hall effect. (a) Landau
level spectrum exhibited by a non-relativistic electron gas when subjected to a large magnetic field. (b)
Schematic of the conventional quantum hall effect which manifests as a series of plateaus in the Hall conductivity
at integer multiples of ge2/h (red line), where g = 2 due to the spin degeneracy. The disorder-broadened Landau
levels are also schematically depicted for the electrons (orange) and holes (blue). (c) Pseudo-relativistic Landau
level spectrum exhibited by the massless Dirac fermions in graphene. (d) Schematic of the unconventional
quantum Hall effect exhibited by graphene. Due to the anomalous zero-energy Landau level (n = 0) that is
equally shared between the electrons and holes, the plateaus in the Hall conductivity occur at half-odd-integer
multiples of ge2/h, where g = 4 due to the spin and valley degeneracy.

“When we say it does not change, we mean it does not change. When we say it is a straight line,

we mean it is the straightest line that you have ever seen. Think about it. It is independent of

details, such as the material used, the shape of the sample, the name of the experimentalist,

or the day of the week. Would you imagine that from such a dirty looking sample, the ratio of

two fundamental constants of the universe would emerge? I have to say before going into

details: this is so beautiful.”

An essential ingredient for the emergence of the quantum Hall effect is Landau quantiza-
tion where the continuous spectrum becomes quantized into Landau levels [133]

En = ℏωc

(
n+ 1

2

)
, n = 0, 1, 2, 3, . . . (2.39)

as shown in figure 2.4(a). This equidistant ladder of discrete energy levels is due to the
underlying quadratic dispersion of the non-relativistic electrons. The cyclotron frequency
ωc = eB/m determines the size of the gap between the Landau levels which scales linearly
with the magnetic field strength B, where m is the effective mass. Furthermore, each Landau
level is macroscopically degenerate where the number of states per unit area is nB = gB/ϕ0,
with ϕ0 = h/e being the magnetic flux quantum.

Robert Laughlin beautifully argued that the quantized Hall conductance is a direct
consequence of gauge invariance and the existence of a mobility gap [134], while Bertrand
Halperin emphasized the existence of chiral edge states which carry the current and do
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not become localized in the presence of disorder [135]. Heuristically, these chiral edge
states may be understood from a semi-classical perspective as stemming from skipping
cyclotron orbits at the boundary. On the other hand, in a series of remarkable papers, David
Thouless and others [136–140] showed that the global geometric properties of the filled bulk
eigenstates can be characterized by an integer topological invariant, known as the TKNN
invariant or Chern number, which precisely determines the quantized Hall conductance – we
will discuss the Chern number in more detail in section 2.4.1. The link between these two
viewpoints remained unclear until Yasuhiro Hatsugai rigorously established a bulk-boundary
correspondence [141, 142], where he showed that the Chern number of the filled bands
determines the number of chiral edge states which contribute to the transport.

Rather ironically, the fact that the perfect plateaus exist over a wide range of parameters
is due to the presence of moderate disorder within the sample. The disorder broadens the
Landau levels and creates a reservoir of localized bulk states where the Fermi energy can be
pinned without modifying the transport characteristics as the electron density ne is varied
– even Wolfgang Pauli would have been impressed by the importance of dirt. The precise
distribution of the microscopic impurities is unimportant as this can be viewed as continuous
deformations of the system which cannot change the topological invariant, as long as the
disorder is not strong enough to collapse the bulk gap. Therefore, the Hall conductance
exhibits plateaus when the Fermi energy falls between Landau levels, and jumps by an
amount of ge2/h when the Fermi energy crosses each Landau level as schematically depicted
in figure 2.4(b).

To see how the story is modified in graphene we can employ the Peierls substitution into
the effective Dirac Hamiltonian for each valley

H+ = vFσ · [−iℏ∇ + eA(r)] , H− = −vFσ∗ · [−iℏ∇ + eA(r)] , (2.40)

where A is the magnetic vector potential that determines the magnetic field B = ∇ × A.
This approximation is valid as long as the magnetic field strength is sufficiently small so
that the corresponding magnetic length lB =

√
ℏ/eB in much larger than the lattice spacing

lB ≫ a. We can find the Landau level spectrum exactly using a purely algebraic approach,
which is similar to the algebraic solution of the harmonic oscillator. First we introduce the
mechanical momentum operators

Πx = −iℏ∂x + eAx , Πy = −iℏ∂y + eAy , (2.41)
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which satisfy the commutation relations [Πy , Πx] = iℏeB, and from these we can construct
creation and annihilation operators

c = 1√
2ℏeB

(Πx − iΠy) , c† = 1√
2ℏeB

(Πx + iΠy) , (2.42)

which satisfy the usual harmonic oscillator commutation relations [ c , c† ] = 1. In terms of
these new operators, the effective Hamiltonian for each valley can be written as

H+ =
√

2ℏeBv2
F

 0 c

c† 0

 , H− = −
√

2ℏeBv2
F

 0 c†

c 0

 . (2.43)

The corresponding eigenstates can then be constructed from the eigenstates of the number
operator c†c ||n|⟩ = |n| ||n|⟩, where n ∈ Z is an integer that will be interpreted as the Landau
level index. For n ̸= 0 the eigenstates read

∣∣∣ψn
+

〉
= 1√

2

 sgn(n) ||n| − 1⟩
||n|⟩

 , ∣∣∣ψn
−

〉
= 1√

2

 ||n|⟩
− sgn(n) ||n| − 1⟩

 , (2.44)

while for n = 0 the eigenstates are

∣∣∣ψ0
+

〉
=
 0

|0⟩

 , ∣∣∣ψ0
−

〉
=
 |0⟩

0

 . (2.45)

These eigenstates can be easily verified by applying the Hamiltonian operators and the
corresponding quantized Landau level spectrum is given by [30, 143, 144]

En = sgn(n)ℏωc

√
|n| , n = 0,±1,±2,±3, . . . (2.46)

where ωc =
√

2eBv2
F/ℏ. This pseudo-relativistic spectrum, which is shown in figure 2.4(c),

stands in sharp contrast to the conventional Landau level spectrum exhibited by non-
relativistic electrons. In particular, the Landau levels scale with the squareroot of the Landau
index and magnetic field strength due to the linear spectrum of the massless Dirac fermions –
this has been directly verified by measuring cyclotron resonances in infrared transmission ex-
periments [145, 146] and by measuring tunneling current in scanning tunneling spectroscopy
experiments [147, 148]. Moreover, due to the chirality of the massless Dirac fermions,
graphene exhibits a zero-energy Landau level (n = 0) that is independent of the magnetic
field and is half filled at ne = 0. This anomaly is responsible for the unconventional quantum
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Hall effect in graphene where, as schematically depicted in figure 2.4(d), the plateaus in the
Hall conductivity occur at half-odd-integer multiples of ge2/h [144, 149]:

σxy = ge2

h
ν , ν = ±1/2,±3/2,±5/2, . . . (2.47)

Here, the degeneracy factor is g = 4 due to presence of both spin and valley degrees of
freedom. This unusual series of plateaus has been directly observed in graphene [150, 151]
providing conclusive evidence of the pseudo-relativistic nature of the charge carriers.

2.2.5 Topological stability of the Dirac points

Given that we used a very minimal tight-binding model to describe the electronic properties
of graphene, it is important to ask how stable the Dirac points are to perturbations, and to
understand what underlying symmetries protect their existence. Furthermore, it is important
to understand how robust the properties of the massless Dirac fermions are. For example:
what happens if we make the hopping parameters anisotropic? What if we add long-range
hopping between distant neighbours? What if we change the on-site energies of the A and B
sublattices? Will the Dirac fermions remain massless? Is the chirality fixed?

To answer these questions, let us assume the most general form of a two-band Hamiltonian

H(q) =
 d0(q) + dz(q) dx(q) − idy(q)
dx(q) + idy(q) d0(q) − dz(q)

 = d0(q)12 + σ · d(q) , (2.48)

with
d(q) = [ dx(q) , dy(q) , dz(q) ] , (2.49)

where di(q) ∈ R are real functions (i = 0, x, y, z). The spectrum of the Hamiltonian is

Eλ(q) = d0(q) + λ|d(q)| = d0(q) + λ
√
d2

x(q) + d2
y(q) + d2

z(q) , (2.50)

and we can represent the corresponding spinor eigenstates by a pseudo-spin vector on the
Bloch sphere which is given by

Sλ(q) = λd̂(q) = λ

|d(q)| [ dx(q) , dy(q) , dz(q) ] . (2.51)

Note, while the diagonal term d0(q) modifies the spectrum (and can dramatically affect the
properties), it does not affect the spinor eigenstates and plays no role in determining the
stability of the Dirac points.
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According to the von Neumann–Wigner theorem [152], in order to have an accidental
degeneracy that is not by virtue of any symmetries we need to tune three parameters. This is
because a degeneracy requires the three coefficients of the anticommuting Pauli matrices to
vanish simultaneously

dx(q) = 0 , dy(q) = 0 , dz(q) = 0 . (2.52)

Unfortunately, in two dimensions we only have two momentum variables q = [ qx , qy ] that
are naturally varied throughout the Brillouin zone; therefore, band degeneracies are generally
unstable in two dimensions and they require fine tuning of the system parameters.

We can understand this lack of stability from a topological viewpoint. If we consider
a closed contour Γ in the Brillouin zone where the bands are gapped – that is, any band
degeneracies either lie inside or outside the contour – then q → d̂(q) defines a map from
a circle S1 to the Bloch sphere S2. Since the fundamental group of the sphere is trivial
π1(S2) = 0 (all loops on a sphere can be contracted to a point), there exists no topological
invariant that can protect band crossings in two dimensions. Consequently, there exists
arbitrarily small perturbations that can gap out the Dirac points.

However, the presence of symmetries can impose constraints on the Hamiltonian which
can stabilize the presence of Dirac points in two dimensions. For graphene, the relevant
symmetries are spatial inversion I : [x , y] → [−x , −y] and time-reversal T : t → −t [93].
The honeycomb lattice exhibits I symmetry with respect to the centre of the carbon-carbon
bonds and the hexagons, and since the operation exchanges the two sublattices it is therefore
represented by the unitary operator UI = σx. Furthermore, I also sends q → −q and thus
imposes the following constraint on the Bloch Hamiltonian

I : UIH(q)U−1
I = σxH(q)σx = H(−q) , (2.53)

which is satisfied if

d0(q) = d0(−q) , dx(q) = dx(−q) , −dy(q) = dy(−q) , −dz(q) = dz(−q) .
(2.54)

Moreover, T does not affect the sublattices and is therefore represented by the anti-unitary
operator UT = K which represents complex conjugation. Furthermore, T also sends
q → −q and thus imposes the following constraint on the Bloch Hamiltonian

T : UT H(q)U−1
T = H∗(q) = H(−q) , (2.55)



32 Dirac physics in two-dimensions

which is satisfied if

d0(q) = d0(−q) , dx(q) = dx(−q) , −dy(q) = dy(−q) , dz(q) = dz(−q) . (2.56)

It is evident that neither I or T symmetry can individually stabilize the Dirac points because
they relate the Hamiltonians at q and −q, and therefore they do not impose a constraint
on the form of the Hamiltonian at a general momentum. However, the product of I and T
symmetry imposes the following constraint

IT : (UIUT )H(q)(UIUT )−1 = σxH∗(q)σx = H(q) , (2.57)

which is satisfied if

d0(q) = d0(q) , dx(q) = dx(q) , dy(q) = dy(q) , −dz(q) = dz(q) . (2.58)

Consequently, the presence of IT symmetry enforces the σz term in the Hamiltonian to
vanish identically

dz(q) = 0 . (2.59)

Therefore, it is now possible to have stable Dirac points without any fine tuning of the system
parameters since we only have two conditions to fulfill which depend on two momentum
variables that are varied throughout the Brillouin zone.

From the viewpoint of topology, we note that when IT symmetry is present then the tip
of the pseudo-spin vector is restricted to the equatorial plane of the Bloch sphere which we
can write as

Sλ(q) = λd̂(q) = λ [ cosφ(q) , sinφ(q) , 0 ] , (2.60)

where the azimuthal angle is given by

φ(q) = arg[dx(q) + idy(q)] . (2.61)

If we again consider a closed contour Γ in Brillouin zone where the bands are gapped,
then q → d̂(q) defines a map from a circle S1 to the equatorial plane of the Bloch sphere
S1. Crucially, the fundamental group of the circle is non-trivial π1(S1) = Z, and the
corresponding symmetry-protected topological invariant of the map is the pseudo-spin
winding number

W =
˛

Γ

dq
2π · ∇q φ(q) ∈ Z , (2.62)



Graphene 33

Figure 2.5 | Dirac points as topological defects inmomentum space. Pseudo-spin field in momentum space
corresponding to the conduction band in graphene. The Dirac points coincide with vortices in the pseudo-spin
field which are located at the high-symmetry K/K′ points. These are topological defects which are stabilized
by the presence of T and I symmetry. We label them according to their topological winding numbers, where
the Dirac point at the K point corresponds to a vortex with a topological charge of +1 (yellow circles), while
the Dirac point at the K′ point corresponds to an antivortex with a topological charge of −1 (blue circles).

where ∇q = [ ∂qx , ∂qy ]. This integer counts the number of rotations that the pseudo-spin
vector undergoes as one traverses the closed path Γ in the anticlockwise direction – it does
not depend on the precise details of the chosen contour and it can only change by an integer
amount if the band gap closes on the contour. Note, for an arbitrary path the winding number
cannot tell you how many Dirac points lie inside the contour; it can only tell you the total
sum of the individual topological charges associated with the enclosed Dirac points.

In figure 2.5 we plot the pseudo-spin field in momentum space for the conduction band
of graphene using equation (2.18). We observe that the Dirac points correspond to vortices
in the pseudo-spin field; that is, they are topological defects in momentum space. The
topological charges of the two inequivalent Dirac points can be calculated by considering a
small circular contour Γτ that encloses each Dirac point, and using the effective Hamiltonian
for each valley we obtain

W (τK) =
˛

Γτ

dk
2π · ∇k arg (τkx + iky) =

˛
Γτ

dk
2π · ∇k [τϕk] = τ . (2.63)

Therefore, the Dirac point in the K valley corresponds to a vortex with topological charge +1,
where the pseudo-spin winds once in the anticlockwise direction, while the Dirac point in the
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K′ valley corresponds to an anti-vortex with topological charge −1, where the pseudo-spin
winds once in the clockwise direction.

This vorticity that is associated with the Dirac points renders them locally stable. Any
small perturbation that preserves IT symmetry cannot open a gap, it can only shift the
location of the Dirac points. However, given that the two Dirac points carry opposite
topological charges, they are not globally stable since a large perturbation could merge them
together and annihilate them – we will discuss this scenario in more detail in section 2.3.2.
Moreover, if we break I or T symmetry then we can gap out the Dirac points which gives
rise to an insulator with interesting geometrical and topological properties – we will discuss
these scenarios in more detail in section 2.4.

2.2.6 Symmetry constraints on the effective Hamiltonian

Next we will analyze the constraints imposed on the form of the effective Hamiltonian by the
C3v little point group of the K/K′ points – this is the subgroup of the full C6v honeycomb
point group that leaves the K/K′ points invariant modulo a reciprocal lattice vector. Note,
while the little group at a generic wavevector is trivial, strict constraints are imposed on the
small wavevector expansion within the vicinity of the high-symmetry points [21]. In what
follows we will focus on the K point, since the effective Hamiltonian near the K′ point is
related by T symmetry (and I symmetry). Let us assume a general two-band Hamiltonian

H+(k) =
 d0(k) dx(k) − idy(k)
dx(k) + idy(k) d0(k)

 = d0(k)12 + σ · d(k) , (2.64)

with
d(k) = [ dx(k) , dy(k) ] , (2.65)

where di(k) ∈ R are real functions (i = 0, x, y) and k = q − K represents the wavevector
measured from the K point.

The C3v little point group is generated by { C3 , My }, where C3 represents an anticlock-
wise rotation by 2π/3 about the z-axis and My : [ x , y ] → [ x , −y ] represents a mirror
reflection in the xz-plane. If we set the rotation centre to be a site located on the A sublattice
then the unitary operator representing the rotation reads

UC3 =
 1 0

0 Ω

 , (2.66)
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where Ω ≡ ei 2π
3 , which leads to the following constraint on the effective Hamiltonian

C3 : UC3H+(π,π∗)U−1
C3 = H+(Ωπ,Ω∗π∗) . (2.67)

For convenience, here we have introduced the complex representation of the wavevector
π = kx + iky and its complex conjugate π∗ = kx − iky, because they transform simply
under rotations as C3π = Ωπ and C3π

∗ = Ω∗π∗, respectively. The constraint given by
equation (2.67) implies that the diagonal terms must satisfy

d0(π,π∗) = d0(Ωπ,Ω∗π∗) , (2.68)

and the off-diagonal terms must satisfy

[dx(π,π∗) + idy(π,π∗)]Ω = dx(Ωπ,Ω∗π∗) + idy(Ωπ,Ω∗π∗) . (2.69)

If we include up to quadratic terms in the wavevector expansion, then equation (2.68) is
solved by

d0(k) = c1 + c2ππ
∗ = c1 + c2(k2

x + k2
y) , (2.70)

where c1, c2 ∈ R are real constants, and equation (2.69) is solved by

dx(k) + idy(k) = c3π + c4π
∗2 = c3(kx + iky) + c4(k2

x − k2
y − 2ikxky) , (2.71)

where c3, c4 ∈ C are complex constants in general.

Finally, the My symmetry planes bisect the carbon-carbon bonds and the operation
exchanges the two sublattices – therefore, it is represented by the unitary operator UMy = σx.
Moreover, it also sends ky → −ky which leads to the following constraint on the effective
Hamiltonian

My : UMyH+(k)U−1
My

= σxH+(kx , ky)σx = H+(kx , −ky) , (2.72)

which is satisfied if

d0(kx , ky) = d0(kx , −ky) , dx(kx , ky) = dx(kx , −ky) , −dy(kx , ky) = dy(kx , −ky) .
(2.73)

These conditions impose no further constraints on the general form of the Hamiltonian, but
they enforce the coefficients in equation (2.71) to be real c3, c4 ∈ R. However, from equa-
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tion (2.72) and equation (2.67) one can show that the combination of My and C3 symmetries
also enforce the σz term to vanish, even in the absence of I symmetry.

Putting all these constraints together, the most general form of the effective Hamiltonian
near the K point up to quadratic order in k reads

H+(k) =
[
c1 + c2(k2

x + k2
y)
]
12 +

[
c3kx + c4(k2

x − k2
y)
]
σx +

[
c3ky − 2c4kxky

]
σy . (2.74)

If we retain only the off-diagonal terms that are linear in k, then this is equivalent to the
effective Dirac Hamiltonian that we found for graphene in equation (2.23). Note, if we had
continued the expansion of equation (2.21) to higher order in k then we would have also
obtained the quadratic off-diagonal terms in equation (2.74). However, these terms are much
smaller than the linear terms for |k|a ≪ 1 and therefore they just give rise to trigonal warping
of the band structure [5]. Furthermore, the diagonal terms in equation (2.74) would arise
if we included next-nearest-neighbour hopping, but they are also very small and thus only
weakly break the electron-hole symmetry [5].

From equation (2.71) we can see that the C3 symmetry forces the off-diagonal terms in
the Hamiltonian to vanish at the K point. Therefore, we have established that we can add
arbitrary, long-range hopping to the tight-binding model (or any other perturbation) and
the Dirac points will remain robust at the K/K′ points, as long as they respect T , I and C3

symmetry. However, this begs the question: are the fundamental properties of the massless
Dirac fermions also robust? While the symmetry constrains the form of the Hamiltonian, the
parameters depend sensitively on the details of the system which can have a dramatic effect
on the properties of the corresponding quasiparticles.

To highlight this, we could contrive a set of hopping parameters within a toy model such
that the linear terms vanish and only the quadratic off-diagonal terms survive. In this extreme
case, the effective Hamiltonian near the K/K′ points would read

Hτ (k) = c4

 0 (τkx + iky)2

(τkx − iky)2 0

 , (2.75)

which is equivalent to the effective Hamiltonian that describes the dominant properties of the
low-energy quasiparticles in AB-stacked bilayer graphene [153]. The Hamiltonian can be
easily diagonalized to yield a quadratic spectrum

Eλ(k) = λc4|k|2 , (2.76)
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Figure 2.6 | Massive chiral fermions in bilayer graphene. (a) Quadratic spectrum of the massive chiral
fermions near the K point, where the pseudo-spin winds twice around the hybrid Dirac point. (b) Landau level
spectrum exhibited by the massive chiral fermions where the zero-energy Landau level (n = 0) has twice
the degeneracy of the other Landau levels due to the doubling of the winding number. (c) Schematic of the
unconventional quantum Hall effect exhibited by bilayer graphene where the plateaus in the Hall conductivity
occur at integer multiples of ge2/h, where g = 4 due to the spin and valley degeneracy. This is reminiscent of
the conventional case, but the plateau at ne = 0 is missing due to the degeneracy doubling of the zero-energy
Landau level.

as depicted in figure 2.6(a), and the corresponding eigenstates read

|ψτλ(k)⟩ = 1√
2

 1
τλe−i2τϕk

 . (2.77)

While the quasiparticles are no longer massless, the spectrum is still gapless but with quadratic
band degeneracies at the K/K′ points that are characterized by higher-order topological
charges

W (τK) =
˛

Γτ

dk
2π · ∇k arg

[
(τkx − iky)2

]
=
˛

Γτ

dk
2π · ∇k [−2τϕk] = −2τ . (2.78)

Consequently, the pseudo-spin

Sτλ(k) = τλ [ cos(−2τϕk) , sin(−2τϕk) , 0 ] , (2.79)

winds twice around the quadratic band degeneracies as schematically shown in figure 2.6(a).
We refer to these as hybrid Dirac points because they split into multiple Dirac points under
small perturbations of the Hamiltonian.

This modified dispersion and pseudo-spin winding number means that bilayer graphene
exhibits qualitatively different properties compared to graphene [154]. For example, if we
consider elastic scattering from a smooth impurity potential V (r), as we did in section 2.2.3,
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then within the first Born approximation the scattering probability is

P (∆ϕ) ∝ | ⟨ψτλ(k′)|V (r)12 |ψτλ(k)⟩ |2 ∝ |Ṽ (k′ − k)|2 cos ∆ϕ . (2.80)

In stark contrast to graphene, here the chirality factor is maximum for backscattering k → −k
because the pseudo-spins point in the same direction. As a result, it has been shown that
bilayer graphene exhibits perfect reflection (anti-Klein tunnelling) when normally incident
on a npn-barrier [18].

Moreover, the corresponding Landau level spectrum in the presence of a large magnetic
field reads [153]

En = sgn(n)ℏωc

√
|n|(|n| + 1) , n = 0,±1,±2,±3, . . . (2.81)

as schematically shown in figure 2.6(b), where ωc = eB/m and m ∝ 1/c4 is the effective
mass. Crucially, the doubling of the winding number doubles the degeneracy of the zero-
energy Landau level (n = 0) where the corresponding eigenstates are

∣∣∣ψ0,0
+

〉
=
 0

|0⟩

 , ∣∣∣ψ0,1
+

〉
=
 0

|1⟩

 , ∣∣∣ψ0,0
−

〉
=
 |0⟩

0

 , ∣∣∣ψ0,1
−

〉
=
 |1⟩

0

 .
(2.82)

Therefore, bilayer graphene exhibits another distinct type of quantum Hall effect, where the
plateaus in the Hall conductivity occur at integer multiples of ge2/h [153]:

σxy = ge2

h
ν , ν = ±1,±2,±3, . . . (2.83)

where g = 4 due to the spin and valley degrees of freedom. This scenario, which is
schematically shown in figure 2.6(c), resembles the conventional quantum Hall effect for a
non-relativistic electron gas, which one may expect given the quadratic dispersion. However,
the plateau at ne = 0 is missing due to the degeneracy doubling of the zero-energy Landau
level and this results in a larger step of 8e2/h which has been observed experimentally [155].

2.3 Strained graphene

Unfortunately, there currently exists no mechanism to tune the hopping parameters in
graphene while preserving the symmetries, and therefore the properties of the massless
Dirac quasiparticles are fixed by the rigid lattice structure. However, elastic deformations of
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the graphene membrane can change the orientation and length of the carbon-carbon bonds
which, in turn, can modify the hopping parameters and give rise to interesting physics – this
is the essence of the tantalizing concept known as strain-engineering [62, 156]. Straining
the lattice breaks the C3 symmetry which means the Dirac points are no longer pinned to
the high-symmetry points and the Dirac cones can shift in momentum space. To capture the
essential physics related to strain we will explore the generalized tight-binding Hamiltonian

H = −
∑
RB

3∑
n=1

tnb
†
RB
aRB+en

+ H.c. , (2.84)

where the hopping parameters tn can vary along the three nearest-neighbour bonds. However,
for simplicity, we will assume that the carbon atoms remain located at their original unstrained
positions.

2.3.1 Strain-induced pseudo-magnetic field

First we will restrict our attention to very small deformations of the membrane and discuss
one of the most striking consequences of the Dirac-like spectrum in graphene: the emergence
of strain-induced pseudo-magnetic fields. The lattice deformation shifts the carbon atoms to
new positions

R̄A = RA + u(RA) , R̄B = RB + u(RB) , (2.85)

where we have introduced the in-plane displacement field

u(r) = [ ux(r) , uy(r) ] (2.86)

which characterizes the strain configuration. We will assume that the displacement field
varies slowly on the scale of the lattice constant and derive an effective theory that is valid to
leading order in the linear strain tensor

εij = 1
2

(
∂ui

∂rj

+ ∂uj

∂ri

)
, i, j = x, y . (2.87)

Moreover, for simplicity, we will initially consider uniform strain where the strain tensor is
constant across the lattice, and we will generalize to non-uniform strain later.

As a result of the lattice deformation, the nearest-neighbour vectors change according to

ēn ≃ en + ∇u · en , (2.88)
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where ∇uij = ∂uj/∂ri is the displacement gradient tensor. We will assume that the hopping
parameter has an exponential dependence on the bond length [62] and therefore, to leading
order in strain, the modified hopping parameters read

tn = te−β( |ēn|
a

−1) ≃ t
(

1 − β

a2 e
i
ne

j
nεij

)
, (2.89)

where β ≈ 3. As stated above, we are only interested in the effects arising from the
change in hopping parameters and not the geometric effects emerging from the lattice
distortion. Therefore, after Fourier transforming equation (2.84) we obtain the following
Bloch Hamiltonian

H(q) =
 0 h(q)
h∗(q) 0

 , (2.90)

where the off-diagonal matrix elements are given by

h(q) = −t
3∑

n=1

(
1 − β

a2 e
i
ne

j
nεij

)
e−iq·en . (2.91)

If we expand equation (2.90) to leading order in k = q−τK then we obtain the following
effective Hamiltonian near the K/K′ points

H+(k) = ℏvFσ · (k − A) , H−(k) = −ℏvFσ∗ · (k + A) , (2.92)

where the strain gives rise to a pseudo-vector potential that reads

A = β

2a [ εxx − εyy , −2εxy ] . (2.93)

This effective gauge field describes how the Dirac cones shifts in momentum space due to
the applied strain. Note, since T symmetry is preserved the Dirac cones in the inequivalent
valleys shift in opposite directions as schematically shown in figure 2.7. Furthermore, it is
important to stress that the dependence of the pseudo-vector potential on the strain tensor is
constrained by the symmetries of the unstrained lattice [21].

Treating inhomogeneous strain is more subtle since the translational symmetry of the
lattice is broken and therefore the tight-binding model cannot be block diagonalized in
momentum space. However, if we assume that the strain varies slowly on the scale of the
lattice constant, then the effective Hamiltonian in real space is given by the replacement
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Figure 2.7 | Strain-induced pseudo-vector potential. Applying uniform strain to the graphene membrane
renders the hopping parameters anisotropic which breaks C3 symmetry but preserves I and T symmetry. As
a result, the massless Dirac cones in different valleys shift away from the high-symmetry points in opposite
directions, thereby mimicking the effect of a gauge field. By judiciously engineering an inhomogeneous strain
pattern one can generate a pseudo-magnetic field which has opposite signs in the two valleys by virtue of T
symmetry.

k → −i∇ and εij → εij(r), which leads to

H+ = ℏvFσ · [−i∇ − A(r)] , H− = −ℏvFσ∗ · [−i∇ + A(r)] . (2.94)

Consequently, electrons propagating through an inhomogeneously strained graphene mem-
brane experience a pseudo-magnetic field given by

Bτ = τ∇ × A , (2.95)

which can mimic some of the properties of real ones; it can generate a Lorentz-like force [25],
lead to Aharonov-Bohm interferences [26] and induce Landau quantization [22]. However,
in stark contrast to a real magnetic field, the applied strain does not break T symmetry and
therefore the pseudo-magnetic field has opposite signs in the two valleys.

Very soon after the theoretical prediction, enormous pseudo-magnetic fields upwards of
300 tesla were experimentally observed in graphene nanobubbles, where scanning tunnelling
spectroscopy measurements revealed that the electronic spectrum was reconstructed into
a series of quantized Landau levels [27]. Despite this tantalizing prospect and wealth of
theoretical investigations [22–26, 157–160], a controllable way to engineer the in-plane strain
configurations that are required to generate uniform pseudo-magnetic fields over a large
area [22, 23] still remains elusive. Thus far, experimental studies have been predominantly
restricted to localized deformations of the graphene membrane with non-planar morphology



42 Dirac physics in two-dimensions

[27, 161–164]. However, this problem is completely circumvented in artificial systems where
one can simply imprint any arbitrary strain pattern into the lattice design [68–70, 165]. In
fact, these pseudo-magnetic fields have attracted a growing interest in recent years because
they present a novel way of manipulating neutral particles and classical waves which are
completely inert to real magnetic fields [68–70, 165–172].

2.3.2 Strain-induced merging and annihilation of the Dirac points

In the previous section we showed that the Dirac points are locally stable if one introduces
small perturbations that break the C3 symmetry – they just shift in momentum space away
from the K/K′ points. The natural question is: what happens for large perturbations? For
a moment, let us consider the extreme anisotropic case where t1 ≫ t2, t3. Here the system
essentially consists of a set of isolated dimers described by the Hamiltonian H = −t1σx,
which has a fully gapped spectrum Eλ = λt1 with no remnants of the Dirac points – what
happened here?

To elucidate the nature of this transition we will consider the special case of uniform
strain where only one hopping parameter is modified t1 = t′, while the others are kept
constant t2 = t3 = t. By Fourier transforming equation (2.84) to momentum space we obtain
the Bloch Hamiltonian

H(q) =
 0 g(q)
g∗(q) 0

 , (2.96)

where the off-diagonal elements are given by

g(q) = −(t′e−iq·e1 + te−iq·e2 + te−iq·e3) . (2.97)

The spectrum of the Hamiltonian reads

Eλ(q) = λ|g(q)| , (2.98)

and the corresponding eigenstates can be represented by the pseudo-spin vector

Sλ(q) = λ [ cosφ(q) , sinφ(q) , 0 ] , (2.99)

where the azimuthal angle is given by

φ(q) = arg[g∗(q)] . (2.100)
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Figure 2.8 | Strain-induced merging and annihilation of the Dirac points. (a)-(c) Electronic band structure
for the anisotropic tight-binding model with t′ = 1.5t, t′ = 2t and t′ = 2.5t, respectively. (d)-(f) Corresponding
pseudo-spin fields near the M point, where the Dirac points (vortices) are labelled according to their topological
winding numbers. For t < t′ < 2t, the Dirac points shift away from the K/K′ points due to the broken C3
symmetry, and they migrate towards the M point as the anisotropy of the hopping parameters is increased (red
arrows). At the critical value t′ = 2t, the two Dirac points with opposite topological charges merge together at
the M point, forming a semi-Dirac point with zero topological charge. As the anisotropy is increased further
t′ > 2t, the Dirac points annihilate one another and the spectrum becomes gapped, resulting in a transition
from a semi-metal phase to an insulator phase.

In figures 2.8(a)-(c) we plot the spectrum for t′ = 1.5t, t′ = 2t and t′ = 2.5t, respectively.
For the regime t < t′ < 2t we can see that the Dirac points shift away from the K/K′ points
and migrate towards the M point as the anisotropy is increased. This migration continues
until a critical value t′ = 2t where the two inequivalent Dirac points merge together at the
M point, and then the spectrum becomes fully gapped as the anisotropy is increased further
t′ > 2t. Therefore, increasing the anisotropy of the hopping parameters drives a transition
from a semi-metallic phase to an insulating phase [61–64].

To explore the nature of this transition further, we can derive an effective Hamiltonian
near one of the M points which we chose to be located at M = [ 2π/3a , 0 ]. By expanding
equation (2.96) to leading order in k = q − M we obtain [63, 64]

HM(k) = (∆M − tMk
2
x)σx + vMkyσy , (2.101)
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and the corresponding spectrum reads

Eλ(k) = λ
√

(∆M − tMk2
x)2 + v2

Mk
2
y , (2.102)

where∆M = 2t−t′, tM = 3a2t/4 and vM = a(t+t′). Note that equation (2.101) is consistent
with the general form of the Hamiltonian which we have derived using symmetry analysis in
appendix A.2.

For the regime t < t′ < 2t, we can see from equation (2.102) that there exists two Dirac
points located along the K/K′ → M lines at

k±
M = ±

√
∆M

tM

[
1 , 0

]
. (2.103)

If we expand equation (2.101) to leading order in k′ = k − k±
M then we obtain the effective

Hamiltonian within the vicinity of the two Dirac points

H±
M(k′) = ∓ tM

∆M
k′

xσx + vMk
′
yσy . (2.104)

This is a generalized massless Dirac Hamiltonian where the spectrum

Eλ(k′) = λ

√√√√ t2M
∆2

M
k′2

x + v2
Mk

′2
y (2.105)

is anisotropic with different group velocities along the kx and ky directions due to the
broken C3 symmetry. Moreover, from the Hamiltonian in equation (2.104) one can show
that the Dirac points have opposite topological charges, which can also be inferred from the
pseudo-spin field shown in figure 2.8(d).

At the critical anisotropy t′ = 2t, the two Dirac points merge together as the gap parameter
vanishes ∆M = 0, and the effective Hamiltonian near the M point reads

HM(k) = −tMk2
xσx + vMkyσy . (2.106)

The corresponding spectrum

Eλ(k) = λ
√
t2Mk

4
x + v2

Mk
2
y (2.107)

is highly anisotropic with a linear dispersion along the ky direction and a quadratic dispersion
along the kx direction – this critical band degeneracy has been aptly dubbed a semi-Dirac
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point [173]. Moreover, one can easily check that the corresponding topological winding
number vanishes

W (M) = −
˛

Γ

dk
2π · ∇k arctan

(
vMky

tMk2
x

)
= 0 , (2.108)

which can also be seen directly in the pseudo-spin field shown in figure 2.8(e) – this is
required since the topological charge must be preserved through the merging transition.
Note that the semi-Dirac nature of this band degeneracy is required because a Hamiltonian
that is linear in both Pauli matrices would necessarily exhibit vorticity [174]. Unlike the
Dirac points, this lack of a topological charge renders the semi-Dirac point susceptible
to a gap-opening perturbation. This is precisely what we observe when the anisotropy is
increased further t′ > 2t, where a global gap opens up and the vorticity in the pseudo-spin
field vanishes as shown in figure 2.8(f).

Since it is notoriously difficult to confine massless Dirac fermions using conventional
electrostatic barriers by virtue of the Klein tunnelling phenomenon, this tantalizing prospect
of engineering a bulk gap via strain attracted considerable theoretical interest [62]. However,
since the Dirac points are well separated in momentum space, it has been predicted that
one needs to engineer very large strains of about 20% in order to induce this transition in
graphene [62]; consequently, it has evaded experimental observation to date. In contrast,
this merging transition has been observed in photonic graphene systems [65–67] where it is
relatively simple to engineer the required anisotropy.

2.4 Dirac mass generation

In this final part, we will explore what happens when we gap out the Dirac points. To generate
a mass term we have to introduce a perturbation that anticommutes with the massless Dirac
Hamiltonian. The only remaining Pauli matrix is σz and we have shown in section 2.2.5
that this term vanishes in the presence of both T and I symmetry. Therefore, in order to
generate a mass for the Dirac fermions and turn graphene into an insulator, one (or both) of
these symmetries has to be broken. Unlike the insulating phase that arises from the merging
and annihilation of the Dirac points, these insulators have very interesting geometrical and
topological properties that depend qualitatively on which symmetry is broken. Before we
introduce two different models of non-trivial insulators, in the next section we will provide a
very brief overview of some important concepts relating to the geometrical and topological
properties of Bloch bands in two dimensions.
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2.4.1 Geometry and topology of Bloch bands in two dimensions

Topology is a branch of mathematics that is concerned with global properties of various
objects that are preserved under continuous deformations. Naturally, one can then group
objects into equivalence classes according to a topological invariant that takes integer values.
The canonical example is the number of holes in a 2D orientable surface known as the
genus; a sphere is topologically distinct from a torus because you cannot deform one into the
other without tearing a hole or gluing two parts together. At first glance, this rather abstract
field of study appears to be of little relevance to electrons propagating through periodic
crystals. For a long time electronic materials were coarsely classified as metals or insulators,
based primarily on the nature of the energy bands and the position of the Fermi level. This
naive view changed dramatically with the discovery of the quantum Hall effect [29], whose
topological origin was unveiled by David Thouless and others [134–142] which eventually
paved the way for the thriving field of topological insulators [28].

One of the central questions underpinning the field is: given two Hamiltonians that
describe two different gapped insulators, when are they essentially equivalent? To answer
this, one seeks to classify the Hamiltonians by establishing an integer topological invariant
that characterizes the global geometric properties of the eigenstates. The two Hamiltonians
are then said to be topologically inequivalent if they have a different value of the topological
invariant; one system cannot be continuously transformed into the another without closing
the bulk energy gap. In what follows we will limit our discussion to 2D systems and a
minimal two-band Hamiltonian of the form

H(q) =
 dz(q) dx(q) − idy(q)
dx(q) + idy(q) −dz(q)

 = σ · d(q) , (2.109)

where we have neglected the term proportional to the identity as it does not modify the
topology of the bands.

Within topological band theory, the Berry phase plays a central role [138]. In this context,
the Berry phase is a geometric phase that is acquired by a Bloch state when it is adiabatically
transported around a closed path Γ in the Brillouin zone

γ(Γ ) =
˛

Γ

dq · Aλ(q) , (2.110)
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where we have introduced the Berry connection of the λ band

Aλ(q) = i ⟨ψλ(q)| ∇q |ψλ(q)⟩ . (2.111)

This is analogous to the vector potential in electromagnetism but in momentum space, and it
is a gauge-dependent quantity; under the gauge transformation

|ψλ(q)⟩ → |ψ′
λ(q)⟩ = eiζ(q) |ψλ(q)⟩ , (2.112)

where ζ(q) is a continuous real function, the Berry connection transforms as

Aλ(q) → A′
λ(q) = Aλ(q) − ∇qζ(q) . (2.113)

What about the Berry phase, is it a gauge-invariant quantity or can it be gauged away? In
order for the eigenstates to remain single valued, we also require eiζ(q) to be single valued.
Consequently, at the start and end of a closed contour the gauge function can only differ by
an integer multiple of 2π, and the corresponding Berry phase transforms as

γ(Γ ) → γ′(Γ ) = γ(Γ ) + 2mπ , (2.114)

where m ∈ Z is an integer. Therefore, the Berry phase is indeed a gauge-invariant quantity
modulo 2π.

We can continue the analogy with electromagnetism by invoking Stokes’ theorem which
allows us to write the Berry phase as

γ(Γ ) =
¨

SΓ

d2q Fλ(q) , (2.115)

where SΓ is the surface enclosed by the contour Γ . Here we have introduced the Berry
curvature of the λ band

Fλ(q) = ∂

∂qx

Ay
λ(q) − ∂

∂qy

Ax
λ(q) , (2.116)

which is analogous to the magnetic field in momentum space – it is a gauge-invariant quantity
that describes the local geometric properties of the Bloch states. In its present form it contains
derivatives of the eigenstates which is a nuisance if one wants to numerically compute the
Berry curvature. It is therefore useful to transform it into a manifestly gauge-invariant form,
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which for the two band-model reads

Fλ(q) = i
⟨ψλ(q)| ∂

∂qx
H(q)|ψλ′(q)⟩⟨ψλ′(q)| ∂

∂qy
H(q)|ψλ(q)⟩

[Eλ′(q) − Eλ(q)]2 + c.c. . (2.117)

We have seen in section 2.2.5 and section 2.2.6 that the symmetries of the system place
strict constraints on the form of the Hamiltonian. Similarly, the symmetries also place strict
constraints on the form of the Berry curvature. In particular, it is simple to show that the
presence of T symmetry imposes that the Berry curvature must be an odd function of q

T : Fλ(q) = −Fλ(−q) , (2.118)

while I symmetry constrains the Berry curvature to be an even function of q

I : Fλ(q) = Fλ(−q) . (2.119)

Consequently, in the presence of both T and I symmetry the Berry curvature must vanish
everywhere

IT : Fλ(q) = 0 . (2.120)

However, from equation (2.117) we can see that the Berry curvature is ill-defined at band
degeneracies where the adiabatic theorem breaks down. Moreover, using the eigenstates of
the effective Dirac Hamiltonian in equation (2.26) one can easily show that massless Dirac
fermions acquire a non-trivial Berry phase of ±π when adiabatically transported around
a Dirac point. This result is independent of the path and therefore the Dirac points must
be singular sources of ±π Berry flux, and the corresponding Berry curvature can only be
unlocked if one lifts the degeneracy by breaking T or I symmetry.

If the bands are fully gapped then we can define an integer topological invariant for each
band known as the Chern number, which is defined as the integral of the Berry curvature
over the entire Brillouin zone [136]

Cλ = 1
2π

¨

BZ

d2q Fλ(q) ∈ Z . (2.121)

Evidently, a minimum requirement for a band to exhibit a non-zero Chern number is for T
symmetry to be broken by virtue of the constraint given by equation (2.118). If we use the
explicit form of the two-band Hamiltonian in equation (2.109) then we can re-express the
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Berry curvature as

Fλ(q) = −λ

2

 ∂d̂
∂qx

× ∂d̂
∂qy

 · d̂ , (2.122)

which provides us with a simple geometrical interpretation of the Chern number. If the
spectrum is fully gapped then q → d̂(q) defines a map from the Brillouin zone T2 to the
Bloch sphere S2. The Chern number is equivalent to the wrapping number of this map which
counts the number of times the surface traced out by d̂ wraps around the Bloch sphere as the
momentum is varied over the entire Brillouin zone. This topological invariant is therefore
robust against continuous variations of the Hamiltonian parameters, and can only change
abruptly by an integer amount if the spectral gap closes and reopens. Band insulators that
have a vanishing Chern number are called trivial since they can be smoothly deformed into a
trivial atomic insulator without closing the spectral gap. In contrast, topological insulators
with non-zero Chern numbers are referred to as Chern insulators.

At first glance, it may seem contradictory that the Chern number does not vanish identi-
cally. If we naively invoke Stokes’ theorem then we can write the Chern number as a line
integral of the Berry connection over the boundary of the Brillouin zone. However, the
Brillouin zone is a closed manifold which does not have a boundary, and therefore if the
Berry connection is well defined over the whole Brillouin zone then the resulting integral
vanishes. Consequently, a non-zero Chern number represents an obstruction to finding a
global gauge that is continuous and single valued over the entire Brillouin zone [140].

We can illustrate this clearly using the two-band Hamiltonian where the eigenstates can
be expressed as

|ψ(1)
− (q)⟩ =

 sin(θ/2)e−iφ

− cos(θ/2)

 , |ψ(1)
+ (q)⟩ =

 cos(θ/2)
sin(θ/2) eiφ

 , (2.123)

for the lower and upper band, respectively. Here the spherical angles parametrizing the vector
d̂(q) read

φ(q) = arctan
[
dy(q)
dx(q)

]
, θ(q) = arccos

[
dz(q)
|d(q)|

]
. (2.124)

One should note that this choice of the spinor eigenstates is not unique as they are only
defined up to a global phase. For the gauge that we have chosen in equation (2.123) the
eigenstates are well defined everywhere except for when d̂(q) points to the south pole (θ = π)
where they have an ill-defined phase. Alternatively, we could chose a different gauge related
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by the transformation
|ψ(2)

λ (q)⟩ = e−iλφ(q) |ψ(1)
λ (q)⟩ , (2.125)

where the eigenstates now read

|ψ(2)
− (q)⟩ =

 sin(θ/2)
− cos(θ/2)eiφ

 , |ψ(2)
+ (q)⟩ =

 cos(θ/2)e−iφ

sin(θ/2)

 . (2.126)

While this gauge is now well defined at the south pole (θ = π), it is ill-defined at the north
pole (θ = 0) – we cannot remove the problematic point, we can only shift its position.
Consequently, if d̂(q) wraps the entire Bloch sphere, as it does for a Chern insulator, one
cannot find a gauge that is well defined everywhere throughout the entire Brillouin zone.

Furthermore, we can show that this obstruction leads to an integer-valued Chern number
and another practical way of calculating it. For the majority of the Brillouin zone let us
choose the first gauge defined by equation (2.123), and let qs

i (i = 1, 2, . . . ) denote the
positions in the Brillouin zone where d̂(q) reaches the south pole. We can then define a set
of small patches that enclose the obstructions [140, 141]

Rϵ
s =

{
q ∈ T2 : |q − qs

i| < ϵ , θ(qs
i) = π

}
, (2.127)

and inside these regions we adopt the second gauge given by equation (2.126). The cor-
responding Berry connection within these patches is given by the gauge transformation

A(2)
λ (q) = A(1)

λ (q) + λ∇φ(q) . (2.128)

Now that the phase is uniquely determined over the entire Brillouin zone, we can apply
Stokes’ theorem to the separate regions which allows us to express the Chern number as
[140, 141]

Cλ = 1
2π

˛
∂Rϵ

s

dq ·
[
A(2)

λ (q) − A(1)
λ (q)

]
= λ

2π

˛
∂Rϵ

s

dq · ∇qφ(q) = λ
∑

i

W (qs
i) ,

(2.129)

where ∂Rϵ
s represents the boundary of Rϵ

s. From equation (2.129) we can see that the Chern
number is given by the sum of the topological winding numbers associated with the vortices
in the azimuthal phase φ(q) located at qs

i – this shows that the Chern number can only
assume integer values. If we repeat the preceding analysis while switching the role of the
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two gauges, then we can express the above formula in a more symmetric form

Cλ = −λ

2
∑

i

W (qi) sgn[dz(qi)] , (2.130)

where qi denote the locations where d̂(q) reaches either the south and north pole. Equa-
tion (2.130) provides us with a convenient way of calculating the Chern number for a
two-band model without having to numerically integrate the Berry curvature.

2.4.2 Haldane insulator

Shortly after the discovery of the quantum Hall effect, Duncan Haldane realized that T
symmetry breaking was the essential ingredient for a quantized Hall conductance and not
the formation of Landau levels due to a macroscopic magnetic field. In 1988, he devised an
ingenious toy model to illustrate this [30], which contributed to him being duly decorated with
the Nobel Prize in 2016. Specifically, he used the simple tight-binding model of graphene
and introduced a periodic pattern of magnetic flux with the full symmetry of the lattice, but
with zero net magnetic flux piercing through each unit cell [30]. Within the framework of a
tight-binding model, these fluxes do not modify the nearest-neighbour hopping parameters
because all the corresponding closed paths encircle complete unit cells. However, if we now
include next-nearest-neighbour hopping then the hopping parameter becomes complex t′e±iϑ,
where t′ is the hopping amplitude and ϑ is the Aharonov-Bohm phase acquired along the
hopping path due to the local magnetic flux. The sign depends on the direction of the hop,
and in figure 2.9(a) the dotted arrows show the hopping directions associated with a positive
sign.

This model is described by the Hamiltonian HH = H + ∆HH, where H is the nearest-
neighbour tight-binding Hamiltonian of pristine graphene given by equation (2.10). The new
term that Haldane introduced reads

∆HH = t′eiϑ∑
RA

3∑
j=1

a†
RA
aRA+δj

+ t′e−iϑ
3∑

j=1

∑
RB

b†
RB
bRB+δj

+ H.c. , (2.131)

where the vectors δ1 = e2 − e3, δ2 = e3 − e1 and δ3 = e1 − e2 connect next-nearest-
neighbour sites. Importantly, the added magnetic flux preserves the translational symmetry
of the lattice, and therefore the electron states retain their usual Bloch character. We note
that Haldane also considered staggered on-site energies in his model but we reserve this for a
separate discussion in section 2.4.4
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Figure 2.9 |Haldane insulator. (a) Schematic of the Haldane model, which is the graphene tight-binding model
with additional complex next-nearest-neighbour hopping. The blue/red arrows show the hopping directions
associated with a positive phase t′eiφ. Physically, this model corresponds to introducing periodic magnetic flux
with the full symmetry of the lattice, but with zero net magnetic flux through each unit cell. (b) Spectrum of the
Haldane Hamiltonian with ϑ = π/2 and t′ = 0.05t. The magnetic flux breaks T symmetry which gaps out the
Dirac points, giving rise to a bulk insulator at half filling. (c) Berry curvature for the valence band which is
an even function of q by virtue of I symmetry and is positive throughout the Brillouin zone. For this model
the Chern number is C− = +1, while for ϑ → −ϑ the Berry curvature becomes negative and one obtains
C− = −1.

We can Fourier transform the Haldane Hamiltonian to momentum space where the Bloch
Hamiltonian reads HH(q) = H(q) + ∆HH(q). Here H(q) is given by equation (2.14) and
the new Haldane term reads

∆HH(q) = d0(q)12 + dz(q)σz , (2.132)

where

d0(q) = 2t′ cosϑ
3∑

j=1
cos(q · δj) , dz(q) = −2t′ sinϑ

3∑
j=1

sin(q · δj) . (2.133)

According to equation (2.54) I symmetry is preserved, while according to equation (2.56) T
symmetry is broken which gives rise to a σz term in the Hamiltonian.

In figure 2.9(b) we plot the spectrum of the Haldane model

Eλ(q) = d0(q) + λ
√

|f(q)|2 + d2
z(q) (2.134)

for ϑ = π/2 and t′ = 0.05t. Since T symmetry is broken for these parameters, the spectrum
is fully gapped and therefore the Haldane Hamiltonian describes an insulator at half filling.
As the spectrum alone cannot tell us anything about the topology of the system, in figure 2.9(c)
we plot the corresponding Berry curvature for the valence band using equation (2.117), which
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is an even function of q by virtue of I symmetry. Notably, the Berry curvature is positive
throughout the whole Brillouin zone, while it is negative if we switch the sign of the phase
ϑ → −ϑ. Consequently, if one directly computes the integral in equation (2.121) one finds
that the Haldane model represents a topological insulator with a Chern number of C− = ±1.

We can see this in a more intuitive way by analysing the obstructions. Since the T
symmetry-breaking term in the Haldane Hamiltonian does not modify the σx and σy terms,
the only place where d̂(q) can visit the poles is at the K/K′ points (i.e., where the off-
diagonal terms vanish). Therefore, it is useful to derive the effective Hamiltonian near the
K/K′ points which read

H+(k) = E012 + ℏvFσ · k +m+σz , H−(k) = E012 − ℏvFσ∗ · k +m−σz , (2.135)

where
E0 = −3t′ cosϑ , mτ = τ3

√
3t′ sinϑ . (2.136)

Apart from a global energy shift E0, the Haldane fermions are described by a massive Dirac
Hamiltonian with a gapped Dirac cone spectrum

Eλ(k) = E0 + λ
√
ℏ2v2

F|k|2 +m2
τ . (2.137)

Crucially, while the spectrum in each valley is identical, the Haldane mass mτ has opposite
signs for the two valleys and therefore d̂(q) visits both poles of the Bloch sphere. From
equation (2.130) we can easily deduce the Chern number of the valence band

C− = 1
2
∑

τ

W (τK) sgn[dz(τK)] = 1
2[sgn(m+) − sgn(m−)] = sgn(m+) , (2.138)

which is precisely what we obtain if we directly integrate the Berry curvature.

2.4.3 Topological chiral edge states

One of the most important manifestations of non-trivial topology in the bulk is the emergence
of gapless edge states at the boundary. Heuristically, we can understand this as follows: if we
consider an interface between two topologically distinct insulators then the band gap must
close somewhere along the interface in order for the topological invariant to change. The
corresponding Hall conductance [136]

σxy = e2

h

∑
n

Cn (2.139)
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Figure 2.10 | Topological chiral edge states. (a) Schematic of a domain wall interface between two topolog-
ically distinct insulators, where region A is a Haldane insulator with C− = +1 and region B is a Haldane
insulator with C− = −1. (b) Schematic of the interface spectrum. The bulk spectrum is gapped and identical
in both regions but there exists chiral edge states that traverse the bulk gap and are exponentially localized at
the interface. Since T symmetry is broken, these chiral edge states propagate in the same direction and are thus
topologically protected against backscattering because there are no states available to transport current in the
opposite direction.

is determined by the sum of the Chern numbers of the occupied bulk bands which, via the
bulk-boundary correspondence, determines the number of chiral edge states at the boundary
with the vacuum that contribute to the transport. Moreover, because T symmetry is broken
these topological edge states only propagate in one direction around the boundary and are
therefore insensitive to disorder – they cannot be backscattered because there are no states
available to transport current in the opposite direction.

To illustrate this bulk-boundary correspondence, let us consider an interface between
two topologically distinct Haldane insulators as schematically depicted in figure 2.9(a). To
describe the full physics at a microscopic level, one should use the full tight-binding model
and interpolate the parameters across the interface. Here we will just focus on the essential
physics which can be captured by the effective Dirac Hamiltonian [28]

Hτ = −iℏvF(τσx∂x + σy∂y) +mτ (y)σz . (2.140)

We model the interface as a spatially varying mass along the y-direction

mτ (y) =

+τmH, for y < 0

−τmH, for y > 0
(2.141)

and we have neglected the irrelevant energy shift E0. While the bulk spectrum in each region
is identical, they have opposite Chern numbers as the mass within each valley changes sign
across the interface.
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We can exploit the translational invariance along the x-direction by writing the spinor
envelope wavefunction as ψτ (r) = ψτ (y)eikxx. First, we will try to find a zero-energy state
for kx = 0 which is a solution to the following equation

−iℏvFσy∂yψτ (y) +mτ (y)σzψτ (y) = 0 → ∂yψτ (y) = mτ (y)
ℏvF

σxψτ (y) . (2.142)

We want to obtain physical solutions where the wavefunction is bounded and normalizable,
which means that it must be an eigenstate of σx with an eigenvalue of τ sgn(mH). Therefore,
the solution within each valley is a Jackiw-Rebbi-like [175] mode

ψτ (y) ∝

 1
τ sgn(mH)

 e− |mH|
ℏvF

|y|
, (2.143)

which is exponentially localized at the interface. To find the solution for finite kx one simply
has to note that ψτ (y) is also an eigenstate of σy with eigenvalue iτ sgn(mH), and therefore
the full solution reads

ψτ (r) ∝

 1
τ sgn(mH)

 e− |mH|
ℏvF

|y|eikxx . (2.144)

To find the corresponding spectrum of the edge states we can act on the wavefunction with
the effective Hamiltonian which yields

Eτ (kx) = sgn(mH)ℏvFkx . (2.145)

Therefore, each valley supports a chiral edge state which propagate in the same direction
as schematically depicted in figure 2.9(b). This is consistent with the more general bulk-
boundary correspondence which says that the number of chiral edge states is determined
by the change in Chern number across the interface – here we have ∆C− = CB

− − CA
− = 2.

Moreover, we note that sgn(∆C−) determines the chirality of the edge states (i.e., their
propagation direction).

While the quantum Hall effect was the first realization of a Chern insulator phase, the
quantum anomalous Hall effect was first realized in magnetically doped topological insulator
films [176], and more recently in an intrinsic magnetic topological insulator [177] and twisted
bilayer graphene aligned on boron nitride [178]. Furthermore, the photonic analog of the
Chern insulator was first realized at microwave frequencies by applying an external magnetic
field across a gyromagnetic photonic crystal which exploits magneto-optical effects in ferrite
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rods [76]. More recently it has been realized at optical frequencies by applying a magnetic
field across a polariton micropillar lattice which exploits the Zeeman splitting of excitons
[179]. We also note that one can break T symmetry by temporally modulating the system
parameters [180–182], where the effective Floquet Hamiltonian can be characterized by
non-trivial Chern numbers. Using this mechanism the Haldane model has been effectively
emulated in artificial graphene systems including cold atom arrays [183] and photonic
waveguide arrays [184].

2.4.4 Semenoff insulator

A few years before Haldane proposed his model of the Chern insulator, Gordon Semenoff
introduced another type of insulator based on graphene [7]. Specifically, he introduced
staggered on-site energies on the two sublattices as depicted in figure 2.11(a), which breaks
I symmetry while preserving T symmetry. The system is described by the Hamiltonian
HS = H + ∆HS, where H is the Hamiltonian of pristine graphene given by equation (2.10)
and the new term reads

∆HS = EA
∑
RA

a†
RA
aRA

+ EB
∑
RB

b†
RB
bRB

. (2.146)

Here, EA/EB is the on-site energy of the sites located on the A/B sublattice. This model is
naturally realized in hexagonal boron nitride which has the same crystal structure as graphene
but with different atomic species residing on the two sublattices – however, the band gap is
very large and the Dirac-like physics is somewhat washed away. Alternatively, this model can
be realized by fabricating graphene on a boron nitride substrate which presents a sublattice-
specific potential landscape if the crystallographic axes are aligned [35]. Furthermore, similar
physics also emerges in transition metal dichalcogenides although the crystal structure is
somewhat more complicated [185].

We can Fourier transform the Semenoff Hamiltonian to momentum space where the
Bloch Hamiltonian reads HS(q) = H(q) + ∆HS(q). Here H(q) is given by equation (2.14)
and the new term reads

∆HS = E012 +mσz , (2.147)

where the diagonal term is given by the average on-site energy E0 = (EA +EB)/2 which we
will set to zero. The mass term is momentum-independent and given by the difference in
on-site energies

m = 1
2(EA − EB) . (2.148)
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Figure 2.11 | Semenoff insulator. (a) Schematic of the Semenoff model, which is the graphene tight-binding
model with staggered onsite energies EA ̸= EB on the two inequivalent sublattices. (b) Spectrum of the
Semenoff Hamiltonian with m = 0.25t. The staggered onsite energies break I symmetry which gaps out the
Dirac points, giving rise to a bulk insulator at half filling. (c) Corresponding Berry curvature for the valence
band which is an odd function of q by virtue of T symmetry. Consequently, the Chern number vanishes and
thus the Semenoff model represents a trivial insulator. However, for small perturbations, the Berry curvature is
strongly localized near the two valleys which gives rise to non-trivial valley-Chern numbers Cτ

− = τ sgn(m)/2.
Reversing the symmetry-breaking perturbation (m → −m) inverts the sign of the valley-Chern numbers
Cτ

− = −τ sgn(m)/2.

In figure 2.11(b) we show the spectrum on the Semenoff Hamiltonian

Eλ(q) = λ
√

|f(q)| +m2 (2.149)

for m = 0.25t which is fully gapped and therefore corresponds to an insulator at half filling.

In figure 2.11(c) we plot the corresponding Berry curvature for the valence band, which is
an odd function of q by virtue of T symmetry. Consequently, in stark contrast to the Haldane
insulator, this model represents a trivial insulator with a vanishing Chern number. This is
evident if one considers the limit |m| ≫ t where the states are entirely localized on one of
the two sublattices. Therefore, the Semenoff insulator can be adiabatically transformed into
a trivial atomic insulator without closing the gap; but is it really that trivial? The answer is
a definitive no. While the total Berry curvature vanishes, for small perturbations the Berry
curvature is strongly localized near the K/K′ points, which can give rise to very interesting
valley-contrasting physics [33–35, 185–187].

We can capture the essential physics by linearizing the Hamiltonian near the K/K′ points
which read

H+(k) = ℏvFσ · k +m+σz , H−(k) = −ℏvFσ∗ · k +m−σz , (2.150)
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where m+ = m− = m. As expected, the Semenoff fermions are effectively described by a
massive Dirac Hamiltonian with a gapped Dirac cone spectrum

Eλ(k) = λ
√
ℏ2v2

F|k|2 +m2
τ , (2.151)

which is similar to the low-energy spectrum of the Haldane insulator. However, the Semenoff
mass has the same sign in both valleys, and therefore d̂(q) only ever visits the north (south)
pole of the Bloch sphere if m > 0 (m < 0). In other words, it does not wrap the Bloch sphere
and therefore one can define a smooth gauge over the entire Brillouin zone. Consequently,
the Chern number must vanish which can also be seen from equation (2.130) which gives

C− = 1
2
∑

τ

W (τK) sgn[dz(τK)] = 1
2[sgn(m+) − sgn(m−)] = 0 . (2.152)

Using the effective Dirac Hamiltonians in equation (2.150) we can calculate a simple
analytical expression for the effective Berry curvature

F τ
λ (k) = −τλ ℏ2v2

Fm

2(ℏ2v2
F|k|2 +m2)3/2 , (2.153)

which, as expected, has opposite signs in the two valleys. Within the regime of semiclassical
dynamics, the Berry curvature acts as an effective magnetic field in momentum space which
can generate a Lorentz-like force. This drives electrons within different valleys to opposite
transverse edges when subjected to an in-plane electric field, which is the origin of the
valley-Hall effect [33–35, 185–187].

Furthermore, if we integrate the effective Berry curvature for each valley then we obtain
the so-called valley-Chern numbers

Cτ
λ = 1

2π

¨

R2

d2k F τ
λ (k) = −τλ sgn(m)1

2 , (2.154)

which assume half-integer values ±1/2. At first sight, this seems to be in contradiction with
the definition of the Chern number which always assumes an integer value. However, the
integral in equation (2.154) is not over a closed manifold (i.e., the Brillouin zone) but is over
the entire real domain k ∈ R2, and therefore it is not restricted to integer values. Strictly
speaking, the value of ±1/2 is an artefact of the Dirac approximation. For large perturbations
the Berry curvature becomes increasingly dispersed throughout the Brillouin zone and the
contributions from each valley cancel – in the limit |m| ≫ |t| the Berry curvature vanishes.
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Consequently, the valley-Chern numbers are only well defined when the Berry curvature is
localized near the valleys. Furthermore, the sum of the valley-Chern numbers is equal to
the Chern number Cλ = C+

λ + C−
λ = 0 which vanishes, as required by T symmetry. The

question is: do the non-trivial valley-Chern numbers have any physical consequence on the
boundary of the system?

2.4.5 Valley-Hall edge states

While the valley-Chern numbers imply that the geometrical properties of the eigenstates are
non-trivial, they are not topological invariants. However, if one considers a domain wall
between two insulators that have opposite valley-Chern numbers, then one can establish a
new topological invariant and bulk-boundary correspondence: the change in valley-Chern
number across the interface predicts the number of valley-polarized chiral edge states that
populate the interface [36–41]. Since T symmetry is preserved, the valley-Hall edge states
within each valley propagate in opposite directions in analogy with the quantum spin-Hall
insulator [31].

To illustrate this, let us consider a domain wall between two distinct Semenoff insulators
as schematically depicted in figure 2.12(a), where the staggered on-site energies are reversed
across the interface [37]. To highlight the essential physics we will use the same procedure
as outlined in section 2.4.3. In particular, we can model the interface using the effective Dirac
Hamiltonian in equation (2.140), where the spatially-varying mass is now given by

mτ (y) =

+mS, for y < 0

−mS, for y > 0
(2.155)

While the bulk spectrum is identical in both regions, they have opposite valley-Chern numbers
as the mass changes sign across the interface.

As before, we can exploit the translational invariance along the x-direction by writing
the wavefunction as ψτ (r) = ψτ (y)eikxx, where the zero-energy eigenstates with kx = 0
are the solutions to equation (2.142). In order for the wavefunctions to be bounded and
normalizable, they must be eigenstates of σx with eigenvalue sgn(mS). Therefore, after
restoring the parallel wavevector, the envelope wavefunction of the valley-Hall edge states
read

ψτ (r) ∝

 1
sgn(mS)

 e− |mS|
ℏvF

|y|eikxx , (2.156)
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Figure 2.12 | Topological valley-Hall edge states. (a) Schematic of a domain wall interface between two
distinct valley-Hall insulators, where region A is a Semenoff insulator with Cτ

− = τ and region B is a Semenoff
insulator with Cτ

− = −τ . (b) Schematic of the interface spectrum. The bulk spectrum is gapped and identical
in both regions, but each valley exhibits a chiral edge state which traverses the bulk gap and is exponentially
localized at the interface. Since T symmetry is preserved, these valley-Hall edge states propagate in opposite
directions and are robust against backscattering from disorder that does not strongly mix the valleys.

and their spectrum is given by

Eτ (kx) = τ sgn(mS)ℏvFkx . (2.157)

Consequently, each valley supports a chiral edge state which propagate in opposite direc-
tions as schematically depicted in figure 2.12(b) – this is consistent with the bulk-boundary
correspondence since ∆Cτ

− = τ .

It should be stressed that these valley-Hall edge states do not boast the same topological
protection as the chiral edge states associated with the Chern insulator, where the latter
exist along any interface and are protected against backscattering from arbitrary disorder. In
contrast, the valley-Hall edge states are only well defined along certain inclinations where
the valley projections on the edge Brillouin zone are well separated in momentum space.
Moreover, they are only robust against backscattering from disorder that does not strongly
mix the valleys.

To date, these valley-Hall edge states have evaded observation in graphene, but they
have been experimentally observed in bilayer graphene [42, 43]. Moreover since the valley-
Hall insulator phase can easily be induced by breaking simple lattice symmetries, it has
been successfully realized in a wide variety of photonic systems across the electromagnetic
spectrum [83–92] and in many other artificial lattices [188–192]. The major advantage of
these systems is that one does not require magnetic fields or external driving to break T
symmetry, which is a strict requirement for the Chern insulator.
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2.5 Conclusion
In this introductory chapter we have provided a brief overview of some of the most interesting
aspects of graphene-related physics. In particular, we have shown that the low-energy
quasiparticles are effectively described by a massless Dirac Hamiltonian, and thus exhibit
pseudo-relativistic phenomena such as Klein tunnelling. We have demonstrated that the Dirac
points are locally stabilized by the presence of T and I symmetry, while the C3 symmetry
of the honeycomb lattice pins them to the high-symmetry points. Furthermore, we have
highlighted that interesting physics can emerge by systematically breaking these symmetries.
In particular, straining the lattice breaks the C3 symmetry which gives rise to a pseudo-vector
potential in the Hamiltonian, which can be engineered to generate a pseudo-magnetic field.
Moreover, applying large uniform strain can induce the merging and annihilation of the Dirac
points, resulting in a transition from a semi-metal phase to a trivial insulator phase. Finally,
we have shown that breaking T and I symmetry gaps out the Dirac cones which gives rise to
interesting insulators with non-trivial geometrical and topological properties. The former
results in a Chern insulator which supports unidirectional chiral edge states, while the latter
results in a valley-Hall insulator which supports counter-propagating valley-Hall edge states
along certain domain wall interfaces.





3
Light-matter interactions inside a cavity
waveguide

M ETAMATERIALS have transformed our ability to manipulate waves. By
engineering the way light interacts with matter on a subwavelength scale
one can control light in ways that are impossible to achieve with natural

materials. Taking inspiration from graphene physics, in the following chapters we will
explore a range of interesting phenomena that can emerge in 2D hexagonal metasur-
faces composed of a subwavelength arrays dipoles embedded inside a cavity waveguide.
In this chapter we will build the theoretical foundations that will be used as the start-
ing point throughout the rest of the thesis. Specifically, we will develop a self-consistent
coupled-dipole theory using a Green’s function formalism, which can describe the col-
lective dynamics of dipoles embedded inside a cavity waveguide. Using a simple square
metasurface as a concrete example, we will demonstrate how this theory can be used to
derive the dispersion of the cavity polaritons supported by a periodic array of dipoles.
Furthermore, we will highlight how one can modify the nature of the dipole-dipole in-
teractions, and thus the properties of the polaritons, by varying only the cavity width.
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3.1 Introduction

The radiative properties of emitters and antennas are not fixed characteristics that are de-
termined solely by their intrinsic structure; they are also inextricably linked to the local
photonic environment in which they are embedded. Probably the most well known example
is the Purcell effect [94], where spontaneous emission rates can be enhanced or inhibited by
placing an emitter within a structured photonic environment, e.g., above a mirror [193–196],
inside a cavity [95–99] or inside a photonic crystal [197–201]. Moreover, their properties
can be drastically altered when other emitters/antennas are within close proximity due to
collective interactions which lead to frequency shifts and modified decay rates [202–207].
Even richer scenarios can emerge in ordered 1D arrays and 2D metasurfaces, which have
been extensively explored in classical systems [208–216] and more recently in the quantum
domain [217–226]. In particular, for subwavelength arrays, the collective interactions result
in subradiant polariton excitations that are decoupled from free space photons and can thus
be exploited for guiding electromagnetic energy.

It is evident that the properties of these hybrid polaritons can be tailored by modifying the
underlying geometry of the lattice. Therefore, taking inspiration from the physics of graphene,
in the following chapters we will consider 2D hexagonal metasurfaces which endow the
polaritons with Dirac-like properties. However, the local photonic environment also plays a
fundamental role since it determines the availability and properties of the photonic modes
that mediate interactions between the emitters [227–232].

To illustrate this, consider the special case where there are no resonant photonic modes
that the emitter can couple to (e.g., deep inside the band gap of a photonic crystal). Here
the electromagnetic field would decay evanescently from the emitter; only in this special
case would a lattice of emitters essentially emulate tight-binding physics. However, in the
general case, there are many resonant photonic modes available (e.g., in free space) and the
coherent dipole-dipole interactions become long-range and oscillate with separation distance
– the interaction strength does not simply decrease monotonically with separation distance.
Therefore, the intuition acquired from tight-binding models tends to break down as one
typically needs to include all the interactions between all pairs of emitters to capture the
essential physics.

Exploiting this unique property of the emitters, we will consider a scenario where the
metasurfaces are embedded inside a cavity waveguide comprised of two perfect mirrors.
Moreover, we focus solely on the transverse polaritons where the dipole moments are
oriented normal to the plane of the lattice; for this case, there always exists resonant cavity
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modes that the dipoles can couple to. For relatively large cavity widths the properties
of the Dirac polaritons are dominated by the near-field Coulomb interactions due to the
subwavelength spacing of the metasurfaces. However, as the cavity width is reduced, the
Coulomb interactions become suppressed due to the screening effect of the cavity waveguide.
In stark contrast, the long-range photon-mediated interactions become increasingly dominant
as the light-matter interaction strength is increased. Using this mechanism to modify the
dipolar coupling, we will unveil a range of interesting phenomena that are impossible to
achieve in photonic systems that emulate the tight-binding physics of graphene.

In this chapter we will lay the theoretical foundations that will be used as a starting point
throughout the rest of this thesis. We will not specialize to any particular system as we are
interested in the general physics that could potentially be realized in a variety of experimental
set-ups across the electromagnetic spectrum. These could range from classical metasurfaces
composed of microwave antennas to quantum metasurfaces composed of atom-like emitters –
though our classical analysis will only be applicable in the single-excitation subspace [233].
We begin by deriving the longitudinal and transverse components of the cavity Green’s
function which encode the Coulomb and photon-mediated interactions, respectively. Using
the cavity Green’s function, we will then develop a self-consistent coupled-dipole theory that
enables one to describe the collective dynamics of an array of dipoles embedded inside a
cavity waveguide and calculate the dispersion of the cavity polaritons.

3.2 Maxwell’s equations in the Coulomb gauge

In the frequency domain, Maxwell’s equations read [234]

∇ · E(r, ω) = 1
ϵ0
ρ(r, ω) , (3.1)

∇ · B(r, ω) = 0 , (3.2)

∇ × E(r, ω) = iωB(r, ω) , (3.3)

∇ × B(r, ω) = −iµ0ϵ0ωE(r, ω) + µ0J(r, ω) , (3.4)

where E(r, ω) is the electric field, B(r, ω) is the magnetic field, ρ(r, ω) is the charge density,
J(r, ω) is the current density, ϵ0 is the permittivity of free space, and µ0 is the permeability
of free space. We can automatically satisfy the homogeneous Maxwell’s equations by
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expressing the electric and magnetic fields as

E(r, ω) = iωA(r, ω) − ∇ϕ(r, ω) , B(r, ω) = ∇ × A(r, ω) , (3.5)

where we have introduced two auxiliary fields; the scalar potential ϕ(r, ω) and the vector
potential A(r, ω). However, the choice of potentials is not unique since the electric and
magnetic fields (and therefore Maxwell’s equations) are manifestly invariant under the
following gauge transformation

A(r, ω) → A′(r, ω) = A(r, ω) + ∇χ(r, ω)

ϕ(r, ω) → ϕ′(r, ω) = ϕ(r, ω) + iωχ(r, ω)
(3.6)

where χ(r, ω) is an arbitrary scalar field [235]. In what follows, we will remove this
redundancy by choosing a gauge that is useful for describing the metasurfaces.

According to the Helmholtz theorem, we may decompose the electric field as

E(r, ω) = E∥(r, ω) + E⊥(r, ω) , (3.7)

where E∥(r, ω) is the longitudinal (irrotational) component and E⊥(r, ω) is the transverse
(solenoidal) component which satisfy the following conditions

∇ × E∥(r, ω) = 0 , ∇ · E⊥(r, ω) = 0 . (3.8)

In contrast, the magnetic field is a purely transverse field since its divergence vanishes
according to equation (3.2). Moreover, it is evident from equation (3.6) that the transverse
component of the vector potential A⊥(r, ω) is a gauge invariant quantity; therefore, the
gauge transformation amounts to a redistribution of the longitudinal electric field between
the scalar and vector potentials.

In what follows we will work in the Coulomb gauge where the vector potential is chosen
to be a purely transverse field whose divergence is zero

∇ · A(r, ω) = 0 , A(r, ω) = A⊥(r, ω) . (3.9)

The advantage of the Coulomb gauge is that it separates the static and dynamical aspects of a
system [236], where the longitudinal component of the electric field is entirely described by
the scalar potential

E∥(r, ω) = −∇ϕ(r, ω) , (3.10)



Maxwell’s equations in the Coulomb gauge 67

while the transverse component is entirely described by the vector potential

E⊥(r, ω) = iωA(r, ω) . (3.11)

If we substitute equation (3.10) into equation (3.1) then we find that the scalar potential
satisfies Poisson’s equation

∇2ϕ(r, ω) = − 1
ϵ0
ρ(r, ω) , (3.12)

and thus corresponds to the Coulomb potential generated by an instantaneous charge distri-
bution. Furthermore, if we substitute equation (3.4) into the curl of equation (3.3), then from
equation (3.11) we find that the vector potential satisfies the following equation

∇2A(r, ω) + k2
ωA(r, ω) = −iϵ0µ0ω∇ϕ(r, ω) − µ0J(r, ω) , (3.13)

where we have defined kω = ω/c. Given that the vector potential is a purely transverse field
in the Coulomb gauge, the right hand side of equation (3.13) ought to be transverse as well.
To see this, we can substitute equation (3.1) into the divergence of equation (3.4) to obtain
the continuity equation

iωρ(r, ω) = ∇ · J∥(r, ω) . (3.14)

Finally, using equation (3.10) we can eliminate the longitudinal components on the right
hand side of equation (3.13) to obtain

∇2A(r, ω) + k2
ωA(r, ω) = −µ0J⊥(r, ω) , (3.15)

where the source is just the transverse component of the current density [235].

Since the scalar potential responds instantaneously to changes in the charge distribution,
we can infer from equation (3.10) that the longitudinal electric field propagates with infinite
speed which, at first glance, appears to violate causality – however, it must be stressed that
only the total electric field has any physical meaning. It can be shown that the vector potential,
and therefore the transverse electric field, also has a non-retarded component which conspires
to exactly cancel the non-retarded contribution from the scalar potential, yielding a fully
retarded and causal electric field [237].
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3.3 Dyadic Green’s function for a cavity waveguide

The total electric field generated by an arbitrary current source can be expressed in terms of
an integral equation

E(r, ω) = − 1
iϵ0ωV

˚

V

d3r′ ↔
G(r, r′, ω) · J(r′, ω) , (3.16)

where the integration volume V encloses the source and
↔
G(r, r′, ω) is the dyadic Green’s

function [238]. Note, in equation (3.16) we have introduced the factor V which has units
of volume in order to render the Green’s function dimensionless – its explicit form will be
conveniently chosen later to simplify equations. If we specialize to the case of a point dipole
source located at r0 whose current density is

J(r, ω) = −iωp(ω)δ(r − r0) , (3.17)

where p(ω) is the corresponding dipole moment and δ(r − r0) is the Dirac delta function,
then equation (3.16) gives

E(r, ω) = 1
ϵ0V

↔
G(r, r0, ω) · p(ω) . (3.18)

Thus we have arrived at a transparent, physical interpretation of the Green’s function:
n̂1 ·

↔
G(r, r′, ω) · n̂2 describes the electric field at r along the n̂1 direction which is generated

by a point dipole source located at r′ whose dipole moment is oriented in the n̂2 direction
[238].

Clearly, the Green’s function depends sensitively on the local electromagnetic environ-
ment and the corresponding boundary conditions. Throughout this thesis we will be studying
the collective dynamics of dipoles which are embedded inside a cavity waveguide of width L.
For simplicity, we assume that the cavity waveguide is formed by two perfect mirrors located
at z = ±L/2, where the electric field satisfies the boundary conditions

ẑ × E(r, ω)
∣∣∣∣∣
z=± L

2

= 0 . (3.19)
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It will be convenient to decompose the Green’s function into its longitudinal and transverse
components

↔
G(r, r′, ω) =

↔
G∥(r, r′) +

↔
G⊥(r, r′, ω) , (3.20)

where the longitudinal Green’s function describes the longitudinal electric field via the
integral relation

E∥(r, ω) = − 1
iϵ0ωV

˚

V

d3r′ ↔
G∥(r, r′) · J(r′, ω) , (3.21)

and the transverse Green’s function describes the transverse electric field via the integral
relation

E⊥(r, ω) = − 1
iϵ0ωV

˚

V

d3r′ ↔
G⊥(r, r′, ω) · J(r′, ω) . (3.22)

For the special case of a point dipole source located at r0, equation (3.21) and equation (3.22)
simplify to

E∥(r, ω) = 1
ϵ0V

↔
G∥(r, r0) · p(ω) , E⊥(r, ω) = 1

ϵ0V
↔
G⊥(r, r0, ω) · p(ω) . (3.23)

In the next sections we will derive the longitudinal and transverse components of the cavity
Green’s function via the scalar and vector potential, respectively.

3.3.1 Eigenfunction expansion of the longitudinal Green’s function

We will begin by deriving the longitudinal component of the cavity Green’s function using
the scalar potential which, in the Coulomb gauge, satisfies Poisson’s equation

∇2ϕ(r, ω) = − 1
ϵ0
ρ(r, ω) , ϕ(r, ω)

∣∣∣∣∣
z=± L

2

= 0 , (3.24)

and is subject to homogeneous Dirichlet boundary conditions on the cavity walls. To
solve equation (3.24) we can introduce the scalar Green’s function Gϕ(r, r′) which satisfies
Poisson’s equation with a Dirac delta function source

∇2Gϕ(r, r′) = −δ(r − r′) , Gϕ(r, r′)
∣∣∣∣∣
z=± L

2

= 0 , (3.25)
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and is subject to the same boundary conditions as the scalar potential. Using the scalar
Green’s function we can calculate the scalar potential generated by an arbitrary charge
distribution via the following integral relation

ϕ(r, ω) = 1
ϵ0

˚

V

d3r′ Gϕ(r, r′)ρ(r′, ω) . (3.26)

If we substitute equation (3.14) into equation (3.26) and integrate by parts, then we can
use equation (3.10) to write the longitudinal electric field as in equation (3.21) where the
longitudinal Green’s function is given by

↔
G∥(r, r′) = −V∇∇′Gϕ(r, r′) . (3.27)

Here the gradient operator ∇′ operates on the source coordinates r′, and ∇∇′ is the dyadic
product of the operators which explicitly reads

∇∇′ =


∂

∂x
∂

∂x′
∂

∂x
∂

∂y′
∂

∂x
∂

∂z′

∂
∂y

∂
∂x′

∂
∂y

∂
∂y′

∂
∂y

∂
∂z′

∂
∂z

∂
∂x′

∂
∂z

∂
∂y′

∂
∂z

∂
∂z′

 . (3.28)

Our task is then to find the scalar Green’s function for the cavity waveguide which we will
do using the eigenfunction expansion technique that is outlined in many textbooks [239, 240].
First, we introduce the scalar functions fκ(r) which satisfy the scalar Helmholtz equation

(∇2 + κ2)fκ(r) = 0 , fκ(r)
∣∣∣∣∣
z=± L

2

= 0 , (3.29)

and are subject to the same boundary conditions as the scalar Green’s function. Using the
separation of variables method one finds

fκ(r) = sin(kmz̃)eik·ρ , (3.30)

with κ2 = k2 + k2
m. Here km = mπ/L is quantized due to the boundary conditions where

m ∈ N is a positive integer, and k = [ kx , ky ] is the in-plane wavevector where kx and
ky takes continuous values due to the translational invariance in the xy-plane. Note, in
equation (3.30) the subscript κ should be understood as labelling distinct combinations of the
parameters {k, km}. Note, we have also decomposed the position vector as r = ρ+zẑ where
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ρ = [ x , y ] is the in-plane position vector, and we have introduced the shifted coordinate
z̃ = z + L/2 for convenience.

Since the Laplacian is a Hermitian operator, the eigenfunctions in equation (3.30) form
a complete orthogonal basis for a general scalar field that is subject to the same boundary
conditions. The orthogonality and normalization condition reads

∞̈

−∞

d2ρ

L/2ˆ

−L/2

dz fκ(r)f ∗
κ′(r) = (2π)2L

2 δ(k − k′)δmm′ , (3.31)

where δmm′ is the Kronecker delta function. Moreover, we can expand the Dirac delta
function as

δ(r − r′) = 2
L

∞∑
m=1

sin(kmz̃) sin(kmz̃
′)

∞̈

−∞

d2k
(2π)2 eik·(ρ−ρ′) , (3.32)

which is the so-called completeness or closure relation. In order to find an expression for the
scalar Green’s function we can expand it in terms of the eigenfunctions

Gϕ(r, r′) = 2
L

∞∑
m=1

sin(kmz̃) sin(kmz̃
′)

∞̈

−∞

d2k
(2π)2aκeik·(ρ−ρ′) , (3.33)

where the unknown coefficients aκ can be found by substituting equation (3.32) and equa-
tion (3.33) into equation (3.25), which yields

aκ = 1
k2 + k2

m

. (3.34)

Therefore, the eigenfunction expansion of the scalar Green’s function reads

Gϕ(r, r′) = 2
L

∞∑
m=1

sin(kmz̃) sin(kmz̃
′)

∞̈

−∞

d2k
(2π)2

eik·(ρ−ρ′)

k2 + k2
m

. (3.35)

The final task is to evaluate the integral in equation (3.35) in order to obtain a closed form
expression for each term in the sum. To achieve this, we convert the integral over k into polar
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coordinates and choose ρ − ρ′ to be aligned parallel with the ϕk = 0 axis

Gϕ(r, r′) = 2
L

∞∑
m=1

sin(kmz̃) sin(kmz̃
′)

∞̂

0

dk
2πk

2πˆ

0

dϕk

2π
eik cos ϕk|ρ−ρ′|

k2 + k2
m

. (3.36)

We can then decompose the plane waves into Bessel functions of the first kind Jn using the
Jacobi-Anger identity

eik cos ϕk|ρ−ρ′| =
∞∑

n=−∞
inJn(k|ρ − ρ′|)einϕk , (3.37)

and after performing the integration over the angular variable we obtain

Gϕ(r, r′) = 2
L

∞∑
m=1

sin(kmz̃) sin(kmz̃
′)

∞̂

0

dk
2π

kJ0(k|ρ − ρ′|)
k2 + k2

m

, (3.38)

since only the n = 0 term survives.

To calculate the integral in equation (3.38), we can consider the following auxiliary
complex integral

I =
˛

Γ

dk
2π

kH
(1)
0 (k|ρ − ρ′|)
k2 + k2

m

, (3.39)

where H(1)
0 is the Hankel function of first kind and zeroth order. Here, Γ is the (infinite)

semi-circle contour in the upper-half complex plane which is indented at the origin to avoid
the logarithmic singularity. Using the residue theorem one can evaluate equation (3.39)
by simply calculating the residue of the pole located along the positive imaginary axis at
k = ikm. This gives

I = 1
π
K(km|ρ − ρ′|) , (3.40)

where we have used the relation H(1)
0 (ix) = −i(2/π)K0(x) with K0 being the modified

Bessel function of first kind and zeroth order [241].

Furthermore, since the asymptotic behaviour of the Hankel function is [241]

H
(1)
0 (z) ∼

√
2
πz

ei(z−π/4) , −π < arg(z) ≤ 2π , (3.41)

the outer semi-circle contribution vanishes by Jordan’s lemma, and the small semi-circle
contour used to avoid the logarithmic singularity also vanishes. Therefore, we can use the
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following analytic continuation property [241]

H
(1)
0 (eiπz) = −H(2)

0 (z) , (3.42)

where H(2)
0 is the Hankel function of second kind and zeroth order, and the following relation

J0(x) = 1
2
[
H

(1)
0 (x) +H

(2)
0 (x)

]
, (3.43)

to show that equation (3.38) is equal to

Gϕ(r, r′) = 1
πL

∞∑
m=1

sin(kmz̃) sin(kmz̃
′)K0 (km|ρ − ρ′|) . (3.44)

Finally, from equation (3.27) we obtain the following representation of the longitudinal
Green’s function

↔
G∥(r, r′) = − V

πL

∞∑
m=1

∇∇′ sin(kmz̃) sin(kmz̃
′)K0 (km|ρ − ρ′|) , (3.45)

which describes the longitudinal electric field generated by a point dipole source inside a
cavity waveguide.

3.3.2 Eigenfunction expansion of the transverse Green’s function

To derive the transverse component of the cavity Green’s function we will use the vector
potential which, in the Coulomb gauge, satisfies the inhomogeneous vector Helmholtz
equation

(∇2 + k2
ω)A(r, ω) = −µ0J⊥(r, ω) , ẑ × A(r, ω)

∣∣∣∣∣
z=± L

2

= 0 , (3.46)

and is subject to homogeneous Dirichlet boundary conditions on the cavity walls. To solve
equation (3.46), we introduce the vector potential Green’s function

↔
GA(r, r′, ω) which is the

solution to the inhomogeneous Helmholtz equation

(∇2 + k2
ω)

↔
GA(r, r′, ω) = −

↔
δ⊥(r − r′) , ẑ ×

↔
GA(r, r′, ω)

∣∣∣∣∣
z=± L

2

= 0 , (3.47)

and is subject to the same boundary conditions as the vector potential. Because the vector
potential is transverse, the source on the right hand side of equation (3.47) is the transverse
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delta function dyadic which has the following property

E⊥(r, ω) =
˚

d3r′
↔
δ⊥(r − r′) · E(r′, ω) , (3.48)

where only the transverse component of the field survives the integration [242]. Using the
Green’s function we can calculate the vector potential generated by an arbitrary current
source via the following integral relation

A(r, ω) = µ0

˚

V

d3r′ ↔
GA(r, r′, ω) · J(r′, ω) . (3.49)

From equation (3.11) we can see that the transverse electric field can be written as equa-
tion (3.22) where the transverse Green’s function is given by

↔
G⊥(r, r′, ω) = Vk2

ω

↔
GA(r, r′, ω) . (3.50)

To find the eigenfunction expansion of the vector potential Green’s function we introduce
two sets of vector eigenfunctions, ETE

κ (r) and ETM
κ (r), which are transverse solutions to the

vector Helmholtz equation

(∇ × ∇ × −κ2)

ETE
κ (r)

ETM
κ (r)

= 0 , ẑ ×

ETE
κ (r)

ETM
κ (r)

∣∣∣∣∣∣
z=± L

2

= 0 , (3.51)

and are subject to the same boundary conditions as the Green’s function. Note, we use the
superscript labels TE and TM due to the nature of these eigenfunctions, which will turn out
to be the usual transverse electric (TE) and transverse magnetic (TM) modes of a cavity
waveguide. We can write these vector eigenfunctions in a manifestly transverse form

ETE
κ (r) = ∇ ×

[
fTE

κ (r)ẑ
]
, ETM

κ (r) = 1
κ

∇ × ∇ ×
[
fTM

κ (r)ẑ
]
, (3.52)

where fTE
κ and fTM

κ are the scalar generator functions that satisfy a simpler scalar Helmholtz
equation

(∇2 + κ2)

 f
TE
κ (r)
fTM

κ (r)
= 0 ,

fTE
κ (r)

∂
∂z
fTM

κ (r)

∣∣∣∣∣∣
z=± L

2

= 0 . (3.53)

Note, in order for the vector eigenfunctions to satisfy the correct boundary conditions, the
scalar generator functions must satisfy different boundary conditions; fTE

κ (r) and fTM
κ (r)
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satisfy homogeneous Dirichlet and Neumann boundary conditions, respectively. After using
the separation of variables method and imposing the boundary conditions one obtains the
following scalar generating functions

fTE
κ (r) = sin(kmz̃)eik·ρ , fTM

κ (r) = cos(kmz̃)eik·ρ , (3.54)

where the parameters are the same as in equation (3.30). However, we must include m = 0
for the TM eigenfunction as it corresponds to the fundamental transverse electromagnetic
(TEM) mode of the cavity waveguide.

If we substitute equation (3.54) into equation (3.52) then we find the following explicit
expressions for the transverse vector eigenfunctions (after multiplying by a constant)

ETE
κ (r) = eik·ρ


ky sin(kmz̃)

−kx sin(kmz̃)
0

 , ETM
κ (r) = 1

κ
eik·ρ


kxkm sin(kmz̃)
kykm sin(kmz̃)
ik2 cos(kmz̃)

 , (3.55)

whose TE and TM nature is now evident. The TE and TM eigenfunctions are manifestly
orthogonal to one another

∞̈

−∞

d2ρ

L/2ˆ

−L/2

dz ETE
κ (r) · ETM∗

κ′ (r) = 0 , (3.56)

since ETE
κ (r) · ETM∗

κ′ (r) = 0. Moreover, the TE eigenfunctions satisfy the orthogonality
relations

∞̈

−∞

d2ρ

L/2ˆ

−L/2

dz ETE
κ (r) · ETE∗

κ′ (r) = (2π)2L

2 k
2δ(k − k′)δmm′ , (3.57)

while the TM eigenfunctions satisfy the orthogonality relations

∞̈

−∞

d2ρ

L/2ˆ

−L/2

dz ETM
κ (r) · ETM∗

κ′ (r) = (2π)2 L

Nm

k2δ(k − k′)δmm′ , (3.58)

where Nm = 2 − δm0. These eigenfunctions form a complete orthogonal basis for transverse
vector fields that are subject to the same boundary conditions, which allows us to expand the
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transverse delta function as

↔
δ⊥(r − r′) =

∞∑
m=0

Nm

L

∞̈

−∞

d2k
(2π)2

[
1
k2 ETE

κ (r)ETE∗
κ (r′) + 1

k2 ETM
κ (r)ETM∗

κ (r′)
]
, (3.59)

which is the corresponding completeness relation. In equation (3.59), the dyad formed by the
TE vector eigenfunctions reads

ETE
κ (r)ETE∗

κ (r′) = eik·(ρ−ρ′)


k2

ySS
′ −kxkySS

′ 0
−kxkySS

′ k2
xSS

′ 0
0 0 0

 , (3.60)

while the dyad formed by the TM vector eigenfunctions is given by

ETM
κ (r)ETM∗

κ (r′) = 1
κ2 eik·(ρ−ρ′)


k2

xk
2
mSS

′ kxkyk
2
mSS

′ −ikxkmk
2C ′S

kxkyk
2
mSS

′ k2
yk

2
mSS

′ −ikykmk
2C ′S

ikxkmk
2CS ′ ikykmk

2CS ′ k4CC ′

 . (3.61)

For brevity we have introduced the shorthand notation C = cos(kmz̃), S = sin(kmz̃),
C ′ = cos(kmz̃

′), and S ′ = sin(kmz̃
′).

Similarly, we can expand the vector potential Green’s function in terms of the transverse
eigenfunctions

↔
GA(r, r′, ω) =

∞∑
m=0

Nm

L

∞̈

−∞

d2k
(2π)2

[
aTE

κ

k2 ETE
κ (r)ETE∗

κ (r′) + aTM
κ

k2 ETM
κ (r)ETM∗

κ (r′)
]
, (3.62)

where the unknown coefficients aTE/TM
κ can be found by substituting equation (3.62) and

equation (3.59) into equation (3.47), which yields

aTE
κ = aTM

κ = 1
κ2 − k2

ω

. (3.63)

Therefore, the eigenfunction expansion of the vector potential Green’s function reads

↔
GA(r, r′, ω) =

∞∑
m=0

Nm

L

∞̈

−∞

d2k
(2π)2

[
ETE

κ (r)ETE∗
κ (r′)

k2(κ2 − k2
ω) + ETM

κ (r)ETM∗
κ (r′)

k2(κ2 − k2
ω)

]
, (3.64)

which will be useful when we discuss periodic arrays of dipoles in the following sections.
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Our final task is to evaluate the integrals in equation (3.64) to have a closed form ex-
pression for each term in the sum. If we combine the dyadics in equation (3.60) and equa-
tion (3.61) then we can re-express equation (3.64) as

↔
GA(r, r′, ω) =

∞∑
m=0

Nm

L

∞̈

−∞

d2k
(2π)2

(↔
I + 1

κ2 ∇∇
) eik·(ρ−ρ′)

κ2 − k2
ω

↔
Cm(z, z′) , (3.65)

where
↔
I is the unit dyadic and we have introduced the diagonal dyadic

↔
Cm(z, z′) =


SS ′ 0 0
0 SS ′ 0
0 0 CC ′

 . (3.66)

It is convenient to split the Green’s function into two parts

↔
GA(r, r′, ω) =

↔
G(1)

A (r, r′, ω) +
↔
G(2)

A (r, r′, ω) , (3.67)

where the first part reads

↔
G(1)

A (r, r′, ω) =
∞∑

m=0

Nm

L

(
↔
I + 1

k2
ω

∇∇
) ∞̈

−∞

d2k
(2π)2

eik·(ρ−ρ′)

k2 + k2
m − k2

ω − i0+

↔
Cm(z, z′) .

(3.68)
Here we have included an infinitesimal imaginary component in the denominator of the
integrand in order to shift the pole off the real axis when km < kω – this prescription ensures
that we have outward propagating waves from the source. We can perform this integral using
the same method that we outlined in section 3.3.1, from which we obtain

↔
G(1)

A (r, r′, ω) = i
∞∑

m=0

Nm

4L

(
↔
I + 1

k2
ω

∇∇
)
H

(1)
0

(√
k2

ω − k2
m|ρ − ρ′|

) ↔
Cm(z, z′) . (3.69)

The second part in equation (3.67) reads

↔
G(2)

A (r, r′, ω) = − 1
k2

ω

∞∑
m=0

Nm

L
∇∇

∞̈

−∞

d2k
(2π)2

eik·(ρ−ρ′)

k2 + k2
m

↔
Cm(z, z′) , (3.70)
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and after performing the integral using the method outlined in section 3.3.1 we obtain

↔
G(2)

A (r, r′, ω) = − 1
k2

ω

∞∑
m=0

Nm

πL
∇∇ K0(km|ρ − ρ′|)

↔
Cm(z, z′) . (3.71)

Finally, combining equation (3.69) and equation (3.71) and using equation (3.50) we obtain
the transverse Green’s function

↔
G⊥(r, r′, ω) = i V

4L

∞∑
m=0

Nm

(
k2

ω

↔
I + ∇∇

)
H

(1)
0

(√
k2

ω − k2
m|ρ − ρ′|

) ↔
Cm(z, z′)

− V
πL

∞∑
m=0

∇∇K0 (km|ρ − ρ′|)
↔
Cm(z, z′) ,

(3.72)

which describes the transverse electric field generated by a point dipole source inside a cavity
waveguide.

3.3.3 Total Green’s function

The total Green’s function for the cavity waveguide is equal to the sum of the longitudinal and
transverse components given by equation (3.45) and equation (3.72), respectively. Moreover,
it is simple to show that

∞∑
m=0

∇∇K0 (km|ρ − ρ′|)
↔
Cm(z, z′) = −

∞∑
m=1

∇∇′ sin(kmz̃) sin(kmz̃
′)K0 (km|ρ − ρ′|) ,

(3.73)
since the m = 0 term vanishes and we can remove the need for

↔
Cm(z, z′) by switching

one of the gradient operators to operate on the source coordinates rather than the field
coordinates. Therefore, the instantaneous contribution from the longitudinal Green’s function
is completely cancelled by the non-retarded contribution in the transverse Green’s function.
This leads to a fully retarded and causal Green’s function for the cavity waveguide which
reads

↔
G(r, r′, ω) = i V

4L

∞∑
m=0

Nm

(
k2

ω

↔
I + ∇∇

)
H

(1)
0

(√
k2

ω − k2
m|ρ − ρ′|

) ↔
Cm(z, z′) . (3.74)

3.3.4 Image expansion of the Green’s function

The representation of the cavity Green’s function in equation (3.74) converges very slowly
near the source when |ρ−ρ′| ≪ L. Moreover, it does not permit an easy decomposition into
the primary field emitted by a dipole and the secondary field scattered from the boundary,
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Figure 3.1 | Method of images. (a) To calculate the field generated by a point dipole source (red) located at a
position z′ above a perfect mirror at z = 0, one can effectively replace the mirror with an image dipole (blue)
located outside the region of interest at position −z′. Note, the orientation of the image dipole is inverted in the
xy-plane to ensure that the correct boundary conditions are satisfied. (b) To calculate the field generated by a
point dipole source located inside a cavity waveguide of width L, one can effectively replace the two mirrors at
z = ±L/2 with two infinite series of image dipoles located outside the cavity at positions r′ − Rl (red) and
r′ + (L− 2z′)ẑ − Rl (blue), where Rl = 2lLẑ and l is an integer. Therefore, both sets of image dipoles have
a period of 2L, and their different orientations are related by inversion in the xy-plane.

which will be important when we discuss how the cavity modifies the polarizability of the
dipoles. Therefore, in this section we will derive an alternative representation of the cavity
Green’s function via the image expansion method [239].

Let us first consider the simpler case of a single perfect mirror placed at z = 0, where a
dipole is located above the mirror at r′ = ρ′ + z′ẑ as schematically depicted in figure 3.1(a).
We can decompose the Green’s function as

↔
G(r, r′, ω) =

↔
G0(r, r′, ω) +

↔
Gscat(r, r′, ω) , (3.75)

where the primary field is described by the free space Green’s function which has the familiar
closed form representation [238]

↔
G0(r, r′, ω) = V

(
k2

ω

↔
I + ∇∇

) eikω |r−r′|

4π|r − r′|
, (3.76)

and
↔
Gscat(r, r′, ω) describes the secondary field that is scattered from the boundary. Using

the method of images [239], the boundary can be effectively replaced by an image dipole
located outside the region of interest at position r′ − 2z′ẑ as depicted in figure 3.1(a). The
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Green’s function can then be written as the superposition of the two fields generated by the
physical dipole and the image dipole which reads

↔
G(r, r′, ω) =

↔
G0(r, r′, ω) +

↔
G0(r, r′ − 2z′ẑ, ω) ·

↔
I xy . (3.77)

In equation (3.77) we have introduced the dyadic

↔
I xy =


−1 0 0
0 −1 0
0 0 1

 , (3.78)

which is crucial to ensure the following boundary conditions are satisfied

ẑ ×
↔
G(r, r′, ω)

∣∣∣∣∣
z=0

= 0 . (3.79)

This requirement means that the orientation of the image dipole is related to the physical
dipole by inversion in the xy-plane as shown in figure 3.1(a).

Now let us consider the cavity waveguide which is formed by two perfect mirrors placed
at z = ±L/2 as schematically depicted in figure 3.1(b). To obtain

↔
Gscat(r, r′, ω), we can

use the method of images in a stepwise fashion by disregarding each mirror in turn [239].
This procedure results in two infinite series of image dipoles located outside the cavity at
positions r′ − Rl and r′ + (L− 2z′)ẑ − Rl, as shown in figure 3.1(b), where Rl = 2lLẑ and
l ∈ Z is an integer. Importantly, in order to satisfy the boundary conditions

ẑ ×
↔
G(r, r′, ω)

∣∣∣∣∣
z=±L/2

= 0 , (3.80)

the orientation of the two sets of image dipoles are related by inversion in the xy-plane.
Therefore, the image expansion of the cavity Green’s function reads

↔
G(r, r′, ω) =

↔
G1D(r, r′, ω) +

↔
G1D(r, r′ + (L− 2z′)ẑ, ω) ·

↔
I xy , (3.81)

where
↔
G1D(r, r′, ω) is the Green’s function for a 1D array of in-phase dipoles with a period

of 2L, which is given by

↔
G1D(r, r′, ω) = V

4π

∞∑
l=−∞

(
k2

ω

↔
I + ∇∇

) eikω |r−r′+Rl|

|r − r′ + Rl|
. (3.82)
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In appendix B.1 we show that this image expansion representation of the cavity Green’s
function is equivalent to the representation in equation (3.74) which was derived using the
eigenfunction expansion method.

3.4 Metasurfaces embedded inside a cavity waveguide

Throughout this thesis we will be exploring interesting phenomena that emerge in meta-
surfaces composed of 2D subwavelength arrays of dipoles. While metamaterials have
traditionally been described by integrating out the matter degrees of freedom and encoding
their response in terms of a homogenized effective permittivity and permeability, here we
take a different approach. Instead, we choose to integrate out the photonic degrees of freedom
and encode their response in terms of the cavity Green’s function that we derived in the
previous sections. In what follows we will develop a self-consistent coupled-dipole theory
that describes the collective dynamics of the dipoles inside a cavity waveguide. For the
sake of concreteness, we will present this theory using the simplest possible metasurface – a
square Bravais lattice of dipoles.

3.4.1 Minimal model of a square metasurface

In figure 3.2(a) we schematically depict a square metasurface embedded inside a cavity
waveguide. The metasurface is composed of a square Bravais lattice of dipoles located at
periodic positions given by the set of lattice vectors R = l1a1 + l2a2, where l1, l2 ∈ Z are
integers, and

a1 = a
[

1 , 0
]
, a2 = a

[
0 , 1

]
, (3.83)

are the primitive lattice vectors. Each unit cell contains a single dipole as shown in fig-
ure 3.2(b). The corresponding reciprocal lattice vectors are g = n1b1 + n2b2, where
n1, n2 ∈ Z are integers, and

b1 = π

a

[
1 , 0

]
, b2 = π

a

[
0 , 1

]
, (3.84)

are the primitive reciprocal lattice vectors that define the Brillouin zone shown in figure 3.2(c).
Furthermore, we assume a subwavelength nearest-neighbour separation a ≪ λ0, where λ0 is
the free space resonant wavelength of the dipoles. This ensures that the collective dynamics
of the interacting dipoles result in subradiant polaritons that are evanescently bound to the
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Figure 3.2 | Squaremetasurface inside a cavity waveguide. (a) Schematic of a simple metasurface composed
of a square Bravais lattice of dipole emitters/antennas with subwavelength nearest-neighbour separation a ≪ λ0.
The induced dipole moments are assumed to point in the z-direction (see inset). Furthermore, the square
metasurface is embedded inside a cavity waveguide of width L, where the cavity walls are assumed to be
perfect mirrors. (b) Corresponding unit cell which contains a single dipole, and a1 and a2 are the primitive
lattice vectors. (c) Corresponding first Brillouin zone where the high-symmetry points are labeled, and b1 and
b2 are the primitive reciprocal lattice vectors.

lattice. Finally, we embed the metasurface at the centre of a cavity waveguide of width L,
where the cavity walls are assumed to be perfect mirrors.

Furthermore, throughout this thesis we restrict our attention to transverse polariton
excitations. Consequently, we assume that each dipole is characterized by an anisotropic free
space polarizability tensor

↔
α0(ω) = α0(ω)ẑẑ such that the induced dipole moment pR(ω)

on the emitter located at R is oriented in the z-direction

pR(ω) = ϵ0V
↔
α0(ω) · E0(R, ω) = ϵ0Vα0(ω)E0(R, ω)ẑ , (3.85)

where E0(r, ω) is the z-component of the external field E0(r, ω). Note, in what follows
we set the characteristic volume to be related to the nearest-neighbour separation distance
V = 4πa3. Furthermore, we assume a generic free space polarizability of the form

α0(ω) =
[
α−1

B (ω) −Σ0(ω)
]−1

, (3.86)



Metasurfaces embedded inside a cavity waveguide 83

where the bare polarizability reads

αB(ω) = 2ω0µ

ω2
0 − ω2 − iωγnr

. (3.87)

Here, ω0 is the free space resonant frequency of the dipole, µ characterizes the strength of
the polarizability, and γnr is a phenomenological damping constant that accounts for any
non-radiative losses in the emitter. Moreover, in equation (3.86) the free space polarizability
correction accounts for the interaction with its own scattered field and reads

Σ0(ω) = i Im[G0(R,R, ω)] = iVk
3
ω

6π , (3.88)

where G0(r, r′, ω) = ẑ ·
↔
G0(r, r′, ω) · ẑ represents the zz-component of the free space dyadic

Green’s function.

Equation (3.88) is the usual radiation reaction term that accounts for radiative losses in
free space [243]. Note, we neglect the divergent real part of the Green’s function and assume
any corrections to the resonant frequency in free space (such as the free space Lamb shift)
are already encoded into the definition of ω0. Furthermore, we have kept the model general
since the polarizability could apply to both classical antennas and quantum emitters in their
linear regime.

3.4.2 Renormalized polarizability inside the cavity waveguide

It is well known that the radiative properties of an emitter/antenna depend sensitively on the
local electromagnetic environment which can produce modifications to both the resonant
frequency and radiative losses. We have seen in equation (3.75) that the cavity Green’s
function can be decomposed into the primary field and the secondary field that is scattered
by the cavity. Since we have already included the back action of the primary scattered field
in the definition of the free space polarizability, we can write the induced dipole moment
inside the cavity as

pR(ω) = ϵ0V
↔
α0(ω) · [E0(R, ω) + Eself(R, ω)] . (3.89)

This shows that the dipole is driven by the external field and its own self-generated field that
is scattered back by the cavity

Eself(R, ω) = 1
ϵ0V

↔
Gscat(R,R, ω) · pR(ω) . (3.90)
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We can express the induced dipole moment in terms of only the external driving field

pR(ω) = ϵ0V
↔
α(ω) · E0(R, ω) (3.91)

if we introduce a renormalized polarizability
↔
α(ω) = α(ω)ẑẑ, where

α(ω) =
[
α−1

B (ω) −Σ(ω)
]−1

. (3.92)

Here the polarizability correction that encodes the renormalization due to the back action of
its own scattered field inside the cavity reads

Σ(ω) = i Im[G0(R,R, ω)] +Gscat(R,R, ω) , (3.93)

where Gscat(r, r′, ω) = ẑ ·
↔
Gscat(r, r′, ω) · ẑ is the zz-component of the dyadic. The secondary

field can be found by simply subtracting the free space Green’s function from the image
expansion of the cavity Green’s function which yields

Gscat(R,R, ω) = 2
∞∑

l=1
G0(R,R + lLẑ, ω) = V

πL3

∞∑
l=1

eikωlL

l3
(1 − ikωlL) . (3.94)

Putting these results together we obtain the explicit expression

Σ(ω) = iVk
3
ω

6π + V
πL3

[
Li3

(
eikωL

)
− ikωLLi2

(
eikωL

)]
, (3.95)

where Lin(z) = ∑∞
l=1 z

l/ln is the polylogarithm of order n.

In figure 3.3 we plot the spectral function Im[α(ω)] of an individual dipole for different
cavity widths. Since the polarizability correction is a slowly-varying function of frequency
on the scale of the peak width, the spectral function lineshapes are Lorentzian to a very good
approximation. Therefore, the renormalized polarizability can be well approximated as

α(ω) ≈ 2ω0µ

ω2
cav − ω2 − iωγ , (3.96)

which describes a resonant dipole emitter/antenna with a renormalized resonant frequency
ωcav and a renormalized damping constant γ = γnr + γrad, where γrad describes the radiative
losses. The renormalized resonant frequency can be found by numerically solving

ω2 − ω2
0 − 2ω0µRe[Σ(ω)] = 0 , (3.97)
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Figure 3.3 | Renormalized polarizability inside a cavity waveguide. Spectral function of an individual
resonant dipole inside a cavity waveguide of width L = 5a (red), L = 1.5a (orange), and L = a (blue). Note,
to highlight the effect of radiative losses we have set the non-radiative losses to zero (γnr = 0) so that the width
of the resonant peaks is solely due to radiative broadening. Results obtained with λ0 = 10a and µ = 0.001ω0.

where the real part of the scattered Green’s function gives rise to a cavity-induced Lamb shift.
The radiative losses can then by approximated as

γrad = 2ω0µ

ωcav
ImΣ(ωcav) , (3.98)

which is determined by the imaginary part of the scattered Green’s function.

For cavity widths L < λ0, we can observe from figure 3.3 that the resonant frequency
decreases as the cavity width is reduced; this is predominantly due to the strong Coulomb
interactions with its image dipoles. Furthermore, the radiative losses increase as the cavity
width is reduced resulting in the resonant peaks becoming broader; this is primarily due
to the reducing mode volume of the TEM eigenmodes which increases the projected local
density of states.

3.4.3 Coupled-dipole equations inside a cavity waveguide

To characterize the collective dynamics of the dipoles within the metasurface, we note that
the induced dipole located at R is not only driven by the external field but also by the field
that is scattered by all the other dipoles in the metasurface located at R′ ̸= R. Therefore we
can write the induced dipole moment as

pR(ω) = ϵ0V
↔
α(ω) · [E0(R, ω) + Escat(R, ω)] , (3.99)
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where the scattered field can be expressed in terms of the cavity Green’s function as

Escat(R, ω) = 1
ϵ0V

∑
R′ ̸=R

↔
G(R,R′, ω) · pR′(ω) . (3.100)

If we insert equation (3.100) into equation (3.99) we obtain a set of self-consistent coupled-
dipole equations

1
α(ω)pR(ω) = ϵ0VE0(R, ω) +

∑
R′ ̸=R

G(R − R′, ω)pR′(ω) , (3.101)

where G(ρ − ρ′, ω) = ẑ ·
↔
G(ρ,ρ′, ω) · ẑ is the zz-component of the cavity Green’s function

where both the source and field are evaluated at the centre of the cavity (z = z′ = 0).

From equation (3.74) we can extract the explicit expression for the zz-component which
reads

G(ρ − ρ′, ω) = i V
4L

∞∑
m=0

Nm

(
k2

ω − q2
m

)
H

(1)
0

(√
k2

ω − q2
m|ρ − ρ′|

)
. (3.102)

Here we have introduced the quantized wavevector qm = k2m = 2mπ/L since the terms
with odd values of m vanish at the centre of the cavity waveguide where the dipoles are
located. For reference later, we can also extract the zz-component of the longitudinal Green’s
function in equation (3.45) which reads

G∥(ρ − ρ′) = − V
πL

∞∑
m=1

q2
mK0 (qm|ρ − ρ′|) . (3.103)

Furthermore, the zz-component of the transverse Green’s function can be extracted from
equation (3.72) and reads

G⊥(ρ − ρ′, ω) = i V
4L

∞∑
m=0

Nm

(
k2

ω − q2
m

)
H

(1)
0

(√
k2

ω − q2
m|ρ − ρ′|

)

+ V
πL

∞∑
m=1

q2
mK0 (qm|ρ − ρ′|) .

(3.104)

However, it will prove useful to have the eigenfunction expansion of the zz-component which
can be obtained from equation (3.50) and equation (3.64) and reads

G⊥(ρ − ρ′, ω) = V
L

∞∑
m=0

Nm

∞̈

−∞

d2k
(2π)2

k2
ωk

2

(k2 + q2
m)(k2 + q2

m − k2
ω)eik·(ρ−ρ′) . (3.105)
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It is evident that the dipoles can only couple to the TM cavity modes since the TE cavity
modes have no field component in the z-direction. Furthermore, only the even TM modes
contribute since the odd TM modes have nodes at the centre of the cavity waveguide.

3.4.4 Coulomb vs photon-mediated interactions

Before we analyze the coupled-dipole equations for the square metasurface, it is useful to
explore how the nature of the interactions between the dipoles evolve as one modifies the
cavity width. The decomposition of the Green’s function into its longitudinal and transverse
components allows us to treat the static and dynamic aspects of the system separately. The
longitudinal Green’s function describes the instantaneous Coulomb field generated by a
dipole, and therefore encodes the quasistatic Coulomb interactions between the dipoles in the
metasurface. Moreover, the transverse Green’s function describes the retarded interactions
between the dipoles that are mediated by the transverse cavity photons. Throughout this
thesis we will restrict our attention to the regime of cavity widths L < λ0, where the cavity
begins to significantly alter the nature of the interactions between neighbouring dipoles.

In free space, the Coulomb interactions are short-range and decay like 1/|ρ − ρ′|3.
However, inside the cavity waveguide we can observe from equation (3.103) that the Coulomb
interactions decay as

G∥(ρ − ρ′) ∼ e−2π|ρ−ρ′|/L

L3
√

|ρ − ρ′|
, (3.106)

which decrease more rapidly with the separation distance as shown in figure 3.4(a). As the
cavity width is reduced the Coulomb interactions become suppressed due to the screening
effect of the cavity waveguide.

In free space, the photon-mediated interactions are long-range and decay like 1/|ρ − ρ′|.
For the regime of cavity widths L < λ0, only the fundamental TEM mode contributes to the
long-range interactions because the quantized cavity modes that can couple to the dipoles are
off-resonant. Consequently, the photon-mediated interactions inside the cavity waveguide
decay as

G⊥(ρ − ρ′, ω0) ∼ ei2π|ρ−ρ′|/λ0

L
√

|ρ − ρ′|
, (3.107)

where the real part describes coherent interactions whose strength oscillates with the sep-
aration distance as shown in figure 3.4(b). Furthermore, in stark contrast to the Coulomb
interactions, the strength of the photon-mediated interactions increases as the cavity width
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Figure 3.4 | Coulombvsphoton-mediated interactions inside a cavitywaveguide. (a) Longitudinal Green’s
function for cavity widths of L = 5a (blue line), L = a (red line) and L = 0.5a (orange line). This shows
that the Coulomb interactions are short-range and are suppressed as the cavity width is reduced – this is due
to the screening effect of the cavity waveguide. (b) Real part of the transverse Green’s function for cavity
widths of L = 5a (blue line), L = a (red line) and L = 0.5a (orange line). This shows that the coherent
photon-mediated interactions are long-range and oscillate with separation distance, and thus the metasurface
is not amenable to a simple tight-binding description. In contrast to the Coulomb interactions, the strength
of the photon-mediated interactions increase as the cavity width is reduced – this is because the light-matter
interaction strength increases as the mode volume is decreased. Therefore, by varying the cavity width one can
modify the strength and nature of the dipole-dipole interactions. Results obtained with λ0 = 10a.

is reduced. This is because the TEM mode has no cut-off frequency, and the mode volume
decreases with the cavity width which increases the light-matter interaction strength.

This non-trivial, long-range nature of the dipole-dipole interactions means that the
metasurface cannot be described by a simple tight-binding model. In fact, we must include
all the photon-mediated interactions between all pairs of dipoles to accurately describe the
emergent physics. Furthermore, the ability to tune the nature of the dipole-dipole interactions
by varying the cavity width lies at the heart of many of the interesting phenomena that we
will present in the subsequent chapters.

3.4.5 Coupled-dipole equations in momentum space

In the absence of an external driving field the coupled-dipole equations read

1
α(ω)pR(ω) =

∑
R′ ̸=R

G(R − R′, ω)pR′(ω) . (3.108)
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To find the dispersion of the cavity polaritons we can exploit the discrete translational
symmetry of the metasurface by introducing the Fourier transform of the dipole moments

p̃(q, ω) =
√

A
2π

∑
R
pR(ω)e−iq·R , (3.109)

where q = [ qx , qy ] is the Bloch wavevector that is restricted to the first Brillouin zone
shown in figure 3.2(c), and A = a2 is the area of the unit cell shown in figure 3.2(b). Using
the Fourier variables in equation (3.109), we can diagonalize the coupled-dipole equations in
momentum space

1
α(ω) p̃(q, ω) =

∑
R ̸=0

G∥(R)e−iq·R +
∑
R ̸=0

G⊥(R)e−iq·R

 p̃(q, ω) . (3.110)

Since the Coulomb interactions are short-range the first lattice sum converges rapidly. In stark
contrast, the photon-mediated interactions are long-range and therefore we must accelerate
the computation of the second sum. We can achieve this using the Poisson summation
technique, where one transforms the real space lattice sum into a rapidly converging sum
over reciprocal lattice vectors.

To facilitate this transformation, we add and subtract the self-interaction term G⊥(0, ω)
so that the second sum can be written as a sum over all lattice vectors including R = 0. Note
that the imaginary part of this self-interaction term cancels the imaginary part of the inverse
polarizability since Im[G(0, ω)] = Im[G⊥(0, ω)]. Therefore we can introduce a modified
polarizability

α̌(ω) =
{
α−1

B (ω) − Re[Σ(ω)]
}−1

, (3.111)

and write equation (3.110) as

1
α̌(ω) p̃(q, ω) =

[
D∥(q) + D⊥(q, ω)

]
p̃(q, ω) . (3.112)

Here, D∥(q) is the longitudinal dynamical matrix that encodes the frequency shifts induced
by the Coulomb interactions and reads

D∥(q) =
∑
R ̸=0

G∥(R)e−iq·R . (3.113)
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Furthermore, D⊥(q, ω) is the transverse dynamical matrix that encodes the frequency shifts
due to the photon-mediated interactions and reads

D⊥(q, ω) =
∑
R
G⊥(R, ω)e−iq·R − Re[G⊥(0, ω)] . (3.114)

We are now in a position to accelerate the lattice sum in equation (3.114). We can use the
eigenfunction expansion of the transverse Green’s function in equation (3.105) to express the
lattice sum as

∑
R
G⊥(R, ω)e−iq·R = V

L

∑
R

∞∑
m=0

Nm

∞̈

−∞

d2k
(2π)2

k2
ωk

2

(k2 + q2
m)(k2 + q2

m − k2
ω)ei(k−q)·R .

(3.115)
Finally, we can invoke the 2D version of Poisson’s summation identity

∑
R

ei(k−q)·R = (2π)2

A
∑

g
δ(k − q + g) , (3.116)

to transform equation (3.115) into

D⊥(q, ω) =
∞∑

m=0

∑
g

ξ2
mω

2ω2
q−g,0

ω2
q−g,m(ω2

q−g,m − ω2) − Re[G⊥(0, ω)] . (3.117)

This transformation permits a simple reinterpretation of the light-matter interactions
which is more in line with Hopfield’s original treatment of polaritons [244]. Hopfield used
a minimal-coupling Hamiltonian formalism to describe exciton-polaritons that arise from
the strong-coupling between a single exciton band of a 3D crystal and free space photons
[244]. From equation (3.117) we can see that the transverse dynamical matrix describes the
frequency shifts that result from the hybridization between the quasistatic dipolar excitations
with Bloch wavevector q and the cavity photons with dispersion

ωq−g,m = c
√

|q − g|2 + q2
m , (3.118)

where the strength of the light-matter coupling is parameterized by

ξm =
√
NmV
AL

. (3.119)

Since the metasurface only has discrete translational symmetry in the xy-plane, the
interactions between the photons and the dipolar excitations only conserve the in-plane
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momentum modulo a reciprocal lattice vector. Furthermore, due to the broken translational
invariance in the z-direction, the out-of-plane wavevector is not conserved. In the absence
of a cavity waveguide, this would give rise to two distinct types of polaritons; evanescently
bound polaritons which exist outside the light-cone and are decoupled from the free space
photons, and also radiative polaritons which exist inside the light-cone and can decay into
free space photons. However, the cavity waveguide breaks the continuum of photons into a
discrete set with quantized wavevectors in the z-direction and, as a result, there is no density
of final states that the dipolar excitations can decay into. Furthermore, we assume that the
metasurface is infinite and therefore the dipolar excitations cannot radiate from the edge of
the lattice. Consequently, both the longitudinal and transverse dynamical matrices will be
Hermitian throughout this thesis.

3.4.6 Regularization of the divergent terms

Before we analyze the polariton spectrum, we need to address an issue in the transverse
dynamical matrix. While equation (3.117) is well defined and finite, the two terms separately
diverge rendering it impossible to evaluate. A method to deal with similar divergence
issues has been proposed for 3D [245] and 2D [219] lattices in free space, which involves
regularizing the large momentum behaviour of the free space Green’s function. Therefore, in
this section we introduce a similar regularization procedure for the cavity waveguide.

To this end, we introduce a regularized transverse Green’s function which reads

Ǧ⊥(ρ − ρ′, ω) = V
L

∞∑
m=0

Nm

∞̈

−∞

d2k
(2π)2

k2
ωk

2e−η2(k2+q2
m)

(k2 + q2
m)(k2 + q2

m − k2
ω − i0+)eik·(ρ−ρ′) , (3.120)

where we have included a Gaussian cut-off for large wavevectors. Note that we only introduce
this regularization procedure to be able to numerically calculate the transverse dynamical
matrix elements, not to study finite-size effects of the emitters/antennas. Therefore, we choose
the cut-off parameter to be η ≪ a such that it has a negligible effect on the interactions
between dipoles. However, the Gaussian cut-off effectively smears out the divergent part of
the transverse Green’s function over a small volume, rendering it finite and well defined at
the source location. To evaluate equation (3.117) we only need the real part of the regularized
transverse Green’s function at the source location which we will write as

Re[Ǧ⊥(0, ω)] =
∞∑

m=0
Gm(ω) , (3.121)
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where each term in the sum reads

Gm(ω) = Re

NmV
L

∞̈

−∞

d2k
(2π)2

k2
ωk

2e−η2(k2+q2
m)

(k2 + q2
m)(k2 + q2

m − k2
ω − i0+)

 . (3.122)

To evaluate the integral in equation (3.122), we will split it into two parts as Gm(ω) =
G(1)

m (ω) + G(2)
m (ω). The first part reads

G(1)
m (ω) = −NmV

2πL

∞̂

0

dk k3

k2 + q2
m

e−η2(k2+q2
m) , (3.123)

where we have used polar coordinates and performed the trivial angular integral. If we make
the substitution s = η2(k2 + q2

m) then equation (3.123) transforms into

G(1)
m (ω) = −NmV

4πL

∞̂

η2q2
m

ds
(

1
η2 − q2

m

s

)
e−s . (3.124)

After performing the integral of the first term we obtain

G(1)
m (ω) = −NmV

4πL

[
1
η2 e−η2q2

m + q2
m Ei(−η2q2

m)
]
, (3.125)

where we have introduced the exponential integral which is defined as

Ei(x) = −P.V.
∞̂

−x

ds e−s

s
, (3.126)

where P.V. denotes the principal value. The second part of equation (3.122) reads

G(2)
m (ω) = NmV

2πL P.V.

∞̂

0

dk k3

k2 + q2
m − k2

ω

e−η2(k2+q2
m) , (3.127)

where we have performed the trivial angular integral and used the Sokhotski-Plemelj formula

1
x− i0+ = P.V.

(1
x

)
+ iπδ(x) . (3.128)
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As before, we can make a substitution s = η2(k2+q2
m−k2

ω) which transforms equation (3.127)
into

G(2)
m (ω) = NmV

4πL e−η2k2
ωP.V.

∞̂

−η2(k2
ω−q2

m)

ds
(

1
η2 − q2

m − k2
ω

s

)
e−s , (3.129)

and after performing the resulting integral we obtain

G(2)
m (ω) = NmV

4πL

[
1
η2 e−η2q2

m + (q2
m − k2

ω) Ei
(
η2(k2

ω − q2
m)
)]

. (3.130)

Putting together equation (3.125) and equation (3.130) yields

Gm(ω) = NmV
4πL

[
(q2

m − k2
ω)e−η2k2

ω Ei
(
η2(k2

ω − q2
m)
)

− q2
m Ei(−η2q2

m)
]
. (3.131)

Finally, we can now use equation (3.120) and equation (3.131) to obtain the regularized
version of the transverse dynamical matrix

D⊥(q, ω) =
∞∑

m=0

∑
g

ξ2
mω

2ω2
q−g,0e−η2(|q−g|2+q2

m)

ω2
q−g,m(ω2

q−g,m − ω2) − Gm(ω)
 , (3.132)

which converges to an η-independent value as η → 0.

3.4.7 Single mode and pole approximations

For the regime of cavity widths L < λ0 we can make a single mode approximation where, for
the interactions between the dipoles, we retain only the contribution from the fundamental
TEM mode. The corresponding single mode Green’s function in closed form reads

GTEM
⊥ (ρ − ρ′, ω) = iVk

2
ω

4L H
(1)
0 (kω|ρ − ρ′|) , (3.133)

which is equal to the m = 0 term of equation (3.104). Therefore the transverse dynamical
matrix in equation (3.132) simplifies to

D⊥(q, ω) =
∑

g

{
ξ2ω2e−η2|q−g|2

ω2
q−g − ω2 − Re[ǦTEM

⊥ (0, ω)]
}
, (3.134)
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where ξ =
√

V/AL and

Re[ǦTEM
⊥ (0, ω)] = −Vk2

ω

4πLe−η2k2
ω Ei(η2k2

ω) , (3.135)

which is the m = 0 term of equation (3.131).

Furthermore, a significant penalty that we pay for integrating out the photonic degrees
of freedom is that the corresponding eigenvalue equation becomes non-linear. This is
evident from equation (3.112) where both the transverse dynamical matrix and polarizability
correction depend on the frequency, which ultimately stems from the fact that the Green’s
function is frequency-dependent. Therefore, to obtain the dispersion of the cavity polaritons
one must numerically solve the following characteristic equation

ω2 − ω2
0 + 2µω0 Re[Σ(ω)] + 2µω0D∥(q) + 2µω0D⊥(q, ω) = 0 , (3.136)

where we have neglected non-radiative losses for simplicity. This is not ideal as it makes it
difficult to extract analytical insight from the coupled-dipole equations.

As we will be focused on the dynamics of the dipoles within the vicinity of their resonant
frequency, we can make a pole approximation by evaluating the polarizability correction and
transverse dynamical matrix at the renormalized cavity frequency. This approximation intro-
duces divergences whenever the photon frequency is equal to the cavity resonant frequency
due to the poles in equation (3.132). However, it is a very good approximation away from
the light-line, especially near the edge of the Brillouin zone which is where our attention will
be focused. By applying this pole approximation we can linearize the eigenvalue problem in
equation (3.112) and the corresponding polariton dispersion is explicitly given by

ω =
√
ω2

cav − 2µω0D∥(q) − 2µω0D⊥(q, ωcav) . (3.137)

3.4.8 Polariton dispersion for a square metasurface

Before we study the full polariton dispersion, let us first artificially switch off the light-matter
interactions and consider the quasistatic dispersion

ω =
√
ω2

cav − 2µω0D∥(q) , (3.138)

where we include only the short-range Coulomb interactions between the dipoles. In fig-
ure 3.5(a) we plot the quasistatic dispersion (solid black line) for a large cavity width, and we
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Figure 3.5 | Polariton dispersion for a square metasurface. (a) Quasistatic dispersion (solid black line) for
the square metasurface with a large cavity width (L = 5a), where we have included only the short-range
Coulomb interactions. We also plot the linear dispersion of the TEM cavity mode (dashed black line). Since
the light-matter interaction is switched off, there are inevitable band crossings between the photonic modes
and the quasistatic modes. (b) Polariton dispersion for the same metasurface and cavity width, where we have
included the long-range photon-mediated interactions. The light-matter interaction results in a polaritonic
anticrossing, but the spectrum near the Brillouin zone edge is very similar to the quasistatic case. (c) Polariton
dispersion for the same metasurface with a small cavity width (L = 0.5a), which is qualitatively different to the
quasistatic case. In panels (b) and (c) we also plot the numerical solutions to the full non-linear coupled-dipole
equations (orange circles) which shows a very good agreement with the approximate dispersions, thus verifying
the validity of the single mode and pole approximations. Results obtained with λ0 = 10a and µ = 0.001ω0.

also plot the linear dispersion of the TEM cavity mode (dotted black line). Since the inter-
action is artificially switched off, there are inevitable band crossings between the photonic
modes and the quasistatic modes.

In figure 3.5(b) we plot the polariton dispersion (solid black line) given by equation (3.137)
which includes the long-range interactions mediated by the cavity photons. When the light-
matter interaction is switched on we observe that the band crossings are avoided, resulting
in a polaritonic band gap which is a characteristic feature of polaritonic systems [244].
Moreover, near the edge of the Brillouin zone the Coulomb interactions dominate the physics
of the polaritons due to the subwavelength spacing of the metasurface – one can observe
that the polariton dispersion is very similar to the quasistatic case. In figure 3.5(c) we plot
the polariton dispersion for a small cavity width. Since the light-matter interactions are
much stronger for smaller cavity widths and the Coulomb interactions are suppressed, the
photon-mediated interactions dominate the physics of the polaritons, even near the corners of
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the Brillouin zone. In fact, the polariton dispersion is qualitatively different to the quasistatic
case; for example, the effective mass of the polaritons at the M point has changed sign.

Finally, to verify the validity of the single mode and pole approximations that we outlined
in section 3.4.6, in figure 3.5(b) and figure 3.5(c) we also plot the numerical solutions to the
full non-linear coupled-dipole equations (orange circles) where we include all the cavity
modes and retain the frequency dependence in the Green’s function. We observe a very
good agreement with the approximate polariton dispersion, thus verifying the validity of the
approximations for the regime of parameters that we are interested in.

3.5 Conclusion
In this chapter we have developed a self-consistent coupled-dipole theory using a Green’s
function formalism, which can describe the collective dynamics of dipoles embedded inside a
cavity waveguide. In particular, we have derived the longitudinal and transverse components
of the cavity Green’s function which describe the Coulomb interactions and photon-mediated
interactions, respectively. Focusing on transverse excitations, we have shown how this theory
can be used to derive the dispersion of the cavity polaritons supported by a simple square
metasurface. Importantly, we have highlighted that for large cavity widths the physics near
the Brillouin zone edge is dominated by the short-range Coulomb interactions, while the
long-range photon-mediated interactions dominate for small cavity widths. In the following
chapters, we will use this coupled-dipole theory to explore a range of interesting phenomena
that can emerge in non-trivial metasurfaces.



4
Manipulating type-I and type-II Dirac polaritons
in honeycombmetasurfaces

G RAPHENE physics has been emulated in a myriad of artificial systems by sim-
ulating a tight-binding model on a honeycomb lattice. Within this paradigm
it is notoriously difficult to manipulate the fundamental properties of the

corresponding Dirac quasiparticles as they are primarily determined by the nearest-
neighbour hopping parameter. In this chapter, we study the Dirac polaritons that
emerge in honeycomb metasurfaces composed of subwavelength arrays of dipole emit-
ters/antennas, thereby going beyond the paradigm of tight-binding physics. Crucially,
due to the hybrid light-matter nature of the Dirac polaritons, their properties de-
pend qualitatively on the local electromagnetic environment which mediates the dipole-
dipole interactions. Despite the superficial similarity with graphene, the metasurface
exhibits both deterministic type-I Dirac points and accidental type-II Dirac points,
where the latter emerge from a non-trivial winding in the light-matter interaction. By
enclosing the metasurface inside a cavity waveguide, one can induce the multi-merging
of the type-I and type-II Dirac points and the subsequent annihilation of the type-II
Dirac points by varying only the cavity width. Consequently, we unveil a morphing be-
tween a linear and a quadratic spectrum accompanied by a change in the topological
winding number, and also a cavity-induced inversion of chirality. This unique scenario
has no analog in real or artificial graphene systems and could open opportunities to
explore novel Dirac-related physics in a variety of experimental platforms.

This chapter presents original research that was published as follows:

Mann, C.-R., Sturges, T. J., Weick, G., Barnes, W. L. & Mariani, E. Manipulating type-I and
type-II Dirac polaritons in cavity-embedded honeycomb metasurfaces. Nature Communica-

tions 9, 2194 (2018).
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4.1 Introduction

Graphene is a peculiar material whose low-energy quasiparticles are effectively described
by a massless Dirac Hamiltonian, rather than the more conventional massive Schrödinger
Hamiltonian [7]. This remarkable feature stems from the emergence of linearly dispersing
energy bands that coalesce at the Dirac points, which exhibit a vortex structure in momentum
space. Consequently, the massless Dirac quasiparticles are endowed with a chirality which
leads to a wealth of extraordinary phenomena including Klein tunnelling [18, 120, 123–
125] and an unconventional quantum Hall effect [143, 144, 149–151]. Shortly after the
successful isolation of graphene [10], it became widely appreciated that the emergent Dirac
physics was inextricably linked to the symmetry of the honeycomb lattice, and was not
restricted to the specific physics of graphene. This realization sparked an extensive quest
to engineer deterministic Dirac points in a myriad of artificial hexagonal lattices in entirely
distinct physical platforms [44–60]. Within the realm of photonics, the most fruitful artificial
graphene systems include honeycomb lattices of evanescently coupled waveguides [60, 66, 68,
184], microwave resonators [58, 65, 70], and semiconductor micropillars [59, 67, 69, 179],
which have enabled one to simulate tight-binding physics in regimes that are difficult, if not
impossible to reach in graphene itself.

Unfortunately, it is notoriously difficult to manipulate the fundamental properties of
the massless Dirac fermions in graphene; the only parameter entering the effective Dirac
Hamiltonian is the Dirac velocity which is primarily determined by the nearest-neighbour
hopping parameter. Consequently, the enticing concept of strain-engineering has attracted
considerable interest as a mechanism to modify graphene’s band structure [62, 156]. How-
ever, the Dirac points are characterized by a topological winding number which renders
them remarkably stable against lattice perturbations that preserve T and I symmetry [21].
Applying strain generates anisotropic hopping parameters which decouples the Dirac points
from the high symmetry points, and the Dirac cones become tilted with an anisotropic Dirac
velocity due to the broken C3 symmetry. When the lattice anisotropy exceeds a critical value,
a phase transition from a gapless semi-metal to a gapped insulator occurs via the merging
and annihilation of the Dirac points with opposite topological winding numbers [61–64].
While this tantalizing transition has remained elusive in graphene due to the large strains
required [62], it has been successfully observed in photonic graphene systems where one has
meticulous control over the lattice parameters [65–67].

This raises an interesting question: is it possible to manipulate the fundamental properties
of the Dirac quasiparticles while preserving the underlying symmetries? While the symme-
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tries constrain the form of the effective Hamiltonian, the Hamiltonian parameters depend on
the details of the system and modifying them can have dramatic consequences. For example,
one can switch the chirality of the massless Dirac quasiparticles by changing the sign of the
Dirac velocity; however, this is impossible to achieve in graphene or its photonic analogs as
it requires one to switch the sign of the nearest-neighbour hopping parameter.

Here we unveil a new mechanism to generate and manipulate different types of Dirac
points in a honeycomb metasurface composed of a subwavelength array of interacting dipole
emitters/antennas. Despite its superficial similarity with graphene and its photonic analogs,
the metasurface simultaneously exhibits two distinct species of massless Dirac polaritons:
type-I and type-II. The latter, more exotic class have no analog in high-energy physics
because they strongly violate Lorentz-invariance, and they have attracted growing interest
since the recent discovery of type-II Dirac/Weyl semimetals [246–250]. They are classified
according to the topology of the isofrequency contours and are thus related via a Lifshitz
transition. While the type-I Dirac points exhibit closed, circular isofrequency contours
and are the conventional ones that emerge in graphene, the type-II Dirac points exhibit
critically tilted Dirac cones with open, hyperbolic isofrequency contours. Previous work
has shown that type-II Dirac points can be engineered in highly anisotropic 2D photonic
lattices [251, 252]. In stark contrast, here the type-II Dirac points in the polariton spectrum
emerge from a non-trivial winding in the light-matter interaction. Furthermore, while the
type-I Dirac points are deterministic and protected by the symmetries of the metasurface, the
type-II Dirac points are accidental band degeneracies and their existence depends critically
on the nature of the dipole-dipole interactions.

Consequently, by embedding the metasurface inside a cavity waveguide and varying
only the cavity width, we show that one can manipulate the location of the type-II Dirac
points within the Brillouin zone. This leads to qualitatively different polariton phases, despite
the preserved lattice symmetries. Specifically, at a critical cavity width, we unveil a multi-
merging of the type-I and type-II Dirac points as the Dirac velocity vanishes which results in
a hybrid Dirac point. This gives rise to massive chiral polaritons that are characterized by a
quadratic dispersion and a topological winding number of ±2. Beyond this critical width,
we observe the merging and subsequent annihilation of the type-II Dirac points; a transition
that leaves only the type-I Dirac points remaining in the polariton spectrum. Finally, for
small cavity widths where the Coulomb interactions are suppressed and the photon-mediated
interactions are dominant, we recover the linear spectrum near the type-I Dirac points but
the Dirac velocity switches sign. Consequently, the massless Dirac polaritons re-emerge but
with a cavity-induced inversion of chirality.
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Figure 4.1 | Honeycombmetasurface inside a cavity waveguide. (a) Schematic of a honeycomb metasurface
composed of an array of dipole emitters/antennas with subwavelength nearest-neighbour separation a ≪ λ0.
The induced dipole moments are assumed to point in the z-direction (see inset). Furthermore, the honeycomb
metasurface is embedded inside a cavity waveguide of width L, where the cavity walls are assumed to be
perfect mirrors. (b) Corresponding unit cell that contains two dipoles with basis vectors dA and dB, which
gives rise to the A and B hexagonal sublattices, respectively. The primitive lattice vectors are a1 and a2. (c)
Corresponding first Brillouin zone where the high-symmetry points are labeled, and b1 and b2 are the primitive
reciprocal lattice vectors.

4.2 Honeycombmetasurface
A schematic of a honeycomb metasurface embedded inside a cavity waveguide is depicted in
figure 4.1(a). We consider an elementary metasurface that is composed of an array of dipole
emitters/antennas which we describe using the same minimal model that we presented in
section 3.4. Specifically, we describe the dipoles with a bare polarizability of the form

αB(ω) = 2ω0µ

ω2
0 − ω2 − iωγnr

, (4.1)

where the corresponding induced dipole moments are assumed to point in the z-direction (see
inset). For simplicity, we will neglect non-radiative losses throughout this chapter (γnr = 0).
The dipoles are located at periodic positions RA = R + dA and RB = R + dB, which form
the A and B inequivalent hexagonal sublattices, respectively. Here, the basis vectors

dA = a

2
[

0 , −1
]
, dB = a

2
[

0 , 1
]
, (4.2)
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locate the positions of the dipoles within a unit cell as depicted in figure 4.1(b). Furthermore,
R = l1a1 + l2a2 represents the set of lattice translation vectors, where l1, l2 ∈ Z are integers,
and

a1 =
√

3a
2
[

− 1 ,
√

3
]
, a2 =

√
3a
2
[

1 ,
√

3
]
, (4.3)

are the primitive lattice vectors. The corresponding set of reciprocal lattice vectors are
g = n1b1 + n2b2, where n1, n2 ∈ Z are integers, and

b1 = 2π
3a
[

−
√

3 , 1
]
, b2 = 2π

3a
[√

3 , 1
]
, (4.4)

are the primitive reciprocal lattice vectors that define the Brillouin zone which is shown
in figure 4.1(c). Moreover, we consider the nearest-neighbour separation distance to be
subwavelength a ≪ λ0, so that the polaritons near the K/K′ points are subradiant and
evanescently bound to the lattice. Finally, we embed the metasurface at the centre of a cavity
waveguide of width L, where the cavity walls are assumed to be perfect mirrors.

4.2.1 Coupled-dipole equations

The collective dynamics of the dipoles within the honeycomb metasurface are governed by a
set of self-consistent coupled-dipole equations, where the induced dipole moment pRA

(ω)
located at RA on the A sublattice is given by

1
α(ω)pRA

(ω) =
∑

R′
A ̸=RA

G(RA − R′
A, ω)pR′

A
(ω) +

∑
RB

G(RA − RB, ω)pRB
(ω) , (4.5)

and the induced dipole moment pRB
(ω) located at RB on the B sublattice is given by

1
α(ω)pRB

(ω) =
∑

R′
B ̸=RB

G(RB − R′
B, ω)pR′

B
(ω) +

∑
RA

G(RB − RA, ω)pRA
(ω) . (4.6)

Here, α(ω) = [α−1
B (ω) − Σ(ω)]−1 is the renormalized polarizability that was derived in

section 3.4.2, where the polarizability correction inside the cavity waveguide reads

Σ(ω) = iVk
3
ω

6π + V
πL3

[
Li3

(
eikωL

)
− ikωLLi2

(
eikωL

)]
. (4.7)
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Moreover, G(ρ − ρ′, ω) is the zz-component of the cavity Green’s function that was derived
in section 3.3 and reads

G(ρ − ρ′, ω) = i V
4L

∞∑
m=0

Nm

(
k2

ω − q2
m

)
H

(1)
0

(√
k2

ω − q2
m|ρ − ρ′|

)
. (4.8)

Therefore, the first sums in equation (4.5) and equation (4.6) describe intrasublattice inter-
actions between dipoles that reside on the same sublattice, while the second sums describe
intersublattice interactions between dipoles that reside on opposite sublattices.

4.3 Quasistatic approximation

To unravel the intricate physics arising from the complex nature of the dipole-dipole inter-
actions, we will explore the physics of the honeycomb metasurface in a step-wise manner.
Given the subwavelength spacing between the dipoles, it is natural to assume that the short-
range Coulomb interactions dominate the physics away from the light-line for relatively
large cavity widths – indeed, this was the case for the square metasurface in section 3.4.
Therefore, we will begin our analysis within the quasistatic approximation where we neglect
the long-range photon-mediated interactions and consider only the short-range Coulomb
interactions between the dipoles.

4.3.1 Short-range Coulomb interactions

The Coulomb interactions are encoded in the longitudinal component of the cavity Green’s
function that was derived in section 3.3 and reads

G∥(ρ − ρ′) = − V
πL

∞∑
m=1

q2
mK0 (qm|ρ − ρ′|) . (4.9)

To study the collective dipolar excitations we introduce the Fourier transform of the dipole
moments on the two sublattices

p̃A(q, ω) =
√

A
2π

∑
RA

pRA
(ω)e−iq·RA , p̃B(q, ω) =

√
A

2π
∑
RB

pRB
(ω)e−iq·RB , (4.10)

where q = [ qx , qy ] is the Bloch wavevector that is restricted to the first Brillouin zone
shown in figure 4.1(c), and A = 3

√
3a2/2 is the area of the unit cell shown in figure 4.1(b).

Using the Fourier variables in equation (4.10) we can block diagonalize the coupled-dipole
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equations and recast them into simple 2 × 2 matrix eigenvalue equations

1
α̌(ω) |ψ(q)⟩ = D∥(q) |ψ(q)⟩ , (4.11)

where α̌−1(ω) = α−1
B (ω) − Re[Σ(ω)] and |ψ(q)⟩ represents the vector of Fourier variables

|ψ(q)⟩ =
 p̃A(q)
p̃B(q)

 . (4.12)

Also in equation (4.11), D∥(q) is the longitudinal dynamical matrix that encodes the fre-
quency shifts due to the Coulomb interactions and reads

D∥(q) =
 DAA

∥ (q) DAB
∥ (q)

DAB∗
∥ (q) DBB

∥ (q)

 . (4.13)

The intrasublattice matrix elements read

DAA/BB
∥ (q) =

∑
R ̸=0

G∥(R)e−iq·R , (4.14)

while the intersublattice matrix elements are given by

DAB
∥ (q) =

∑
R
G∥(R − d)e−iq·(R−d) , (4.15)

where we have introduced the vector d = dB − dA which connects the two sublattices within
the unit cell.

4.3.2 Emergence of type-I deterministic Dirac points

For simplicity, we evaluate the polarizability correction at the cavity resonant frequency,
which we have shown is a very good approximation in section 3.4.2. Then, by solving the
characteristic equation associated with equation (4.11) , one finds the following quasistatic
dispersion for the dipolar excitations on the honeycomb metasurface

ω
∥
λ(q) =

√
ω2

cav − 2ω0µDAA
∥ (q) + 2ω0µλ|DAB

∥ (q)| , (4.16)
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Figure 4.2 | Quasistatic dispersion and pseudo-spin field. (a) Quasistatic dispersion for the honeycomb
metasurface with a large cavity width (L = 5a), where we include only the short-range Coulomb interactions.
The spectrum exhibits deterministic Dirac points at the high-symmetry K/K′ points – these belong to the
type-I class that are characterized by massless Dirac cones with circular isofrequency contours (see inset). (b)
Corresponding pseudo-spin field for the upper band. The Dirac points correspond to vortices (yellow and blue
circle) which we label according to their topological winding numbers. Results obtained with λ0 = 10a and
µ = 0.001ω0.

where λ = ± labels the upper (λ = +) and lower (λ = −) bands. In analogy with graphene,
the corresponding spinor eigenstates

|ψ∥
λ(q)⟩ = 1√

2

 1
λeiφ∥(q)

 (4.17)

encode a pseudo-spin degree of freedom, where the two components describe how the
amplitude and phase of the dipolar excitation is distributed on the A and B sublattices. We
can therefore represent the spinor eigenstates by a pseudo-spin vector on the Bloch sphere

S∥
λ(q) = ⟨ψ∥

λ(q)| σ |ψ∥
λ(q)⟩ = λ

[
cosφ∥(q) , sinφ∥(q) , 0

]
, (4.18)

where the azimuthal angle is given by

φ∥(q) = arg
[
−DAB∗

∥ (q)
]
. (4.19)

Note, because the honeycomb metasurface exhibits T and I symmetry, no σz term appears in
the dynamical matrix and therefore the pseudo-spin vector is pinned to the equatorial plane
of the Bloch sphere.



Quasistatic approximation 105

In figure 4.2(a) we plot the quasistatic dispersion for a large cavity width where the cou-
pling between neighbouring dipoles is dominated by the Coulomb interactions. Furthermore,
in figure 4.2(b) we show the corresponding pseudo-spin field for the upper quasistatic band.
One observes that the quasistatic dispersion is very reminiscent of the electronic band struc-
ture of graphene. In particular, the spectrum exhibits Dirac points at the high-symmetry K/K′

points located at τK = τ [ 4π/3
√

3a , 0 ], where τ = ± is the valley index, and these coincide
with vortices in the pseudo-spin field. Moreover, the Dirac points evidently belong to the
type-I class where the massless Dirac cone is characterized by closed, circular isofrequency
contours. This correspondence between graphene and the metasurface is not particularly sur-
prising since they share the same honeycomb lattice structure and the Coulomb interactions
are short-range, decreasing rapidly with the separation distance.

We can explicitly show that the C3 symmetry of the honeycomb metasurface enforces the
intersublattice matrix elements to vanish at the K/K′ points which read

DAB
∥ (τK) =

∑
R
G∥(R − d)e−iτK·(R−d) . (4.20)

According to equation (4.9) the interactions between the dipoles depend only on the separation
distance G∥(ρ−ρ′) = G∥(|ρ−ρ′|), so we can facilitate the evaluation of equation (4.20) by
summing the phase contributions from equidistant dipoles. For a given lattice vector in the
sum, we can use the C3 symmetry of the honeycomb lattice to find three separation vectors
that have equal magnitudes. This allows us to rewrite equation (4.20) as

DAB
∥ (τK) = 1

3
∑
R
G∥(R − d)

2∑
j=0

e−iτK·R(j2π/3)·(R−d) , (4.21)

where we have introduced the 2D rotation matrix

R(θ) =
 cos(θ) − sin(θ)

sin(θ) cos(θ)

 , (4.22)

and we have included the factor of 1/3 to avoid over counting. Finally, after a few manip-
ulations, it is simple to show that the sum of the phase contributions vanishes identically

2∑
j=0

e−iτK·R(j2π/3)·(R−d) = eiτK·de−iτ 2π
3 (l2−l1)

(
1 + eiτ 2π

3 + e−iτ 2π
3
)

= 0 . (4.23)

Since this is true for all lattice vectors in the sum, the intersublattice matrix elements must
vanish identically at the K/K′ points.
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It is important to emphasize that in the preceding analysis we did not use the precise
form of the Coulomb interactions. In fact, the arguments that we presented are insensitive
to the exact nature of the dipole-dipole interactions; the only strict requirement is that the
interactions exhibit C3 symmetry. This is why these Dirac points are described as deterministic
– their existence does not depend on the details of the system parameters because they are
enforced by the symmetry.

4.4 Tunable Dirac polaritons

Within the quasistatic approximation there is essentially a one-to-one correspondence between
the honeycomb metasurface and graphene – this has been pointed out in previous work which
studied the quasistatic plasmons supported by a honeycomb lattice of metallic nanoparticles
in free space [51]. However, the natural question is: does the quasistatic approximation
capture all the interesting physics? Naively, one may be tempted to assume that nothing
peculiar could emerge from the long-range photon-mediated interactions, especially for large
cavity widths where they are relatively weak. Contrary to these expectations, in this section
we reveal that the quasistatic approximation completely misses important physics; in fact,
the hybridization with the cavity photons qualitatively alters the geometrical and topological
properties of the polaritons.

4.4.1 Long-range photon-mediated interactions

The interaction between the dipoles and the cavity photons results in long-range dipole-dipole
interactions that are described by the transverse component of the cavity Green’s function
which is given by G⊥(ρ − ρ′, ω) = G(ρ − ρ′, ω) − G∥(ρ − ρ′). However, since we are
interested in the regime of cavity widths L < λ0, we retain only the contribution from
the TEM cavity mode. The corresponding single mode Green’s function was derived in
section 3.3 and reads

GTEM
⊥ (ρ − ρ′, ω) = iVk

2
ω

4L H
(1)
0 (kω|ρ − ρ′|) . (4.24)

If we include the photon-mediated interactions then the matrix eigenvalue equation
becomes

1
α̌(ω) |ψ(q)⟩ =

[
D∥(q) + D⊥(q, ω)

]
|ψ(q)⟩ , (4.25)
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where D⊥(q, ω) is the transverse dynamical matrix that encodes the frequency shifts due to
the photon-mediated interactions and reads

D⊥(q, ω) =
 DAA

⊥ (q, ω) DAB
⊥ (q, ω)

DAB∗
⊥ (q, ω) DBB

⊥ (q, ω)

 . (4.26)

The intrasublattice matrix elements read

DAA/BB
⊥ (q, ω) =

∑
g

ω2ξ2

ω2
q−g − ω2 − Re[GTEM

⊥ (0, ω)] , (4.27)

where we have used the Poisson summation technique outlined in section 3.4.5 due to the
long-range nature of the photon-mediated interactions. Furthermore, the intersublattice
matrix elements are given by

DAB
⊥ (q, ω) =

∑
g

ω2ξ2ϕg

ω2
q−g − ω2 , (4.28)

where ξ =
√

V/AL parameterizes the strength of the light-matter interaction with the TEM
mode. Note that the non-trivial phase factors

ϕg = eig·d (4.29)

arise due to the non-Bravais nature of the honeycomb lattice and they must be retained as
they are critical for maintaining the correct symmetry.

Before we analyze the polariton dispersion, it is worthwhile addressing an important point.
It is common in the polariton literature, including Hopfield’s original work [244], to retain
only the near-resonant photons (g = 0) and neglect the Umklapp processes (g ̸= 0) since
the frequency of these photons are typically much larger than the dipole resonant frequency
(ωq−g ≫ ω0) in subwavelength lattices. However, this is only strictly valid away from the
Brillouin zone edge. To be more explicit, at the K point there are three degenerate photonic
modes with the same frequency as the first photon band ωK, which therefore couple to the
quasistatic excitations with equal strength. Since we are particularly interested in the physics
near the edge of the Brillouin zone, it is not acceptable to neglect these Umklapp processes
since it would destroy the C3 symmetry that protects the deterministic Dirac points. For large
cavity widths (and in free space), one may not notice this symmetry-breaking effect because
even the lowest photon branches are far off-resonance (ωK ≫ ω0) with the dipoles, and
therefore the denominators in equation (4.28) and equation (4.27) are large. Consequently,
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Figure 4.3 | Emergence of type-II accidental Dirac points. (a) Quasistatic dispersion (solid black line) for
the honeycomb metasurface with a large cavity width (L = 5a) and the linear dispersion of the TEM cavity
mode (dashed black line). We label the band crossings along the high-symmetry lines 1-4. (b) Polariton
dispersion for the same metasurface and cavity width where we include the long-range photon-mediated
interactions. Switching on the light-matter interaction results in a large anticrossing with the upper quasistatic
band because they correspond to bright, symmetric dipole configurations (↑↑). In contrast, we observe a very
small anticrossing with the lower quasistatic band along the Γ → M directions because they correspond to dark,
antisymmetric dipole configurations (↑↓). Due to a non-trivial winding in the light–matter coupling parameter
(see figure 4.4), the light-matter interaction vanishes identically along the Γ → K(K′) directions. This generates
six accidental Dirac points in the Brillouin zone which belong to the type-II class that are characterized by
critically tilted Dirac cones (see inset). Results obtained with λ0 = 10a and µ = 0.001ω0.

the hybridization with the photons only slightly perturbs the quasistatic bands near the edge
of the Brillouin zone. However, the symmetry breaking becomes increasingly apparent as
one reduces the cavity width, because the light-matter coupling strength increases rapidly
and eventually the photon-mediated interactions dominate over the Coulomb interactions.

4.4.2 Emergence of type-II accidental Dirac points

In figure 4.3(a) we show the linear dispersion of the TEM mode along with the quasistatic
dispersion for a large cavity width. When the light-matter interaction is artificially switched
off there are inevitable band crossings which we label 1 − 4 along the high-symmetry lines.
Given the elementary nature of the individual dipoles, one could easily be lured into thinking
that these band crossings will be avoided when the light-matter interaction is switched on;
after all, this is a characteristic feature of polaritonic systems and is precisely what we
observed for the square metasurface in figure 3.5(b). However, the story is not so simple for
the honeycomb metasurface.
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To obtain the polariton dispersion, we first linearize the eigenvalue problem in equa-
tion (4.25) by evaluating the polarizability correction and transverse dynamical matrix at
the cavity resonant frequency as discussed in section 3.4. Then, by solving the associated
characteristic equation we obtain the following polariton dispersion

ωλ(q) =
√
ω2

cav − 2ω0µ
[
DAA

∥ (q) + DAA
⊥ (q, ωcav)

]
+ 2ω0µλ

∣∣∣DAB
∥ (q) + DAB

⊥ (q, ωcav)
∣∣∣ .

(4.30)
Note, one must use the regularization procedure outlined in section 3.4 in order to numerically
evaluate the polariton dispersion. The corresponding polariton spinor eigenstates read

|ψλ(q)⟩ = 1√
2

 1
λeiφ(q)

 , (4.31)

which can be represented by a pseudo-spin vector on the Bloch sphere

Sλ(q) = ⟨ψλ(q)| σ |ψλ(q)⟩ = λ [ cosφ(q) , sinφ(q) , 0 ] , (4.32)

where the azimuthal angle is given by

φ(q) = arg
[
−DAB∗

∥ (q) − DAB∗
⊥ (q, ωcav)

]
. (4.33)

In figure 4.3(b) we show the polariton dispersion for the same large cavity width. Inter-
estingly, despite the light-matter interaction being switched on, not all of the band crossings
are avoided. To further elucidate this non-trivial nature of the honeycomb metasurface, it
is convenient to re-express the transverse dynamical matrix in the basis of the quasistatic
eigenstates given by equation (4.17). The corresponding intraband matrix elements read

Dλλ
⊥ (q, ω) = ⟨ψ∥

λ(q)| D⊥(q, ω) |ψ∥
λ(q)⟩ =

∑
g

ω2|Λλg(q)|2
ω2

q−g − ω2 − Re[GTEM
⊥ (0, ω)] , (4.34)

while the interband matrix elements are given by

Dλλ′

⊥ (q, ω) = ⟨ψ∥
λ(q)| D⊥(q, ω) |ψ∥

λ′(q)⟩ =
∑

g

ω2Λ∗
λg(q)Λλ′g(q)
ω2

q−g − ω2 . (4.35)

This transformation unveils a non-trivial winding in the new light-matter coupling parameter

Λλg(q) = ξ√
2
[
1 + λeiφ∥(q)

ϕg
]
, (4.36)
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Figure 4.4 | Non-trivial winding in the light-matter interaction. (a) Evolution of the light–matter coupling
strength with the upper (red line) and lower (blue line) quasistatic bands as the wavevector direction is swept
across the Brillouin zone. (b)–(e) Schematics of the bright (↑↑) and dark (↑↓) dipole configurations interacting
with a photonic mode that is indicated by the field profile. Panels (b) and (d) correspond to crossings 1 and 3
along the Γ → K direction in figure 4.3, respectively, while (c) and (e) correspond to crossings 2 and 4 along
the Γ → M direction, respectively. The light–matter interaction strength for the lower quasistatic band varies
significantly and vanishes along the Γ → K(K′) directions due to the complete destructive interference between
the two sublattices. Results obtained with λ0 = 10a, µ = 0.001ω0 and |q| = K/2.

which characterizes the strength of the coupling between the TEM photons and the quasistatic
dipolar excitations.

In figure 4.4(a) we show how the magnitude of the transformed coupling parameter
varies as a function of the wavevector direction for the first photon band (g = 0). For the
upper quasistatic band (red line), the magnitude of the coupling parameter is very large and
does not vary significantly as the wavevector direction is swept across the Brillouin zone.
Intuitively, we can understand this because the quasistatic eigenstates in the upper band
correspond to predominantly in-phase dipole configurations (↑↑) as schematically depicted
in figures 4.4(b)-(c). These are optically bright configurations which couple strongly to the
photons, resulting in a large anticrossing along the Γ − K(K′) and Γ − M lines as observed
in figure 4.3(b).

In stark contrast, for the lower quasistatic band (blue line) the transformed coupling
parameter is very small and varies significantly as the wavevector direction is swept across
the Brillouin zone. This is because the quasistatic eigenstates in the lower band correspond
to predominantly out-of-phase dipole configurations (↑↓) as schematically depicted in fig-
ures 4.4(d)-(e), which are optically dark and couple weakly to the photons. Consequently,
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this results in a small anticrossing for a general wavevector direction which is maximum
along the Γ − M lines. Note that this anticrossing cannot be easily observed in figure 4.3(b)
for the chosen parameters, but it does exist.

Crucially, however, the light-matter interaction for the lower quasistatic band completely
vanishes along the Γ − K(K′) lines, due to the complete destructive interference between the
out-of-phase sublattices. As a result, along the Γ − K(K′) lines the band crossings are not
avoided, leading to six additional Dirac points emerging in the polariton spectrum within
the first Brillouin zone. Moreover, one can infer from figure 4.3(b) that these Dirac points
belong to the exotic type-II class with a critically tilted Dirac cone that is characterized by
open, hyperbolic isofrequency contours – we will see this more explicitly in section 4.5.2.

4.4.3 Evolution of the polariton dispersion

It is important to draw a clear distinction between the two dinstinct species of Dirac points
that have emerged in the polariton spectrum. On the one hand, we have the type-I Dirac
points which are deterministic since they are enforced by the symmetry of the lattice and
their existence is independent of the nature of the dipole-dipole interactions. As a result, the
type-I Dirac points will remain pinned at the K/K′ points as we vary the cavity width. On
the other hand, we have the type-II Dirac points which are accidental since their existence is
not guaranteed by the lattice symmetry. The question that naturally arises is: how stable are
these type-II Dirac points as we modify the nature of the dipole-dipole interactions via the
cavity width?

In figures 4.5(a)-(c) we show the evolution of the polariton dispersion as the cavity
width is decreased, while in figures 4.6(a)-(d) we schematically depict the corresponding
trajectories of the type-I and type-II Dirac points through the Brillouin zone. For large cavity
widths (L ≫ Lv) where the Coulomb interactions are dominant, the polariton spectrum
simultaneously exhibits both type-I and type-II Dirac points which are both characterized by
a linear dispersion as shown in figure 4.5(a). As the cavity width is progressively decreased,
the type-II Dirac points migrate along the Γ → K(K′) lines towards the type-I Dirac points
as depicted by the red arrows in figure 4.6(a). At a critical cavity width (L = Lv), the type-II
Dirac points merge together with the type-I Dirac points at the K/K′ points as depicted
in figure 4.6(b); this merging transition forms a hybrid Dirac point that is characterized
by a quadratic dispersion as shown in figure 4.5(b). Just beyond this critical cavity width
(L < Lv), the type-II Dirac points re-emerge and migrate along the K(K′) → M lines
as depicted by the red arrows in figure 4.6(c). This migration continues until they merge
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Figure 4.5 | Evolution of the polariton dispersion. (a) Polariton dispersion for the honeycomb metasurface
with a subcritical cavity width (L ≫ Lv), which simultaneously exhibits both type-I and type-II Dirac points
that are both characterized by a linear Dirac cone spectrum (see insets). (b) Polariton dispersion for the
same metasurface but with the critical cavity width (L = Lv), which exhibits hybrid Dirac points that are
characterized by a quadratic dispersion (see inset). (c) Polariton dispersion for the same metasurface but with a
supercritical cavity width (L ≪ Lv). Here the type-II Dirac points have vanished from the spectrum leaving
only the type-I Dirac points which are characterized by a linear Dirac cone spectrum (see inset). Modifying
the cavity width thus gives rise to qualitatively distinct polariton phases. Results obtained with λ0 = 10a and
µ = 0.001ω0. For panels (a), (b) and (c) we use cavity widths given by a/L = 0.2, a/L = 0.864262 and
a/L = 2, respectively.

together and annihilate each other at the M points. For small cavity widths (L ≪ Lv) where
the photon-mediated interactions are dominant, only the type-I Dirac points remain in the
polariton spectrum as depicted in figure 4.6(d) which are characterized by a linear dispersion
as shown in figure 4.5(c).

4.5 Effective polariton Hamiltonian

To gain some analytical insight into these qualitatively distinct polariton phases, in this
section we derive a minimal effective Hamiltonian that describes the polaritons near the
K/K′ points. In what follows we focus on the K point since the equivalent physics near the
K′ point can be deduced from T symmetry.

In order to capture the essential physics for all cavity widths, it is evident from figure 4.5(b)
that we must include terms up to quadratic order in k = q − K. The intrasublattice matrix
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Figure 4.6 | Trajectories of the type-I and type-II Dirac points. (a)-(d) Schematic depiction of how the
location of the type-I (yellow circles) and type-II (blue circles) Dirac points evolve throughout the Brillouin
zone as the cavity width is reduced. (a) For subcritical cavity widths (L ≫ Lv), the type-II Dirac points migrate
along the Γ → K(K′) lines as depicted by the red arrows, while the type-I Dirac points remain pinned at the
high-symmetry K/K′ points. (b) At the critical cavity width (L = Lv), the type-II Dirac points merge together
with the type-I Dirac points at the K/K′ points forming hybrid Dirac points. (c) Just beyond the critical width
(L < Lv), the type-II Dirac points re-emerge and migrate along the K(K′) → M lines as depicted by the
red arrows. This migration continues until they eventually merge together and annihilate one another at the
M points. (d) For supercritical cavity widths (L ≪ Lv), only the type-I Dirac points remain in the polariton
spectrum.

elements of the full dynamical matrix expand as (see appendix C.1 for details)

DAA
+ (k) ≃

∑
R ̸=0

G∥(R)e−iK·R +
∑

g

ω2ξ2

ω2
K−g − ω2 − Re[GTEM

⊥ (0, ω)]

−1
2

∑
R ̸=0

G∥(R)e−iK·R(R)2
x +

∑
g

 2c2ω2ξ2

(ω2
K−g − ω2)2 − 8ω2ξ2c4(K − g)2

x

(ω2
K−g − ω2)3

 (k2
x + k2

y) ,

(4.37)

while the intersublattice matrix elements expand as (see appendix C.1 for details)

DAB
+ (k) ≃ −

{
i
∑
R
G∥(R − d)e−iK·(R−d)(R − d)x +

∑
g

2ω2ξ2c2(K − g)xϕg

(ω2
K−g − ω2)2

}
(kx − iky)

−1
2

∑
R ̸=0

G∥(R − d)e−iK·R(R − d)2
x −

∑
g

8ω2ξ2c4(K − g)2
xϕg

(ω2
K−g − ω2)3

 (k2
x − k2

y + 2ikxky) .

(4.38)
Next we evaluate the polarizability correction and the transverse dynamical matrix at the
cavity resonant frequency and we approximate ω2

cav − ω2 ≃ 2ωcav(ωcav − ω). This allows us
to write a simplified eigenvalue equation near the K/K′ points (ℏ = 1)

ω |ψτ (k)⟩ = Hτ (k) |ψτ (k)⟩ , (4.39)
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where the effective Hamiltonian near the K point is given by

H+(k) = ωD(L)12 − vD(L)σ · k + t(L)(σ∗ · k)◦2 +D(L)|k|212 , (4.40)

and the corresponding Hamiltonian near the K′ point is related via T symmetry H−(k) =
H∗

+(−k). Note, in equation (4.40) the symbol ◦2 represents the Hadamard (element-wise)
square of the matrix.

As expected from the symmetry analysis in section 2.2.6, the form of the effective Hamil-
tonian in equation (4.40) coincides precisely with the general Hamiltonian in equation (2.74).
However, the Hamiltonian parameters depend sensitively on the nature of the dipole-dipole
interactions. Specifically, the Dirac frequency in equation (4.40) reads

ωD(L) = ωcav − µ
ω0

ωcav

∑
R ̸=0

G∥(R)e−iK·R + µ
ω0

ωcav
Re[ǦTEM

⊥ (0, ωcav)]

−µ ω0

ωcav

∑
g

ω2
cavξ

2e−η2|K−g|2

ω2
K−g − ω2

cav
,

(4.41)

and the Dirac velocity is given by

vD(L) = −iµ ω0

ωcav

∑
R
G∥(R − d)e−iK·(R−d)(R − d)x − µ

ω0

ωcav

∑
g

2ω2
cavξ

2c2(K − g)xϕg

(ω2
K−g − ω2

cav)2 .

(4.42)
Note, we have used the regularization procedure outlined in section 3.4.6 in order to evaluate
the difference between the last two divergent terms in equation (4.41). Furthermore, the
trigonal warping parameter in equation (4.40) reads

t(L) = µ

2
ω0

ωcav

∑
R
G∥(R − d)e−iK·(R−d)(R − d)2

x − µ
ω0

ωcav

∑
g

4ω2
cavξ

2c4(K − g)2
xϕg

(ω2
K−g − ω2

cav)3 ,

(4.43)
and the band asymmetry parameter is given by

D(L) = µ

2
ω0

ωcav

∑
R ̸=0

G∥(R)e−iK·R(R)2
x

+µ ω0

ωcav

∑
g

 ω2
cavξ

2

(ω2
K−g − ω2

cav)2 − 4ω2
cavξ

2c4(K − g)2
x

(ω2
K−g − ω2

cav)3

 . (4.44)

In figures 4.7(a)-(d) we show how these effective Hamiltonian parameters evolve as the
cavity width is reduced (solid black lines), and we also show the separate contributions from
the Coulomb interactions (blue dotted lines) and the photon-mediated interactions (orange
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Figure 4.7 | Effective Hamiltonian parameters at the K/K′ points. (a)-(d) Evolution of the effective Hamilto-
nian parameters at the K/K′ points as the cavity width is reduced (solid black lines). We also show the separate
contributions from the Coulomb interactions (blue dotted lines) and the photon-mediated interactions (orange
dashed lines). Crucially, there exists a critical cavity width Lv where the Dirac velocity vanishes vD(Lv) = 0,
as highlighted in panel (b), which coincides with the multi-merging of the type-I and type-II Dirac points.
Furthermore, the Dirac velocity changes sign through this transition which inverts the chirality of the massless
Dirac polaritons. Results obtained with λ0 = 10a and µ = 0.001ω0.

dashed lines). Of particular importance is the Dirac velocity that is shown in figure 4.7(b).
Crucially, one observes that the two distinct interactions contribute with opposite signs and
thus tend to compensate each other. Moreover, for large cavity widths the contribution
from the Coulomb interactions is dominant, while for small cavity widths the contribution
from the photon-mediated interactions is dominant. Consequently, there exists a critical
crossover regime where these contributions perfectly cancel, making the Dirac velocity
vanish identically at the critical cavity width vD(Lv) = 0.

4.5.1 Type-I massless Dirac polaritons

Let us first focus on the regime of subcritical cavity widths (L ≫ Lv) where the Coulomb
interactions are dominant. One can see from figures 4.7(b)-(d) that |vD| > |t|/a and
|vD| > |D|/a for this regime. Consequently, one can safely neglect the quadratic terms
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in equation (4.40) and the effective Hamiltonian reads

H+(k) = ωD(L)12 − vD(L)σ · k , (4.45)

which is equivalent to a 2D massless Dirac Hamiltonian. The corresponding spectrum of the
polaritons is an isotropic linear Dirac cone dispersion

ωλ(k) = ωD + λ|vD||k| , (4.46)

which is characterized by closed, circular isofrequency contours. Therefore, the deterministic
Dirac points remain in the type-I class when the light-matter interaction is switched on; this
is not surprising given the constraints imposed by the symmetries.

Since vD > 0 in the subcritical regime, the spinor eigenstates read

|ψ+λ(k)⟩ = 1√
2

 1
−λeiϕk

 , (4.47)

where ϕk = arctan(ky/kx), and the corresponding pseudo-spin vector is

S+λ(k) = ⟨ψ+λ(k)| σ |ψ+λ(k)⟩ = −λ [ cosϕk , sinϕk , 0 ] . (4.48)

These represent type-I massless Dirac polaritons which are simultaneous eigenstates of the
chirality operator

σ · k̂ |ψ+λ(k)⟩ = −λ |ψ+λ(k)⟩ . (4.49)

This shows that the pseudo-spin is locked antiparallel/parallel to the momentum in the up-
per/lower bands, respectively, giving rise to a topological winding number of +1. Therefore,
within this subcritical regime of cavity widths, the photon-mediated interactions do not
qualitatively affect the nature of the type-I massless Dirac polaritons at the K/K′ points, they
simply renormalize the Dirac frequency and Dirac velocity.

4.5.2 Type-II massless Dirac Polaritons

In stark contrast, the type-II Dirac points only exist due to the hybridization with the cavity
photons. Unfortunately, since these accidental Dirac points emerge at an arbitrary point
along the Γ → K(K′) lines in the Brillouin zone, it is impossible to gain analytical insight by
directly expanding the dynamical matrix. However, we can gain some qualitative insight by
using the effective Hamiltonian in equation (4.40) which also captures the accidental Dirac
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points when t < 0, and it becomes increasingly accurate within the vicinity of the critical
cavity width.

The band degeneracies in the effective polariton dispersion near the K point occur when
the intersublattice matrix elements in equation (4.40) vanish

−vD(kx + iky) + t(kx − iky)2 = 0 . (4.50)

Apart from the trivial solution that corresponds to the deterministic type-I Dirac point (k = 0),
equation (4.50) also has three non-trivial solutions that are given by

kn
II = − sgn(vD)

∣∣∣∣vD

t

∣∣∣∣ [ cos
(2πn

3

)
, sin

(2πn
3

) ]
, n = 0, 1, 2 . (4.51)

These are located along the Γ → K(K′) lines in the subcritical regime since vD > 0, and
they are distributed in such a way that is consistent with the C3 symmetry. If we focus on the
accidental Dirac point corresponding to n = 0, we can expand the effective Hamiltonian in
equation (4.40) to leading order in k′ = k − k0

II. The resulting effective Hamiltonian reads

HkII(k′) =
(
ωD + Dv2

D

t2
+ 2DvD

t
k′

x

)
12 + σ∗ · v · k′ , v =

 vD 0
0 3vD

 , (4.52)

which takes the form of a generalized 2D massless Dirac Hamiltonian with an anisotropic
Dirac cone dispersion

ωλ(k′) = ωD + Dv2
D

t2
+ 2DvD

t
k′

x + λ
√
v2

Dk
2
x + 9v2

Dk
2
y , (4.53)

whose axis is tilted towards the Γ point. More specifically, since the condition 2|D|/|t| > 1
is satisfied for the regime of cavity widths that we are interested in, the corresponding Dirac
cone is critically tilted such that the isofrequency contours are hyperbolic and not circular;
this confirms that the accidental Dirac points do indeed belong to the type-II class, as we
inferred directly from the polariton dispersion in figure 4.5(a). Furthermore, since the type-II
Dirac Hamiltonian in equation (4.52) is expressed in terms of σ∗, as opposed to σ, the
corresponding vortex in pseudo-spin field must carry a topological charge of −1, which is
opposite to the type-I Dirac point.
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Figure 4.8 | Cavity-induced multi-merging of the type-I and type-II Dirac points. (a)-(c) Evolution of the
polariton dispersion (top panels) and pseudo-spin field for the upper band (bottom panels) near the K point
within the vicinity of the critical cavity width Lv. (a) For subcritical widths (L > Lv), three satellite vortices
with a topological charge of -1 can be observed along the Γ → K lines, which correspond to the accidental
type-II Dirac points (blue circles). These surround a central vortex at the K point with a topological charge of
+1, which corresponds to the deterministic type-I Dirac point (yellow circle). (b) At the critical cavity width
(L = Lv), the three type-II Dirac points merge with the type-I Dirac point at the K point, which forms a hybrid
Dirac point with a topological charge of −2. (c) As the cavity width is decreased further (L < Lv), the three
type-II Dirac points re-emerge and migrate along the K → M lines, while the type-I Dirac point remains pinned
at the K point. Results obtained with λ0 = 10a and µ = 0.001ω0. For panels (a), (b) and (c) we use cavity
widths given by a/L = 0.8, a/L = 0.864262 and a/L = 0.881, respectively.

4.5.3 Multi-merging of the type-I and type-II Dirac points

We will now proceed to analyze the first interesting transition that occurs in the polariton
spectrum as the cavity width is reduced: the multi-merging of the type-I and type-II Dirac
points. The essential physics related to this transition is captured by the effective Hamiltonian
in equation (4.40). In figure 4.8(a) we plot the full polariton dispersion near the K point given
by equation (4.30) for a cavity width just larger than the critical width (L > Lv), and we
also show the corresponding pseudo-spin field for the upper band using equation (4.32). In
this regime of cavity widths, one observes three vortices in the pseudo-spin field located
along the Γ → K lines with a topological charge of −1, and these directly correspond to the
accidental type-II Dirac points. These satellite vortices surround a central vortex located at
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the K point which has a topological charge of +1, and this corresponds to the deterministic
type-I Dirac point.

As the cavity width is reduced, the three type-II Dirac points migrate along the Γ → K
lines as depicted by the red arrows in figure 4.8(a), until the critical width (L = Lv) where
they merge together with the central type-I Dirac point. Since the topological charge must be
conserved through the transition, this multi-merging results in a hybrid Dirac point that is
characterized by a higher order topological charge of −2 as observed in figure 4.8(b).

We note that this merging coincides with the vanishing of the Dirac velocity as highlighted
in figure 4.7(b). Therefore, the effective Hamiltonian describing the polaritons at this critical
width reads

H+(k) = ωD(Lv)12 + t(Lv)(σ∗ · k)◦2 +D(Lv)|k|212 , (4.54)

which is a generalized chiral Hamiltonian that has several qualitatively different properties to
the massless Dirac Hamiltonian in equation (4.45). First, we note that the chiral polaritons
are no longer massless since the dispersion is purely quadratic at the critical cavity width

ωλ(k) = ωD + (D + λ|t|)|k|2 , (4.55)

as observed in figure 4.8(b). Moreover, the upper/lower band symmetry about the Dirac
frequency is strongly broken (|D| > |t|) such that both of the bands have a negative effective
mass. Furthermore, the corresponding eigenstates of equation (4.54) read

|ψ+λ(k)⟩ = 1√
2

 1
−λe−i2ϕk

 , (4.56)

which are simultaneous eigenstates of a more generalized chirality operator

(σ∗ · k̂)◦2 |ψ+λ(k)⟩ = −λ |ψ+λ(k)⟩ . (4.57)

Consequently, the pseudo-spin vector

S+λ(k) = −λ [ cos(−2ϕk) , sin(−2ϕk) , 0 ] , (4.58)

winds twice in the anticlockwise direction as one traverses a clockwise loop around the
hybrid Dirac point as can be seen in figure 4.8(b).

This scenario bears some resemblance with bilayer graphene whose low-energy quasipar-
ticles also exhibit a predominantly quadratic spectrum and a topological winding number
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of ±2. This doubling of the winding number in bilayer graphene results in markedly dif-
ferent properties compared to graphene as we discussed in section 2.2.6. Therefore, one
would expect the polaritons in this critical regime to exhibit qualitatively different properties
compared to the subcritical regime.

However, this hybrid Dirac point in the polariton spectrum is not stable as it is not
protected by any symmetry; it has emerged from the perfect cancellation of the Coulomb and
photon-mediated contributions to the Dirac velocity. Therefore, it is interesting to explore
what happens when we reduce the cavity width further. Since the topological charge must
be preserved through the transition, there are several theoretical possibilities. For example,
in principle the hybrid Dirac point could split into two Dirac points each with a topological
charge of −1, although such a scenario would clearly require one to break the C3 symmetry
of the lattice. Since modifying the cavity width preserves the C3 symmetry, the hybrid
Dirac point splits into four Dirac points; the type-I Dirac point remains pinned at the K
point with a topological charge of +1, while the three type-II Dirac points re-emerge with a
topological charge of −1 and migrate along the K → M lines as depicted by the red arrows
in figure 4.8(c).

4.5.4 Annihilation of the type-II accidental Dirac points

Next we explore another peculiar, but entirely distinct transition that occurs in the polariton
spectrum as the cavity width is reduced further: the merging and subsequent annihilation
of the type-II Dirac points. Unfortunately, the effective Hamiltonian near the K point
given by equation (4.40) cannot capture this transition as it also involves the type-II Dirac
points that emerge from the K′ point. Therefore, to gain some analytical insight, we must
derive an effective Hamiltonian near one of the M points which we choose to be located at
M = [ 2π/

√
3 , 0 ] for convenience.

Following the same expansion method that we outlined in section 4.5 we obtain the
following effective Hamiltonian near the M point (see appendix C.2 for details)

HM(k) = ωM(L)12 + [tM(L)k2
x −∆M(L)]σx − vM(L)kyσy −DM(L)k2

x12 , (4.59)

where we have retained only the leading order terms in k = q − M, and the corresponding
polariton spectrum reads

ωλ(k) = ωM(L) −DM(L)k2
x + λ

√
[tM(L)k2

x −∆M(L)]2 + v2
M(L)k2

y . (4.60)
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Note that equation (4.59) is consistent with the general form of the Hamiltonian that we
derived through symmetry analysis in appendix A.2.

In equation (4.59), the zeroth order diagonal term reads

ωM(L) = ωcav − µ
ω0

ωcav

∑
R ̸=0

G∥(R)e−iM·R + µ
ω0

ωcav
Re[ǦTEM

⊥ (0, ωcav)]

− µ
ω0

ωcav

∑
g

ω2
cavξ

2e−η2|M−g|2

ω2
M−g − ω2

cav
,

(4.61)

and the zeroth order σx term is given by

∆M(L) = µ
ω0

ωcav

∑
R ̸=0

G∥(R − d)e−iM·(R−d) + µ
ω0

ωcav

∑
g

ω2
cavξ

2ϕg

ω2
M−g − ω2

cav
. (4.62)

As before, we have used the regularization procedure outlined in section 3.4.6 in order to
evaluate the difference between the last two divergent terms in equation (4.61). Moreover,
the coefficient of the linear σy term reads

vM(L) = µ
ω0

ωcav

∑
R
G∥(R − d)e−iM·(R−d)(R − d)y − iµ ω0

ωcav

∑
g

2ω2
cavξ

2c2(M − g)yϕg

(ω2
M−g − ω2

cav)2 ,

(4.63)
the coefficient of the quadratic diagonal term is given by

DM(L) = −µ

2
ω0

ωcav

∑
R ̸=0

G∥(R)e−iM·R(R)2
x

−µ ω0

ωcav

∑
g

 ω2
cavξ

2

(ω2
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cav)2 − 4ω2
cavξ
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(ω2
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cav)3

 , (4.64)

and the coefficient of the quadratic σx term reads

tM(L) = µ

2
ω0

ωcav

∑
R ̸=0

G∥(R − d)e−iM·(R−d)(R − d)2
x

+µ ω0

ωcav

∑
g

 ω2
cavξ

2ϕg

(ω2
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cav)2 −
4ω2

cavξ
2c4(M − g)2

xϕg

(ω2
M−g − ω2

cav)3

 . (4.65)

In figures 4.9(a)-(d) we show the evolution of these effective Hamiltonian parameters as
the cavity width is reduced (black solid lines), and we also show the separate contributions
from the Coulomb interactions (blue dotted lines) and the photon-mediated interactions
(orange dashed lines). Of particular importance is the parameter ∆M shown in figure 4.9(a),
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Figure 4.9 | Effective Hamiltonian parameters at theM point. (a)-(d) Evolution of the effective Hamiltonian
parameters at the M point as the cavity width is reduced (solid black lines). We also show the separate
contributions from the Coulomb interactions (blue dotted lines) and the photon-mediated interactions (orange
dashed lines). Crucially, there exists a critical cavity width L∆ where the gap parameter vanishes∆M(L∆) = 0,
as highlighted in panel (a), which coincides with the merging of the type-II Dirac points at the M point. Results
obtained with λ0 = 10a and µ = 0.001ω0.

since it dictates the size of the gap between the polariton bands at the M point. We observe
that the Coulomb and photon-mediated interactions contribute to the gap parameter with
opposite signs and thus tend to compensate each other. Therefore, there exists a critical cavity
width L∆ where these contributions perfectly cancel and the gap at the M point vanishes
∆M(L∆) = 0 as highlighted in figure 4.9(a).

For cavity widths just beyond the critical width where the multi-merging transition occurs
(L∆ < L < Lv), both of the parameters in the σx term are positive tM, ∆M > 0. Therefore,
one can conclude from equation (4.60) that there exists two band degeneracies located at
positions k± = ±[

√
∆M/tM , 0 ] along the K(K′) → M lines. To see this explicitly, in

figure 4.10(a) we plot the full polariton dispersion given by equation (4.30) for a cavity width
in this regime, and we also show the corresponding pseudo-spin field for the upper band
using equation (4.32). One can observe that these band degeneracies directly correspond to
the type-II Dirac points that emerge from the K/K′ points after the multi-merging transition.
Furthermore, one can also observe from the vortices in the pseudo-spin field, that the type-II
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Figure 4.10 | Cavity-induced merging and annihilation of the type-II Dirac points. (a)-(c) Evolution of the
polariton dispersion (top panels) and pseudo-spin field for the upper band (bottom panels) near the M point
within the vicinity of the critical cavity width L∆. (a) Just after the multi-merging transition (Lv > L > L∆), a
pair of vortices emerge along the K(K′) → M lines with opposite topological charges of -1 (blue circle) and +1
(yellow circle), which correspond to the type-II Dirac points that emerge from the K and K′ points, respectively.
(b) At the critical cavity width (L = L∆), the type-II Dirac points merge together at the M point to form a
semi-Dirac point with a trivial topological charge of 0, which is characterized by a linear dispersion along the
ky direction and a quadratic dispersion along the kx direction. (c) Beyond this critical cavity width (L < L∆),
the type-II Dirac points annihilate one another giving rise to a local gap at the M point, and the vorticity in the
pseudo-spin field vanishes. Results obtained with λ0 = 10a and µ = 0.001ω0. For panels (a), (b) and (c) we
use cavity widths given by a/L = 0.882, a/L = 0.8839 and a/L = 0.892, respectively.

Dirac points emerging from opposite valleys have opposite topological charges of ±1, as
required by T symmetry.

As the cavity width is reduced further, the type-II Dirac points migrate along the K(K′) →
M lines towards each other as indicated by the red arrows in figure 4.10(a). This migration
continues until the critical cavity width (L = L∆) where they merge together and the gap
at the M point vanishes as shown in figure 4.10(b). In stark contrast to the previous multi-
merging transition, the merging of the type-II Dirac points results in a highly anisotropic
semi-Dirac point, which is characterized by a linear dispersion along the ky direction and
a quadratic dispersion along the kx direction. Crucially, the semi-Dirac point has a trivial
topological charge of 0; this renders the semi-Dirac point susceptible to a gap-opening
perturbation which is exactly what we observe in figure 4.10(c) when we reduce the cavity
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width further (L < L∆). The gap parameter changes sign through this transition and therefore
the type-II Dirac points annihilate one another which opens a local gap near the M point, and
the corresponding vortices in the pseudo-spin field disappear.

This transition is reminiscent of the strain-induced merging and annihilation of the Dirac
points that we discussed in section 2.3.2, which has been studied extensively within real and
artificial graphene systems [57, 61–67]. However, that merging transition is of a very different
nature; it requires one to strongly break the C3 symmetry to decouple the deterministic Dirac
points from the high-symmetry points and induce the merging transition. In stark contrast,
here the merging and annihilation of the accidental Dirac points can occur while preserving
the lattice symmetry, and it does not result in a global gap since the deterministic type-I Dirac
points always remain pinned at the K/K′ points.

As a brief remark, we note that the generation and manipulation of accidental type-I
Dirac points has been demonstrated within honeycomb tight-binding models [253]; however,
this toy model involves the artificial tuning of third-nearest-neighbour hopping amplitudes
which, to the author’s knowledge, has no physical realization thus far. Moreover, a similar
evolution of accidental type-I Dirac points has been predicted within a honeycomb spring-
mass model by modifying the tension in the springs via an isotropic stretch of the lattice [52].
In stark contrast, here the generation and manipulation of the accidental type-II Dirac points
requires no changes to the lattice structure – it is induced by modifying only the surrounding
electromagnetic environment via the cavity width.

4.5.5 Inversion of chirality

In this final section we will explore another interesting phenomenon that occurs as one
reduces the cavity width further: a cavity-induced inversion of chirality. For supercritical
cavity widths (L ≪ Lv) where the photon-mediated interactions become dominant, we can
observe from figures 4.7(b)-(d) that |vD| > |t|/a and |vD| > |D|/a. Consequently, one can
safely neglect the quadratic terms in equation (4.40) and the effective Hamiltonian near the
K point once again is given by

H+(k) = ωD(L)12 − vD(L)σ · k , (4.66)

which is equivalent to a 2D massless Dirac Hamiltonian. Therefore, the corresponding spinor
eigenstates

|ψ+λ(k)⟩ = 1√
2

 1
λeiϕk

 , (4.67)
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Figure 4.11 | Cavity-induced inversion of chirality. (a)-(c) Evolution of the polariton spectrum near the K
point to leading order in k as the cavity width is decreased. The pseudo-spin is depicted by gold arrows, and
the band colour corresponds to the chirality of the polaritons as defined in the main text, where the orange and
blue bands indicate a chirality of +1 and −1, respectively. (a) For subcritical cavity widths (L ≫ Lv), the
metasurface exhibits massless Dirac polaritons characterized by a linear dispersion and a topological winding
number of +1. (b) At the critical cavity width (L = Lv), the metasurface exhibits massive chiral polaritons
characterized by a quadratic dispersion and a topological winding number of −2. (c) For supercritical cavity
widths (L ≪ Lv), the massless Dirac polaritons re-emerge but with a cavity-induced inversion of chirality
where the orientation of the pseudo-spin is flipped.

represent type-I massless Dirac polaritons that exhibit an isotropic linear Dirac cone spectrum

ωλ(k) = ωD + λ|vD||k| (4.68)

and are characterized by a topological winding number of +1.

While this is very similar to the subcritical regime, there is one significant difference.
Crucially, the Dirac velocity changes sign at the critical cavity width Lv as shown in fig-
ure 4.7(b), and this flips the orientation of the pseudo-spin. Therefore, in the supercritical
regime the massless Dirac polaritons re-emerge but with an inverted chirality with respect to
the subcritical regime

σ · k̂ |ψ+λ(k)⟩ = λ |ψ+λ(k)⟩ . (4.69)

In other words, the pseudo-spin vector

S+λ(k) = λ [ cosϕk , sinϕk , 0 ] (4.70)

is now locked parallel/antiparallel to the momentum in the upper/lower bands, respectively.
Consequently, if one was to excite the eigenstate |ψ+λ(k)⟩ = [ 1 , 1 ]T/

√
2 – which corre-
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sponds to a pseudo-spin pointing to the right – then this polariton would propagate to the left
in the subcritical regime, while in the supercritical regime it would propagate to the right. To
summarize, in figures 4.11(a)-(c) we schematically depict how the nature of the polaritons
near the K point evolves as the cavity width is reduced.

4.6 Conclusion
In this chapter we have shown that rich Dirac physics emerges in a simple honeycomb
metasurface which is not amenable to a simple tight-binding model. In particular, we have
unveiled a mechanism that enables one to tune the fundamental properties of the Dirac
polaritons without modifying the underlying lattice symmetries. Ultimately, this unique
tunability stems from the hybrid light-matter nature of the polaritons, whose properties
are intimately connected to the local electromagnetic environment that mediates the dipole-
dipole interactions. Exploiting this, we have demonstrated that one can induce exotic merging
transitions of the Dirac points, and also manipulate the winding number and chirality of the
Dirac polaritons by varying a single external parameter: the cavity width. This rich scenario
stands in sharp contrast to graphene and its photonic analogs where the properties are usually
fixed by the lattice structure since there is little room to modify the nature of the coupling
between lattice sites.



5
Tunable pseudo-magnetic fields for polaritons in
strained metasurfaces

A RTIFICIAL magnetic fields are revolutionizing our ability to manipulate neu-
tral particles by enabling the emulation of exotic phenomena once thought
to be exclusive to charged particles. Inspired by graphene physics, pseudo-

magnetic fields generated by inhomogeneous strain have attracted considerable inter-
est because of their simple geometrical origin. However, to date, these strain-induced
pseudo-magnetic fields have failed to emulate the tunability of real magnetic fields be-
cause they are dictated solely by the engineered strain configuration, rendering them
fixed by design. In this chapter, we demonstrate that one can generate a pseudo-
magnetic field for polaritons by straining a honeycomb metasurface composed of a
subwavelength array of dipole emitters/antennas. Without altering the strain config-
uration, we unveil how one can tune the pseudo-magnetic field strength by modifying
the photonic environment via an enclosing cavity waveguide. In fact, we show that one
can even switch off the pseudo-magnetic field entirely at a critical cavity width, with-
out removing the strain – a counter-intuitive result that is impossible to achieve with
photonic systems that emulate the tight-binding physics of graphene. Exploiting this,
we demonstrate that one can induce a collapse and revival of the polariton Landau lev-
els by varying only the cavity width. Unlocking this tunable pseudo-magnetism poses
new intriguing questions beyond the paradigm of conventional tight-binding physics.

This chapter presents original research that was published as follows:

Mann, C.-R., Horsley, S. A. R. & Mariani, E. Tunable pseudo-magnetic fields for polaritons
in strained metasurfaces. Nature Photonics 14, 669-674 (2020).
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5.1 Introduction

Unfortunately, the fundamental laws of physics dictate that neutral particles do not directly
couple to the electromagnetic gauge potentials. Therefore, exotic phenomena exhibited by
charged particles in magnetic fields, such as the Lorentz force, Aharonov-Bohm effect, and
Landau quantization, remain elusive for neutral particles. This fundamental limitation has
inspired various methods of engineering artificial magnetic fields which are revolutionizing
our ability to manipulate neutral particles in ways that were once thought to be exclusive to
charged particles [68, 77, 78, 165–169, 254–263]. Within this paradigm, one tantalizingly
straightforward approach has emerged from the concept of strain-engineering in graphene
physics. In particular, as a remarkable consequence of the Dirac-like nature of the charge
carriers, it has been shown that smooth deformations of the graphene membrane translate
into synthetic gauge fields in the effective Dirac Hamiltonian [19–21].

This beautiful result stems from the topological stability of the Dirac points, where
smooth lattice distortions that break the C3 symmetry but locally preserve the I symmetry
can only shift the Dirac cone in momentum space, thereby mimicking the effect of a gauge
field. As a result, inhomogeneous strain configurations can give rise to pseudo-magnetic
fields [22–24] which have been shown to reconstruct the electronic spectrum into quantized
Landau levels despite the absence of a real magnetic field [27]. The true power of this
approach lies in its purely geometric origin which can be emulated in any hexagonal lattice
that exhibits deterministic Dirac points, even within entirely different physical systems
[68, 165–171]. In the realm of photonics, these pseudo-magnetic fields have been realized
for photons by judiciously engineering aperiodicity in honeycomb lattices of evanescently
coupled waveguides which mimic the tight-binding physics of graphene [68].

However, these emergent pseudo-magnetic fields in photonic graphene lattices have so
far failed to emulate one key property of real magnetic fields: tunability. While real magnetic
fields that are applied across samples in the lab can be tuned by varying external parameters
(e.g., the current through a solenoid), these pseudo-magnetic fields are usually determined
solely by the strain configuration, rendering them fixed by design. Consequently, if one
wants to modify the pseudo-magnetic field then one has to fabricate a new structure with a
different strain pattern [68]. While, in principle, one could envisage fabricating a photonic
lattice on a flexible substrate, it would remain extremely challenging to precisely engineer
the strain patterns that are required to generate a uniform pseudo-magnetic field over a large
area by applying external forces [22]. Therefore, an interesting question arises: is it possible
to tune the strain-induced pseudo-magnetic fields without modifying the strain? Moreover, is
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it possible to switch off the pseudo-magnetic field without removing the strain? Based on
the naive intuition that is built from the simple tight-binding physics of graphene, the latter
seems impossible since any anisotropy in the hopping parameters will inevitably shift the
Dirac cone. However, while breaking the C3 symmetry permits a gauge field-like term to
appear in the effective Hamiltonian, it does not guarantee it. In principle, it can be tuned to
zero – but how?

In this chapter we will show that one can generate a pseudo-magnetic field for polaritons
by straining a honeycomb metasurface composed of a subwavelength array of interacting
dipole emitters/antennas. The dipoles hybridize with the surrounding photons which can
mediate long-range dipole–dipole interactions. Therefore, previous results derived from
simple tight-binding models do not trivially extend to lattices of interacting dipoles; a priori,
it is not obvious that anisotropy in the dipole-dipole interactions will generate a significant
pseudo-vector potential. Crucially, the nature of the dipole–dipole interactions depends
qualitatively on the surrounding electromagnetic environment in which the dipoles are
embedded. By exploiting this feature of emitters we show that, without altering the strain
configuration, one can tune the artificial magnetic field by modifying the real electromagnetic
environment.

To illustrate this, we embed the strained metasurface inside a cavity waveguide and unveil
that the strength of the pseudo-magnetic field can be tuned by varying a single external
parameter: the cavity width. Remarkably, there exists a critical cavity width where the
pseudo-magnetic field generated by the Coulomb interactions is completely cancelled by
the long-range photon-mediated interactions, resulting in the pseudo-magnetic field being
switched off for any strain configuration – this striking result is impossible to achieve with
photonic systems that emulate the tight-binding physics of graphene [58–60]. Consequently,
for small strains we demonstrate a Lorentz-like force that can be switched on/off, deflecting
polariton wavepackets into effective cyclotron orbits whose radius can be controlled via the
cavity width. For large strains, we also demonstrate Landau quantization of the polariton
cyclotron orbits, where decreasing the cavity width can induce a collapse and revival of the
polariton Landau levels.

5.2 Strained honeycombmetasurface

A schematic of a strained honeycomb metasurface embedded inside a cavity waveguide is
depicted in figure 5.1. We describe the metasurface using the same minimal model that we
presented in section 4.2 for the unstrained case, which we will repeat here for convenience.
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Figure 5.1 | Strained honeycomb metasurface inside a cavity waveguide. Schematic of a strained honey-
comb metasurface composed of an array of dipole emitters/antennas with subwavelength nearest-neighbour
separation. The induced dipole moments are assumed to point in the z-direction (see inset). Furthermore, the
strained metasurface is embedded inside a cavity waveguide of width L, where the cavity walls are assumed to
be perfect mirrors.

In particular, we describe the dipoles with a bare polarizability of the form

αB(ω) = 2ω0µ

ω2
0 − ω2 − iωγnr

, (5.1)

where the corresponding induced dipole moments are assumed to point in the z-direction
(see inset). For the unstrained honeycomb metasurface, the dipoles are located at periodic
positions RA = R + dA and RB = R + dB, which form the A and B inequivalent hexagonal
sublattices, respectively. Here, the basis vectors

dA = a

2
[

0 , −1
]
, dB = a

2
[

0 , 1
]
, (5.2)

locate the positions of the dipoles within a unit cell and d = dB − dA is the vector that
connects the sublattices. Furthermore, R = l1a1 + l2a2 represents the set of lattice translation
vectors, where l1, l2 ∈ Z are integers, and

a1 =
√

3a
2
[

− 1 ,
√

3
]
, a2 =

√
3a
2
[

1 ,
√

3
]
, (5.3)

are the primitive lattice vectors. The corresponding set of reciprocal lattice vectors are
g = n1b1 + n2b2, where n1, n2 ∈ Z are integers, and

b1 = 2π
3a
[

−
√

3 , 1
]
, b2 = 2π

3a
[√

3 , 1
]
, (5.4)

are the primitive reciprocal lattice vectors that define the Brillouin zone of the unstrained
lattice. Next we assume that the metasurface has been engineered with a fixed strain pattern,
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where the dipoles are displaced to new, aperiodic positions given by

R̄A = RA + u(RA) , R̄B = RB + u(RB) . (5.5)

Here we have introduced the in-plane displacement field

u(ρ) = [ux(ρ) , uy(ρ)] , (5.6)

which characterizes the strain configuration. We will assume that the displacement field
varies slowly on the scale of the lattice constant so that the corresponding strain tensor

ενν′(ρ) = 1
2

(
∂uν

∂ρν′
+ ∂uν′

∂ρν

)
, ν, ν ′ = x, y (5.7)

remains small across the metasurface. Finally, we embed the strained metasurface at the
centre of a cavity waveguide of width L, where the cavity walls are assumed to be perfect
mirrors.

5.2.1 Coupled-dipole equations

In the absence of a driving field, the collective dynamics of the dipoles within the strained
metasurface is described by a system of coupled-dipole equations that read

1
α(ω)pRA

(ω) =
∑

R′
A ̸=RA

G(R̄A − R̄′
A, ω)pR′

A
(ω) +

∑
RB

G(R̄A − R̄B, ω)pRB
(ω) (5.8)

and

1
α(ω)pRB

(ω) =
∑

R′
B ̸=RB

G(R̄B − R̄′
B, ω)pR′

B
(ω) +

∑
RA

G(R̄B − R̄A, ω)pRA
(ω) . (5.9)

Here pRA
(ω) and pRB

(ω) now represent the dipole moments at positions R̄A and R̄B,
respectively. As before, α(ω) = [α−1

B (ω) −Σ(ω)]−1 is the renormalized polarizability that
was derived in section 3.4.2, where the polarizability correction inside the cavity waveguide
reads

Σ(ω) = iVk
3
ω

6π + V
πL3

[
Li3

(
eikωL

)
− ikωLLi2

(
eikωL

)]
. (5.10)
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Furthermore, G(ρ − ρ′, ω) is the zz-component of the cavity Green’s function that was
derived in section 3.3 and reads

G(ρ − ρ′, ω) = i V
4L

∞∑
m=0

Nm

(
k2

ω − q2
m

)
H

(1)
0

(√
k2

ω − q2
m|ρ − ρ′|

)
. (5.11)

Note, the interactions between every pair of dipoles has been modified as a result of the
strain-induced shift of the dipole locations.

5.3 Effective polariton Hamiltonian

Since the discrete translational symmetry of the honeycomb metasurface is broken by the
lattice distortion, one cannot exploit Bloch’s theorem to block diagonalize the coupled-dipole
equations in momentum space, as we did for the unstrained honeycomb metasurface in
section 4.3.1. Instead, we seek to derive an effective Hamiltonian for the polaritons near the
K/K′ points which we assume are decoupled. Therefore, we write the dipole moments as

pRA
(ω) = eiτK·RAψτ

A(RA, ω) , pRB
(ω) = eiτK·RBψτ

B(RB, ω) , (5.12)

where we have introduced envelope fields ψτ
A(ρ, ω) and ψτ

B(ρ, ω) that describe the slow
variation of the dipole moments on the A and B sublattices, respectively, where τ = ±
is the valley index. Note, here we have used the crystal reference frame which captures
the effects of the modified dipole interactions but not the geometric effects associated with
the lattice distortion – it has been shown that the latter does not contribute to the emergent
pseudo-magnetic field as its contribution can be removed by a gauge transformation [157].
Furthermore, in what follows we will focus on the K valley since the equivalent physics
near the K′ valley is related via T symmetry, and therefore we will temporarily suppress the
valley index to ease notation.

To proceed we introduce the Fourier transform of the envelope fields

ψ̃A(k, ω) =
¨ d2ρ

2π ψA(ρ, ω)e−ik·ρ , ψ̃B(k, ω) =
¨ d2ρ

2π ψB(ρ, ω)e−ik·ρ , (5.13)

which enables us to transform the coupled-dipole equations into matrix form as

1
α̌(ω) ψ̃(k, ω) =

¨
d2k′

[
D∥(k,k′) + D⊥(k,k′, ω)

]
ψ̃(k′, ω) , (5.14)
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where α̌−1(ω) = α−1
B (ω) − Re[Σ(ω)]. In equation (5.14), the Fourier transform of the spinor

envelope field reads

ψ̃(k, ω) =
 ψ̃A(k, ω)
ψ̃B(k, ω)

 , (5.15)

the longitudinal dynamical matrix encoding the Coulomb interactions is given by

D∥(k,k′) =
 DAA

∥ (k,k′) DAB
∥ (k,k′)

DAB∗
∥ (k′,k) DBB

∥ (k,k′)

 , (5.16)

and the transverse dynamical matrix encoding the photon-mediated interactions reads

D⊥(k,k′, ω) =
 DAA

⊥ (k,k′, ω) DAB
⊥ (k,k′, ω)

DAB∗
⊥ (k′,k, ω) DBB

⊥ (k,k′, ω)

 . (5.17)

Note, as we eluded to earlier, the coupled-dipole equations are not block diagonal in mo-
mentum space since the polaritons with wavevector k and k′ are coupled due to the lattice
distortion. For an arbitrary displacement field, it is difficult to extract any general physics
from the coupled-dipole equations. Therefore, we will restrict our analysis to displacement
fields that vary slowly on the scale of the lattice constant, and seek an effective Hamiltonian
to leading order in the strain tensor by expanding the dynamical matrix to leading order in
the displacement field and wavevector.

5.3.1 Expansion of the longitudinal dynamical matrix

We will first analyze the longitudinal dynamical matrix elements in equation (5.16). The
intersublattice matrix elements are given by

DAB
∥ (k,k′) =

¨ d2ρ

(2π)2

∑
R
G∥(R − d + u(ρ) − u(ρ − R + d))e−i(K+k′)·(R−d)ei(k′−k)·ρ ,

(5.18)

where G∥(ρ − ρ′) is the longitudinal component of the cavity Green’s function that was
derived in section 3.3 and reads

G∥(ρ − ρ′) = − V
πL

∞∑
m=1

q2
mK0 (qm|ρ − ρ′|) . (5.19)

Since the Coulomb interactions are short-range the lattice sums converge rapidly in real
space.
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After expanding equation (5.18) to leading order in the displacement field we obtain

DAB
∥ (k,k′) =

¨ d2ρ

(2π)2

∑
R
G∥(R − d)e−i(K+k′)·(R−d)ei(k′−k)·ρ

×

1 − β(R − d)
2π

(R − d)ν

|R − d|2

¨
d2q ũν(q)

[
1 − e−iq·(R−d)

]
eiq·ρ

 , (5.20)

where
ũ(q) =

¨ d2ρ

2π u(ρ)e−iq·ρ (5.21)

is the Fourier transform of the displacement field and we assume Einstein’s summation
convention. Furthermore, the parameter

β(ρ) =
∣∣∣∣∣∂ log[G∥(ρ)]

∂ log(ρ)

∣∣∣∣∣ =
∣∣∣∣∣ρ
∑∞

m=1 q
3
mK1(qmρ)∑∞

m=1 q
2
mK0(qmρ)

∣∣∣∣∣ (5.22)

encodes how the Coulomb interaction strength changes with respect to small changes in the
separation distance, where K1 is the modified Bessel function of first order and second kind.
Next, we can perform the spatial integral in equation (5.20) which yields

DAB
∥ (k,k′) =

∑
R
G∥(R − d)e−i(K+k′)·(R−d)

δ(k′ − k)

− β(R − d)
2π

(R − d)ν

|R − d|2
ũν(k − k′)

[
1 − e−i(k−k′)·(R−d)

] ,
(5.23)

and after expanding equation (5.23) to leading order in k and k′ we obtain

DAB
∥ (k,k′) =

∑
R
G∥(R − d)e−iK·(R−d)

[1 − i(R − d)νk
′
ν ]δ(k′ − k)

− β(R − d)
2π

(R − d)ν(R − d)ν′

|R − d|2
∇̃uνν′(k − k′)

 .
(5.24)

Here we have identified ikν ũν′(k) = ∇̃uνν′(k), which is the Fourier transform of the
displacement gradient tensor ∇uνν′ = ∂uν′/∂ρν . Performing similar analysis for the



Effective polariton Hamiltonian 135

intrasublattice matrix elements in equation (5.16) yields

DAA/BB
∥ (k,k′) =

∑
R ̸=0

G∥(R)e−iK·R

[1 − i(R)νk
′
ν ]δ(k′ − k) − β(R)

2π
(R)ν(R)ν′

|R|2
∇̃uνν′(k − k′)

 .
(5.25)

Finally, after exploiting the symmetry of the unstrained lattice (see appendix C.1 for
details) one can simplify equation (5.24) to obtain

DAB
∥ (k,k′) =

∑
R
G∥(R − d)e−iK·(R−d)

− i(R − d)x(k′
x − ik′

y)δ(k′ − k)

−β(R − d)
2π

(R − d)2
x

|R − d|2
[ε̃xx(k − k′) − ε̃yy(k − k′) + 2iε̃xy(k − k′)]

 ,
(5.26)

and one can simplify equation (5.25) to obtain

DAA/BB
∥ (k,k′) =

∑
R ̸=0

G∥(R)e−iK·R

δ(k′ − k) − β(R)
2π

(R)2
x

|R|2
[ε̃xx(k − k′) + ε̃yy(k − k′)]

 ,
(5.27)

where ε̃νν′(k) is the Fourier transform of the strain tensor.

5.3.2 Expansion of the transverse dynamical matrix

We will now analyze the transverse dynamical matrix elements in equation (5.17). Since we
are interested in the regime of cavity widths L < λ0, we will only consider the TEM cavity
mode as we did for the unstrained honeycomb metasurface in chapter 4. The corresponding
single mode Green’s function was derived in section 3.3 and reads

GTEM
⊥ (ρ − ρ′, ω) = iVk

2
ω

4L H
(1)
0 (kω|ρ − ρ′|) . (5.28)

Within this single mode approximation the intersublattice matrix elements read

DAB
⊥ (k,k′, ω) =

¨ d2ρ

(2π)2

∑
R
GTEM

⊥ (R − d + u(ρ) − u(ρ − R + d), ω)

×e−i(K+k′)·(R−d)ei(k′−k)·ρ .

(5.29)

Since the photon-mediated interactions are long-range we need to accelerate the computation
of the lattice sums by performing them in reciprocal space.
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To do this, we first insert the eigenfunction expansion of the TEM Green’s function into
equation (5.29) which gives

DAB
⊥ (k,k′, ω) =

¨ d2ρ

(2π)2

¨ d2k′′

2π
∑
R
G̃TEM

⊥ (k′′, ω)ei(k′−k)·ρ

× ei(k′′−k′−K)·(R−d)eik′′·[u(ρ)−u(ρ−R+d)] ,

(5.30)

where we have defined
G̃TEM

⊥ (k, ω) = Vk2
ω

2πL
1

k2 − k2
ω

, (5.31)

which is essentially the 2D Fourier transform of the TEM Green’s function. Expanding
equation (5.30) to leading order in the displacement field yields

DAB
⊥ (k,k′, ω) =

¨ d2ρ

(2π)2

¨ d2k′′

2π
∑
R
G̃TEM

⊥ (k′′, ω)ei(k′−k)·ρ

×ei(k′′−k′−K)·(R−d)

1 + i
2πk

′′
ν

¨
d2q ũν(q)

[
1 − e−iq·(R−d)

]
eiq·ρ

 ,
(5.32)

and after performing the spatial integral in equation (5.32) we obtain

DAB
⊥ (k,k′, ω) =

¨ d2k′′

2π
∑
R
G̃TEM

⊥ (k′′, ω)ei(k′′−k′−K)·(R−d)

×

δ(k′ − k) + i
2πk

′′
ν ũν(k − k′)

[
1 − e−i(k−k′)·(R−d)

] .
(5.33)

We can now invoke Poisson’s summation identity

∑
R

ei(k′−k)·R = (2π)2

A
∑

g
δ(k′ − k + g) , (5.34)

where A = 3
√

3a2/2 is the area of the unit cell in the unstrained lattice, to convert the sum
over lattice vectors to a sum over reciprocal lattice vectors which reads

DAB
⊥ (k,k′, ω) = 2π

A
∑

g
ϕg

G̃TEM
⊥ (k′ + K − g, ω)δ(k′ − k)

+ i
2π

[
G̃TEM

⊥ (k′ + K − g, ω)(k′ + K − g)ν − (k′ ↔ k)
]
ũν(k − k′)

 .
(5.35)
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The phase factors ϕg = eig·d are the same as those that emerged for the unstrained honeycomb
metasurface and must be retained as they are crucial for maintaining the correct symmetry.
Next, we expand equation (5.35) to leading order in k and k′ which gives

DAB
⊥ (k,k′, ω) =

∑
g

ω2ξ2ϕg

ω2
K−g − ω2

δ(k′ − k) − 1
2π∇̃uνν(k′ − k)

− 2c2(K − g)ν

ω2
K−g − ω2

[
k′

νδ(k′ − k) − 1
2π (K − g)ν′∇̃uνν′(k − k′)

] ,
(5.36)

where ξ =
√

V/AL parameterizes the strength of the light-matter interaction. Performing
similar analysis for the intrasublattice matrix elements in equation (5.17) yields

DAA/BB
⊥ (k,k′, ω) =

∑
g

ω2ξ2

ω2
K−g − ω2

δ(k′ − k) − 1
2π∇̃uνν(k′ − k)

−2c2(K − g)ν

ω2
K−g − ω2

[
k′

νδ(k′ − k) − 1
2π (K − g)ν′∇̃uνν′(k − k′)

]
− Re[GTEM

⊥ (0, ω)]δ(k′ − k) .

(5.37)

Finally, after exploiting the symmetry of the unstrained lattice (see appendix C.1 for
details) one can simplify equation (5.36) to obtain

DAB
⊥ (k,k′, ω) = −

∑
g

2c2ω2ξ2ϕg(K − g)x

(ω2
K−g − ω2)2

(k′
x − ik′

y)δ(k′ − k)

− 1
2π (K − g)x [ε̃xx(k − k′) − ε̃yy(k − k′) + 2iε̃xy(k − k′)]

 ,
(5.38)

and one can simplify equation (5.37) to obtain

DAA/BB
⊥ (k,k′, ω) = − Re[GTEM

⊥ (0, ω)]δ(k′ − k) +
∑

g

ω2ξ2

ω2
K−g − ω2

δ(k′ − k)

− 1
2π [ε̃xx(k′ − k) + ε̃yy(k′ − k)]

[
1 − 2c2(K − g)2

x

ω2
K−g − ω2

] .
(5.39)
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5.3.3 Effective Hamiltonian with strain-induced pseudo-gauge fields

To obtain an effective Hamiltonian for the polariton envelope fields, we first linearize the
coupled-dipole equations by evaluating the polarizability correction and the transverse
dynamical matrix at the cavity resonant frequency. Next, we neglect non-radiative losses for
simplicity and approximate ω2

cav − ω2 ≃ 2ωcav(ωcav − ω). Finally, after Fourier transforming
equation (5.14) to the real-space and time domains, we obtain an effective equation of motion
which reads (ℏ = 1)

i ∂
∂t
ψτ (ρ, t) = Hτψτ (ρ, t) , (5.40)

where the spinor envelope field in the K/K′ valley is given by

ψτ (ρ, t) =
 ψτ

A(ρ, t)
ψτ

B(ρ, t)

 . (5.41)

The effective Hamiltonian governing the evolution of the spinor envelope field in the K valley
reads

H+ = ωD(L)12 + ivD(L)σ · ∇ + Φ(ρ, L)12 + σ · A(ρ, L) , (5.42)

while the effective Hamiltonian for the K′ valley is related via T symmetry H− = H∗
+.

Therefore, in the absence of strain, the polaritons are effectively described by a 2D mass-
less Dirac Hamiltonian with a linear Dirac cone dispersion, where the Dirac frequency and
Dirac velocity were derived in chapter 4 and are given by equation (4.41) and equation (4.42),
respectively. As schematically shown in figure 5.2, the applied strain can shift the Dirac cone
in frequency which is effectively described by a pseudo-scalar potential that reads

Φ(ρ, L) = Φ0(L)[εxx(ρ) + εyy(ρ)] . (5.43)

Furthermore, since the strain breaks the C3 symmetry, it can also shift the Dirac cone in
momentum space which is effectively described by a pseudo-vector potential that reads

A(ρ, L) = A0(L) [ εxx(ρ) − εyy(ρ) , −2εxy(ρ) ] . (5.44)

Consequently, if the strain pattern varies with position then the pseudo-scalar potential can
give rise to an effective pseudo-electric field

E(ρ, L) = ∇Φ(ρ, L) , (5.45)
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Figure 5.2 | Strain-induced shift of the massless Dirac cones. The unstrained honeycomb metasurface
supports massless Dirac polaritons which are characterized by massless Dirac cones near the high-symmetry
K/K′ points. Applying a strain pattern renders the dipole-dipole interactions anisotropic which breaks C3
symmetry but preserves T and I symmetry. This leads to a shift of the massless Dirac cones in frequency and
momentum space which is effectively described by a pseudo-scalar and pseudo-vector potential, respectively.
Therefore, by judiciously engineering an inhomogeneous strain pattern one can generate a pseudo-electric and
pseudo-magnetic field for the polaritons, where the latter has opposite signs for the two valleys by virtue of T
symmetry.

while the pseudo-vector potential can give rise to an effective pseudo-magnetic field

Bτ (ρ, L) = τ∇ × A(ρ, L) (5.46)

which, by virtue of T symmetry, has opposite signs for the K/K′ valleys.

It is important to stress that the symmetry of the honeycomb metasurface dictates how
the pseudo-gauge potentials depend on the strain tensor [21]; in fact, the general form
of the pseudo-gauge potentials in equation (5.43) and equation (5.44) is precisely what is
found for graphene and artificial graphene systems. However, the symmetry tells us nothing
about the magnitude of the pseudo-gauge potentials for a given strain configuration because
this depends on the specific details of the system. For the honeycomb metasurface, the
strain-independent parameter in the pseudo-scalar potential reads

Φ0(L) = µ
ω0

ωcav

∑
R ̸=0

G∥(R)e−iK·R (R)2
x

|R|2
β(R)

+µ ω0

ωcav

∑
g

[
ω2

cavξ
2

ω2
K−g − ω2

cav
− 2ω2

cavξ
2c2(K − g)2

x

(ω2
K−g − ω2

cav)2

]
,

(5.47)
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and the strain-independent parameter in the pseudo-vector potential is given by

A0(L) =µ
ω0

ωcav

∑
R
G∥(R − d)e−iK·(R−d) (R − d)2

x

|R − d|2
β(R − d)

− µ
ω0

ωcav

∑
g

2ω2
cavξ

2c2(K − g)2
xϕg

(ω2
K−g − ω2

cav)2 .

(5.48)

It is clear from equation (5.47) and equation (5.48) that the magnitude of the pseudo-gauge po-
tentials in the strained metasurface, and therefore the corresponding pseudo-electromagnetic
fields, depend critically on the nature of the dipole-dipole interactions.

5.3.4 Cavity-tunable pseudo-gauge potentials

In figures 5.3(a)-(b) we show how the strain-independent parameters in the pseudo-gauge
potentials can be tuned by varying only the cavity width (solid black lines). We also
show the separate contributions from the Coulomb interactions (dotted blue lines) and the
photon-mediated interactions (dashed orange lines). Remarkably, there exists critical cavity
widths (LΦ and LA) where these parameters vanish identically, thereby switching off the
pseudo-gauge potentials entirely.

We stress that this is a highly non-trivial result. It says that, at the critical cavity width
LA, you can perturb the lattice with any strain pattern that you choose and no pseudo-vector
potential will be generated, despite the anisotropy in the dipole-dipole interactions. Physically,
this means that the strain-induced change in the dipole locations within the metasurface
does not change the interaction energy between the sublattices. Within a nearest-neighbour
tight-binding model this would require one to engineer a hopping parameter that does not
vary with distance; this is obviously impossible to achieve with photonic analogs of graphene
where the strength of the evanescent coupling strictly decreases with the separation distance
[58–60].

In general, the strain does change the interaction energy between any pair of dipoles in the
metasurface; however, the sum of all these changes can be made to vanish. Crucially, while
the contributions from the short-range Coulomb interactions and long-range photon-mediated
interactions are always finite and never vanish individually, they have opposite signs and thus
tend to compensate each other in the pseudo-gauge potentials. At the critical cavity widths,
these contributions perfectly cancel making the pseudo-gauge potentials vanish. This ability
to switch off and tune the pseudo-gauge potentials without modifying the strain opens up
new perspectives beyond previously studied tight-binding models.
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Figure 5.3 | Cavity-tunable pseudo-gauge potentials. (a)-(b) Evolution of the strain-independent parameters
in the pseudo-scalar potential (Φ0) and pseudo-vector potential (A0) as the cavity width is reduced (black solid
lines). We also show the separate contributions emerging from the Coulomb interactions (blue dotted lines) and
the photon-mediated interactions (orange dashed lines) which have opposite signs. At critical cavity widths
(LΦ and LA) these contributions perfectly cancel resulting in the pseudo-gauge potentials being switched off
for any strain configuration. Results obtained with λ0 = 6.5a and µ = 0.01ω0.

5.4 Tunable Lorentz-like force for polaritons

Throughout the rest of this chapter, we will focus on some of the implications of the tunable
pseudo-vector potential and the corresponding pseudo-magnetic field. Specifically, we
consider a strain configuration described by the displacement field [22]

u(ρ) = ∆

a

[
2xy , x2 − y2

]
, (5.49)

where ∆ is a measure of the strain magnitude. This trigonal strain configuration gives rise
to a vanishing pseudo-scalar potential (because the trace of the strain tensor is zero) and a
pseudo-vector potential that reads

A(ρ, L) = 4∆A0

a

[
y , −x

]
. (5.50)

This is analogous to the symmetric gauge in electrodynamics and leads to a uniform pseudo-
magnetic field

Bτ (L) = −τ 8∆A0

a
ẑ (5.51)

which points normal to the plane of the metasurface.
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Figure 5.4 | Cavity-tunable cyclotron orbits. (a) Schematic of the cyclotron motion exhibited by polariton
wavepackets due to a Lorentz-like force generated by a pseudo-magnetic field which has opposite signs in the
K/K′ valleys. (b) Predicted evolution of the cyclotron orbit radius as the cavity width is reduced for a fixed
strain configuration at a fixed frequency relative to the Dirac point. The crosses correspond to the calculated
radii of the simulated trajectories in figure 5.5, which show very good agreement with the analytical predictions.
Results obtained with λ0 = 6.5a, µ = 0.01ω0, δω = −0.1µ and ∆ = 2 × 10−5.

Therefore, in the ‘semiclassical’ limit [264], polariton wavepackets propagating through
the strained metasurface behave as if they were subjected to a Lorentz-like force

Fτ (L) = sgn(vD)v̂ × Bτ (5.52)

which acts perpendicular to the group velocity direction v̂. Consequently, the polaritons will
exhibit cyclotron motion, as schematically depicted in figure 5.4(a), in direct analogy with
charged particles in real magnetic fields. Crucially, by modifying the cavity width one can
tune the magnitude of the Lorentz-like force and the effective cyclotron mass of the Dirac
polaritons which is given by

mc(L) = δω

v2
D
, (5.53)

where δω = ω − ωD is the frequency relative to the Dirac point.

The corresponding radius of the cyclotron orbit reads

Rc(L) = |mc|v2
D

|Fτ |
, (5.54)
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and in figure 5.4(b) we show how this can be tuned by varying only the cavity width at a
fixed frequency relative to the Dirac point. Note, the dotted line indicates the region of cavity
widths for which the linear Dirac cone approximation breaks down due to the vanishing
Dirac velocity (see appendix D.1 for details). One observes that the cyclotron orbit radius
increases as the cavity width is reduced, until the critical width where the pseudo-magnetic
field is switched off and the polaritons no longer exhibit cyclotron motion. Beyond this
critical width, the polariton cyclotron radius decreases as the cavity width is reduced further.

5.4.1 Split-operator method for simulating polariton wavepackets

To verify these analytical predictions, we can simulate the evolution of polariton wavepackets
in the strained metasurface using the effective Hamiltonian given by equation (5.42). To do
this, we use the second-order split-operator method [25] to approximate the time evolution of
the polariton envelope fields. After a small time δt has elapsed the polariton envelope field in
the K valley is given by

ψ+(ρ, t+ δt) = e−iH+δtψ+(ρ, t) . (5.55)

In the second-order split operator method, the evolution operator in equation (5.55) is ap-
proximated as

e−iH+δt = e− i
2 Hε

+δte−iH0
+δte− i

2 Hε
+δt + O(δt3) , (5.56)

where H0
+ = ωD12 + ivDσ · ∇ and Hε

+ = Φ(ρ)12 + σ · A(ρ). Note, the cubic error in δt is
due to the noncommutativity of the position and gradient operators.

To calculate the field after time Ntδt has elapsed we have to apply the operation in
equation (5.56) iteratively

ψ+(ρ, t+Ntδt) ≈
Nt∏
i=1

(
M+

ρ F −1M+
k F M+

ρ

)
ψ+(ρ, t) , (5.57)

where F and F −1 represent the direct and inverse Fourier transform operations, respectively.
Using the standard identity for the exponential of Pauli matrices, we can write the position-
dependent operator in equation (5.57) as

M+
ρ = e−iδtΦ/2

cos
(
δtA/2

)
12 − i

sin
(
δtA/2

)
A

σ · A

 , (5.58)
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and the momentum-dependent operator as

M+
k = e−iωDδt

cos
(
vDkδt

)
12 + i

sin
(
vDkδt

)
k

σ · k

 . (5.59)

Similarly, the evolution of the polariton envelope field in the K′ valley can be approximated
as

ψ−(ρ, t+Ntδt) ≈
Nt∏
i=1

(
M−

ρ F −1M−
k F M−

ρ

)
ψ−(ρ, t) , (5.60)

where the operators M−
ρ and M−

k are related to equations (5.58) and (5.59) by the replace-
ment σ ↔ σ∗ and k ↔ −k.

For the simulations we initialize the following Gaussian wavepackets

ψ+(ρ, t = 0) = 1
2w

√
2π

e− ρ2

2w2

 1
− sgn(vD)

 eik0·ρ , (5.61)

and

ψ−(ρ, t = 0) = 1
2w

√
2π

e− ρ2

2w2

 1
sgn(vD)

 eik0·ρ , (5.62)

in the K and K′ valleys, respectively. We consider wavepackets that are located in the lower
polariton band with a fixed central frequency of δω = −0.1µ relative to the Dirac point,
and an initial central wavevector k0 = [ −|δω/vD| , 0 ]. Furthermore, the wavepackets are
initially centred at the origin with a width of w = 100a. We then track the centre-of-mass
trajectory of the wavepackets for the two valleys which is given by

⟨ρ⟩τ =
˜

d2ρ |ψτ |2ρ˜
d2ρ |ψτ |2

. (5.63)

5.4.2 Tunable cyclotron orbits

In figure 5.5 we plot the trajectories of the wavepackets through a metasurface with a fixed
strain configuration but different cavity widths. As expected, the polariton wavepackets in
the K/K′ valleys undergo cyclotron motion in opposite directions due to T symmetry (for
example, see the snapshots along trajectory 6). Furthermore, the calculated orbit radii for
trajectories 1-7 are given by the crosses in figure 5.4(b) and they agree very well with the
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Figure 5.5 | Simulated cyclotron motion of polariton wavepackets. Simulated trajectories of Gaussian
wavepackets propagating through a strained metasurface with different cavity widths. The calculated radii
for trajectories 1-7 are given by the crosses in figure 5.4(b). The snapshots along trajectory 6 show that the
wavepackets in the K/K′ valleys exhibit cyclotron motion in opposite directions by virtue of T symmetry. For
subcritical cavity widths (L > LA), the cyclotron radius expands as the cavity width is reduced (trajectories
1-3), until the critical width (L = LA) where the wavepackets feel no Lorentz-like force (trajectory 4). For
supercritical cavity widths (L < LA), the cyclotron orbits re-emerge and the orbit radius shrinks as the cavity
width is reduced further (trajectories 5-7). Results obtained with λ0 = 6.5a, µ = 0.01ω0, δω = −0.1µ and
∆ = 2 × 10−5.

analytical predictions. Note that the direction of the orbit depends on the signs of the Dirac
velocity, cyclotron mass and pseudo-magnetic field.

For subcritical cavity widths L > LA, the cyclotron radius expands as the cavity width
is reduced (see trajectories 1–3). At the critical cavity width L = LA, the pseudo-magnetic
field is switched off and the polariton wavepackets feel no Lorentz-like force; they propagate
through the strained metasurface as if there was no strain present at all (see trajectory 4). For
supercritical cavity widths L < LA, the cyclotron orbits re-emerge and the cyclotron radius
now shrinks as the cavity width is reduced further (see trajectories 5–7).

5.5 Collapse and revival of the polariton Landau levels

As the magnitude of the strain is increased, the pseudo-magnetic field can reach large enough
values such that one enters the ‘quantum’ regime, where the polariton cyclotron orbits
undergo Landau quantization in direct analogy with charged particles in real magnetic fields
[133]. Therefore, as schematically depicted in figure 5.6(a), the massless Dirac cone collapses
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Figure 5.6 | Cavity-induced collapse and revival of the polariton Landau levels. (a) Schematic of the mass-
less Dirac cone splitting into quantized polariton Landau levels due to a strain-induced pseudo-magnetic field.
(b) Predicted evolution of the polariton Landau levels as the cavity width is reduced for a fixed strain configura-
tion, where the dotted lines indicate the region of cavity widths where the linear Dirac cone approximation
breaks down. The transition of the dominant dipolar coupling from Coulomb to photon-mediated interactions
is accompanied by a collapse and revival of the polariton Landau levels. Results obtained with λ0 = 6.5a,
µ = 0.01ω0 and ∆ = 0.002.

into a quantized Landau level spectrum

ωn(∆,L) = ωD(L) + sgn(n)ωc(∆,L)
√

|n| , (5.64)

where n = 0,±1,±2 . . . is the Landau level index and ωc(∆,L) =
√

2|vD||Bτ |. In analogy
with graphene, the polariton Landau levels exhibit a square-root dependence on the Landau
level index and the pseudo-magnetic field strength, and there also exists a n = 0 Landau
level that is independent of the pseudo-magnetic field strength – this is a direct manifestation
of the pseudo-relativistic nature of the massless Dirac polaritons (see appendix D.2 for more
details).

In the previously realized photonic analog of graphene, the Landau level spectrum was
fixed by the engineered strain configuration – to modify the pseudo-magnetic field they had to
fabricate an entirely new structure with a different strain pattern [68]. In stark contrast, here
the polariton Landau level spectrum depends qualitatively on the surrounding electromagnetic
environment which mediates the dipole-dipole interactions. In fact, as shown in figure 5.6(b),
one can drastically reconfigure the polariton Landau level spectrum by varying only the
cavity width. As before, the dotted line indicates the region of cavity widths where the linear
Dirac cone approximation breaks down (see appendix D.3 for more details). Remarkably, the
transition of the dominant dipolar coupling from Coulomb to photon-mediated interactions
as the cavity width is reduced results in a collapse and revival of the polariton Landau levels,
despite the strain configuration being fixed.
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5.5.1 Multiple scattering theory inside the cavity waveguide

It is important to stress that these analytical predictions are only valid within the approxima-
tions of the effective Hamiltonian. Therefore, a priori, it is not obvious that the predicted
collapse and revival of the polariton Landau levels will be observable in a real finite system.
For example, do higher order effects of the strain become more important when the interac-
tions are long-range? To verify the analytical predictions, we go beyond the approximations
of the effective Hamiltonian and develop a full multiple scattering theory.

The polarizability of a dipole emitter is altered by the electromagnetic environment in
which it is embedded – for example, we have already seen that the presence of the cavity
waveguide leads to a renormalized polarizability. Similarly, the presence of other dipoles
within close proximity can dramatically modify their properties due to collective interactions.
To describe how a dipole located at R0 responds to a local driving field we can introduce an
effective polarizability

αeff(ω) =
[
α−1(ω) − S(R0,R0, ω)

]−1
. (5.65)

Here, the scattered Green’s function S(R0,R0, ω) describes the field at R0 that has been
scattered back by all the other dipoles within the metasurface. From the effective polarizability
we can define the local spectral function Im[αeff(ω)] which is related to the local density of
states and characterizes the full spectral response of the metasurface.

Let us first consider a simple case where there are only two additional dipoles located at
R1 and R2. The scattered Green’s function can be written as an infinite series of terms

S(R0,R0, ω) = G(R0 − R1, ω)α(ω)G(R1 − R0, ω)

+G(R0 − R2, ω)α(ω)G(R2 − R0, ω)

+G(R0 − R1, ω)α(ω)G(R1 − R2, ω)α(ω)G(R2 − R0, ω)

+G(R0 − R2, ω)α(ω)G(R2 − R1, ω)α(ω)G(R1 − R0, ω) + . . . ,

(5.66)

where each term describes a unique scattering event. The infinite series in equation (5.66)
can be formally summed as

S(R0,R0, ω) =
2∑

υ=1

2∑
υ′=1

G(R0 − Rυ, ω)[T (2)(ω)]υυ′G(Rυ′ − R0, ω) , (5.67)
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where the two-dipole T-matrix reads

T (2)(ω) = α(ω)
1 −G(R1 − R2, ω)α(ω)G(R2 − R1, ω)α(ω)

 1 G(R1 − R2, ω)α(ω)
G(R2 − R1, ω)α(ω) 1

 .
(5.68)

We can now generalize this to include N addition dipoles where the scattered Green’s
function reads

S(R0,R0, ω) =
N∑

υ=1

N∑
υ′=1

G(R0 − Rυ, ω)[T (N)(ω)]υυ′G(Rυ′ − R0, ω) , (5.69)

which encodes all the multiple scattering events between the N additional dipoles. The N -
dipole T-matrix is given by the inversion of a large N ×N matrix T (N)(ω) = [M (N)(ω)]−1

whose matrix elements are given by

[M(ω)]υυ′ = α−1(ω)δυυ′ − (1 − δυυ′)G(Rυ − Rυ′ , ω) . (5.70)

Note that this multiple scattering theory goes beyond the approximations of the effective
Hamiltonian in several ways. Firstly, we use the full Green’s function given by equation (6.8),
and therefore it includes the effect of all cavity modes. Secondly, we keep the frequency
dependence in the polarizability correction and the Green’s function, thus going beyond the
pole approximation that we made to linearize the coupled-dipole equations. Lastly, while
the effective Hamiltonian is only strictly valid for small strains and for a small range of
frequencies within the vicinity of the Dirac point, the multiple scattering theory determines
the exact response for all frequencies and for any strain configuration.

5.5.2 Cavity-tunable polariton Landau levels

In the upper panel of figure 5.7(a), we show the local spectral function at the centre of
the unstrained metasurface with a subcritical cavity width (L ≫ LA) where the Coulomb
interactions are dominant. One observes that the strong multiple scattering within the
metasurface drastically modifies the response of the dipole; we no longer have a single
Lorentzian peak as shown in figure 3.3, but we have a continuum of polariton modes supported
by the metasurface. In fact, the local spectral function is reminiscent of the electronic
density of states in graphene [5]. We are particularly interested in the Dirac region which is
highlighted in figure 5.7(a) – this region corresponds to the Dirac cone part of the polariton
spectrum which is where our effective Hamiltonian is valid.
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Figure 5.7 | Polariton Landau levels in the local spectral function. (a)-(c) Local spectral function at the
centre of the metasurface on the B sublattice for varying cavity widths, where the upper panels correspond to
the unstrained metasurface (∆ = 0) and the lower panels correspond to the strained metasurface (∆ = 0.002).
(a) For subcritical cavity widths (L ≫ LA), we observe a series of sharp resonant peaks for the strained
metasurface which are not present in the unstrained case – these directly correspond to the polariton Landau
levels and they are labelled according to their Landau index. (b) At the critical cavity width (L = LA), the
pseudo-magnetic field is switched off and therefore no Landau level peaks are observed, despite the applied
strain. (c) For supercritical cavity widths (L ≪ LA), we again observe Landau level peaks for the strained
metasurface which are not present in the unstrained case, thus verifying the cavity-induced collapse and revival
of the polariton Landau levels. Results obtained with parameters λ0 = 6.5a, µ = 0.01ω0 and γnr = 0.025µ,
and the metasurfaces consist of approximately 14,000 dipoles (see insets). For panels (a), (b) and (c) we used
cavity widths given by a/L = 0.2, a/L = 0.83 and a/L = 1.2, respectively.

In the lower panel of figure 5.7(a) we show the local spectral function for the strained
metasurface with the same subcritical cavity width (L ≫ LA). One clearly observes a
series of resonant peaks within the vicinity of the Dirac region which are not present in the
unstrained case; these peaks directly correspond to the predicted polariton Landau levels
and we label them according to their Landau index. Note that the spectral function has an
asymmetry about the Dirac point due to the intrasublattice interactions which break the chiral
symmetry. For example, more Landau levels can be observed above the Dirac point than
below as the Dirac approximation holds for a wider frequency range. As the cavity width
is reduced, the spacing between the Landau level peaks decreases in accordance with the
analytical prediction (see appendix D.3 for more details).

In the upper panel of figure 5.7(b) we show the local spectral function for the unstrained
metasurface at the critical cavity width (L = LA). One observes that the spectrum is different
compared to the subcritical regime – this is expected since the cavity modifies the polariton
dispersion. In the lower panel of figure 5.7(b) we show the local spectral function for the
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strained metasurface with the same critical cavity width (L = LA). Remarkably, despite the
applied strain the Landau levels have completely vanished within the Dirac region; in fact,
there is very little qualitative difference between the strained and unstrained cases. This is
direct evidence that the pseudo-magnetic field is switched off at the critical cavity width.
As the cavity width is reduced beyond this critical value, the Landau level peaks begin to
re-emerge (see appendix D.3 for more details).

In the upper panel of figure 5.7(c) we show the local spectral function for the unstrained
metasurface with a supercritical cavity width (L ≪ LA) where the photon-mediated in-
teractions are dominant. One can see that the spectrum is qualitatively similar to critical
cavity width case, albeit with a larger Dirac region. However, when strain is applied in the
supercritical regime one observes a clear series of Landau level peaks as shown in the lower
panel of figure 5.7(c), thus verifying the cavity-induced collapse and revival of the polariton
Landau levels.

5.6 Conclusion
In this chapter we have shown that one can generate a pseudo-magnetic field for the polari-
tons by straining a honeycomb metasurface composed of a subwavelength array of dipole
emitters/antennas. Crucially, in stark contrast to graphene, the emergent pseudo-magnetic
field is not solely determined by the strain configuration, but it also depends sensitively on
the surrounding electromagnetic environment which mediates the dipole-dipole interactions.
Therefore, while the strain is required to create the pseudo-magnetic field, we have demon-
strated that one can tune its strength by embedding the metasurface inside a cavity waveguide.
Most interestingly, there exists a critical cavity width where the pseudo-magnetic is switched
off entirely, despite the strain-induced anisotropy in the dipole-dipole interactions. This
striking result challenges our naive intuition that has evolved from graphene and its artificial
analogs, where anisotropic hopping parameters inevitably lead to a pseudo-vector potential.
Consequently, we have shown that one can manipulate the cyclotron motion of polariton
wavepackets and induce a collapse and revival of polariton Landau levels by varying a single
external parameter: the cavity width. This is impossible to achieve with photonic systems
that emulate the tight-binding physics of graphene where the pseudo-magnetic field is fixed
by the engineered strain configuration.



6
Topological transitions for valley-Hall polaritons
induced by cavity-mediated interactions

T OPOLOGICAL valley-Hall edge states have been realized in a variety of pho-
tonic structures across the electromagnetic spectrum because they can be eas-
ily engineered by breaking certain lattice symmetries. However, the valley-

Chern numbers that characterize the topological phase are usually fixed by design and
therefore the valley-Hall edge states are forced to propagate in a fixed direction. In this
chapter, we propose an alternative mechanism to induce topological transitions via ac-
cidental Dirac points in a kagome metasurface composed of dipole emitters/antennas.
Crucially, the geometrical and topological properties of the polaritons are not solely
determined by the symmetry-breaking perturbation, because they also depend qual-
itatively on the local electromagnetic environment which mediates the dipole-dipole
interactions. To access different topological polariton phases, we embed the kagome
metasurface inside a cavity waveguide which enables one to manipulate the Berry cur-
vature within the Brillouin zone. Consequently, we demonstrate that one can invert the
valley-Chern numbers and thus switch the chirality of the polariton valley-Hall edge
states by modifying only the cavity width. This alternative approach to engineering
topological transitions could have important implications for other topological phases
such as photonic higher-order topological insulators.

This chapter presents original research that has been submitted for publication as follows:

Mann, C.-R. & Mariani, E. Topological transitions induced by cavity-mediated interactions
in photonic metasurfaces. arXiv:2010.01636 (2020).
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6.1 Introduction

Topological phases of light exhibit unique properties beyond the realm of conventional
photonics [73–75]. Within this paradigm, the valley-Hall topological insulator has attracted
considerable interest because it does not require external magnetic fields or temporal modula-
tion of the system parameters to break T symmetry; instead, the valley-Hall phase is easily
induced by breaking certain lattice symmetries [82]. Due to this simple geometrical origin,
valley-Hall topological insulators have been successfully realized in a variety of photonic
structures at microwave [83–85], terahertz [86, 87] and optical [88–92] frequencies.

These works begin with hexagonal lattices that exhibit deterministic Dirac points at
the K/K′ points and then gap out the Dirac cones by breaking I symmetry (and/or My

symmetry). These symmetry-breaking perturbations generate Berry curvature that is localized
near the inequivalent valleys and the corresponding valley-Hall phase is characterized by
non-trivial valley-Chern numbers. While these are not true topological invariants, there still
exists a strong bulk-boundary correspondence for certain domain walls that separate regions
with opposite valley-Chern numbers: the change in valley-Chern number across the interface
predicts the number of valley-polarized chiral edge states that populate the interface. These
can be exploited to transport light through certain disorder and sharp bends that do not mix
the valleys – a tantalizing prospect that could have crucial implications for photonic devices
such as topological waveguides [83–92], directional antennas [84], topological splitters [83],
chiral quantum optical interfaces [91, 92] and topological lasers [86].

However, this simple geometrical origin of the valley-Hall phase comes at a price: the
topological phase is usually dictated by the symmetry-breaking perturbation that is imprinted
into the lattice design. To deterministically change the valley-Chern numbers one needs
to invert the symmetry-breaking perturbation to induce a topological transition, passing
through a critical point where the symmetry that gives rise to the deterministic Dirac points
is restored. However, it is usually difficult, if not impossible to reconfigure every unit
cell in the photonic lattice after it has been fabricated. Consequently, the valley-Chern
numbers are generally fixed by design and therefore the topological edge states are forced
to propagate in a fixed direction. This raises an intriguing question: is it possible to induce
a topological transition without inverting the symmetry-breaking perturbation? While the
symmetry-breaking perturbation generates a mass term in the Dirac Hamiltonian, the value
of the mass depends on the details of the system and nothing in principle prevents us from
tuning it to zero and switching its sign.
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Here we propose a mechanism to induce topological transitions via accidental Dirac points
in a kagome metasurface composed of a subwavelength array of dipole emitters/antennas.
We break the I (and My) symmetry by expanding/shrinking the distance between the dipoles
within each unit cell. However, due to the hybrid light-matter nature of the polaritons, their
geometric properties and the corresponding valley-Chern numbers are not fixed by this
perturbation; they also depend qualitatively on the local electromagnetic environment which
mediates the dipole-dipole interactions. Crucially, the short-range Coulomb interactions and
long-range photon-mediated interactions generate a Dirac mass with opposite signs. This
enables one to access different topological polariton phases by varying the nature of the
dipole-dipole interactions via an enclosing cavity waveguide. At a critical cavity width the
Dirac mass vanishes despite the broken symmetry; this results in accidental Dirac points
emerging in the polariton spectrum which signifies a topological phase transition. Therefore,
we demonstrate that one can invert the sign of the valley-Chern numbers and thus switch the
propagation direction of the polariton valley-Hall edge states by modifying a single external
parameter: the cavity width.

6.2 Symmetry-broken kagome metasurface

In figure 6.1(a) we schematically depict a kagome metasurface embedded inside a cavity
waveguide. We model the dipoles with a bare polarizability of the form

αB(ω) = 2ω0µ

ω2
0 − ω2 − iωγnr

, (6.1)

where the corresponding induced dipole moments are assumed to point in the z-direction
(see inset). In contrast to the honeycomb metasurface, the kagome metasurface has three
inequivalent sublattices which are formed by placing dipoles at periodic positions Ri =
R + di where i = A,B,C labels the three sublattices. Here, the basis vectors

dA = a√
3
[

0 , 1
]
, dB = a

2
√

3
[√

3 , −1
]
, dC = a

2
√

3
[

−
√

3 , −1
]
, (6.2)

locate the positions of the three dipoles within each unit cell as depicted in figure 6.1(b).
Furthermore, R = l1a1 + l2a2 represents the set of lattice translation vectors, where l1, l2 ∈ Z
are integers, and

a1 = a
[

− 1 ,
√

3
]
, a2 = a

[
1 ,

√
3
]
, (6.3)
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Figure 6.1 | Kagome metasurface inside a cavity waveguide. (a) Schematic of a kagome metasurface com-
posed of an array of dipole emitters/antennas with subwavelength nearest-neighbour separation a ≪ λ0.
The induced dipole moments are assumed to point in the z-direction (see inset). Furthermore, the kagome
metasurface is embedded inside a cavity waveguide of width L, where the cavity walls are assumed to be
perfect mirrors. (b) Corresponding unit cell that contains three dipoles with basis vectors dA, dB and dC, which
gives rise to the A, B and C hexagonal sublattices, respectively. The primitive lattice vectors are a1 and a2. (c)
Corresponding first Brillouin zone where the high-symmetry points are labeled, and b1 and b2 are the primitive
reciprocal lattice vectors.

are the primitive lattice vectors. The corresponding set of reciprocal lattice vectors are
g = n1b1 + n2b2, where n1, n2 ∈ Z are integers, and

b1 = π√
3a
[

−
√

3 , 1
]
, b2 = π√

3a
[√

3 , 1
]
, (6.4)

are the primitive reciprocal lattice vectors that define the Brillouin zone shown in figure 6.1(c).
Moreover, we consider the nearest-neighbour separation to be subwavelength a ≪ λ0, so
that the polaritons near the K/K′ points are subradiant and evanescently bound to the lattice.
Finally, we embed the kagome metasurface at the centre of a cavity waveguide of width L,
where the cavity walls are assumed to be perfect mirrors.

6.2.1 Symmetry-reducing perturbations

The point group symmetry of the unperturbed kagome metasurface is C6v, while the little
point group of the K/K′ points is C3v; consequently, the unperturbed kagome metasurface
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Figure 6.2 | Symmetry-reducing perturbations. The point group symmetry of the kagome metasurface is
C6v (centre panel), while the little point group of the K/K′ points is C3v . To break the I and My symmetries
we shrink (δ > 0) or expand (δ < 0) the distances between the dipoles within the unit cell which forms the
shrunken (left panel) and expanded (right panel) metasurfaces, respectively. This perturbation reduces the point
group symmetry of the metasurface from C6v to C3v, and it reduces the little point group of the K/K′ points
from C3v to C3. The symmetry-breaking parameter δ encodes the fractional change in the nearest-neighbour
separation distance.

can exhibit deterministic Dirac points at the K/K′ points [265]. To gap out the Dirac points
we introduce the following symmetry-reducing perturbation

di → (1 − δ)di , (6.5)

where the symmetry-breaking parameter δ describes the fractional change in the separation
distance between the dipoles in the unit cell. Depending on the sign of δ, we have two distinct
lattices which we call the shrunken metasurface (δ > 0) and the expanded metasurface
(δ < 0) as schematically depicted in figure 6.2. We note that a similar strategy has been
considered in other artificial kagome lattices [189, 266–271]. This perturbation breaks
the I symmetry and the My symmetry, which reduces the point group symmetry of the
metasurface to C3v and the little point group of the K/K′ valleys to C3; consequently, the
symmetry-broken kagome metasurface cannot exhibit deterministic Dirac points [265].

6.2.2 Coupled-dipole equations

In the absence of a driving field, the collective dynamics of the dipoles within the kagome
metasurface is described by a set of coupled-dipole equations

1
α(ω)pRi

(ω) =
∑

R′
i ̸=Ri

G(Ri − R′
i, ω)pR′

i
(ω) +

∑
j ̸=i

∑
R′

j

G(Ri − R′
j, ω)pR′

j
(ω) , (6.6)
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where pRi
is the induced dipole moment located at position R + di on the ith sublattice. As

before, α(ω) = [α−1
B (ω) − Σ(ω)]−1 is the renormalized polarizability that was derived in

section 3.4.2, where the polarizability correction inside the cavity waveguide reads

Σ(ω) = iVk
3
ω

6π + V
πL3

[
Li3

(
eikωL

)
− ikωLLi2

(
eikωL

)]
. (6.7)

Furthermore, G(ρ − ρ′, ω) is the zz-component of the cavity Green’s function that was
derived in section 3.3 and reads

G(ρ − ρ′, ω) = i V
4L

∞∑
m=0

Nm

(
k2

ω − q2
m

)
H

(1)
0

(√
k2

ω − q2
m|ρ − ρ′|

)
. (6.8)

It is suggestive from equation (6.6) that the topological phase of the polaritons may not be
solely dictated by the intrinsic properties of the dipoles and their geometrical arrangement;
the topological phase could also depend on the nature of the dipole-dipole interactions which
enters through the Green’s function.

Following the approach in chapter 4 and chapter 5, we will decompose the cavity Green’s
function into its longitudinal and transverse components which were derived in section 3.3.
The longitudinal component reads

G∥(ρ − ρ′) = − V
πL

∞∑
m=1

q2
mK0 (qm|ρ − ρ′|) , (6.9)

and describes the instantaneous Coulomb field generated by the dipoles. Since we are
interested in the regime of cavity widths L < λ0, we retain only the contribution from
the TEM cavity mode for the transverse component, where the corresponding single mode
Green’s function reads

GTEM
⊥ (ρ − ρ′, ω) = iVk

2
ω

4L H
(1)
0 (kω|ρ − ρ′|) . (6.10)

In what follows we will see that the transition of the dominant dipolar coupling from Coulomb
to photon-mediated interactions as the cavity width is reduced has dramatic consequences
for the geometrical and topological properties of the polaritons.

6.2.3 Dynamical matrix

The symmetry-reducing perturbations preserve the discrete translational symmetry of the
metasurface, and therefore we can block diagonalize the coupled-dipole equations in momen-
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tum space. To achieve this we follow the method presented in section 3.4. We exploit the
periodicity of the metasurface by introducing the Fourier transform of the dipole moments

p̃i(q, ω) =
√

A
2π

∑
R
pRi

(ω)e−iq·Ri , (6.11)

where q = [ qx , qy ] is the Bloch wavevector that is restricted to the first Brillouin zone
shown in figure 6.1(c), and A = 2

√
3a2 is the area of the unit cell shown in figure 6.1(b).

Using the Fourier variables, we can recast the coupled-dipole equations into 3 × 3 matrix
eigenvalue equations

1
α̌(ω) |φ(q)⟩ =

[
D∥(q) + D⊥(q, ω)

]
|φ(q)⟩ , (6.12)

where α̌−1(ω) = α−1
B (ω) − Re[Σ(ω)] and |φ(q)⟩ represents the vector of Fourier variables

|φ(q)⟩ =


p̃A(q)
p̃B(q)
p̃C(q)

 . (6.13)

Furthermore, the longitudinal dynamical matrix which encodes the frequency shifts due to
the Coulomb interactions is given by

D∥(q) =


DAA

∥ (q) DAB
∥ (q) DAC

∥ (q)
DAB∗

∥ (q) DBB
∥ (q) DBC

∥ (q)
DAC∗

∥ (q) DBC∗
∥ (q) DCC

∥ (q)

 , (6.14)

where the intrasublattice matrix elements read

Dii
∥ (q) =

∑
R ̸=0

G∥(R)e−iq·R , (6.15)

and the intersublattice matrix elements are given by

Dij
∥ (q) =

∑
R
G∥(R + di − dj)e−iq·(R+di−dj) . (6.16)

Since the Coulomb interactions are short-range these lattice sums converge rapidly in real
space.
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Furthermore, the transverse dynamical matrix which encodes the frequency shifts due to
the photon-mediated interactions is given by

D⊥(q, ω) =


DAA

⊥ (q, ω) DAB
⊥ (q, ω) DAC

⊥ (q, ω)
DAB∗

⊥ (q, ω) DBB
⊥ (q, ω) DBC

⊥ (q, ω)
DAC∗

⊥ (q, ω) DBC∗
⊥ (q, ω) DCC

⊥ (q, ω)

 , (6.17)

where the intrasublattice matrix elements read

Dii
⊥(q, ω) =

∑
g

ω2ξ2

ω2
q−g − ω2 − Re[GTEM

⊥ (0, ω)] , (6.18)

and the intersublattice matrix elements are given by

Dij
⊥(q, ω) =

∑
g

ω2ξ2ϕij
q

ω2
q−g − ω2 , (6.19)

Here, ξ =
√

V/AL parameterizes the strength of the light-matter coupling in the kagome
metasurface and the phase factors are given by

ϕij
g = eig·(dj−di) . (6.20)

Note, to derive equation (6.18) and equation (6.19) we have used the Poisson summation
technique outlined in section 3.4.5 due to the long-range nature of the photon-mediated
interactions.

6.2.4 Polariton dispersion

To obtain the polariton dispersion we first linearize the non-linear eigenvalue problem in
equation (6.12) by evaluating the polarizability correction and the transverse dynamical
matrix at the cavity resonant frequency. We can then obtain the polariton dispersion by
solving the following characteristic equation

det[(ω2 − ω2
cav)13 + 2ω0µD∥(q) + 2ω0µD⊥(q, ωcav)] = 0 , (6.21)

where 13 is the 3 × 3 identity matrix and we have neglected non-radiative losses for sim-
plicity. Note, one also needs to use the regularization procedure outlined in section 3.4.6 to
numerically evaluate the dispersion.
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Figure 6.3 | Polariton dispersion for the kagome metasurface. (a) Dispersion for the unperturbed kagome
metasurface δ = 0 (dashed line) and the shrunken metasurface δ = 0.05 (solid line) with a large cavity width
(L = 5a). (b) Same as panel (a) but for a small cavity width (L = 0.5a). In both interaction regimes, the
symmetry-reducing perturbation gaps out the deterministic Dirac points located at the high-symmetry K/K′

points. The bands at the K point are labelled according to the pseudo-angular momentum number of the
eigenstates. (c) Corresponding dipole distributions where +/− correspond to anticlockwise/clockwise phase
vortices. Results obtained with λ0 = 10a and µ = 0.001ω0.

In figure 6.3(a) we show the polariton dispersion (solid line) for the shrunken kagome
metasurface (δ = 0.05) with a large cavity width where the Coulomb interactions are domi-
nant. Note, for clarity we have neglected the weak photon-mediated interactions which have
a negligible effect near the K/K′ valleys (see appendix E.1 for more details). In figure 6.3(b)
we show the polariton dispersion for the same metasurface but now with a small cavity
width where the photon-mediated interactions are dominant. In both interaction regimes,
the symmetry-reducing perturbation removes the deterministic Dirac points exhibited by the
unperturbed metasurface (dashed lines), thereby opening a gap at the K/K′ points. While
they share this feature, the dispersion in the two regimes looks qualitatively different – for
example, the (approximate) flat band is above/below the Dirac point for the small/large cavity
width.

6.2.5 Eigenstates at the K/K′ points

To further elucidate the difference between the two interaction regimes we can study the
eigenstates at the K (τ = +) and K′ (τ = −) points located at τK = τ [ 2π/3a , 0 ],
where τ = ± is the valley index. Since the symmetry-breaking perturbation preserves the
C3 symmetry of the metasurface, the eigenstates at the K/K′ points will be simultaneous
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eigenstates of the C3 operator

U τ
C3 |φl

τ ⟩ = ei 2π
3 l |φl

τ ⟩ . (6.22)

Here the unitary operator

U τ
C3 =


0 0 e−i π

3 (1−δ)τ

e−i π
3 (1−δ)τ 0 0
0 ei 2π

3 (1−δ)τ 0

 (6.23)

represents a rotation of 2π/3 about the centre of the unit cell, |φl
τ ⟩ are the corresponding

eigenstates and l = 0,±1 are the pseudo-angular momentum eigenvalues.

The eigenstates at the K point therefore read

|φ0
+⟩ = 1√

3


1

e−i π
3 (1−δ)

ei π
3 (1−δ)

 , |φ−
+⟩ = 1√

3


1

ei π
3 (1+δ)

e−i π
3 (1+δ)

 , |φ+
+⟩ = 1√

3


−1
ei π

3 δ

e−i π
3 δ

 , (6.24)

and in figure 6.3(c) we schematically depict the corresponding dipole distributions within a
unit cell, where −/+ corresponds to a clockwise/anticlockwise phase vortex. Furthermore,
the eigenvectors at the K′ point are related by T symmetry and are given by |φ0

−⟩ = |φ0
+⟩∗,

|φ−
−⟩ = |φ+

+⟩∗, and |φ+
−⟩ = |φ−

+⟩∗.

6.2.6 Cavity-induced band inversions

In figures 6.3(a)-(b) we label the polariton bands at the K point according to the pseudo-
angular momentum number of the eigenstates. Interestingly, for the same symmetry-breaking
parameter (δ = 0.05), the ordering of the eigenstates is entirely reversed for the two limiting
interaction regimes. To elucidate this further, in figure 6.4(a) we show the frequency evolution
of the eigenstates at the K point as the cavity width is reduced. Due to the competition
between the Coulomb and photon-mediated interactions we observe three band inversions.
The first two band inversions result in l = +1 eigenstate evolving from being the lowest
in frequency to the highest. However, here we are particularly interested in the third band
inversion. At this critical cavity width L = Lm, the degeneracy between the l = 0 and
l = −1 eigenstates is restored, despite the broken lattice symmetry. Consequently, the
polariton dispersion exhibits accidental Dirac points at this critical cavity width as shown in
figure 6.4(b).
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Figure 6.4 | Cavity-induced band inversions. (a) Frequency evolution of the eigenstates at the K point for
the shrunken metasurface (δ = 0.05) as the cavity width is reduced. One observes three band inversions
(labelled 1-3), where the first two result in the l = 1 eigenstate evolving from being the lowest in frequency
to the highest. The third band inversion occurs at a critical cavity width Lm, where the degeneracy between
the l = 0 and l = +1 eigenstates is restored, despite the broken symmetry of the metasurface. (b) Shows the
polariton dispersion at the critical width (L = Lm) which exhibits accidental Dirac points. Results obtained
with λ0 = 10a and µ = 0.001ω0.

6.3 Cavity-induced topological transition

To characterize the essential topology related to the third band inversion, we will derive an
effective two-band Hamiltonian that describes the polaritons near the K/K′ valleys within the
subspace spanned by the degenerate eigenstates of the unperturbed lattice. In what follows
we will focus on the K valley since the effective Hamiltonian for the K′ valley is related via
T symmetry.

6.3.1 Expansion of the dynamical matrix

We first expand the total dynamical matrix D(q, ω) = D∥(q) + D⊥(q, ω) to leading order in
k = q − K, which represents the wavevector measured from the K point. The intrasublattice
matrix elements expand as

Dii
+(k, ω) ≃

∑
R ̸=0

G∥(R)e−iK·R +
∑

g

ω2ξ2

ω2
K−g − ω2 − Re[GTEM

⊥ (0, ω)] , (6.25)
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while the intersublattice matrix elements expand as

Dij
+(k) ≃

∑
R
G∥(R + di − dj)e−iK·(R+di−dj) +

∑
g

ω2ξ2ϕij
g

ω2
K−g − ω2

−
[
i
∑
R
G∥(R + di − dj)e−iK·(R+di−dj)(R + di − dj)ν +

∑
g

2c2ω2ξ2ϕij
g

(ω2
K−g − ω2)2 (K − g)ν

]
kν .

(6.26)

Next we reduce the full 3 × 3 matrix eigenvalue equation to an effective 2 × 2 matrix
eigenvalue equation in the { |φ0

+⟩ , |φ−
+⟩} subspace which is spanned by the degenerate

eigenstates of the unperturbed lattice. The corresponding simplified eigenvalue equation for
the K valley reads

1
α̌(ω) |ψ+(k)⟩ = Deff

+ (k, ω) |ψ+(k)⟩ , (6.27)

where the new basis is related to the sublattice basis via

|ψ+(k)⟩ =
 ⟨φ0

+|φ(k)⟩
⟨φ−

+|φ(k)⟩

 , (6.28)

and the effective dynamical matrix is given by

Deff
+ (k, ω) =

 ⟨φ0
+|D+|φ0

+⟩ ⟨φ0
+|D+|φ−

+⟩
⟨φ−

+|D+|φ0
+⟩ ⟨φ−

+|D+|φ−
+⟩

 . (6.29)

Note, this effective dynamical matrix is only valid when the other band is well separated
in frequency and thus does not accurately describe the polaritons during the first two band
inversions shown in figure 6.4(a). Moreover, the effective interactions with the other band
contribute to higher order corrections in k which are neglected here as we only wish to
capture the essential physics.

6.3.2 Massive Dirac polariton Hamiltonian

Finally, to obtain an effective Hamiltonian we linearize the effective eigenvalue problem in
equation (6.27) by evaluating the polarizability correction and effective dynamical matrix at
the cavity resonant frequency, and we approximate ω2

cav − ω2 ≃ 2ωcav(ωcav − ω). This allows
us to write a simplified eigenvalue equation which reads (ℏ = 1)

ω |ψ+(k)⟩ = H+(k) |ψ+(k)⟩ , (6.30)
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where the effective Hamiltonian is given by

H+(k) = ωcav12 − µ
ω0

ωcav
Deff

+ (k, ωcav) . (6.31)

After evaluating the matrix elements in equation (6.29), and performing similar analysis for
the K′ valley in the { |φ0

−⟩ , |φ+
−⟩} subspace, we obtain the following effective Hamiltonian

Hτ (k) = ωD(L)12 + vD(L)(τσxkx + σyky) +m(L)σz , (6.32)

which is equivalent to a 2D massive Dirac Hamiltonian.

The Dirac frequency in equation (6.32) can be decomposed as ωD = ωcav + ω∥ + ω⊥,
where the contribution from the Coulomb interactions is

ω∥ = −µ ω0

ωcav

∑
R ̸=0

G∥(R)e−iK·R − µ

3
ω0

ωcav

∑
R

Re
[
G∥(R + dA − dB)ei π

3 δe−iK·(R+dA−dB)

+G∥(R + dA − dC)e−i π
3 δe−iK·(R+dA−dC) −G∥(R + dB − dC)e−i 2π

3 δe−iK·(R+dB−dC)
]
,

(6.33)

and the contribution from the photon-mediated interactions reads

ω⊥ = µ
ω0

ωcav
Re[ǦTEM

⊥ (0, ωcav)] − µ
ω0

ωcav

∑
g

ω2
cavξ

2e−η2|K−g|2

ω2
K−g − ω2

cav

−µ

3
ω0

ωcav

∑
g

ω2
cavξ

2

ω2
K−g − ω2

cav
Re

[
ei π

3 δϕAB
g + e−i π

3 δϕAC
g − e−i 2π

3 δϕBC
g

]
.

(6.34)

Note we have used the regularization procedure outlined in section 3.4.6 to numerically
evaluate the difference between the first two divergent terms in equation (6.34). Similarly,
the Dirac velocity can be decomposed as vD = v∥ + v⊥, where the contribution from the
Coulomb interactions is

v∥ = µ√
3
ω0

ωcav

∑
R

Re
[
i(R + dA − dC)yG∥(R + dA − dC)e−i π

3 δe−iK·(R+dA−dC)

− i(R + dA − dB)yG∥(R + dA − dB)ei π
3 δe−iK·(R+dA−dB)

]
,

(6.35)

and the contribution from the photon-mediated interactions reads

v⊥ = µ√
3
ω0

ωcav

∑
g

2c2ω2
cavξ

2

(ω2
K−g − ω2

cav)2 (K − g)y Re
[
e−i π

3 δϕAC
g − ei π

3 δϕAB
g

]
. (6.36)
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Finally, the Dirac mass can be decomposed as m = m∥ +m⊥, where the contribution from
the Coulomb interactions is

m∥ = µ√
3
ω0

ωcav

∑
R

Re
[
iG∥(R + dA − dB)ei π

3 δe−iq·(R+dA−dB)

−iG∥(R+dA − dC)e−i π
3 δe−iq·(R+dA−dC) − iG∥(R + dB − dC)e−i 2π

3 δe−iq·(R+dB−dC)
]
,

(6.37)

and the contribution from the photon-mediated interactions reads

m⊥ = µ√
3
ω0

ωcav

∑
g

ω2
cavξ

2

ω2
K−g − ω2

cav
Re

[
iei π

3 δϕAB
g − ie−i π

3 δϕAC
g − ie−i 2π

3 δϕBC
g

]
. (6.38)

6.3.3 Switching the sign of the Dirac mass

For the unperturbed kagome metasurface (δ = 0), the symmetry forces both the longitudinal
and transverse mass to vanish separately m∥ = m⊥ = 0. This results in deterministic Dirac
points for all cavity widths, which are characterized by a massless Dirac cone dispersion

ωλ(k) = ωD + λ|vD||k| , (6.39)

where λ = ± is the band index. When the symmetry-reducing perturbation is applied, a finite
mass term is produced in the effective Dirac Hamiltonian and the corresponding polariton
spectrum is characterized by a massive Dirac cone

ωλ(k) = ωD + λ
√
v2

D|k|2 +m2 , (6.40)

as depicted in figure 6.5(a), where the size of the gap is equal to 2|m|.
In figure 6.5(b) we show the evolution of the longitudinal (dotted orange line), transverse

(dashed blue line), and total (solid black line) Dirac mass as the cavity width is reduced for the
shrunken metasurface (δ = 0.05). In stark contrast to the unperturbed kagome metasurface,
here the longitudinal and transverse masses do not vanish for any cavity width due to the
broken symmetry. However, they contribute with opposite signs and thus tend to compensate
each other; the Coulomb interactions push the l = 0 eigenstate to higher frequencies, while
the photon-mediated interactions push the l = −1 eigenstate to higher frequencies.

Moreover, for large cavity widths the gap induced by the perturbation is predominantly
due to the change in near-field Coulomb interactions, while for small cavity widths it is
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Figure 6.5 | Switching the sign of the Dirac mass. (a) The symmetry-reducing perturbation gaps out the
deterministic Dirac points, where the size of the gap is determined by the Dirac mass. (b) Evolution of the
longitudinal (dotted orange line), transverse (dashed blue line) and total (solid black line) Dirac mass as the
cavity width is reduced for the shrunken metasurface (δ = 0.05). The longitudinal and transverse masses have
opposite signs and thus tend to compensate each other. At the critical cavity width (L = Lm), the longitudinal
and transverse masses have equal magnitudes (|m∥| = |m⊥|) which leads to the vanishing of the total Dirac
mass (m = 0), despite the broken symmetry of the metasurface. This results in a topological band inversion
where the band gap closes and reopens, switching the sign of the Dirac mass. Results obtained with λ0 = 10a
and µ = 0.001ω0.

predominantly due to the change in long-range photon-mediated interactions. At the critical
cavity width L = Lm, the photon-mediated interactions eliminate the gap induced by the
Coulomb interactions (|m∥| = |m⊥|) and thus the Dirac mass vanishes (m = 0). As a result,
the Dirac points are restored in the polariton spectrum; these are accidental since they are
not enforced by the symmetry, but their existence depends critically on the nature of the
dipole-dipole interactions. Therefore, by varying only the cavity width, one can switch
the sign of the Dirac mass which has a dramatic effect on the geometrical and topological
properties of the polaritons.

6.3.4 Cavity-induced inversion of the valley-Chern numbers

Using equation (2.117) we can obtain a simple analytical expression for the effective Berry
curvature near the K/K′ valleys which reads

F τ
λ (k) = −τλ mv2

D

2(v2
D|k|2 +m2)3/2 . (6.41)

In appendix E.2 we numerically calculate the exact Berry curvature from the dynamical
matrix to verify that equation (6.41) captures the essential physics near the K/K′ valleys for
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Figure 6.6 | Cavity-induced inversion of the valley-Chern numbers. (a) Localized Berry curvature corre-
sponding to the lower effective polariton band near the K (top panel) and K′ (bottom panel) points for the
shrunken metasurface (δ = 0.05) with a large cavity width (L = 5a). We also depict the corresponding
valley-Chern numbers. (b) Same as panel (a) but for a small cavity width (L = 0.5a). The transition of
the dominant dipolar coupling from Coulomb to photon-mediated interactions switches the sign of the Berry
curvature within each valley and thus inverts the valley-Chern numbers. Results obtained with λ0 = 10a and
µ = 0.001ω0.

the two limiting interaction regimes. In figure 6.6(a) we plot the effective Berry curvature
near the K/K′ valleys for the shrunken metasurface (δ = 0.05) with a large cavity width.
We observe that the Berry curvature has opposite signs for the two valleys and therefore the
Chern number vanishes as required by T symmetry.

However, provided that the perturbation is small enough, the Berry curvature is very
localized around the K/K′ points and therefore one can define valley-Chern numbers

Cτ
λ = 1

2π

¨

R2

d2k F τ
λ (k) = −τλ sgn(m)1

2 . (6.42)

For the large cavity width where the Coulomb interactions are dominant, the valley-Chern
numbers for the lower band are Cτ

− = τ/2. In figure 6.6(b) we plot the Berry curvature
for the same metasurface but now with a small cavity width where the photon-mediated
interactions are dominant. Remarkably, the Berry curvature changes sign within each valley
and, as a result, the valley-Chern numbers become inverted Cτ

− = −τ/2.
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6.4 Switching the chirality of the valley-Hall edge states

Although the valley-Chern numbers are not topological invariants, there exists a bulk-
boundary correspondence when one forms a domain wall between two regions with opposite
valley-Chern numbers. Provided that the interface does not mix the two valleys and the
Berry curvature remains very localized, then the change in valley-Chern number across the
interface determines the number of valley-polarized chiral edge states.

6.4.1 Mass domain wall interface

To explore how the cavity-induced band inversion modifies the polariton valley-Hall edge
states, we consider the domain wall shown in figure 6.7(a) where region A is a shrunken
metasurface (δA = 0.05) and region B is an expanded metasurface (δB = −0.05), and we
assume translational invariance along the x-direction. While the bulk polariton dispersion in
the two regions are identical, the Dirac masses have opposite signs mB = −mA and thus the
interface separates regions with opposite valley-Chern numbers.

Before we numerically calculate the interface dispersion using the coupled-dipole equa-
tions, we can gain some analytical insight with the effective Dirac Hamiltonian

Hτ = ωD12 − ivD(τσx∂x + σy∂y) +m(y)σz , (6.43)

where the interface is modelled by a spatially-varying mass

m(y) =

+mA, for y < 0

−mA, for y > 0
(6.44)

Following the same analysis outlined in section 2.4.3 and section 2.4.5, we find that each
valley exhibits one chiral (Jackiw-Rebbi-like) edge state

ψτ (ρ) ∝

 1
sgn(vD) sgn(mA)

 eikxxe− |mA|
|vD| |y|

, (6.45)

which are exponentially localized at the interface – this is expected from the bulk-boundary
correspondence since |∆Cτ

−| = 1. These edge states exhibit a linear dispersion

ωτ (kx) = ωD + sgn(∆Cτ
−)|vD|kx , (6.46)
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Figure 6.7 | Switching the chirality of the polariton valley-Hall edge states. (a) Schematic of a domain wall
interface between two regions with opposite valley-Chern numbers, where region A is a shrunken metasurface
(δA = 0.05) and region B is an expanded metasurface (δB = −0.05). (b) Interface dispersion for a large cavity
width (L = 5a), where the orange bands represent the projected bulk bands that are identical in both regions.
The red/blue bands represent the dispersion of the valley-Hall edge states ψ+/ψ− in the K/K′ valleys which
propagate in opposite directions by virtue of T symmetry. (c) Same as panel (a) but for a small cavity width
(L = 0.5a). The propagation direction of the valley-Hall edge states has been reversed due to the cavity-induced
inversion of the valley-Chern numbers which switches their chirality. Results obtained with λ0 = 10a and
µ = 0.001ω0.

where their group velocity is given by

vτ = ∂ωτ

∂kx

= sgn(∆Cτ
−)|vD| , (6.47)

and therefore the sign of ∆Cτ
− determines the chirality of the valley-Hall edge states. For large

cavity widths we have ∆Cτ
− = τ , and therefore the K valley edge state (ψ+) propagates to

the right while the K′ valley edge state (ψ−) propagates to the left. However, for small cavity
widths the valley-Chern numbers become inverted in both regions resulting in ∆Cτ

− = −τ ,
and therefore the valley-Hall edge states should reverse their propagation direction.

6.4.2 Interface dispersion

To verify these analytical predictions we go beyond the approximations of the effective Dirac
Hamiltonian and calculate the full dispersion for the interface. We consider a supercell
which contains 40 unit cells in each region and apply periodic boundary conditions along
the x-direction. To avoid edge states emerging in the spectrum that are associated with the
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boundary with free space we also apply periodic boundary conditions in the y-direction. To
calculate the dispersion we use the same coupled-dipole model as outlined in the section 6.2.2
but generalized to the supercell. Since we focus on the A/B interface, for clarity we remove
the edge states associated with the B/A interface which are formed due to the periodic
boundary conditions in the y-direction.

In figure 6.7(b) we show the interface dispersion for a large cavity width, where we have
neglected the weak photon-mediated interactions for clarity (see appendix E.1 for details).
The orange bands correspond to the projected bulk states, while the red/blue bands correspond
to the spectrum of the valley-Hall edge states near the K/K′ valleys which traverse the bulk
gap. In accordance with the analytical predictions, one observes that the K valley edge states
(ψ+) propagate to the right (red band) while the the K′ valley edge states (ψ−) propagate to
the left (blue band). In figure 6.7(c) we show the dispersion for the same interface but now
with a small cavity width. Remarkably, despite the interface geometry being fixed, we indeed
observe that the propagation direction of the polariton valley-Hall edge states is reversed,
thus verifying the cavity-induced inversion of the valley-Chern numbers.

6.4.3 Selective excitation of the valley-Hall edge states

In this final section we will show how one can selectively excite the valley-Hall edge states
with a chiral source and route them around sharp corners. We consider an Ω-shaped interface
between a shrunken and expanded metasurface which contains multiple sharp bends. Since
there is no translational invariance, one has to numerically solve a system ofN coupled-dipole
equations

1
α(ω)pi(ω) =E0(ρi, ω) +

∑
j ̸=i

G(ρi − ρj, ω)pj(ω) , (6.48)

where pi represents the induced dipole moment of the i = 1, 2, . . . , N dipole located at ρi,
and E0(ρ, ω) is the external driving field. Note that we include non-radiative losses in the
metasurface by setting γnr = 0.02µ.

Furthermore, we excite the metasurface with a left-handed chiral source which is com-
prised of six point sources with a fixed phase difference. The corresponding driving field
reads

E0(ρ) ∝
6∑

υ=1
e−i υπ

3 G(ρ − ρ0 − eυ, ω) , (6.49)
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Figure 6.8 | Selective excitation of the polariton valley-Hall edge states. (a) Steady-state distribution of the
dipole moments for an Ω-shaped interface (white dotted line) between an expanded (top) and shrunken (bottom)
metasurface with a large cavity width (L = 5a). We excite the metasurface with a left-handed chiral source at a
driving frequency that corresponds to the middle of the gap at the K/K′ points. Furthermore, we position the
source close to the interface such that it selectively couples only to the K valley edge state. One clearly observes
the chiral nature of the valley-Hall edge state which only propagates to the right and is not backscattered by
the sharp bends. (b) Same as panel (a) but for a small cavity width (L = 0.5a). The valley-Hall edge state in
the K valley now propagates in the opposite direction due to the cavity-induced inversion of the valley-Chern
numbers. Results obtained with λ0 = 10a, µ = 0.001ω0 and γnr = 0.02µ. For panels (a) and (b) we use
driving frequencies given by (ω − ωcav) = 0.471µ and (ω − ωcav) = 0.208µ, respectively.

where eυ = 0.01a[ cos(υπ/3) , sin(υπ/3) ] are the locations of the point sources with respect
to the centre of the source located at ρ0. We chose the driving frequencies such that they
correspond to the middle of the bulk gap at the K/K′ points.

Moreover, we position the chiral source close to the interface so that it selectively excites
only the topological edge state in the K valley. It is important to stress that the Dirac velocity
also changes sign as the cavity width is reduced. Consequently, from equation (6.45) we can
see that the spinor for each valley remains the same in the two limiting interaction regimes.
Therefore, if we fix the position of the chiral source it will couple to the K valley edge state
in both regimes.

In figure 6.8(a), we plot the steady-state amplitude of the dipole moments for a large
cavity width where the Coulomb interactions are dominant. One clearly observes the chiral
nature of the valley-Hall edge state which only propagates to the right and is not backscattered
by the sharp bends in the interface. Figure 6.8(b) shows the simulation for the same interface
but now with a small cavity width where the photon-mediated interactions are dominant.
As predicted, the valley-Hall edge state now propagates in the opposite direction due to the
cavity-induced inversion of the valley-Chern numbers, thus verifying the ability to switch the
chirality of the valley-Hall edge states by varying only the cavity width.
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6.5 Conclusion
In this chapter we have proposed an alternative method to engineer topological phase
transitions in valley-Hall metasurfaces via accidental Dirac points. While the symmetry-
breaking perturbation is required to induce the valley-Hall phase, one does not necessarily
have to invert this symmetry-breaking perturbation in order to change the valley-Chern
numbers. In particular, we have shown that the topological phase of the polaritons is not
inherently fixed by the geometry of the metasurface, but it can depend sensitively on the local
electromagnetic environment which mediates the dipole-dipole interactions. Consequently,
we have shown that one can invert the valley-Chern numbers and thus switch the chirality of
the polariton valley-Hall edge states by embedding the metasurface inside a cavity waveguide.
This stands in contrast to previous studies where the valley-Chern numbers are usually fixed
by design and the corresponding valley-Hall edge states are forced to propagate in a fixed
direction. While this alternative approach is not entirely deterministic, it does not require one
to reconfigure the lattice geometry and therefore it may provide an easier way of inducing
topological transitions in a variety of metasurfaces.





7
Thesis conclusions and future perspectives

Graphene is a remarkable material where the low-energy electrons do not behave like the
usual massive Schrödinger particles. Instead, the electrons hopping on the honeycomb lattice
effectively lose their mass and are described by a more exotic massless Dirac Hamiltonian,
which is responsible for most of graphene’s remarkable electronic properties. The work
presented in this thesis was motivated by a simple question: what happens if we replace
every carbon atom with a dipole emitter or antenna? Do the polaritons supported by the
metasurface inherit some of graphene’s intriguing properties? It is evident that symmetries
play an important role, endowing the polaritons with Dirac-like properties and constraining
the form of the effective Hamiltonian. However, the metasurface hybridizes with the sur-
rounding photons which can mediate long-range interactions between the dipoles, and thus
the metasurface is not amenable to a simple tight-binding description.

Furthermore, the hybrid light-matter character of the polaritons affords a tunability that
is impossible to achieve for the electrons in graphene, where the properties of the massless
Dirac fermions are fixed by the rigid lattice structure. In particular, we have demonstrated that
one can modify the nature of the dipole-dipole interactions by structuring the local photonic
environment via a cavity waveguide. Exploiting this unique feature of the emitters/antennas,
we have unveiled that one can tune the effective Hamiltonian parameters and thus dramatically
alter the fundamental properties of the Dirac polaritons by varying the cavity width. This
raises some interesting questions which can be explored both theoretically and experimentally
in a variety of platforms across the electromagnetic spectrum.

In chapter 4 we demonstrated that a honeycomb metasurface can exhibit both type-I
and type-II massless Dirac polaritons with distinct physical origins – in stark contrast to
photonic analogs of graphene. Since the type-II Dirac points are accidental and not enforced
by the symmetry, one can manipulate their location in the Brillouin zone to induce exotic
merging transitions of the Dirac points by varying only the cavity width. Interestingly, one
could exploit the tunability of the effective Hamiltonian parameters by engineering spatial
variations in the cavity width to generate effective potential and velocity barriers for the Dirac



174 Thesis conclusions and future perspectives

polaritons. The former could give rise to Klein tunnelling and negative refraction which could
be exploited for Veselago lensing of polaritons. Furthermore, while we have focused on the
bulk properties, it would be interesting to explore how structuring the photonic environment
modifies the edge states that usually connect the inequivalent Dirac points [272–276] – do
novel edge states emerge from the presence of the accidental type-II Dirac points? In fact,
the non-trivial winding in the light-matter interaction provides a relatively deterministic
mechanism of generating accidental Dirac points, even in lattices that would not support
deterministic Dirac points. Gapping out these accidental Dirac points could then give rise to
valley-Hall edge states which could be created and annihilated by varying the cavity width.
Finally, the cavity-induced inversion of chirality could have interesting consequences for the
valley-Hall edge states that would emerge in a metasurface analog of the Semenoff insulator.

In chapter 5 we demonstrated that one can generate a pseudo-magnetic field for Dirac
polaritons by straining the honeycomb metasurface. Interestingly, we have shown that one can
tune the pseudo-magnetic field, and even switch it off entirely, by modifying the dipole-dipole
interactions via the cavity width. It has been previously shown that there exist quantum-Hall-
like edge states associated with the pseudo-magnetic Landau levels [171] – do they exist in
the presence of long-range interactions? Can one controllably switch them on/off, or tune
their properties, by structuring the photonic environment? Furthermore, one should also be
able to observe Aharonov-Bohm-like interference effects [26] for the polaritons which could
be tuned by varying the cavity width. Moreover, the polariton Landau levels provide a novel
way of sculpting the local density of states which plays a crucial role in determining the
radiative properties of emitters – this could be exploited for enhancing/suppressing light-
matter interactions in subwavelength photonic structures. Finally, while we have focused
on some of the implications of a tunable pseudo-magnetic field, it would be interesting to
explore the implications of a tunable pseudo-electric field arising from the pseudo-scalar
potential or a time-varying pseudo-vector potential.

In chapter 6 we showed that one can induce the valley-Hall phase for polaritons by
perturbing a kagome metasurface. Without inverting the symmetry-breaking perturbation, we
showed that one can invert the valley-Chern numbers and therefore switch the chirality of the
valley-Hall edge states by varying the cavity width. While these topological transitions arise
from the modified dipole-dipole interactions, there may be other environment-induced effects
that one could utilize to induce topological transitions, such as the environment-induced
Lamb shift. Furthermore, the underlying principle could also have implications for other
topological phases that have attracted considerable attention in photonics. For example,
perturbed kagome lattices have also been shown to exhibit a higher-order topological phase
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with topological corner states, where it is usually asserted that the shrunken/expanded lattice
is the trivial/topological phase [271]. However, here we have shown the ability to induce
multiple band inversions without ever modifying the lattice geometry of the metasurface; do
these band inversions change the topological phase? If so, what is the fate of the topological
corner states as the photonic environment is modified? Furthermore, perturbed honeycomb
lattices have been shown to exhibit pseudo-spin polarized edge states [80] and topological
corner states [277]. We suspect that our proposed mechanism could also induce topological
band inversions for the metasurface analog of these systems.

The most promising platform for realizing the physics presented in this thesis would
probably be a microwave metasurface as they are proving to be a versatile playground for
exploring Dirac/topological physics. At these frequencies, metals behave approximately
as perfect conductors and therefore losses are small, and cavity waveguides are commonly
employed [76]. One particular advantage with microwave metamaterials is that there exists
well-established experimental techniques for directly mapping the near-field and obtaining
the dispersion of the modes. In particular, using a vector network analyzer, one can excite
the metasurfaces using a near-field source antenna, and then the field can be measured
using a second detecting antenna which can be scanned along the metasurface using an
xyz-translation stage [83]. For the strained metasurface, one could map the entire Landau
level spectrum in a single measurement by measuring the return loss of a near-field source
antenna which can be related to the local density of states [58].

Furthermore, we note that the underlying principle presented in this thesis could be
generalized to include metasurfaces composed of more complex antennas that exhibit large
magnetic dipole and higher-order multipole moments. This could include resonant antennas
such as split-ring resonators and dielectric Mie resonators which are commonly employed
in metamaterial research and exhibit richer interactions. Moreover, our classical analysis is
a valid description for a subwavelength array of quantum two-level emitters in the single-
excitation subspace [233]. It would therefore be very interesting to explore these phenomena
in the quantum regime, by considering subwavelength arrays of atomic (atom-like) quantum
emitters, which have been attracting considerable theoretical interest in recent years [217–
222] and have started to become an experimental reality [223–226]. Finally, while we have
focused on the effect of a cavity waveguide, one could explore other ways of structuring the
local photonic environment to modify the nature of the interactions between emitters/antennas
– for example, one could consider interactions mediated by the surface plasmons in graphene
[278] or the guided modes of photonic crystals [229–231] which may provide alternative
mechanisms for tunability.
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To conclude, while intense efforts are devoted to designing photonic systems that emulate
tight-binding models, this work hints at a rich landscape of physics emerging from non-trivial
long-range interactions which are prevalent in electromagnetic systems.
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Supplementary information for chapter 2

A.1 Klein tunnelling at normal incidence

In this section we provide an alternative way to understand why massless Dirac fermions
exhibit Klein tunnelling and thus cannot be localized with a simple potential barrier. At
normal incidence the transverse wavevector is zero (ky = 0) and therefore the wavefunction
has no y-dependence ψ(r) = ψ(x). Consequently, the Hamiltonian reduces to an effective
1D massless Dirac Hamiltonian

H+ = −iℏvFσx∂x + V (x)12 , (A.1)

which, after performing a unitary transformation, decouples into two independent scalar
Hamiltonians

HL = iℏvF∂x + V (x) , HR = −iℏvF∂x + V (x) . (A.2)

The first Hamiltonian acts on left-moving electrons described by a scalar wavefunction ψL(x)
and free dispersion EL(k) = −ℏvFkx, while the second Hamiltonian acts on right-moving
electrons described by a scalar wavefunction ψR(x) and free dispersion ER(k) = ℏvFkx.
Since the right-movers and left-movers are completely decoupled the energy eigenstates are
trivialy given by

ψL(x) = ψL(0)e
− i

ℏvF

x́

0
[EF−V (x′)]dx′

, ψR(x) = ψR(0)e
i

ℏvF

x́

0
[EF−V (x′)]dx′

. (A.3)

Therefore, there are no bound states and any potential barrier will appear transparent at
normal incidence, irrespective of its shape and size.
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A.2 Symmetry constraints on the effective Hamiltonian
at the M point

In this section we analyze the constraints imposed on the form of the effective Hamiltonian
near the M point by the corresponding C2v little point group. Let us assume a general
two-band Hamiltonian near the M point

HM(k) =
 d0(k) dx(k) − idy(k)
dx(k) + idy(k) d0(k)

 = d0(k)12 + σ · d(k) , (A.4)

with
d(k) = [ dx(k) , dy(k) ] , (A.5)

where di(k) ∈ R are real functions (i = 0, x, y). Here we have already applied the constraint
imposed by IT symmetry which enforces the σz term to vanish throughout the entire
Brillouin zone.

The C2v little point group is generated by { C2 , My }, where C2 represents a π rotation
about the z-axis which is equivalent to I in two dimensions. Since My exchanges the
two sublattices and sends ky → −ky, it imposes the following constraint on the effective
Hamiltonian

My : σxHM(kx , ky)σx = HM(kx , −ky) , (A.6)

which is satisfied if

d0(kx , ky) = d0(kx , −ky) , dx(kx , ky) = dx(kx , −ky) , −dy(kx , ky) = dy(kx , −ky) .
(A.7)

Moreover, since I also exchanges the two sublattices and sends k → −k, it imposes the
following constraint on the effective Hamiltonian

I : σxHM(kx , ky)σx = HM(−kx , −ky) , (A.8)

which is satisfied if

d0(kx , ky) = d0(−kx , −ky) , dx(kx , ky) = dx(−kx , −ky) , −dy(kx , ky) = dy(−kx , −ky) .
(A.9)

Furthermore, while the M point is also a T invariant point in the Brillouin zone, T symmetry
alone does not impose any further constraints. Finally, putting all these constraints together,
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the most general form of the effective Hamiltonian near the M point up to quadratic order in
k reads

HM(k) = (c1 + c2k
2
x + c3k

2
y)12 + (c4 + c5k

2
x + c6k

2
y)σx + c7kyσy , (A.10)

where ci ∈ R are real constants (i = 1, 2, . . . , 7).
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Supplementary information for chapter 3

B.1 Equivalenceof theeigenfunction and imageexpansions

In this section we will show that the image expansion of the cavity Green’s function is
equivalent the eigenfunction expansion. For convenience, we reprint the image expansion
given by equation (3.81) and equation (3.82) which read

↔
G(r, r′, ω) =

↔
G1D(r, r′, ω) +

↔
G1D(r, r′ + (L− 2z′)ẑ, ω) ·

↔
I xy , (B.1)

and

↔
G1D(r, r′, ω) = V

4π

∞∑
l=−∞

(
k2

ω

↔
I + ∇∇

) eikω |r−r′+Rl|

|r − r′ + Rl|
, (B.2)

respectively. To begin, we can use the following integral representation (see 6.677(8) in ref
[279])

eikω |r−r′+Rl|

|r − r′ + Rl|
= i

2

∞̂

−∞

H
(1)
0

(
|ρ − ρ′|

√
k2

ω − q2
)

ei(z−z′+2lL)qdq (B.3)

to transform equation (B.2) into

↔
G1D(r, r′, ω) = i V

8π

∞∑
l=−∞

(
k2

ω

↔
I + ∇∇

) ∞̂

−∞

H
(1)
0

(
|ρ − ρ′|

√
k2

ω − q2
)

ei(z−z′+2lL)qdq .

(B.4)
Next, we can use the 1D form of Poisson’s summation identity

∞∑
l=−∞

ei2lLq = π

L

∞∑
m=−∞

δ (q − km) , (B.5)
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and after summing the positive and negative values of m we obtain

↔
G1D(r, r′, ω) = iV8

∞∑
m=0

Nm

L

(
k2

ω

↔
I + ∇∇

)
cos[(z − z′)km]H(1)

0

(√
k2

ω − k2
m|ρ − ρ′|

)
.

(B.6)
By inserting equation (B.6) into equation (B.1) and using the following trigonometric identi-
ties

cos[(z − z′)km] + cos[(z + z′ + L)km] = 2 cos(kmz̃) cos(kmz̃
′)

cos[(z − z′)km] − cos[(z + z′ + L)km] = 2 sin(kmz̃) sin(kmz̃
′) ,

(B.7)

we can re-express equation (B.1) as

↔
G(r, r′, ω) = iV4

∞∑
m=0

Nm

L

(
k2

ω

↔
I + ∇∇

)
H

(1)
0

(√
k2

ω − k2
m|ρ − ρ′|

) ↔
Cm(z, z′) , (B.8)

which is identical to equation (3.74) that we obtained via the eigenfunction expansion method.
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C.1 Expansion of the dynamical matrix near the K point

In this section we provide additional details for the expansion of the dynamical matrix near
the K point which yielded equation (4.37) and equation (4.38). We will begin by expanding
the intrasublattice elements of the longitudinal dynamical matrix in equation (4.14) which, to
quadratic order in k = q − K, read

DAA/BB
∥+ (k) ≃

∑
R ̸=0

[
G∥(R)e−iK·R − iG∥(R)e−iK·R(R)νkν − 1

2G∥(R)e−iK·R(R)ν(R)ν′kνkν′

]
.

(C.1)
From the symmetry analysis that we performed in section 2.2.6 we know that some of the
terms in the expansion should vanish identically. We can see this explicitly within the
coupled-dipole equations by exploiting the symmetry of the honeycomb lattice and summing
the contributions from dipoles residing at the same separation distance. For a given lattice
vector in the sum we can find six vectors that have the same magnitude

Rij = (Mx)iR(j2π/3) · R , i = 0, 1 , j = 0, 1, 2 , (C.2)

where Mx : [ x , y ] → [ −x , y ] represents a mirror reflection in the yz-plane and R(θ) is
the rotation matrix defined in equation (4.22). Note, these vectors are not necessarily all
different but this over counting does not matter for the following symmetry analysis. One
can show that the coefficients of the kx, ky and kxky terms vanish since

1∑
i=0

2∑
j=0

e−iK·Rij (Rij)ν = 0 ,
1∑

i=0

2∑
j=0

e−iK·Rij (Rij)x(Rij)y = 0 , (C.3)
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and one can also show that the other coefficients are real since

1∑
i=0

2∑
j=0

e−iK·Rij ∈ R ,
1∑

i=0

2∑
j=0

e−iK·Rij (Rij)2
x =

1∑
i=0

2∑
j=0

e−iK·Rij (Rij)2
y ∈ R . (C.4)

Next, we can expand the intrasublattice elements of the transverse dynamical matrix in
equation (4.27) which, to quadratic order in k = q − K, read

DAA/BB
⊥+ (k) ≃

∑
g

{
ω2ξ2

ω2
K−g − ω2 − Re[GTEM

⊥ (0, ω)] + 2ω2ξ2c2(K − g)ν

(ω2
K−g − ω2)2 kν

− 1
2

[
2c2ω2ξ2δνν′

(ω2
K−g − ω2)2 − 8ω2ξ2c4(K − g)ν(K − g)ν′

(ω2
K−g − ω2)3

]
kνkν′

}
.

(C.5)

Due to the symmetry of the Brillouin zone, we can find six photonic modes that are degenerate
at the K point corresponding to the reciprocal lattice vectors

gij = K − (My)iR(j2π/3) · (K − g) , (C.6)

which are not necessarily all different. By summing the contributions from these degenerate
photons one can show that the coefficients of the kx, ky and kxky terms vanish since

1∑
i=0

2∑
j=0

(K − gij)ν = 0 ,
1∑

i=0

2∑
j=0

(K − gij)x(K − gij)y = 0 , (C.7)

and one can also show that the other coefficients are real since

1∑
i=0

2∑
j=0

(K − gij)2
x =

1∑
i=0

2∑
j=0

(K − gij)2
y ∈ R , (C.8)

Putting all this together we obtain equation (4.37), which has the expected form from the
general symmetry analysis presented in section 2.2.6.

We can perform similar analysis for the intersublattice elements of the longitudinal
dynamical matrix in equation (4.15) which expand as

DAB
∥+(k) ≃

∑
R

[
G∥(R − d)e−iK·(R−d) − iG∥(R − d)e−iK·R(R − d)νkν

− 1
2G∥(R − d)e−iK·(R−d)(R − d)ν(R − d)ν′kνkν′

]
.

(C.9)
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Again, using the symmetry of the honeycomb lattice we can find six vectors (not necessarily
all different)

Rij − d = (Mx)iR(j2π/3) · (R − d) , (C.10)

which locate dipoles on the opposite sublattice that reside at the same separation distance.
By summing the contributions from these dipoles one can show that the zeroth order term
vanishes since

1∑
i=0

2∑
j=0

e−iK·(Rij−d) = 0 . (C.11)

Furthermore, one can show that the coefficient of kx is real and the coefficient of ky is
imaginary since

i
1∑

i=0

2∑
j=0

e−iK·(Rij−d)(Rij − d)x = −
1∑

i=0

2∑
j=0

e−iK·(Rij−d)(Rij − d)y ∈ R , (C.12)

and one can also show that the coefficients of k2
x and k2

y are real while the coefficient of kxky

is imaginary since

1∑
i=0

2∑
j=0

e−iK·(Rij−d)(Rij − d)2
x = −

1∑
i=0

2∑
j=0

e−iK·(Rij−d)(Rij − d)2
y

= −i
1∑

i=0

2∑
j=0

e−iK·(Rij−d)(Rij − d)x(Rij − d)y ∈ R .
(C.13)

Next, we can expand the intersublattice elements of the transverse dynamical matrix in
equation (4.28) which read

DAB
⊥+(k) ≃

∑
g
ϕg

{
ω2ξ2

ω2
K−g − ω2 + 2ω2ξ2c2(K − g)ν

(ω2
K−g − ω2)2 kν

−1
2

[
2c2ω2ξ2δνν′

(ω2
K−g − ω2)2 − 8ω2ξ2c4(K − g)ν(K − g)ν′

(ω2
K−g − ω2)3

]
kνkν′

}
.

(C.14)

Using the same reciprocal lattice vectors in equation (C.6) one can show that the zeroth order
term vanishes since

1∑
i=0

2∑
j=0

ϕgij
= 0 . (C.15)
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Furthermore, one can show that the coefficient of kx is real and the coefficient of ky is
imaginary since

1∑
i=0

2∑
j=0

ϕgij
(K − gij)x = i

1∑
i=0

2∑
j=0

ϕgij
(K − gij)y ∈ R , (C.16)

and one can also show that the coefficients of k2
x and k2

y are real while the coefficient of kxky

is imaginary since

1∑
i=0

2∑
j=0

ϕgij
(K − gij)2

x = −
1∑

i=0

2∑
j=0

ϕgij
(K − gij)2

y = −i
1∑

i=0

2∑
j=0

ϕgij
(K − gij)x(K − gij)y ∈ R .

(C.17)
Putting all this together we obtain equation (4.38), which has the expected form from the
general symmetry analysis presented in section 2.2.6.

C.2 Expansion of the dynamical matrix near the M point

In this section we provide additional details for the expansion of the dynamical matrix near
the M point which leads to the effective Hamiltonian in equation (4.59). We will begin by
expanding the intrasublattice elements of the longitudinal dynamical matrix in equation (4.14)
which, to quadratic order in k = q − M, read

DAA/BB
∥+ (k) ≃

∑
R ̸=0

[
G∥(R)e−iM·R − iG∥(R)e−iM·R(R)νkν − 1

2G∥(R)e−iM·R(R)ν(R)ν′kνkν′

]
.

(C.18)
From the symmetry analysis that we performed in appendix A.2 we know that some of the
terms in the expansion should vanish identically. Since the M point is not invariant under
C3, it plays no role in constraining the matrix elements. However, exploiting the mirror
symmetries we can find four lattice vectors (not necessarily all different)

Rij = (Mx)i(My)j · R , i, j = 0, 1 , (C.19)

which locate dipoles on the same sublattice that reside at the same separation distance. By
summing the contributions from these dipoles one can show that the coefficients of kx, ky

and kxky vanish since

1∑
i,j=0

e−iM·Rij (Rij)ν = 0 ,
1∑

i,j=0
e−iM·Rij (Rij)x(Rij)y = 0 , (C.20)
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while the zeroth order term and the coefficients of k2
x and k2

y are real since

1∑
i,j=0

e−iM·Rij ∈ R ,
1∑

i,j=0
e−iM·Rij (Rij)2

x ∈ R ,
1∑

i,j=0
e−iM·Rij (Rij)2

y ∈ R . (C.21)

Next, we can expand the intrasublattice elements of the transverse dynamical matrix in
equation (4.27) which, to quadratic order in k = q − M, read

DAA/BB
⊥+ (k) ≃

∑
g

{
ω2ξ2

ω2
M−g − ω2 − Re[GTEM

⊥ (0, ω)] + 2ω2ξ2c2(M − g)ν

(ω2
M−g − ω2)2 kν

− 1
2

[
2c2ω2ξ2δνν′

(ω2
M−g − ω2)2 − 8ω2ξ2c4(M − g)ν(M − g)ν′

(ω2
M−g − ω2)3

]
kνkν′

}
.

(C.22)

Using the symmetry of the Brillouin zone we can find four photonic modes (not necessarily
all different) that are degenerate at the M point corresponding to the reciprocal lattice vectors

gij = M − (I)i(My)j · (M − g) , i, j = 0, 1 . (C.23)

By summing the contributions from these degenerate photons one can show that the coeffi-
cients of kx, ky and kxky vanish since

1∑
i,j=0

(M − gij)ν = 0 ,
1∑

i,j=0
(M − gij)x(M − gij)y = 0 , (C.24)

while the zeroth order term and the coefficients of k2
x and k2

y are real since

1∑
i,j=0

(M − gij)2
x ∈ R ,

1∑
i,j=0

(M − gij)2
y ∈ R . (C.25)

We can perform similar analysis for the intersublattice elements of the longitudinal
dynamical matrix in equation (4.15) which expand as

DAB
∥+(k) ≃

∑
R

[
G∥(R − d)e−iM·(R−d) − iG∥(R − d)e−iM·R(R − d)νkν

− 1
2G∥(R − d)e−iM·(R−d)(R − d)ν(R − d)ν′kνkν′

]
.

(C.26)
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Exploiting the mirror symmetry we can find two vectors (not necessarily different)

Ri − d = (Mx)i · (R − d) , i = 0, 1 , (C.27)

which locate dipoles on the opposite sublattice that reside at the same separation distance.
By summing the contributions from these dipoles one can show that the coefficients of kx

and kxky vanish since

1∑
i=0

e−iM·(Ri−d)(Ri − d)x = 0 ,
1∑

i=0
e−iM·(Ri−d)(Ri − d)x(Ri − d)y = 0 . (C.28)

Moreover, one can show that the zeroth order term is real and the coefficient of ky is imaginary
since

1∑
i=0

e−iM·(Ri−d) ∈ R ,
1∑

i=0
e−iM·(Ri−d)(Ri − d)y ∈ R , (C.29)

while the coefficients of k2
x and k2

y are real since

1∑
i=0

e−iM·(Ri−d)(Ri − d)2
x ∈ R ,

1∑
i=0

e−iM·(Ri−d)(Ri − d)2
y ∈ R . (C.30)

Next, we can expand the intersublattice elements of the transverse dynamical matrix in
equation (4.28) which read

DAB
⊥+(k) ≃

∑
g
ϕg

{
ω2ξ2

ω2
M−g − ω2 + 2ω2ξ2c2(M − g)ν

(ω2
M−g − ω2)2 kν

−1
2

[
2c2ω2ξ2δνν′

(ω2
M−g − ω2)2 − 8ω2ξ2c4(M − g)ν(M − g)ν′

(ω2
M−g − ω2)3

]
kνkν′

}
.

(C.31)

Using the same reciprocal lattice vectors in equation (C.23) one can show that the coefficients
of kx and kxky vanish since

1∑
i,j=0

ϕgij
(M − gij)x = 0 ,

1∑
i,j=0

ϕgij
(M − gij)x(M − gij)y = 0 . (C.32)
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Moreover, one can show that the zeroth order term is real and the coefficient of ky is imaginary
since

1∑
i,j=0

ϕgij
∈ R , i

1∑
i,j=0

ϕgij
(M − gij)y ∈ R , (C.33)

while the coefficients of k2
x and k2

y are real since

1∑
i,j=0

ϕgij
(M − gij)2

x ∈ R ,
1∑

i,j=0
ϕgij

(M − gij)2
y ∈ R . (C.34)

Putting all this together leads us to the effective Hamiltonian in equation (4.59), which has
the expected form from the general symmetry analysis presented in appendix A.2.
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D.1 Wavepacket simulations beyond the linear Dirac cone
approximation

In this section we present the polariton wavepacket simulations beyond the linear Dirac
cone approximation. As we discussed in chapter 4, there exists a critical cavity width
(L = Lv) where the Dirac velocity vanishes and the polariton spectrum becomes quadratic.
To capture the essential physics within the vicinity of this critical cavity width, we must
include second-order field gradients in the effective Hamiltonian which, for the K valley,
reads

H+ =ωD(L)12 + ivD(L)σ · ∇ + Φ(ρ, L)12 + σ · A(ρ, L)

−D(L)∇212 − t(L)σ ·
[
∂2

x − ∂2
y , −2∂x∂y

]
.

(D.1)

Here the trigonal warping parameter t(L) is given by equation (4.43) and the band asymmetry
parameter D(L) is given by equation (4.44). Therefore, in this regime the pseudo-vector
potential does not enter the effective Hamiltonian like a gauge field and therefore we should
not expect it to generate a pseudo-magnetic field.

To investigate the effects of the quadratic terms on the effective cyclotron motion of the
polariton wavepackets, we replace the operator given by equation (5.59) with

M+
k = e−i(ωD+Dk2)δt

[
cos(U)12 − i sin(U)

U
σ · U

]
, (D.2)

where we have introduced the vector

U = δt
[

− vDkx + t(k2
x − k2

y) , −vDky − 2tkxky

]
. (D.3)
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Figure D.1 | Wavepacket simulations beyond the linear Dirac cone approximation. (a)-(h) The top panels
show the simulated trajectories of the Gaussian wavepackets propagating through a strained metasurface with
different cavity widths. Panels (a), (b) and (d)-(h) correspond to the same parameters (and trajectory numbers)
used in figure 5.5. We compare the trajectories obtained with the linear Dirac Hamiltonian (black lines) with
those obtained with the effective Hamiltonian that includes the quadratic terms (red lines). The bottom panels
show the isofrequency contours near the K point, where the blue lines correspond to the central frequency
of the wavepackets and the orange stars represent the initial central wavevector. (c) Shows the trajectories at
the critical cavity width (L = Lv) where the Dirac velocity vanishes and the polariton dispersion is purely
quadratic. Results obtained with ∆ = 2 × 10−5, µ = 0.01ω0, λ0 = 6.5a and δω = −0.001ω0.

The equivalent operator for the K′ valley M−
k is related to M+

k by the replacement σ ↔ σ∗

and k ↔ −k. We initialize Gaussian wavepackets in the K and K′ valleys as given by
equation (5.61) and equation (5.62), respectively. However, to find the central wavevector k0

one has to numerically solve the dispersion

ωτλ(k) = ωD +D(L)|k|2 + λ
∣∣∣−vD(L)(τkx − iky) + t(L)(k2

x − k2
y + τ2ikxky)

∣∣∣ . (D.4)
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In figures D.1(a)-(g) we plot the centre-of-mass trajectories (red lines) for a fixed strain
configuration but different cavity widths (top panels), along with the isofrequency contours of
the lower polariton band near the K point (bottom panels). The blue lines are the isofrequency
contours corresponding to the central frequency of the wavepackets and the orange stars
indicate the initial central wavevector. We compare these trajectories with those presented in
figure 5.5 (black lines), which were obtained within the linear Dirac cone approximation.

For cavity widths far from the critical width Lv the isofrequency contours are essen-
tially circular and the cyclotron orbits match very well with those obtained with the linear
approximation (for example see figures D.1(a),(b),(h)). For cavity widths closer to Lv the
trigonal warping of the isofrequency contours becomes more pronounced, and thus the
cyclotron orbits become warped and asymmetrical for the two valleys (for example see fig-
ures D.1(d),(f),(g)). For the critical cavity width where the pseudo-vector potential vanishes
L = LA, there is no Lorentz-like force and therefore no cyclotron orbit (see figure D.1(e)). In
figure D.1(c) we show the trajectories for the critical cavity width L = Lv where the polariton
dispersion is purely quadratic. At this critical width, the trajectories bear no resemblance of
cyclotron orbits and the trajectories for the K/K′ valleys are the same.

Finally, we note that the orbit direction depends on the signs of the Dirac velocity,
cyclotron mass and pseudo-magnetic field. To highlight this, we note that for LA < L < Lv

the orbit direction is reversed compared to L > Lv due to the change in sign of the Dirac
velocity (see figure D.1(d)). However, for L < LA the pseudo-vector potential switches sign
and thus the orbit direction reverses again (see figure D.1(f))

D.2 Strain dependence of the polariton Landau levels

In this section we illustrate how the polariton Landau levels depend on the strain magnitude.
In figure D.2(a) we show the evolution of the Landau level spectrum as the strain magnitude
is increased, as predicted by the effective Hamiltonian within the linear Dirac cone approxi-
mation. The Landau levels display a characteristic square-root dependence on the Landau
level index and the strain magnitude, which is a direct manifestation of the pseudo-relativistic
nature of the massless Dirac polaritons.

In figures D.2(b)-(d) we show the local spectral function at the centre of the metasurface
for a fixed cavity width but different strain magnitudes. Here we consider a large cavity width
where the Coulomb interactions are dominant, and a more subwavelength lattice spacing
to increase the size of the Dirac region. For the strained metasurface (see figure D.2(c)), a
series of Landau level peaks emerge within the Dirac region which are not present in the
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Figure D.2 | Polariton Landau levels vs strain. (a) Predicted evolution of the polariton Landau levels as the
strain magnitude is increased with a fixed cavity width. In analogy with the electrons in graphene, the polaritons
in the honeycomb metasurface exhibit a square-root dependence on the pseudo-magnetic field and Landau
index. (b)-(d) Evolution of the local spectral function at the centre of the metasurface on the B sublattice
with a fixed cavity width but different strain magnitudes of ∆ = 0, ∆ = 0.001 and ∆ = 0.002, respectively.
The resonant peaks corresponding to the Landau levels are labeled according to their Landau index. Results
obtained with a/L = 0.2, Ω = 0.01ω0, λ0 = 9.1a and γnr = 0.025µ.

corresponding unstrained case (see figure D.2(b)). As the magnitude of the strain is increased
(see figure D.2(d)), the spacing between the Landau levels increases in accordance with the
analytical predictions. Moreover, we also note that the total number of Landau levels reduce
as the higher-order ones are forced beyond the Dirac region.

D.3 Cavity dependence of the polariton Landau levels

In this section we present additional local spectral function plots for different cavity widths,
including those where the linear Dirac cone approximation breaks down. We stress that
the analytical spectrum of the Landau levels in equation (5.64) is only valid within the
approximations of the effective Dirac Hamiltonian. This breaks down for cavity widths close
to Lv where one should not expect the applied strain to generate a clear sequence of Landau
levels.

In figures D.3(a)-(c) we show the evolution of the local spectral function at the centre
of the metasurface as the cavity width is reduced within the subcritical regime L > LA.
As predicted, the Landau level spacing decreases as the cavity width is reduced (see fig-
ures D.3(a)-(b)). In addition, the number of Landau level peaks reduce as the higher-order
ones are forced beyond the Dirac region which reduces in size as the cavity width is decreased.



Subradiant polariton Landau level states 195

Figure D.3 | Polariton Landau levels vs cavity width. (a)-(c) Evolution of the local spectral function at the
centre of the strained metasurface on the B sublattice for different cavity widths within the subcritical regime
given by a/L = 0.3, a/L = 0.45 and a/L = 0.63, respectively. The resonant peaks corresponding to the
Landau levels are labeled according to their Landau index. (d)-(f) Evolution of the local spectral function
for different cavity widths within the supercritical regime given by a/L = 0.9, a/L = 1 and a/L = 1.1,
respectively. Results obtained with ∆ = 0.002, µ = 0.01ω0, λ0 = 6.5a and γnr = 0.025µ.

For cavity widths close to Lv (see figure D.3(c)), the strain does not produce a clear sequence
of Landau levels and the Dirac region vanishes. At the critical cavity width L = LA, the
pseudo-magnetic field is switched off and, as a result, the applied strain does not generate
Landau levels within the Dirac region (see see figure 5.7(d)).

To further elucidate the revival of the polariton Landau levels, in figures D.3(d)-(f) we
show the evolution of the local spectral function at the centre of the metasurface as the cavity
width is reduced within the supercritical regime L < LA. For cavity widths just beyond the
critical value, we start to observe the revival of the Landau levels within the Dirac region
(see figure D.3(d)). As the cavity width is progressively decreased, more Landau level peaks
emerge and the Landau level spacing increases in direct accordance with the analytical
predictions (see figures D.3(e)-(f)).

D.4 Subradiant polariton Landau level states

In this section we briefly discuss the properties of the Landau level states. In figure 3.3 we
saw that the width of the single dipole resonant peak increased as the cavity width is reduced;
this is because the radiative losses increase as the light-matter coupling strength increases.
However, when comparing figure 5.7(b) and figure 5.7(f) one observes that the Landau level
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Figure D.4 | Subradiant Landau level states. (a)-(c) Top panels show the normalized dipole field intensity
for a fixed cavity width but different strain magnitudes of ∆ = 0.001, ∆ = 0.003 and ∆ = 0.01, respectively.
Here, a dipole located at the centre of the metasurface on the B sublattice is driven at a frequency corresponding
to the zeroth Landau level. Bottom panels show the corresponding Fourier transform of the induced dipole
field, where the gold hexagon represents the first Brillouin zone and the red circle represents the isofrequency
contour of the light-line. Results obtained with L = 5a, λ0 = 9.1a, µ = 0.01ω0 and γnr = 0.025µ.

peaks are very sharp and their width does not significantly vary for different cavity widths –
the width is limited only by the non-radiative losses.

To see why this is the case, in figure D.4(a) we plot the normalized dipole field intensity
for a large cavity width (top panel), where the strained metasurface is driven at the centre
with a driving frequency that corresponds to the zeroth Landau level. We can see that
the field is strongly localized near the excitation source, and therefore this state does not
radiate at the edges of the metasurface. Moreover, we also plot the Fourier transform of the
dipole field (bottom panel). The Fourier components lie outside the light-line near the K/K′

points in the Brillouin zone, resulting in a rapidly varying phase of the dipole moments over
subwavelength regions. Even in the absence of a cavity waveguide this would suppress any
resonant coupling to free space photons, rendering the polariton Landau level states optically
dark. In figures D.4(b)-(c) we show the same plots but for larger strain magnitudes. As the
strain increases the pseudo-magnetic field increases and, as a result, the dipole field become
increasingly localized near the source and the spread of the Fourier components increases.
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E.1 Coulomb and photon-mediated interactions

In this section we show that the essential physics for large cavity widths is dominated by
the Coulomb interactions. In figure 6.3(a) and figure 6.7(b) we neglected the weak photon-
mediated interactions for clarity. In figure E.1(a) we show the polariton dispersion for the
shrunken metasurface (δ = 0.05) with a large cavity width where we include the full dipole-
dipole interactions (solid blue line). For comparison, we also plot the linear dispersion of
the TEM cavity mode (dashed red line) and the approximate quasistatic dispersion where
we include only the dominant Coulomb interactions (dashed orange line). The light-matter
interaction results in a characteristic anticrossing between the bright quasistatic mode and the
TEM cavity mode, but there is very little effect from the weak photon-mediated interactions
near the K/K′ points which is where our focus is. However, the hybridization results in
polariton states that cross the quasistatic band gap which are predominantly of photonic
character.

In figure E.1(b) we show the polariton dispersion for the interface with a large cavity width
where we include the full dipole-dipole interactions, and we compare this with the quasistatic
dispersion in figure E.1(c) where we include only the dominant Coulomb interactions. The
color of the bands represents the inverse participation ratio IPR = ∑

j |pj|4/(
∑

j |pj|)2, where
the blue/yellow color represents localized/extended states. Note, because we apply periodic
boundary conditions in the y-direction the dispersion plots also contain the valley-Hall edge
states located on the B/A interface as well as the A/B interface.

Due to the absence of a complete band gap, the bulk photon-like states overlap part of
the edge state spectrum (blue bands). However, one observes that the edge states only couple
weakly to these bulk states (as evidenced by the very small anticrossings), and thus the weak
photon-mediated interactions have very little effect on the dispersion of the valley-Hall edge
states for this regime of parameters. We should emphasize that the numerical simulations in
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Figure E.1 | Polariton dispersion with the full dipole-dipole interactions. (a) Polariton dispersion for the
shrunken metasurface (δ = 0.05) with a large cavity width (L = 5a) where we include the full dipole-dipole
interactions (solid blue line). We also show the linear dispersion of the TEM cavity mode (dashed red line)
and the approximate quasistatic dispersion where we include only the Coulomb interactions (dashed orange
line). (b) Polariton dispersion for the interface with a large cavity width (L = 5a) where we include the full
dipole-dipole interactions. The color of the bands represents the IPR, where blue/yellow bands correspond to
localized/extended states. (c) Same as panel (b) but including only the Coulomb interactions. One observes that
the dispersion of the valley-Hall edge states is only slightly modified by the weak photon-mediated interactions.
Results obtained with λ0 = 10a and µ = 0.001ω0.

figure 6.8(a) do include the weak photon-mediated interactions; this demonstrates that the
valley-Hall edge states can be routed around sharp corners without any significant scattering
into the bulk, despite the absence of a complete band gap.

E.2 Berry curvature near the K/K′ valleys

In this section we show that the effective Berry curvature in equation (6.41) captures the
essential physics near the K/K′ valleys in the two limiting interaction regimes. To show
this, we calculate the full Berry curvature from the dynamical matrix which, for the nth band,
reads

Fn(q) = i
∑

m̸=n

⟨φn(q)| ∂
∂qx

D(q) |φm(q)⟩ ⟨φm(q)| ∂
∂qy

D(q) |φn(q)⟩
[α̌−1

m (q) − α̌−1
n (q)]2 + c.c. . (E.1)

Here |φm⟩ and α̌−1
m are the eigenvectors and eigenvalues of the dynamical matrix for the mth

band, respectively, where we evaluate the dynamical matrix and polarizability correction at
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Figure E.2 | Full Berry curvature near theK/K′ points. (a) Berry curvature corresponding to the lower effective
polariton band near the K/K′ points (right/left panel) for the shrunken metasurface (δ = 0.05) with a large
cavity width (L = 5a). The top panels are obtained from the effective Dirac Hamiltonian and the bottom
panels are obtained from the dynamical matrix. (b) Same as panel (a) but for a small cavity width (L = 0.5a).
The full Berry curvature is trigonally warped and exhibits C3 symmetry about the K/K′ points, while the
effective Berry curvature from the Dirac Hamiltonian is isotropic. Apart from this small difference, the Dirac
Hamiltonian captures the essential Berry curvature near the K/K′ valleys. Results obtained with λ0 = 10a and
µ = 0.001ω0.

the cavity resonant frequency. Note, while the effective Berry curvature within the two-band
model is only accurate when the other band is well separated in frequency, equation (E.1)
applies to any band and is valid for all cavity widths. Furthermore, equation (E.1) is valid for
any perturbation while equation (6.41) is only accurate for small perturbations.

In figure E.2(a) we compare the Berry curvature (corresponding to the lower effective
polariton band) calculated from the effective Hamiltonian (top panels) and the dynamical
matrix (bottom panels) for the shrunken metasurface (δ = 0.05) with a large cavity width.
Figure E.2(b) is the same as figure E.2(a) but for a small cavity width. The full Berry
curvature is trigonally warped and exhibits C3 symmetry about the K/K′ points; this feature
is missed by the effective Dirac Hamiltonian where the corresponding Berry curvature is
isotropic. However, apart from this slight difference, the Berry curvature peaks have very
similar magnitudes and therefore the effective Dirac Hamiltonian evidently captures the
essential Berry curvature near the K/K′ points in both limiting interaction regimes for small
perturbations.
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