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Abstract 

Dementia is an umbrella term used to describe a group of symptoms associated with 

global cognitive impairment and is a major contributor to the global burden of disease; 

currently there are over 50 million individuals affected world-wide. Due to the ageing 

population and lack of effective disease-modifying treatments, this number is expected 

to triple by 2050.  Dementia encompasses a number of neurological diseases, 

including Alzheimer’s disease (AD), which accounts for 60-80% of cases. There is a 

well-established genetic component to AD and genome wide-association studies have 

identified >75 variants robustly associated with disease. Little is known about the 

functional mechanisms by which risk variants mediate disease susceptibility; as the 

majority of these variants do not index coding variants affecting protein structure they 

are hypothesised to influence gene regulation, supported by the observation that they 

are enriched in regulatory domains including enhancers.  

The primary aim of this thesis was to assess whether genetic liability for AD is 

associated with regulatory genomic variation (i.e. epigenetic and transcriptomic) in 

whole blood and the human cortex. Epigenome-wide association studies and multi-

omic methods were utilised to explore the molecular mechanisms leading to disease. 

The results from this thesis indicate that epigenetic mechanisms are involved in AD 

pathogenesis and provide further support for several established AD pathways such 

as lipid and cholesterol metabolism, Aβ, tau and APP processing as well as a role for 

the immune system. The analyses incorporating AD genetic variation with DNA 

methylation infer that there are both direct cis genetic effects and indirect polygenic 

effects on regulatory processes which are involved in the aetiology of AD. Although 

there were consistencies at some loci across the whole blood and cortex analyses, 

there was also evidence for heterogeneity across tissues which might represent tissue 

specific effects in areas primarily affected in AD (e.g. the cortex) in comparison to 

peripheral tissues. 

In summary, using multiple approaches, I characterised the complex relationship 

between genetic and epigenetic variation, enabling the exploration of molecular 

genomic mechanisms driving AD pathogenesis in both peripheral and brain tissues 

and prioritised genes which could be targeted in future functional studies.  
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1 General Introduction 

1.1 Alzheimer’s disease and Other Dementias 

Dementia is an umbrella term used to describe a group of symptoms associated with 

global cognitive impairment and encompasses a number of neurological diseases, 

including Alzheimer’s disease (AD), vascular dementia (VaD), dementia with Lewy 

bodies (DLB), Parkinson’s disease (PD) and Frontotemporal dementia (FTD) (Lobo at 

al., 2000).  

Dementia is a major contributor to the global burden of disease and currently there are 

over 50 million individuals affected world-wide (Alzheimer’s Association, 2019). Due 

to the ageing population and lack of effective disease-modifying treatments, this 

number is expected to triple by 2050 (Alzheimer’s Association, 2019). Dementia is 

estimated to cost the economy over one trillion dollars (£760 billion) annually 

(Alzheimer’s Association, 2019; Wimo at al., 2017), and based on the current 

trajectory, this number is predicted to surpass two trillion dollars by 2030 (Alzheimer’s 

Association, 2019; Wimo at al., 2017). 

1.1.1 Clinical Manifestation 

In the International Classification of Diseases version 11 (ICD-11) dementia is 

categorised within ‘Mental and behavioural disorders’ (categories 6D8[X]) (World 

Health Organization, 2020). The ICD-11 clinically characterises dementia as a decline 

in cognitive functioning beyond that of normal ageing, with impairment affecting at 

least two of the following cognitive domains: memory, executive function, attention, 

language, judgement, social cognition, psychomotor speed and visual perception/ 

spatial abilities (World Health Organization, 2020). The symptoms vary for different 

dementia subtypes (see Table 1.1).  

AD is the most common form of dementia, accounting for ~60-80% of cases 

(Alzheimer’s Association, 2019). The primary symptom of AD is memory impairment 

and as the disease progresses there is a steady decline in cognitive functioning 

affecting cognitive domains such as executive functioning, attention, language, social 

cognition and judgement (World Health Organization, 2020). In the earlier stages, 

dementia due to AD is often accompanied by both psychiatric and behavioural 

symptoms such as apathy and depression. In the later stages individual’s may present 
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with psychotic symptoms, aggression, confusion, gait abnormalities and mobility 

issues (World Health Organization, 2020).  

In VaD, the second most common form of dementia (8-15% of cases) (Goodman at 

al., 2017), the onset of cognitive deficits is related to vascular events (i.e. a result of 

poor circulation to the brain) (World Health Organization, 2020). The most affected 

cognitive domains are those involved in processing speed, attention and fontal-

executive functioning (World Health Organization, 2020).  

DLB is the third most common form of dementia (4.6% of cases) (Kane at al., 2018) 

and is initially characterised by cognitive deficits to attentional and executive 

functioning which can be accompanied by hallucinations, sleep disturbances, 

depression and delusions (World Health Organization, 2020). Within a year of 

cognitive symptoms first presenting there is usually onset of Parkinsonism (movement 

abnormalities including tremors, slow movement, muscle stiffness and impaired 

speech). 

PD is diagnosed when Parkinsonian motor symptoms precedes cognitive impairment 

(and vice versa in DLB) and the primary manifestations include bradykinesia 

(slowness of movement) plus at least one of the following motor symptoms: tremor, 

rigidity or postural instability (World Health Organization, 2020).  In addition, non-motor 

manifestations may present in individuals with PD including neuropsychiatric features 

and autonomic dysfunction (World Health Organization, 2020). 

FTD encompasses a group of neurodegenerative disorders which affect the frontal 

and temporal lobes (World Health Organization, 2020). Onset of FTD is usually 

characterised by behavioural changes such as executive dysfunction, declining social 

cognition, apathy and repetitive behaviours or by linguistic deficits including issues 

with comprehension and speaking.  However, memory function, motor function and 

visual perception/spatial abilities usually are usually not affected in FTD, especially in 

the early stages (World Health Organization, 2020).  
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Table 1.1: Characteristics of the most prevalent neurodegenerative diseases which are characterised by dementia. Table adapted from MacBean at al. (2020). 

Phenotype 
Prevalence (% 
of dementia 
cases)  

Neuropathological 
hallmarks Pathological progression Clinical characteristics 

Alzheimer’s 
Disease (AD) 

60-80 
(Alzheimer’s 
Association, 
2019) 

Amyloid-beta (Aβ) 
 

Neurofibrillary 
tangles of Tau (NFT) 

Aβ deposits are found in the neocortex 
and then build up in the hippocampus, 
then striatum and finally the cerebellum 
and other brain regions. 

NFT starts to build up in the trans-
entorhinal cortex spreading to the 
hippocampus, and then to the neocortex. 

Memory impairment, apathy, 
depression, impaired communication, 
disorientation, confusion and 
behavioural changes. At the later stages 
individuals may present with psychotic 
symptoms, aggression, changes to gait 
and mobility issues. 

Dementia with 
Lewy Bodies 
(DLB) 

4.6 (Kane at al., 
2018) 

Alpha-synuclein (α-
synuclein) 

Build-up of α-synuclein deposition starts in 
the brainstem and progresses to the 
substantia nigra of the midbrain, then the 
transentorhinal region, the hippocampus 
and eventually to the neocortex.  

Memory impairment, impaired 
judgement and ability to decide or plan, 
difficulties with motor functioning (e.g. 
poor balance).   

 

Parkinson’s 
Disease (PD) 

2 (Kane at al., 
2018; Nussbaum 
& Ellis, 2003)  

Alpha-synuclein (α-
synuclein) 

Pathology is similar to DLB: build-up of α-
synuclein deposition starts in the 
brainstem and progresses to the limbic 
regions as pathology increases.  

Impaired motor functioning and 
movement including tremors, poor 
balance and changes in gait. 

Vascular 
Dementia 
(VaD) 

8-15 (Goodman 
at al., 2017) 

To date, there are 
no accepted 
neuropathological 
criteria for 
diagnosing VaD 

 

Damage to blood vessels in the affected 
area of the brain causes infarction (tissue 
death).   

Memory impairment, apathy, 
depression, impaired communication, 
disorientation, confusion, behavioural 
changes, sleep disturbances, visual 
hallucinations, poor balance and 
slowness. 
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Frontotemporal 
Dementia 
(FTD) 

1.1-5 (Hogan at 
al., 2016) 

Neurofibrillary 
tangles of Tau (NFT) 

TAR DNA-binding 
protein 43 (TDP-43) 

Fused sarcoma 
protein (FUS) 

Deposits of NFT, TDP-43, or FUS in the 
frontotemporal region cause lobar 
degeneration. 
 
TDP-43 used to distinguish between three 
subtypes of FTD (subtypes FTD-TDP type 
1-3) depending on where it accumulates in 
the brain: type I) TDP-43 is found in 
dystrophic neurites (DN), neuronal 
cytoplasmic inclusions (NCI), intra-
neuronal inclusions (NII) in the frontal and 
temporal cortex;  type 2) TDP-43 is found 
in the DN in the lower layers of cerebral 
cortex; and type 3) TDP-43 is found in the 
NCI in the cerebral cortex and 
hippocampus. 

Changes to personality and behaviour, 
difficulties with speech and 
understanding language. 

 

FTD-TDP type 1 clinically presents as 
either the behavioural variant (where 
behavioural changes occur) of 
frontotemporal dementia or progressive 
non-fluent aphasia (where a person's 
ability to use language is affected). 

 

FTD-TDP type 2 clinically presents as 
Semantic dementia (characterised by 
loss of semantic memory in both the 
verbal and non-verbal domains). 

 

FTD-TDP type 3 clinically presents as 
motor neuron disease. 
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1.1.2 Methods used to diagnose dementia 

Several methods are used assess dementia symptoms but a definitive diagnosis of 

dementia is only possible via neuropathological assessment post-mortem (Love, 

2005)(see Section 1.1.4). To clinically define dementia the first step in the diagnostic 

process after presentation to services is generally informant questionnaire based 

which helps to identify individuals with mild cognitive impairment (MCI; the stage 

between cognitive decline of normal aging and dementia) and dementia (Galvin at al., 

2005; Jorm & Jacomb, 1989; Sabbagh at al., 2010). Informant questionnaires have 

shown good accuracy in detecting dementia and correlate with cognitive screening 

tests used in the diagnosis of AD. Cognitive testing is used to assess decline in general 

cognition beyond that of normal aging. The Mini-Mental State Examination (MMSE) 

(Folstein at al., 1983) is frequently used at an initial assessment and involves 

individuals answering a 30-point questionnaire which tests numerous cognitive 

domains including memory, attention and language. The strength of this test is the 

increase in sensitivity with repeat assessments, therefore it can be used to track the 

progression of cognitive decline (Borson, Scanlan, Watanabe, Tu, & Lessig, 2005).  

Other cognitive tests used in the diagnosis of AD include the Mini-Cog (Borson at al., 

2005) a short three item recall test; the Montreal Cognitive Assessment (MoCa) 

(Nasreddine at al., 2005), a short test which assesses attention, numeracy, executive 

functions, conceptual thinking, memory, language, visual perception/ construction and 

orientation; and the Clinical Dementia Rating (CDR) (Morris, 1993), a 5-point scale 

test used to characterize six domains of cognitive and functional performance which 

are indicative of dementia (memory, judgment / problem solving, orientation, 

community affairs, hobbies and life at home, and lastly personal hygiene/ care).  

In addition to informant questionnaires and cognitive assessments ‘aggregated risk’ is 

considered when diagnosing an individual with dementia as epidemiological studies 

suggest many factors increase the risk for developing dementia including certain 

health conditions and lifestyle factors (Silva at al., 2019). Aggregated risk analysis 

involves identifying if an individual has any medical conditions which increases their 

risk of developing dementia (e.g. hypertension (Skoog at al., 1996; Staessen, Richart, 

& Birkenhäger, 2007), diabetes (Li, Song, & Leng, 2015), obesity (Fitzpatrick at al., 

2009), high cholesterol (Popp at al., 2013), head trauma (Mortimer at al., 1991) and 

cardiovascular disease (Fitzpatrick at al., 2009)) in addition to considering their 



34 
 

demographic information (e.g. age (Guerreiro & Bras, 2015) and family history (Honea, 

Vidoni, Swerdlow, Burns, & Alzheimer’s Disease Neuroimaging Initiative, 2012)).  

Neuroimaging and physical examinations can be used to detect focal neurologic 

deficits affecting the CNS and gait disturbances (Chen, Wang, Liou, & Shaw, 2013; 

Weingarten, Sundman, Hickey, & Chen, 2015). These exams help identify 

cerebrovascular disease, Parkinsonism or if hydrocephalus is present (the build-up of 

fluid in the ventricles within the brain). Additionally, there are laboratory tests which 

can be used to aid the diagnosis of dementia. For example, to detect deficiencies 

which are known to be associated with developing dementia such as B12, vitamin D 

and thyroid stimulating hormone (Chai at al., 2019; Choi at al., 2020; Wang at al., 

2001). Nevertheless, these deficiencies are non-specific and can be identified in all 

dementia sub-types, limiting the usefulness of these tests.  

 Pre-mortem biomarkers of Alzheimer’s disease 

Due to the inaccessibility of the brain, biomarkers are the best method to investigate 

the biology of Alzheimer’s pathology pre-mortem (for a discussion of AD pathology 

see section 1.1.4.1). In addition to their clinical phenotype criterion, the International 

Working Group (IWG) (Dubois at al., 2014) and the National Institute on Aging and 

Alzheimer’s Association (NIA-AA) (Montine at al., 2012) have both incorporated 

biomarkers into their diagnostic processes for detecting AD. Biomarkers for AD 

include: 1) structural magnetic resonance imaging (MRI) and fluorodeoxyglucose 

(FDG) positron emission tomography (PET) to detect neurodegeneration; 2) molecular 

neuroimaging with PET to detect amyloid and tau; and 3) CSF analysis of amyloid-

beta (Aβ) or neurofibrillary tangles of tau (NFT). The incorporation of biomarkers in the 

diagnostic criteria makes it possible for AD to be diagnosed in the prodromal stage 

and can confirm the type of dementia and how far disease has progressed. Despite 

the increased use of biomarkers in AD trials - which can help with confidence in 

diagnosis - there is still risk of over-/misdiagnosis using these methods. To date, the 

only reliable way to validate these techniques and confirm AD is through post-mortem 

neuropathology examinations (Love, 2005). 
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1.1.3 Familial versus sporadic AD 

There are three forms of Alzheimer’s disease (Bekris, Yu, Bird, & Tsuang, 2010). 

There are two early forms which affect individuals under the age of 65: sporadic early 

onset AD (sEOAD) and familial EOAD (fEOAD), and late onset / sporadic AD (LOAD), 

affecting individuals over the age of 65 (Koedam at al., 2010). EOAD is less common 

than LOAD, accounting for ~5% of AD cases (Koedam at al., 2010), with 90% of these 

cases being attributed to autosomal recessive mutations (Wingo, Lah, Levey, & Cutler, 

2012). fEOAD only accounts for 1% of AD cases (Bekris at al., 2010) and it has a clear 

inheritance pattern; it is caused by autosomal dominant mutations in one of three 

genes: the amyloid precursor protein gene (APP; located on chromosome 21), the 

presenilin 1 gene (PSEN1; located on chromosome 14) and the presenilin 2 gene 

(PSEN2; located on chromosome 1) (Bekris at al., 2010). LOAD accounts for 95% of 

AD cases and is a complex disease; risk is mediated by a combination of genetic, 

lifestyle and environmental factors (Koedam at al., 2010).  

Although there are clear differences in the age of onset between EOAD and LOAD, 

both are characterised by deficits in episodic, short-term and working memory, and 

the neuropathological hallmarks are analogous (Joubert at al., 2016). However, 

studies have shown that individuals with EOAD have larger deficits in executive 

functioning, language and visual perception abilities, whereas individuals with LOAD 

have a more dispersed pattern of cognitive impairment including greater semantic 

(long-term) memory deficits (Aziz at al., 2017; Joubert at al., 2016). Additionally, in 

EOAD atrophy is widespread and includes frontotemporoparietal areas and in LOAD 

it is limited to temporal regions (Aziz at al., 2017). 

1.1.4 Neuropathology of neurodegenerative diseases 

Most neurodegenerative diseases are proteinopathies; their pathogenesis is 

characterised by the aggregation of specific proteins in intracellular inclusions or 

extracellular aggregates within the brain (Ross & Poirier, 2004). Although the proteins 

and the areas involved in the aetiology of neurodegenerative diseases differ (see 

Table 1.1), the progressive accumulation of these deposits ultimately leads to 

neuronal cell death and brain atrophy (Ross & Poirier, 2004). Of note, AD and other 

dementias are rarely found without other neurodegenerative co-pathologies. A major 

challenge in understanding development of these disorders relates to clinical and 
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neuropathological heterogeneity (Dickerson, Brickhouse, McGinnis, & Wolk, 2017); 

the concordance of clinically defined AD and neuropathologically defined AD ranges 

from 70-92% (Gauthreaux at al., 2020; Lim at al., 1999; Nagy at al., 1998; Petrovitch 

at al., 2001; Tasaki, Gaiteri, Mostafavi, De Jager, & Bennett, 2018). 

 Neuropathology of Alzheimer’s disease  

Pathology is thought to initiate up to two decades before clinical symptoms manifest, 

and by the time an individual is symptomatic there is usually significant 

neurodegeneration (Rajan, Wilson, Weuve, Barnes, & Evans, 2015). The only way to 

accurately determine the severity of AD is through post-mortem examination (Love, 

2005)   

AD is a progressive neurodegenerative disorder which causes brain atrophy in the 

limbic regions and neocortex (DeTure & Dickson, 2019). AD is characterised by two 

histopathological hallmarks: the accumulation of extracellular Aβ plaques and 

accretion of intracellular NFTs (Braak, Alafuzoff, Arzberger, Kretzschmar, & Del 

Tredici, 2006; Thal, Rüb, Orantes, & Braak, 2002). There are different measures used 

to quantify neuropathology in AD including Braak NFT staging (Braak at al., 2002), a 

measure of NFT pathology; Thal Phasing (Thal at al., 2006), a measure of amyloid 

deposits (both diffuse and dense-core); and the ‘Consortium to Establish a Registry 

for AD’ (CERAD) score (Mirra at al., 1991),which describes the density of neuritic 

amyloid plaques (dense-core) .  

The Braak NFT scale of AD neuropathology spans seven stages (0-VI) and measures 

both the quantity and regional locality of NFTs throughout the brain (Braak, Alafuzoff, 

Arzberger, Kretzschmar, & Del Tredici, 2006) (see Figure 1.1). Of note, the 

cerebellum is mostly unaffected by NFTs in AD, even at the latest stages of the 

disease.  

• Braak NFT stages I-II - the entorhinal stage: tau tangles are confined to the 

trans-entorhinal layer and the earliest site of AD NFT pathology is the Entorhinal 

Cortex (EC).  

• Braak NFT stages III/IV - the limbic stage: AD is clinically emerging and NFT 

starts to spread to the hippocampus, the area of the brain involved in memory 

processing.  
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• Braak NFT stages V/VI - the neocortical stage: represents fully developed AD, 

with NFT accumulation through all areas of the cortex.  

 

 

Figure 1.1: The progression of the pathological hallmarks of AD.  (A) Thal amyloid phases – amyloid deposit 
progression (B) Braak NFT Tangle stages - NFT progression. Figure adapted from (Jouanne, Rault, & Voisin-
Chiret, 2017). 

Similarly to NFT accumulation, Aβ deposits spread throughout different regions of the 

brain in a progressive but predictable manner. Thal phasing measures the spatial-

temporal distribution of amyloid deposits in the encephalon and is divided into six 

phases (0-5) (Thal, Rüb, Orantes, & Braak, 2002)(see Figure 1.1): 

1. Thal phase 1 - Aβ deposits are found exclusively in the neocortex. 

2. Thal phase 2 - Aβ spreads throughout the allocortical regions (e.g. the 

hippocampus) 

3. Thal Phase 3 - Aβ starts to accumulate in the striatum. 

4. Thal phase 4 - several brainstem nuclei become involved. 

5. Thal phase 5 - the presence of Aβ deposits in the cerebellum and other brain 

areas.  

CERAD neuropathologists use a semi-quantitative approach to assess the frequency 

of senile plaques (neuritic). CERAD density refers to the abundance of dense-core 

neuritic plaques in three areas of the isocortex (frontal, temporal and parietal) and is 

measured on a four tier scale (Mirra at al., 1991): 

1. No pathology 
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2. Sparse pathology 

3. Moderate pathology 

4. Frequent or high pathology 

The NIA-AA developed an ABC scoring system which incorporates all three measures 

to quantify the extent of AD neuropathology where Thal amyloid phasing = A; Braak 

NFT staging = B, and CERAD neuritic amyloid plaque density = C (see Table 1.2) 

(Montine at al., 2012). Of note, the presence of NFTs is essential for an AD diagnosis. 

Two amyloid measures are included in the scores as it is unknown which amyloid 

marker is more informative in regards to either clinical or pathological measures. 

According to the ABC scoring system, for an individual to be classified with either 

intermediate or high AD neuropathology, they can have a low Thal phase, but must 

have a Braak stage greater than III and a CERAD score in the moderate to frequent 

range (see Table 1.2) (Cummings, 2019; Hyman at al., 2012).   

Table 1.2: The NIA-AA ABC scoring system. AD neuropathological progression is assessed using an “ABC” 
score from three scales: (A), Aβ plaques by the method of Thal phase; (B) NFT stage by the method of Braak; and 
(C) neuritic plaque score by the method of CERAD. The combination of A, B, and C scores receive a descriptor of 
“Not”, “Low”, Intermediate” or “High” AD neuropathological change. “Intermediate” or “High” AD neuropathological 
change is considered sufficient explanation for dementia. Figure and legend taken directly from (Hyman at al., 
2012). 

A: Aβ/amyloid plaque 
score (Thal phases)2 

C: Neuritic plaque 
score (CERAD) 

B: NFT score (Braak stage) 

B0 or B1 (None 
or I/II) B2 (III/IV) B3 (V/VI) 

A0 (0) C0 (none) Not Not Not 

A1 (1/2) 
C0 or C1 (none to sparse) Low Low Low 

C2 or C3 (mod. to freq.) Low Intermediate Intermediate 

A2 (3) Any C Low Intermediate Intermediate 

A3 (4/5) 
C0 or C1 (none to sparse) Low Intermediate Intermediate 

C2 or C3 (mod. to freq.) Low Intermediate High 

 

The presence of NFTs continues to rise in patients with mild cognitive decline and 

starts to plateau when they reach dementia status, whereas Aβ plaque levels plateau 

before an individual is symptomatic, suggesting NFTs are correlated more strongly 

with disease symptoms and neurodegeneration than Aβ (Jack at al., 2010). 
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1.1.5 The aetiology of Alzheimer’s disease 

The neuropathology of AD is well characterised but the mechanisms of disease onset 

and progression are not fully understood. There are two main hypotheses which have 

been posited to explain the aetiology of AD disease pathology: 1) the amyloid 

hypothesis, which involved the accumulation of Aβ (Hardy & Allsop, 1991); and 2) the 

tau hypothesis, which involves the accumulation of NFTs (Kosik, Joachim, & Selkoe, 

1986). Although both amyloid and tau pathology are involved in the aetiology of AD, 

the amyloid hypothesis has been the mainstream concept driving AD research for the 

past 20 years. However, due to failures in clinical trials targeting Aβ, recent studies 

propose that tau is the main factor underling the progression of AD (Kametani & 

Hasegawa, 2018). 

 Amyloid cascade hypothesis 

The amyloid cascade hypothesis focuses on the aggregation of Aβ (see Figure 1.2), 

which is largely driven by known familial risk mutations such as those in APP. Aβ 

aggregation can also be triggered in sporadic AD as consequence of dysfunctional Aβ 

clearing mechanisms as a result of APOE-ε4 inheritance or faulty Aβ degradation (see 

Figure 1.3) (Hardy & Selkoe, 2002; Selkoe & Hardy, 2016). Aβ is a ~40-base peptide 

which is formed by the cleavage of APP (a transmembrane protein involved in 

neuronal development and axonal transport) by the enzymes β-secretase (BACE1) 

and γ-secretase. This process produces Aβ40 and Aβ42 segments in a 9:1 ratio 

(Hardy & Selkoe, 2002). Although the Aβ42 isoform is the least abundant of the Aβ 

peptides, it is the more pathogenic form in AD as it makes up the majority of Aβ 

plaques in the brain. On the other hand, Aβ40 is generally found in cerebrovascular 

plaques, where amyloid build up on the walls of the arteries in the brain. In unaffected 

individuals Aβ is eliminated from APP by BACE1 and subsequently γ-secretase is 

released outside of the cell where it will degrade. In older individuals or where there 

are pathological conditions, the ability to degrade Aβ decreases, leading to the 

accumulation of Aβ peptides. The increase in Aβ peptides then induces Aβ amyloid 

fibril formations which aggregate and develop into senile plaques (see Figure 1.2). 

The senile plaques create a neurotoxic environment in the brain and induce tau 

neuropathology, ultimately causing neuronal cell death (Hardy & Allsop, 1991). 
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Although overproduction of Aβ is primarily responsible for fEOAD, studies suggest that 

there is a 30% impairment in the clearance of both Aβ42 and Aβ40 in sporadic AD, 

highlighting that Aβ is likely important in the development of both familial and sporadic 

forms of the disease (Mawuenyega at al., 2010). In sporadic AD, Aβ clearance can be 

altered as a result of APOE since the rate of clearance depends on the different 

isoforms; the rate is fastest for APOE-ε2 and slowest for APOE-ε4 (Deane at al., 2008). 

In addition, mechanistic studies have linked several LOAD-associated GWAS risk 

genes (including SORL1, BIN1 and PICALM) to aspects of Aβ homeostasis, providing 

further support for the role of Aβ in LOAD pathogenesis (Selkoe & Hardy, 2016).  

 

 

Figure 1.2: The amyloid cascade hypothesis. This figure shows how amyloid-beta plaques form during the 
progression of Alzheimer’s disease, leading to neurodegeneration. Figure taken directly from (Pandey & 
Ramakrishnan, 2020).  
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Figure 1.3:  The sequence of major pathogenic events leading to AD proposed by the amyloid cascade 
hypothesis. The curved blue arrow indicates that Aβ oligomers may directly damage the synapses and neurites 
of brain neurons, in addition to activating microglia and astrocytes. Figure and legend taken directly from (Selkoe 
& Hardy, 2016). 
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 Tau hypothesis 

Tau is a microtubule-associated protein which is involved in regulating stability of 

tubulin assembly and the maintenance of neuronal structures (Strang, Golde, & 

Giasson, 2019). The tau gene (MAPT) is located on chromosome 17 with two tau 

isoforms (3R and 4R) being expressed in the adult human brain. The tau hypothesis 

posits that the primary causal substance leading to AD is tau (Kosik, Joachim, & 

Selkoe, 1986). In individuals unaffected by pathology, the tau-protein is actively 

phosphorylated in order to regulate neuronal axon length. Within AD brains 3R and 

4R tau aggregates are found in a hyper-phosphorylated state as pathological 

inclusions (see Figure 1.4). The pathological inclusions are referred to as NFTs when 

found in the neuronal cell bodies or threads if found in dendrites and axons. It is 

hypothesised that these pathological inclusions cause the degeneration of neurons 

(Kosik, Joachim, & Selkoe, 1986). Tau pathology is also present in other 

neurodegenerative disorders including forms of FTD and PD dementias which are 

linked to chromosome 17 (e.g. FTD-17) (Strang, Golde, & Giasson, 2019).  

 

 

  
  
  
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: The Tau Hypothesis. This figure shows how neurofibrillary tangles of tau form during the progression 
of Alzheimer’s disease, leading to neurodegeneration. Figure taken directly from (Pandey & Ramakrishnan, 2020). 
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1.1.6 Neuropathology of other neurodegenerative diseases 

 Lewy-body related Neuropathology 

Lewy-body (LB) pathology is involved in the pathogenesis of DLB and PD and involves 

the accumulation and of α-synuclein in neuronal cell bodies as Lewy bodies (LBs) and 

in neuronal cell processes (e.g. axons) as Lewy neurites. LB pathology is quantified 

by Braak LB staging, which provides a measure for α-synuclein throughout the brain. 

Similarly to Braak NFT staging, there are seven Braak LB stages (0-6):  

1. Braak LB stage 1: α-synuclein starts to accumulate in the motor nucleus of the 

medulla oblongata. 

2. Braak LB stage 2: α-synuclein spreads to the locus coeruleus. 

3. Braak LB stage 3: it progresses to the substantia nigra of the midbrain. 

4. Braak LB stage 4: it spreads to the trans-entorhinal region and CA2 of the 

hippocampus.  

5. Braak stage 5: the neocortex is affected. 

6. Braak LB stage 6: α-synuclein has spread through all of the neocortex and is 

detected in the premotor and motor regions.  

The exact mechanism(s) which cause α-synuclein to misfold and form pathogenic 

inclusions are not fully understood, however once they are formed there is usually 

spread of pathology between cells, leading to neurotoxicity and cell death. Of note, LB 

pathology is not limited to LB dementias and is frequently found in AD cases (Hamilton, 

2006). 

 Neuropathology of TDP-43 proteinopathies 

FTD and amyotrophic lateral sclerosis (ALS) are primary TAR DNA-binding protein 43 

(TDP-43) proteinopathies, where TDP-43 is the main driver in disease pathogenesis 

(Chou at al., 2018). When TPD-43 is not the primary driver of pathogenesis and occurs 

in association with other distinct pathological processes, these diseases are referred 

to as secondary TDP-43 proteinopathies, for example AD cases are often found with 

some level of TDP-43 (Josephs at al., 2014). TDP-43 is a specific mark used in the 

characterisation of subtypes of neurological disorders, particularly FTD. TDP-43 can 

be used to distinguish between three subtypes of FTD depending on where it 

accumulates in the brain (Mackenzie, Rademakers, & Neumann, 2010). In FTD-TDP 
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type 1 (which clinically presents as either the behavioural variant of frontotemporal 

dementia or progressive non-fluent aphasia), TDP-43 is found in dystrophic neurites 

(DN), neuronal cytoplasmic inclusions (NCI), intra-neuronal inclusions (NII) in the 

frontal and temporal cortex. In FTD-TDP type 2 (which clinically presents as semantic 

dementia), TDP-43 is found in the DN in the lower layers of cerebral cortex. In FTD-

TDP type 3 (which clinically presents as motor neuron disease), TDP-43 is found in 

the NCI in the cerebral cortex and hippocampus. ~40% of AD cases accumulate TDP-

43 in the DN and NCI in the hippocampus and amygdala (Mackenzie, Rademakers, & 

Neumann, 2010).  

1.2 Genetics of Alzheimer’s disease 

The identification of the familial AD genes APP and the presinilins (PSEN1 and 

PSEN2) was a pivotal point for understanding fEOAD. Unlike fEOAD, which has a 

heritability estimate of 92-100% (Wingo, Lah, Levey, & Cutler, 2012), LOAD does not 

have a clear Mendelian inheritance pattern. Using twin studies (an experimental 

design used to quantifying genetic and environmental influences based on comparing 

the concordance of a particular phenotype between monozygotic and dizygotic twins) 

the heritability of LOAD is estimated to be between 56-79% (Gatz at al., 2006), 

suggesting there is a large genetic component contributing to disease aetiology.  

The first LOAD risk gene discovered was Apolipoprotein E (APOE), which is found on 

chromosome 19 and remains the strongest risk gene for LOAD (van der Lee at al., 

2018). The three main alleles of APOE (ε2, ε3 and ε4) are generated by variants in 

two single nucleotide polymorphisms (SNPs): rs429358 and rs7412 (Farrer, 1997). 

Individuals with one ε4 allele (ε4 heterozygotes) are four times as likely to develop AD 

compared to the average risk, and individuals with two ε4 alleles (ε4 homozygotes) 

are 15 times more likely to develop AD (Farrer, 1997). In contrast, the rarer ε2 allele 

has a protective effect (Farrer, 1997). Although the mechanisms by which alleles of 

the APOE gene alter risk for AD are not fully understood, it is hypothesised that 

conformational changes to the shape of APOE decreases the protein’s ability to bind 

ligands (e.g. Aβ and TREM) (Holtzman, Herz, & Bu, 2012). In addition, the ε4 allele is 

less efficient in mediating the clearance of Aβ, leading to its aggregation and in turn, 

neurodegeneration  (Holtzman, Herz, & Bu, 2012). 
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APOE genotype explains ~13% of variation in LOAD (Ridge at al., 2016), meaning 

much of the inherited component of LOAD must be attributable to other variants. Over 

the past decade, there has been a focus on uncovering the additional genetic variants 

that contribute to LOAD using genome-wide association studies (GWAS). GWAS use 

an experimental design which identifies common genetic variation at the nucleotide 

level (Wang, Barratt, Clayton, & Todd, 2005). GWAS uses a hypothesis free approach 

to compare the frequency of SNPs at specific loci with polygenic traits (Wang, Barratt, 

Clayton, & Todd, 2005).  

 

SNPs associated with traits identified by GWAS are either the causal variant or are in 

linkage disequilibrium (LD) with the causal variant. LD describes the extent to which 

an allele of one SNP is inherited or correlated with an allele of another SNP within a 

given population (Bush & Moore, 2012). SNPs in LD do not always reach genome-

wide significance (p<5e-08) but can be utilised to identify a causal SNP; they can 

associate with a trait at a higher p-value. GWAS have identified thousands of SNPs 

associated with complex brain disorders including autism, schizophrenia and 

dementia (Autism Spectrum Disorders Working Group of The Psychiatric Genomics 

Consortium, 2017; Ferrari at al., 2014; Guerreiro at al., 2018; Jansen at al., 2019; 

Kunkle at al., 2019; Nalls at al., 2019; Sullivan, Daly, & O’Donovan, 2012; van 

Rheenen at al., 2016; Visscher at al., 2017). GWAS have shown that LOAD and other 

non-familial neurodegenerative diseases are polygenic disorders caused by multiple 

variants of small effect (Ferrari at al., 2014; Guerreiro at al., 2018; Jansen at al., 2019; 

Kunkle at al., 2019; Nalls at al., 2019), although the precise mechanisms leading to 

disease are unclear. Each trait-associated SNP generally has a very small effect size, 

and given the heterogeneity of brain disorders, sample size is a limiting factor in 

GWAS; in order to increase statistical power, studies have focussed on increasing 

sample sizes by conducting meta-analyses. A meta-analysis involves merging the 

summary statistics of individual studies.  

 

The first GWAS of clinically diagnosed LOAD were conducted in 2009 (Harold at al., 

2009; J.-C. Lambert at al., 2009) with samples sizes totalling ~15,000 (~30% cases) 

across both stages of their analyses (see Table 1.3). In addition to APOE these GWAS 

identified variants annotated to CLU (a multifunctional glycoprotein involved in lipid 

transport and immune modulation which is thought to be involved in altering Aβ 
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aggregation and clearance), PICALM (an endocytic-related protein which is required 

for the formation and maturation of autophagic precursors and has been found to 

influence the processing of APP) and CR1 (a membrane glycoprotein that functions in 

the innate immune system and promotes phagocytosis of immune complexes and 

cellular debris, as well as Aβ) (Harold at al., 2009; J.-C. Lambert at al., 2009). Since 

2009, additional LOAD GWAS have been conducted  (Bellenguez at al., 2020; de 

Rojas at al., 2020; Hollingworth at al., 2011; Jansen at al., 2019; Kunkle at al., 2019; 

Lambert at al., 2013; Marioni at al., 2018; Naj at al., 2011; Sims at al., 2017), 

collectively identifying >75 LOAD loci; these successes can be attributed to 

international collaborative efforts which have focused on increasing sample size and 

power by meta-analysing the summary statistics from multiple cohorts (see Table 1.3; 

Figure 1.5). One method which has been adopted across several AD GWAS studies 

to increase power has been to use a ‘proxy’ measure of AD based on family history. 

This method was first adopted by Marioni and Colleagues (Marioni at al., 2018). They 

used the self-report questions “Has/did your father ever suffer from Alzheimer’s 

disease/dementia?” and “Has/did your mother ever suffer from Alzheimer’s 

disease/dementia?” to derive a proxy of AD. They excluded participants with parents 

under the age of 60 or parents who died before the age of 60. They identified 26 AD 

risk loci and seven of these were novel. Genetic correlation analysis showed the proxy 

measure of AD was accurate for clinical diagnosis for both maternal (r=0.91) and 

paternal (r=0.67) AD when correlated with a clinical AD case-control GWAS. Due to 

the high genetic correlations between proxy AD and clinical AD, several other studies 

have utilised the AD-by proxy methodology (Bellenguez at al., 2020; de Rojas at al., 

2020; Jansen at al., 2019; Wightman at al., 2020). 
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Table 1.3: GWAS of LOAD over the past decade 

Reference Approach 
Sample size  Total 

number of 
loci Total  Number of Cases 

(Lambert at al., 2009) Diagnosed case-control GWAS Stage 1: 7,360 
Stage 2:7,275 

Stage 1: 2,032 
Stage 2: 3,978 3 

(Harold at al., 2009) Diagnosed case-control GWAS Stage 1: 11,789 
Stage 2:4,363 

Stage 1: 3,941  
Stage 2: 2,023 3 

(Hollingworth at al., 
2011) Diagnosed case-control GWAS 

Stage 1: 20,373 
Stage 2: 9,799 
Stage 3: 29,544 

Stage 1: 6,688 
Stage 2: 4,896 
Stage 3:8,286 

6 

(Naj at al., 2011) Diagnosed case-control GWAS Stage 1: 15,675 
Stage 2:7,096 

Stage 1: 8,309 
Stage 2: 3,531  

9 

(Lambert at al., 2013) Diagnosed case-control GWAS 
Stage 1:54,162 Stage 1: 17,008 

20 
Stage 2: 74,046 Stage 2: 8,572 

(Sims at al., 2017) 
Diagnosed case-control GWAS of 
rare variants using exome-wide 
arrays 

85,133 37022 3  

(Marioni at al., 2018) Diagnosed and proxy case-control 
GWAS 

388,324 (314,278 
[81%] proxy) 

67,314 (42,034 
[62%] proxy) 26 

(Jansen at al., 2019) Diagnosed and proxy case-control 
GWAS 

455,258 (383,378 
[84%] proxy) 

71,880 (46,613 
[65%] proxy) 29 

(Kunkle at al., 2019) Diagnosed case-control GWAS 94,437 33,814 25 

(de Rojas at al., 2020) Diagnosed and proxy case-control 
GWAS 409,435 50,737 (14,338 

[28%] proxy) 40 

(Wightman at al., 2020) Diagnosed and proxy case-control 
GWAS 1,126,563 90,338 (46,613 

[52%] proxy) 38 

(Bellenguez at al., 
2020) 

Diagnosed and proxy case-control 
GWAS 487,511 85,934 (46,828 

[54%] proxy) 75 

(Schwartzentruber at 
al., 2021) 

Diagnosed and proxy case-control 
GWAS 

408,942 + 
Stage 1 Kunkle at 
al. (n = 63,926) 

53,042 (52,791 
[99%] proxy) + 
Stage 1 Kunkle at 
al. (n = 21,982) 

37 
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Figure 1.5: The relationship between sample size and the number of identified genes. Sample size is 
calculated as the number of cases and controls under a 50:50 ratio. Genes associated with LOAD were collected 
from various GWAS. The genes are the closest to the SNPs (minor allele frequency > 0.01 and p<5e-08). Stage 1 
= stage 1 from the study. Meta = meta-analysis from the study. Figure taken directly from (Zhang at al., 2020). 

 

Two of the most recent AD GWAS with publicly-available summary statistics were 

conducted by Kunkle and colleagues (2019) and Jansen and colleagues (2019), and 

the results from these studies have been used throughout my thesis. The Kunkle at 

al. (2019) GWAS included clinically and autopsy-documented LOAD cases (35,274 

cases and 59,163 controls). Kunkle and colleagues conducted a GWAS meta-analysis 

of non-Hispanic whites from the International Genomics of Alzheimer’s Project (IGAP) 

(which is composed of four consortia: Alzheimer Disease Genetics Consortium 

(ADGC), Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium 

(CHARGE), The European Alzheimer’s Disease Initiative (EADI), and Genetic and 

Environmental Risk in AD/Defining Genetic, Polygenic and Environmental Risk for 

Alzheimer’s Disease Consortium (GERAD/PERADES). 25 risk loci were identified 

(see Figure 1.6)  The Jansen at al. (2019) GWAS was based both on clinically 

diagnosed AD and AD-by proxy (based on family history) cases (71,880 cases, 

383,378 controls). Jansen and colleagues conducted a GWAS meta-analysis using 
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three independent AD-case-control consortia (Alzheimer’s disease working group of 

the Psychiatric Genomics Consortium (PGC-ALZ), the International Genomics of 

Alzheimer’s Project (IGAP), and the Alzheimer’s disease Sequencing Project (ADSP)). 

These cohorts were meta-analysed with the UK Biobank which used parental data as 

a proxy for LOAD status. The number of parents with AD was weighted by the 

probability of being a case or control based on parental age. 29 risk loci were identified 

(see Figure 1.6). There is a high correlation between the two studies (r=0.89; see 

Figure 5.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

Figure 1.6: Manhattan plots of the two latest publicly available LOAD GWAS.  (A) GWAS was conducted 
by Jansen and colleagues (2019); and (B) GWAS was conducted by Kunkle and colleagues (2019). The x axis 
is the genomic position, segregated by chromosome. Shown on the y-axis is the –log10 p-value from each 
GWAS. Each point represents a SNP. The red horizontal line represents the genome-wide significance (p<5e-
08). P‐values are truncated at 1e‐25. Figure taken directly from (Bertram & Tanzi, 2020). 
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Table 1.4: Genetic variants identified in the Jansen et al (2019) and Kunkle et al (2019) GWAS. Chr, Base position, A1 and A2 are taken from the Jansen at al. nearest 
gene determined from UCSC genome browser (GRCh37; hg19). AD pathway as determined in either or both GWAS: immune = immune system response; lipid = lipid metabolism, 
APP = APP metabolism, tau = tau protein binding.* Stage 1 result from Kunkle at al.** Stage 2 result from Kunkle at al. *** Stage 3 result from Kunkle at al. MAF = minor allele 
frequency from European controls as provided on GnomAD [v.2.1.1.; https://gnomad.broadinstitute.org/]. Table and legend adapted from (Bertram & Tanzi, 2020). 

Chr Base 
position Lead SNP A1  A2 MAF 

P‐value 
Jansen et 
al 

P‐value 
Kunkle et 
al 

AD effect Nearest 
gene 

AD 
pathway 

Potential link to AD 
pathogenesis 

1 161155392 rs4575098 A  G 0.24 2.05E-10 2.34E‐02* Risk ADAMTS4 None Neuroprotection: Extracellular 
Matrix Protease 

1 207786828 rs2093760 A  G 0.225 1.10E‐18 1.66E‐15* Risk CR1 Immune Innate Immunity; 
Neuroinflammation 

2 127891427 rs4663105 A  C 0.412 3.38E‐44 2.16E‐26* Risk BIN1 Lipid Cellular Protein Trafficking 

2 233981912 rs10933431 G  C 0.24 8.92E‐10 3.42E‐09** Protection INPPD5 None Autophagy; Viral Infection 

4 11026028 rs6448453 A  G 0.228 1.93E‐09 4.90E‐05* Risk CLNK None Innate Immunity; 
Neuroinflammation 

6 32583357 rs9469112 T  A 0.153 8.41E‐11 2.32E‐07** Protection HLA‐DRB1 Immune Adaptive Immunity 

6 47432637 rs9381563 C  T 0.344 2.52E‐10 3.57E‐10** Risk CD2AP None Blood Brain Barrier; Aβ 
Transcytosis 

7 99971834 rs4727449/ rs1859788 A  G 0.323 2.22E‐15 1.22E‐09** Protection ZCWPW1/ 
NYAP1 None Innate Immunity; 

Neuroinflammation 

7 143108158 rs7810606 T  C 0.425 3.59E‐11 1.13E‐06** Protection EPHA1 None Signal Transduction 

8 27464929 rs28834970/rs4236673 A  G 0.39 2.61E‐19 5.60E‐23** Protection CLU/PTK2B Immune; 
lipid; tau 

Aβ clearance/Signal 
Transduction 

10 11717397 rs11257238 C  T 0.382 1.26E‐08 2.61E‐07** Risk ECHDC3 None Lipid Metabolism 
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11 47380340 rs3740688 G  T 0.458 4.50E‐05 5.46E‐13** Protection SPI1/CELF1 Immune 
Innate immunity; cellular 
communication;  
myeloid cell development 

11 59958380 rs2081545 A  C 0.342 1.55E‐15 5.35E‐17** Protection MS4A6A Immune Innate Immunity; 
Neuroinflammation 

11 85776544 rs867611 G  A 0.342 2.19E‐18 3.41E‐19** Protection PICALM APP Blood Brain Barrier; Aβ 
Transcytosis 

11 121435587 rs11218343 C  T 0.035 1.09E‐11 2.88E‐12** Protection SORL1 Lipid; 
APP Cellular Protein Trafficking 

14 53391680 rs17125924 G  A 0.099 5.26E‐06 1.42E‐09** Protection FERMT2 APP  APP processing 

14 92938855 rs12590654 A  G 0.347 1.65E‐10 8.73E‐09* Protection SLC24A4 None Calcium Homeostasis 

15 59022615 rs442495 C  T 0.334 1.31E‐09 2.51E‐7** Protection ADAM10 Immune Sheddase; APP Processing 

15 63569902 rs117618017 T  C 0.132 3.35E‐08 2.38E‐04* Risk APH1B None γ‐secretase; APP Processing 

16 19808163 rs7185636 C  T 0.156 1.40E‐01 2.4E‐08 *** Protection IQCK Unknown  Unknown 

16 31133100 rs59735493 A  G 0.324 3.98E‐08 7.42‐03* Protection KAT8 None Transcriptional Regulation 

16 79355857 rs62039712 G  A 0.094 7.66E‐01 3.70E08 * Risk WWOX 
Lipid; 
Tau; 
APP 

 Cholesterol metabolism; 
regulates tau hyper-
phosphorylation; neurofibrillary 
formation; Aβ aggregation 

17 5138980 rs113260531 A  G 0.118 9.16E‐10 3.70E‐04** Risk SCIMP None Innate Immunity; 
Neuroinflammation 

17 47450775 rs28394864 A  G 0.471 1.87E‐08 4.85E‐03* Risk ABI3 None Innate Immunity; 
Neuroinflammation 
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17 61538148 rs138190086 A  G 0.017 2.65E‐04 5.30E‐09*** Risk ACE Immune Aβ degradation; blood pressure 
regulation 

18 56189459 rs76726049 C  T 0.011 3.30E‐08 1.76E‐01* Risk ALPK2 None Signal Transduction 

19 1039323 rs111278892 G  C 0.165 7.93E‐11 1.10E‐07* Risk ABCA7 Lipid; 
APP 

Lipid Metabolism; Innate 
Immunity 

19 45411941 rs429358 C  T 0.155 <1E‐900 1.17E‐881* Risk APOE Lipid; 
APP; tau Aβ clearance/Lipid Metabolism 

19 46241841 rs76320948 T  C 0.059 4.64E‐08 1.22E‐04* Risk AC074212.3 None unknown 

19 51727962 rs3865444 A  C 0.336 6.34E‐09 5.27E‐06** Protection CD33 None Innate Immunity; 
Neuroinflammation 

20 54998544 rs6014724 G  A 0.089 6.56E‐10 3.65E‐07* Protection CASS4 None Signal Transduction 

21 28156856 rs2830500 A  C 0.336 1.65E‐02 2.60E‐08 *** Protection ADAMTS1 APP Not fully explored but thought to 
be involved in amyloidosis 

Rare variants 

3 57226150 rs184384746 T  C 0.002 1.24E‐08 n.a. Risk HESX1 None Homoebox Gene; Development 

6 41129252 rs75932628 T  C 0.002 2.95E‐15 2.95E‐12* Risk TREM2 
Immune 
system 
response 

Innate Immunity; 
neuroinflammation 

7 145950029 rs114360492 T  C 0.0003 2.10E‐09 n.a. Risk CNTNAP2 None Neuronal Development 

16 81942028 rs72824905 G  C 0.01 2.11E‐03 7.92E‐03* Protection PLCG2 None Microglial activation; 
neuroinflammation 

17 47297297 rs616338 T  C 0.01 7.81E‐07 n.a. Risk ABI3 None Microglial activation; 
neuroinflammation 
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In the past year several preprints documenting additional LOAD GWAS analyses have 

been published (see Table 1.3) (Bellenguez at al., 2020; de Rojas at al., 2020; 

Schwartzentruber at al., 2021; Wightman at al., 2020), although the summary statistics 

from these studies were not publicly available for use in my thesis. The first GWAS to 

combine the datasets used by Jansen at al. (2019) and Kunkle at al. (2019) was 

conducted by De Rojas and colleagues (de Rojas at al., 2020). They combined three 

sets of summary statistics of European ancestry: a Spanish case-control study 

(GR@ACE/DEGESCO study; n = 12,386), the case-control study of International 

Genomics of Alzheimer project (IGAP; n = 82,771) and the UK Biobank (UKBB) AD-

by-proxy (based on family history) case-control study (n=314,278). In addition to the 

APOE locus, de Rojas at al. identified 39 LOAD -associated SNPs which surpassed 

genome-wide significance (p<5e-08) (de Rojas at al., 2020). This GWAS built on 

previous findings (see Figure 1.7) and the increase in power from meta-analysing past 

LOAD summary statistics in addition to the inclusion of new previously unanalysed 

cohorts, led to the identification of six novel SNPs, annotated to the genes CHRNE, 

APP, PRKD3/NDUFAF7, PLCG2 and SHARPIN. Perhaps the most interesting finding 

from the de Rojas at al. GWAS was the identification of the common variant rs2154481 

which resides in the APP locus which is also a familial EOAD gene and suggests 

common pathways between the familial and sporadic forms of AD.  
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Figure 1.7: Landscape for Alzheimer's disease. Shown are the genes implicated in late onset Alzheimer’s disease identified by GWAS. OR = odds ratio. Green represents a protective 
effect. Red represents a risk effect. Figure taken directly from (de Rojas et al., 2020). 
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A more recent preprint by Bellenguez and colleagues (Bellenguez at al., 2020) 

identified 75 loci (42 novel) with a sample size of 487,511 (85,934 cases and of these 

46,828 were AD by proxy). Pathway analyses of genes annotated to these variants 

support the involvement of amyloid and tau pathways and further highlight the role of 

microglia in AD (Figure 1.8). Of note, several of the novel loci are also associated with 

FTD (e.g. MAPT, GRN, and TMEM106B), potentially reflecting misclassification in the 

diagnosis of clinical AD and the proxy-AD diagnoses. Alternatively, as mentioned 

previously, AD and other dementias are rarely found without other neurodegenerative 

co-pathologies (Wingo, Lah, Levey, & Cutler, 2012), therefore it is likely there are 

similarities in the underlying architecture for the dementia subtypes. This hypothesis 

is further supported by research indicating there is genetic pleiotropy (where SNPs 

have an effect on more than one trait) between LOAD, FTD and PD (Ferrari at al., 

2017). 

 

A recent meta-analysis conducted by Schwartzentruber and colleagues (2021) 

identified 37 loci in total and four novel variants (annotated to CCDC6, TSPAN14, 

NCK2 and SPRED2). Of note, Stage 1 of this study included only 898 clinically 

confirmed AD cases with the remaining 52,791 cases (99% of cases) being AD-by 

proxy. These results were then meta-analysed with the Stage 1 Kunkle at al. (2019) 

GWAS results. They identified that 21 of the 37 associated variants had over 50% 

probability of being causally involved in AD risk via the use of fine-mapping methods 

(Schwartzentruber at al., 2021). Notably, although genetic correlation analysis 

suggests the proxy measure of AD is accurate for clinical diagnosis, the accuracy 

varies, particularly when looking at the paternal correlations estimated by Marioni and 

colleagues (r=0.67) (Marioni at al., 2018). This variation needs to be taken into 

consideration when interpreting LOAD GWAS including by-proxy measures. However, 

the increase in predictive power when including by-proxy measures is likely to 

compensate for the fact that some individuals will be misclassified using this method.  
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Figure 1.8: Manhattan plot of the latest LOAD GWAS conducted by Bellenguez and colleagues (2020). The x axis is the genomic position, segregated by chromosome. 
Shown on the y-axis is the –log10 p-value from each GWAS. Each point represents a SNP. The red horizontal line represents the genome-wide significance (p<5e-08). P‐
values are truncated at 1e‐36. Figure taken directly from (Bellenguez et al., 2020) 
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In addition to the common genetic variants of small effect identified by GWAS, rare 

variants (with a population frequency <1%) associated with a moderate to high effect 

on an individual’s risk have been identified and validated using next generation 

sequencing technologies (NGS) including whole-genome and exome sequencing. 

Rare variants associated with LOAD have been annotated to genes including TREM2 

(Bellenguez at al., 2017) (a transmembrane receptor expressed in cells of the myeloid 

lineage and is thought to be a driver within the immune and inflammatory pathways in 

the cause of the AD); SORL1 (Bellenguez at al., 2020)(which encodes SorLA – a 

protein involved in the processing of APP and the secretion of Aβ) and ABCA7 

(Bellenguez at al., 2020) (a transmembrane protein which is thought to influence AD 

pathogenesis through various mechanisms, including the regulation of APP 

processing and clearance of Aβ via phagocytosis). Of note, a number of rare LOAD 

variants are found in genes where common GWAS variants have been identified, 

which suggests common pathways to disease susceptibility and multiple ways in which 

the same gene can be disrupted (Sims, Hill, & Williams, 2020). 

 

To better understand the biology of GWAS variants and the genes implicated, pathway 

analysis methods have been developed that test if there is an excess of association 

signal (i.e. an enrichment) in sets of genes based on independent annotations. Within 

this thesis pathway analysis has been run in Chapters 4 and 5 (see Chapter 2 section 

2.3.4 for more details). Pathway analyses have been used to identify disease-relevant 

processes and the application of these methods suggest a role for multiple biological 

pathways in LOAD including immune regulation, synaptic pathways, cholesterol 

transport / lipid metabolism, endocytosis, ubiquitination, protein folding, Aβ clearance 

and tau biology (Kunkle at al., 2019).  
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1.2.1 Genetics of other neurodegenerative diseases 

Although genetic studies of other neurodegenerative diseases have been 

considerable smaller than for AD, GWAS have identified variants associated with other 

dementias (see Table 1.5) including PD (Chang at al., 2017; Nalls at al., 2019), where 

a recent study identified 90 PD-associated genome-wide significant SNPs including 

multi-signal loci residing in the genes GBA, NUCKS1 and RAB29, GAK and 

TMEM175, SNCA, and LRRK2; LBD (Guerreiro at al., 2018), where four SNPs have 

been identified residing in the genes APOE, SNCA, GBA and CNTN1; and FTD 

(Ferrari at al., 2014), where 3 SNPS have been identified which are all located within 

the HLA locus. However, these studies may still be statistically underpowered to detect 

all associated variants with neurodegenerative diseases (Escott-Price at al., 2015; 

Escott-Price, Shoai, Pither, Williams, & Hardy, 2017) and much of the genetic signal 

associated with these diseases is yet to be robustly identified (Ridge, Mukherjee, 

Crane, Kauwe, & Alzheimer’s Disease Genetics Consortium, 2013).  

 
Table 1.5: GWAS conducted in other neurodegenerative diseases. 

Dementia 
Phenotype Reference Approach 

Sample size  Total 
number of 
loci Total  Number of 

Cases 
Parkinson's 
Disease 

Chang at al. 
(2017) 

Diagnosed case-
control GWAS 416,518 19,476 41 

Parkinson's 
Disease 

Nalls at al. 
(2019) 

Diagnosed and proxy 
case-control GWAS 

1,474,097 
(436,419 [30%] 
proxy) 

56,306 (18,618 
[33% ] proxy) 90 

Lewy Body 
Dementia 

Guerreiro at 
al. (2018) 

Diagnosed case -
control GWAS 5007 1216 4 

Frontotempor
al Dementia 

Ferrari at al. 
(2014) 

Diagnosed case -
control GWAS 12928 3526 3 

 

1.2.2 Polygenic Risk scores 

To further investigate the genetic architecture of polygenic traits such as LOAD, 

methods have been developed to combine the information provided by independent 

SNPs. Polygenic risk scores (PRS) quantify genetic burden as an accumulative 

genetic score for each individual in a sample and are calculated as a sum of trait-

associated variants, weighted by effect sizes estimated from the discovery GWAS (see 

Figure 1.9). Essentially, PRS summarise GWAS data into a single score for 

individuals in the target sample. The standard method of generating a PRS is based 

on an additive method. This involves ‘clumping’ the GWAS summary statistics such 
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that the most significant variant in each LD block is retained and the PRS is calculated 

for each individual in a dataset as the number of reference alleles multiplied by the 

effect size (e.g odds ratio or beta), and then summed across all retained clumped 

variants with a GWAS p-value meeting a certain threshold (see Figure 1.9). SNPs 

which do not independently meet genome-wide significance are often included in PRS 

analysis as evidence has shown that the increase in predictive power when 

aggregating the SNPs compensates the increase in false positives when using higher 

significance thresholds (Euesden, Lewis, & O’Reilly, 2015). 

 

 

 

 

 

 

 

 

PRS have primarily been used on the phenotype they were trained on to test prediction 

of case-control status. A measure of association is generally used to evaluate the 

PRS. For example, the proportion of variation in liability for developing a phenotype 

explained by the PRS is often used (R2 for continuous traits and Nagelkerke’s pseudo-

R2 for binary traits) or the area under the curve (AUC), which provides a measure of 

how well a parameter (in this case the PRS) can distinguish between two diagnostic 

groups. It has been statistically hypothesised that cases for a disease will have a 

higher PRS for the disorder than controls. Provided the sample size is large enough, 

this is the general trend seen across neurological and psychiatric disorders, however 

the differences are small, and many individuals, including cases, have scores close to 

the population average (see Figure 1.10). PRS are not currently clinically useful for 

risk prediction due to these small differences between case-control groups. However, 

PRS might represent good biomarkers for mechanistic studies, for example to explore 

the regulatory genomic mechanisms leading to disease; this is the crux of Chapter 6 
of my thesis. 

GWAS 
Discovery 

sample  

Target 
sample 

  

Generate a 
SNP list – 
“clump” 

GWAS results 
to obtain 

independent 
SNPs 

associated 
with trait 

Filter SNPs 
based on 
GWAS P-

value 

Generate PRS – 
PRS are 

calculated using 
a weighted sum 
of the selected 

SNPs 

Figure 1.9 The process of generating PRS using the additive method. 
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Figure 1.10: PRS in cases is close to population mean in brain disorders. Shown is a density histogram of 
PRS generated using the Brains for Dementia research Cohort, split by AD status. PRS were calculated using the 
Kunkle at al. (2019) GWAS summary statistics excluding the APOE region and were standardised to have a mean 
of 0 and standard deviation of 1. 

PRS capture common genetic variation which contributes to an individual’s 

susceptibility to disease. Although the additive method to quantify genetic loading is 

simplistic, it is currently one of the best methods developed to measure this variation; 

there is little evidence suggesting there is any interaction between the variants 

included in a PRS (Lewis & Green, 2021). In addition, this method works because the 

effects are small and therefore all very similar. However, within the additive method 

gene-gene and gene-environment interactions cannot be modelled within the PRS. 

Conversely, a large meta-analysis of heritability estimated from twin studies supports 

the additive PRS model for the majority of traits and in particular neurological diseases, 
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where 99.5% of twin studies tested in their study were consistent with a model where 

all resemblance was due to additive genetic variance (Polderman at al., 2015). 

Other polygenic risk score methods model the correlation structure between SNPs 

without identifying the minimal subset of variants for predictions (i.e. not filtering on p-

value). Methods which do this include Bayesian LD approaches which have focussed 

on increasing the power of PRS. For example, SBayesR (Lloyd-Jones at al., 2019) is 

a novel method which uses a Bayesian multiple regression model and has been shown 

to improve the variance explained by the PRS in comparison to the standard clumping 

and p-value thresholding method. Furthermore, using tagging SNPs (the most 

associated SNP in a sample) in the additive method as opposed to the causal variant 

limits the precision of PRS. New methodologies such as PleioPred (Hu at al., 2017), 

which uses GWAS summary statistics as its input, models multiple genetically 

correlated diseases as well as a variety of external information such as LD and 

functional annotations, which has been shown to increase the accuracy of risk 

prediction. 

There are four key aspects to consider when generating a PRS to better understand 

what the score is capturing (Lewis & Green, 2021): 1) Known information – which 

shows where an individual lies on a risk scale along the normal distribution in relation 

to other individuals in that population; 2) The unknown information from environmental 

exposures not included in the model and incomplete genetics; 3) The possibility for 

individuals to be assigned to the incorrect phenotypic group/ the accuracy of the 

association statistics in the GWAS and 4) What the PRS will be applied to i.e. it is 

unlikely to be sufficient to justify therapeutic interventions based on PRS alone. The 

first two considerations can be statistically inferred using a measure of variance 

explained by the PRS, however it is harder to statistically evaluate the last two but they 

are still important limitations to reflect upon when applying PRS.  

1.2.3 Polygenic risk scores in LOAD  

There has been success in applying PRS in LOAD to significantly predict disease 

status. Using the IGAP dataset (>17,000 cases and >37,000 controls), Escott-Price 

and colleagues developed the Cardiff PRS (Escott-Price at al., 2015). They produced 

an algorithm using >87,000 variants (p-value threshold < 0.5)  in addition to age and 

sex, and the predictor yielded an AUC of 78% (i.e. cases/controls are accurately 
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predicted 78% of the time) (Escott-Price at al., 2015).  The Cardiff PRS has been 

validated on other cohorts, and performs best when applied to pathologically 

confirmed LOAD cases (AUC=84%)(Escott-Price, Myers, Huentelman, & Hardy, 

2017).  It must be considered that the variance explained by the LOAD PRS is 

generally low (~1-5%) (Escott-Price at al., 2015) and only adds a modest amount of 

information to a prediction model, reducing its clinical application.  On the other hand, 

PRS are currently one of the best predictors for LOAD and have aided understanding 

some of the contribution of variation in the disease. To separate the effects of APOE 

from the other AD variants the APOE region is often excluded from analysis. Studies 

have shown that the AUC for the PRS excluding APOE is 75% and for APOE alone is 

75% (Leonenko at al., 2019). The combined inclusion of both the PRS and APOE 

increases the AUC (to ~82%) (Leonenko at al., 2019). In this thesis (Chapter 6) I 

generate PRS both including and excluding the APOE region to explore epigenomic 

changes associated with AD risk. 

Beyond the prediction of disease status, PRS can be used as a tool to investigate how 

genetic risk mediates the development of specific symptoms, and has the potential to 

separate the primary causal features from the secondary consequences of the 

disease. In addition to the robust associations between PRS and disease status, 

LOAD PRS have been shown to correlate with MCI and cognitive decline (Felsky at 

al., 2018; Ge at al., 2018; Kauppi, Rönnlund, Nordin Adolfsson, Pudas, & Adolfsson, 

2020; Marioni at al., 2017; Mormino at al., 2016); memory impairment (Marioni at al., 

2017; Mormino at al., 2016); brain measurements such as hippocampal volume 

(Axelrud at al., 2018) and cortical thickness (Sabuncu at al., 2012); cerebrospinal 

biomarkers (Martiskainen at al., 2015); inflammatory biomarkers (Morgan at al., 2017); 

and neuropathological measures (Desikan at al., 2017; Felsky at al., 2018; Hannon at 

al., 2020). The extent of the associations with LOAD PRS highlights the complexity of 

understanding the genetic pathways involved in LOAD pathogenesis.  

1.3 Regulatory Genomic Variation in Alzheimer’s disease 

Even with the successes of GWAS, relatively little is known about the functional 

mechanisms by which risk variants mediate disease susceptibility. As the majority of 

GWAS variants associated with LOAD do not index coding variants affecting protein 

structure they are hypothesized to influence gene regulation. For example, in the 2019 
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Kunkle at al. GWAS, only ~2% of LOAD-associated variants were located in exons, 

with the majority (58%) being located in introns (Kunkle at al., 2019). This notion is 

further supported by research suggesting LOAD GWAS variants are enriched in 

regulatory domains including enhancers and regions of open chromatin (Kikuchi at al., 

2019; Marzi at al., 2018). 

1.3.1 Introduction to epigenetics 

Advances have been made in understanding the role of functional genomic processes 

in complex disease phenotypes. Of particular interest is the epigenome, which 

encompasses numerous chemical modifications to DNA and histone proteins which 

directly and dynamically influence the regulation of gene expression (Schübeler, 

2015). The term epigenetics has many definitions; in this thesis I use it to refer to the 

study of mitotically heritable, but reversible, changes in gene expression which arise 

independently of genetic variation (Henikoff & Matzke, 1997). Unlike the DNA 

sequence, the epigenome is dynamic and can influence a cell without altering the 

genetic sequence.  

Epigenetic mechanims play a key role in cell differentiation and are involved in the 

regulation of gene expresion, genomic imprinting (Ferguson-Smith, 2011) (a 

mammalian inheritence process controlled by epigenetic markers) and X-chromosome 

inactivation (Heard, Clerc, & Avner, 1997) (a dosage compensation mechanism which 

ensures that XX females and XY males have equal levels of gene expression from the 

X-chromosome). The ‘Epigenetic Landscape’ first described by Waddington 

(Waddington, 1957)(see Figure 1.11) provides a metaphorical framework for how 

gene regulation is involved in cell differentiation during development. In Waddington’s 

model marbles roll from the top of a landscape but due to the uneven terrain, the 

trajectory will be different for each marble running down the valley, and thus they will 

have a different end point. The marbles in Waddington’s metaphor represent all 

nucleated cells and the fact they contain the same genetic information, but due to the 

complex interplay of epigenetic mechanisms regulating genes at the cellular level (the 

uneven terrain in Waddington’s model), the cells end up physiologically different at the 

end.  
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Epigenetic mechanisms are cell-type-specific and are dynamic during development 

and aging. Epigenetic marks defining cellular phenotypes are mitotically inherited 

although they can be influenced by environmental (e.g. pollution (Breton & Marutani, 

2014)) and lifestyle (e.g. tobacco smoking (Elliott at al., 2014) and medication (Viuff at 

al., 2016)) factors and stochastic changes. As epigenetic changes are dynamic, there 

is the potential for disease associated epigenetic modifications to be targeted for future 

therapeutic development due to this “reversible” nature.  

Waddington’s epigenetic landscape can also be used to illustrate the hypothesis of 

how the landscape is ultimately under genetic control. This hypothesis states that 

genes indirectly control development via a network of interacting biochemical 

products. Shown in Figure 1.12, is a different perspective of the landscape, where the 

contours on the landscape are controlled by genes. The ropes represent the gene 

products altering the landscape and the connections represent the biochemical 

interactions between those gene products (Waddington, 1957). 

Figure 1.11: Waddington’s Epigenetic Landscape. This figure represents a metaphorical framework for how 
gene regulation modulates cell differentiation during development. The marbles represents cells, which follow a 
different pathway through the ‘valleys’ and the different trajectories determine the cell fates. Figure adapted from 
Waddington (1957). 
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Figure 1.12: Waddington’s epigenetic landscape show that its topology is underpinned by the influence of 
genes. Figure taken directly from Waddington (1957). 

 

1.3.2 DNA methylation and other cytosine modifications  

DNA methylation (DNAm) is the best characterised and most stable epigenetic 

mechanism involving the addition of a methyl group to the 5’ carbon in a cytosine ring 

which leads to the formation of 5-methylcytosine (5mC; see Figure 1.13) (Horvath, 

2013; Schübeler, 2015). DNAm almost exclusively occurs at CpG (cytosine-guanine) 

sites in mammals (Schübeler, 2015). Around 70% of CpG dinucleotides in the genome 

are methylated, and are prone to deamination, which causes a cytosine to thymine 

transition, leading to the frequency of guanine and cytosine to be depleted in the 

genome (Bird, 1986; Strichman-Almashanu at al., 2002) except at large, dense 

regions of CpG sites called CpG Islands (CGIs), which are estimated to account for 1-

2% of the genome (Antequera & Bird, 1993). CGIs have been a target of DNAm 

research, with many CGIs (~40%) being located in promoters of housekeeping control 

genes (Larsen, Gundersen, Lopez, & Prydz, 1992; Strichman-Almashanu at al., 2002). 

DNAm can influence the functional state of regulatory regions without changing the 

DNA sequence itself and has predominantly been associated with transcriptional 

repression (Ng & Adrian, 1999) (see Figure 1.13) but its properties are not fully 

established.  The primary hypothesis of gene silencing via DNAm occurs proposes the 

methylation of the cytosine in a CpG dinucleotide influences transcriptional machinery 
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by blocking transcription factors from binding and additionally, signalling methyl-

binding proteins, which in turn causes chromatin to compress and silences genes. 

However, recent research suggests that the relationship between DNAm and 

transcription is more complicated; where gene-body DNAm and non-CpG methylation 

has been associated with gene expression and alternative splicing as opposed to 

repression. Recent literature supports a role for other cytosine modifications in gene 

regulation such as 5-hydroxymethylcytosine (5hmC) which is a product of the de-

methylation and oxidation of 5mC by the ten-eleven translocation (TET) group of 

enzymes. In the past 5hmC was considered to have no effect on gene regulation but 

recent literature suggests it is enriched in the brain (more specifically within synaptic 

genes) and is thought to have important roles during neurodevelopment (Spiers, 

Hannon, Schalkwyk, Bray, & Mill, 2017). 

 

 

1.3.3 Epigenetic Variation associated with AD 

Multiple studies suggest epigenetic variation plays a role in the development of 

complex diseases of the brain including LOAD (see Table 1.6) (Roubroeks at al., 

Figure 1.13: DNA methylation involves the addition of a methyl group to the 5’ carbon in a cytosine 
ring. Top right: on the left is cytosine and on the right is 5-methylcytosine. Figure  taken directly from 
(Nevin & Carroll, 2015) 
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2020; A. R. Smith at al., 2016; A. R. Smith, Smith, Pishva, at al., 2019; R. G. Smith at 

al., 2018; R. Smith at al., 2021; Vasanthakumar at al., 2020). Similarly to GWAS, 

genome-wide variation in DNAm has been explored using epigenome-wide 

association studies (EWAS), where DNAm at each CpG site is independently tested 

for association with the trait of interest.  

 Epigenetic studies of LOAD using post-mortem brain tissue  

Unlike germline genetic variation, epigenetic signatures are tissue specific and 

therefore the tissue type used in an EWAS is important to consider; most EWAS of 

neurodegenerative diseases have been conducted in regions of the cortex. The first 

EWAS of AD in brain tissue was conducted by Bakulski at al. (2012), and DNAm was 

quantified in the frontal cortex using the Illumina Infinium Human Methylation 27K 

BeadChip array (27K array) - which measures methylation at >27,000 DNAm sites - 

in 12 LOAD cases and 12 cognitively normal donors. Despite the small sample size, 

they identified 948 differentially methylated positions (DMPs) which were annotated to 

918 unique genes, with the most significant located in the TMEM59 loci which has 

been implicated in APP processing. However, they did not control for multiple testing, 

which would lead to an increase in false positives and consequently the majority of the 

DMPs have not been validated in subsequent LOAD EWAS. 

The development of the Illumina Infinium 450K Beadarray (450K array) (see Chapter 

2 section 2.1.1) allowed for DNAm to be quantified at > 450,000 CpG sites. Two EWAS 

studies were conducted in parallel in 2014 which utilized the newer array technology. 

De Jager at al., using a large cohort of 708 donors (prefrontal cortex samples - 460 

AD, 263 controls), identified 71 DMPs which were associated with AD, including sites 

residing in LOAD GWAS loci such as ABCA7 and BIN1. Other genes identified include 

ANK1, CDH23, DIP2A, RHBDF2, RPL13, SERPINF1 and SERPINF2. Lunnon at al. 

conducted an association study in 122 individuals (three cortical regions [entorhinal 

cortex, superior temporal gyrus, and prefrontal cortex] and the cerebellum) with Braak 

NFT stage and identified significant hypermethylation in the ANK1 gene and 

additionally, 11 of De Jager at al.’s 71 DMPs were validated within this sample. A 

number of other brain studies investigating LOAD have been conducted using the 

450K array (see Table 1.6) (Altuna at al., 2019; Lardenoije at al., 2019; A. R. Smith at 

al., 2016; A. R. Smith, Smith, Pishva, at al., 2019; R. G. Smith at al., 2018; R. Smith 
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at al., 2021; Watson at al., 2016), in which multiple DMPs and differentially methylation 

regions (DMRs;  where variable DNAm across a region consisting of multiple CpG 

sites is associated with a trait) have been identified. Of particular interest is the HOXA 

region, which has repeatedly been recognised to have an influence on LOAD (Altuna 

at al., 2019; R. G. Smith at al., 2018; R. Smith at al., 2021). Recently, Smith, Pishva 

and colleagues conducted a meta-analysis of AD EWAS studies (R. Smith at al., 

2021), combining data from six 450K array analyses (N=1,453 unique individuals) to 

identify differential methylation associated with Braak NFT across multiple cortical 

regions. This is the largest AD cortex meta-analysis to date. In their cross-cortex meta-

analysis (N=1,408 donors) they identified 220 DMPs associated with Braak NFT stage, 

annotated to 121 genes. These results further support a role for differential DNAm 

across many genes in AD. 

The majority of AD EWAS analyses have been conducted in bulk tissue but these 

studies cannot capture cell-type specific changes, which may play a vital role in the 

pathogenesis of LOAD. Therefore, recent work by Gasparoni and colleagues 

investigated this hypothesis, whereby they profiled both bulk (52 controls and 76 AD 

cases from frontal cortex and temporal cortex samples) and sorted neuronal and non-

neuronal nuclei (isolated from 31 occipital cortex samples) to investigate if there are 

cell-type specific DNAm patterns. They identified that DNAm differences in the HOXA3 

regions are predominantly driven by modifications in neuronal cells and variable 

DNAm in ANK1 was driven by modifications in glial cells, highlighting the limitations of 

bulk only studies and the importance of considering single-cell populations. 

 Epigenetic studies of LOAD using peripheral tissues 

Although understanding epigenetic dysregulation in the brain is crucial to aid our 

understanding of dementia, investigating epigenetic changes in peripheral tissues of 

LOAD individuals may be useful in the context of identifying disease biomarkers. 

Biomarkers are defined as biological measures that have the potential to aid diagnosis, 

determine patient-specific aetiology and monitor disease progression.  Epigenetic 

biomarkers with a clinical application have been developed for diseases where 

regulatory mechanisms undergo large, system-wide changes, such as in cancer (Das 

& Singal, 2004). Many clinical and epidemiological studies examine DNAm in easily 

accessible tissues and recently there has been an interest in profiling epigenetic 
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variation in whole blood. In LOAD, blood biomarkers have the potential to aid clinical 

diagnosis, or be utilized as a tool to measure declining cognition over time. However, 

research investigating correlations between blood and brain deduced that whole blood 

DNAm measures provide limited information for disorders of the brain, though there 

are a proportion of sites where inter-individual variation is correlated between the two 

tissues (Hannon, Lunnon, Schalkwyk, & Mill, 2015). 

Although the majority of AD EWAS have been conducted in brain, as this is the tissue 

directly affected by neuropathology, several LOAD EWAS have been conducted in 

peripheral tissues, identifying multiple DMPs and DMRs associated with disease 

(Lardenoije at al., 2019; Roubroeks at al., 2020; Vasanthakumar at al., 2020)(see 

Table 1.6). Notably, the recent study by Roubroeks and colleagues (2020) which used 

the 450K array to quantify DNA methylation in 207 individuals (86 AD , 89 controls, 

and 109 MCI) and identified 9 DMRs associated with conversion from MCI to AD and 

4 DMRs associated with baseline diagnosis, including one which was annotated to 

HOXB6, a region previously identified in brain EWAS. Another recent whole blood 

EWAS study, conducted by Vasanthakumar at al. (2020) used the Illumina Infinium 

EPIC Beadarray (EPIC array), which incorporates >850,000 DNAm sites (see Chapter 

2 section 2.1.2 for more details), to quantify DNAm in 653 unique individuals (94 AD, 

336 MCI, 223 controls) and identified 42 DMPs to be associated with AD vs control, 

13 with AD vs MCI and 25 with MCI vs control. The DMPs were enriched in brain-

specific genes such as CLIP4, BIN1, BDNF and APOC1. 
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Table 1.6: DNA methylation studies of Alzheimer’s disease. Table adapted from MacBean at al. (2020). 

Tissue type Methods Results Reference 

Prefrontal Cortex 
 
Entorhinal Cortex 
 
Middle Temporal 
gyrus 
 
Cerebellum  

1,453 unique individuals of 
varying Braak NFT stage 
from six sample cohorts were 
used for discovery (Braak 0-
II: 332, Braak III-IV: 627, 
Braak V-VI:494) 
  
Replicated in 661 samples. 
 
450K array 
 
  

220 Braak NFT stage-associated DMPs were 
identified cross-cortex 
  
236 Braak NFT stage-associated DMPs were 
identified in the prefrontal cortex, 95 DMPs in the 
middle temporal gyrus and 10 DMPs in the 
entorhinal cortex 
 
Several DMPs identified were annotated to 
previously identified AD genes such as ANK1, 
HOXA, PPT2/PRRT1 and RHBDF2 
 
Many novel DMPs identified 

(R. Smith at al., 2021) 

Superior temporal 
gyrus (STG) 
 
Inferior frontal gyrus 
(IFG) 

127 samples (67 AD and 60 
cognitively normal control) for 
STG 
 
117 samples (60 AD and 57 
cognitively normal control) for 
IFG 
  
EWAS against Braak NFT 
Stage 
 
EPIC Array 

5 and 14 DMPs associated with neuropathology in 
the STG and IFG, respectively including DNAm 
sites annotated to ABCA7 and the HOXA gene 
cluster 
 
21 and 173 DMRs associated with neuropathology 
in the STG and IFG, respectively 
 
Previously reported Braak NFT Stage -associated 
DMPs  annotated to RMGA, GNG7, HOXA3, 
GPR56, SPG7, PCNT, RP11-961A15.1, MCF2L, 
RHBDF2, ANK1, PCNT, TPRG1, and RASGEF1C 
were replicated (p < 0.0001) 
 
 

(Li, Sun, & Wang, 2020) 
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Whole blood 

284 individuals (86 AD,                                                                                       
89 controls,109 MCI -38 MCI 
converted to AD within 
1 year) 
 
450K array 
  

MOV10L1 was associated with differences between 
all 3 groups  
 
4 DMRs associated with baseline diagnosis, 
including those annotated to HOXB6 and CSNK1E 
 
9 DMRs associated with conversion from MCI to 
AD 
  

(Roubroeks at al., 2020) 

Whole blood 

653 unique individuals 
(94 AD, 336 MCI, 223 
controls)  
 
longitudinal with multiple data 
points 
 
 
EPIC array 
 
  

42 DMPs associated with AD vs control 
13 DMPs associated with AD vs MCI 
25 DMPs associated with MCI vs control  
 
DMPs were enriched in brain related genes such as 
CLIP4, BIN1, BDNF and APOC1  

(Vasanthakumar at al., 2020) 

Hippocampus 

38 individuals (26 AD, 
12 controls) 
 
450K array  

118 DMPs associated with AD status were 
identified in the hippocampus (Altuna at al., 2019) 

AD-related DMPs were annotated to 
neurodevelopmental and neurogenesis-related 
genes and candidate “hotspots” such as HAND2, 
HOXA3, HIST1H3E, NXN, PAX3, RBMS1, and 
RHOB 

 

Middle temporal 
gyrus (MTG) 

80 individuals (45 AD, 
35 controls) for MTG 
 
450K array with bisulfite (BS) 
and oxidative BS -converted 
DNA  

1 DMR, 1 differentially hydroxymethylated region, 
and 11 differentially unmodified regions that were 
associated with AD annotated to genes including 
OXT  

(Lardenoije at al., 2019) 
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Whole blood (WB) 

99 individuals (42 converters, 
44 controls, 13 non-
converters but later 
diagnosis) for WB 
 
450K array – BS only 

Regional analysis identified 15 and 21 DMRs 
associated with conversion to AD at baseline and 
follow-up including OXT (blood-brain similarities) 

Whole blood 

23 AD discordant twin pairs 
 
RRBS - Illumina 
HiSeq2500/3000 

11 DMPs with consistent methylation differences in 
each zygosity group  (Konki at al., 2019) 

Anterior 
hippocampus 

12 individuals (6 AD and 6 
controls) 
 
RRBS - Illumina 
HiSeq2500/3000 

Multiple sites identified including those annotated to 
genes previously linked to AD (e.g. ADARB2; 
located in an exon) identified in both blood and 
cortex 

 

Entorhinal cortex 
(EC) 
 
Superior temporal 
gyrus 
 
Cerebellum 
 
Striatum  
 
Substantia nigra 

369 individuals (60 AD, 119 
DLB, 27 VaD, 22 HD, 36 PD, 
and 105 controls) 

96 (discovery), 104 (first 
replication), and 96 (second 
replication) brain samples 
covering the Braak NFT 
stage spectrum 
 
450K array (on BS and 
oxidative BS -treated DNA) 

Hypermethylation and hyperhydroxymethylation 
associated with elevated AD neuropathology in 
ANK1   

(A. R. Smith, Smith, Burrage, 
at al., 2019) 
  

Identified significant DNA methylation changes in 
the EC in multiple diseases, including AD, HD, and 
PD, with significant DNA hypermethylation across 
the amplicon in AD and HD 
Results suggest previous methylation values may 
be cofounded by 5-hmC 

Frontal Cortex 
 
Temporal cortex 
 
Occipital cortex 

128 individuals covering the 
Braak NFT stage spectrum 
 (76 AD, 52 controls) 
 
Isolated neuronal and glial 
nuclei in 31 occipital cortex 
samples covering the Braak 
NFT stage spectrum 
 
450K array 

Differential methylation identified in known AD 
genes (e.g. APP, HOXA3 and ADAM17) 
 
Novel AD loci identified including LRRC8B and 
MCF2L 

(Gasparoni at al., 2018) 
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Whole blood 

84 individuals (45 AD and 39 
controls) 
 
EPIC array 

477 DMPs 
106 DMPs were annotated to genes (21 
hypermethylated; 97 hypomethylated) 
 
A proportion of DMP-associated genes and their 
products previously implicated in LOAD 
pathogenesis including B3GALT4, FLOT1, OXT, 
and DLG2 
  

(Madrid at al., 2018) 

  

Superior temporal 
gyrus 
 
Prefrontal cortex 

147 covering the Braak NFT 
stage spectrum 
 
450K array 

Differentially methylation across the HOXA gene 
cluster (covering 48kb) 
 
Hypermethylation associated with elevated Braak 
NFT stage 
 
  

(R. G. Smith at al., 2018) 

  

Hippocampus 

5 individuals (3 AD and 2 
controls) 
 
Reduced representation 
hydroxymethylation profiling 
(RRHP) 

Pathway analysis implicated genes that play a role 
in the pathophysiology of LOAD including CR1, 
BIN1, and CLU (AD GWAS genes) 

(Ellison, Bradley-Whitman, & 
Lovell, 2017) 

Whole blood 

12 individuals (4 AD, 4 MCI, 
and 4 controls) 
 
450K array 

11 DMPs identified which differentiates AD, MCI 
and control. 
 
Replicated and validated hypomethylation in 
NCAPH2/LMF2 

(Kobayashi at al., 2016) 
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Superior temporal 
gyrus 

68 individuals (34 AD and 34 
controls) 
 
450K array 

 
479 DMRs hypermethylated with AD pathology 
 
Hypermethylated DMRs preferentially overlapped 
promoter regions 
DMRs overlapped with genes involved in neuron 
function, development, and cellular metabolism and 
included genes previously reported in Alzheimer’s 
disease genome-wide and epigenome-wide 
association studies  

(Watson at al., 2016) 

Dorsolateral  
 
Prefrontal cortex 

708 brains (460 AD and 263 
controls as discovery) 

Differential methylation at 71 CpGs associated with 
elevated AD pathology including CpGs in the 
ABCA7 and BIN1 region  

(De Jager at al., 2014) 

450K array 
 
Data from Lunnon at al. used 
as replication (Lunnon at al., 
2014) 

11 DMPs were validated in the independent 
replication cohort 
 
Genes implicated include: ANK1, CDH23, DIP2A, 
RHBDF2, RPL13, SERPINF1 and SERPINF2 

 

Entorhinal cortex  
 
Superior temporal 
gyrus 
 
Prefrontal cortex  
 
Cerebellum 

122 individuals (multiple 
tissue samples per individual) 
in discovery cohort with 
varying Braak NFT  stage 
  
450K array 

Hypermethylation was associated with elevated 
Braak NFT stage in the ANK1 region in AD cortex (Lunnon at al., 2014) 

Prefrontal cortex 

12 AD cases 
12 controls 
 
27K array 

948 DNAm sites annotated to 918 genes 
associated with AD  
 
THEM59 hypomethylated with AD - a gene involved 
in Aβ processing 

(Bakulski at al., 2012) 

 

https://link.springer.com/article/10.1007/s40142-020-00190-y#ref-CR55
https://link.springer.com/article/10.1007/s40142-020-00190-y#ref-CR55
https://link.springer.com/article/10.1007/s40142-020-00190-y#ref-CR56
https://link.springer.com/article/10.1007/s40142-020-00190-y#ref-CR56
https://link.springer.com/article/10.1007/s40142-020-00190-y#ref-CR56
https://link.springer.com/article/10.1007/s40142-020-00190-y#ref-CR56
https://link.springer.com/article/10.1007/s40142-020-00190-y#ref-CR56
https://link.springer.com/article/10.1007/s40142-020-00190-y#ref-CR56


75 
 

1.3.4 Epigenetic Variation associated with other types of dementia 

The focus of most EWAS analyses of neurodegenerative disease has been on some 

aspect of AD, however several studies have explored associations between variable 

DNAm and PD (Chuang at al., 2017; Masliah, Dumaop, Galasko, & Desplats, 2013), 

DLB (Sanchez-Mut at al., 2016; Fernandez at al., 2012) and FTD (Li at al., 2014) in 

both brain and peripheral tissues (see Table 1.7). Although many of these studies are 

not well powered due to low sample numbers, particularly in disease groups, several 

DNAm sites have been associated with other neurodegenerative diseases. For 

example, a study conducted by Sanchez-Mut at al. (2016) focused on identifying 

common pathways involved in PD, DLB, AD and down-syndrome cases and identified 

multiple DMRs associated with disease. In their subsequent pathway analysis they 

reported significant over-representation in pathways related to brain function and 

immune response. They also identified that ANK1 was differentially expressed in DLB, 

which corresponds with results from previous AD EWAS indicating there is 

hypermethylation of ANK1 (De Jager at al., 2014; Gasparoni at al., 2018; Lunnon at 

al., 2014; Smith at al., 2019), although recent research reported that the 

hypermethylation of ANK1 in DLB was likely confounded by AD pathology. A recent 

EWAS in peripheral blood of patients with FTD and progressive supranuclear palsy 

(PSP) compared to controls found a specific methylation signature associated with 

tauopathy, suggesting this signature as a risk factor for neurodegeneration and is not 

a specific pathway in AD. Due to the nature of DNAm, which is influenced by a variety 

of factors, it can be difficult to distinguish if associations are driven specifically by the 

disease itself (e.g. disease specific neuropathology), by some other aspect of 

neurodegeneration or due to other factors. 
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Table 1.7: Epigenetic studies in dementias other than LOAD. Table adapted from MacBean at al. (2020). 

Phenotype Tissue type Methods Results References 

Parkinson’s 
disease Whole blood 

2,131 individuals (1,132 PD cases, 999 controls) 
 
450K array 

2 DMPs. Hypermethylation in PD is associated 
with down-regulation of the SLC7A11 gene. 
Consistent with an environmental exposure 
(unlikely consequence of medications or genetic 
effects on DNA methylation) 

(Vallerga at al., 2020) 

Parkinson’s 
disease Whole blood 

232 PD samples followed up from baseline (197 
European samples were the focus of analysis) 
 
Longitudinal study  
 
450K array 

Numerous significant DMPs in blood associated 
with declining cognition in PD including sites 
annotated to KCNB1, DLEU2, and SATB1 

(Chuang at al., 2017) 

Dementia with 
Lewy bodies Dorsolateral 

prefrontal cortex 

107 individuals (AD, 5 DS-AD, 23 DLB, 15 PD, 
and 32 controls) 
 
450K array 

Identified differentially methylation 
in ANK1 and RHBDF2 in AD and ANK1 in DLB 

(Sanchez-Mut at al., 
2016) 

 Neurodegenerative disorders might have similar 
pathogenic mechanisms    

Frontotemporal 
Dementia 

Whole blood 

351 individuals (128 FTD, 43  PSP, and 185 
controls) 
 
450K array 

Multiple DMPs were identified in both diseases. (Li at al., 2014) 

Progressive 
supranuclear 
palsy (PSP) 

Three DMPs were located in 17q21.31 region – 
a reported PSP risk gene   

Parkinson’s 
disease Frontal cortex 11 individuals (5 PD and 6 controls) 

 
450K array 

Differential methylation identified in both blood 
and cortex 

(Masliah, Dumaop, 
Galasko, & Desplats, 
2013) 

 Whole blood Four genes strongly associated with PD: HLA-
DQA1, GFPT2, MAPT, and MIR886   

Dementia with 
Lewy bodies 

Cerebral cortex 
lesions 

437 individuals (424 control tissues, 13 DLB)  
Differential methylation identified across the 
groups; methylation patterns were able to make 
a distinction between DLB samples from normal 
and cancer tissues 

(Fernandez at al., 
2012) 

 
 
GoldenGate DNA methylation BeadArray 
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1.4 Regulatory genomic variation and ageing biomarkers 

Advancing age is associated with declining physical and cognitive function, and as 

previously mentioned (see section 1.1.3) is a major risk factor for many human brain 

disorders including dementia and other neurodegenerative diseases (Harper, 2014; 

Sierra, 2019). Understanding the biological mechanisms involved in ageing will be a 

critical step towards preventing, slowing or reversing age-associated phenotypes. Due 

to the substantial inter-individual variation in age-associated phenotypes, there is 

considerable interest in identifying robust biomarkers of ‘biological’ age, a quantitative 

phenotype that is thought to better capture an individuals’ risk of age-related outcomes 

than actual chronological age (Jylhävä, Jiang, Foebel, Pedersen, & Hägg, 2019). 

Several data modalities have been used to generate estimates of biological age; these 

include measures of physical fitness (e.g. muscle strength) (Sosnoff & Newell, 2006), 

cellular phenotypes (e.g. cellular senescence due to the deterioration and functional 

characteristics of cells which is most commonly caused by DNA double strand breaks) 

(Baker at al., 2011), genomic changes (e.g. telomere length) (Jylhävä, Pedersen, & 

Hägg, 2017; Sanders & Newman, 2013) and epigenetic mechanisms (e.g. DNA 

methylation) (Horvath, 2013).  

1.4.1 Epigenetic clocks 

There has been recent interest in the dynamic changes in epigenetic processes over 

the life course, and a number of ‘epigenetic clocks’ based primarily on DNAm have 

been developed that appear to be highly predictive of chronological age (Hannum at 

al., 2013; Horvath, 2013). The landmark DNAm clock was developed by Horvath 

(Horvath, 2013), who applied elastic net regression to Illumina DNAm array data from 

a large number of samples derived from a range of tissues (n = ~ 8,000 across 51 

tissue and cell types), and generated a predictor based on DNAm at 353 CpG sites 

that is accurate at predicting chronological age (Horvath, 2013). Given that changes 

in DNAm are known to index exposure to certain environmental risk factors (for 

example, tobacco smoking) (Elliott at al., 2014; Sugden at al., 2019) that are 

associated with diseases of old age, and variable DNAm is robustly associated with a 

number of age-associated disorders (Chouliaras at al., 2018; Chuang at al., 2017; A. 

R. Smith at al., 2016), there has been interest in the hypothesis that DNAm clocks 

might robustly quantify variation in biological age. Horvath’s DNAm age clock, for 
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example, has been widely applied to identify accelerated epigenetic ageing - where 

DNAm age predictions deviate from chronological age such that individuals appear 

older than they really are - in the context of numerous health and disease outcomes 

(Horvath & Ritz, 2015; Levine, Lu, Bennett, & Horvath, 2015; Marioni at al., 2015; 

McCartney at al., 2018). Although the original DNAm clocks were primarily developed 

to predict chronological age and are not robustly predictive of clinical health measures 

(e.g. blood pressure) (Quach at al., 2017), more recent DNAm clocks such as Levine’s 

‘pheno age’ clock (Levine at al., 2018) incorporate surrogate measures of biological 

age and are more directly aimed at predicting mortality and health-span.  

1.4.2 Biases in existing epigenetic clocks 

A strength of many existing epigenetic clocks is that they work relatively well across 

different types of sample; the Horvath multi-tissue clock, for example, can accurately 

predict age in multiple tissues across the life-course. Importantly, as with any predictor, 

the composition of the training data used to develop the clock influences the generality 

of the model. To date, there has been limited research comparing the prediction 

accuracy and potential bias of existing clock algorithms across different tissues and 

ages. Recent analyses have highlighted potential biases when using Horvath’s clock 

in older samples (>~60 years) and in samples derived from certain tissues, especially 

the central nervous system (El Khoury at al., 2019). This is important for the 

interpretation of studies of possible relationships between accelerated epigenetic age 

and age-related diseases affecting the human brain (e.g. neurodegenerative 

phenotypes); reported associations between accelerated DNAm age and disease may 

actually be a consequence of fitting a suboptimal predictor to available datasets. 

Potential confounders include differential changes in DNAm with age across tissues 

and the age distribution of the samples used to train existing classifiers. Resolution of 

these biases requires the construction of specific DNAm clocks developed using data 

generated on the relevant tissue-type and including broad representation of the age 

spectrum they will be used to interrogate. Recently, a number of tissue-specific DNA 

methylation clocks have been described, including clocks designed for whole blood 

(Hannum at al., 2013; Zhang at al., 2019), muscle (Voisin at al., 2020), bone (Gopalan, 

Gaige, & Henn, 2019) and paediatric buccal cells (McEwen at al., 2019). Importantly, 

although these DNAm age estimators have increased predictive accuracy within the 

specific tissues in which they were built, they lose this precision when applied to other 
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tissues (Zhang at al., 2019). A key aim of Chapter 3 in my thesis was the development 

of a novel epigenetic clock specifically calibrated for use on human cortex tissue. 

1.4.3 Age acceleration in neurodegenerative phenotypes  

Since age is a major risk factor for dementia and other neurodegenerative brain 

disorders, there is particular interest in the application of epigenetic clock algorithms 

to these phenotypes, especially as differential DNAm in the cortex has been robustly 

associated with diseases including AD and PD (see Table 1.6 and Table 1.7)(Lunnon 

at al., 2014; A. R. Smith at al., 2016; Yu at al., 2015). Recent studies have reported 

an association between accelerated DNAm age and specific markers of AD 

neuropathology in the cortex (e.g. neuritic plaques, diffuse plaques and Aβ load) 

(Levine at al., 2018, 2015). Furthermore, among individuals with AD, DNAm age 

acceleration is associated with declining global cognitive functioning and deficits in 

episodic and working memory (Levine at al., 2018, 2015). These studies infer DNAm 

age is important to consider when conducting DNAm studies in neurodegenerative 

diseases. A key aim of this thesis is the development of a novel DNAm clock 

specifically calibrated for the human cortex and its application to measures of 

neuropathology and AD (see Chapter 3). 

1.5 Genetic influences on DNA methylation 

Although lifestyle factors and environmental influences such as disease status, 

nutrition, ageing, stress, and chemical exposures can alter epigenetic marks, the 

epigenome can also be directly influenced by genetic factors. This is further supported 

by evidence demonstrating that DNA methylation is heritable at a large proportion of 

sites, with the average heritability at each DNAm site ranging from 16-20% (Hannon 

at al., 2018; McRae at al., 2014, 2018). 

There are several hypotheses for how genetic-epigenetic mediation occurs. For 

example, alterations in the genetic sequence have the potential to influence the 

formation of epigenetic marks, such as a SNP which is located within a CpG site could 

create or remove that specific site; SNPs could cause direct changes to epigenetic 

machinery; and more recently there have been studies which suggest global genetic 

risk influences molecular markers (Hannon at al., 2016, 2018; Viana at al., 2017). 

Recent studies have sought to better understand the molecular mechanisms 
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underlying disease phenotypes by using integrated omic methods and literature 

suggests that the genetic mediation of the methylome provides a link between genetic 

variation and complex phenotypes (Wagner at al., 2014). 

1.5.1 Genetic effects on DNAm at specific sites in the genome 

There has been recent interest investigating the relationship between genetic and 

epigenetic variation at the individual level, there have been studies which have 

examined the effect individual SNPs have on molecular processes (Hannon at al., 

2018, 2019; Hannon, Weedon, Bray, O’Donovan, & Mill, 2017; Liu, Wang, Jing, Meng, 

& Yang, 2021; Zhao, Hu, Zang, & Wang, 2019). Genetic variants that are associated 

with DNAm at CpG sites are defined as methylation quantitative trait loci (mQTLs; see 
Figure 1.14).  Most current mQTL databases have been generated using 450K data 

(Hannon, Weedon, Bray, O’Donovan, & Mill, 2017; McRae at al., 2018). In this thesis, 

I generate two novel mQTL databases utilising EPIC array data: for whole blood and 

for the cortex (see Chapter 5). Utilising the EPIC array substantially increases the 

number of sites across the genome in which we can identify mQTLs. The cortex mQTL 

dataset will represent the largest EPIC mQTL database currently generated for that 

tissue. This is a key aim of Chapter 5. 

 

 

 

 

 

 

 

 

 D
N

A 
m

et
hy

la
tio

n 
/ g

en
e 

ex
pr

es
si

on
 

Figure 1.14: mQTLs and eQTL share the underlying principle that SNPs have an effect on either DNA 
methylation (mQTL) or gene expression (eQTL). This is a hypothetical QTL example and it shows that being 
homozygous for the B allele results in increased DNA methylation/ gene expression in comparison to the homozygous 
A allele. 
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 Leveraging mQTLs to fine-map genomic regions associated with 
complex disease 

As many GWAS variants associated with complex traits reside in non-coding regions, 

it has been challenging to identify which genes are relevant for disease aetiology 

(Amlie-Wolf at al., 2018; Giambartolomei at al., 2018). A potential approach to explore 

the mechanisms by which non-coding risk variants regulate gene expression is 

through integration of datasets that measure the association of molecular phenotypes 

including mQTLs and gene expression quantitative trait loci (eQTLs; where a SNP is 

associated with gene expression). If the same genetic variant is driving the association 

signal in the GWAS but is also driving expression at close-by DNAm and gene 

expression sites, then this could be indicative of a putative disease mechanism. eQTL 

studies have been conducted looking at the association between eQTLs and disease, 

highlighting a causal gene and the tissue in which the effect it mediated (He at al., 

2013; Nica at al., 2010). Identifying overlap between complex disease-associated 

variation and eQTL variants has provided evidence of shared molecular mechanisms.  

However these earlier studies, such as the one conducted by Nica and colleagues 

(2010), did not formally test the null hypothesis for co-localisation and the methodology 

was instead based on the residual association of the most significant GWAS SNP. A 

formal test of colocalisation was since developed based on a regression framework 

which consists of testing the null hypothesis of proportionality of regression coefficients 

for two traits across a set of SNPs – this assumption will be met if these two traits 

share causal variants. This method makes the assumption that if there are multiple 

causal variants then they are all shared. However, since this method relies on 

specifying the subset of SNPs to be included in analysis, biases can arise due to over 

estimation of the effect sizes of the tested SNPs, a concept known as ‘the winners 

curse’ (Wallace, 2013); this notion states that the most associated SNP identified in a 

GWAS may in fact not be the causal SNP, which can lead to the statistical rejection of 

co-localisation in situations where the causal SNP is shared.  

Giambartolomei and colleagues (2014) developed a Bayesian test for colocalisation 

between pairs of genetic association studies which utilises summary statistics. Their 

model is related to a method first developed by Flutre at al. (Flutre, Wen, Pritchard, & 

Stephens, 2013) who focussed on maximising power to discover eQTLs in expression 

datasets across multiple different tissues. Giambartolomei’s method provides 
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posterior probabilities and only requires the input of single SNP p-values and their 

minor allele frequencies. Their framework tests five different hypotheses: 1) There is 

no association with either trait; 2) There is an association with trait one but not with 

trait two; 3) There is an association with trait two, but not with trait one; 4) There is an 

association with trait one and trait two but these are two independent SNPs; and 5) 

There is an association with trait one and trait two, and there is a single causal SNP.  

Recent research by Hannon and colleagues (2018) integrated the external information 

from mQTLs and eQTLs to identify which genetic signals are explained by regulatory 

effects and applied the Bayesian framework for co-localisation developed by 

Giambartolomei and colleagues to their data.  In this study they characterised mQTLs 

in a collection of 166 human foetal brain samples and identified >160,000 mQTLs. 

They found that the foetal brain mQTLs were enriched in risk loci identified in a 

Schizophrenia (SCZ; a psychiatric disorder with a neurodevelopmental component) 

GWAS. They utilised the mQTLS to refine GWAS signals and identified discrete sites 

of regulatory variation associated with the SCZ variants.  

More recently, another method called Summary-data based Mendelian 

Randomisation (SMR) (Zhu at al., 2016) has been developed to identify whether there 

is pleiotropy between genetic variants and molecular markers (DNAm and gene 

expression). This method is based on the premise of Mendelian randomisation (MR): 

an approach which uses genetic variation as a natural experiment to investigate the 

‘causal’ relationships between phenotypes in observational data (Burgess, Dudbridge, 

& Thompson, 2016). In other words, if the expression or DNAm of a gene is influenced 

by a SNP (an eQTL/ mQTL), then there will be various levels of gene expression/ 

DNAm among individuals who are homozygous or heterozygous for specific genetic 

variants (e.g. AA – low expression/ DNAm, AB – median expression/ DNAm, BB – 

high expression/ DNA). If the expression/ DNAm levels have a significant effect on a 

trait then these differences will be observable in the three distinct genetic groups (see 

Figure 1.14). In MR analysis a genetic instrument is used (e.g. a SNP) to test for the 

causative effect of an exposure (e.g. gene expression) on an outcome (a phenotype). 

However, given that GWAS have identified thousands of SNPs associated with 

complex traits, a single common SNP will have little effect on a trait. Subsequently, 

Zhu and colleagues (Zhu at al., 2016) developed SMR to integrate summary-level data 

(e.g. effect sizes) from GWAS as well as eQTL and mQTL studies. The aim of this 
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method is to identify genes whose expression levels are associated with a trait due to 

pleiotropy (see Figure 1.15). SMR has been applied to multi-omics datasets. For 

example, Wu at al. (2018), performed an integrative analysis using summary level 

SNP data from multi-omic studies to identify if DNAm sites are associated with gene 

expression and a phenotype through shared causal effects. They identified pleiotropic 

associations between >7800 DNAm sites and >2700 genes and found that the DNAm 

sites were enriched in promoters and enhancers. Their next analysis linked both the 

transcriptome and the methylome to twelve traits and identified 149 DNAm sites and 

66 genes. These results indicate there is a mechanism where a SNP has an effect of 

a trait mediated though genetic regulation of DNAm and gene expression. Similarly, 

Hannon and colleagues (2018) utilised the SMR tool to characterise the relationship 

between genetic, epigenetic and transcriptomic variation in > 60 traits and identified 

~1700 pleiotropic associations between 36 complex traits and >1200 DNAm sites. 

They also identified ~6,800 pleiotropic associations between >5,400 DNAm sites and 

the transcription of >1700 genes.  

 

Figure 1.15: Schematic of integrative analysis utilizing multi-omics data. A hypothetical model of a mediation 
mechanism tested in SMR analysis: an SNP exerts an effect on the phenotype by altering the DNAm level, which 
regulates the expression levels of a functional gene. Figure and legend adapted from Wu at al. (2018). 

These studies have characterised the relationship between genetic, epigenetic and 

transcriptomic variation using co-localisation analyses and Mendelian randomisation 

based methods, fine-mapping regulatory variation involved in disease pathology, 

increasing understanding of the mechanisms leading to disease phenotypes 

(Giambartolomei at al., 2018; Hannon at al., 2016). I will extend these analyses and 

apply them to cortex and whole blood datasets (see Chapter 5). 
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 Genetic-epigenetic variation at a global level 

In addition to identifying associations between genetic and epigenetic variation at the 

individual level, there have been studies which have examined the effect global 

genetic risk has on molecular processes. Genetic variation mediating epigenetic 

variation has been observed in complex diseases of the brain including schizophrenia 

(SCZ) and autism spectrum disorder (ASD) (Hannon at al., 2016, 2018; Viana at al., 

2017). Recent studies have quantified global genetic risk into PRS and associated this 

with genome-wide DNAm to further explore the molecular genomic mechanisms 

involved in disease pathogenesis. Recent research by Hannon at al., explored this 

hypothesis; they calculated PRS for 639 individuals within in a case/control SCZ cohort 

(Hannon at al., 2016). PRS were significantly higher in cases compared to controls 

and significantly predicted disease status. Subsequently, they conducted an 

epigenome-wide association study (EWAS) of SCZ PRS against genome-wide DNAm 

identifying multiple DMPs associated with disease status (Hannon at al., 2016). PRS 

EWAS relationships in brain disorders has also been investigated in peripheral tissues. 

Hannon and colleagues conducted an autism spectrum disorder (ASD) – PRS study 

whereby they quantified neonatal methylomic variation from archived blood spots in 

1263 infants (50% later developed ASD) and identified multiple sites where the ASD 

PRS was associated with hypermethylation. PRS have proven a useful tool for 

associating the genetic contribution of a disease - essentially as a biomarker - with 

epigenetic variation, enabling the exploration of molecular genomic mechanisms 

driving disease pathogenesis. The dynamic nature of epigenetic processes including 

DNAm means that unlike in genetic epidemiology a range of potentially confounding 

factors (e.g. medication, other environmental toxins, and reverse-causality) need to be 

taken into consideration. PRS-associated epigenetic variation is potentially less 

affected by these factors which are associated with the disease itself. 

1.6 General aims of my thesis 

There is a growing body of evidence highlighting the functional complexity of the 

genome and how genetic and epigenetic mechanisms play a role in the aetiology of 

AD and other forms of dementia. There is limited literature investigating the 

relationship between genetic and molecular mechanisms (e.g. DNAm and gene 
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expression) in these diseases and therefore, within my thesis I aim to expand our 

knowledge in this area. There are three overarching aims of my thesis: 

1) To identify if variable DNAm is associated with measures of neuropathology that 

are hallmarks of different types of dementia, with a particular focus on LOAD. 

2) To investigate how polygenic burden for LOAD influences genomic regulatory 

processes (i.e. epigenomic and transcriptomic variation) across multiple tissues and 

how these results compare with disease driven DNAm variation.  

3) To functionally annotate genomic regions associated with LOAD to fine-map 

regulatory variation involved in neuropathology, to help refine the genes involved in 

disease pathogenesis. 

These aims are addressed across four empirical chapters: 

 In my first empirical chapter (Chapter 3), I develop a novel DNAm clock that is 

specifically designed for application in DNA samples isolated from the human 

cortex and is accurate across the lifespan including in tissue from older donors. 

I build an epigenetic clock which minimises the potential for spurious 

associations with ageing phenotypes (e.g. neurodegenerative diseases) 

relevant to the brain.  

 In my second empirical chapter (Chapter 4) I investigate if variable DNAm in 

the cortex is associated with neuropathology and clinical measures of 

dementia.  

 In my third empirical chapter (Chapter 5) I utilise methylation and expression 

quantitative trait loci to localize putative causal loci within large genomic regions 

associated with LOAD in both brain and peripheral tissues.  

 In my fourth empirical chapter (Chapter 6) I first investigate if PRS and APOE 

genotype are associated with neuropathology. Second, I investigate if variable 

DNAm in cortex and peripheral tissues is associated with polygenic risk for 

LOAD. I compare advantages and disadvantages of using brain (i.e. the most 

relevant for disease) and peripheral tissues for PRS analysis in EWAS.  

 

Figure 1.16 describes the integration of my empirical chapters of my thesis.



86 
 

•This chapter integrates external 
information from QTLs to identify which 
genetic signals are explained by 
regulatory effects. Results from this 
chapter are utilised in Chapter 6, 
identifying if PRS-associated DMPs are 
associated with mQTLs. Peripheral and 
brain comparisons will be made, similarly 
to Chapter 6.

•This chapter investigates how PRS 
driven variable DNAm differs when using 
disease relevant tissues and peripheral 
tissues. PRS EWAS results are 
compared to Chapter 4. I identify if any 
PRS -EWAS DMPs are associated 
mQTLs, as identified in Chapter 5. It will 
also bring in arguments of a similar 
nature made in Chapter 5, comparing 
brain and peripheral tissues.

•This chapter identifies differences and 
similarites between neuropathology 
driven variation in DNAm. The EWAS 
conducted in this chapter are compared 
to results in Chapter 6, where I 
characterise if there is consistency in 
the direction of effect across the 
studies. This will enable me to explore 
if the genetic component of AD is 
correlated with neuropathology. 

•When conducting EWAS in 
neurodegenerative diseases it is 
important to consider the effect age 
has on DNAm. Particularly in the 
relevant tissue (i.e the cortex), as age 
is the biggest risk factor for these 
diseases and can potentially confound 
DNAm analysis. In this chapter DNAm 
age is derived using the novel cortical 
clock, and this is associated with 
neuropathology. This links with 
Chapter 4, where genome-wide 
DNAm is associated with 
neuropathology.

Chapter 3
Developing a novel 
cortical epigenetic 

clock and applying this 
to investigate 

associations with 
neuropathology 

measures

Chapter 4
Investigating if there 
are any assocations 

between variable 
DNAm in the cortex 

and:
- neuropathology

- clinical measures

Chapter 5

Utilizing QTLs to 
localize putative 

causal loci within large 
genomic regions 

associated with LOAD 
in cortical and 

peripheral tisses

Chapter 6
Investigating 

assocations between 
variable DNAm in the 
cortex and peripheral 

tissues and:
LOAD PRS

(including and 
excuding APOE)

Figure 1.16: Integration of Chapters 3 to 6 of this thesis. EWAS = epigenome-wide association study; DNAm = DNA methylation; DMP = differentially methylated position; QTL = quantitative 
trait loci; mQTL = DNA methylation QTL; PRS = polygenic risk score. 
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2 General Methods 

In this Chapter I describe general methods which are used across multiple chapters in 

my thesis. This includes in-depth descriptions of quality control pipelines, array 

chemistry and general statistical methods. Additional methods specific to each 

individual study are provided in the relevant chapter(s). 

2.1 DNA Methylation Profiling 

The analysis of sodium bisulfite (NaHSO3) treated DNA is currently the gold-standard 

method for quantifying DNA methylation (DNAm); it is efficient and provides 

quantification at the base-pair resolution (Y. Li & Tollefsbol, 2011). This process 

involves deamination of the non-methylated cytosines to uracil, which is then replaced 

by a thymine molecule in downstream procedures including the polymerase chain 

reaction (PCR). Cytosines which are methylated are protected from deamination, and 

therefore remain as cytosine (Y. Li & Tollefsbol, 2011). This enables the level of 

methylated and unmethylated cytosines at individual sites in the genome to be 

quantified directly. The step-by-step process of sodium bisulfite conversion is shown 

in Figure 2.1(Biolabs, 2016). 

Figure 2.1: DNA sodium bisulphite treatment. Taken from New England Biolabs (Ipswich, MA, USA) webpage 
(Biolabs, 2016). 
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The samples in the DNAm datasets I worked with in my thesis underwent sodium 

bisulfite conversion using the EZ DNAMethylation-Gold Kit (Zymo Research, Irvine, 

CA, USA), according to manufacturer’s instructions. After sodium bisulfite conversion 

the human DNA samples were profiled using Illumina BeadChip DNA methylation 

arrays. 

2.1.1 Infinium HumanMethylation450 BeadChip 

Several of the cohorts in this thesis (used in Chapter 3 and Chapter 6) were profiled 

using the Illumina Infinium HumanMethylation450 BeadChip (450K array), which were 

scanned on an iScan Microarray Scanner (Illumina, SanDiego, CA, USA) using the 

manufacturer’s instructions. The Illumina 450K array quantifies DNAm at 484,577 

DNAm sites and coves 99% of RefSeq genes (https://www.ncbi.nlm.nih.gov/refseq/ 

(O’Leary at al., 2016)) as well as regulatory regions including CpG islands (96% 

covered), 5′ and 3′ UTRs, island shores, island shelves, promoters and gene bodies 

(Bibikova at al., 2011). The array combines two technically distinct assays: 1) the 

Infinium I assay (type I probes) and 2) the Infinium II assay (type II probes) (M. E. Price 

at al., 2013). Type I probes employ two probes per CpG locus – one specific to 

methylated DNA and one specific to unmethylated DNA (see Figure 2.2). The 3’ 

terminus of each of these probes matches either the protected cytosine (methylated) 

or the thymine based which arose from sodium bisulfite conversion (unmethylated). 

The design of type I probes is based on the assumption that methylation is regionally 

correlated with a 50bp span (i.e. CpGs within this region are correlated with the query 

CpG) (Shoemaker, Deng, Wang, & Zhang, 2010). Type II probes are characterised by 

one probe per locus (see Figure 2.2), with the DNAm state determined at the single 

base extension after hybridisation of two dyes (red = unmethylated, 

green=methylated). The requirement for a single bead type enables more DNAm sites 

to have their methylation state quantified.   

https://www.ncbi.nlm.nih.gov/refseq/
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2.1.2 Infinium HumanMethylationEPIC BeadChip 

The other cohorts used in this thesis (used in Chapter’s 3-6) were profiled using the 

latest Illumina BeadChip technology, the Illumina Infinium HumanMethylationEPIC 

BeadChip (EPIC array) and were scanned on an iScan Microarray Scanner (Illumina, 

SanDiego, CA, USA) using the manufacturer’s instructions. The EPIC array quantifies 

DNAm at 866,836 DNAm sites, including 90% of the 450K array probes and an 

additional 413,743 DNAm sites (95% of these are type II probes and mainly target 

gene body, intergenic and non-CpG island regions). Overall, the array has good 

coverage across important regulatory regions such including CpG islands, 5′ and 3′ 

UTRs, island shores, island shelves, promoters and gene bodies. 

2.1.3 Quantifying DNA methylation 

In order to quantify DNAm at each site, a ratio of the fluorescence intensity for 

methylated (M) and unmethylated (U) signal is used to produce a ‘β value’ for each 

site, which ranges from 0 (all DNA alleles at that DNAm site are unmethylated) to 1 

Figure 2.2: Type I and type II probes. Figure and legend downloaded the Illumina (San Diego, CA, USA) 
webpage (Illumina, 2015). BeadChips employ both Infinium I and Infinium II assays, enhancing their breadth 
of coverage. A) Infinium I assay design employs two bead types per CpG locus, one each for the methylated 
and unmethylated states. B) The Infinium II design uses a single bead type, with the methylated state 
determined at the single base extension step after hybridization. 
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(all DNA alleles at that DNAm site are methylated). The equation for the β value is 

shown below, where ‘M’ = intensity methylated, ‘U’ = intensity unmethylated, and ‘a’ = 

100 (this is added to M + U to stabilise the beta values if both M and U are small) 

(Weinhold, Wahl, Pechlivanis, Hoffmann, & Schmid, 2016). 

β =
M

𝑀𝑀 + 𝑈𝑈 + 𝑎𝑎
 

 

2.1.4 Quality control of DNA methylation data 

I conducted quality control (QC) for multiple large DNAm datasets throughout my PhD 

including the Brains for Dementia research (BDR) cohort (DNAm data used in Chapter 
3-6) and the Exeter Ten Thousand (EXTEND) cohort (DNAm data used in Chapter 5-
6). Our group previously developed the wateRmelon (Pidsley at al., 2013) and 

BigMelon (Gorrie-Stone at al., 2019) packages for conducting array QC. There are 

several steps we take to ensure we have high-quality data which I explain in more 

detail below, using examples from the EXTEND and BDR QC pipeline.  

a) Check Signal Intensities 

The intensity check is the biggest indicator of sample and raw data quality. The median 

methylated signal intensity and unmethylated signal intensity for each sample is 

calculated (see Figure 2.3). Although an arbitrary threshold of 2000 is recommend by 

Illumina, the threshold can be adjusted for each dataset and visually ascertained when 

plotting M against U (see Figure 2.4.), removing samples which clearly deviate from 

the main cluster.  
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Figure 2.3: Signal intensities of the EXTEND cohort. Histograms of median methylated and unmethylated signal 
intensities. 

 

 Figure 2.4: EXTEND samples with a signal intensity < 2000 for either M or U were removed 
based on the Illumina threshold. 
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b) Bisulfite conversion statistic 

 A bisulfite conversion statistic for each sample is calculated using the bscon function 

from wateRmelon, and a histogram of the results are plotted (see Figure 2.5). 

Samples with a conversion rate <80% fail this QC step and are excluded. 

 

 

 

 

 

 

 

 

Figure 2.5: Histogram of Bisulphite conversion statistics for EXTEND.  
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c) Check Sex 

A principal component analysis (PCA) of the DNAm data is used to confirm the sex of 

the samples. The principal components are calculated, and the two which correlate 

overall most with sex are found. These can be used to generate a scatter plot where 

the sexes are clearly separated. Samples with mismatched sex (i.e. observed sex is 

different from the expected/reported sex) are removed (see Figure 2.6). 

 

 

d) Check samples match their genotype data 

On the EPIC array there are 59 SNP probes and on the 450K array there are 65 SNP 

probes – these are selected from high-quality SNP probes included on Illumina 

genotyping arrays and are useful for sample ID tracking. If we have genotype data for 

these samples, we can compare the methylation on these SNP probes to the known 

genotypes to confirm they are from the expected individual. Correlations are 

calculated, and samples with a correlation <0.9 are excluded (see Figure 2.7). 

Figure 2.6: PC1 plotted against PC2 coloured by reported sex.  
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Figure 2.7: Check if EXTEND samples match their genotype data. Top: correlations between genotype and 
DNAm data based on 59 SNPs on the EPIC array. Bottom: an example of a passed and failed sample. 
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e) Check samples match both tissues 

In some datasets there will be more than one sample per individual (e.g. in BDR we 

profiled both occipital cortex [OCC] and prefrontal cortex [PFC] samples from each 

donor) and the SNP probes can be used to confirm samples match up. A histogram of 

results is plotted (see Figure 2.8) and matched samples which have a correlation < 

0.9 fail the QC and are excluded.  

Figure 2.8: Correlation between samples from the same individual in the BDR cohort.  

 

f) Check for duplicate samples 

The SNP probes on the DNA methylation arrays can also be used to estimate genetic 

correlations between samples. This small number of probes means that only identical 

samples (such as samples from the same individual, monozygotic twins or samples 

duplicated by error) can be identified and no lower proportion of genetic relatedness 

(e.g. siblings) can be inferred. Since we expect all samples to be unrelated in the 

cohorts included in my thesis, all genetic correlations between samples should be low 

(approximately < 0.8). For each sample we can find the maximum correlation with any 

other sample and plot a histogram of the results (see Figure 2.9). Samples with a 

correlation > 0.8 are excluded. 
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g) Calculate smoking scores (for whole blood datasets only) 

Smoking is robustly associated with DNAm at sites across the genome in whole blood. 

Using a method developed by Elliot at al. (2014) we can calculate a smoking score 

based on DNAm at a combination of sites that can accurately predict smoking status. 

Where phenotypic smoking data is available it is possible to compare smoking scores 

between non-smokers and smokers (see Figure 2.10). No samples are excluded 

based on smoking score, but it is routinely included as a covariate in analyses.  

Figure 2.9: Correlations against other samples in the EXTEND cohort. 
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Figure 2.10: Smoking score differentiates cases and controls in the EXTEND cohort. Top: boxplot of 
smokers versus non-smokers. Bottom: boxplot of how many cigarettes smokes per day. 

Boxplot of Smoking score against whether individual is a smoker 

Boxplot of Smoking score against how many cigarettes smoked per day 
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h) Cell type composition 

DNAm varies between cell types (Mendizabal at al., 2019) and therefore heterogeneity 

in cellular proportions can significantly influence DNAm estimates generated on bulk 

tissue such as whole blood. Estimations of cell-type composition are important 

variables to consider when analysing DNAm data. Computational methods exist to 

derive estimates of cellular proportions in whole blood DNAm data, using reference 

datasets of sorted samples. The method developed by Houseman at al. (Houseman 

at al., 2012), for example, infers cell proportions based on a regression calibration 

technique which uses an external reference dataset to calibrate the model and correct 

for any bias. The function estimateCellCounts in the minfi package is used to estimate 

the proportion of CD8 T-cells, CD4 T-cells, natural killer cells, B-cells, monocytes and 

granulocytes (see Figure 2.11). To identify cell proportions in brain samples an 

algorithm has been developed using fluorescence activated nucleic sorting (FANS) 

data generated by our group where cortical nuclei were stained with markers for 

neurons (NeuN+), oligodendrocytes (Sox10+) and the remaining cells (double 

negative) and profiled to generate reference data 

(https://www.protocols.io/view/fluorescence-activated-nuclei-sorting-fans-on-huma-

bmh2k38e). These data were used to estimate cell proportions in the BDR dataset. 

 

Figure 2.11: Estimated cell types in the EXTEND cohort. 

 

https://www.protocols.io/view/fluorescence-activated-nuclei-sorting-fans-on-huma-bmh2k38e
https://www.protocols.io/view/fluorescence-activated-nuclei-sorting-fans-on-huma-bmh2k38e
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i) Filter data based on beadcounts and detection p-values. 

Illumina BeadChip microarrays contains several thousand sequence specific 

oligonucleotide coated beads to which DNA hybridises. In general, the more beads 

which are present on an array for a probe sequence the higher the reliability of the 

signal for that probe. Detection p-values are a measure of error in regard to the signals 

obtained from a probe in comparison to the background signal. The pfilter function in 

the wateRmelon package filters datasets based on beadcounts and detection p-

values. If the percentage of samples with a beadcount less than 3 is greater than 5% 

for any probe, the probe is removed. If the percentage of probes with a detection p-

value less than 0.05 is greater than 1% for any sample, the sample is removed. 

Similarly, if the percentage of samples with a detection p-value less than 0.05 is 

greater than 1% for any probe, the probe is removed. 

j) Detection of outliers using the Outlyx function 

The outlyx function uses PCA and Mahalanobis distances in order to determine 

samples which are outliers in a DNAm dataset. It considers the first principal 

component as the largest source of variation in a DNAm dataset. The Mahalanobis 

distances are calculated using the pcout function from the mvoutlier package 

(Filzmoser, Hron, & Reimann, 2012). Samples are identified as outliers if their values 

are <0.25 (out of a 0-1 range) (Filzmoser at al., 2012). See Figure 2.12 for results of 

the Outlyx function as applied to samples in the BDR dataset. 

 

Figure 2.12: Outlyx function applied to the BDR dataset. Outliers are those represented in the red 
hashed box.  
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k) Remove cross hybridising probes and SNP probes 

The presence of SNP variation within the vicinity (~10 base pairs (bp)) of a CpG site 

can interfere with probe binding and confound the measurement of DNAm (Chen at 

al., 2013; M. E. Price at al., 2013). In addition, a number of probes have been identified 

to cross-hybridise to other location across the genome, leading to inaccurate 

estimations of DNAm at the targeted site (Chen at al., 2013; M. E. Price at al., 2013). 

Probes which have been identified to be influenced by SNPs or are cross-hybridising 

are excluded from analyses based on a list derived by Chen at al. (2013) and Price at 

al. (2013).   

l) Normalisation of beta values 

The performance of the two probe types (I and II) differs (Dedeurwaerder at al., 2011) 

and therefore the data needs to be normalised before DNAm can be compared 

between sites. For example, the type II probes cannot accurately detect extreme levels 

of DNAm. In addition, the increase in type II probe measurements on the EPIC array is 

associated with a shifted distribution of methylation values in comparison to the 450K 

array. A number of normalisation methods have been developed to correct for this. Our 

group previously developed the wateRmelon package (Pidsley at al., 2013) which has 

several functions for normalisation; dasen normalisation is the advised function to use as 

it performs consistently well for both probe types (Pidsley at al., 2013). See Figure 2.13 

for a comparison of un-normalised to normalised betas. 
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2.2 Genome-wide SNP profiling 

Genotype data were generated for several datasets used in my thesis. They were 

profiled using an assortment of Illumina and Affymetrix SNP microarrays. The specific 

arrays used for each cohort are described in the relevant chapters. Although Illumina 

and Affymetix use different chemistries they both rely on the principal of 

complementary pairing of nucleotide bases (LaFramboise, 2009). Briefly, SNP arrays 

work through the hybridisation of fragmented single-stranded DNA to arrays which 

contain unique nucleotide probe sequences. Each probe binds to a target DNA 

sequence. The array is scanned to quantify the amount of sample bound to each 

sequence based on the signal intensity which is associated with each probe and its 

target after hybridisation (LaFramboise, 2009).  

Figure 2.13: Dasen normalised betas in the EXTEND cohort. Top: density plot of un-normalised data. 
Bottom: density plot of dasen normalised data. 
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2.2.1 Quality control and imputation of Genotype Data 

I conducted quality control and imputation for multiple genetic datasets included in 

Chapter 4 and Chapter 5. QC was completed using PLINK1.9 (Chang at al., 2015) 

unless otherwise reported. There are several QC steps used in the processing of 

genotype data and the steps I followed are based on the pipeline suggested by Marees 

and colleagues (2018), described in detail below. 

a) Remove samples and SNPs with high levels of missing data  
High levels of missing data can be an indication of poor DNA quality or technical 

problems (Marees at al., 2018). We exclude SNPs with missing data across many 

samples. In addition, samples which have high rates of missing genotype data are 

removed. I set the threshold to exclude SNPs and individuals with 5% missing data. 

 

b) Checking expected sex 

Samples are removed if their actual sex and genotype predicted sex (estimated using 

X chromosome homozygosity) are discordant, which may indicate sample mix-ups. In 

population genetics F-statistics are used to describe the statistically expected level of 

heterozygosity in a population. Females with an F value > 0.2 and males with and F 

value < 0.8 are removed as they have excess heterozygosity (Marees at al., 2018).  

c) Minor allele frequency (MAF) 

SNPs with a low MAF are rare and therefore there is reduced power to detect 

associations with these variants. In addition, rare SNPs are more prone to genotyping 

errors. This threshold should be set taking into consideration samples size. Typically 

a threshold of 0.01 (variants present in 1% of the population) is used for larger samples 

of >100,000 individuals and a threshold of 0.05 (variants present in 5% of the 

population) is used for smaller samples (Marees at al., 2018). I set the threshold to 

0.05 for datasets used in this thesis.  

d) Hardy-Weinberg equilibrium (HWE) 

This step removes markers which deviate from HWE. The HWE law assumes there is 

no selection, mutation or migration within a population and also states that genotype 

and allele frequencies are consistent over generations (Wigginton, Cutler, & Abecasis, 
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2005). Deviation from HWE might indicate genotyping error or evolutionary selection. 

SNPs with a HWE p<1e-03 were removed from the datasets used in this thesis. 

e) Heterozygosity 

This relates to having inherited two different alleles at a specific SNP and 

heterozygosity rate is the proportion of heterozygous genotypes an individual may 

have. High levels may result from poor quality data and low levels may indicate 

inbreeding. Samples deviating ±3 SD from the heterozygosity rate mean are excluded. 

f) Removal of related samples 

Relatedness refers to the strength of the genetic relationship between two individuals. 

In general, most genetic analyses assume samples are unrelated, which is usually 

defined as no pair being more closely related than a 2nd degree relative. If related 

individuals are included and it is not accounted for in analysis models it can lead to 

biased estimates of effect size and standard error (Marees at al., 2018). This step 

requires the use of independent autosomal SNPs, therefore pruning is recommended. 

Pruning removes SNPs in high linkage disequilibrium (LD; the correlation structure 

between SNPs) with each other so that the remaining variants are approximately 

uncorrelated. This reduces the influence of SNP clusters (Laurie at al., 2010). 

g) Limit samples to European ancestry and removal of population outliers  

Population stratification is the concept that diversity between ancestries leads to 

differing allele frequencies which can confound genetic associations (A. L. Price, 

Zaitlen, Reich, & Patterson, 2010). Therefore most current genetic studies are limited 

to Europeans or a single ethnic group. To identify and exclude non-European samples, 

genotypes can be merged with data from HapMap Phase 3, which has known 

ethnicities, (http://www.sanger.ac.uk/resources/downloads/human/hapmap3.html), 

followed by LD pruning the overlapping SNPs. Principal components are then 

calculated using the merged datatset. The first two PCs can be visually inspected 

along with the known ethnicities of the HapMap sample to define European samples. 

An example PCA plot used to determine ethnicity in the BDR cohort is shown in Figure 
2.14.   

http://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
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Figure 2.14: Visually ascertaining ancestry outliers in the BDR sample using principal components. BDR 
was merged with HapMap3 and ancestry was ascertained based on the first two principal components. ASW = 
African ancestry in Southwest USA; CEU = Utah residents with Northern and Western European ancestry from the 
CEPH (The Centre d'Etude du Polymorphism Humain) collection; CHB = Han Chinese in Beijing, China; CHD = 
Chinese in Metropolitan Denver, Colorado; GIH = Gujarati Indians in Houston, Texas; JPT =Japanese in Tokyo, 
Japan; LWK = Luhya in Webuye, Kenya; MXL = Mexican ancestry in Los Angeles, California; MKK = Maasai in 
Kinyawa, Kenya; TSI = Toscani in Italia; YRI = Yoruba in Ibadan, Nigeria; BDR = Brains for Dementia Research; 
and HAPMAP  = The International HapMap Project. 

 

2.2.2 Imputation 

Imputation allows for the prediction of unmeasured genotypes in low-density datasets 

(e.g. those from SNP arrays) using densely genotyped datasets as references such 

as HapMap or 1000 Genomes (Jostins, Morley, & Barrett, 2011)). This results in a 

substantial increase in power and allows for the meta-analysis of studies genotypes 

on difference SNP arrays. Several tools are available for imputation. Within this thesis 
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genotype data was imputed using the  Michigan Imputation Server (Das at al., 2016) 

(https://imputationserver.sph.umich.edu/index.html#!) which uses Eagle2 (Loh at al., 

2016) to phase haplotypes, and Minimac4 

(https://genome.sph.umich.edu/wiki/Minimac4) with the most recent 1000 Genomes 

reference panel (phase 3, version 5) (1000 Genomes Project Consortium at al., 2015).  

 

2.3 Statistical methods for Epigenome-wide association studies  

2.3.1 Linear regression 

Regression is a statistical process which is used to estimate the relationship between 

variables. A linear regression takes the assumption that this relationship is linear. The 

most commonly used model in epigenome wide association studies (EWAS) is a 

multiple linear regression model which allows for the inclusion of biological, 

environmental and technical confounders. The equation for a multiple linear regression 

in relation to an EWAS is shown below:  

 

𝐃𝐃𝐃𝐃𝐃𝐃 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦  = 𝛃𝛃𝟏𝟏𝐦𝐦𝐭𝐭𝐦𝐦𝐦𝐦𝐦𝐦 + 𝛃𝛃𝐜𝐜𝐦𝐦𝐜𝐜𝐦𝐦𝐭𝐭𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐜𝐜 

 

DNA methylationi represents DNA methylation at each probe, β1trait = phenotype of 

interest (e.g. disease status) and βcovariates are confounders such as age, sex and 

experimental batch (i.e. β2age β3sex… βx).  

There are several assumptions for linear regression: 

• There must be a linear relationship between the outcome variables and the 

independent variables. This can be assessed using scatter plots. 

• The residuals must be normally distributed. This can be assessed using 

quantile-quantile plots, which enables the visualisation of theoretical quantiles 

against standardised residuals. If the residuals are normally distributed if they 

follow the diagonal line.  

• There is no multi-collinearity. This assumes independent variables are not 

highly correlated with each other. 

https://imputationserver.sph.umich.edu/index.html#!
https://genome.sph.umich.edu/wiki/Minimac4
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• The variances of error terms are similar across the values of the independent 

variables. This is known as the assumption of homoscedasticity. A quantile-

quantile plot can show whether points are equally distributed across all values 

of the independent variables. 

Recently, Mansell and Colleagues (Mansell at al., 2019) tested the assumptions of 

linear regression in EWAS as there have been discussions in the literature suggesting 

that DNAm at many sites in the genome violates these assumptions (Du at al., 2010; 

Laird, 2010). To test the assumptions they performed an EWAS of age, which is known 

to be associated with DNAm variation at many loci across the genome. They found 

that 70% of sites rejected the null hypothesis for at least one assumption, with many 

sites exhibiting evidence of non-normal distributions of residuals, either due to 

skewness (an asymmetrical distribution) or kurtosis (having a none bell shaped 

distribution). Very few sites rejected the hypothesis in favour of a non-linear model or 

heteroscedasticity. Violations in the assumption can lead to false positives or false 

negatives, however Mansell and colleagues (Mansell at al., 2019) found that even very 

significant rejections of the linear regression assumptions did not bias EWAS results 

in terms of false positives and negatives. Therefore, linear regression is a valid 

statistical methodology for DNAm studies. 

2.3.2 Mixed effects models 

Mixed effect regression models allow for the inclusion of both fixed effects (effects that 

are constant across individuals) as well as random effects (effects that vary across 

individuals) and are used when the data have global and group-level trends. Examples 

of fixed effects in EWAS regression models include age, sex and experimental batch 

(e.g. the specific 96 well plate the samples were run on). An example of a random 

effect in EWAS is individual ID, where there might be two samples from the same 

person (e.g. in BDR we profiled OCC and PFC tissue samples for each individual). 

The random intercept allows the line to cross the y-axis at a different position, however 

the relationship between the variables remains the same. Random slopes change the 

gradient of the line, changing the relationship between the variables for each group. 

This model accounts for the fact the samples are not fully independent.  
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The equation for a mixed linear regression in relation to an EWAS is shown below:  

𝐃𝐃𝐃𝐃𝐃𝐃 𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦  = 𝛃𝛃𝟏𝟏𝐦𝐦𝐭𝐭𝐦𝐦𝐦𝐦𝐦𝐦 + 𝛃𝛃𝛃𝛃𝐦𝐦𝛃𝛃𝐦𝐦𝐭𝐭𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝛃𝛃 + (𝟏𝟏|𝐦𝐦𝐦𝐦𝐢𝐢𝐦𝐦𝛃𝛃𝐦𝐦𝐢𝐢𝐢𝐢𝐦𝐦𝐦𝐦 𝐈𝐈𝐃𝐃) 

DNA methylationi represents DNA methylation at each probe, β1trait = phenotype of 

interest (e.g. disease status) and βcovariates are confounders to include such as age, 

sex and technical artefacts (i.e. β2age β3sex… βx), (1|individual ID) represents a 

random effect, and in this case is individual ID.  

2.3.3 Identifying differentially methylated regions 

In order to identify differentially methylated regions (DMRs) – i.e. genomic regions in 

which DNA methylation across multiple sites is consistently associated with a 

phenotype  – I applied the dmrff package (Suderman at al., 2018) to my EWAS results 

generated in Chapter 4 and Chapter 6. Dmrff identifies regions by combining 

summary statistics from proximally located DNAm sites. Since meta-analysis methods 

like Fisher’s method assume independence between sites they cannot be used for 

DMR analysis as this is rarely true of neighbouring DNAm sites. If the assumption of 

independence is violated it can lead to inflation in association statistics (i.e. false 

positives). Burgess and colleagues developed a method to account for this proximal 

correlation which uses an extension of an inverse-variance weighted (IVW) meta-

analysis (Burgess, Dudbridge, & Thompson, 2016). Dmrff is based on this IVW 

methodology and is computationally efficient (i.e. fast) and unlike most other DMR 

methods it controls false positive rates (Suderman at al., 2018). Dmrff identifies 

candidate regions (regions containing ≥3 probes) as sequences of DNAm sites with 

EWAS values that reach a certain Pt. I used the threshold p< 0.05. Dmrff shrinks the 

regions based on calculations for each of the sub-regions and uses a greedy algorithm 

(an algorithm that takes the best immediate/ local solution) to select sub-regions which 

cover the candidate regions using the strongest statistics. P-values were Bonferroni 

corrected for multiple testing burden and treats each EWAS test and sub-region as 

independent tests. 

2.1.1 Pathway analysis  
An important downstream analysis after genome-wide methylation studies (e.g. EWAS 

and SMR) is gene set enrichment analysis, whereby significant genes and DNAm sites 

can be related to known biological functions and ontologies. The first methods 
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developed to do this were severely biased by variation in gene length (Geeleher at al., 

2013), for example larger genes (which may be associated with more DNAm probes) 

have a higher chance of being identified as differentially methylated. In order to 

address these biases several methods have been developed but these methods have 

predominantly been developed for RNA-seq data. For example, Young and colleagues 

(Young, Wakefield, Smyth, & Oshlack, 2010) developed GOseq which uses weighted 

resampling in addition to Wallenius non-central hypergeometric approximation for 

over-representation analysis. Other methods to reduce biases in pathway-analysis 

include incorporating Wald test statics to adjust for length bias when ranking genes 

using functional class scoring (Gao, Fang, Zhang, Zhi, & Cui, 2011) or including gene 

length as a covariates in the logistic regression models used for the pathway analysis 

(S. Li, He, Pawlikowska, & Lin, 2017; Mi, Di, Emerson, Cumbie, & Chang, 2012). 

Recently Ren and Kuan (2019) developed methylGSA, which accounts for these 

biases in DNAm data. The Illumina UCSC gene annotation manifest was used to 

create test gene lists from DMPs identified in EWAS for the pathway analyses 

conducted in this thesis in Chapter 4 and Chapter 5. Where probes were not 

annotated to any gene (i.e. if they are in intergenic locations), they were excluded from 

pathway analysis. 

2.3.4 Gene annotation of EWAS 

Throughout this thesis differentially methylated positions (DMPs) and regions (DMRs) 

were annotated using the standard Illumina UCSC gene annotation manifest, which is 

derived from the genomic overlap of probes with RefSeq genes or up to 1500 bp of 

the transcription start site of a gene (Karolchik at al., 2003; Kent at al., 2002). 
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3 Recalibrating the epigenetic clock: implications for 
assessing biological age in the human cortex  

 

This chapter is presented in the form of a peer-reviewed manuscript which has been 

published in Brain (Shireby at al., 2020). It has been reformatted to the style of the 

thesis.   

The Supplementary Figures and Tables are included at the end of the main manuscript 

(Figures 3.4-3.10; Tables 3.5-3.9) 

I conducted additional analyses investigating associations between DNA methylation 

age and neuropathology in the BDR cohort, and these results are presented at the 

end of the Chapter (see Section 3.9).   
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Abstract 

Human DNA-methylation data have been used to develop biomarkers of ageing - 

referred to as ‘epigenetic clocks’ - that have been widely used to identify differences 

between chronological age and biological age in health and disease including 

neurodegeneration, dementia and other brain phenotypes. Existing DNA methylation 

clocks have been shown to be highly accurate in blood but are less precise when used 

in older samples or in tissue-types not included in training the model, including brain. 

We aimed to develop a novel epigenetic clock that performs optimally in human cortex 

tissue and has the potential to identify phenotypes associated with biological ageing 

in the brain. We generated an extensive dataset of human cortex DNA methylation 

data spanning the life-course (n = 1,397, ages = 1 to 108 years). This dataset was split 

into ‘training’ and ‘testing’ samples (training: n = 1,047; testing: n = 350). DNA 

methylation age estimators were derived using a transformed version of chronological 

age on DNA methylation at specific sites using elastic net regression, a supervised 

machine learning method. The cortical clock was subsequently validated in a novel 

independent human cortex dataset (n = 1,221, ages = 41 to 104 years) and tested for 

specificity in a large whole blood dataset (n = 1,175, ages = 28 to 98 years). We 

identified a set of 347 DNA methylation sites that, in combination, optimally predict 

age in the human cortex. The sum of DNA methylation levels at these sites weighted 

by their regression coefficients provide the cortical DNA methylation clock age 

estimate. The novel clock dramatically out-performed previously reported clocks in 

additional cortical datasets. Our findings suggest that previous associations between 

predicted DNA methylation age and neurodegenerative phenotypes might represent 

false positives resulting from clocks not robustly calibrated to the tissue being tested 

and for phenotypes that become manifest in older ages. The age distribution and 

tissue type of samples included in training datasets need to be considered when 

building and applying epigenetic clock algorithms to human epidemiological or disease 

cohorts.   

 

Keywords: Cortex, age, ageing, disease, epigenetic clock, DNA methylation, post-

mortem  
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3.1 Introduction 

Advancing age is associated with declining physical and cognitive function, and is a 

major risk factor for many human brain disorders including dementia and other 

neurodegenerative diseases (Harper, 2014; Sierra, 2019). Understanding the 

biological mechanisms involved in ageing will be a critical step towards preventing, 

slowing or reversing age-associated phenotypes. Due to the substantial inter-

individual variation in age-associated phenotypes, there is considerable interest in 

identifying robust biomarkers of ‘biological’ age, a quantitative phenotype that is 

thought to better capture an individuals’ risk of age-related outcomes than actual 

chronological age (Jylhävä, Jiang, Foebel, Pedersen, & Hägg, 2019). Several data 

modalities have been used to generate estimates of biological age; these include 

measures of physical fitness (e.g. muscle strength) (Sosnoff & Newell, 2006), cellular 

phenotypes (e.g. cellular senescence) (Baker at al., 2011), genomic changes (e.g. 

telomere length) (Jylhävä, Pedersen, & Hägg, 2017; Sanders & Newman, 2013) and 

epigenetic mechanisms (e.g. DNA methylation) (Horvath, 2013).  

Epigenetic mechanisms act to regulate gene expression developmentally via chemical 

modifications to DNA and histone proteins (Bernstein, Meissner, & Lander, 2007), 

conferring cell-type-specific patterns of gene expression and differing markedly 

between tissues and cell-types (Mendizabal & Yi, 2016). There has been recent 

interest in the dynamic changes in epigenetic processes over the life course, and a 

number of ‘epigenetic clocks’ based on one specific epigenetic modification - DNA 

methylation (DNAm) - have been developed that appear to be highly predictive of 

chronological age (Hannum at al., 2013; Horvath, 2013). The landmark DNAm clock 

was developed by Horvath (Horvath, 2013), who applied elastic net regression to 

Illumina DNAm array data from a large number of samples derived from a range of 

tissues (n = ~ 8,000 across 51 tissue and cell types), and generated a predictor based 

on DNAm at 353 CpG sites that is highly predictive of chronological age (Horvath, 

2013). Given that changes in DNAm are known to index exposure to certain 

environmental risk factors (for example, tobacco smoking) (Elliott at al., 2014; Sugden 

at al., 2019) that are associated with diseases of old age, and variable DNAm is 

robustly associated with a number of age-associated disorders (Chouliaras at al., 

2018; Chuang at al., 2017; A. R. Smith at al., 2016), there has been interest in the 

hypothesis that DNAm clocks might robustly quantify variation in biological age. 



 

112 
 

Horvath’s DNAm age clock, for example, has been widely applied to identify 

accelerated epigenetic ageing - where DNAm age predictions deviate from 

chronological age such that individuals appear older than they really are - in the 

context of numerous health and disease outcomes (Horvath & Ritz, 2015; Levine, Lu, 

Bennett, & Horvath, 2015; Marioni at al., 2015; McCartney at al., 2018). Although the 

original DNAm clocks were primarily developed to predict chronological age and are 

not robustly predictive of clinical health measures (e.g. blood pressure) (Quach at al., 

2017), more recent DNAm clocks such as Levine’s ‘pheno age’ clock (Levine at al., 

2018) incorporate surrogate measures of biological age and are more directly aimed 

at predicting mortality and health-span. Since age is a major risk factor for dementia 

and other neurodegenerative brain disorders, there is particular interest in the 

application of epigenetic clock algorithms to these phenotypes, especially as 

differential DNAm in the cortex has been robustly associated with diseases including 

Alzheimer’s disease and Parkinson’s disease (Lunnon at al., 2014; A. R. Smith at al., 

2016; Yu at al., 2015). Recent studies have reported an association between 

accelerated DNAm age and specific markers of Alzheimer’s disease neuropathology 

in the cortex (e.g. neuritic plaques, diffuse plaques and amyloid-β load) (Levine at al., 

2018, 2015). Furthermore, among individuals with Alzheimer’s disease, DNAm age 

acceleration is associated with declining global cognitive functioning and deficits in 

episodic and working memory (Levine at al., 2018, 2015). 

A strength of several existing epigenetic clocks is that they work relatively well across 

different types of sample; the Horvath multi-tissue clock, for example, can accurately 

predict age in multiple tissues across the life-course. Importantly, as with any predictor, 

the composition of the training data used to develop the clock influences the generality 

of the model. To date, there has been limited research comparing the prediction 

accuracy and potential bias of existing clock algorithms across different tissues and 

ages. Recent analyses have highlighted potential biases when using Horvath’s clock 

in older samples (>~60 years) and in samples derived from certain tissues, especially 

the central nervous system (El Khoury at al., 2019). This is important for the 

interpretation of studies of possible relationships between accelerated epigenetic age 

and age-related diseases affecting the human brain (e.g. neurodegenerative 

phenotypes); reported associations between accelerated DNAm age and disease may 

actually be a consequence of fitting a suboptimal predictor to available datasets. 
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Potential confounders include differential changes in DNAm with age across tissues, 

and the age distribution of the samples used to train existing classifiers. Resolution of 

these biases requires the construction of specific DNAm clocks developed using data 

generated on the relevant tissue-type and including broad representation of the age 

spectrum they will be used to interrogate. Recently, a number of tissue-specific DNA 

methylation clocks have been described, including clocks designed for whole blood 

(Hannum at al., 2013; Zhang at al., 2019), muscle (Voisin at al., 2020), bone (Gopalan, 

Gaige, & Henn, 2019) and paediatric buccal cells (McEwen at al., 2019). Importantly, 

although these DNAm age estimators have increased predictive accuracy within the 

specific tissues in which they were built, they lose this precision when applied to other 

tissues (Zhang at al., 2019). 

In this study, we describe the development of a novel DNAm clock that is specifically 

designed for application in DNA samples isolated from the human cortex and is 

accurate across the lifespan including in tissue from older donors (aged over 60 

years). We demonstrate that our clock outperforms existing DNAm-based predictors 

developed for other tissues, minimising the potential for spurious associations with 

ageing phenotypes relevant to the brain. 

 

3.2 Materials and methods 

3.2.1 Datasets used to develop the novel cortical DNAm age clock 

To develop and characterise our cortical DNAm age clock (“DNAmClockCortical”) we 

collated an extensive collection of DNAm data from human cortex samples (see 

Supplementary Table 3.5 and Supplementary Table 3.6), complementing datasets 

generated by our group (http://www.epigenomicslab.com) with publicly available 

datasets downloaded from the Gene Expression Omnibus (GEO; 

https://www.ncbi.nlm.nih.gov/geo/) (De Jager at al., 2014; Jaffe at al., 2016; Lunnon 

at al., 2014; Pidsley at al., 2014; A. R. Smith at al., 2019; R. G. Smith at al., 2018; 

Wong at al., 2019) (see Supplementary Table 3.5 and Supplementary Table 3.6). 

In each of these datasets DNAm was quantified across the genome using the Illumina 

450K DNA methylation array which covers >450,000 DNA methylation sites as 

previously described (Pidsley at al., 2013). To optimise the performance of the 
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DNAmClockCortical and to avoid reporting over-fitted statistics, the samples were split 

into a “training” dataset (used to determine the DNAm sites included in the model and 

their weighted coefficients) and a “testing” dataset (used to profile the performance of 

the proposed model). To reduce the effects of experimental batch in our model, we 

maximised the number of different datasets included in the training data by combining 

the ten cohorts and randomly assigning individuals within them to either the training 

or testing dataset in a 3:1 ratio Table 3.1). In total, our training dataset (age range = 

1-108 years, median = 57 years; see Supplementary Figure 3.4) comprised DNAm 

data from 1,047 cortex samples (derived from 832 donors) and our testing dataset 

(age range = 1-108 years, median = 56 years; see Supplementary Figure 3.4) 

comprised DNAm data from 350 cortex samples (derived from 323 donors). Individuals 

with a diagnosis of Alzheimer’s disease and other major neurological phenotypes were 

excluded from our analysis given the previous associations between them and 

deviations in DNAm age (Levine at al., 2018, 2015).  

3.2.2 Cortex independent test dataset 

An “independent test” cortical dataset was generated using post-mortem occipital 

(OCC) and prefrontal cortex (PFC) samples from the Brains for Dementia Research 

(BDR) cohort. BDR was established in 2008 and is a UK-based longitudinal cohort 

study with a focus on dementia research (Francis, Costello, & Hayes, 2018) 

coordinated by a network of six dementia research centres based around the UK. 

Post-mortem brains underwent full neuropathological dissection, sampling and 

characterisation using a standardised protocol (Bell at al., 2008; Samarasekera at al., 

2013). DNA was isolated from cortical tissue samples using the Qiagen AllPrep 

DNA/RNA 96 Kit (Qiagen, cat no.80311) following tissue disruption using BeadBug 

1.5 mm Zirconium beads (Sigma Aldrich, cat no.Z763799) in a 96-well Deep Well 

Plate (Fisher Scientific, cat no.12194162) shaking at 2500rmp for 5 minutes. Genome-

wide DNA methylation was profiled using the Illumina EPIC DNA methylation array 

(Illumina Inc), which interrogates >850,000 DNA methylation sites across the genome 

(Moran, Arribas, & Esteller, 2016). After stringent data quality control (see below) the 

final independent test dataset consisted of DNAm estimates for 800,916 DNAm sites 

profiled in 1,221 samples (632 donors; 610 PFC; 611 OCC; see Table 1 for more 

details). This dataset consists of predominantly older samples (age range = 41-104 

years, median = 84 years; see Supplementary Figure 3.4). 
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3.2.3 Whole blood dataset 

We recently generated DNAm data from whole blood obtained from  1,175 individuals 

(age range = 28-98 years; median age = 59 years; see Table 3.1 for more details) 

included in the UK Household Longitudinal Study (UKHLS) 

(https://www.understandingsociety.ac.uk/) (Hannon at al., 2018).The UKHLS was 

established in 2009 and is a longitudinal panel survey of 40,000 UK households from 

England, Scotland, Wales and Northern Ireland (Buck & McFall, 2011). For each 

participant, non-fasting blood samples were collected through venipuncture; these 

were subsequently centrifuged to separate plasma and serum, and samples were 

aliquoted and frozen at −80°C. DNAm data were generated using the Illumina EPIC 

DNA methylation array as described previously (Hannon at al., 2018). After stringent 

QC (see 3.2.4) the whole blood dataset consisted of data for 857,071 DNAm sites 

profiled in 1,175 samples (Hannon at al., 2018). 

3.2.4 DNA methylation data pre-processing 

 Unless otherwise reported, all statistical analysis was conducted in the R statistical 

environment (version 3.5.2; https://www.r-project.org/). Raw data for all datasets were 

used, prior to any QC or normalisation, and processed using either the wateRmelon 

(Pidsley at al., 2013) or bigmelon (Gorrie-Stone at al., 2019) packages. Our stringent 

QC pipeline included the following steps: (1) checking methylated and unmethylated 

signal intensities and excluding poorly performing samples; (2) assessing the 

chemistry of the experiment by calculating a bisulphite conversion statistic for each 

sample, excluding samples with a conversion rate <80%; (3) identifying the fully 

methylated control sample was in the correct location (where applicable); (4) 

multidimensional scaling of sites on the X and Y chromosomes separately to confirm 

reported sex; (5) using the 65 SNP probes present on the Illumina 450K array and 59 

on the Illumina EPIC array to confirm that matched samples from the same individual 

(but different brain regions) were genetically identical and to check for sample 

duplications and mismatches; (6) use of the pfilter function in wateRmelon to exclude 

samples with >1 % of probes with a detection P value > 0.05 and probes with >1 % of 

samples with detection P value  > 0.05; (8) using principal component analysis on data 

from each tissue to exclude outliers based on any of the first three principal 

components; (9) removal of cross-hybridising and SNP probes (Chen at al., 2013). 

https://www.understandingsociety.ac.uk/
https://www.r-project.org/
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The subsequent normalisation of the DNA methylation data was performed using the 

dasen function in either wateRmelon or bigmelon (Gorrie-Stone at al., 2019; Pidsley 

at al., 2013).  

3.2.5 Deriving a novel cortical DNAm age classifier 

To build the DNAmClockCortical we implemented an elastic net (EN) regression model, 

using the methodology described by Horvath (2013). The EN model is designed for 

high dimensional datasets with more features than samples and where the features 

are potentially highly correlated (Zou & Hastie, 2005). As part of the methodology, the 

model selects the subset of features (i.e. DNAm sites) that cumulatively produce the 

best predictor of a provided outcome. EN was implemented in the R package GLMnet 

(Friedman, Hastie, & Tibshirani, 2010). It uses a combination of Ridge and LASSO 

(Least Absolute Shrinkage and Selection Operator) regression. Ridge regression 

penalises the sum of squared coefficients and has an (alpha) parameter of zero. 

LASSO regression penalises the sum of the absolute values of the coefficients and 

has an 𝞪𝞪 parameter of one. EN is a convex combination of ridge and LASSO and, 

therefore, the elastic net 𝞪𝞪 parameter was set to 0.5. The lambda value (the shrinkage 

parameter) was derived using 10-fold cross-validation on the training dataset (lambda 

= 0.0178). DNAm probes included in the analysis were limited to sites which were 

present on both the Illumina EPIC and Illumina 450K arrays, with no missing values 

across the training datasets (n probes = 383547). Previous analyses have shown that 

the relationship between DNAm age (predicted age from epigenetic age estimators) 

and chronological age is logarithmic between 0-20 years and linear from 20 years plus 

(Horvath, 2013). Our data revealed a similar pattern and therefore chronological age 

was transformed (Supplementary Figure 3.5).  A transformed version of 

chronological age was regressed on DNAm levels at all included DNAm sites.  
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Table 3.1: Sample characteristics of the training (cortex), testing (cortex), independent test (cortex) and whole blood datasets used in the development 
and evaluation of our novel cortical DNA methylation clock. 

Dataset 

 Age (years) Sex (n) Illumina 
methylation 
array 

References 
N Mean 

1st 
Quartile 

Median 
3rd 
Quartile 

Range Female Male 

Training 1047 56.53 38.56   57 78 1-108 362 685 450K 

(De Jager at al., 2014; Jaffe at al., 2016; 

Lunnon at al., 2014; Pidsley at al., 2014; 

A. R. Smith at al., 2019; R. G. Smith at al., 

2018; Wong at al., 2019) 

Testing 350 55.87 39.05   56 78 1-108 144 206 450K 

(De Jager at al., 2014; Jaffe at al., 2016; 

Lunnon at al., 2014; Pidsley at al., 2014; 

A. R. Smith at al., 2019; R. G. Smith at al., 

2018; Wong at al., 2019) 

Independent Test 1221 83.49 78   84 90  41-104 577 644 EPIC 
 

- 

Blood 1175 57.96 46 59 69 28-98 686 489 EPIC Hannon at al. (2018) 
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3.2.6 Implementing DNAm Age prediction 

We applied the DNAmClockCortical (comprising 347 DNAm sites) to the testing, 

independent test and whole blood DNAm datasets. We then compared its performance 

to a number of existing DNAm clocks which have previously shown biases when applied 

to brain tissue and older samples (El Khoury at al., 2019; Horvath & Raj, 2018; Zhang at 

al., 2019): Horvath’s original multi-tissue clock (“DNAmClockMulti”; 353 DNAm sites) 

(Horvath, 2013), Zhang’s EN blood and saliva-based DNAm clock (“DNAmClockBlood”: 

514 DNAm sites) (Zhang at al., 2019) and Levine’s second generation ‘pheno age’ DNAm 

Clock (“DNAmClockPheno”; 513 DNAm sites) (Levine at al., 2018). Briefly, to predict DNAm 

age using the DNAmClockMulti we applied the agep function in wateRmelon (Pidsley at 

al., 2013). Although this function does not contain the custom normalisation method 

applied at the DNAm age calculator website (https://DNAmClock.genetics.ucla.edu/), 

both methods work similarly in brain and blood studies, providing the data have been pre-

processed adequately (El Khoury at al., 2019).To predict age using the DNAmClockPheno 

(Levine at al., 2018), we also applied the agep function, inputting a vector of the 

coefficients and the intercept using the data provided in the supplementary material of 

Levine et al’s manuscript. To predict DNAm age with the DNAmClockblood, we used the 

authors’ published code (available on GitHub https://github.com/qzhang314/DNAm-

based-age-predictor) (Zhang at al., 2019).  

3.2.7 Determining the predictive accuracy of different DNAm clocks 

 DNAm age was estimated in the testing dataset (n = 350), independent test dataset (n = 

1,221) and whole blood dataset (n = 1,175) using the DNAmClockCortical, DNAmClockMulti, 
DNAmClockBlood and the DNAmClockPheno. To compare and evaluate the predictive 

accuracy of these DNAm age predictors, estimates were assessed using two measures: 

Pearson’s correlation coefficient (r; a measure indicating the strength of the linear 

relationship between the actual (chronological age) and predicted (DNAm age) variables) 

and the root mean squared error (RMSE; square root of the mean differences between 

the actual and predicted variables) which quantifies the precision of the estimator. 

https://dnamage.genetics.ucla.edu/
https://github.com/qzhang314/DNAm-based-age-predictor
https://github.com/qzhang314/DNAm-based-age-predictor
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3.2.8 Analysis against age 

 To test associations between DNAm age and chronological age, we fitted regression 

models to each dataset. As a subset of donors included in the testing and independent 

test datasets contributed data from multiple cortical regions, we used mixed effects linear 

regression models, implemented with the lme4 and lmerTest packages, where DNAm 

age was regressed against chronological age as a fixed effect and individual was included 

as a random effect. In the blood cohort, as there was only one sample per individual, we 

applied standard linear regression models. A second regression model was also fitted 

which additionally tested for associations with an age-squared term. In the whole blood 

dataset, we ran these analyses again in the subset of samples over 55 years old to make 

the results more comparable to those generated using the independent test dataset.  

3.2.9 Analysis against biological and technical factors 

To test associations between DNAm age and sex, post-mortem interval (PMI), 

experimental batch and neuronal cell proportion estimates (derived using the CETS 

algorithm (Guintivano at al., 2013)) we fitted regression models to the independent test 

dataset (n = 1,221 cortical samples). We used mixed effects regression models 

implemented as described above. DNAm age was regressed against each variable in turn 

with age, age squared and derived cell proportion estimates (excluding the model looking 

for associations with cell proportions) as fixed effects and individual as random effect. In 

the analysis with PMI we included brain bank as a fixed effect.  

3.2.10 Data availability 

The datasets used for the training and testing samples are available for download from 

GEO (https://www.ncbi.nlm.nih.gov/geo/) using the following accession numbers: 

GSE74193; GSE59685; GSE80970; GPL13534 and GSE43414. The independent test 

data are available from the authors upon request or via the Dementias Platform UK 

(DPUK) data portal (https://portal.dementiasplatform.uk/). The whole blood DNA 

methylation data are available upon application through the European Genome-Phenome 

Archive under accession code EGAS00001001232. Analysis scripts used in this 

https://www.ncbi.nlm.nih.gov/geo/
https://portal.dementiasplatform.uk/
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manuscript and code to run the clock are available on GitHub 

(https://github.com/gemmashireby/CorticalClock).   

3.3 Results 

3.3.1 Existing DNAm clock algorithms work sub-optimally in the human 
cortex, systematically underestimating age in older individuals  

The performance of DNAm clocks is influenced by the characteristics (e.g. specific tissue 

type and age range) of the training data used to build the prediction algorithm. Applying 

predictors to datasets that differ in terms of these characteristics may lead to biases when 

estimating DNAm age, and confound phenotypic analyses using these variables (El 

Khoury at al., 2019). We found that existing DNAm clocks (i.e. the DNAmClockMulti 

(Horvath, 2013) the DNAmClockBlood (Zhang at al., 2019) and the DNAmClockPheno (Levine 

at al., 2018)) do not perform optimally in human cortex tissue (Supplementary Figure 
3.6), with notable differences between derived DNAm age and actual chronological age 

(i.e. the derived values do not lie along the y = x line, see Figure 3.1). In our testing 

dataset (n = 350 cortex samples; age range = 1 - 108 years; median age = 57 years), the 

DNAmClockMulti systematically underestimated DNAm age in individuals over ~60 years 

old, and systematically overestimated it in individuals below ~60 years old (Figure 
3.1A(ii) and Figure 3.2A(ii)). In the older group (aged over 60 years), around 80% of 

samples had lower predicted DNAm ages than their actual chronological age. These 

deviations were also observed when looking at the mean differences between actual age 

and predicted DNAm age (referred to as Δ (delta) age), such that Δ age was positive for 

younger ages and vice versa for the older group (Supplementary Figure 3.7A). Use of 

the DNAmClockBlood produced even more pronounced systematic underestimation of 

DNAm age in adults, starting around 30 years (Figure 3.1A(iii) and Figure 3.2A(iii)), and 

this trend was mirrored for Δ age (see Supplementary Figure 3.7A). Finally, the 

DNAmClockPheno severely under predicted age in the cortex, with 100% of samples being 

assigned a lower DNAm age than the actual chronological age (Figure 3.1A(iv), Figure 
3.2A(iv) and Supplementary Figure 3.7A (iv)). Similar biases in age prediction were 

seen in our independent test dataset (n = 1,221 cortex samples; age range = 41 years to 

104 years; mean age = 83.49 years), confirming the systematic underestimation of DNAm 
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age in older donors (see Figure 3.1B and Figure 3.2B). As with the other clocks, Δ age 

captured these biases, with particularly poor performance evident when applying the 

DNAmClockPheno and the DNAmClockBlood to this dataset, in which Δ age was consistently 

below zero (where zero would represent perfect prediction; see Supplementary Figure 
3.7B). 

3.3.2 Developing a novel DNAm clock for the human cortex based on 347 
DNA methylation sites  

To alleviate the biases observed when applying existing DNAm clocks to data generated 

on older human cortex samples, we focussed on building a DNAm clock using relevant 

tissue samples from donors that spanned a broad range of ages and included a large 

number of samples from older donors (Supplementary Figure 3.4). We developed our 

novel cortical DNAm clock (DNAmClockCortical) using an elastic net regression, regressing 

chronological age against DNAm levels across 383,547 sites quantified in 1,047 cortex 

samples (see Methods 3.2). This approach identified a set of 347 DNAm sites which in 

combination optimally predict age in the human cortex. The sum of DNAm levels at these 

sites weighted by their regression coefficients provides the DNAmClockCortical age 

estimate (see Supplementary Table 3.7). Of note, the majority of sites selected for our 

cortex clock were novel and not present in existing DNAm clock algorithms; only 5 of the 

sites overlap with the DNAmClockMulti (composed of 353 DNAm sites), 15 with the 

DNAmClockBlood (comprising 514 DNAm sites), and 5 with the DNAmClockPheno 

(comprising 513 DNAm sites) (see Supplementary Table 3.8).  
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Figure 3.1: Comparison of chronological age with DNA methylation age derived using four DNA methylation age clocks. Shown are comparisons of 
chronological age with predicted age in (A) the testing dataset (n = 350 cortical samples) and (B) the independent test dataset (n = 1221 cortical samples). DNAm 
age was predicted using four DNA methylation age clocks: (i) our novel DNAmClockCortical; (ii) Horvath’s

 
DNAmClockMulti; (iii) Zhang’s

 
DNAmClockBlood and (iv) 

Levine’s DNAmClockPheno. The x-axis represents chronological age (years) and the y-axis represents predicted age (years). Each point on the plot represents an 
individual sample. Our cortical clock out-performed the three alternative DNAm clocks across all accuracy statistics. DNA methylation age estimates derived using 
the DNAmClockMulti

 
(A(ii) testing and B(ii) independent test) and the

 
DNAmClockBlood

 
(A(iii) testing and B(iii) independent test) appear to have a non-linear 

relationship with chronological age.* DNAmClockCortical
 
= Cortical DNA methylation age Clock; DNAmClockMulti

 
= Multi-tissue DNA methylation age clock; 

DNAmClockBlood = Blood DNA methylation age clock and DNAmClockPheno = Pheno Age DNA methylation age clock. 
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3.3.3 Increased prediction accuracy of the novel cortex clock in cortical 
tissue compared to existing DNAm clocks  

We used the DNAmClockCortical to estimate DNAm age in both the testing (n = 350 cortex 

samples) and independent test (n = 1,221 cortex samples) datasets, and compared the 

estimates to those derived using DNAmClockMulti, DNAmClockBlood and DNAmClockPheno. 
The DNAmClockCortical predicted age accurately in the testing dataset and there was a 

strong correlation between DNAm age and age (r = 0.99; Table 3.2 and Figure 3.1(i)). In 

the independent test dataset, which consisted predominantly of older samples, our clock 

also performed well and was highly correlated with age (r = 0.83), outperforming 

DNAmClockMulti (r = 0.65), DNAmClockBlood (r = 0.52), and DNAmClockPheno (r = 0.32) (see 

Table 3.2; Figure 3.1B(i)).The most striking differences were in the accuracy of the 

DNAmClockCortical in comparison to previously developed DNAm clocks; it outperformed 

the three other clocks we tested across all accuracy statistics in both cortical datasets 

(Table 3.2). The biggest differences in accuracy can be seen in the independent test 

dataset (see Figure 3.1B; Figure 3.1B and Supplementary Figure 3.7B), in which the 

RMSE was 15 years more accurate when using the DNAmClockCortical (RMSE: 5 years) 

than the DNAmClockMulti (RMSE: 20 years), 28 years more accurate than the 

DNAmClockBlood (RMSE: 33 years) and 77 years more accurate than the DNAmClockPheno 

(RMSE: 82 years). This is further supported when looking at the how much of the variation 

in DNAm age is explained by age, where the DNAmClockCortical was the best fitting model 

in both cortical datasets (testing dataset R2 = 0.98 independent test sample R2 = 0.65) in 

comparison to the three other clocks, with age explaining the least variance in DNAm age 

estimated using the DNAmClockPheno (testing dataset R2 = 0.65; independent test sample 

R2 = 0.10) (see Table 3.2 for more details). The DNAmClockPheno was consistently the 

most inaccurate at estimating age in the cortical data sets (RMSE: testing 60 years; 

independent test 82 years), followed by DNAmClockBlood (RMSE: testing 19 years; 

independent test 33 years) and the DNAmClockMulti (RMSE: testing: 10 years; 

independent test 20 years) (see Table 3.2 for more details).  
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Table 3.2: Our novel cortex clock outperforms existing DNA methylation age algorithms in human cortex samples. Accuracy statistics between DNAm age 
estimates and chronological age using our novel cortical clock, Horvath’s multi-tissue clock (Horvath, 2013), Zhang’s elastic net blood clock (Zhang at al., 2019) and 
Levine’s Pheno Age clock (Levine at al., 2018) in both the testing (n = 350 cortical samples) and the independent test (n = 1,221 cortical samples) datasets. * RMSE 
= root mean squared error (years). 

 Testing dataset (n =350) Independent test dataset (n = 1221) 

 Cortical Clock Multi-tissue Clock Blood Clock Pheno Age Clock Cortical Clock Multi-tissue Clock Blood Clock Pheno Age Clock 

Correlation (r) 0.99 0.96 0.95 0.8 0.83 0.65 0.52 0.32 

RMSE (years) 3.58 9.52 18.86 60.16 5.12 20.12 33.46 82.28 
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Figure 3.2: The cortical DNA methylation age clock has elevated accuracy in human cortex samples across the lifespan. Shown is the distribution of the 
error (DNA methylation age - chronological age) for each age decile in (A) the testing dataset (n =  350 cortical samples) and (B) the independent test dataset (n = 
1221 cortical samples) for each of the four DNA methylation age clocks: (i) our novel DNAmClockCortical; (ii) Horvath’s DNAmClockMulti; (iii) Zhang’s DNAmClockBlood 
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and (iv) Levine’s DNAmClockPheno. Deciles were calculated by assigning chronological age into ten bins and are represented along the x-axis by the numbers one 
to ten, followed by brackets which display the age range included in each decile. The ends of the boxes are the upper and lower quartiles of the errors, the horizontal 
line inside the box represents the median deviation and the two lines outside the boxes extend to the highest and lowest observations. Outliers are represented by 
points beyond these lines. The red horizontal line represents perfect prediction (zero error). Our novel DNAmClockCortical (A(i) testing and B(i) independent test) 
consistently had the smallest error across the age groups, shown by the tightness of the boxplot distributions along the zero-error line. The DNAmClockMulti over-
predicted younger ages (deciles 1-5 in A(ii)), shown by boxplots distributions which are above the zero-error line, and under predicted older ages (deciles 8-10 in 
A(ii) and deciles 1-10 in B(ii)), shown by boxplot distributions below the zero-error line. The DNAmClockBlood (A(iii) testing and B(iii) independent test) and the 
DNAmClockPheno (A(iv) testing and B(iv) independent test) consistently under predicted age, with under prediction of DNA methylation age increasing with 
chronological age.  

* DNAmClockCortical = Cortical DNA methylation age Clock; DNAmClockMulti = Multi-tissue DNA methylation age clock; DNAmClockBlood = Blood DNA methylation age 
clock and DNAmClockPheno = Pheno Age DNA methylation age clock. 
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3.3.4 The relationship between age and DNAm age plateaus in old age 

By definition, DNAm age is correlated with chronological age, meaning age is a potential 

confounder for analyses of Δ age; not adequately controlling for age increases the 

likelihood that false positive associations will be identified (El Khoury at al., 2019). To 

assess associations between DNAm age and chronological age we used a mixed effects 

regression model (see Methods 3.2) and found that estimates from all four DNAm age 

clocks were significantly associated with age in the testing dataset (Bonferroni p< 0.005, 

see Table 3.3). Many studies of Δ age in health and disease control for age by using a 

linear model to regress out its effect (Marioni at al., 2015; McKinney, Lin, Ding, Lewis, & 

Sweet, 2018) although one of the assumptions of this approach is that the prediction 

accuracy of the DNAm clock is consistent across the life course. If the accuracy varies 

non-linearly with chronological age, then simply including age as a linear covariate in 

association analyses will not sufficiently negate the confounding effect of age.  We 

therefore sought to formally test the extent to which the prediction accuracy of the four 

clocks correlates with age by including an age squared term in the regression model. In 

the testing dataset all four clocks had a significant age squared term (Table 3.3), 

indicating that their predictive accuracy varies as a function of age. Specifically, all clocks 

were associated with a plateau where the difference between DNAm age and 

chronological age becomes larger as actual age increases (Figure 3.2). Importantly, 

however, out of the three first generation clocks the coefficient for the age squared term 

was smallest for the DNAmClockCortical (beta = -1.64E-03, p= 1.94E-07), again highlighting 

that bespoke clocks can be used to minimise bias in subsequent analyses.  
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Table 3.3: The relationship between DNAm age and age (age and age2) using different DNAm clock algorithms. DNAm age was estimated using our novel 
cortical clock, Horvath’s multi-tissue clock (Horvath, 2013), Zhang’s elastic net blood clock (Zhang at al., 2019) and Levine’s Pheno Age clock (Levine at al., 2018) 
in the “testing” dataset (n = 350 cortical samples), the “independent test” dataset (n =1221 cortical samples) and the blood dataset (n =1175 whole blood samples). 

  
Testing dataset Independent test dataset Blood dataset 

Beta SE P R2 Beta SE P R2 Beta SE P R2 

Cortical Clock 

DNAm age vs 
age  

1.14 
3.39E-

02 

2.86E-

108 
0.98 1.03 0.17 

5.31E-

09 
0.65 0.58 0.06 

5.37E-

20 
0.78 

DNAm age vs 
age2  

-1.64E-

03 

3.08E-

04 

1.94E-

07 

1.57

E-03 

-2.39E-

03 

1.08E-

03 

2.80E-

02 

1.47

E-03 

-2.05E-

04 

5.34E-

04 
0.70 

1.61

E-04 

Multi-tissue 
clock  

DNAm age vs 
age  

1.08 
4.14E-

02 

3.17E-

83 
0.93 0.68 0.16 

3.51E-

05 
0.42 0.75 0.06 

6.01E-

30 
0.80 

DNAm age vs 
age2 

-3.81E-

03 

3.75E-

04 

2.45E-

21 
0.02 

-1.76E-

03 

1.02E-

03 

8.50E-

02 

1.39

E-03 

-1.15E-

03 

5.49E-

04 
0.04 

5.66

E-04 

Blood Clock 

DNAm age vs 
age  

0.82 
3.41E-

02 

1.30E-

74 
0.90 0.64 0.18 

3.00E-

04 
0.26 1.14 0.05 

9.50E-

111 
0.94 

DNAm age vs 
age2 

-3.16E-

03 

3.09E-

04 

1.81E-

21 
0.02 

-2.08E-

03 

1.09E-

03 

5.70E-

02 

2.30

E-03 

-2.26E-

03 

3.90E-

04 

8.47E-

09 

1.61

E-03 

Pheno Age 
Clock 

DNAm age vs 
age  

0.57 
6.89E-

02 

3.19E-

15 
0.65 -0.35 0.23 

1.27E-

01 
0.10 0.63 0.08 

1.86E-

13 
0.75 

DNAm age vs 
age2 

-1.79E-

03 

6.25E-

04 

4.47E-

03 
0.01 

3.53E-

03 

1.42E-

03 

1.40E-

02 
0.01 

6.22E-

04 

7.21E-

04 
0.39 

5.41

E-05 

 



 

129 
 

3.3.5 Higher cortical DNAm age is associated with decreased neuronal cell 
proportions  

Many sample-related and technical factors can influence analyses of DNAm in post-

mortem cortex tissue including sex, neuronal cell proportions, PMI and experimental 

batch effects. To assess associations between DNAm age and these variables we used 

a mixed effects regression model (see Methods 3.2) and after correcting for multiple 

comparisons (p<  0.005) found no association between DNAm age and sex (p=0.03), PMI 

(p=0.54) or batch (p=0.38) (see Supplementary Table 3.9).In contrast there was a 

significant association between neuronal cell proportion estimates derived from the 

DNAm data (beta = -8.72, p= 9.57E-36; see Supplementary Table 3.9) and DNAm age, 

indicating that individuals who are predicted as older using the DNAmClockCortical have 

lower neuronal cell proportions. This correlation is not surprising as other clocks have 

been widely reported to associate with differences in cell-type proportions (Horvath & Ritz, 

2015; Levine at al., 2018) and it is known that the proportion of neuronal cells in the cortex 

changes with age. This result highlights the importance of, where possible, including 

cellular proportion variables as a covariate in any downstream analyses performed using 

DNAm clocks. 

3.3.6 The cortical clock loses accuracy when applied to non-cortical tissues  

To assess the specificity of the novel cortex clock we next applied each of the DNAm age 

clocks to a large whole blood DNAm dataset (n = 1175; age range = 28 - 98 years; mean 

age = 57.96 years). Although the DNAmClockCortical actually performed remarkably well 

on whole blood (r = 0.88), with a similar predictive ability to the DNAmClockMulti (r = 0.90) 

(Figure 3.3 and Supplementary Figure 3.8), there was a non-linear relationship between 

DNAm age and age estimated using this clock and a systematic under prediction of 

DNAm age in samples from people aged over 60 years (Figure 3.3A(i) and Figure 
3.3B(i)). The DNAmClockBlood performed best on the blood dataset (r = 0.97), with age 

explaining the highest proportion of variation in DNAm age (R2 = 0.94), outperforming the 

three other clocks (Table 3.4; Figure 3.3; Supplementary Figure 3.8 and 
Supplementary Figure 3.9), and providing further support for the notion that epigenetic 

clocks work optimally for the tissue-type on which they are calibrated.  Of note, when 
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limiting the age range of samples included in the blood cohort to be more comparable to 

the independent test dataset (age range limited to >55 years), the relationship between 

estimated and actual age is considerably lower for the three non-blood-specific clocks (r 

~ 0.7) and the DNAmClockBlood (r = 0.88), reflecting the lower variability of age across 

samples in the dataset (see Supplementary Figure 3.10).  
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Figure 3.3: The blood based DNA methylation clock performs best in data derived from whole blood samples. (A) Shown is a comparison of DNA methylation 
age estimates against chronological age in a large whole blood dataset (n = 1175), where DNAm age derived using four DNA methylation age clocks: (i) our novel 
DNAmClockCortical; (ii) Horvath’s DNAmClockMulti; (iii) Zhang’s DNAmClockBlood and (iv) Levine’s DNAmClockPheno. The x-axis represents chronological age (years), 
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the y-axis represents predicted age (years). Each point on the plot represents an individual in the whole blood dataset. Our novel clock does not predict as well in 
blood compared to the cortex, although it has a similar predictive ability to Horvath’s clock. The distribution of the error (DNA methylation age - chronological age) is 
presented in (B) for each decile for each of the four DNA methylation clocks. Deciles were calculated by assigning chronological age into ten bins and are represented 
along the x-axis by the numbers one to ten, followed by brackets which display the age range included in each decile. The ends of the boxes are the upper and lower 
quartiles of the errors, the horizontal line inside the box represents the median deviation and the two lines outside the boxes extend to the highest and lowest 
observations. Outliers are represented by points beyond these lines. The red horizontal line represents perfect prediction (zero error). 

* DNAmClockCortical = Cortical DNA methylation age Clock; DNAmClockMulti = Multi-tissue DNA methylation age clock; DNAmClockBlood = Blood DNA methylation age 
clock and DNAmClockPheno = Pheno Age DNA methylation age clock. 

 

 

Table 3.4: The cortex clock is less accurate at estimating DNA methylation age algorithms in blood compared to cortex tissue samples. Although still 
compares well to existing clock algorithms. Accuracy statistics between DNAm age estimates and chronological age using our novel cortical clock, Horvath’s multi-
tissue clock (Horvath, 2013), Zhang’s elastic net blood clock (Zhang at al., 2019) and Levine’s Pheno Age clock (Levine at al., 2018) in our blood dataset (n = 1,175 
whole blood samples). RMSE = root mean squared error (years). 

 Cortical Clock Multi-tissue Clock Blood Clock Pheno Age Clock 

Correlation (r) 0.88 0.90 0.97 0.87 

RMSE (years) 10.79 7.32 3.95 11.70 
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3.4 Discussion 

Existing DNAm age clocks have been widely utilised for predicting age and exploring 

accelerated ageing in disease, although there is evidence of systematic underestimation 

of DNAm age in older samples, particularly in the brain (El Khoury at al., 2019). We 

developed a novel epigenetic age model specifically for human cortex - the cortical DNAm 

clock (DNAmClockCortical) - built using an extensive collection of DNAm data from >1000 

human cortex samples. Our model dramatically outperforms existing DNAm-based 

biomarkers for age prediction in data derived from the human cortex.  

There are several potential causes of the systematic underestimation of DNAm age in the 

cortex, especially in samples from older donors (aged over 60 years), when using existing 

DNAm clocks such as Horvath’s DNAmClockMulti (Horvath, 2013), Zhang’s 

DNAmClockBlood (Zhang at al., 2019) and Levine’s DNAmClockPheno (Levine at al., 2018). 

First, it may be a consequence of the distribution of ages in the training data used in 

existing clocks; these clocks were derived using samples containing a relatively small 

proportion of samples from human brain and/or from older people.  Second, as there is 

evidence for cell-type and tissue-specific patterns of DNAm (Mendizabal at al., 2019), the 

observed imprecision may reflect a consequence of underfitting the model across tissues. 

Third, the relationship between DNA methylation and age may not be linear across the 

lifespan, and a non-linear model is needed to capture attenuated effects in older samples. 

This would be comparable to the transformation required to accurately predict DNAm age 

for younger samples (0-20 years), where the association between age and with DNA 

methylation is of larger magnitude. 

Our data suggest that both tissue-specificity and the age of samples included in the 

training dataset influence the precision of DNAm age estimators, as shown by the 

increase in accuracy when using our cortical clock relative to existing clocks in human 

cortex tissue samples. This notion is further supported by the accuracy we found using 

the blood-based estimators on a large blood dataset. Our observations suggest that 

tissue type has a major influence on the accuracy of DNAm age clocks, and to accurately 

predict age it is important to use a clock calibrated specifically for the tissue from which 

samples have been derived. Our data demonstrate that the performance of existing 
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DNAm clocks varies considerably across ages and is diminished in samples from older 

donors. This is particularly important to consider when assessing DNAm age in the 

context of diseases and phenotypes that are associated with older age such as dementia 

and other types of neurodegenerative disease. Our results show that it is important to use 

a clock that has been trained using samples from the relevant age group; the training data 

used in the development of the DNAmClockCortical included a good representation of older 

samples, meaning it overcomes the systematic underestimation of DNAm age in the older 

that was observed with existing clocks. It is also important to consider the distribution of 

ages in the training dataset (e.g. minimum, maximum, median, first and third quartiles), 

as this can influence the predictor and lead to biases if not representative of the datasets 

it will be applied to. 

The importance of developing tissue-specific estimators is supported by other recently 

developed tissue-specific clocks including DNAm age predictors for whole blood (Zhang 

at al., 2019), human skeletal muscle (Voisin at al., 2020) and human bone (Gopalan at 

al., 2019), which all out perform pan-tissue clocks in samples from the specific tissues in 

which they were trained. It is known that DNA methylation patterns are distinct between 

tissue and cell types (Mendizabal at al., 2019), and it is therefore not surprising that DNAm 

age estimation models would differ in accuracy across tissue types. As technologies for 

profiling DNAm in purified cell populations from bulk tissue become more accessible, 

future clocks should be developed for purified populations of individual cell-types to 

overcome issues of cellular heterogeneity in complex tissues such as the brain. 

Furthermore, our finding that the DNAmClockCortical, like other clocks, is associated with 

the proportion of specific cell-types in a given tissue sample highlights the importance of 

covarying for cellular heterogeneity in all subsequent analyses using values derived from 

epigenetic clocks. 

Although a pan-tissue estimator such as Horvath’s DNAmClockMulti has clear general 

utility, the trade-off between accuracy and practicality needs to be taken into 

consideration depending on the hypothesised question being tested. Applying one model 

across multiple tissues may lead to a suboptimal fit (for example, when applying a linear 

model where there is non-linearity), and the performance of such a clock would need to 



 

135 
 

be tested in individual tissue-types. To assess the linearity of DNAm age predictors we 

investigated the association between DNAm age, and age squared. Of note, as age 

explains less of the variation in DNAm age in the second generation clocks (where the 

primary aim is to predict health outcomes) including the DNAmClockPheno, adding an age-

squared term may be an unsuitable measure to address non-linearity where these 

predictors are applied. Adding the squared variable allowed us to more accurately model 

the effect of age in the three first generation clocks (where the primary aim is to predict 

age), which could have a non-linear relationship with DNAm age. The DNAmClockCortical 

was the most linear in terms of fitting DNAm age against actual age. Although age 

squared terms were significantly associated with DNAm age in the testing data using all 

estimators, the higher significance of the age squared term in the cortex-specific clock 

suggests that of all the clocks, our model is the least biased. However, as indicated by 

the relationship between DNAm and age squared, we need to consider the possibility that 

fitting a linear model might not be the best approach, and to account for this possibility 

we recommend that future age-acceleration analyses control for age squared terms. Due 

to the nature of DNAm clocks, Δ age estimated using existing clocks is highly correlated 

with chronological age (El Khoury at al., 2019). If age is not controlled for it could lead to 

spurious associations with health outcomes, which are driven by age and not the variable 

of interest. Furthermore, as the prediction is less precise in older individuals, even where 

DNAm is regressed on chronological age, the residual may still be associated with age, 

potentially leading to false positive associations. Recent studies have found associations 

between accelerated DNAm age in human brain and neurodegenerative phenotypes 

(Levine at al., 2018, 2015). Our findings suggest that previous associations with age-

associated phenotypes may have been confounded by a lack of robust calibration to 

estimate DNAm age in human cortex from older donors; caution is warranted in 

interpreting reported results that have been generated using a non-tissue specific 

predictor. Future work will focus on applying our novel DNAmClockCortical to existing 

cohorts with DNAm data and detailed measures of neuropathology. While DNAm age is 

a useful indicator of age, it may not be the best indicator of health disparities between 

individuals with brain disorders.   
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In summary, we show that previous epigenetic clocks systematically underestimate age 

in older samples and do not perform as well in human cortex tissue. We developed a 

novel epigenetic age model specifically for human cortex. Our findings suggest that 

previous associations between predicted DNAm age and neurodegenerative phenotypes 

may represent false positives resulting from suboptimal calibration of DNAm clocks for 

the tissue being tested and for phenotypes that manifest at older ages. The age 

distribution and tissue type of samples included in training datasets need to be considered 

when building and applying epigenetic clock algorithms to human epidemiological or 

disease cohorts.  
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3.8 Supplementary data 

 

 
Figure 3.4: Histograms showing the distribution of chronological age in the datasets used in the study.  (A) 
The training dataset (n = 1,047 cortical samples); (B) the testing dataset (n = 350 cortical samples); (C) the 
independent test dataset (n = 1221 cortical samples) and (D) the whole blood dataset (n = 1175 whole blood 
samples). 
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Figure 3.5: DNA methylation age has a logarithmic relationship with chronological age between the ages 
of 0-20 years. From 20 years onward there is a linear relationship with chronological age. The x-axis represents 
chronological age (years), the y-axis represents predicted age prior to applying the anti-transformation function, 
whereby age between 0-20 years is log transformed, and ages 20+ are transformed to account for this. Each point 
on the plot is a sample from the testing dataset (n = 350 cortical samples). 
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 Figure 3.6: The cortical DNAm age clock has elevated accuracy in human cortex samples 

compared to existing DNAm clocks. Shown is the distribution of the error (DNA methylation age - 
chronological age) for each of the four DNA methylation age clocks in (A) the testing dataset (n = 350 
cortical samples) and (B) the independent test dataset (n = 1,221 cortical samples). The ends of the 
boxes are the upper and lower quartiles of the errors, the horizontal line inside the box represents the 
median deviation and the two lines outside the boxes extend to the highest and lowest observations. 
Outliers are represented by points beyond these lines. The red horizontal line represents perfect 
prediction (zero error). 

*DNAmClockCortical = Cortical DNA methylation age Clock; DNAmClockMulti = Multi-tissue DNA methylation 
age clock; DNAmClockBlood = Blood DNA methylation age clock and DNAmClockPheno = Pheno Age DNA 
methylation age clock. 
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Figure 3.7: Bland-Altman plots highlighting enhanced performance of the cortical DNAm clock in human cortex tissue across the lifespan. Shown is the mean difference between 
actual chronological age and estimated DNAm ages derived in (A) the testing dataset (n= 350 cortical samples) and (B) the independent test dataset (n = 1221 cortical samples), where 
DNAm age derived using four DNA methylation age clocks: (i) our novel DNAmClockCortical; (ii) Horvath’s DNAmClockMulti; (iii) Zhang’s DNAmClockBlood and (iv) Levine’s DNAmClockPheno The 
dashed horizontal lines in each case are the differences between actual and chronological age +/- 1.96 * standard deviation; for normally distributed difference due to error 5% points would 
lie outside these. The solid horizontal line represents where the difference would be zero.   

*DNAmClockCortical = Cortical DNA methylation age Clock; DNAmClockMulti = Multi-tissue DNA methylation age clock; DNAmClockBlood = Blood DNA methylation age clock and DNAmClockPheno 

= Pheno Age DNA methylation age clock. 
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Figure 3.8: The blood DNAm age clock has better accuracy in human whole blood samples compared to non-tissue specific 
DNAm clocks. Distribution of the error in years (DNA methylation age - chronological age) comparing four DNA methylation age clocks: 
our novel DNAmClockCortical, the DNAmClockMulti, the DNAmClockBlood and the DNAmClockPheno in the whole blood dataset (n = 1175). The 
ends of the boxes are the upper and lower quartiles of the errors, the horizontal line inside the box represents the mean absolute deviation 
and the two lines outside the boxes extend to the highest and lowest observations. Outliers are represented by points beyond these lines. 

*DNAmClockCortical = Cortical DNA methylation age Clock; DNAmClockMulti = Multi-tissue DNA methylation age clock; DNAmClockBlood = 
Blood DNA methylation age clock and DNAmClockPheno = Pheno Age DNA methylation age clock. 
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Figure 3.9: Bland-Altman plots highlighting elevated performance of blood based DNAm clocks in whole blood 
samples. Mean-difference (Bland-Altman) plots showing the difference between DNA methylation age estimates 
against chronological age using (A) our novel DNAmClockCortical, (B) the DNAmClockMulti, (C) the DNAmClockBlood  and 
(D) the DNAmClockPheno in the whole blood cohort (n = 1175). The dashed horizontal lines in each case are the 
differences between actual and chronological age +/- 1.96 * standard deviation; for normally distributed difference due 
to error 5% points would lie outside these. The solid horizontal line represents where the difference would be zero.   

*DNAmClockCortical = Cortical DNA methylation age Clock; DNAmClockMulti = Multi-tissue DNA methylation age clock; 
DNAmClockBlood = Blood DNA methylation age clock and DNAmClockPheno = Pheno Age DNA methylation age clock. 
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Figure 3.10: The blood-based DNA methylation clock performs best in data derived from whole blood samples.  (A) Shown is a comparison of DNA 
methylation age estimates against chronological age in samples >55 years old from a large whole blood dataset (n = 646), where DNAm age is derived using four 
DNA methylation age clocks: (i) our novel DNAmClockCortical; (ii) Horvath’s DNAmClockMulti; (iii) Zhang’s DNAmClockBlood and (iv) Levine’s DNAmClockPheno. The x-
axis represents chronological age (years), the y-axis represents predicted age (years). Each point on the plot represents an individual in the whole blood dataset. 
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Our novel clock does not predict as well as in the cortex, although it has a similar predictive ability to Horvath’s clock. The distribution of the error (DNA methylation 
age - chronological age) is presented in (B) for each decile for each of the four DNA methylation clocks. Deciles were calculated by assigning chronological age into 
ten bins and are represented along the x-axis by the numbers one to ten, followed by brackets which display the age range included in each decile. The ends of the 
boxes are the upper and lower quartiles of the errors, the horizontal line inside the box represents the median deviation and the two lines outside the boxes extend 
to the highest and lowest observations. Outliers are represented by points beyond these lines. The red horizontal line represents perfect prediction (zero error). 

*DNAmClockCortical = Cortical DNA methylation age Clock; DNAmClockMulti = Multi-tissue DNA methylation age clock; DNAmClockBlood = Blood DNA methylation age 
clock and DNAmClockPheno = Pheno Age DNA methylation age clock. 
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Table 3.5: Sample characteristics of the training (cortex), testing (cortex), independent test (cortex) and whole blood datasets used in the development and evaluation 
of our novel cortical DNA methylation clock including the number of samples from each brain region. * BA = Brodmann area; EC = Entorhinal cortex; HIP = Hippocampus; 
PFC = Prefrontal cortex; OCC = Occipital lobe; STG = Superior temporal gyrus; STR = Striatum; SD = Standard deviation; GEO = Gene Expression Omnibus  

 

Dataset 
  

Age (years) Sex (n) Illumina 
methylation 
array 

Reference GEO 
Accession 
number Tissue 

Type 
Brain regions (n) N Mean  Median Range SD Female Male 

Training Cortical BA[9,11,17,25,41] 
(284); EC(59); HIP 
(31); PFC (513); STG 
(83); STR (77) 

1047 56.53 57 1.34-108 24.13 362 685 450K (Jaffe at al., 
2016; De 
Jager at al., 
2014; Lunnon 
at al., 2014; 
Pidsley at al., 
2014; Smith at 
al., 2018, 
2019; Wong at 
al., 2019) 

GSE74193;  
GSE59685; 
GSE80970; 
GPL13534; 
GSE43414;  

Testing Cortical BA[9,11,17,25,41] 
(97); EC(18); HIP (11); 
PFC (167); STG (37); 
STR (20) 

350 55.87 56 1.34-108 24.25 144 206 450K (Jaffe at al., 
2016; De 
Jager at al., 
2014; Lunnon 
at al., 2014; 
Pidsley at al., 
2014; Smith at 
al., 2018, 
2019; Wong at 
al., 2019) 

GSE74193;  
GSE59685; 
GSE80970; 
GPL13534; 
GSE43414;  

BDR  Cortical  PFC (610) OCC (611) 1221 83.49 84 41-104 9.10 577 644 EPIC - 
 

Understanding 
Society 

Whole 
Blood 

- 1175 57.96 59 28-98 14.97 686 489 EPIC Hannon at al. 
(2018) 
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Table 3.6: Age statistics for cohorts included in the training (cortex) and testing (cortex) datasets used in the development and evaluation of our novel cortical DNA 
methylation clock including the number of samples from each cohort. * LBB2 = London Brain Bank 2; MS = Mount Sinai; NICHD = National Institute of Child Health and 
Human Development; ROSMAP = Religious Orders Study and Rush Memory and Aging Project; SD = Standard Deviation   

 
Cohort / Brain 
Bank 

N Age (years) Sex (n) 

1st quartile Median Mean 3rd quartile Range SD Female Male 

Edinburgh 45 37 42 43.22 51 18-69 13.45 7 38 

Harvard 54 16.25 26.5 28.39 39 2-60 15.79 11 43 

Lieber Institute 566 28.42 45.14 42.45 55.42 1.34-96.98 18.6 197 369 

LBB2 27 67.5 80 78.56 88.5 58-99 11.32 14 13 

Maudsley 282 64 79 73.15 86 25-105 17.06 123 159 

Montreal 137 30 41 44.47 57 18-90 18.28 28 109 

MS 125 76 82 82.89 89 70-108 7.88 64 61 

NICHD 18 15 21.5 26.61 42.75 4-67 18.55 0 18 

Oxford 29 62 64 62.38 68 41-71 8.51 9 20 

ROSMAP 114 77.32 81.82 81.45 86.18 65.99-89.73 5.45 53 61 
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Table 3.7: The Cortical Clock DNA methylation probes and their coefficients. The Cortical Clock DNA 
methylation probes and their coefficients. Using elastic net regression we identified 347 DNA methylation sites 
which in combination optimally predict age in the human cortex. The sum of DNAm levels at these sites weighted 
by their regression coefficients provides the Cortical Clock DNA methylation age estimate. These coefficient values 
relate to a transformed version of age and therefore the linear combination of CpGs needs to be suitably 
transformed. 

Illumina Probe ID Coefficient 

(Intercept) 0.57768257 

cg00059225 0.24595921 

cg00088042 0.18271556 

cg00252534 0.16822336 

cg00297950 0.14175773 

cg00384539 0.17820188 

cg00491255 0.14450779 

cg00521255 -0.2443627 

cg00648582 -0.0391462 

cg00771642 0.12772573 

cg00924265 -0.0685163 

cg00935119 -0.038119 

cg00940577 -0.0612173 

cg01091514 -0.0322298 

cg01122755 0.06571091 

cg01162920 -0.1973567 

cg01194538 -0.1516094 

cg01264729 -0.1524237 

cg01311102 -0.1092163 

cg01529637 0.02680964 

cg01532168 0.33465593 

cg01616394 -0.0187101 

cg01639032 0.5150527 

cg01641432 -0.0013768 

cg01655150 -0.3276135 

cg01745370 -0.0058643 

cg01899542 -0.0509626 

cg02046143 -0.0077791 

cg02047661 -0.0171169 

cg02357838 0.23797342 

cg02361903 -0.5452234 

cg02397497 0.07620684 
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cg02448244 0.03955555 

cg02504211 0.13446075 

cg02524236 -0.058474 

cg02546818 0.01616236 

cg02583546 -0.0359673 

cg02795151 -0.0056271 

cg02983424 0.05696411 

cg03001484 -0.0258987 

cg03025830 0.13631721 

cg03040821 -0.0574853 

cg03048488 -0.1256683 

cg03591753 -0.4520824 

cg03594801 -0.0691302 

cg03613618 -0.1393547 

cg03633073 0.24465057 

cg03639603 0.07133576 

cg03710354 0.00012886 

cg03717616 -0.1918336 

cg03854598 0.19543214 

cg03864215 -0.3501439 

cg04031134 0.02070123 

cg04036898 -0.0001322 

cg04055913 -0.0657139 

cg04060163 -0.0111752 

cg04078896 -0.0120007 

cg04235075 0.20720766 

cg04315771 -0.052222 

cg04370442 0.07671797 

cg04432319 0.37983386 

cg04604946 -0.1166149 

cg04684267 0.56103948 

cg04686264 0.09996322 

cg04704414 -0.0249742 

cg04834794 0.86355274 

cg04880546 0.03041421 

cg04913265 0.05506598 
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cg05006304 -0.099641 

cg05030953 -0.012153 

cg05149386 -0.1053181 

cg05213896 0.01844346 

cg05280698 0.25970942 

cg05333146 0.19252122 

cg05362168 -0.0134173 

cg05396044 0.9444237 

cg05404236 0.09491394 

cg05444541 -0.0118706 

cg05634040 -0.0761376 

cg05724492 0.03479139 

cg05756780 0.06888371 

cg05785488 0.58125152 

cg05795849 -0.0377685 

cg05839636 -0.0709078 

cg06069616 -0.0128466 

cg06144905 0.05548133 

cg06236737 -0.4656742 

cg06385324 0.08016557 

cg06570818 -0.0040639 

cg06645033 0.23463392 

cg06648759 0.40674287 

cg06711656 0.15663601 

cg06751446 0.08353432 

cg06852461 -0.0063935 

cg07011538 -0.0337366 

cg07120479 -0.4293158 

cg07181374 -0.1310245 

cg07197480 0.04978597 

cg07461572 -0.0014446 

cg07544187 0.19887884 

cg07547549 0.01343572 

cg07550554 0.2486126 

cg07581257 -0.1444611 

cg07806886 0.01131 
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cg08097417 0.55988863 

cg08193650 0.07922242 

cg08370996 0.124238 

cg08594681 -0.0976416 

cg08606497 -0.0136992 

cg08708711 0.03540909 

cg08727193 0.11187629 

cg08786136 0.13167062 

cg08952475 -0.0018342 

cg08995871 0.0004663 

cg09058748 0.00609294 

cg09124496 -0.0726601 

cg09178970 -0.0244848 

cg09254686 -0.2087676 

cg09363564 -0.1487783 

cg09372546 -0.018437 

cg09407967 0.07651973 

cg09468836 0.02747043 

cg09664474 -0.711323 

cg09731141 -0.002565 

cg09810078 0.03982331 

cg09888620 0.22004768 

cg09906752 -0.015249 

cg09935271 -0.0195523 

cg10027085 -0.0038364 

cg10104252 -0.0272235 

cg10225362 0.04192172 

cg10232140 -0.0178474 

cg10359006 -0.1063366 

cg10378521 -0.2043615 

cg10389229 0.00641507 

cg10460946 -0.2376023 

cg10501210 -0.305486 

cg10574566 -0.0829055 

cg10790698 -0.1026348 

cg10851350 -0.0098493 
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cg10904972 -0.0784357 

cg10924085 -0.0343679 

cg10961323 0.0117429 

cg11018337 0.10227319 

cg11071401 0.00301298 

cg11120115 -0.1945644 

cg11397957 -0.1287726 

cg11462165 0.1817344 

cg11565355 0.11512885 

cg11603443 0.11675982 

cg11719412 -0.0717141 

cg12024906 0.05166947 

cg12100751 0.08174288 

cg12175729 0.07132377 

cg12423733 -0.0653703 

cg12591491 0.24421376 

cg12597389 0.5583175 

cg12637942 0.17055797 

cg12950231 -0.0656435 

cg12978800 -0.1818211 

cg13099374 -0.0473964 

cg13259357 0.03688023 

cg13298199 -0.0971264 

cg13308350 -0.2068517 

cg13327545 0.17202187 

cg13477806 0.03348578 

cg13718185 -0.0024661 

cg13733708 -0.0027441 

cg13744194 0.09010979 

cg13755546 0.16217758 

cg13806267 0.02601212 

cg13848598 0.31150974 

cg14189141 0.14486526 

cg14242024 -0.0891087 

cg14343652 -0.4916114 

cg14489570 -0.0668353 
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cg14507337 0.04659403 

cg14577472 0.0484974 

cg14611683 0.05482077 

cg14655122 0.2417095 

cg14704921 0.21510624 

cg14759277 0.11132052 

cg14871932 0.10868066 

cg15001747 0.43298364 

cg15022387 0.04441422 

cg15341124 0.90243633 

cg15393490 -0.8410718 

cg15410236 0.21389648 

cg15540623 -0.2615207 

cg15593298 0.33773506 

cg15638207 -0.6916681 

cg15665342 -0.0605596 

cg15718663 0.11706067 

cg15925792 -0.307196 

cg15927455 -0.3584996 

cg15974867 0.02314957 

cg15988970 -0.0064278 

cg16121765 -0.0123589 

cg16142349 -0.2568507 

cg16148593 -0.0981528 

cg16206504 -0.0083124 

cg16339238 0.00143445 

cg16340422 -0.0292647 

cg16359034 -0.0461923 

cg16408865 -0.1234816 

cg16604975 0.01666265 

cg16643261 -0.1185516 

cg16703882 0.09662046 

cg16865965 -0.0417045 

cg16867657 0.19738643 

cg16909962 0.26618242 

cg17040471 0.01800027 
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cg17086398 -0.2146144 

cg17117277 0.41446544 

cg17341113 1.44006579 

cg17411994 -0.0762994 

cg17435266 0.06161905 

cg17523253 -0.0670554 

cg17592231 0.68799031 

cg17640485 -0.3129539 

cg17693222 0.00318175 

cg18077971 0.0867302 

cg18125865 0.65840184 

cg18247055 0.01999414 

cg18279094 0.35656711 

cg18427787 -0.0441448 

cg18449120 0.00500354 

cg18468088 0.22981384 

cg18480946 0.00979905 

cg18504218 -0.008073 

cg18514820 0.22286731 

cg18540328 0.02261323 

cg18549036 0.00040885 

cg18584803 -0.1976921 

cg18604199 -0.0521892 

cg18626323 -0.0303841 

cg19028706 -0.0901704 

cg19056004 -0.043383 

cg19142026 0.24687437 

cg19230755 0.00276837 

cg19242851 -0.1708169 

cg19399220 0.23167516 

cg19416570 0.21729811 

cg19699893 0.13548726 

cg19724470 -0.0496928 

cg19802138 0.01144858 

cg19807317 -0.0546721 

cg19955173 -0.0675901 
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cg20185454 0.18559061 

cg20198242 -0.0058134 

cg20429250 0.02217301 

cg20495179 -0.3422078 

cg20516262 -0.0036741 

cg20583430 0.04465635 

cg20594982 0.20060143 

cg20603637 0.04123459 

cg20627572 -0.037941 

cg20697204 0.04133236 

cg20747577 -0.0067257 

cg20773033 -0.205063 

cg20818778 0.03589532 

cg21010435 0.00127567 

cg21052766 -0.0232065 

cg21186299 0.05465318 

cg21218687 0.12544553 

cg21415530 0.00975912 

cg21581504 0.10314205 

cg21801378 0.3019194 

cg21826815 0.14908739 

cg21851534 -0.0365721 

cg21865150 -0.0024381 

cg21967909 0.13778356 

cg22007809 -0.0919512 

cg22131013 -0.0213741 

cg22285878 0.49092431 

cg22320999 -0.0141227 

cg22344793 0.00901416 

cg22363327 0.0637605 

cg22531668 0.03617343 

cg22661556 0.10352047 

cg22714290 -0.0507599 

cg22884541 0.14417822 

cg22900415 0.04351403 

cg23051272 -0.0698149 
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cg23091758 0.11685302 

cg23124451 -0.3676633 

cg23163283 -0.1166281 

cg23166770 -0.4055405 

cg23174607 0.47022718 

cg23201812 -0.0043506 

cg23352942 -0.0709361 

cg23474190 -0.0992123 

cg23606718 0.25215709 

cg23636833 0.05409979 

cg23661344 -0.0953841 

cg23662138 -0.1453696 

cg23684204 0.36656376 

cg23813012 0.09645841 

cg23896431 0.10834819 

cg23939875 -0.0027469 

cg23995914 0.13059076 

cg24085039 -0.0266476 

cg24231804 -0.0610665 

cg24287218 -0.057864 

cg24346776 0.03688965 

cg24377285 -0.0034626 

cg24420164 0.01149875 

cg24483655 -0.1180724 

cg24567591 0.00663023 

cg24715767 0.03440595 

cg24718465 0.09807228 

cg24933925 -0.0626709 

cg24990808 -0.0417352 

cg25007705 -0.2476066 

cg25018458 0.51960078 

cg25090514 0.5000666 

cg25114611 -0.1558847 

cg25201359 -0.3919139 

cg25459323 -0.0912804 

cg25922329 -0.0449031 
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cg26092675 0.09283213 

cg26115633 0.27801401 

cg26161329 0.64983683 

cg26242531 -0.3438033 

cg26306636 0.67247185 

cg26332630 -0.0217055 

cg26377000 0.06837371 

cg26384036 0.08320489 

cg26472036 -0.2159495 

cg26490949 0.39372896 

cg26542283 0.06460673 

cg26645401 0.23806474 

cg26660754 -0.3879276 

cg26726230 0.08107185 

cg26782108 0.09393526 

cg26856080 0.25484991 

cg26885220 0.15739762 

cg26952697 -0.0575663 

cg26952796 -0.0916588 

cg27013696 0.18890756 

cg27043838 0.00732047 

cg27134767 -0.1281932 

cg27230784 0.11078553 

cg27388680 -0.1024366 

cg27414487 -0.0433871 

cg27529628 0.01778693 

ch.2.1904845F -0.1201514 

ch.2.71774667F -0.2699354 
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Table 3.8: Overlap between the probes which collectively make up the Cortical DNA methylation clock and 
three other DNA methylation age clocks: Horvath’s

 
Multi tissue DNA methylation Clock, Zhang’s

 
Blood 

DNA methylation Clock
 
and Levine’s Pheno Age DNA methylation Clock. 

Overlap Horvath Multi Tissue Overlap Zhang Blood Overlap Levine Pheno Age 

cg06144905 cg02046143 cg06144905 

cg08370996 cg03025830 cg19724470 

cg19724470 cg04604946 cg21801378 

cg21801378 cg04684267 cg23124451 

cg23124451 cg06648759 cg25459323 

 
cg07547549 

 

 
cg08097417 

 

 
cg09935271 

 

 
cg15393490 

 

 
cg16867657 

 

 
cg18468088 

 

 
cg21186299 

 

 
cg23174607 

 

 
cg23606718 

 
  cg23995914   

 

 

 

Table 3.9: The relationship between DNAm age and technical and biological variables. DNAm age was 
estimated using our novel cortical clock in the independent test dataset (n=1,221). DNAm age was regressed 
against biological and technical variables (cell proportions, sex, post-mortem interval and batch).  *DNAm = DNA 
methylation; PMI = Post-mortem interval 

 Beta SE P 

Cell proportions -8.72 0.67 9.57E-36 

Sex 0.60 0.28 0.03 

PMI -3.90E-03 0.01 0.54 

Batch -0.03 0.03 0.38 
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3.9 Associations between age acceleration and neuropathology 

3.9.1 Methods 

I derived a measure of epigenetic age acceleration (EAA) for each of the four clocks 

tested in Chapter 3 by regressing DNAm age on chronological age, sex and cell 

proportions and extracting the residuals. I then investigated if EAA was associated 

with five neuropathology measures (Braak NFT stage, Thal phase, CERAD density, 

Braak LB stage and TDP-43 state) as well as AD status (defined as cases with Braak 

>4 and control with Braak <2) in the BDR cohort (see sections 3.2.2 and 4.4.1). For 

Braak NFT stage, Thal phase, CERAD density, Braak LB stage I used mixed effects 

regression models using the lmer and package in r, including EAA as the independent 

variable, neuropathology as the dependent variable and individual as a random effect. 

Mixed effects logistic regression models were used for TDP-43 status and AD status 

(binary variables) but the framework remained the same.  

3.9.2 Results and discussion  

After controlling for multiple testing (Bonferroni p < 0.05/24 = 0.002) no associations 

between EAA and any of the four epigenetic clocks were identified (see Table 3.10). 

Although there is no evidence to suggest there is a relationship between EAA and 

neuropathology we cannot definitively conclude that there is no association, since 

these analyses were limited by power. However, these results suggest that while 1st 

generation epigenetic clocks are good predictors of age, they may not be directly 

associated with neuropathology. Previous studies reporting EAA associations with 

neuropathology using epigenetic clocks not built for the cortex should be interpreted 

with caution.  

In contrast to the results in BDR, I recently collaborated on a study using the ROSMAP 

PFC dataset (excluding samples included in the training of the cortex clock). We found 

modest significant associations between EAA estimated using the cortical clock and 

neuropathology (Grodstein at al., unpublished). The strength of the association was 

strongest when using the cortical clock in comparison to the multi-tissue clock, 

strengthening the hypothesis that the most optimal clock for a dataset should be 

trained in the relevant tissue type.  
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Table 3.10 Associations between epigenetic age acceleration and neuropathology.  

  Beta SE P 
Cortical clock - Braak NFT Stage -2.31E-03 7.73E-03 0.77 

Multi-tissue clock - Braak NFT Stage 2.10E-02 1.63E-02 0.20 

Blood clock - Braak NFT Stage 3.95E-02 2.40E-02 0.10 

Pheno Age clock - Braak NFT Stage -3.50E-03 1.14E-02 0.76 

Cortical clock - Thal Phase 9.22E-03 2.08E-02 0.66 

Multi-tissue clock - Thal Phase 3.56E-02 1.60E-02 0.03 

Blood clock - Thal Phase 3.42E-02 2.36E-02 0.15 

Pheno Age clock - Thal Phase 3.56E-02 1.60E-02 0.03 

Cortical clock - CERAD density 1.02E-02 2.74E-02 0.71 

Multi-tissue clock - CERAD density 9.82E-03 2.08E-02 0.64 

Blood clock - CERAD density 1.02E-02 2.74E-02 0.71 

Pheno Age clock - CERAD density 9.82E-03 2.08E-02 0.64 

Cortical clock - Braak LB Stage 4.01E-03 1.48E-02 0.79 

Multi-tissue clock - Braak LB Stage 7.11E-03 1.13E-02 0.53 

Blood clock - Braak LB Stage 1.55E-02 1.68E-02 0.35 

Pheno Age clock - Braak LB Stage 7.11E-03 1.13E-02 0.53 

Cortical clock – TDP-43 Status 5.27E-03 4.80E-03 0.27 

Multi-tissue clock - TDP-43 Status 1.68E-03 3.58E-03 0.64 

Blood clock - TDP-43 Status -2.41E-03 5.36E-03 0.65 

Pheno Age clock - TDP-43 Status 1.63E-03 3.56E-03 0.65 

Cortical clock - AD status -2.45E-03 6.35E-03 0.70 

Multi-tissue clock - AD status 5.90E-03 4.95E-03 0.23 

Blood clock - AD status 1.07E-02 7.12E-03 0.13 

Pheno Age clock - AD status -4.30E-04 3.46E-03 0.90 
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4 Epigenome-wide association study of neuropathology in 
the Brains for Dementia Research Cohort 

4.1 Introduction 

As described in Chapter 1 (section 1.1), dementia is an umbrella term used to describe 

a group of symptoms associated with global cognitive impairment. Dementia 

encompasses a number of neurodegenerative diseases, including Alzheimer’s 

disease (AD), vascular dementia (VaD), dementia with Lewy bodies (DLB), 

Parkinson’s disease (PD) and frontotemporal dementia (FTD) (Lobo at al., 2000). Most 

neurodegenerative diseases are characterised by the aggregation of specific proteins 

in intracellular inclusions or extracellular aggregates within the brain (Ross & Poirier, 

2004). Although the proteins and specific brain regions involved in the aetiology of 

neurodegenerative diseases differ, in all cases the progressive accumulation of these 

deposits ultimately leads to neuronal cell death and brain atrophy (Ross & Poirier, 

2004). 

4.1.1 Neuropathology of Alzheimer’s disease 

AD is the most common form of dementia, accounting for ~60-80% of cases 

(Alzheimer’s Association, 2019). AD is characterised by two histopathological 

hallmarks: the accumulation of extracellular amyloid-beta (Aβ) plaques and deposit of 

intracellular neurofibrillary tangles of tau (NFT) (Braak, Alafuzoff, Arzberger, 

Kretzschmar, & Del Tredici, 2006; Thal, Rüb, Orantes, & Braak, 2002). There are 

several different measures used to quantify the burden and progression of 

neuropathology in AD brain. Braak NFT staging (Braak, Alafuzoff, at al., 2006) 

provides a measure of NFT pathology. There are seven Braak NFT 7 stages (0-VI), 

starting with the accumulation of NFTs in the entorhinal cortex (Braak NFT stages I-II) 

and ending with the accumulation of NFTs in the neocortex (Braak NFT stages V-VI) 

(see Figure 1.1). Thal Phasing provides a measure of Aβ deposits (both diffuse and 

dense-core)(Thal at al., 2002). There are six Thal phases (0-5). In phase 1 Aβ deposits 

are found in the neocortex and by phase 5 Aβ deposits have started to accumulate in 

the cerebellum and other brain regions (see Figure 1.1). Consortium to Establish a 

Registry for AD (CERAD) score (Mirra at al., 1991) describes the density of neuritic 

Aβ plaques (dense-core) in three areas of the isocortex (frontal, temporal and parietal) 
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and is measured on a four point scale ranging from no/ none to frequent/ high. A 

detailed description of neuropathology in AD is given in section 1.1.4.1.  

4.1.2 Neuropathology of other neurodegenerative diseases 

Lewy-body (LB) pathology is involved in the pathogenesis of DLB and PD and involves 

the accumulation and of α-synuclein in neuronal cell bodies as Lewy bodies (LBs) and 

in neuronal cell processes (e.g. axons) as Lewy neurites (Outeiro at al., 2019). LB 

body pathology is measured using Braak LB staging (Braak, Bohl, at al., 2006). There 

are 7 Braak LB stages (0-6). In stage 1 α-synuclein starts to accumulate in the motor 

nucleus of the medulla oblongata and by stage 6 α-synuclein has spread through all 

of the neocortex and is detected in the premotor and motor regions. FTD diseases are 

primary TAR DNA-binding protein 43 (TDP-43) proteinopathies, where TDP-43 is the 

main driver in disease pathogenesis (Mackenzie, Rademakers, & Neumann, 2010). 

TDP-43 can be found in different parts of the brain depending on the FTD-subtype. 

There is currently no standardised measure for TDP-43 and its presence if often 

recorded as a binary yes/no. A detailed description of neuropathology in other 

neurodegenerative diseases is given in section 1.1.6. 

4.1.3 Neuropathological comorbidities in dementia  

It has been recognised that dementia in older people is usually a consequence of 

multiple pathologies (Kapasi, DeCarli, & Schneider, 2017; Thomas at al., 2020). Most 

frequently, for example, LB pathology is present in addition to the core AD pathologies, 

affecting ~50% of AD cases (Thomas at al., 2020). Another common 

neuropathological comorbidity is the aggregation of TDP-43 (Thomas at al., 2020) and 

individuals with AD usually have some level of TDP-43 (Wilson, Dugger, Dickson, & 

Wang, 2011). These comorbidities have been shown to increase cognitive impairment 

in non-AD cases and evidence suggests they contribute to the declining cognition in 

AD cases beyond that of Aβ and NFT pathology (Thomas at al., 2020). This hypothesis 

is supported by recent research conducted by Thomas and colleagues (2020), who 

looked at the associations between neuropathology and cognitive decline (measured 

using the mental state exam and the clinical dementia rating) in ~40,000 individuals 

and found that TDP-43 and cerebral amyloid angiopathy (where amyloid builds up on 

the walls of the arteries in the brain) are associated with cognitive impairment to a 

similar magnitude as AD neuropathology; 63% of the individuals in their study 
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diagnosed with AD had TDP-43 or cerebral angiopathy severe enough to explain the 

cognitive deficits independently of AD. It is therefore important to consider multiple 

pathologies in combination to better understand the aetiology of AD and other 

neurodegenerative diseases. 

4.1.4 Standardised brain banking  

The definitive presence of the neuropathological hallmarks of dementia can only be 

confirmed via post-mortem brain examinations. This led the development of 

standardised procedures in brain banking for dementia, including the semi-quantitative 

classification schemes for the different neuropathology features described in detail in 

section 1.1.4 (Braak, Alafuzoff, at al., 2006; Braak, Bohl, at al., 2006; Thal at al., 2002). 

This has facilitated harmonisation across brain banks, enabling consistent 

classifications and increasing reliability and validity across studies. Recently, the 

Brains for Dementia Research (BDR) cohort was established with the aim of 

generating a large comprehensive neuropathological dataset from multiple brain 

banks using these standardised procedures, enabling the investigation of dementia 

through detailed phenotypic and multi-omics datasets (Francis, Costello, & Hayes, 

2018). Both dementia patients and unaffected controls > 65 years of age were 

recruited to partake in routine longitudinal assessments collecting cognitive, clinical, 

lifestyle and psychometric data, prior to post-mortem brain donation (Francis at al., 

2018). 

4.1.5 Epigenetic dysregulation in Alzheimer’s disease and other 
neurodegenerative diseases 

Multiple studies suggest epigenetic dysregulation is associated with the progression 

of pathology seen in AD and other dementias (Roubroeks at al., 2020; A. R. Smith at 

al., 2016, 2019; R. G. Smith at al., 2018; R. Smith at al., 2021; Vasanthakumar at al., 

2020). Genome-wide changes in DNA methylation (DNAm) associated with disease 

and pathology have been explored using epigenome-wide association studies 

(EWAS), where DNAm at each site is independently tested for association with the 

trait of interest (Q. S. Li, Sun, & Wang, 2020; Lunnon at al., 2014; Roubroeks at al., 

2020; R. Smith at al., 2021) (see section 1.3.3 for more details). Unlike genetic 

variation, epigenetic signatures are tissue specific (Mendizabal & Yi, 2016) and 

therefore the tissue type used in EWAS is important to consider; most EWAS of 
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neurodegenerative diseases have been conducted in regions of the cortex. In addition, 

the majority of AD EWAS have been conducted using the Illumina Infinium 450K 

Beadarray (450K array) (see section 2.1.1) which quantifies DNAm at > 450,000 

DNAm sites (Bibikova at al., 2011). Recently, Smith, Pishva and colleagues conducted 

a meta-analysis of AD EWAS studies (R. Smith at al., 2021), combining data from six 

450K array analyses of AD (N=1,453 unique individuals) to identify differential 

methylation associated with Braak NFT across multiple cortical regions. In their cross-

cortex meta-analysis (N=1,408 donors) they identified 220 DMPs associated with 

Braak NFT stage, annotated to 121 genes (see Figure 4.1). These results support a 

role for differential DNAm across many genes in AD.  
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It can be challenging to understand how DNAm influences the development of AD due 

to clinical and neuropathological heterogeneity and the comorbidities associated with 

diagnosing AD. Previous EWAS analyses have predominantly looked at a singular 

pathology measures such as Braak NFT stage (see section 1.3.3). Ideally molecular 

studies of dementia brain should simultaneously consider multiple neuropathology 

measures in order to better understand the molecular mechanisms leading to disease.  

4.1.6 Utilising the BDR dataset for neuropathology EWAS 

There have been few EWAS studies of dementia utilising the new Illumina Infinium 

EPIC Beadarray (EPIC array; https://emea.illumina.com/), which quantifies DNAm at 

> 850,000 sites (Pidsley at al., 2016)(see section 2.1.2).The BDR DNAm dataset 

generated as part of my thesis represents the largest dementia EPIC datasets with an 

extensive range of neuropathological and phenotypic data to accompany it. In this 

chapter I quantified DNAm in 611 prefrontal frontal cortex (PFC) samples and 610 

Figure 4.1: A Miami plot of the cross-cortex meta-analyses of Braak NFT Stage. Probes shown above the x-
axis indicate hypermethylation with higher Braak stage, whilst probes shown below the x-axis indicate 
hypomethylation with higher Braak stage. The chromosome and genomic position are shown on the x-axis. The Y-
axis shows −log10(p). The red horizontal lines indicate the Bonferroni significance level of p< 1.238 x 10−7. Probes 
with a methylation (beta) effect size (ES: difference between Braak 0-Braak VI) ≥ 0.01 and p< 1.238 x 10−7 are 
shown in blue. The 20 most significant DMPs are circled on the plot and Illumina UCSC gene name is shown if 
annotated, or CpG ID if unannotated. Figure and legend taken from (R. Smith et al., 2021).
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occipital cortex (OCC) samples from 631 individuals in the BDR cohort to identify if 

variable DNAm across the genome is associated with multiple neuropathology 

measures.   

4.2 Chapter aims  

The primary aim of this chapter is to integrate the detailed BDR neuropathological 

measures with Illumina EPIC array DNAm data to better understand the aetiology of 

AD and related dementias. The specific aims of this chapter are: 

1. to identify if variable DNAm in the cortex is associated with five measures of 

neuropathology: Braak NFT Stage, Thal Phase, CERAD density, Braak LB 

stage and TDP-43 

2. to identify common and unique changes in DNAm across two regions of the 

cortex 

3. to identify similarities and differences in the patterns of DNAm associated with 

various types of neuropathology and explore the extent variation is driven by 

the progression of pathology 
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4.3 Methods 

4.3.1 Brains for Dementia research cohort description  

The Brains for Dementia research (BDR) cohort was established in 2008 and consists 

of a network of six dementia research centres across England and Wales (based at 

Bristol, Cardiff, King’s College London, Manchester, Oxford and Newcastle 

Universities) and five brain banks (the Cardiff brain donations were banked in London). 

Participants >65 years of age were recruited using both national and local press (e.g. 

newspapers, newsletters, leaflets), TV and radio coverage as well as at memory clinics 

and support groups. There was no exclusion or inclusion criteria for individuals with 

specific diagnoses or those carrying genetic variants associated with 

neurodegenerative diseases; the cohort includes those with and without dementia and 

covers the full range of dementia diagnoses. Participants >65 years of age (including 

dementia cases and cognitively normal controls) underwent a series of longitudinal 

cognitive and psychometric assessments and registered for brain donation.  

 Longitudinal cognitive and clinical assessments 

Longitudinal cognitive and clinical assessments were conducted by a trained 

psychologist or a research nurse. A series of exclusion criteria was put in place prior 

to assessments which included: 1) factors preventing brain donation such as brain 

injury and major stroke; 2) being < 65 years of age for healthy controls (apart from 

partners of participants with dementia); 3) not having the English language skills 

necessary for completing assessments; and 4) living to far geographically from an 

assessment centre or too remotely for a home visit.  Baseline assessments were 

conducted face-to-face either in the participant’s place of residence or a BDR centre. 

Follow-up assessments were predominantly face-to-face with the exception telephone 

interviews used for some of the healthy control participants. Follow-up interviews were 

annually conducted for participants with cognitive impairment, and every 1 to 5 years 

(depending on age) for cognitively healthy participants. Clinical assessment was 

performed using the Clinical Dementia Rating (CDR), which is measured on a 5 point 

scale (0,0.5,1,2,3) (Morris, 1997).  
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 Post-mortem neuropathological assessment 

Post-mortem brains underwent full neuropathological dissection, sampling and 

characterisation by experienced neuropathologists in each of the five network brain 

banks using a standardised BDR protocol which was based on the BrainNet Europe 

initiative (Alafuzoff at al., 2008; Bell at al., 2008). This protocol was used to generate 

a description of the regional pathology within the brain together with standardised 

scoring (see section 1.1.4). In this chapter I considered five variables representing four 

neuropathological features:  

1. Braak NFT stage which captures the progression of NFT pathology (Braak and 

Braak, 1991; Braak at al., 2006) 

2. Thal phase which captures the regional distribution of Aβ plaques (Thal at al., 

2002) 

3. CERAD stage/ density which profiles neuritic plaque density (Mirra at al., 1991; 

Montine at al., 2012) 

4. Braak LB stage which captures the progression of α-synuclein throughout the 

brain (Braak at al., 2003) 

5. TDP-43 status - a binary indicator of the TDP-43 inclusions, which was 

assessed using immunohistochemistry to identify the presence of 

phosphorylated TDP-43 in the amygdala, hippocampus and adjacent temporal 

cortex.  

Braak NFT stage, Thal phase, CERAD density and Braak LB stage were analysed as 

continuous variables, utilising the semi-quantitative nature of these measures to 

identify dose-dependent relationships of increasing neuropathological burden. TDP-

43 status was analysed as a binary variable. 

4.3.2 DNA methylation data 

After stringent data quality control (see section 3.2.2) the BDR dataset consisted of 

DNAm estimates for 800,916 DNAm sites profiled in 1,221 samples (632 donors [53% 

male]; 610 PFC; 611 OCC; age range = 41-104 years, median = 84 years, mean = 

83.49 years). Tissue samples from the PFC and OCC were selected since the PFC is 

one of the first areas affected in AD (the entorhinal cortex stage; Braak NFT Stages I-

II) and the OCC is only affected at the latest stages (the neocortex stage; Braak NFT 

Stages V-VI)( see Figure 1.1).  
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4.3.3 APOE genotyping 

In order to determine APOE status, samples were genotyped for APOE ε2, ε3 and ε4 

alleles using an optimised TaqMan assay for SNPs rs7412 and rs429358 (Applied 

Biosystems). The genotype call rate was 99.7% (Brookes at al., 2018).  APOE status 

was modelled as two numeric variables counting the number ε2 and ε4 alleles each 

individual had. ε2 is rare and only 3 donors had an ε2/ε2 genotype, therefore the ε2/ε2 

individuals were combined with the individuals with one ε2 allele. In addition to APOE 

genotype, samples were also profiled using a SNP array as described in Chapter 5 

section 5.3.2.2, although these data were not used in the analysis in this chapter. 

4.3.4 Investigating the effects of confounding variables on EWAS 

DNAm measurements are potentially influenced by technical (e.g. plate on which the 

sample were run) and biological (e.g. cellular heterogeneity) confounding influences 

(van Iterson, van Zwet, BIOS Consortium, & Heijmans, 2017). It is essential to control 

for test-statistic inflation in EWAS as it can lead to false positives (van Iterson at al., 

2017). In GWAS, the genomic inflation factor (denoted lambda; λ) is used to quantify 

inflation by comparing test statistics across all SNPs compared to those under the null 

hypothesis (van Iterson at al., 2017). In EWAS, test-statistics can be impacted by both 

inflation and bias (Leek, Johnson, Parker, Jaffe, & Storey, 2012).  If there is bias in the 

test statistics this can lead to a shift in the effect size distribution resulting from 

confounding variables (Leek at al., 2012). To identify if there was test-statistic inflation 

within the BDR DNAm dataset I ran several analyses with the aim of finding the optimal 

regression model in order to control for inflation without including excessive covariates 

and reducing power. The addition of too many covariates can lead to overfitting, where 

the model ends up measuring random noise as opposed to the relationship between 

the variables. 

 Calculating Principal Components 

Principal component analysis (PCA) is a mathematical procedure that transforms a 

number of potentially correlated variables into a smaller number of uncorrelated 

variables called principal components (PCs). The first PC accounts for as much of the 

variability in the data as possible, and each succeeding PC accounts for as much of 

the remaining variability as possible. I used the ‘prcomp’ package in R to generate 
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PCs for the BDR DNAm data. I then calculated the correlation coefficient and the 

amount of variation explained in in PC1-PC10 by known covariates, which was 

calculated using regression models, where PC was the dependent variable and the 

selected covariates (age, sex, derived cell proportions, 96-well plate the samples were 

run, brain bank and PMI) were iteratively included as independent variables. I coded 

brain bank and plate as dummy variables (coded 0 or 1 to indicate if they are within 

that grouping variable).  

Other methods have been suggested to remove the effects of unknown confounders 

and batch effects in DNAm data, including Surrogate Variable Analysis (SVA).The sva 

R package (Leek at al., 2012) contains functions for removing batch effects and other 

unwanted variation in high-throughput experiments. Surrogate variables are 

covariates constructed directly from high-dimensional data (e.g. DNAm data / gene 

expression data) that can be used in subsequent analyses to adjust for unknown (or 

latent) sources of noise and are therefore very similar to PCs. I repeated the analyses 

described above incorporating SV’s generated using sva rather than PCs generated 

using prcomp to identify which method is optimal to use with the BDR dataset. The 

difference between the two methods is that to calculate the SVs, the analysis takes 

into consideration the variable of interest.  I created two model matrices using the 

model.matrix function: a null model and full model. The null model contained the 

known covariates. The full contained the known covariates and the variable of interest 

which I chose to be Braak NFT stage. The sva function was then used to calculate the 

SVs and I investigated how much variance was explained in PC1 by the SVs. 

 Measuring inflation and applying Bacon 

I ran a preliminary EWAS using the PFC samples, associating variable DNAm against 

Braak NFT stage to identify if there was any evidence for systematic inflation in the 

results. I ran two mixed effects linear regression models: 1) a model including age, 

sex, experimental batch (i.e. the 96 well plate the samples were run on) and derived 

cell proportions as covariates, and 2) a model including the same covariates but 

additionally including PC1 (as derived as the optimal covariate to include to reduce 

inflation; see section 4.4.2). I used the λ genomic inflation factor as a measure of 

inflation. If λ is > 1, this suggests there is inflation in the data.  Of note, λ is not 

necessarily the best statistic to capture inflation in EWAS as λ overestimates inflation 
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in the presence of a moderate proportion of true associations (van Iterson at al., 2017). 

An additional measure to determine if there is inflation in the results is to identify bias 

in the test statistics. I assessed the t-statistic which is the calculated difference 

represented in units of standard error. I plotted the t-statistics and visually inspected 

them for evidence of bias (i.e. if the results were skewed in either direction this 

suggests there is bias). 

4.3.5 Regression against neuropathology 

To identify associations between variable DNAm and neuropathology, I fitted 

regression models using the optimal model as established in section 4.4.2. As data 

for each donor was derived from two cortical regions I used a mixed effects linear 

regression model (for more information see Chapter 2 section 2.3.2), implemented 

with the lme4 (Bates, Mächler, Bolker, & Walker, 2015) and lmerTest (Kuznetsova, 

Brockhoff, & Christensen, 2017) packages. 

To identify DNAm sites associated with dementia neuropathology, I conducted an 

EWAS in which DNAm at each probe was regressed against all five neuropathology 

measures (Braak NFT stage, CERAD density, Thal Phase, Braak LB stage and 

TDP43-status). To identify the p-value I used an ANOVA comparing the full model 

(see full model below) including the five neuropathology measures to a null model (see 

null model below) in which all five neuropathology measures were excluded. If the 

ANOVA provides evidence that the models are different (i.e. a significant p-value), this 

suggests that variable DNAm is driven by changes in neuropathology. In each model 

the following covariates were included as fixed effects: age, sex, experimental batch, 

PC1 and derived neural cell proportions. Cell proportions were derived using an 

algorithm developed by our lab group (Hannon at al., unpublished) which classifies the 

cellular populations in the cortex into three proportions (neurons, oligodendrocytes, 

and other glial populations and the remaining cell types). Two of the three proportions 

(neuronal and glial populations / remaining cell types) were included in the model to 

eliminate the effects of multi-collinearity. Individual (donor ID) was included as a 

random effect to account for the fact that DNAm was quantified in multiple tissues from 

a single donor. Equations for the mixed effect regression models are shown below: 
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EWAS of all five neuropathology measures full model, where 𝑖𝑖 = DNAm site: 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦[𝑖𝑖]~ 𝐵𝐵𝐵𝐵𝑦𝑦𝑦𝑦𝐵𝐵 𝐷𝐷𝑁𝑁𝑁𝑁 𝑠𝑠𝑚𝑚𝑦𝑦𝑠𝑠𝑚𝑚 +  𝐶𝐶𝐶𝐶𝐶𝐶𝐷𝐷𝐷𝐷 𝑑𝑑𝑚𝑚𝑦𝑦𝑠𝑠𝑖𝑖𝑚𝑚𝑦𝑦 +   𝑁𝑁ℎ𝑦𝑦𝑦𝑦 𝑃𝑃ℎ𝑦𝑦𝑠𝑠𝑚𝑚  + 𝐵𝐵𝐵𝐵𝑦𝑦𝑦𝑦𝐵𝐵 𝐿𝐿𝐵𝐵 𝑠𝑠𝑚𝑚𝑦𝑦𝑠𝑠𝑚𝑚

+  𝑁𝑁𝐷𝐷𝑃𝑃43 + 𝑦𝑦𝑠𝑠𝑚𝑚 + 𝑠𝑠𝑚𝑚𝑠𝑠 + 𝑏𝑏𝑦𝑦𝑚𝑚𝑏𝑏ℎ +  𝑏𝑏𝑚𝑚𝑦𝑦𝑦𝑦 𝑝𝑝𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝐵𝐵𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦𝑠𝑠 + 𝑃𝑃𝐶𝐶1 + (1|𝑖𝑖𝑦𝑦𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑦𝑦𝑦𝑦) 

 

EWAS of all five neuropathology measures null model, where 𝑖𝑖 = DNAm site:  

𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦[𝑖𝑖]~ 𝑦𝑦𝑠𝑠𝑚𝑚 + 𝑠𝑠𝑚𝑚𝑠𝑠 + 𝑏𝑏𝑦𝑦𝑚𝑚𝑏𝑏ℎ +  𝑏𝑏𝑚𝑚𝑦𝑦𝑦𝑦 𝑝𝑝𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝐵𝐵𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦𝑠𝑠 + 𝑃𝑃𝐶𝐶1 + (1|𝑖𝑖𝑦𝑦𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑦𝑦𝑦𝑦) 

 

I next conducted an EWAS for each of the five neuropathology measures separately 

(Braak NFT stage, CERAD density, Thal Phase, Braak LB stage and TDP43-status) 

and the global clinical dementia rating (CDR; a measure of cognitive decline) using 

mixed effect regression model where age, sex, experimental batch, PC1 and derived 

neural cell proportions were included as fixed effects and individual was included as a 

random effect. Cognitive decline has previously been shown to be correlated with 

neurodegeneration (Risacher at al., 2017), hence I included CDR as an additional 

EWAS variable to further assess this hypothesis. To identify the p-value I used an 

ANOVA comparing the full model including the neuropathology measure or CDR to a 

null model in which the neuropathology measure or CDR was excluded. The numbers 

of samples included in each regression model are shown in Table 4.1. Equations for 

the mixed effect regression models are shown below: 

EWAS of neuropathology full model, where 𝑖𝑖 = DNAm site: 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦[𝑖𝑖]~ 𝑦𝑦𝑚𝑚𝑖𝑖𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑦𝑦 𝑚𝑚𝑚𝑚𝑦𝑦𝑠𝑠𝑖𝑖𝐵𝐵𝑚𝑚 + 𝑦𝑦𝑠𝑠𝑚𝑚 + 𝑠𝑠𝑚𝑚𝑠𝑠 + 𝑏𝑏𝑦𝑦𝑚𝑚𝑏𝑏ℎ +  𝑏𝑏𝑚𝑚𝑦𝑦𝑦𝑦 𝑝𝑝𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝐵𝐵𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦𝑠𝑠 + 𝑃𝑃𝐶𝐶1 

+ (1|𝑖𝑖𝑦𝑦𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑦𝑦𝑦𝑦) 

 

EWAS of neuropathology null model, where 𝑖𝑖 = DNAm site: 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦[𝑖𝑖]~ 𝑦𝑦𝑠𝑠𝑚𝑚 + 𝑠𝑠𝑚𝑚𝑠𝑠 + 𝑏𝑏𝑦𝑦𝑚𝑚𝑏𝑏ℎ +  𝑏𝑏𝑚𝑚𝑦𝑦𝑦𝑦 𝑝𝑝𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝐵𝐵𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦𝑠𝑠 + 𝑃𝑃𝐶𝐶1 + (1|𝑖𝑖𝑦𝑦𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑦𝑦𝑦𝑦) 

 

 Identifying differential effects across cortical brain regions 

In order to identify if there was an interaction with cortical region (i.e. different 

associations in the PFC compared to the OCC) for each neuropathology measure, I 

ran a mixed effects regression analysis including brain region as an interaction term 

in the regression model. To identify the p-value I used an ANOVA comparing the full 
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model including the interaction term to a null model in which the interaction was 

excluded. The equation for the mixed effect regression models for the interaction term 

are shown below. 

EWAS of neuropathology interaction with brain region, where 𝑖𝑖 = DNAm site: 

 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦[𝑖𝑖]~ 𝑦𝑦𝑚𝑚𝑖𝑖𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑦𝑦 𝑚𝑚𝑚𝑚𝑦𝑦𝑠𝑠𝑖𝑖𝐵𝐵𝑚𝑚 + 𝑦𝑦𝑠𝑠𝑚𝑚 + 𝑠𝑠𝑚𝑚𝑠𝑠 + 𝑏𝑏𝑦𝑦𝑚𝑚𝑏𝑏ℎ +  𝑏𝑏𝑚𝑚𝑦𝑦𝑦𝑦 𝑝𝑝𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝐵𝐵𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦𝑠𝑠 + 𝑃𝑃𝐶𝐶1 

+ 𝑏𝑏𝐵𝐵𝑦𝑦𝑖𝑖𝑦𝑦 𝐵𝐵𝑚𝑚𝑠𝑠𝑖𝑖𝑦𝑦𝑦𝑦 +  𝑦𝑦𝑚𝑚𝑖𝑖𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑦𝑦 𝑚𝑚𝑚𝑚𝑦𝑦𝑠𝑠𝑖𝑖𝐵𝐵𝑚𝑚 ∗ 𝑏𝑏𝐵𝐵𝑦𝑦𝑖𝑖𝑦𝑦 𝐵𝐵𝑚𝑚𝑠𝑠𝑖𝑖𝑦𝑦𝑦𝑦 + (1|𝑖𝑖𝑦𝑦𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑦𝑦𝑦𝑦) 

 

EWAS of neuropathology interaction with brain region null model, where 𝑖𝑖 = DNAm 

site: 

 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦[𝑖𝑖]~ 𝑦𝑦𝑚𝑚𝑖𝑖𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑦𝑦 𝑚𝑚𝑚𝑚𝑦𝑦𝑠𝑠𝑖𝑖𝐵𝐵𝑚𝑚 + 𝑦𝑦𝑠𝑠𝑚𝑚 + 𝑠𝑠𝑚𝑚𝑠𝑠 + 𝑏𝑏𝑦𝑦𝑚𝑚𝑏𝑏ℎ +  𝑏𝑏𝑚𝑚𝑦𝑦𝑦𝑦 𝑝𝑝𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝐵𝐵𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦𝑠𝑠 + 𝑃𝑃𝐶𝐶1 

+ 𝑏𝑏𝐵𝐵𝑦𝑦𝑖𝑖𝑦𝑦 𝐵𝐵𝑚𝑚𝑠𝑠𝑖𝑖𝑦𝑦𝑦𝑦 + (1|𝑖𝑖𝑦𝑦𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑦𝑦𝑦𝑦) 

 

 Identifying independent neuropathology associations 

In order to confirm if the neuropathology measures were characterised by common or 

independent associations with DNAm I ran a mixed effects regression analysis 

including all neuropathology measures in the model. To identify the p-values I used 

ANOVAs comparing the full model including all neuropathology measures to null 

models where the target neuropathology measure was excluded in each case. 

Equation for the mixed effect regression model including all neuropathology measures 

is shown below: 

EWAS of all neuropathology measures, where 𝑖𝑖 = DNAm site: 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦[𝑖𝑖]~ 𝐵𝐵𝐵𝐵𝑦𝑦𝑦𝑦𝐵𝐵 𝑁𝑁𝑦𝑦𝑦𝑦𝑠𝑠𝑦𝑦𝑚𝑚 𝑆𝑆𝑚𝑚𝑦𝑦𝑠𝑠𝑚𝑚 + 𝑁𝑁ℎ𝑦𝑦𝑦𝑦 𝑃𝑃ℎ𝑦𝑦𝑠𝑠𝑚𝑚 + 𝑏𝑏𝑚𝑚𝐵𝐵𝑦𝑦𝑑𝑑 𝑑𝑑𝑚𝑚𝑦𝑦𝑠𝑠𝑖𝑖𝑚𝑚𝑦𝑦 + 𝐿𝐿𝑚𝑚𝐿𝐿𝑦𝑦 𝐵𝐵𝑦𝑦𝑑𝑑𝑦𝑦 𝑠𝑠𝑚𝑚𝑦𝑦𝑠𝑠𝑚𝑚 + 

𝑁𝑁𝐷𝐷𝑃𝑃 − 43 𝑠𝑠𝑚𝑚𝑦𝑦𝑖𝑖𝑠𝑠 + 𝑦𝑦𝑠𝑠𝑚𝑚 + 𝑠𝑠𝑚𝑚𝑠𝑠 + 𝑏𝑏𝑦𝑦𝑚𝑚𝑏𝑏ℎ +  𝑏𝑏𝑚𝑚𝑦𝑦𝑦𝑦 𝑝𝑝𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝐵𝐵𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦𝑠𝑠 + 𝑃𝑃𝐶𝐶1 + (1|𝑖𝑖𝑦𝑦𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑦𝑦𝑦𝑦) 

EWAS of all neuropathology measures null model, where 𝑖𝑖 = DNAm site: 

𝐷𝐷𝐷𝐷𝐷𝐷 𝑚𝑚𝑚𝑚𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦[𝑖𝑖]~𝑓𝑓𝑦𝑦𝑖𝑖𝐵𝐵 𝐵𝐵𝑚𝑚𝑚𝑚𝑦𝑦𝑖𝑖𝑦𝑦𝑖𝑖𝑦𝑦𝑠𝑠 𝑦𝑦𝑚𝑚𝑖𝑖𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝑚𝑚ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑦𝑦 𝑚𝑚𝑚𝑚𝑦𝑦𝑠𝑠𝑖𝑖𝐵𝐵𝑚𝑚𝑠𝑠 + 𝑦𝑦𝑠𝑠𝑚𝑚 + 𝑠𝑠𝑚𝑚𝑠𝑠 + 𝑏𝑏𝑦𝑦𝑚𝑚𝑏𝑏ℎ

+  𝑏𝑏𝑚𝑚𝑦𝑦𝑦𝑦 𝑝𝑝𝐵𝐵𝑦𝑦𝑝𝑝𝑦𝑦𝐵𝐵𝑚𝑚𝑖𝑖𝑦𝑦𝑦𝑦𝑠𝑠 + 𝑃𝑃𝐶𝐶1 + (1|𝑖𝑖𝑦𝑦𝑑𝑑𝑖𝑖𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑦𝑦𝑦𝑦) 
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 Significance threshold 

I used an experiment wide significance threshold of p<9e-08 to identify differentially 

methylated positions associated with neuropathology. This threshold has been 

empirically derived by our group via the simulation of null DNAm datasets using 

Illumina EPIC array data (Mansell at al., 2019).  

 

Table 4.1: Samples and donors included in the EWAS for each phenotype tested. 

Phenotype Measurement 
Brain Region 

Total Samples Donors 
Occipital Prefrontal 

Braak  NFT Stage 

0 22 21 43 22 

1 61 59 120 64 

2 116 116 232 120 

3 73 77 150 78 

4 60 59 119 62 

5 101 101 202  103 

6 158 157 315 163 

Total   591 590 1181 612 

CERAD density 

no 156 159 315 165 

sparse 80 80 160 82 

moderate 86 82 168 88 

high 228 230 458 237 

Total   550 551 1101 572 

Thal Phase 

0 62 62 124 64 

1 69 69 138 73 

2 66 64 130 67 

3 81 82 163 84 

4 81 80 161 83 

5 176 181 357 186 

Total   535 538 1073 557 

Braak LB Stage 
0 366 371 737 385 

1 5 5 10 5 
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2 8 7 15 8 

3 22 20 42 22 

4 20 21 41 22 

5 27 27 54 28 

6 68 68 136 69 

Total   516 519 1035 539 

TDP 43 present 
0 451 444 895 463 

1 122 125 247 127 

Total   573 569 1142 590 

Global CDR 

0 131 132 263 137 

0.5 54 55 109 56 

1 75 78 153 80 

2 60 60 120 62 

3 139 136 275 141 

Total   459 461 920 476 

APOE-ε2 
0 536 534 1070 553 

1&2 61 62 123 65 

Total   597 596 1193 618 

APOE-ε4 

0 279 277 556 285 

1 275 278 553 290 

2 43 41 84 43 

Total   597 596 1193 618 
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4.3.6 Identifying differentially methylated regions 

In order to identify differentially methylated regions (DMRs) – i.e. genomic regions in 

which DNAm across multiple sites is consistently associated with a phenotype – I used 

dmrff (Suderman at al., 2018). Dmrff identifies regions by combining summary 

statistics from proximally located DNAm sites. For more details on dmrff see Chapter 

2 section 2.3.4. I applied dmrff to the results from each of the individual EWAS 

analyses.  

4.3.7 Generation of co-methylation networks 

To identify modules (i.e. clusters) of highly correlated DNAm sites in the genome I 

used the R package weighted gene correlation network analysis (WGCNA) 

(Langfelder & Horvath, 2008). WGCNA can be used as a gene ranking mechanism 

and the underlying hypothesis of this methodology proposes that genes/loci which are 

highly co-regulated (i.e co-vary together) likely share underlying biological processes. 

The package was originally developed for gene expression data although it can be 

applied to DNAm data. An overview of the methodology of WGCNA applied to gene 

expression data is shown in Figure 4.2. The first step of the WGCNA process is to 

construct a network of DNAm sites which are co-regulated within the dataset. The 

network represents one system which is then sub-grouped into modules of co-

regulated sites which have related functions. The modules can then be used in a range 

of different ways; for example they can be associated with phenotypes of interest (e.g. 

neuropathology, cell proportions) and pathway or gene ontology (GO) analyses can 

be applied to investigate the biological functions of each of the modules.  

Preceding the generation of network modules in the BDR DNAm data, I first removed 

non-variable probes (defined as probes smaller than the median variance across all 

sites; median variance = 0.18%) from the normalised DNAm data. This left 400,458 

(50%) probes for analysis. Samples were then clustered based on Euclidean distances 

and outliers were removed (n = 17 outliers). WGCNA uses a ‘soft-thresholding’ 

approach (i.e. weighted) for generating the biological networks (Langfelder & Horvath, 

2008). The pickSoftThreshold function from the WGCNA package was used to analyse 

scale-free network topology (defined as following a power law distribution) and identify 

the optimal soft-thresholding power. I visually ascertained the optimal threshold by 

inspecting a plot showing the scale free topology, fitting index R2 versus the different 
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soft-thresholding powers (see Figure 4.3). Langfelder and Horvath (2008) suggest the 

optimal soft-thresholding power is where the curve flattens out after reaching a high 

R2 value (>0.80). The connection strength between two DNAm sites was weighted 

using a soft-threshold value of 16 (see Figure 4.3). Network construction and module 

detection was performed in a block wise manner whereby I based the calculation on 

a maximum block size of 10,000 (the maximum number of probes included in each 

block when generating the networks). Of note, the modules were constructed 

irrespective of the direction of correlation between the probes. In order to generate 

networks I used the blockwiseModules function. The modules were arbitrarily assigned 

colours with the grey module being excluded as it contains unassigned probes. Module 

eigengenes (MEs; defined as the first principal component calculated from the DNAm 

values of all members of that module and represents the DNAm profile in a given 

module (Langfelder & Horvath, 2008)) were estimated for each module using the 

moduleEigengenes function. Each sample was assigned an ME value and this 

represents the shared DNAm profile of the module.  
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Figure 4.2: Overview of WGCNA methodology. This flowchart presents an overview of the main steps of 
Weighted Gene Co-expression Network Analysis. Figure and legend reprinted from (Langfelder & Horvath, 2008).  
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 Associating modules to neuropathology and other traits of interest  

All identified modules were correlated with each of the five neuropathology measures 

(using Pearson’s correlation coefficient) as well as other traits including derived neural 

cell proportions, age, sex and APOE genotype. Covariates were not regressed out 

since differential methylation associated with them may provide biologically relevant 

insights. In order to identify if associations with neuropathology were driven by 

covariates, I subsequently ran regression models for the modules of interest (i.e. the 

modules which were significantly correlated with neuropathology) including the 

covariates in the data. Modules which remained significant were carried through to 

subsequent analyses.  

4.3.8 Module significance and Pathway analysis  

For the modules showing significant associations across the 28 identified co-

methylation modules (Bonferroni p < 0.05/28 = 0.002) with neuropathology after 

controlling for covariates, I calculated the module membership (MM) and probe 

significance. MM was calculated as the Pearson correlation coefficient between the 

Figure 4.3: Soft power threshold for WGCNA analysis. Analysis of network topology for various soft-thresholding 
powers. Figure shows the scale-free fit index R2 (y-axis) as a function of the soft-thresholding power (x-axis) for the Brains 
for Dementia Research DNA methylation network. 

 



 

180 
 

DNAm value of each probe and the ME values, measuring the association between a 

probe and the module which it was assigned to. The probe significance was then 

calculated to identify the strength of the correlation between the DNAm methylation 

value of each probe and the trait of interest: Pearson’s correlation was used for 

continuous traits and Spearman’s correlation was used for binary traits.  

Gene ontology (GO) pathway analysis was applied to the list of genes annotated to 

the probes in each co-methylation module associated with at least one measure of 

neuropathology to identify enrichments for specific biological processes. The Illumina 

UCSC gene annotation was used to create the test gene lists for pathway analysis. 

Where probes were not annotated to any gene (e.g. if they are in intergenic locations), 

they were excluded from this analysis. Where probes were annotated to >1 gene, each 

gene was included in GO analysis.  Analyses were performed using the methylglm 

function within the methylGSA package developed by Ren and Kuan (2019) using the 

default parameters. methylglm adjusts for the number of DNAm sites in the logistic 

regression model (for more details see Chapter 2 section 2.3.4).  
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4.4  Results

Figure 4.4: Summary of results for Chapter 4: Epigenome wide association study of Neuropathology in the Brains for Dementia research Cohort. 
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4.4.1 Cohort characteristics 

Donors had a mean age at death of 83.49 years (SD = 9.1) and 53% were male. Males 

were significantly younger at death by 2.69 years (p=2.33e-07) in comparison to 

females, which is consistent with epidemiological studies (Oksuzyan, Juel, Vaupel, & 

Christensen, 2008; Owens, 2002). In 1181 samples (612 donors) NFT pathology was 

quantified using Braak NFT stage (Braak and Braak, 1991; Braak at al., 2006) with a 

mean Braak score of 3.74 (SD = 1.90; see Figure 4.5). Aβ was quantified using two 

variables: Thal phase (Thal at al., 2002) with a mean value of 3.09 (SD = 1.78) across 

1073 samples (557 donors) and neuritic plaque density scored using the CERAD 

classification (Mirra at al., 1991; Montine at al., 2012) with a mean value of 1.69 (SD 

= 1.26) across 1101 samples (539 donors; see Figure 4.5). α-synuclein pathology was 

quantified using Braak LB stage, and across 1035 samples (590 donors) the mean 

score was 1.36 (SD = 2.26; see Figure 4.5). TDP-43 status was available for 1142 

samples (590 donors), with 247 samples (127 donors; 22%) being classed as being 

TDP-43 positive (see Figure 4.5). In 920 samples (476 donors) CDR was measured, 

with an average score of 1.38 (SD = 1.22) out of a possible 3 (0 = normal; 0.5 = very 

mild Dementia; 1 = mild dementia; 2 = moderate dementia; 3 = severe dementia; see 

Figure 4.5). 
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Figure 4.5: Distribution of neuropathology, CDR and APOE genotype (ε3 and ε4) in the BDR DNA methylation cohort split by brain region. CDR = Clinical dementia 
rating. BR = brain region. Braak NFT Stage = Braak neurofibrillary tangle stage. Braak LB Stage = Braak Lewy body Stage.
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4.4.2 Establishing the best model to use for EWAS 

I ran a series of analyses to establish the optimal EWAS model to use on the BDR 

data. I first generated PC’s using prcomp finding that PC1 explained the most variation 

in the data (96.8%), with subsequent PC’s explaining considerably less of the variation 

(PC2=0.76%, PC3=0.34%, PC4=0.23%, PC5=0.15%). I then associated PC1 against 

known traits to identify how much of the variation is explained by known covariates. 

From the correlation matrix and heatmap against all traits (see Figure 4.6) it can be 

seen that brain bank (r=-0.5, p=7.6e-79) and experimental plate (r=-0.4, p=2.4e-39) 

are both highly correlated with PC1, highlighting the importance of experimental batch 

effects. To further explore this, I plotted heatmaps of brain bank and plate (coded as 

dummy variables) against the first 10PCs, to help identify the main source of variation 

(see Figure 4.6 B and C). The samples from Manchester had the largest influence in 

PC1 (r=0.4, p=1.1e-47), followed by Bristol (r=0.27, p=3.9e-22). More specifically, 

plate 8 has the highest correlation with PC1 (r=0.42, p=3.43-54), followed by plate 12 

(r=-0.29, p=1.7e-24). 

 

 

 

 

 



 

185 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: Heatmaps of the correlation between principal components (PC) 1-10 and known covariates. Shown are 
correlations (A) against all known covariates; (B) against plate – coded as a dummy variable and (C) against brain bank – 
coded as a dummy variable.  NFT = neurofibrillary tangle stage; LB = Lewy body; PMI = post mortem interval; Thal = Thal 
phase; plate = 96 well array on which the samples were run. Cell proportions were estimated using a deconvolution algorithm 
incorporating cell-type-specific DNAm profiles generated using fluorescence activated nuclei sorting (FANS); cortical nuclei 
were stained with markers for neurons (NeuN+) and oligodendrocytes (Sox10+) and the remaining cells (double neg) before 
purification and DNAm profiling. Stars represent significance, where p-value thresholds were Bonferroni corrected for 
multiple testing (22 independent tests) *=p<0.002, **=p<0.0005 and ***=p<4.52e-05. 
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Cell proportions were also significantly correlated with PC1 (NeuN+: r=0.17, p= 2.1e-

09; SOX10+: r= -0.292, p= 2.2e-25; and double negative r= 0.393, p= 2.9e-46). DNAm 

differs dramatically between cell types (Mendizabal & Yi, 2016) and so cellular 

heterogeneity can significantly influence the quantification of DNAm in bulk tissue. In 

addition, neuropathology is associated with loss of specific cell types (e.g. 

neurons)(Gómez-Isla at al., 1997). Therefore, estimations of cell-type composition is 

an important variable to consider when analysing bulk tissue in studies of 

neuropathology.  

In order to visualise the effect specific confounders were having on the PCs I plotted 

them, colouring samples by the trait to better visualise any potential confounding (see 

Figure 4.7). Brain bank was most correlated with PC1 (r=-0.5, p=7.6e-79; see Figure 
4.6 and Figure 4.7) but also strongly correlated with PC3 (r=-0.43, p=1.6e-56; see 

Figure 4.6). Derived cell proportions were most correlated with PC2 (NeuN+: r=-

0.9128, p=2.2e-308; SOX10+: r= 0.9564, p= p=2.2e-308; and double negative: r-

0.4188, p= 5.0e-53; see Figure 4.6 and Figure 4.7) and explained nearly all of the 

variation in this PC (see Table 4.2). Sex was most correlated with PC4 and explained 

nearly all of the variation in this PC (see Table 4.2).  

Because PC1 explained the most variation in the data (96.8%) I was most interested 

in identifying the variation explained by known covariates in this PC. Plate explained 

nearly half of the variation in PC1 (44.94%, see Table 4.2) with cell proportions 

increasing this to ~60% (see Table 4.3). Further covariates had little influence on PC1 

and the remaining variation is not explained by known covariates. The addition of 

Braak NFT stage in the model against PC1 explained little extra variation in the data 

(see Table 4.6). This suggests PC1 could be a useful covariate to include in 

neuropathology analysis to account for unknown variation, with other known variables 

being added as specific confounders.  
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Figure 4.7: Plots of principal components (PCs) against significantly correlated traits. PC = Principal component. The % after the PC is the amount of variance 
explained in the Brains for Dementia research DNA methylation datatset by that specific PC. Plate = 96 array on which the samples were run. Cell proportions were 
calculated based on an algorithm which used fluorescence activated nuclei sorting (FANS) data where cortical nuclei were stained with markers for neurons (NeuN+) 
and oligodendrocytes (Sox10+) and the remaining cells (double neg). 
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Table 4.2: Variance explained by each individual known covariate in the first five principal components 
(PCs). R2 – a measure of the variance explained by the traits and shows how well terms fit the regression model.  

 Covariates included 
in regression model R2 (%) PC1 R2 (%) PC2 R2 (%)  PC3 R2 (%) PC4 R2 (%) PC5 

Plate 45.55 5.07 34.93 3.89 23.82 

Cell proportions 17.44 98.29 19.22 4.13 67.48 

Sex 0.06 0.22 4.94 93.52 0.71 

Age 0 0.01 0.2 1.72 1.14 

BR 0.43 3.31 8.16 1.16 7.59 

PMI 0.23 -0.07 0.18 -0.08 1.86 

 

Table 4.3: Additive variance explained by known covariates in the first five principal components (PCs). 
AdjR2 = adjusted R2 – a measure of the variance explained which shows how well terms fit the regression model 
where the statistic is adjusted based on the number of independent variables in the model 

Covariates included in regression model AdjR2 
(%) PC1 

AdjR2 
(%) PC2 

AdjR2 
(%) PC3 

AdjR2 
(%) PC4 

AdjR2 
(%) PC5 

Plate 44.94 4.01 34.2 2.82 22.97 

Plate+NeuN 45.47 84.42 43.32 4.16 27.06 

Plate+NeuN+DoubleNeg 59.13 98.4 57.37 7.22 84.33 

Plate+NeuN+DoubleNeg+Age 59.23 98.43 57.34 9.52 84.41 

Plate+NeuN+DoubleNeg+Age+Sex 59.21 98.47 63.36 98.21 85.33 

Plate+NeuN+DoubleNeg+Age+Sex+BR 59.29 98.46 65.71 98.37 85.77 

Plate+NeuN+DoubleNeg+Age+Sex+BR+PMI 59.38 98.48 65.78 98.37 85.76 

Plate+NeuN+DoubleNeg+Age+Sex+BR+PMI+Braak 60.03 98.48 66.48 98.37 85.78 

Unknown 39.97 1.52 33.52 1.63 14.22 

 

I then repeated the analyses above incorporating SV’s generated using sva to identify 

which method is optimal to use with the BDR dataset. I investigated how much 

variance was explained in PC1 by the SVs (see Table 4.4 and Table 4.5). The majority 

of the variation in PC1 can be explained by SV2 (R2 = 74.56%; see Table 4.4). 

However nearly all of the variation in PC1 was explained by SV1 and SV2 combined 

(R2 = 95.52%; see Table 4.5).  

To work out which traits explained the variation in each SV I calculated and plotted the 

correlations (see Figure 4.8) and the amount of variation explained in SV1-SV3 by 

known covariates (see Table 4.4 and Table 4.5) derived using regression models, 

where SV was the dependent variable and the covariates were iteratively included as 
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independent variables. SV1 was predominantly explained by experimental batch 

(plate) and derived cell proportions, and in combination these variables explained 

97.16% of the variation (see Table 4.6). SV2 was also predominantly explained by 

plate and derived cell proportions (R2 = 67.29%), however around 30% of the variation 

in SV2 was not explained by known covariates. 

My comparisons show that more SVs than PCs would need to be included in a 

regression model to explain the unknown variance in the data. Therefore, in order to 

ensure the model was parsimonious (a model which explains data with a minimum 

number of parameters) I included PC1 in my regression models. Of note, only a very 

small amount of the variance in PC1 is explained by the target phenotypes 

(neuropathology) of my EWAS analysis (neuropathology, LOAD PRS and APOE 

genotype) and it captures more of the unknown variance than SVs without hampering 

the degrees of freedom.  

Table 4.4: Variance explained by surrogate variables (SVs) in principal component (PC) 1. R2 – a measure 
of the variance explained by the SVs and shows how well terms fit the regression model. 

Surrogate Variables R2 (%) PC1 

SV1 20.88 

SV2 74.56 

SV3 0.95 

SV4 0.71 

SV5 1.10 

SV6 -0.08 

SV7 -0.07 

SV8 -0.03 

SV9 -0.08 

SV10 -0.08 
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Table 4.5: Additive variance explained by surrogate variables (SVs) in principal component (PC) 1. AdjR2 = 
adjusted R2 – a measure of the variance explained which shows how well terms fit the regression model where the 
statistic is adjusted based on the number of independent variables in the model. 

 Surrogate Variables  AdjR2 (%) 
PC1 

SV1 20.88 

SV1+SV2 95.52 

SV1+SV2+SV3 96.56 

SV1+SV2+SV3+SV4 97.36 

SV1+SV2+SV3+SV4+SV5 98.54 

SV1+SV2+SV3+SV4+SV5+SV6 98.54 

SV1+SV2+SV3+SV4+SV5+SV6+SV7 98.56 

SV1+SV2+SV3+SV4+SV5+SV6+SV7+SV8 98.62 

SV1+SV2+SV3+SV4+SV5+SV6+SV7+SV8+SV9 98.62 

SV1+SV2+SV3+SV4+SV5+SV6+SV7+SV8+SV10 98.62 

 

 

 
Table 4.6: Additive variance explained by known covariates in the first three surrogate variables (SVs). 
AdjR2 = adjusted R2 – a measure of the variance explained which shows how well terms fit the regression model 
where the statistic is adjusted based on the number of independent variables in the model. 

Covariates included in regression model AdjR2 (%) SV1 AdjR2 (%) SV2 AdjR2 (%) SV3 

Plate 7.29 36.86 1.99 

Plate+DoubleNeg 27.19 43.09 2.61 

Plate+DoubleNeg+Sox10 96.23 62.01 2.85 

Plate+DoubleNeg+Sox10+NeuN 97.16 67.29 11.12 

Plate+DoubleNeg+Sox10+NeuN+Age 97.19 67.69 12.36 

Plate+DoubleNeg+Sox10+NeuN+Age+Sex 97.21 67.87 99.31 

Plate+DoubleNeg+Sox10+NeuN+Age+Sex+BR 97.22 68.89 99.32 

Plate+DoubleNeg+Sox10+NeuN+Age+Sex+PMI 97.24 69.19 99.32 

Plate+DoubleNeg+Sox10+NeuN+Age+Sex+BR+PMI+Braak 97.26 69.5 99.32 
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Figure 4.8: Heatmaps of the correlation between surrogate variables (SV) 1-10 and known covariates. 
Shown are correlations (A) against all known covariates; (B) against plate – coded as a dummy variable and (C) 
against brain bank – coded as a dummy variable.  NFT = neurofibrillary tangle stage; LB = Lewy body; PMI = post 
mortem interval; Thal = Thal phase; plate = 96 well array on which the samples were run. Cell proportions were 
estimated using a deconvolution algorithm incorporating cell-type-specific DNAm profiles generated using 
fluorescence activated nuclei sorting (FANS); cortical nuclei were stained with markers for neurons (NeuN+) and 
oligodendrocytes (Sox10+) and the remaining cells (double neg) before purification and DNAm profiling. Stars 
represent significance, where p-value thresholds were Bonferroni corrected for multiple testing (22 independent 
tests) *=p<0.002, **=p<0.0005 and ***=p<4.52e-05. 
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 Bacon reduces inflation in the data 

I ran a preliminary EWAS using the PFC samples, associating variable DNAm against 

Braak NFT stage to identify if there was any evidence of inflation in the results. I ran 

two mixed effects linear regression models: 1) including age, sex, batch and derived 

cell proportions as covariates and 2) including the same covariates as (1) but 

additionally including PC1. The inclusion of PC1 reduced inflation (λ=1.34; see Figure 
4.9A) in comparison to the model where it was not included (λ=2.68; see Figure 4.9B).  

 

 

Figure 4.9: Quantile-quantile plots of Braak Stage EWAS in the prefrontal cortex. Shown are the expected 
(x-axis) against the observed (y-axis) quantiles in three EWAS against braak stage where in (A) Principal 
component (PC) 1 was not included as a covariate; in (B) PC1 was included as a covariate; and (C) PC1 was 
included as a covariate and bacon was applied to the results. Lambda = the genomic inflation factor which is a 
measure of inflation - a lambda > 1 suggests there is inflation in the data.  

 

When PC1 was not included in the model there was a slight negative skew in the t-

statistics in comparison to when PC1 was included in the model where the t-statistics 

were normally distributed (see Figure 4.10). This further supports the inclusion of PC1 

in the regression models as a measure to reduce bias.  
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Figure 4.10: T-statistic distribution for two linear regression models against Braak stage, either including 
or excluding PC1.  Shown is the distribution when (A) PC1 was not included in the model and (B) PC1 was 
included in the model. 

 

Although the inclusion of PC1 reduced inflation, there was still some statistical inflation 

(see Figure 4.9B). Subsequently, I applied the bacon function to further reduce 

inflation (van Iterson at al., 2017).  After applying bacon, the inflation was greatly 

attenuated (λ=1.02; see Figure 4.9C) and there was no evidence of bias in the t-

statistics (see Figure 4.10). Based on these results, if there was evidence of inflation 

in my EWAS analyses (λ > 1.2) I applied bacon correction. 

 

4.4.3 Pathology-associated DNA methylation signatures across two 
cortical brain regions 

 Overview of analysis 

Detailed neuropathological data in the BDR cohort was used to investigate the 

accumulation of Aβ plaques (measured by CERAD density and Thal Phase), 

tauopathy (measured by Braak NFT stage), synucleinopathy (measured by Braak LB 

stage), and TDP-43 proteinopathy (a binary variable of TDP-43 presence) influence 

epigenetic regulation. Briefly, to determine which DNAm sites were associated with 

dementia neuropathology I conducted an EWAS including all five measures (Braak 

NFT stage, CERAD density, Thal Phase, Braak LB stage and TDP43-status). I then 

used an ANOVA comparing the full model including the five neuropathology measures 

to a null model in which all five neuropathology measures were excluded. Since the 

model was looking at the effect of all neuropathology measures collectively there is no 

effect size estimate for this analysis. In each model the following covariates were 
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included: age, sex, experimental batch (the specific 96-well plate on which the 

samples were processed), principal component 1 (PC1) and derived cell proportions. 

 Overview of results 

My analysis identified 34 differentially methylation positions (DMPs) associated with 

dementia neuropathology at an experiment wide significance threshold (p<9e-08) (see 

Figure 4.11 and Table 4.7). 16 (47%) of the DMPs were annotated to the EPIC array 

but are not present on the 450K, which demonstrates the utility of the newer platform 

and the advantage of the increased power in comparison to the 450K array. 24 of the 

DMPs were annotated to genes (using the UCSC gene annotation), with 18 of these 

genes being previously implicated in dementia and 6 being annotated to genes which 

have not previously been implicated in dementia.  

 Several neuropathology-associated DMPs are of relevance in the 
context of AD and associated neurobiological functions  

Several of the DMPs identified in the neuropathology EWAS are relevant in the 

context of AD and associated neurobiological functions. These include: 

• cg10208942 (p=1.56e-10) which is located on chromosome 17 and annotated 

to gene SLC16A3 which has been identified as an AD risk gene in previous 

EWAS studies (De Jager at al., 2014; Q. S. Li at al., 2020). 

• cg07061298 (p=2.37e-10) and cg22962123 (p=6.15e-09) which are located on 

chromosome 7 and are annotated to the HOXA3 gene region which has 

consistently been identified as  an AD risk gene in EWAS, with studies reporting 

hypermethylation of this region (R. G. Smith at al., 2018; R. Smith at al., 2021). 

• cg18032191 (p=1.07e-09) located on chromosome 12 and annotated to the 

gene TNFRSF1A which has been shown to be significantly up-regulated in AD 

in the several regions of the cortex including the hippocampus (Wang & Wang, 

2020).  Shang and colleagues (Shang at al., 2015) found associations between 

TNFRSF1A and AD susceptibility in Caribbean Hispanic individuals through a 

genome-wide haplotype association study. Research by Steeland and 

colleagues supports a role for TNFRSF1A in AD pathogenesis by mediating 

neuronal cell death (Steeland at al., 2018). The protein encoded by TNFRSF1A 

is one of the major receptors for tumour necrosis factor –alpha (TNF-alpha) 
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which is an important signalling protein in the immune system (Greco at al., 

2015). 

• cg06913337 (p=2.64e-09) and cg09502865 (p=3.25e-08) located on 

chromosome 16 and annotated to the ZFPM1 locus, which has previously been 

linked to psychosis in AD (Zheng at al., 2015) and has shown to have 

suggestive significance with dementia with Lewy bodies (DLB) (Rongve at al., 

2019). 

• cg20864214 (p=3.09e-08) and cg02776498 (p=3.35e-08) located on 

chromosome 11 and annotated to ARHGEF17 were both previously associated 

with Braak NFT stage in the recent AD EWAS meta-analysis (R. Smith at al., 

2021). 

 Several neuropathology-associated DMPs have not been implicated 
in neurodegenerative disease 

A number of the neuropathology-associated DMPs are annotated to genes that have 

not previously been implicated in neurodegenerative disease. These include: 

• cg09221482 (p=3.93e-09), located on chromosome 6 and annotated to 

AGPAT4 which is a mitochondrial lysophosphatidic acid acyltransferase 

involved in the regulation of  brain phosphatidylcholine, 

phosphatidylethanolamine, and phosphatidylinositol levels (Bradley at al., 

2015). Mice deficient in AGPAT4 have impaired spatial learning and memory 

compared to wild-type mice and this deficiency was associated with reduced 

α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-

D-asparate (NMDA) receptors (Bradley at al., 2017). AMPA and NMDA 

receptors play key roles in studies of learning, memory and neurotoxicity and 

there is a strong association with dysfunction in these receptors and Aβ 

(Danysz & Parsons, 2012). 

• cg07256503 (p=4.78e-09) located on chromosome 9 and annotated to 

NUP214 which is a component of the nuclear pore complex (NPC) with a role 

in protein and mRNA nuclear export (Port at al., 2016). Studies suggest 

changes in NPC could lead to dysfunction in nucleocytoplasmic transport and 

this may contribute to abnormal filamentous (e.g. paired helical filaments) 

aggregates in AD (Sheffield, Miskiewicz, Tannenbaum, & Mirra, 2006). 
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• cg05384277 (p=1.48e-08) located on chromosome 6 and annotated to 

ANKRD6 - a ubiquitous protein that is associated with early development in 

mammals and is highly expressed in the brain, spinal cord, and heart of 

humans (Van Deveire at al., 2012). 

• cg11732190 (p=1.66e-08) located on chromosome 3 and annotated to PRRT3 

which belongs to the family of proline-rich proteins and previous EWAS have 

identified multiple DMPs residing in the PRRT1 and PRRT2 loci (R. Smith at 

al., 2021). 

• cg16021126 (p=5.41e-08) located on chromosome 13 and annotated to 

SERP2 which protects unfolded target proteins against degradation and 

facilitates correct glycosylation. Of note, this site had suggestive significance 

(p<5e-05) with Braak NFT stage in the recent EWAS meta-analysis (R. Smith 

at al., 2021). 
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 Figure 4.11: Cortex EWAS of neuropathology highlights experiment-wide significant differentially methylated positions. A Manhattan plot showing results of a 
neuropathology EWAS conducted across two cortical regions (prefrontal cortex and occipital cortex) including five pathology measures (Braak NFT stage, CERAD density, 
Thal Phase, Braak LB stage and TDP43-status). The significant differentially methylated positions are annotated with their Illumina UCSC gene name, unless they are 
unannotated to a gene. The x-axis shows chromosomes 1-22 and the y-axis shows -log10(P), with the horizontal red line representing experiment wide significance (p < 
9e-08). 
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Table 4.7: Differentially methylated positions (DMPs) associated with neuropathology at an experiment wide significance threshold (p < 9e-08). In total 34 DMPs were 
identified. Probe information is provided corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. The ‘Array’ column 
states if probes are also present on the Illumina 450K array. The ‘Braak Meta P’ relates to p-values for these probes from a recent meta-analysis of AD pathology (R. Smith at 
al., 2021).  The ‘Novel Gene’ column indicates if the gene has previously been implicated in neurodegenerative disease and the ‘Previously Identified in’ column indicates how it 
was previously implicated in dementia. 

DNAm Site P Chr BP Nearest Gene Genic location Array Braak meta P Novel Gene Previously Identified in 

cg10208942 1.56e-10 17 80192754 SLC16A3 5'UTR EPIC  - previous AD_EWAS 

cg07061298 2.37e-10 7 27153847 HOXA3 5'UTR 450K & EPIC 4.57e-13 previous AD_EWAS 

cg08813888 7.69e-10 2 662396 - - 450K & EPIC 8.85e-07 - - 

cg18100976 9.89e-10 8 22446737 PDLIM2 Body EPIC  - previous AD_EWAS 

cg18032191 1.07e-09 12 6443522 TNFRSF1A Body EPIC - previous AD_GWAS 

cg04459751 2.38e-09 4 153499517 - - EPIC  - - - 

cg17877577 2.46e-09 16 73071822 ZFHX3 5'UTR EPIC  - previous AD_EWAS 

cg06913337 2.64e-09 16 88590404 ZFPM1 Body 450K & EPIC 2.79e-01 previous AD_EWAS 

cg09221482 3.93e-09 6 161557754 AGPAT4 Body 450K & EPIC 1.12e-04 novel - 

cg07256503 4.78e-09 9 134074137 NUP214 Body EPIC  - novel - 

cg23880946 4.85e-09 18 22539304 - - EPIC  - - - 

cg15033653 5.13e-09 12 113587581 CCDC42B TSS200 450K & EPIC 3.11e-06 previous AD_EWAS 

cg22962123 6.15e-09 7 27153605 HOXA3 5'UTR 450K & EPIC 2.21e-10 previous AD_EWAS 

cg07010192 7.71e-09 6 114056449 - - EPIC  - - - 

cg13935577 1.07e-08 12 107974897 BTBD11 Body 450K & EPIC 8.17e-10 previous AD_EWAS 

cg19799702 1.13e-08 7 2757342 - - 450K & EPIC 3.71e-03 - - 
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cg14871225 1.39e-08 5 139040820 CXXC5 5'UTR 450K & EPIC 1.32e-07 previous AD_EWAS 

cg05384277 1.48e-08 6 90271986 ANKRD6 TSS200 EPIC  - novel - 

cg11732190 1.66e-08 3 9989042 PRRT3;PRRT3-AS1 Body EPIC - novel - 

cg20864214 3.09e-08 11 73054121 ARHGEF17 Body 450K & EPIC 1.68e-08 previous AD_EWAS 

cg07264904  3.25e-08 13 113633855 MCF2L Body 450K & EPIC 7.76e-06 previous AD_EWAS 

cg09502865 3.25e-08 16 88600155 ZFPM1 Body 450K & EPIC 1.53e-08 previous AD_EWAS 

cg02776498 3.35e-08 11 73054185 ARHGEF17 Body 450K & EPIC 1.55e-07 previous AD_EWAS 

cg07332724 4.41e-08 12 54773114 ZNF385A;LOC102724050 Body EPIC - previous AD_EWAS 

cg17247713 4.51e-08 20 47514319 - - EPIC - - - 

cg17571286 4.96e-08 1 108613442 - - EPIC - - - 

cg17640894 5.06e-08 19 574950 BSG 5'UTR EPIC  - novel - 

cg16021126 5.41e-08 13 44947611 SERP2 TSS1500 450K & EPIC 1.10e-05 novel - 

cg11724984 5.74e-08 12 121890864 KDM2B Body 450K & EPIC 3.27e-09 previous AD_EWAS 

cg20695936 6.04e-08 1 25257624 RUNX3 TSS1500 450K & EPIC 1.04e-05 previous AD_EWAS 

cg25456014 7.17e-08 3 183278432 - - EPIC  - - - 

cg10130088 7.37e-08 11 122138618 - - 450K & EPIC 8.17e-04 - - 

cg16282686 7.77e-08 12 131707495 - - EPIC  - - - 

cg27624319 8.70e-08 20 33147017 MAP1LC3A Body 450K & EPIC 2.54e-06 previous AD_EWAS 
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4.4.4 Individual neuropathology measures associated with DNA 
methylation 

To identify DNAm sites at which differential DNAm is associated with each individual 

neuropathology measure, an EWAS was conducted sequentially for each measure 

(Braak NFT stage, CERAD density, Thal Phase, Braak LB stage and TDP43-status), 

controlling for age, sex, batch, derived cell proportions and PC1 as fixed effects and 

individual as a random effect. To identify if the effects were consistent across the two 

brain regions (OCC and PFC) I ran a further EWAS including an interaction between 

brain region and the measure of interest.  

4.4.5 Braak NFT Stage-associated DNA methylation signatures across 
two cortical brain regions 

I identified 26 experiment-wide significant DMPs associated with Braak NFT stage 

(see Figure 4.12 and Table 4.8). 15 (58%) of the DMPs were specific to the EPIC 

array, which demonstrates the utility of the newer platform and the advantage of the 

increased power in comparison to the 450K array; these 15 sites could not have been 

identified in the recent AD-EWAS of Braak NFT stage which meta-analysed 450K data 

from six cohorts (R. Smith at al., 2021). The average magnitude of effect (i.e. the 

change in DNAm) for the significant DMPs per Braak stage was 0.44% (inter-quartile 

range [IQR] = 0.26-0.57%) and therefore there was a total mean DNAm change of 

2.34% from Braak NFT stage 0-Braak NFT stage VI. Examples of DMP plots showing 

differences in DNAm across the different Braak stages is shown in Figure 4.13. The 

effects were highly consistent across the two regions we tested, as shown by the non-

significant p-values (p > 9e-08) of the interaction term for these sites (see Table 4.8). 

22 (83%) of the DMPs were significantly hypermethylated (i.e. increased methylation 

was associated with higher Braak NFT stage; see Figure 4.14 and Table 4.8) and the 

remaining 4 were hypomethylated (i.e. decreased methylation was associated with 

elevated Braak NFT stage). Of the 26 Braak NFT associated DMPs, 23 were 

annotated to genes (21 unique genes) and four of these genes have not previously 

implicated in dementia: SERP2, PRRT3, GAST and RGS3, although SERP2 had been 

reported to have suggestive significance (p < 5e-05) in the latest AD-EWAS (R. Smith 

at al., 2021; see Table 4.8). The DMPs annotated to SERP2 (cg16021126) and 

PRRT3 (cg11732190) were also identified in the EWAS against all neuropathology 

measures (see section 4.4.3.3 for a brief description of these genes), and both sites 
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were significantly hypermethylated with increased Braak NFT stage (p=7.48e-10, 

p=3.48e-09, respectively).  

 Several Braak NFT-associated DMPs are of relevance in the context 
of AD and associated neurobiological functions  

Several of the genes annotated to the significant DMPs have been previously 

implicated in AD from EWAS, GWAS or animal model studies. For example, 

cg08952306 was significantly hypermethylated (p=1.36e-08) with elevated Braak NFT 

score and is annotated to SH2B2 – an adaptor signalling protein involved in obesity, 

insulin resistance, and glucose intolerance (Jamshidi, Snieder, Ge, Spector, & O’Dell, 

2007). Recent research by Yijun and colleagues found that partial knockout of 

neuronal SH2B in Aβ expressing drosophila has an impact on their mobility and 

neurotransmission and in addition there was increased accumulation of Aβ in these 

drosophila (Shen at al., 2017). They concluded that SH2B1 is likely an upstream 

modulator of Aβ metabolism and suggests it has a potential role in AD pathogenesis. 

cg18032191 was significantly hypermethylated with elevated Braak NFT stage 

(p=7.13e-08) as well as general neuropathology (see 4.4.5.1). It is annotated to 

TNFRSF1A (located on chromosome 12), for more details on this gene see 4.4.5.1. 

 Several Braak NFT-associated DMPs have not previously been 
implicated in neurodegenerative disease 

cg02553166 is annotated to a GAST which has not previously been implicated in 

dementia and was significantly hypermethylated with elevated Braak NFT stage 

(p=1.80e-08). GAST (located on chromosome 17) encodes for gastrin - a hormone 

whose function is to stimulate secretion of hydrochloric acid and the migration of 

gastric epithelial cells (Czinn & Blanchard, 2011). Previous studies have identified that 

the gastrin-releasing peptide (GRP) plays a role in neurological disorders (Roesler, 

Henriques, & Schwartsmann, 2006; Yang at al., 2017). GRP elicits gastrin release and 

has been implicated in memory formation (Roesler at al., 2006; Yang at al., 2017). 

cg16107559 was significantly hypermethylated with elevated Braak NFT stage 

(p=6.85e-08) and is annotated to RGS3 (located on chromosome 9) – which encodes 

a member of the regulator of G-protein signalling (RGS) family and specifically this 

protein is a GTPase-activating protein that inhibits G-protein-mediated signal 
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transduction and has predominantly been associated with cardiac functioning 

(Yazdani, Yazdani, Méndez Giráldez, Aguilar, & Sartore, 2019).  

Several genes were annotated to multiple DMPs, including SERP2 (cg16021126 and 

cg01226614), ZFPM1 (cg06913337 and cg09502865) and ARHGEF17 (cg02776498 

and cg20864214), strengthening the evidence for a role of these genes in AD 

pathology as a consequence of epigenetic dysregulation. 
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Table 4.8: Differentially methylated positions (DMPs) associated with Braak neurofibrillary tangle stage at an experiment wide significance threshold (p<9e-08). In 
total 26 DMPs were identified. Probe information is provided corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. 
The Beta columns refers to %methylation change per unit increase in Braak NFT Stage. The ‘Array’ column states if probes are also present on the Illumina 450K array. The 
‘Braak Meta P’ relates to p-values for these probes from a recent meta-analysis of AD pathology (R. Smith at al., 2021).  The ‘Novel Gene’ column indicates if the gene has 
previously been implicated in neurodegenerative disease and the ‘Previously Identified in’ column indicates how it was previously implicated in dementia. 

DNAm site Beta (%) SE (%) P Chr BP Gene Gene 
Region Array Braak 

meta P 
Interaction 
BR P 

Novel 
Gene 

Previously 
Identified 
in 

cg16021126 0.29 3.72e-02 7.48e-10 13 44947611 SERP2 TSS1500 450K & 
EPIC 1.10e-05 5.24e-01 novel - 

cg07061298 0.38 5.06e-02 2.16e-09 7 27153847 HOXA3 
5'UTR; 450K & 

EPIC 4.57e-13 5.70e-01 previous AD_EWAS 
TSS1500 

cg06913337 -0.66 8.81e-02 2.68e-09 16 88590404 ZFPM1 Body 450K & 
EPIC 2.79e-01 2.49e-01 previous AD_EWAS 

cg11732190 0.41 5.53e-02 3.48e-09 3 9989042 PRRT3;PRRT3-
AS1 

Body; 
EPIC  - 5.69e-01 novel - 

TSS200 

cg08813888 -0.36 4.92e-02 4.62e-09 2 662396 - - 450K & 
EPIC 8.85e-07 6.03e-02   - 

cg18100976 0.41 5.55e-02 4.82e-09 8 22446737 PDLIM2 Body EPIC  - 6.23e-01 previous AD_EWAS 

cg14871225 -0.57 7.98e-02 9.29e-09 5 139040820 CXXC5 5'UTR 450K & 
EPIC 1.32e-07 3.51e-01 previous AD_EWAS 

cg11724984 0.43 6.11e-02 1.31e-08 12 121890864 KDM2B Body 450K & 
EPIC 3.27e-09 7.27e-02 previous AD_EWAS 

cg08952306 0.59 8.28e-02 1.36e-08 7 101962123 SH2B2 3'UTR 450K & 
EPIC 1.27e-02 9.50e-01 previous Animal 

model 

cg07332724 0.33 4.73e-02 1.59e-08 12 54773114 
ZNF385A; 

Body EPIC - 9.63e-01 previous AD_EWAS 
LOC102724050 

cg02553166 -0.35 4.94e-02 1.80e-08 17 39867080 GAST TSS1500 EPIC - 5.10e-01 novel - 
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cg01141438 0.40 5.72e-02 2.43e-08 3 189836207 LEPREL1 
5'UTR; 

Body 

450K & 
EPIC 9.60e-06 5.00e-01 previous AD_EWAS 

cg27624319 0.55 7.87e-02 2.69e-08 20 33147017 MAP1LC3A Body 450K & 
EPIC 2.54e-06 9.50e-01 previous AD_EWAS 

cg11658414 0.26 3.71e-02 2.80e-08 20 1450828 - - EPIC  - 1.29e-01 - - 

cg02776498 0.32 4.68e-02 4.59e-08 11 73054185 ARHGEF17 Body 450K & 
EPIC 1.55e-07 8.04e-02 previous AD_EWAS 

cg06329036 0.31 4.61e-02 4.65e-08 4 7669886 SORCS2 Body EPIC  - 4.11e-01 previous AD_GWAS 

cg12077223 0.35 5.13e-02 4.88e-08 11 74879354 SLCO2B1 Body EPIC - 2.75e-03 previous AD_EWAS 

cg20864214 0.60 8.81e-02 5.27e-08 11 73054121 ARHGEF17 Body 450K & 
EPIC 1.68e-08 7.51e-01 previous AD_EWAS 

cg17149093 0.41 6.04e-02 5.60e-08 10 6379445 - - EPIC  - 1.01e-01 - - 

cg13935577 1.00 1.49e-01 6.34e-08 12 107974897 BTBD11 Body 450K & 
EPIC 8.17e-10 7.89e-01 previous AD_EWAS 

cg09490371 0.66 9.85e-02 6.81e-08 2 233253024 ECEL1P2 TSS1500 450K & 
EPIC 8.23e-09 3.55e-01 previous AD_EWAS 

cg16107559 0.58 8.64e-02 6.85e-08 9 116225834 RGS3 
TSS200; 

EPIC  - 1.35e-01 novel - 
Body 

cg18032191 0.32 4.78e-02 7.13e-08 12 6443522 TNFRSF1A Body EPIC - 8.53e-01 previous AD_GWAS 

cg01226614 0.24 3.60e-02 7.37e-08 13 44947593 SERP2 TSS1500 450K & 
EPIC 9.97e-05 4.94e-01 novel - 

cg09502865 0.38 5.61e-02 7.97e-08 16 88600155 ZFPM1 Body 450K & 
EPIC 1.53e-08 3.00e-01 previous AD_EWAS 

cg15033653 0.23 3.39e-02 8.07e-08 12 113587581 CCDC42B TSS200 450K & 
EPIC 3.11e-06 7.70e-01 previous AD_EWAS 
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  Figure 4.12: Cortex EWAS of Braak neurofibrillary tangle stage highlights experiment-wide significant differentially methylated positions. A Manhattan plot showing 
results of a Braak NFT stage EWAS across two cortical regions (prefrontal cortex and occipital cortex). The significant differentially methylated positions are annotated with their 
Illumina UCSC gene name, unless they are unannotated to a gene. The x-axis shows chromosomes 1-22 and the y-axis shows -log10(P), with the horizontal red line representing 
experiment wide significance (p< 9e-8). 
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Figure 4.13: Differential methylation across the Braak neurofibrillary tangle stages for six of the top differentially methylated 
positions identified by EWAS. The plots are for the six top differentially methylated positions with the strongest beta values. Violin plots for 
the DNA methylation values (adjusted for batch and covariates) across the 7 stages are shown, where the box in the middle represents the 
interquartile range (IQR), whilst the whisker lines represent the minimum (quartile 1 – 1.5 x IQR) and the maximum (quartile 3 + 1.5 x IQR). 
The grey on the outside of the box plot is a density plot of the distribution of data, where the width represents frequency. The x-axis is Braak 
neurofibrillary tangle (BFT) stage. The y-axis is the methylation value as a percentage.  
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Figure 4.14: Volcano plot of differentially methylated positions (DMPs) identified in the Braak neurofibrillary tangle stage EWAS. The x-axis shows 
beta effect size (ES) and the Y-axis shows -log10(p). Black probes indicate an ES difference ≥ 0.01, whilst red probes indicate an ES difference ≥ 0.01 and 
a p-value that reaches experiment-wide significance (EWS) (p < 9e-08).  
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 The results validate in the recent Braak NFT stage meta-analysis 

I compared the results with the summary statistics from the cross-cortex Braak NFT 

meta-analysis recently published by our group (R. Smith at al., 2021). I performed a 

binomial sign test of effect sizes to statistically evaluate consistency across the 

studies. 16 of the 26 significant sites were tested in the meta-analysis, which was 

primarily undertaken on samples profiled using the Illumina 450K array. Of these 16, 

6 (38%) reached Bonferroni significance (p<9e-08) in the meta-analysis and 7 

additional DMPs (44%) reached suggestive significance (p<5e-05). The direction of 

effect for the 16 significant DMP probes identified in the BDR Braak NFT EWAS was 

consistent across these studies (sign test p =1.5e-05, see Figure 4.15). In addition, of 

the 220 significant DMPs identified in the cross-cortex meta-analysis, 208 were tested 

in the BDR analysis; again the direction of effect was consistent across studies (sign 

test p =5.1e-61, see Figure 4.15). These results show how robust the EWAS results 

for AD pathology are. In addition, the strength of the binomial sign test suggests there 

may have been a number of false negatives in the recent meta-analysis, where DMPs 

did not reach the stringent p-value threshold but likely represent true associations for 

Braak NFT Stage. 

 Multiple DMRs associated with Braak NFT stage  

I next conducted analyses to identify differentially methylated regions (DMRs) using 

the R package dmrff (Suderman at al., 2018). I identified 61 DMRs, annotated to 54 

genes (p adjusted < 0.05). The DMRs are shown in Table 4.9  and example plots of 

DMRs spanning ≥6 probes are shown in Figure 4.16. Multiple DMRs were identified 

in the HOXA region, a region which has consistently been identified to have an 

association with AD pathology in EWAS studies (R. G. Smith at al., 2018; R. Smith at 

al., 2021). One of the largest and most significant DMRs was located in the gene 

KLHL33, which encompassed 11 DNAm sites (p adjusted = 1.60e-10; see Figure 
4.17). KLHL33 is a protein coding gene and is predominantly expressed in the brain in 

primary hippocampal neurons, astrocytes and oligodendrocytes and studies suggest 

it plays a role in the functioning and development of the nervous system and in the 

differentiation of oligodendrocytes (Jiang at al., 2005; Soltysik-Espanola at al., 1999).
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 Figure 4.15: The effects sizes of the Braak neurofibrillary tangle stage (NFT) EWAS are consistent between the BDR EWAS and the recent meta-analysis of Braak 
NFT Stage conducted by Smith and colleagues (R. Smith et al., 2021).  (A) Compares the effects sizes from the Braak NFT EWAS differentially methylated probes conducted 
in BDR against the effect sizes of the probes which were run in the recent meta-analysis (16 probes). (B) Compares the effects sizes of the meta-analysis significant cross-cortex 
differentially methylated probes to the Braak NFT EWAS results (n=208).  
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Table 4.9: Differentially methylated regions (DMRs) associated with Braak neurofibrillary tangle stage. In total 61 DMRs were identified. Probe information is provided 
corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. BP start = base position the region begins. BP end = base 
position where the region ends. N = number of probes in the region. P adjusted = Bonferroni corrected p-value adjusted for the number of independent tests. 

Chr BP start BP end n Gene Beta (%) SE (%) P P adjusted 

14 73520468 73520759 11 KLHL33 5.51 0.67 1.87e-16 1.60e-10 

7 20903410 20904169 6 HOXA3 9.17 1.16 2.25e-15 1.92e-09 

12 73054121 73054185 4 CCDC42B 6.71 0.89 5.07e-14 4.34e-08 

12 27153580 27153847 7 AGAP2 8.37 1.13 1.32e-13 1.13e-07 

11 101962112 101962123 4 ATG16L2 9.00 1.22 1.79e-13 1.53e-07 

3 113587513 113587690 4 PRRT3;PRRT3-AS1 9.24 1.26 2.35e-13 2.02e-07 

17 58131345 58132114 7 SLC16A3 6.27 0.87 5.07e-13 4.34e-07 

1 72533202 72533664 5 HEYL 5.48 0.81 1.46e-11 1.25e-05 

15 9988662 9989042 6 STRA6 5.26 0.79 2.58e-11 2.20e-05 

15 80192161 80192655 4 PSTPIP1 5.02 0.76 3.16e-11 2.70e-05 

7 54772804 54773114 3 HOXA6 6.06 0.92 3.56e-11 3.04e-05 

14 80192754 80192794 7 - -4.51 0.68 4.56e-11 3.91e-05 

6 107974897 107975299 12 ZBTB12 3.61 0.55 5.69e-11 4.87e-05 

9 116225793 116225834 3 RUSC2 7.24 1.11 6.40e-11 5.48e-05 

11 40098781 40099015 3 - -4.09 0.63 6.77e-11 5.79e-05 

22 6443522 6443533 3 LOC150381;C22orf26 7.53 1.15 6.97e-11 5.97e-05 

1 74494909 74495384 6 ACAP3 3.51 0.54 7.83e-11 6.71e-05 

19 20648194 20648580 7 CCER2 3.31 0.51 9.03e-11 7.73e-05 

2 77324526 77324758 7 SPEG 4.54 0.71 2.01e-10 1.72e-04 
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17 27185136 27185512 4 ATP2A3 7.32 1.16 2.54e-10 2.18e-04 

19 574950 575412 3 MAP4K1 6.54 1.04 3.46e-10 2.96e-04 

16 106330224 106331073 3 RLTPR 8.90 1.44 5.84e-10 5.00e-04 

6 31868949 31869565 7 SYNJ2 5.69 0.92 6.13e-10 5.25e-04 

6 35538890 35539007 3 FYN -3.21 0.52 7.24e-10 6.20e-04 

2 10920810 10921186 3 - 6.93 1.14 1.07e-09 9.19e-04 

6 46451281 46451518 5 COL11A2 4.71 0.78 1.50e-09 1.28e-03 

3 1228990 1229534 3 PLCH1 -2.59 0.43 1.80e-09 1.54e-03 

1 39402823 39403373 3 DUSP27 -8.31 1.39 2.07e-09 1.77e-03 

14 46483916 46484046 3 C14orf115 6.16 1.03 2.37e-09 2.03e-03 

11 220298547 220299584 4 RASSF7;C11orf35 6.33 1.07 3.27e-09 2.80e-03 

11 3848156 3848506 3 - 7.47 1.26 3.40e-09 2.91e-03 

19 54764265 54764371 6 PNMAL2 5.70 0.97 4.01e-09 3.43e-03 

7 39086923 39087186 6 ACTB 4.58 0.78 4.02e-09 3.44e-03 

9 74475270 74475294 3 - 4.13 0.70 4.19e-09 3.58e-03 

3 43814764 43814983 3 TPRA1;MIR6825 -5.70 0.98 5.19e-09 4.44e-03 

11 23836012 23836047 3 ARHGEF17 6.31 1.08 5.64e-09 4.83e-03 

3 67686832 67687119 5 - -5.10 0.88 5.75e-09 4.93e-03 

5 158438072 158438419 3 SIL1 -2.81 0.48 5.81e-09 4.97e-03 

6 2005132 2005180 3 PPT2;PRRT1 6.00 1.04 6.66e-09 5.70e-03 

6 58129855 58130154 4 AGPAT4 5.52 0.96 1.00e-08 8.59e-03 

6 112042339 112042632 4 - -4.42 0.77 1.01e-08 8.69e-03 



 

212 
 

16 44278551 44278628 5 EMP2 3.15 0.55 1.08e-08 9.24e-03 

7 202814226 202814433 4 HOXA5 5.98 1.05 1.14e-08 9.78e-03 

7 71868412 71868494 5 HOXA3 6.57 1.15 1.19e-08 1.01e-02 

10 33132181 33132442 3 C10orf54;CDH23 5.39 0.95 1.37e-08 1.18e-02 

7 155421970 155422159 3 MYO1G 5.71 1.01 1.50e-08 1.29e-02 

17 56358318 56358504 5 CAMTA2 4.90 0.87 1.71e-08 1.46e-02 

6 46471129 46471442 13 HLA-DPB1 5.54 0.99 2.17e-08 1.85e-02 

1 167090618 167090757 5 PBX1 5.89 1.05 2.18e-08 1.87e-02 

7 110349231 110349639 3 RBM33 5.67 1.01 2.20e-08 1.88e-02 

9 74815131 74815187 4 C9orf142 6.42 1.15 2.39e-08 2.04e-02 

7 27162780 27163095 4 HOXA4 6.53 1.17 2.65e-08 2.27e-02 

11 560921 560951 3 SLC22A8 -5.32 0.96 2.78e-08 2.38e-02 

12 44642868 44642932 4 KRT86 4.94 0.89 2.87e-08 2.46e-02 

19 46999109 46999307 11 C19orf36;MOBKL2A 4.28 0.77 2.92e-08 2.50e-02 

2 5569860 5570491 3 CERKL 5.95 1.07 3.03e-08 2.59e-02 

1 43296491 43296526 4 IL12RB2 -4.46 0.81 3.11e-08 2.66e-02 

1 138271837 138272020 5 FLJ42875 4.26 0.78 4.02e-08 3.44e-02 

16 170585437 170585664 4 PKD1 4.66 0.85 4.68e-08 4.01e-02 

1 59507038 59507393 3 LOC101927851 3.92 0.72 5.02e-08 4.29e-02 

6 25257626 25257629 4 PPT2;PRRT1 5.04 0.93 5.35e-08 4.58e-02 
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Figure 4.16: Differentially methylated regions (DMRs) associated with Braak neurofibrillary tangle (NFT) stage. An example of six DMRs which were associated with Braak NFT stage are 
shown. The x-axis are the DNAm sites ordered by genomic location (not to scale). The y-axis is DNA methylation as a percentage. Violin plots for the DNA methylation values (adjusted for batch 
and covariates) across at each DNAm site in the DMR is shown, where the box in the middle represents the interquartile range (IQR), whilst the whisker lines represent the minimum (quartile 1 
– 1.5 x IQR) and the maximum (quartile 3 + 1.5 x IQR). Samples were split into cases (Braak NFT stage > 4) and controls (Braak NFT stage < 3) in order to visualise the differences between the 
groups. The grey on the outside of the box plot is a density plot of the distribution of data, where the width represents frequency. 
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Figure 4.17: A differentially methylated region identified in the KLHL33 gene within chromosome 14 was associated with Braak NFT Stage. Shown on the top is a 
zoomed in Manhattan plot around the KLHL33 region, where the x-axis represents the base position and the y-axis represents the –log10 p-value and each point on the plot 
represents a DNA methylation site. The red horizontal line represents experiment wide significance (P< 9e-08).  The gene track shows the locations of the genes within in this 
region. 
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 Interaction effects between brain region and Braak NFT Stage 

I investigated interactions between brain region and Braak NFT stage to identify if 

DNAm differences associated with AD pathology differed between the PFC and OCC.  

A single DMP reached experiment wide significance (where the interaction p-value 

<9e-08) - cg15984835 (annotated to chromosome 2; p=5.70e-08), suggesting there 

are differences between the two brain regions where DNAm decreases at a steeper 

gradient in the OCC than the PFC as Braak NFT stage increases (see Figure 4.18). 

This probe has no gene annotation. The lack of significant interaction effects suggest 

the majority of associations between Braak NFT stage and DNAm are consistent 

across the cortex. However, at a more relaxed threshold of p<5e-5 there were 79 

differences (see Table 4.10 for the top 20). Plots of top DMPs with the most significant 

interaction terms are shown in Figure 4.18. Some of the genes are of interest in 

relation to AD. For example, cg14721213 (annotated to chromosome 1) had a 

suggestive significant interaction term (p=6.70e-07) and is annotated to the gene 

FMO2. FMO2 has been shown to be upregulated in the PFC, hippocampus and 

caudate in mice injected with silver-25 nm (Ag-25) – a nanoparticle found in everyday 

products such as toothpaste, shampoos, fabrics, deodorants, and kitchen utensils 

(Rahman at al., 2009). They concluded that that Ag-25 nanoparticles may cause 

neurodegeneration via radical-induced oxidative stress altering gene expression with 

the consequence of apoptosis and neurotoxicity (Rahman at al., 2009).
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Figure 4.18: Interaction between Braak neurofibrillary tangle (NFT) stage and brain region. Shown are the interaction results for the top 6 DNAm sites from the interaction 
EWAS, where an interaction term between Braak NFT stage and brain region was included. The plots are for the six most associated differentially methylated positions. Violin 
plots for the DNA methylation values (adjusted for batch and covariates) across the 7 stages are shown, where the boxes in the middle represents the interquartile range (IQR) 
for each brain region, whilst the whisker lines represent the minimum (quartile 1 – 1.5 x IQR) and the maximum (quartile 3 + 1.5 x IQR). The grey on the outside of the box plot 
is a density plot of the distribution of data (not split by brain region), where the width represents frequency. The x-axis is Braak NFT stage. The y-axis is the methylation value as 
a percentage.  



 

217 
 

Table 4.10: The top 20 differentially methylated positions identified in the interaction EWAS between brain region and Braak neurofibrillary tangle (NFT) stage. Probe 
information is provided corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. Shown for each DMP is the effect 
size (Beta), standard error (SE) and the p-value (P) for the effect of Braak NFT Stage on DNAm in addition to the interaction effect (Beta Int, SE Int and P Int) between Braak 
NFT stage and brain region (occipital cortex [reference] and prefrontal cortex). 

DNAm site Beta (%) SE (%) P  Beta Int (%) SE Int (%) P Int CHR MAPINFO Gene Ref Group 

cg15984835 -0.50 8.82e-02 2.98e-06 0.64 1.17e-01 5.70e-08 2 113444352 - - 

cg07052787 0.51 1.28e-01 9.58e-04 -0.79 1.54e-01 3.36e-07 19 17237120 MYO9B Body 

cg14721213 -0.44 1.32e-01 5.77e-03 0.89 1.78e-01 6.70e-07 1 171154612 FMO2 5'UTR 

cg26353598 -0.32 1.10e-01 1.43e-02 0.57 1.14e-01 7.85e-07 1 14824776 - - 

cg09858925 -0.48 1.05e-01 1.25e-04 0.67 1.40e-01 2.11e-06 1 209537469 - - 

cg13212668 0.20 5.27e-02 1.32e-03 -0.34 7.15e-02 2.30e-06 20 59928453 CDH4 Body 

cg14722315 -0.55 1.43e-01 1.54e-03 0.56 1.19e-01 2.88e-06 1 19240707 IFFO2 Body 

cg10095305 -0.42 1.36e-01 1.12e-02 0.88 1.89e-01 3.43e-06 5 36158217 SKP2 5'UTR;Body 

cg00739139 -0.32 8.26e-02 1.44e-03 0.51 1.10e-01 4.24e-06 7 65233991 - - 

cg14680131 0.24 8.58e-02 2.21e-02 -0.52 1.13e-01 4.27e-06 1 156131379 SEMA4A Body 

cg02715788 0.26 9.01e-02 1.47e-02 -0.57 1.23e-01 4.60e-06 8 119974400 - - 

cg00097088 -0.56 1.01e-01 4.04e-06 0.62 1.36e-01 5.17e-06 4 2627246 FAM193A 1stExon;5'UTR 

cg03546163 0.24 9.55e-02 3.34e-02 -0.61 1.33e-01 5.53e-06 6 35654363 FKBP5 5'UTR 

cg17734698 -0.31 1.01e-01 9.82e-03 0.57 1.26e-01 6.84e-06 12 129127968 TMEM132C Body 

cg23536138 -0.28 6.75e-02 6.71e-04 0.39 8.48e-02 6.94e-06 8 22084861 PHYHIP Body 

cg26135325 0.21 8.39e-02 3.97e-02 -0.47 1.04e-01 7.14e-06 1 152595322 LCE3A 1stExon 

cg23707289 -0.14 5.37e-02 3.11e-02 0.30 6.53e-02 7.71e-06 18 60988099 BCL2 TSS1500 

cg24924930 -0.61 1.39e-01 2.42e-04 0.79 1.75e-01 8.16e-06 2 241717598 KIF1A Body 

cg20030796 -0.43 1.01e-01 4.17e-04 0.62 1.40e-01 1.01e-05 17 72356254 BTBD17 Body 

cg07305369 -0.34 8.13e-02 5.95e-04 0.48 1.09e-01 1.05e-05 11 64270338 - - 
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4.4.6 Thal Phase-associated DNA methylation signatures across two 
cortical brain regions 

I identified two experiment-wide significant DMPs (p<9e-08) associated with Thal 

phase, both hypermethylated with increasing pathology (see Figure 4.19 and Table 
4.11). The average magnitude of effect for the significant DMPs per Thal Phase was 

0.30% (inter-quartile range [IQR] = 0.30-0.31%) and therefore there was a total mean 

DNAm change of 1.5% from Thal Phase 0 to Thal Phase 5. Changes in DNAm at 

these DMPs across Thal Phases is shown in Figure 4.13. The effects were consistent 

across the regions as shown by the non-significant interaction term between Thal 

Phase and brain region (p>9e-08; see Table 4.11). cg13515047 (located on 

chromosome 16) was significantly hypermethylated with elevated Thal phase 

(p=6.04e-08) and annotated to the gene BCAR1, a Cas protein involved in a range of 

cellular processes such as cell migration, apoptosis and cell cycle control and 

progenitor cell functioning (Tikhmyanova, Little, & Golemis, 2010). Although research 

into cas proteins has predominantly highlighted their role in cancer, they have also 

been linked to AD and PD (Y. Li at al., 2008). The other DMP (cg11658414) is located 

on chromosome 20 and is not annotated to any gene. 
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Figure 4.19: Cortex EWAS of Thal Phase stage highlights experiment-wide significant differentially methylated positions. A Manhattan plot showing results of a 
Thal Phase EWAS across two cortical regions (prefrontal cortex and occipital cortex). The significant differentially methylated positions are annotated with their Illumina 
UCSC gene name unless they are unannotated to a gene. The x-axis shows chromosomes 1-22 and the Y-axis shows  
-log10(P), with the horizontal red line representing experiment wide significance (p < 9e-08). 
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Table 4.11: Differentially methylated positions (DMPs) associated with Thal phase at an experiment wide significance threshold (p < 9e-08). In total two DMPs were 
identified. Probe information is provided corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. The Beta columns 
refers to %methylation change per unit increase in Thal phase Stage. The ‘Array’ column states if probes are also present on the Illumina 450K array. The ‘Braak Meta P’ relates 
to p-values for these probes from a recent meta-analysis of AD pathology (R. Smith at al., 2021).  The ‘Novel Gene’ column indicates if the gene has previously been implicated 
in neurodegenerative disease and the ‘Previously Identified in’ column indicates how it was previously implicated in dementia. 

 

 

 

 

 

 

DNAm site Beta (%) SE (%) P Chr BP Gene Gene 
Region 

Array Braak 
meta P 

Interaction 
BR P 

Novel 
Gene 

Previously 
Identified in 

cg11658414 0.30 4.47e-02 9.11e-09 20 1450828  -   EPIC  - 1.58e-01  - -  

cg13515047 0.31 4.88e-02 6.04e-08 16 75298429 BCAR1 5'UTR EPIC  - 1.73e-02 novel - 
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Figure 4.20: Differential methylation across the Thal Phases. Violin plots for the DNA methylation values (adjusted for batch and covariates) across the 6 stages are 
shown, where the box in the middle represents the interquartile range (IQR), whilst the whisker lines represent the minimum (quartile 1 – 1.5 x IQR) and the maximum 
(quartile 3 + 1.5 x IQR). The grey on the outside of the box plot is a density plot of the distribution of data, where the width represents frequency. The x axis is Thal phase. 
The y-axis is the methylation value as a percentage. 
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Figure 4.21: Volcano plot of differentially methylated positions (DMPs) identified in the Thal Phase EWAS. The x-axis shows beta effect size (ES) and 
the Y-axis shows -log10(p). Black probes indicate an ES difference ≥ 0.01, whilst red probes indicate an ES difference ≥ 0.01 and a p-value that reaches 
experiment-wide significance (EWS) (p < 9e-08). 
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 Multiple DMRs associated with Thal Phase  

I identified ten DMRs associated with Thal phase, with eight of these being annotated 

to genes (see Table 4.12). Example plots of DMRs comprising of >5 DNAm sites are 

shown in Figure 4.28. Interestingly several of DMRs overlapped with regions/sites 

identified in the Braak NFT EWAS and DMR analysis including sites annotated to 

KLHL33, ARHGEF17, CCDC42B, HOXA3, AGAP2 and SH2B2. AGAP2 (ArfGAP with 

GTPase domain, ankyrin repeat and PH domain 2) is enriched in microglia, neurons 

and astrocytes and there is evidence for promoter DNA hypermethylation of this gene 

in AD (Liu, Wang, Marcora, Zhang, & Goate, 2019). An example DMR plot around 

AGAP2 is shown in Figure 4.23. 

 Interaction effects between brain region and Thal Phase 

I looked at interactions between brain region and Thal phase to identify if there were 

any associations of differing magnitude or direction of effect in either the PFC or OCC. 

three DMPs reached experiment wide significance for an interaction effect (p<9e-08) 

and two of these were annotated to genes. The most significant DMP was cg15086994 

(chromosome 3, annotated to CHCHD6; p=2.04e-09). This suggests there are 

differences between the two brain regions where DNAm decreases at a steeper 

gradient in the OCC than the PFC as Thal Phase increases (see Figure 4.18). 
CHCHD6 is a member of the coiled-coil-helix-coiled-coil-helix domain (CHCHD)-

containing proteins which encode small mitochondrial proteins (Zhou, Saw, & Tan, 

2017). Several different CHCHD proteins have been linked to PD, ALS and FTD 

(Bannwarth at al., 2014; Funayama at al., 2015). The second most significant DMP 

with an interaction effect was cg19643390 (located on chromosome 17; p=5.26e-08) 

and is annotated to ABCC3. There is evidence for hypermethylation in the OCC with 

elevated braak but not in the PFC at this site (see Figure 4.24). ABCC3 is an ABC 

transporter which is expressed in astrocytes and microglia and has been implicated in 

Alzheimer’s disease (Pereira, Martins, Wiltfang, da Cruz E Silva, & Rebelo, 2018). At 

a more relaxed threshold of p<5e-5 there were 149 hits (see Table 4.13 for the top 20 

interaction associations). 
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Table 4.12: Differentially methylated regions (DMRs) associated with Thal Phase. In total ten DMRs were identified. Probe information is provided corresponding to 
chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. BP start = base position the region begins. BP end = base position where the 
region ends. N = number of probes in the region. P adjusted = Bonferroni corrected p-value adjusted for the number of independent tests. 

 

Chr BP start BP end n Gene Beta (%) SE (%) P P adjusted 

14 20903445 20904169 10 KLHL33 5.27 0.80 5.20e-11 4.37e-05 

2 220298547 220299584 7 SPEG 5.36 0.86 4.93e-10 4.14e-04 

5 1385632 1386647 7 - 2.87 0.47 6.80e-10 5.71e-04 

11 73053830 73054185 4 ARHGEF17 8.07 1.32 1.04e-09 8.72e-04 

7 27153580 27153847 6 HOXA3 8.59 1.41 1.13e-09 9.50e-04 

15 74494909 74495384 6 STRA6 5.44 0.94 7.49e-09 6.29e-03 

12 58131345 58132105 6 AGAP2 7.89 1.38 1.10e-08 9.21e-03 

12 113587240 113587690 7 CCDC42B 5.49 0.96 1.23e-08 1.03e-02 

7 101961796 101962123 3 SH2B2 5.74 1.04 3.30e-08 2.77e-02 

11 10920810 10921186 3 - -4.13 0.75 3.46e-08 2.91e-02 
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Figure 4.22: Differentially methylated regions (DMRs) associated with Thal phase. An example of six DMRs which were associated with Thal phase are shown. The x-axis 
are the DNAm sites ordered by genomic location (not to scale). The y-axis is DNA methylation as a percentage. Violin plots for the DNA methylation values (adjusted for batch 
and covariates) across at each DNAm site in the DMR is shown, where the box in the middle represents the interquartile range (IQR), whilst the whisker lines represent the 
minimum (quartile 1 – 1.5 x IQR) and the maximum (quartile 3 + 1.5 x IQR). Samples were split into cases (Thal phase > 3) and controls (Thal phase < 2) in order to visualise 
the differences between the groups. The grey on the outside of the box plot is a density plot of the distribution of data, where the width represents frequency. 
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Figure 4.23: A differentially methylated region identified in the AGAP2 gene within chromosome 12 was associated with Thal Phase. Shown on the top is a zoomed in 
Manhattan plot around the AGAP2 region, where the x-axis represents the base position and the y-axis represents the –log10 p-value and each point on the plot represents a 
DNA methylation site. The red horizontal line represents experiment wide significance (P< 9e-08). The gene track shows the locations of the genes within in this region
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Figure 4.24: Interaction between Thal phase and brain region. Shown are the interaction results for the top 6 DNAm sites from the interaction EWAS, where an 
interaction term between Thal phase and brain region was included. The plots are for the six top differentially methylated positions with the strongest beta values. Violin 
plots for the DNA methylation values (adjusted for batch and covariates) across the 6 stages are shown, where the boxes in the middle represents the interquartile range (IQR) 
for each brain region, whilst the whisker lines represent the minimum (quartile 1 – 1.5 x IQR) and the maximum (quartile 3 + 1.5 x IQR). The grey on the outside of the box plot 
is a density plot of the distribution of data (not split by brain region), where the width represents frequency. The x-axis is Thal phase. The y-axis is the methylation value as a 
percentage. 
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Table 4.13: The top 20 differentially methylated positions identified in the interaction EWAS between brain region and Thal Phase. Probe information is provided 
corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. Shown for each DMP is the effect size (Beta), standard 
error (SE) and the p-value (P) for the effect of Braak NFT Stage on DNAm in addition to the interaction effect (Beta Int, SE Int and P Int) between Thal phase and brain region 
(occipital cortex [reference] and prefrontal cortex). 

DNAm site Beta (%) SE (%) P Beta Int (%) SE Int (%) P Int CHR MAPINFO Gene Ref Group 

cg15086994 -0.45 9.79e-02 4.67e-05 0.49 7.98e-02 2.04e-09 3 126440724 CHCHD6 Body 

cg19643390 0.21 5.43e-02 6.58e-04 -0.29 5.18e-02 5.26e-08 17 48712205 ABCC3 TSS200 

cg09161446 -0.30 8.55e-02 1.89e-03 0.49 8.96e-02 5.72e-08 2 240697468 - - 

cg13422535 -0.30 8.24e-02 1.31e-03 0.38 7.04e-02 9.28e-08 22 47077682 - - 

cg22815118 -0.20 6.45e-02 6.49e-03 0.35 6.62e-02 1.33e-07 11 1529654 HCCA2 Body 

cg12236880 -0.22 9.26e-02 3.26e-02 0.56 1.06e-01 1.67e-07 15 68564635 - - 

cg22829375 -0.20 7.72e-02 2.00e-02 0.38 7.46e-02 4.68e-07 2 233764831 NGEF Body 

cg09156067 0.10 2.52e-02 6.98e-04 -0.16 3.11e-02 5.30e-07 15 90645907 IDH2 TSS200 

cg04754212 -0.32 8.54e-02 1.02e-03 0.42 8.35e-02 5.43e-07 10 127506329 UROS 5'UTR 

cg01799862 0.32 7.68e-02 2.95e-04 -0.30 6.13e-02 1.06e-06 16 67143802 C16orf70 TSS200 

cg09781115 0.14 5.67e-02 2.54e-02 -0.36 7.33e-02 1.12e-06 10 99127233 RRP12 Body 

cg15604993 -0.27 9.27e-02 9.68e-03 0.45 9.35e-02 2.14e-06 15 52549248 MYO5C Body 

cg09796739 -0.28 6.88e-02 3.65e-04 0.43 8.95e-02 2.29e-06 1 227924055 JMJD4;SNAP47 TSS1500;Body 

cg09016797 0.33 1.06e-01 5.84e-03 -0.66 1.39e-01 2.39e-06 7 155790956 - - 

cg02171258 -0.46 1.10e-01 1.97e-04 0.57 1.21e-01 2.65e-06 6 116442223 COL10A1;NT5DC1 Body 

cg22175345 -0.32 9.44e-02 2.35e-03 0.35 7.43e-02 2.74e-06 4 17194180 - - 

cg17944001 -0.22 7.81e-02 1.19e-02 0.38 8.03e-02 2.75e-06 1 15610717 FHAD1 Body 

cg26297203 -0.27 7.58e-02 1.49e-03 0.33 6.86e-02 2.88e-06 2 52796128 - - 

cg22192710 0.26 9.84e-02 1.94e-02 -0.59 1.26e-01 2.92e-06 11 19363946 - - 

cg18113453 -0.35 8.61e-02 2.95e-04 0.52 1.10e-01 3.23e-06 6 33289660 DAXX Body 
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4.4.7 CERAD density-associated DNA methylation signatures across two 
cortical brain regions 

14 DMPs were associated with CERAD density (see Figure 4.25 and Table 4.14). 

The average magnitude of effect for the significant DMPs per unit of CERAD density 

was 0.57% (inter-quartile range [IQR] = 0.48-0.63%) and therefore there was a total 

mean DNAm change of 2.16% from low CERAD score to high CERAD score. 

Examples of DMP plots across the different CERAD densities are shown in Figure 
4.13. The effects were consistent across the PFC and OCC as shown by the non-

significant interaction term between CERAD density and brain region (p>9e-08; see 

Table 4.14). 

Ten (71%) of the DMPs were significantly hypermethylated (i.e. increased methylation 

was associated with increasing CERAD density; see Figure 4.26). Of the 14, 12 were 

annotated to unique genes and three of these genes have not previously been 

implicated in neurodegenerative disease (BCAR1, OSCAR and SERP2), although 

SERP2 had been reported to have suggestive significance (p< 5e-05) in the latest AD-

EWAS (R. Smith at al., 2021). The same DMP which is annotated to BCAR1 - 

cg13515047 – was significantly hypermethylated in both the Thal EWAS (p=6.04e-08) 

and the CERAD density EWAS (p=4.96e-09). A brief description of this gene is found 

in the previous results section (see 4.4.6). The DMP cg05606351 was significantly 

hypermethylated with elevated CERAD density (p=2.03e-08) and is annotated to a 

gene which has not previously been implicated in dementia: OSCAR (located on 

chromosome 19). OSCAR (Osteoclast-associated immunoglobulin-like receptor) is 

classified in a group of cells that reabsorb bone and control bone homeostasis and is 

a member of the leukocyte receptor complex protein family regulates both innate and 

adaptive immune responses (Kim at al., 2005). In contrast, many of the DMPs are 

annotated to genes that have been previously implicated in AD, with the majority of 

sites having been identified in the recent AD EWAS meta-analysis performed by our 

group (see Table 4.14)(R. Smith at al., 2021). 

 Multiple DMRs associated with CERAD density  

I identified 53 DMRs associated with CERAD density, with 50 of these being annotated 

to genes (see Table 4.14). Several of the DMRs overlapped with those identified in 

the Braak NFT and Thal EWAS and DMR analysis, suggesting they are not unique to 
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specific neuropathology measures. These include regions within KLHL33, LLGL2, 

ARHGEF17, HOXA3, ATG16L2 and SLC16A3 (the top 6 DMRs). Several genes were 

found to harbour multiple DMRs including HOXA3, where 2 DMRs were identified. 

SLC16A3 has been identified as an AD risk gene in previous EWAS studies (De Jager 

at al., 2014; Q. S. Li at al., 2020). An example plot of the SLC16A3 DMR is show in 

Figure 4.29. 

 

 Interaction effects between brain region and CERAD density 

I looked at interactions between brain region and CERAD density to identify if there 

were any associations of differing magnitude or direction of effect in either the PFC or 

OCC. No genome-wide DMPs reached experiment wide significance for an interaction 

effect (p>9e-08). The lack of significant interaction effects suggest the majority of 

associations between CERAD and DNAm are consistent across the cortex. However, 

at a more relaxed threshold of p<5e-5 there was evidence of an interaction at 21 sites. 

The top six DMPs are illustrated in Figure 4.30 (see Table 4.16 for the top 20 

interaction associations). Several of top the associations were also identified in the 

Braak NFT stage interaction model, including the same top DMP - cg15984835. 
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Figure 4.25: Cortex EWAS of CERAD density stage highlights experiment-wide significant differentially methylated positions. A Manhattan plot showing results 
of a CERAD density EWAS across two cortical regions (prefrontal cortex and occipital cortex). The significant differentially methylated positions are annotated with their 
Illumina UCSC gene name, unless they are unannotated to a gene. The x-axis shows chromosomes 1-22 and the y-axis shows -log10(P), with the horizontal red line 
representing experiment wide significance (p< 9e-8). 
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Table 4.14: Differentially methylated positions (DMPs) associated with CERAD density at an experiment wide significance threshold (p<9e-08). In total 14 DMPs were 
identified.  Probe information is provided corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. The Beta columns 
refers to %methylation change per unit increase in CERAD density. The ‘Array’ column states if probes are also present on the Illumina 450K array. The ‘Braak Meta P’ relates 
to p-values for these probes from a recent meta-analysis of AD pathology (R. Smith at al., 2021).  The ‘Novel Gene’ column indicates if the gene has previously been implicated 
in neurodegenerative disease and the ‘Previously Identified in’ column indicates how it was previously implicated in dementia. 

DNAm site Beta (%) SE (%) P Chr BP Gene Gene 
Region 

Array Braak meta 
P 

Interaction 
BR P 

Novel 
Gene 

Previously 
Identified in 

cg13515047 0.44 6.13e-02 4.96e-09 16 75298429 BCAR1 5'UTR EPIC  - 2.54e-01 novel - 

cg06913337 -0.94 1.31e-01 6.58e-09 16 88590404 ZFPM1 Body 450K & EPIC 2.79e-01 2.49e-01 previous AD_EWAS 

cg08813888 -0.53 7.56e-02 1.13e-08 2 662396 - - 450K & EPIC 8.85e-07 6.03e-02 - - 

cg10208942 0.56 7.91e-02 1.31e-08 17 80192754 SLC16A3 5'UTR EPIC  - 4.02e-01 previous AD_EWAS 

cg05606351 0.64 9.19e-02 2.03e-08 19 54599285 OSCAR Body 450K & EPIC 1.95e-03 4.46e-01 novel - 

cg16021126 0.39 5.70e-02 2.67e-08 13 44947611 SERP2 TSS1500 450K & EPIC 1.10e-05 5.24e-01 novel - 

cg15751131 -0.67 9.89e-02 3.86e-08 7 140090416 SLC37A3 5'UTR 450K & EPIC 3.12e-08 8.45e-01 previous AD_EWAS 

cg18100976 0.58 8.50e-02 3.93e-08 8 22446737 PDLIM2 Body EPIC  - 6.23e-01 previous AD_EWAS 

cg07332724 0.50 7.32e-02 4.21e-08 12 54773114 ZNF385A;LOC102724050 Body EPIC  - 9.63e-01 previous AD_EWAS 

cg11658414 0.38 5.56e-02 4.53e-08 20 1450828 - - EPIC  - 1.29e-01 - - 

cg11724984 0.63 9.29e-02 5.12e-08 12 121890864 KDM2B Body 450K & EPIC 3.27e-09 7.27e-02 previous AD_EWAS 

cg07061298 0.52 7.77e-02 5.68e-08 7 27153847 HOXA3 5'UTR 450K & EPIC 4.57e-13 5.70e-01 previous AD_EWAS 

cg14871225 -0.82 1.22e-01 5.91e-08 5 139040820 CXXC5 5'UTR 450K & EPIC 1.32e-07 3.51e-01 previous AD_EWAS 

cg02776498 0.47 7.09e-02 6.22e-08 11 73054185 ARHGEF17 Body 450K & EPIC 1.55e-07 8.04e-02 previous AD_EWAS 
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Figure 4.26: Differential methylation for CERAD density for six of the top differentially methylated positions identified by EWAS. The plots are for the 
six top differentially methylated positions with the strongest beta values. Violin plots for the DNA methylation values (adjusted for batch and covariates) across 
the 4 stages are shown, where the box in the middle represents the interquartile range (IQR), whilst the whisker lines represent the minimum (quartile 1 – 1.5 
x IQR) and the maximum (quartile 3 + 1.5 x IQR). The grey on the outside of the box plot is a density plot of the distribution of data, where the width represents 
frequency. The x axis is CERAD density. The y-axis is the methylation value as a percentage. 

Figure 4.27: Volcano plot of differentially methylated positions (DMPs) identified in the CERAD density epigenome-wide association study. The x-axis 
shows beta effect size (ES) and the y-axis shows -log10(p). Black probes indicate an ES difference ≥ 0.01, whilst red probes indicate an ES difference ≥ 0.01 and a 
p-value that reaches experiment-wide significance (EWS) (p < 9e-08). 
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Table 4.15: Differentially methylated regions (DMRs) associated with CERAD density. In total 51 DMRs were identified.  Probe information is provided corresponding to 
chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. BP start = base position the region begins. BP end = base position where the 
region ends. N = number of probes in the region. P adjusted = Bonferroni corrected p-value adjusted for the number of independent tests. 

Chr BP start BP end n Gene Beta (%) SE (%) P P adjusted 

14 20903410 20904169 11 KLHL33 8.96 1.01 7.62e-19 6.50E-13 

11 73053649 73054185 5 ARHGEF17 11.38 1.47 1.01e-14 8.62E-09 

7 27153580 27153847 6 HOXA3 12.83 1.77 4.22e-13 3.60E-07 

11 72533202 72533664 4 ATG16L2 13.27 1.86 1.12e-12 9.54E-07 

12 6054616 6054811 5 ANO2 -9.04 1.28 1.83e-12 1.56E-06 

15 74494909 74495384 6 STRA6 8.3 1.18 2.31e-12 1.97E-06 

14 106329652 106331018 9 - -6.71 0.97 4.11e-12 3.51E-06 

12 113587513 113587690 4 CCDC42B 9.39 1.36 4.31e-12 3.68E-06 

11 10920810 10921186 3 - -6.54 0.95 4.72e-12 4.03E-06 

17 80192161 80192655 7 SLC16A3 9.04 1.32 8.62e-12 7.36E-06 

12 58131345 58132105 6 AGAP2 11.7 1.73 1.29e-11 1.11E-05 

2 220298547 220299584 7 SPEG 7.35 1.09 1.43e-11 1.22E-05 

15 77324526 77324758 4 PSTPIP1 7.8 1.16 1.51e-11 1.29E-05 

7 27185136 27185512 3 HOXA6 9.36 1.39 1.55e-11 1.32E-05 

11 74870268 74870640 3 SLCO2B1 10.26 1.59 1.13e-10 9.69E-05 

1 43814306 43814983 4 MPL 10.96 1.71 1.48e-10 1.26E-04 

3 9988590 9988889 3 PRRT3;PRRT3-AS1 11.32 1.77 1.80e-10 1.54E-04 

6 168079212 168079818 4 - -7.33 1.17 3.30e-10 2.82E-04 

3 50359849 50360690 9 HYAL2 4.04 0.64 3.37e-10 2.88E-04 
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19 46999109 46999307 6 PNMAL2 9.12 1.47 4.98e-10 4.25E-04 

9 35563884 35564160 5 FAM166B 6.38 1.03 5.81e-10 4.96E-04 

22 46451281 46451518 3 LOC150381;C22orf26 10.9 1.77 6.72e-10 5.74E-04 

16 10671842 10672543 5 EMP2 5.01 0.83 1.87e-09 1.60E-03 

14 77542656 77543192 5 LOC102724190 6.43 1.08 2.32e-09 1.98E-03 

10 46971347 46971908 7 SYT15 5.41 0.91 2.40e-09 2.05E-03 

6 31868949 31869565 12 ZBTB12 4.97 0.84 3.17e-09 2.71E-03 

19 1071020 1071208 3 HMHA1 11.07 1.92 7.80e-09 6.66E-03 

19 8454867 8455567 11 RAB11B 4.78 0.83 8.24e-09 7.04E-03 

19 2096331 2097096 12 C19orf36;MOBKL2A 6 1.04 9.15e-09 7.81E-03 

17 74475270 74475402 4 RHBDF2 13.14 2.29 9.95e-09 8.50E-03 

20 32319719 32320193 3 ZNF341 6.95 1.21 1.03e-08 8.84E-03 

5 1523874 1524249 4 LPCAT1 5.61 0.98 1.11e-08 9.45E-03 

15 75117658 75118427 4 CPLX3 3.85 0.67 1.11e-08 9.50E-03 

6 112042339 112042632 3 FYN -4.48 0.79 1.34e-08 0.01 

13 113676829 113677188 4 MCF2L 5.68 1 1.46e-08 0.01 

9 35538890 35539007 3 RUSC2 9.47 1.68 1.79e-08 0.02 

12 123215248 123215684 8 GPR81 4.29 0.77 2.09e-08 0.02 

21 33867372 33867551 3 C21orf63 7.64 1.36 2.12e-08 0.02 

12 50497589 50498041 5 GPD1 6.28 1.13 2.80e-08 0.02 

6 30853959 30854109 3 DDR1 8.19 1.48 2.91e-08 0.02 

17 3848156 3848324 3 ATP2A3 9.9 1.79 2.91e-08 0.02 
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1 164545553 164545843 4 PBX1 9.01 1.63 3.43e-08 0.03 

6 33047944 33048752 14 HLA-DPB1 7.96 1.45 3.77e-08 0.03 

5 126205009 126205081 3 Mar-03 -8.52 1.55 3.86e-08 0.03 

14 74815131 74815316 4 C14orf115 8 1.45 3.90e-08 0.03 

11 67219631 67220043 5 GPR152 4.22 0.77 4.00e-08 0.03 

1 167090618 167090757 3 DUSP27 -11.68 2.13 4.07e-08 0.03 

6 158438072 158438419 7 SYNJ2 7.63 1.39 4.23e-08 0.04 

6 32120773 32120826 3 PPT2;PRRT1 8.55 1.56 4.56e-08 0.04 

19 37825309 37825679 8 HKR1 7.99 1.47 5.11e-08 0.04 

7 27155036 27155358 5 HOXA3 9.66 1.78 5.33e-08 0.05 

11 560921 560951 4 RASSF7;C11orf35 8.88 1.63 5.49e-08 0.05 

6 33132181 33132442 5 COL11A2 6.44 1.19 5.72e-08 0.05 
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Figure 4.28: Differentially methylated regions (DMRs) associated with CERAD density. The top six most significant DMRs associated CERAD density are shown. The x-
axis are the DNAm sites ordered by genomic location. The y-axis is DNA methylation as a percentage. Violin plots for the DNA methylation values (adjusted for batch and 
covariates) across at each DNAm site in the DMR is shown, where the box in the middle represents the interquartile range (IQR), whilst the whisker lines represent the minimum 
(quartile 1 – 1.5 x IQR) and the maximum (quartile 3 + 1.5 x IQR). Samples were split into cases (CERAD density > 2) and controls (CERAD density < 2) in order to visualise the 
differences between the groups. The grey on the outside of the box plot is a density plot of the distribution of data, where the width represents frequency. 
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Figure 4.29: A differentially methylated region identified in the SLC16A3 gene within chromosome 17 was associated with CERAD density. Shown on the top is a 
zoomed in Manhattan plot around the SLC16A3 region, where the x-axis represents the base position and the y-axis represents the –log10 p-value and each point on the plot 
represents a DNA methylation site. The red horizontal line represents experiment wide significance (P< 9e-08). The gene track shows the locations of the genes within in this 
region.
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Figure 4.30: Interaction between CERAD density and brain region. Shown are the interaction results for the top 6 DNAm sites from the interaction EWAS, where an interaction 
term between CERAD density and brain region was included. The plots are for the six top differentially methylated positions with the strongest beta values. Violin plots for the 
DNA methylation values (adjusted for batch and covariates) across the 4 stages are shown, where the boxes in the middle represents the interquartile range (IQR) for each brain 
region, whilst the whisker lines represent the minimum (quartile 1 – 1.5 x IQR) and the maximum (quartile 3 + 1.5 x IQR). The grey on the outside of the box plot is a density plot 
of the distribution of data (not split by brain region), where the width represents frequency. The x-axis is cerad density (1= no/ none; 2= sparse; 3= moderate and 4= frequent/ 
high). The y-axis is the methylation value as a percentage. 
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Table 4.16: The top 20 differentially methylated positions identified in the interaction EWAS between brain region and CERAD density. Probe information is provided 
corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. Shown for each DMP is the effect size (Beta), standard 
error (SE) and the p-value (P) for the effect of CERAD density on DNAm in addition to the interaction effect (Beta Int, SE Int and P Int) between CERAD density and brain region 
(occipital cortex [reference] and prefrontal cortex). 

DNAm site Beta (%) SE (%) P Beta Int (%) SE Int (%) P Int CHR MAPINFO Gene Ref Group 

cg15984835 -0.59 0.09 1.75e-07 0.64 0.13 1.11e-06 2 113444352 - - 

cg14721213 -0.36 0.13 2.12e-02 0.90 0.19 1.46e-06 1 171154612 FMO2 5'UTR 

cg10095305 -0.37 0.14 2.24e-02 0.89 0.19 3.36e-06 5 36158217 SKP2 5'UTR;Body 

cg09858925 -0.45 0.10 2.95e-04 0.68 0.15 4.03e-06 1 209537469 - - 

cg07052787 0.43 0.13 9.28e-03 -0.81 0.18 7.70e-06 19 17237120 MYO9B Body 

cg00739139 -0.30 0.08 2.41e-03 0.52 0.12 7.72e-06 7 65233991 - - 

cg20030796 -0.40 0.10 9.40e-04 0.63 0.14 9.73e-06 17 72356254 BTBD17 Body 

cg03546163 0.31 0.10 1.32e-02 -0.60 0.14 1.22e-05 6 35654363 FKBP5 5'UTR 

cg13129591 0.45 0.11 8.85e-04 -0.66 0.15 1.47e-05 3 152939446 - - 

cg13212668 0.26 0.06 2.36e-04 -0.33 0.08 1.61e-05 20 59928453 CDH4 Body 

cg07305369 -0.31 0.08 1.67e-03 0.49 0.11 1.88e-05 11 64270338 - - 

cg12148585 -0.27 0.08 4.06e-03 0.48 0.11 2.22e-05 2 208006420 KLF7 Body 

cg00184799 0.26 0.09 3.29e-02 -0.56 0.13 2.31e-05 8 38722544 - - 

cg02320784 -0.31 0.13 3.51e-02 0.75 0.18 2.40e-05 12 26195988 RASSF8 5'UTR 

cg05211470 0.17 0.06 3.30e-02 -0.36 0.08 2.74e-05 5 114909169 - - 

cg18341924 0.04 0.01 2.07e-02 -0.07 0.02 3.45e-05 7 16684906 BZW2;ANKMY2 TSS1500;Body 

cg13994827 0.31 0.08 2.41e-03 -0.47 0.11 4.01e-05 8 33715673 - - 

cg27378972 -0.30 0.10 8.73e-03 0.55 0.13 4.10e-05 8 77690582 ZFHX4 Body 

cg13678096 0.27 0.07 1.70e-03 -0.39 0.09 4.20e-05 1 234987477 - - 

cg02350425 0.21 0.07 1.46e-02 -0.39 0.09 4.71e-05 8 126944311 LINC00861 Body 
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4.4.8 Braak LB Stage-associated DNA methylation signatures across two 
cortical brain regions 

No DMPs were identified to be associated with Braak LB stage. This likely reflects a 

lack of power as the vast majority of donors were Braak LB Stage 0 (n= 385, 72%) 

with only 69 donors (13%) being the highest Braak LB stage. One DMR was found to 

be associated with Braak LB stage and the sites which make up this region reside in 

the RGS19 gene (see Table 4.17; Figure 4.31; and Figure 4.32). RGS19 encodes a 

protein belonging to the regulators of G-protein signalling family interacts with the G 

protein GAI3. Previous work by our group identified RGS19 as a blood gene 

expression marker of AD (Lunnon at al., 2013). RGS19 was not associated with any 

of the other neuropathology measures.  

 Interaction effects between brain region and Braak LB Stage 

I looked at interactions between brain region and Braak LB stage to identify if there 

were any associations of differing magnitude or direction of effect in either the PFC or 

OCC. No DMPs reached experiment wide significance for an interaction effect (p>9e-

08) which is unsurprising as no main effect associations were identified between 

DNAm and Braak LB stage. However, at a more relaxed threshold of 5e-5 DMPs were 

identified. The top six DMPs are illustrated in Figure 4.33 (see Table 4.18 for the top 

20 interaction associations). The most significant DMP with a gene annotation 

(cg15030392, located on chromosome 21) was hypermethylated with elevated Braak 

LB stage in the OCC, but there was near to no effect in the PFC (see Figure 4.33). 

This site is annotated to DSCAM, which plays a role in neurite growth and 

synaptogenesis (Jia at al., 2011).  Overexpression of DSCAM in the cerebral cortex 

has been associated with learning and memory defects in APP transgenic mice (Jia 

at al., 2011).  
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Table 4.17: Differentially methylated region associated with Braak Lewy Body stage. One DMR was identified. Probe information is provided corresponding to chromosomal 
location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. BP start = base position the region begins. BP end = base position where the region ends. 
N = number of probes in the region. P adjusted = Bonferroni corrected p-value adjusted for the number of independent tests. 

Chr BP start BP end n Gene Beta (%) SE (%) P P adjusted 

20 62710773 62710905 3 RGS19;OPRL1 2.44 0.44 3.84e-08 3.19e-02 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.31: Differential methylation across a region in the gene RGS19 was associated with Braak Lewy body stage. The x-axis are the DNAm sites ordered 
by genomic location. The y-axis is DNA methylation as a percentage. Violin plots for the DNA methylation values (adjusted for batch and covariates) across at each 
DNAm site in the DMR is shown, where the box in the middle represents the interquartile range (IQR), whilst the whisker lines represent the minimum (quartile 1 – 1.5 
x IQR) and the maximum (quartile 3 + 1.5 x IQR). Samples were split into cases (Braak LB stage > 3) and controls (Braak LB stage < 3) in order to visualise the 
differences between the groups. The grey on the outside of the box plot is a density plot of the distribution of data, where the width represents frequency. 
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Figure 4.32: A differentially methylated region identified in the RGS19 gene within chromosome 20 was associated with Braak Lewy body Stage. Shown on the top is 
a zoomed in Manhattan plot around the RGS19 region, where the x-axis represents the base position and the y-axis represents the –log10 p-value and each point on the plot 
represents a DNA methylation site. The red horizontal line represents experiment wide significance (P< 9e-08). The gene track shows the locations of the genes within in this 
region.
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Figure 4.33: Interaction between Braak Lewy body (LB) stage and brain region. Shown are the interaction results for the top 6 DNAm sites from the interaction EWAS, 
where an interaction term between Braak LB stage and brain region was included. The plots are for the six most associated differentially methylated positions. Violin plots for the 
DNA methylation values (adjusted for batch and covariates) across the 7 stages are shown, where the boxes in the middle represents the interquartile range (IQR) for each brain 
region, whilst the whisker lines represent the minimum (quartile 1 – 1.5 x IQR) and the maximum (quartile 3 + 1.5 x IQR). The grey on the outside of the box plot is a density plot 
of the distribution of data (not split by brain region), where the width represents frequency. The x-axis is Braak LB stage. The y-axis is the methylation value as a percentage. 
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Table 4.18: The top 20 differentially methylated positions identified in the interaction EWAS between brain region and Braak Lewy body (LB) stage. Probe information 
is provided corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. Shown for each DMP is the effect size (Beta), 
standard error (SE) and the p-value (P) for the effect of Braak LB Stage on DNAm in addition to the interaction effect (Beta Int, SE Int and P Int) between Braak LB stage and 
brain region (occipital cortex [reference] and prefrontal cortex). 

DNAm site Beta (%) SE (%) P Beta Int (%) SE Int (%) P Int CHR MAPINFO Gene Ref Group 

cg10145528 0.36 0.13 4.02e-03 -0.84 0.17 1.50e-06 8 102234257 - - 

cg15030392 0.25 0.09 4.95e-03 -0.57 0.12 1.68e-06 21 41627176 DSCAM Body 

cg18807030 -0.41 0.08 3.77e-07 0.50 0.11 2.77e-06 7 931980 C7orf20 Body 

cg10548497 0.16 0.05 7.58e-04 -0.29 0.06 4.23e-06 6 657338 HUS1B;EXOC2 TSS1500;Body;5'UTR 

cg13693986 0.19 0.08 1.90e-02 -0.49 0.11 5.00e-06 1 10597737 PEX14 Body 

cg16755041 -0.22 0.08 5.23e-03 0.51 0.11 7.80e-06 13 54388934 LINC00558 TSS1500 

cg04456662 0.29 0.11 8.06e-03 -0.57 0.13 7.86e-06 6 30115407 TRIM40 Body 

cg02077669 -0.52 0.13 3.55e-05 0.78 0.17 9.01e-06 1 66730524 PDE4B Body 

cg18151437 0.15 0.07 3.98e-02 -0.41 0.09 1.15e-05 19 56638601 - - 

cg04958157 -0.32 0.07 5.96e-06 0.40 0.09 1.23e-05 13 113748321 MCF2L Body 

cg23795559 -0.30 0.11 3.04e-03 0.65 0.15 1.24e-05 14 89642474 FOXN3 Body 

cg13159060 -0.24 0.07 2.42e-04 0.39 0.09 1.26e-05 8 145701897 FOXH1 TSS200 

cg14435390 -0.15 0.06 1.02e-02 0.33 0.07 1.40e-05 19 42913381 LIPE;LIPe-AS1 Body 

cg23858195 0.14 0.06 2.28e-02 -0.35 0.08 1.62e-05 6 31936253 SKIV2L Body 

cg07667591 -0.19 0.08 1.13e-02 0.45 0.10 1.67e-05 17 1944208 OVCA2;DPH1 TSS1500;Body 

cg07553378 0.18 0.05 6.81e-04 -0.30 0.07 1.99e-05 7 50726586 GRB10 Body 

cg20943946 -0.41 0.11 1.09e-04 0.64 0.15 2.13e-05 14 29850567 - - 

cg14882481 0.30 0.09 8.41e-04 -0.54 0.13 2.23e-05 11 107437051 ALKBH8 TSS1500 

cg08329137 0.23 0.07 1.88e-03 -0.42 0.10 2.56e-05 5 175615937 LOC643201 Body 

cg17067226 0.21 0.08 5.09e-03 -0.45 0.11 2.96e-05 3 157211395 VEPH1 Body 
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4.4.9 TDP-43-associated DNA methylation signatures across two cortical 
brain regions 

Elevated TDP-43 status was significantly hypomethylated at one site (cg06423355; 

p=5.47e-08) (see Figure 4.34; Figure 4.35 and Figure 4.36). Although this DMP is 

not annotated to a gene based on the Illumina manifest (see Table 4.19), it is located 

~50kb from STK38L (see Figure 4.37), which has been associated with APP 

processing in drosophila (Huichalaf at al., 2019).  

I identified five DMRs associated with TDP-43 status (see Table 4.20 and Figure 
4.38). Four were annotated to genes (BAT1, ACADS, CACNA1G and EVA1C) and all 

were unique to the analysis of TDP-43 status. BAT1 is part of the major 

histocompatibility complex (MHC) and a member of the DEAD-box family of RNA 

helicases; research suggests it is involved in the regulation and the production of 

inflammatory cytokines which are associated with AD pathology (Gnjec at al., 2008). 

ACADS encodes for a tetrameric mitochondrial flavoprotein - a member of the acyl-

CoA dehydrogenase family. Defects in ACADS can lead to neurological dysfunction 

and brain pathology such as demyelination in peripheral neurons (He at al., 2007). 

CACNA1G is a low-voltage calcium channel which has been implicated in 

neurodegenerative diseases (Coutelier at al., 2015) and downregulation of this gene 

has been correlated with altered APP processing and the occurrence of AD markers 

in human tissue, mice, and cellular models (Rice, Berchtold, Cotman, & Green, 2014). 

An example plot of the DMR residing in CACNA1G is shown in Figure 4.39. EVA1C 

is involved in carbohydrate binding and has been implicated in AD (Cacabelos, 

Cacabelos, & Torrellas, 2014). 

 Interaction effects between brain region and TDP-43 status 

No DMPs reached experiment wide significance for an interaction effect (p>9e-08), 

which is unsurprising as there was only a single association with the main effect. 

However, at a more relaxed threshold of p<5e-5 there six DMPs were identified (see 

Figure 4.40 and Table 4.21). The most significant DMP with a gene annotation 

(cg14914238; located on chromosome 15) was annotated to HOMER2 and the 

direction of effect was different in the PFC (hypermethylation was associated with 

TDP-43 status) compared to the OCC (hypomethylation was association with TDP-43 
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status). HOMER2 has been shown to interact with APP and its expression inhibits APP 

processing and in turn this reduces the production of Aβ (Parisiadou at al., 2008).
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Figure 4.34: Cortex EWAS of TDP43 highlights an experiment-wide significant differentially methylated 
position. A Manhattan plot showing results of TDP-43 EWAS across two cortical regions (prefrontal cortex and 
occipital cortex). The significant differentially methylated positions are annotated with their Illumina UCSC gene 
name, unless they are unannotated to a gene. The x-axis shows chromosomes 1-22 and the Y-axis shows -
log10(P), with the horizontal red line representing experiment wide significance (p< 9e-08). 

 

  

  

  

  

  

  

 

 

 

Figure 4.35 Differential methylation for TPD-43 status at cg06423355. Violin plots for the DNA methylation values (adjusted 
for batch and covariates) for TDP-43 stats us shown, where the box in the middle represents the interquartile range (IQR), whilst 
the whisker lines represent the minimum (quartile 1 – 1.5 x IQR) and the maximum (quartile 3 + 1.5 x IQR). The grey on the 
outside of the box plot is a density plot of the distribution of data, where the width represents frequency. The x-axis TDP-43 status 
(0= control, 1 = cases). The y-axis is the methylation value as a percentage. 
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Figure 4.36: Volcano plot of differentially methylated positions (DMPs) identified in the TDP-43 status 
epigenome-wide association study. The X-axis shows beta effect size (ES) and the Y-axis shows -log10(p). 
Black probes indicate an ES difference ≥ 0.01, whilst red probes indicate an ES difference ≥ 0.01 and a p-value 
that reaches experiment-wide significance (EWS) (p < 9e-08). 
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Figure 4.37: The closest gene to the DMP associated with TDP-43 status is STK38L. Shown on the top is a zoomed in Manhattan plot around the top DMP identified in the 
TDP-43 EWAS, where the x-axis represents the base position and the y-axis represents the –log10 p-value and each point on the plot is a DNA methylation site. The red 
horizontal line represents experiment wide significance (P< 9e-08). The gene track shows the locations of the genes within in this region.
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Table 4.19: Differentially methylated position (DMP) associated with TDP-43 status at an experiment wide significance threshold (p<9e-08). One DMP was identified. 
Probe information is provided corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. The Beta columns refers to 
%methylation change per unit increase in CERAD density. The ‘Array’ column states if probes are also present on the Illumina 450K array. The ‘Braak Meta P’ relates to p-values 
for these probes from a recent meta-analysis of AD pathology (R. Smith at al., 2021).  The ‘Novel Gene’ column indicates if the gene has previously been implicated in 
neurodegenerative disease and the ‘Previously Identified in’ column indicates how it was previously implicated in dementia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DNAm site Beta (%) SE (%) P Chr BP Gene Gene 
Region 

Array Braak meta 
P 

Interaction 
BR P 

Novel Gene Previously 
Identified in 

cg06423355 -2.256 0.42 5.47e-08 12 27347047 - - EPIC - 4.70e-02 novel - 
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Table 4.20: Differentially methylated regions (DMRs) associated with TDP-43 status. In total five DMRs were identified. Probe information is provided corresponding to 
chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. BP start = base position the region begins. BP end = base position where the 
region ends. N = number of probes in the region. P adjusted = Bonferroni corrected p-value adjusted for the number of independent tests. 

 

Chr BP start BP end n Gene Beta (%) SE (%) P value P adjusted 

6 31507785 31508665 11 BAT1 -16.55 2.53 5.80e-11 5.10e-05 

12 121163023 121163497 7 ACADS -15.93 2.44 6.50e-11 5.72e-05 

8 17767511 17768115 8 - -15.8 2.82 2.16e-08 0.02 

17 48637858 48638190 8 CACNA1G 11.07 1.99 2.64e-08 0.02 

21 33784903 33785434 6 C21orf63 10.45 1.92 5.26e-08 0.05 
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Figure 4.38: Differentially methylated regions (DMRs) associated with TDP-43 status. The significant DMRs associated with TDP-43 status are shown. The x-axis are the 
DNAm sites ordered by genomic location. The y-axis is DNA methylation as a percentage. Violin plots for the DNA methylation values (adjusted for batch and covariates) across 
at each DNAm site in the DMR is shown, where the box in the middle represents the interquartile range (IQR), whilst the whisker lines represent the minimum (quartile 1 – 1.5 x 
IQR) and the maximum (quartile 3 + 1.5 x IQR). DNA methylation values for cases (TPD-43 present) and controls were plotted separately to aid visualisation of differences 
between the groups. The grey on the outside of the box plot is a density plot of the distribution of data, where the width represents frequency. 
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Figure 4.39: A differentially methylated region identified in the CACNA1G gene within chromosome 17 was associated with TDP-43 status. Shown on the top is a 
zoomed in Manhattan plot around the CACNA1G region, where the x-axis represents the base position and the y-axis represents the –log10 p-value and each point on the plot 
represents a DNA methylation site. The red horizontal line represents experiment wide significance (P< 9e-08). The gene track shows the locations of the genes within in this 
region.
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Figure 4.40: Interaction between TDP-43 status and brain region. Shown are the interaction results for the top 6 DNAm sites from the interaction EWAS, where an interaction 
term between TDP-43 status and brain region was included. The plots are for the six most associated differentially methylated positions. Violin plots for the DNA methylation 
values (adjusted for batch and covariates) for TDP-43 status (0=control, 1=cases) are shown, where the boxes in the middle represents the interquartile range (IQR) for each 
brain region, whilst the whisker lines represent the minimum (quartile 1 – 1.5 x IQR) and the maximum (quartile 3 + 1.5 x IQR). The grey on the outside of the box plot is a density 
plot of the distribution of data (not split by brain region), where the width represents frequency. The x-axis is TDP-43 status. The y-axis is the methylation value as a percentage. 
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Table 4.21: 6 differentially methylated positions were identified in the interaction EWAS between brain region and TDP43 status at the threshold p<5e-05. Probe 
information is provided corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. Shown for each DMP is the effect 
size (Beta), standard error (SE) and the p-value (P) for the effect of TDP-43 status on DNAm in addition to the interaction effect (Beta Int, SE Int and P Int) between TDP43 status 
and brain region (occipital cortex [reference] and prefrontal cortex).  

DNAm site Beta (%) SE (%) P 
Beta Int 
(%) SE Int (%) P Int CHR MAPINFO Gene Ref Group 

cg16199277 2.14 0.88 4.48e-02 -5.73 1.18 1.29e-06 3 147089290 - - 

cg14914238 -1.20 0.35 1.00e-04 2.03 0.47 1.83e-05 15 83620321 HOMER2 Body 

cg24703533 -0.92 0.33 9.46e-04 1.87 0.44 2.02e-05 17 45055318 - - 

cg04756394 -1.46 0.34 2.10e-06 1.94 0.46 2.67e-05 16 31017083 STX1B Body 

cg07134031 0.59 0.16 8.75e-04 -0.88 0.21 3.93e-05 7 157073436 - - 

cg13781853 0.54 0.19 1.45e-02 -1.03 0.25 4.21e-05 17 6616867 SLC13A5 TSS200 
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4.4.10  Global Clinical Dementia Rating is correlated with 
neuropathology 

In addition to identifying methylomic variation associated with neuropathology, I 

investigated differences in DNAm associated with cognitive decline measured using 

the clinical dementia rating (CDR). Cognitive decline has previously been shown to be 

associated with brain atrophy and neuropathology (Thomas at al., 2020). To identify 

DNAm sites in which differential methylation is associated with the CDR I ran an EWAS 

controlling for age, sex, batch, derived cell proportions and PC1 as fixed effects and 

individual as a random effect. To identify if the effects were consistent across the two 

brain regions (OCC and PFC) I ran a further EWAS including an interaction between 

brain region and the measure of interest.  

I identified ten DMPs associated with CDR (see Figure 4.41 and Table 4.22). The 

average magnitude of effect for the significant DMPs per additional CDR point was 

0.20% (inter-quartile range [IQR] = 0.07-0.33%). The effects were consistent across 

the regions as shown by the non-significant interaction term between the CDR and 

brain region (P > 9e-08; see Table 4.22). All of the DMPs were significantly 

hypermethylated with increasing cognitive decline (i.e. increased DNA methylation 

was associated with elevated CDR score). Of the ten, eight were annotated to unique 

genes and four of these have not previously been implicated in neurodegenerative 

disease (ST3GAL1, ARHGAP22, CD5L and FHL3). The protein encoded by ST3GAL1 

is a membrane protein involved in catalysing sialic acid and is predominantly found in 

the Golgi (Wu at al., 2018) and ST3GAL3 mutations impair the development of higher 

cognitive functions (Hu at al., 2011). ARHGAP22 (Rho GTPase Activating Protein 22) 

encodes a GTPase activating protein and Rho GTPases have been implicated in AD 

pathogenesis (Aguilar, Zhu, & Lu, 2017). 
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Figure 4.41: Cortex EWAS of the Clinical Dementia Rating (CDR) highlights experiment-wide significant differentially methylated positions. A Manhattan plot showing 
results of a CDR EWAS across two cortical regions (prefrontal cortex and occipital cortex). The significant differentially methylated positions are annotated with their Illumina 
UCSC gene name, unless they are unannotated to a gene. The x-axis shows chromosomes 1-22 and the Y-axis shows -log10(P), with the horizontal red line representing 
experiment wide significance (p< 9e-08). 
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Table 4.22: Differentially methylated positions (DMPs) associated with Clinical Dementia Rating at an experiment wide significance threshold (p<9e-08). In total ten 
DMPs were identified. Probe information is provided corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. The 
Beta columns refers to %methylation change per unit increase in CDR. The ‘Array’ column states if probes are also present on the Illumina 450K array. The ‘Braak Meta P’ 
relates to p-values for these probes from a recent meta-analysis of AD pathology (R. Smith at al., 2021).  The ‘Novel Gene’ column indicates if the gene has previously been 
implicated in neurodegenerative disease and the ‘Previously Identified in’ column indicates how it was previously implicated in dementia. 

DNAm site Beta (%) SE (%) P Chr BP Gene 
Gene 
Region 

Array Braak meta P 
Interaction 
BR P 

Novel 
Gene 

cg08952306 0.98 0.15 1.13e-08 7 101962123 SH2B2 3'UTR 450K & EPIC 1.27e-02 1.82e-01 AD GWAS 

cg11715466 0.60 0.09 1.37e-08 8 134515903 ST3GAL1 5'UTR EPIC - 1.95e-01 - 

cg14325837 0.49 0.08 2.02e-08 10 49731563 ARHGAP22 Body 450K & EPIC 2.19e-04 8.90e-04 - 

cg07394019 -0.70 0.11 3.80e-08 11 61146265 - 
 

EPIC - 7.66e-02 - 

cg08944839 0.56 0.09 4.83e-08 3 184414548 - 
 

EPIC - 4.25e-01 - 

cg22909901 0.61 0.10 5.26e-08 3 182981707 MCF2L2;B3GNT5 Body 450K & EPIC 2.55e-05 5.38e-01 AD DNAm 

cg11139878 0.70 0.11 5.29e-08 1 157811790 CD5L TSS200 450K & EPIC 1.16e-02 1.42e-01 - 

cg12845808 0.60 0.09 6.29e-08 5 141338604 PCDH12 1stExon 450K & EPIC 6.94e-07 4.23e-02 AD DNAm 

cg02921257 0.48 0.08 6.30e-08 3 39233858 XIRP1 5'UTR 450K & EPIC 3.78e-04 6.25e-02 AD DNAm 

cg16464569 0.53 0.09 8.16e-08 1 38472003 FHL3 TSS1500 EPIC - 3.71e-01 - 
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 Multiple DMRs associated with CDR  

In addition to the 10 DMPs, I identified 15 DMRs associated with cognitive decline; of 

these 14 were annotated to genes (see Table 4.23). The most significant DMR which 

is annotated to KLHL33 was also identified in the neuropathology EWAS and DMR 

analysis and has been described above (see 4.4.5.4). However most of the genes 

which the DMRs were annotated to were unique to CDR including GRASP, FAM110A, 

SMYD2, RPH3AL and HYAL2. The largest DMR contained 12 CpG sites and was 

located on chromosome 12 and annotated to GRASP. GRASP is involved in neurite 

development and studies suggest it regulates cognitive function by modulation of 

neuronal plasticity (Yanpallewar, Barrick, Palko, Fulgenzi, & Tessarollo, 2012). A 

recent study found that GRASP variation is associated with memory function and 

cognitive ability in men which schizophrenia, although the findings can extend to other 

disorders where cognitive functioning is a core feature such as in dementia (Matosin, 

Green, Newell, & Fernandez-Enright, 2017). My results further support a role for 

GRASP in cognitive functioning.   
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Table 4.23: Differentially methylated regions (DMRs) associated with Clinical Dementia Rating. In total 15 DMRs were identified. Probe information is provided 
corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. BP start = base position the region begins. BP end = base 
position where the region ends. N = number of probes in the region. P adjusted = Bonferroni corrected p-value adjusted for the number of independent tests. Gene = UCSC 
Gene name.  

CHR BP start BP end n Gene Beta (%) SE (%) P value P adjusted 

14 20903445 20904169 10 KLHL33 8.6 1.17 2.04e-13 1.84e-07 

12 52403511 52404853 12 GRASP 4.26 0.62 5.16e-12 4.64e-06 

9 35563884 35564160 5 FAM166B 7.97 1.19 2.15e-11 1.93e-05 

20 821350 822198 8 FAM110A -3.98 0.69 8.59e-09 7.72e-03 

1 214454282 214454506 5 SMYD2 7.3 1.27 8.83e-09 7.94e-03 

17 202759 202988 3 RPH3AL 11.53 2 8.88e-09 7.98e-03 

3 50359978 50360690 7 HYAL2 4.91 0.85 9.16e-09 8.23e-03 

12 115123251 115124067 5   -9.43 1.65 1.09e-08 9.76e-03 

7 1575621 1575824 3 MAFK 10.51 1.85 1.43e-08 1.29e-02 

13 22033473 22033696 3 ZDHHC20 9.49 1.69 1.90e-08 1.71e-02 

1 109849545 109849854 4 MYBPHL 4.47 0.8 1.96e-08 1.76e-02 

2 220298547 220299116 3 SPEG 9.97 1.81 3.28e-08 2.95e-02 

19 30302030 30302793 6 CCNE1 6.05 1.1 3.35e-08 3.01e-02 

2 86115700 86116061 3 
ST3GAL5-
AS1;ST3GAL5 8.26 1.5 3.64e-08 3.27e-02 

14 77542608 77542763 4 LOC102724190 7.17 1.31 4.14e-08 3.73e-02 
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 DMPs associated with Alzheimer’s disease across the cortex are 
predominantly a result of the disease itself as opposed to specific 
neuropathology measures  

To identify DMPs which are unique to each neuropathology measure I conducted 

conditional analyses in which I ran an EWAS for each of the five neuropathology 

measures controlling for the other four measures in addition to age, sex, batch, derived 

neural cell proportions and PC1. No significant DMPs remained for any of the five 

pathology measures when controlling for the other four measures, suggesting that 

differential methylation is predominantly driven by some aspect of neurodegeneration 

rather than reflecting specific features of each neuropathology measure. This can be 

visualised when looking at the quantile-quantile (QQ) plots, where the plots lie along 

the null line when neuropathology measures are included as covariates in comparison 

to when they are not (see Figure 4.43). Although the QQ plots where neuropathology 

was not included as a covariate appear slightly inflated, it is worth noting that the 

lambda’s were small; there was no evidence of bias in the t-statistics (see Figure 4.43) 

and including the neuropathology measures led to no significance of any DNAm site, 

suggesting that these results are driven by neuropathology/ disease and not an 

uncontrolled latent variable. Of note, the inclusion of just one other neuropathology 

measure as a covariate also reduced the number of significant hits to zero across all 

analyses. 

 

 



 

264 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  
  
  
  
  
  
  
  
  
  
  
 
 
 

Figure 4.42: Quantile-quantile plots of the ten neuropathology EWAS. Shown are the expected (x-axis) against the observed 
(y-axis) quantiles in each EWAS against neuropathology where in (A, C, E, G and I) the EWAS of each neuropathology measure 
(Braak neurofibrillary tangle stage, CERAD, Thal Phase, Braak Lewy Body Stage and TDP-43 status, respectively) controlled for 
age, sex, batch, cell proportions and PC1 as fixed effects and individual as a random effect; and (B, D, F, H and J) the EWAS of 
each neuropathology measure (Braak neurofibrillary tangle stage, CERAD, Thal Phase, Braak Lewy Body Stage and TDP-43 
status, respectively) controlled for age, sex, batch, cell proportions, PC1and the other four neuropathology measures as fixed 
effects and individual as a random effect. Lambda = the genomic inflation factor which is a measure of inflation - a lambda > 1 
suggests there is inflation in the data. 
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Figure 4.43: There was no evidence of bias in the t-statistics for each of the five neuropathology EWAS. T-
statistics for the EWAS of each neuropathology measure controlling for age, sex, batch, cell proportions and PC1 
as fixed effects and individual as a random effect where neuropathology is (A) Braak neurofibrillary tangle stage; 
(B) CERAD density; (C) Thal Phase; (D) Braak Lewy Body Stage; and (E) TDP-43 status.  
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4.4.11 The direction of differential DNAm is generally consistent across 
the neuropathology measures  

Many of the same DMPs and genes were identified across the different 

neuropathology EWAS. Additionally, the suggestive significant (p<5e-05) DMPs were 

characterised by the same direction of effect across the analyses, as demonstrated by 

the significant (Bonferroni p<0.05/25=0.002) binomial sign tests (see Figure 4.44-

Figure 4.49). This indicates that differential methylation is predominantly driven by the 

disease itself rather than reflecting specific features of each neuropathology measure. 

The most consistent results, as statistically evaluated using the sign test, were 

between Braak NFT stage, Thal Phase and CERAD density (see Figure 4.44-Figure 
4.49). Although there was still strong evidence of consistent effects, the 

neuropathology measure with the least concordance with the other measures was 

Braak LB Stage. Interestingly this was the only measure where the effects sizes did 

not correlate with CDR (sign test p=0.13; see Figure 4.47). Of note, Braak LB stage 

had the smallest number of suggestive DMPs due to lower power and therefore we 

cannot conclude that this neuropathology measure is presenting a different pattern to 

the other measures.  
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Figure 4.44: Direction of effect of the suggestive significant hits (p<5e-05) from the Braak neurofibrillary tangle (NFT) stage EWAS were generally consistent with the 
other neuropathology measures. Comparing the consistency of effect sizes (% change per Braak NFT stage) between Braak NFT stage and the other neuropathology and 
clinical dementia rating (CDR) EWAS. Sign test P = p-value of binomial sign test of effect sizes which statistically evaluates consistency across the measures. 
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Figure 4.45: Direction of effect of the suggestive significant hits (p<5e-05) from the CERAD density EWAS were generally consistent with the other neuropathology 
measures. Comparing the consistency of effect sizes (% change per CERAD density level) between CERAD density and the other neuropathology and clinical dementia rating 
(CDR) EWAS. Sign test P = p-value of binomial sign test of effect sizes which statistically evaluates consistency across the measures. 
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Figure 4.46: Direction of effect of the suggestive significant hits (p<5e-05) from the Thal phase EWAS were generally consistent with the other neuropathology 
measures. Comparing the consistency of effect sizes (% change per Thal Phase) between Thal phase and the other neuropathology and clinical dementia rating (CDR) EWAS. 
Sign test P = p-value of binomial sign test of effect sizes which statistically evaluates consistency across the measures. 
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Figure 4.47: Direction of effect of the suggestive significant hits (p<5e-05) from the Braak Lewy Body (LB) stage EWAS had some consistence with the other 
neuropathology measures but not the clinical dementia rating (CDR). Comparing the consistency of effect sizes (% change per Braak LB stage) between the Braak LB 
stage EWAS and the other neuropathology and clinical dementia rating (CDR) EWAS. Sign test P = p-value of binomial sign test of effect sizes which statistically evaluates 
consistency across the measures.  
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Figure 4.48: Direction of effect of the suggestive significant hits (p<5e-05) from the TDP-43 status EWAS were generally consistent with the other neuropathology measures. 
Comparing the consistency of effect sizes (% change between presence TDP-43 vs none) between TDP-43 status and the other neuropathology and clinical dementia rating (CDR) 
EWAS. Sign test P = p-value of binomial sign test of effect sizes which statistically evaluates consistency across the measures. 



 

272 
 

I then ran regional analysis on these results. Only TDP-43 had a significant DMR after 

controlling for the other neuropathology measures, which resided in ACADS (see 

Table 4.24; see 4.4.9 for a description of this gene).  

 

 
Table 4.24: 1 DMR was associated with TDP-43 status after controlling for the other neuropathology 
measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHR start end n Beta (%) SE (%) p.value p.adjusted Gene 
Gene 
Region 

12 121163023 121163497 7 -0.16 2.88e-02 1.99e-08 1.73e-02 ACADS TSS200 
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4.4.12 WGCNA analysis: Clusters of methylated loci were associated 
with neuropathology  

To identify clusters of probes that are co-methylated and hypothesized to share a 

common function, WGCNA analysis was performed which classified the filtered data 

set of 400,458 CpG probes into 14 separate modules (see Figure 4.49). These 

modules were then correlated with neuropathology as well as other traits including 

derived cell proportions, age, sex, APOE genotype and technical factors (e.g. 

experimental batch; see 4.3.7.1). 

The red (n =1647 DNAm sites), black (n = 1045 DNAm sites), tan (n = 242 DNAm 

sites) and brown (n = 13,557 DNAm sites) modules were all significantly positively 

correlated with Braak NFT stage, CERAD density, Thal stage and TDP-43 status (see 
Figure 4.50). The tan and brown modules were also positively correlated with Braak 

LB stage (see Figure 4.50). Braak NFT stage, CERAD density, Thal Phase and TDP-

43 status were negatively correlated with the green (n =8803 DNAm sites), 

yellowgreen (n = 290 DNAm sites) and turquoise (n = 59,603 DNAm sites) modules. 

However, since these modules were very strongly correlated with other traits 

(predominantly derived cell proportions and batch), I ran a regression analysis 

between the modules using mixed effects regression models including age, sex, 

derived cell proportions and plate as fixed effects and brain region as a random effect. 

After controlling for covariates, Braak NFT stage remained significant (Bonferroni 

p<0.05/28 = 0.002) with the aforementioned modules apart from the tan module (see 

Table 4.25). CERAD density was significantly positively associated with the red 

module (p=4.30e-03) and significantly negatively associated with the turquoise 

(p=0.0013) and green modules (1.90e-03; see Table 4.25). Thal phase was 

significantly negatively associated with the green module (p= 1.30e-03). TDP-43 

status was significantly positively associated the green module (p= 8.90e-03). After 

controlling for covariates Braak LB stage was not associated with any module.  



 

274 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.49 : Modules are hierarchically clustered based on calculated module eigengenes (representative of the DNA methylation values within each module). The number of 
DNA methylation probes included in each module are indicated along the x-axis. The colour of each module was arbitrarily assigned. 
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Figure 4.50: Correlations between module eigengenes and traits of interest. The module names are shown along the y-axis and the trait in which they were correlated with 
are shown along the x-axis. Correlation estimates are reported, with p-values in parentheses. Modules with a correlation p-value <0.05 (after controlling for other covariates) 
were selected for further analysis.
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Table 4.25: Several of the modules correlated with neuropathology remain significant after controlling for 
covariates. The significantly correlated modules (Bonferroni p < 0.05/28 = 0.002) were taken forward for regression 
analysis to identify if the associations with the traits of interest remained after controlling for covariates (age, sex, 
cell proportions and batch). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Module Trait BETA SE P 

red Braak NFT Stage 5.20e-04 1.50e-04 4.70e-04 

red CERAD density 6.50e-04 2.30e-04 4.30e-03 

red Thal Phase 3.50e-04 1.80e-04 0.06 

red TDP-43 Status 1.40e-03 7.20e-04 0.05 

red Braak LB Stage 1.20e-04 1.30e-04 0.37 

black Braak NFT Stage 9.50e-04 3.40e-04 5.00e-03 

black CERAD density 6.80e-04 5.30e-04 0.2 

black Thal Phase 6.00e-04 4.10e-04 0.15 

black TDP-43 Status 3.30e-03 1.70e-03 0.05 

black Braak LB Stage 4.60e-05 3.10e-04 0.88 

tan Braak NFT Stage 8.20e-04 3.40e-04 0.02 

tan CERAD density 5.20e-04 5.30e-04 0.33 

tan Thal Phase 7.50e-04 4.10e-04 0.07 

tan TDP-43 Status 1.10e-05 1.70e-03 0.99 

tan Braak LB Stage 3.90e-04 3.10e-04 0.22 

brown Braak NFT Stage 2.70e-03 5.70e-04 2.40e-06 

brown CERAD density 1.20e-03 9.00e-04 0.18 

brown Thal Phase 1.20e-03 6.70e-04 0.08 

brown TDP-43 Status -5.50e-04 2.90e-03 0.85 

brown Braak LB Stage 6.50e-04 5.20e-04 0.21 

turquoise Braak NFT Stage -5.30e-04 1.00e-04 1.30e-07 

turquoise CERAD density -5.10e-04 1.60e-04 1.3e-03 

turquoise Thal Phase -3.10e-04 1.20e-04 0.01 

turquoise TDP-43 Status -1.10e-03 4.90e-04 0.02 

turquoise Braak LB Stage -8.70e-05 9.20e-05 0.34 

greenyellow Braak NFT Stage -5.80e-04 1.50e-04 1.90e-04 

greenyellow CERAD density -4.80e-04 2.40e-04 0.05 

greenyellow Thal Phase -3.40e-04 1.90e-04 0.07 

greenyellow TDP-43 Status -1.40e-03 7.50e-04 0.06 

greenyellow Braak LB Stage 1.40e-04 1.40e-04 0.31 

green Braak NFT Stage -1.40e-03 2.40e-04 2.20e-08 

green CERAD density -1.20e-03 3.90e-04 1.90e-03 

green Thal Phase -9.60e-04 3.00e-04 1.30e-03 

green TDP-43 Status -3.20e-03 1.20e-03 8.90e-03 

green Braak LB Stage -3.20e-04 2.30e-04 0.15 
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 Pathway analysis of the significant modules 

To help us better understand the functional role of the modules I performed gene 

ontology (GO) pathway analysis of genes annotated to DNAm sites in each module. I 

identified significant pathways for the tan (41 pathways; see Figure 4.51), black (13 

pathways; see Figure 4.52), greenyellow (23 pathways; see Figure 4.53), turquoise 

(14 pathways; see Figure 4.54) and green modules (2 pathways; see Figure 4.55). 

Several of the pathways are relevant in the context of dementia and other 

neurobiological functions. 

In the tan module several immune related pathways were identified including 

‘lymphocyte activation involved in immune response’, ‘B cell differentiation’ ‘B cell 

activation’ and ‘humoral immune response’ (Figure 4.51). Mounting evidence 

suggests the immune system plays a role in the aetiology of AD and other dementias 

(Heppner, Ransohoff, & Becher, 2015). For example, humoral immune response 

(which relates to antibody production) by B cells to Aβ has been extensively studied 

in relation to AD; it has been identified that B cells from the blood of AD patients 

secrete antibodies that specifically recognise Aβ (Gaskin, Finley, Fang, Xu, & Fu, 

1993). In addition several other AD related pathways were identified such as those 

involved in cholesterol metabolism (Picard at al., 2018), gliogenesis (Rusznák, 

Henskens, Schofield, Kim, & Fu, 2016) and oligodendrocyte differentiation (Desai at 

al., 2010). The black module was enriched for several pathways which have been 

implicated in dementia including ‘regulation of cyclin-dependent protein 

serine/threonine kinase activity’ and ‘sterol transport’. Serine/threonine kinases are 

thought to be involved in signalling pathways mediated by familial AD mutations in 

APP and PSEN (Ryder, Su, & Ni, 2004). Additionally, APOE-e4 has been found to 

disrupt sterol metabolism in AD cases but not in controls (Bandaru at al., 2009). The 

greenyellow module was enriched for pathways involving brain cells such as ‘glial cell 

development’,’ ensheathment of neurons’,’ axon ensheathment’ and ‘myelination’. 

These pathways are disrupted in dementia patients. For example, myelin and the 

oligodendrocytes that produce it are damaged by Aβ, and this has been associated 

with AD (Bartzokis, 2004). Several immune related pathways were also enriched in 

the greenyellow, turquoise and green modules such as ‘regulation of humoral immune 

response’, ‘defence response to bacterium’, ‘T cell receptor complex’, ‘platelet 
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activation’, and ‘myeloid leukocyte differentiation’ further supporting a role for the 

immune system in dementia.  

 
Figure 4.51: Pathway analysis of the tan module. The y-axis is the gene ontology pathway. The x-axis is size, 
which represents the number of genes included in the pathway. 
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Figure 4.52: Pathway analysis of the black module. The y-axis is the gene ontology pathway. The x-axis is size, 
which represents the number of genes included in the pathway. 
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Figure 4.53: Pathway analysis of the greenyellow module. The y-axis is the gene ontology pathway. The x-axis 
is size, which represents the number of genes included in the pathway. 
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Figure 4.54: Pathway analysis of the turquoise module. The y-axis is the gene ontology pathway. The x-axis is 
size, which represents the number of genes included in the pathway. 
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Figure 4.55: Pathway analysis of the green module. The y-axis is the gene ontology pathway. The x-axis is size, 
which represents the number of genes included in the pathway. 
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4.5 Discussion  

4.5.1 Overview of results 

In this chapter I examined the association between DNAm and five different 

neuropathology measures (Braak NFT stage, Thal phase, CERAD density, Braak LB 

stage and TDP-43 status) utilising DNAm data from 1221 samples from two cortical 

regions (PFC and OCC). I identified a number of DMPs and DMRs which were 

associated neuropathology. The majority DMPs showed consistent patterns of 

neuropathology-associated methylomic variation across the two cortical regions, with 

very few interactions being identified between neuropathology and brain region. This 

is likely due to the gained power when using the two regions collectively but is also 

likely to reflect cortex-wide effects as opposed to cortex-specific effects of 

neuropathology. Many of the DMPs identified were annotated to EPIC array specific 

probes which demonstrates the utility of the newer platform and the advantage of the 

increased power in comparison to the 450K array that has been used in previous 

studies.  

Many of the DMPs were annotated to genes which have previously been implicated in 

dementia. This includes several DMPs and DMRs annotated to HOXA region which 

has consistently been reported to be hypermethylated in AD (Gasparoni at al., 2018; 

R. G. Smith at al., 2018; R. Smith at al., 2021).  It has been recognised that the HOXA 

gene cluster is involved in neuronal development, neuronal circuit organisation and 

the regulation of post mitotic neurons (Lizen at al., 2017; Philippidou & Dasen, 2013). 

Methylomic variation of the HOX region has been associated with several 

neurodegenerative diseases including PD, Huntington’s disease and C9ORF72-

related dementia (Finch at al., 2017; Hoss at al., 2014; Labadorf at al., 2015). Several 

DMPs and DMRs were associated with immune related genes (e.g. TNFRSF1A and 

OSCAR) and in combination with the pathway analysis of the neuropathology-

associated WGCNA modules highlighting an abundance of immune pathways, these 

findings provide further evidence that immune regulation plays a role in the aetiology 

of AD and other dementias (Heppner at al., 2015). 

DMPs and DMRs annotated to HOXA and several other genes including SH2B2 and 

BCAR1 were associated with multiple AD neuropathology measures (Braak NFT 

Stage, Thal phase and CERAD density). Additionally, DMPs from all five 
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neuropathology measures were characterised by a similar direction of effect, several 

overlapping DMPs were identified in the analysis including all neuropathology 

measures, and the significance of all DMPs diminished when including other 

neuropathology measures as covariates. Collectively, these findings suggest that 

DMPs and DMRs are driven by some aspect of neurodegeneration as opposed to the 

individual neuropathology measures. This suggests that regardless of dementia 

subtype, there are similar mechanisms involved in disease pathogenesis. These 

findings could be explained by the pleiotropy between different dementia subtypes. 

For example, SNPs within HLA, MAPT and APOE all contribute to increased risk for 

FTD, AD and PD (Ferrari at al., 2017). Additionally, the fEOAD genes (APP, PSEN1 

and PSEN2) are found in PD cases suggesting genes involved in Mendelian 

neurodegenerative diseases also display pleiotropic effects (Ibanez at al., 2018). 

There have been several studies suggesting that PD, DLB and AD share underlying 

mechanisms and there are strong genetic correlations between these diseases 

(Desikan at al., 2015; Guerreiro at al., 2016). Previous EWAS have also identified 

methylomic similarities in neurodegenerative diseases. Sanchez-Mut at al. (2016) 

focused on identifying common pathways involved in PD, DLB, AD and down-

syndrome cases and identified multiple DMRs associated with disease. In their 

subsequent pathway analysis they reported significant over-representation in 

pathways related to brain function and immune response across all disorders tested. 

They also identified that ANK1 was differentially expressed in DLB, which corresponds 

with results from previous AD EWAS indicating there is hypermethylation of ANK1 (De 

Jager at al., 2014; Gasparoni at al., 2018; Lunnon at al., 2014; Smith at al., 2019), 

although recent research reported that the hypermethylation of ANK1 in DLB could be 

confounded by AD pathology. Although it is possible to stratify by specific dementia 

subtypes, dementia in older people is usually a consequence of multiple pathologies 

(Kapasi, DeCarli, & Schneider, 2017; Thomas at al., 2020) and this needs to be 

considered in EWAS of neurodegenerative diseases.  

The evidence for pleiotropy suggests that common pathological mechanisms likely 

underlie neurodegenerative disorders. Although the proteins and specific brain regions 

involved in the aetiology of neurodegenerative diseases differ, in all cases the 

progressive accumulation of these deposits ultimately leads to neuronal cell death and 

brain atrophy (Ross & Poirier, 2004). Our results suggest that the pathogenesis of 
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different types of dementia may be more similar than first hypothesised. This is 

perhaps the most important finding as EWAS generally focus on specific 

neuropathology measures depending on the dementia subtype they are investigating. 

This highlights the benefit of using the BDR dataset which has multiple neuropathology 

measures for each individual. Previous EWAS of dementia have enabled us to explore 

the molecular consequences of disease pathology however, previously findings 

should be interpreted with caution in relation to disease-specific claims. Of note, 

although the findings suggest there are common underlying mechanisms in 

neurodegeneration there may still be some specific methylomic differences between 

the neuropathology measures, although we were limited by power in these analyses. 

Moreover, I used neuropathology measures for the analyses and not definitive 

diagnoses of the dementia subtypes. If I had excluded definitive FTD, PD and DLB 

cases in the AD analyses and vice versa it is possible we may have identified some 

differences between the disorders.   

4.5.2 Limitations 

There are several limitations to this study. For one, bulk tissue was used which 

contains several cell types. It has been well established that cell proportions are 

altered in AD and dementia, with a reduction of neuronal and an upregulation of glial 

cells in comparison to cognitively normal controls (Gómez-Isla at al., 1997). Although 

I have controlled for cell proportions using an algorithm based on nuclei-sorted DNAm 

data, the optimal approach would be to profile purified cell populations or utilise single-

cell technologies in future studies.  

I used the UCSC annotation provided by Illumina to identify the gene relating to each 

DMP which can lead to the annotation of overlapping genes, or no gene annotation, 

making is hard to establish the gene of interest. The data generated in Chapter 5 
section 5.4.16 (which characterised the relationship between DNA methylation and 

gene expression) and Hi-C data could potentially be used to link regulatory data to 

actual genes. It has revealed there are contacts between distant genomic regions 

within the same or across different chromosomes, which has many implications for 

gene regulation. Hi-C assesses this 3D chromatin conformation and can be used to 

elucidate how the spatial organisation of DNA affects gene regulation by identifying 

interactions and topologically associating domains (Kikuchi at al., 2019; Pombo & 
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Dillon, 2015). These data could be combined to develop a more functionally relevant 

manifest for EWAS data. 

As the distribution of samples across the neuropathology groups differed, the power 

to identify significant associations varied across the analyses. Most notably, LB 

pathology had very few cases in the latest stages of pathology. The correlations 

between the effects sizes of LB pathology DMPs and the other neuropathology 

measures were weak. This could suggest aetiological differences in LB pathology but 

we cannot draw these conclusions as there was not enough power to detect robust 

associations in this analysis. Future studies should incorporate a more even 

distribution of pathology for all measures included. 

Although the experiment wide significance threshold (p<9e-08) was empirically 

derived via the simulation of null DNAm datasets using EPIC array data (Mansell at 

al., 2019), it perhaps is too conservative due to the pleiotropy between 

neurodegenerative disorders; they are not fully independent (Desikan at al., 2015; 

Ferrari at al., 2017). The notion that this threshold is too stringent is further supported 

by the consistency in the direction of effect across the findings in this chapter with the 

findings from the recent meta-analysis conducted by our group (R. Smith at al., 2021), 

which highlights how robust the associations are. Several of the suggestive significant 

(p<5e-05) sites in the meta-analysis did not surpass the experiment-wide significance 

threshold in their study but were found to be significant in our analysis and vice versa. 

This suggests they are likely to be true associations which were reported as non-

significant (false negatives). 

In the WGCNA analysis I did not regress out any covariates as they may offer 

biological insights. However, this means the modules identified may be driven by 

covariates with stronger associations such as derived cell proportions as opposed to 

neuropathology or by technical factors such as experimental batch. Removing 

technical covariates in future analysis would ensure that they are not driving the 

module generation. However, several of the pathways identified were relevant in the 

context of neurodegenerative disease, indicating that experimental batch had limited 

influence on the module generation.  

One key limitation of epigenetic studies is the issue of causality. It is not possible to 

disentangle if the DMPs identified are driving disease pathogenesis, or if they are a 
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consequence of the disease. However, since neuropathology in the OCC is low and 

the effects were consistent across brain regions, this indicates there is some causal 

aspect of disease rather than a consequence of the presence of neuropathology. 

There is also a chance that they are a result of other uncontrolled environmental 

factors such as medication.   

4.5.3 Conclusion 

To my knowledge, this is the most systematic dementia EWAS conducted to date. A 

number of novel loci which have not previously been implicated in dementia have been 

identified which warrant future exploration to help us better understand the aetiology 

of neurodegenerative disease. This study highlights the importance of utilising multiple 

neuropathology measures to help us better understand disease pathogenesis and 

suggests that independent pathologies may not currently provide disease specific 

information if other neuropathology measures or disease subtypes are not controlled 

for. This limits the usefulness of neuropathology-specific EWAS however it allows us 

to better understand the molecular mechanisms involved in general 

neurodegeneration. Future studies with multiple neuropathology measures should 

conduct similar analysis to validate these results.  
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5 Methylation quantitative trait loci (mQTL) analysis and 
summary data-based Mendelian randomisation (SMR) 

 
Figure 5.1: Analytical plan and datasets for Chapter 5: Methylation quantitative trait loci (mQTL) analysis 
and summary data-based Mendelian randomisation (SMR). 
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5.1 Introduction 

As the majority of GWAS variants associated with complex traits such as LOAD reside 

in non-coding regions – i.e. they do not index transcriptional changes which influence 

protein structure - it has been challenging to identify how they impact upon disease 

aetiology (Amlie-Wolf at al., 2018; Giambartolomei at al., 2018). It is hypothesised that 

GWAS variants act through gene regulation, which is supported by evidence showing 

that they are enriched in regulatory domains including enhancers and regions of open 

chromatin (Kikuchi at al., 2019; Marzi at al., 2018).  A potential approach to explore 

the mechanisms by which non-coding risk variants regulate gene expression is 

through the integration of datasets that measure the association of sequence variation 

with molecular phenotypes, including DNA methylation quantitative trait loci (mQTLs; 

where a SNP is associated with DNA methylation [DNAm]) and gene expression 

quantitative trait loci (eQTLs; where a SNP is associated with gene expression). 

Quantitative trait loci with larger effects are predominantly cis acting, and are enriched 

in regulatory domains, supporting the hypothesis that they play a role in gene 

regulation. In addition, cis-mQTLs have been shown to be enriched amongst GWAS-

loci, including LOAD GWAS variants (Min at al., 2020). Characterising the relationship 

between genetic, epigenetic and transcriptomic variation can increase our 

understanding of the mechanisms driving disease pathogenesis in complex disease 

phenotypes including LOAD.  

 

One method to characterise the relationship between genetic and epigenetic (or 

transcriptomic) variation is Bayesian-colocalisation. Bayesian-colocalisation explores 

whether two traits (i.e. disease and a given regulatory mark) are consistent with a 

shared genetic variant within a genomic region. Giambartolomei and colleagues 

(2014) developed a Bayesian test for colocalisation between multiple genetic 

association studies which utilises summary statistics. The method is Bayesian as it 

considers all the possible configurations of causal variants for the two traits and then 

calculates the support for each scenario using a Bayes factor (Giambartolomei at al., 

2014). The method is based on the assumption that there is a maximum of one causal 

variant per trait in each region and provides posterior probabilities (i.e. the probability 

of an event occurring after taking into consideration prior information) which can be 
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easily interpreted. Bayesian-colocalisation accumulates evidence for five different 

mutually exclusive hypotheses (Hi):  

• H1) There is no association with either trait 

• H2) There is an association with trait one but not with trait two 

• H3) There is an association with trait two, but not with trait one 

• H4) There is an association with trait one and trait two but these are two 

independent SNPs 

• H5) There is an association with trait one and trait two, and there is a single 

causal SNP.  

This method can be used to formally test if proximally located DNAm sites (or 

expressed genes) are influenced by the same causal variant. Hannon and colleagues 

(2018) used this method to better understand the relationship between genetic 

variation and DNAm in cis, identifying a complex relationship between the two. For 

example, they found that DNAm sites which co-localised with another site (i.e. where 

they were characterised by shared genetic effects) also co-localised with a median of 

three other DNAm sites.  

There has been recent interest in utilising QTLs to help interpret the functional 

consequences of common genetic variation, particularly as the most proximally 

located gene to a lead GWAS SNP is not necessarily the ‘causal’ gene for disease. 

These methods aim to identify differential DNAm or gene expression associated with 

a trait due to pleiotropy (where a genetic variant has direct effects on both a trait and 

a molecular marker of gene regulation). Colocalisation itself – i.e. where the same 

genetic variant is causal for two traits - is not sufficient to definitively infer a pleiotropic 

relationship. This is important since a SNP could be associated with both DNAm and 

a phenotype, but this may reflect a situation where the top associated cis QTL is in 

linkage disequilibrium (LD; the correlation structure between proximal variants) with 

two independent causal variants – one SNP affecting DNAm and the other associated 

with phenotypic variation (see Figure 5.2). This is an active area of research and 

current methods which leverage QTLs to refine GWAS signals include Mendelian 

randomisation (MR) approaches including Summary-data based Mendelian 

Randomisation (SMR). 
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Figure 5.2 Association between gene expression and phenotypes via genetic control.  (A) A hypothetical 
model of causality where differences in phenotypic variation is driven by genetic variation, which is mediated 
through gene expression. (B) Three possible explanations for the observed association between a trait and gene 
regulation though genetic variation: causality (where the effect a genetic variant has on a trait is mediated by a 
molecular marker of gene regulation); pleiotropy (where a genetic variant has direct effects on both a trait and a 
molecular marker of gene regulation); and linkage (where there are two distinct variants in LD where one of these 
variants has an effect on transcription and the other on the phenotype). Figure taken directly from Zhou at al., 
(2016). 

SMR was developed to identify whether there is pleiotropy between genetic variants, 

molecular markers (e.g. DNAm at a specific site or the expression of a specific gene ) 

and complex traits or disease (Zhu at al., 2016). This method is based on the premise 

of Mendelian randomisation (MR), which uses genetic variation as an instrumental 

variable to investigate the ‘causal’ relationships between phenotypes in observational 

data (Burgess, Dudbridge, & Thompson, 2016). The MR approach is usually used to 

test for the causative effect of a modifiable risk factor on health outcomes but in SMR 

the approach is used to test if the effect size of a SNP on a trait identified from a GWAS 

is mediated by the expression level of a gene (Zhu at al., 2016). For example, if 

expression of a gene is influenced by a SNP (i.e. an eQTL) then there will be 

differences in gene expression among individuals who are homozygous (e.g. AA, aa; 

where ‘A’ and ‘a’ are the different alleles) or heterozygous (Aa) for specific genetic 

variants (e.g. see Figure 5.2(A)). If the expression levels have a significant effect on 

a trait then these differences will be observable in the three distinct genetic groups.  
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The aim of MR is to estimate the ‘causal’ effect for an exposure on an outcome using 

one or more genetic instruments as shown in Figure 5.3. X is the exposure (in MR this 

is usually a modifiable risk factor and in SMR this is a molecular marker of gene 

regulation such as gene expression or DNAm), Y is the outcome (which is the 

phenotype of interest, e.g. LOAD) and Z is the genetic instrument (e.g. one or more 

SNPs). βXY (defined βXY = βZY/βZX) is the effect size of X on Y (this is the slope of Y 

regressed onto the genetic value of X and is the relationship of interest in MR analysis), 

βZX is the effect of Z on X and βZY is the effect of Z on Y.  

 

Zhu and colleagues (Zhu at al., 2016) developed SMR to integrate summary-level data 

(e.g. effect sizes) from GWAS as well as eQTL and mQTL studies, utilising data across 

the genome. Under the assumption of causality (where the exposure is causally 

related to the outcome) or pleiotropy (where a genetic variant has direct effects on 

both a trait and a molecular marker of gene regulation), SMR analysis is analogous to 

MR. In SMR analysis βXY corresponds to the association (either with a positive or 

negative sign) between the molecular marker and trait which is not influenced by non-

genetic confounders. The SMR method for calculating the pleiotropic effect of the 

exposure on the outcome is shown in Figure 5.4A. Since only one instrumental 

variable (i.e. a specific SNP) is considered in each calculation, a Wald ratio (Wald, 

1940) is used to estimate βXY (referred to as bEWAS in Figure 5.4) which is simply the 

influence of the SNP-outcome effect divided by the SNP-exposure effect. There is a 

second step to the SMR process: the heterogeneity in dependent instruments (HEIDI) 

Figure 5.3: Mendelian Randomisation. Y is the phenotype of interest (e.g. LOAD), X is the exposure 
(gene expression/ DNA methylation) and Z is a genetic variant (the genetic instrument). βXY is the effect 
size of X on Y (this is the slope of Y regressed onto the genetic value of X), βZX is the effect of Z on X 
and βZY is the effects of Z on Y. βUY is the effect size of U on Y. In MR analysis βXY (defined βXY = 
βZY/βZX) is interpreted to be the effect of X on Y where there are non-genetic confounders. Figure taken 
directly from Teumer (2018). 
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test, which is used to detect pleiotropy from linkage (Figure 5.4B and Figure 5.4C). 

βXY estimated from SMR will be identical for any variant in LD with the causal variant 

suggesting there is a single causal variant and the association statistics remain the 

same irrespective of the genetic instrument used (see Figure 5.4B). Differences in βXY 

implies there is a greater likelihood of linkage, rather than pleiotropy, suggesting there 

are distinct causal SNPs for the exposure and the trait (see Figure 5.4C). Of note, this 

approach cannot distinguish between linkage and pleiotropy if the two causal variants 

are in perfect LD as power is inversely proportional to the strength of the correlation 

between the two causal variants.  

Simulations by Zhu and colleagues showed that MR and SMR analysis based on one 

genetic variant cannot distinguish between causality and pleiotropy regardless of 

whether or not if the effect of the genetic instrument on the exposure is direct or 

mediated by a latent variable (Zhu at al., 2016). Therefore ‘pleiotropy’ is a more 

accurate term in SMR analysis than ‘causality’ as stated by the authors of the tool; this 

is to avoid misinterpretation of the results and is the term I have adopted throughout 

this Chapter.   

SMR has been applied to multi-omics datasets. For example, Hannon and colleagues 

(2018) utilised the SMR tool to characterise the intricate relationship between genetic, 

epigenetic and transcriptomic variation in >60 traits, identifying ~1700 pleiotropic 

associations between 36 complex traits and >1200 DNAm sites. They also identified 

~6,800 pleiotropic associations between >5,400 DNAm sites and the transcription of 

>1700 genes. SMR can be used to prioritize potentially functionally relevant genes 

within previously identified regions of association by GWAS and has the potential to 

highlight loci that currently do not have sufficient statistical power to reach genome-

wide significance in GWAS.  
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Figure 5.4: The Summary-data based Mendelian randomisation (SMR) approach.  (A) The first step of SMR analysis tests for an association between DNA methylation and 
a trait (e.g. Alzheimer’s disease). Blue solid arrows represent known information (GWAS or mQTL results). Red arrows represent the relationship being derived. (B) and (C) 
represent stage two of SMR analysis which aims to distinguish between pleiotropy (B) and linkage (C). Dashed blue arrows indicate the true causal associations estimated via 
“tag SNPs”. “Tag SNPs” are highly correlated (shown by solid black arrows) with the “causal SNP” quantified as α or β. In (B) the same causal SNP is associated with both DNA 
methylation and the trait of interest; there is only one correlation statistic (α), which is cancelled out when estimating the effect bEWAS. In (C) there are two causal SNPs; one 
for DNA methylation and  one for the trait, and therefore two correlations with the “tag SNP” (α and β), which do not cancel each other out. In this scenario the estimate of bEWAS 
will exhibit heterogeneity when different “tag SNPs” are tested, whereas in the scenario depicted in (B) the estimate of bEWAS will be consistent regardless of the choice of “tag 
SNP”. SNP – single nucleotide polymorphism; GWAS - genome-wide association study; EWAS -epigenome wide association study. Figure taken directly and legend adapted 
from (Hannon at al., 2018). 
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5.2 Chapter aims  

The main aim of this chapter is to utilise methylation and expression quantitative trait 

loci to prioritise putative causal loci within large genomic regions associated with 

LOAD in both the human cortex and whole blood. The specific aims of this chapter 

are: 

1. Building on work previously conducted within our group by Hannon and colleagues, 

I aim to generate two large mQTL datasets using EPIC array data in whole blood 

and the cortex. 

2. Using Bayesian colocalisation I aim to formally test if proximally located DNAm 

sites are influenced by the same causal variant. 

3. I will use the mQTL databases within the SMR framework to refine genetic 

association data from publicly available LOAD GWAS datasets in order to prioritize 

genes for future functional work. 

4. Using the SMR approach I aim to identify pleiotropic relationships between DNAm 

and variable gene expression using publicly available whole-blood and cortex 

eQTL data. 

5. Using the results generated from Aims 1 to 4, I will identify similarities and 

differences between the whole blood and cortex results.  
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5.3 Methods 

5.3.1 Whole Blood mQTL data 

The whole blood mQTL dataset was generated using data from the UK Household 

Longitudinal Study (UKHLS) and the Exeter 10,000 Study (EXTEND). Briefly, the 

UKHLS was established in 2009 and is a longitudinal panel survey of 40,000 UK 

households from England, Scotland, Wales and Northern Ireland (Buck & McFall, 

2011)(see chapter 3 section 3.2.3 for more details).  EXTEND is a research biobank 

funded by the National Institute for Health Research (NIHR) and is a population study 

of >10,000 individuals >18 years of age who live within 25 miles of Exeter (Devon, UK; 

https://exetercrfnihr.org/about/exeter-10000/). 

 DNA methylation data 

DNAm data was generated within our laboratory for each of the cohorts. The EZ-96 

DNA Methylation-Gold kit (Zymo Research; Cat No# D5007) was used to treat ~500 

ng of DNA from each sample with sodium bisulfite. DNAm data were generated using 

the Illumina EPIC DNAm array as described previously (see Chapter 2 section 2.1.2).  

 DNA methylation data pre-processing 

Unless otherwise reported, all statistical analysis was conducted in the R statistical 

environment (version 3.5.2; https://www.r-project.org/). Raw data for both datasets 

were used, prior to any QC or normalisation, and processed using the wateRmelon 

(Pidsley at al., 2013) and bigmelon (Gorrie-Stone at al., 2019) packages. The stringent 

DNAm QC pipeline described in Chapter 3 section 3.2.4 was used for both datasets. 

Smoking score was estimated using the algorithm which is based on the DNAm profile 

at 183 sites known to be associated with smoking (Elliott at al., 2014). For more details 

on the QC pipeline see Chapter 2 section 2.1.4.  

 Genotyping and Imputation 

5.3.1.3.1 UKHLS 

UKHLS samples were genotyped using the Illumina Infinium HumanCoreExome 

BeadChip Kit as previously described (Prins at al., 2017). This array contains a set of 

>250,000 highly informative genome-wide tagging SNPs as well as a panel of 

https://exetercrfnihr.org/about/exeter-10000/
https://www.r-project.org/
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functional exonic markers, including a large proportion of low-frequency (MAF 1%–

5%) and rare (MAF < 1%) variants. Genotype calling was performed with the gencall 

algorithm within Illumina GenomeStudio 

(https://emea.illumina.com/techniques/microarrays/array-data-analysis-experimental-

design/genomestudio.html). Samples with matched DNAm data were selected and 

variants were refiltered prior to imputation. PLINK1.9 was used for removing samples 

if: (1) they had > 5% missing data, (2) their genotype predicted sex using X 

chromosome homozygosity was discordant with their reported sex (excluding females 

with an F value > 0.2 and males with and F value < 0.8), (3) they had excess 

heterozygosity ( >3 SD from the mean), (4) they were related to another individual in 

the sample (pi hat > 0.2), where one individual from each pair of related samples were 

randomly excluded, or (5) they were classed as  non-European, determined by 

merging the UKHLS genotypes with data from HapMap Phase 3 

(http://www.sanger.ac.uk/resources/downloads/human/hapmap3.html), linkage 

disequilibrium (LD) pruning the overlapping SNPs such that no pair of SNPs within 

1500 bp had r2 > 0.20 and visually inspecting the first two genetic principal components 

along with the known ethnicities of the HapMap sample to define European samples. 

These data were then imputed with the 1000 Genomes phase 3 version reference 

panels SHAPEIT and minimac3. Best-guess genotypes were called, and variants were 

filtered to those with a minor-allele frequency >0.01 and an R2 INFO score >0.8 (info 

score = information metric between 0-1 where 1 = a SNP which has been imputed to 

high certainty). Since variants were named in 1000 Genomes format using their 

locations (“chr:pos”) and variant type (SNP/INDEL), duplicate variants were also 

excluded. Principal components were calculated from the imputed genotype data via 

GCTA (a software tool for genome-wide complex-trait analysis) (Yang, Lee, Goddard, 

& Visscher, 2011). The imputed genetic variants were then filtered so that variants 

characterised by >5% missing values, a Hardy-Weinberg equilibrium p-value <0.001, 

a minor-allele frequency of <5%, and a minimum of five observations in each genotype 

group were excluded. Variants were named using their genomic locations (“chr:pos”) 

and variant type (SNP/INDEL) and therefore duplicate variants were excluded. 

5.3.1.3.2 EXTEND 

Genotyping was performed on the Illumina Infinium Global Screening Array (GSA) 

which incorporates 686,082 tagging SNPs and includes a panel of markers with 

https://emea.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html
https://emea.illumina.com/techniques/microarrays/array-data-analysis-experimental-design/genomestudio.html
http://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
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established clinical associations based on the ClinVar database (Landrum at al., 

2016). The GSA has been optimised for genomic coverage and imputation 

performance in the five defined super populations (Africans, mixed Americans, East 

Asians, Europeans, South Asia). Genotype calling was performed using 

GenomeStudio (v2.0, Illumina) and QC was completed using PLINK1.9 (Chang at al., 

2015). Individuals were excluded if either (1) they had > 5% missing data, (2) their 

genotype predicted sex using X chromosome homozygosity was discordant with their 

reported sex (excluding females with an F value > 0.2 and males with and F value < 

0.8), (3) they had excess heterozygosity ( >3 SD from the mean), (4) they were related 

to another individual in the sample (pi hat > 0.2), where one individual from each pair 

of related samples was randomly excluded or (5) they were classed as  non-European, 

determined by merging the EXTEND genotypes with data from HapMap Phase 3 

(http://www.sanger.ac.uk/resources/downloads/human/hapmap3.html), linkage 

disequilibrium (LD) pruning the overlapping SNPs such that no pair of SNPs within 

1500 bp had r2 > 0.20 and visually inspecting the first two genetic principal components 

along with the known ethnicities of the HapMap sample to define European samples. 

The genetic data were then recoded as vcf files before uploading to the Michigan 

Imputation Server (Das at al., 2016) 

(https://imputationserver.sph.umich.edu/index.html#!) which uses  Eagle2 (Loh at al., 

2016) to phase haplotypes, and Minimac4 

(https://genome.sph.umich.edu/wiki/Minimac4) with the most recent 1000 Genomes 

reference panel (phase 3, version 5). Imputed genotypes were then filtered with 

PLINK2.0alpha (https://www.cog-genomics.org/plink/2.0/), excluding SNPs with an R2 

INFO score < 0.5 and recoded as binary PLINK format. Proceeding with PLINK1.9, 

samples with >5% missing values, and SNPs with >2 alleles, >5% missing values, 

Hardy-Weinberg equilibrium p < 0.001, or a minor allele frequency of <5% were 

excluded. Since variants were named in 1000 Genomes format using their genomic 

locations (“chr:pos”) and variant type (SNP/INDEL), duplicate variants were excluded. 

 

 Whole Blood mQTL dataset 

Data from UKHLS and EXTEND were combined, keeping the overlapping samples 

between the genetic and DNAm data which passed the stringent QC criteria for both 

data types. Genetic data were combined keeping the SNPs in common between the 

http://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
https://imputationserver.sph.umich.edu/index.html#!
https://genome.sph.umich.edu/wiki/Minimac4
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two datasets. Genetic QC was conducted again on the combined datasets so that 

variants characterised by >5% missing values, a Hardy-Weinberg equilibrium p-value 

<0.001, a minor-allele frequency of <5% and <5 observations in each genotype group 

were excluded. Sample relatedness was calculated and related individuals were 

excluded (relatedness exclusion criteria: pi hat > 0.2). Principal components (PCs) 

were recalculated using the --pca flag in PLINK1.9 (Chang at al., 2015) for inclusion 

as covariates in QTL analyses (10 PCs included). Raw DNAm data (in the form of idat 

files) for the samples in each cohort which passed the initial DNAm QC and the 

combined genotyping QC were read into R.  A brief QC for the DNAm data was 

conducted again: the pfilter function in wateRmelon was used to exclude samples with 

>1 % of probes with a detection P value > 0.05 and probes with >1 % of samples with 

detection P value  > 0.05 and data was normalised using dasen. Cross-hybridizing 

probes, probes with a common SNP (European population minor-allele frequency > 

0.01) within 10 base pairs of the DNAm site or a single base extension and sex 

chromosomes were excluded from the QTL analysis (McCartney at al., 2016). The 

final QC’d set of data included 2082 samples, of which 44% were male, the age range 

was between 19-98 years and a there was a mean age of 57.49 years (UKHLS: 

N=1,099, 41% male, age range =28-98 years, mean age = 58.50 years; EXTEND: N= 

983, 47.5% male, age range =19-80 years, mean age = 56.42 years). 765,013 DNAm 

probes and 5,359,678 genetic variants passed QC for analysis.   

5.3.2 Cortex mQTL dataset 

 DNA methylation data 

Cortex mQTLs were generated using post-mortem prefrontal cortex (PFC) samples 

from the Dementia Research (BDR) cohort (see Chapter 3, section 3.2.2). Briefly, the 

BDR cohort was established with the aim of generating a large comprehensive 

neuropathological dataset from multiple brain banks using standardised procedures to 

enable the investigation of dementia through detailed phenotypic and multi-omics 

datasets (Francis, Costello, & Hayes, 2018). For more details on this cohort see 

Chapter 4 section 4.3.1. 
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 Genotyping and Imputation 

DNA was isolated using a standard phenol chloroform method on 100 mg of cortex 

tissue. DNA quality was assessed using the Agilent 2200 TapeStation DNA integrity 

number and quantified using Nanodrop 3300 spectrometry. Genotyping was 

performed on the NeuroChip array which is a custom Illumina genotyping array with 

an extensive genome-wide backbone (n = 306,670 variants) and custom content 

covering 179,467 variants specific to neurological diseases (Blauwendraat at al., 

2017). Genotype calling was performed using GenomeStudio (v2.0, Illumina) and 

quality control (QC) was completed using PLINK1.9 (Chang at al., 2015). Individuals 

were excluded if either 1) they had > 5% missing data, 2) their genotype predicted sex 

using X chromosome homozygosity was discordant with their reported sex (excluding 

females with an F value > 0.2 and males with and F value < 0.8), 3) they had excess 

heterozygosity (>3 SD from the mean), 4) they were related to another individual in 

the sample (pi hat > 0.2), where one individual from each pair of related samples was 

excluded considering data quality and phenotype, or 5) they were classed as  non-

European, determined by merging the BDR genotypes with data from HapMap Phase 

3 (http://www.sanger.ac.uk/resources/downloads/human/hapmap3.html), linkage 

disequilibrium (LD) pruning the overlapping SNPs such that no pair of SNPs within 

1500 bp had r2 > 0.20 and visually inspecting the first two genetic principal components 

along with the known ethnicities of the HapMap sample to define European samples 

(See Figure 5.5). Prior to imputation SNPs with high levels of missing data (>5%), 

Hardy-Weinberg equilibrium p < 0.001 or minor allele frequency <1% were excluded. 

The genetic data were then recoded as vcf files before uploading to the Michigan 

Imputation Server (Das at al., 2016) 

(https://imputationserver.sph.umich.edu/index.html#!) which uses  Eagle2 (Loh at al., 

2016) to phase haplotypes, and Minimac4 

(https://genome.sph.umich.edu/wiki/Minimac4) with the most recent 1000 Genomes 

reference panel (phase 3, version 5). Imputed genotypes were then filtered with 

PLINK2.0alpha, excluding SNPs with an R2 INFO score < 0.5 and recoded as binary 

PLINK format. Proceeding with PLINK1.9, samples with >5% missing values, and 

SNPs with >2 alleles, >5% missing values, Hardy-Weinberg equilibrium p < 0.001, or 

a minor allele frequency of <5% were excluded. Variants were named using their 

genomic locations (“chr:pos”) and variant type (SNP/INDEL) and therefore duplicate 

http://www.sanger.ac.uk/resources/downloads/human/hapmap3.html
https://imputationserver.sph.umich.edu/index.html#!
https://genome.sph.umich.edu/wiki/Minimac4
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variants were excluded. The final quality controlled imputed set of genotypes 

contained 6,607,832 variants.  

 

 

 Final cortex QTL dataset 

Overlapping samples between the genetic and DNAm data which passed the stringent 

QC criteria for both data types were included in the final cortex mQTL dataset. Cross-

hybridizing probes, probes with a common SNP (European population minor-allele 

frequency > 0.01) within 10 base pairs of the DNAm site or a single base extension 

and sex chromosomes were excluded from the QTL analysis (McCartney at al., 2016). 

The final QC’d set of data included 522 samples (53% male, age range = 41-104 

years, mean age = 83.44 years), 763,451 DNAm probes and 6,607,832 genetic 

variants.  

Figure 5.5: Visually ascertaining ancestry outliers in the BDR sample using principal components. BDR was 
merged with HapMap3 and ancestry was ascertained based on the first two principal components. ASW = African 
ancestry in Southwest USA; CEU = Utah residents with Northern and Western European ancestry from the CEPH 
(The Centre d'Etude du Polymorphism Humain) collection; CHB = Han Chinese in Beijing, China; CHD = Chinese in 
Metropolitan Denver, Colorado; GIH = Gujarati Indians in Houston, Texas; JPT =Japanese in Tokyo, Japan; LWK = 
Luhya in Webuye, Kenya; MXL = Mexican ancestry in Los Angeles, California; MKK = Maasai in Kinyawa, Kenya; 
TSI = Toscani in Italia; YRI = Yoruba in Ibadan, Nigeria; BDR = Brains for Dementia Research; and HAPMAP  = The 
International HapMap Project. 
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5.3.3 Whole blood eQTL dataset 

I used a publicly available expression quantitative trait loci (eQTL) dataset generated 

by Westra and colleagues (2015). They conducted an eQTL meta-analysis of 5,311 

samples from whole blood, where gene expression was measured on Illumina 

expression arrays (annotation file for the Illumina HumanHT-12 v3.0 Gene Expression 

BeadChip; https://support.illumina.com/downloads/humanht-

12_v3_product_files.html)  and the genetic data (SNP data) was imputed using the 

HapMap2 reference panel (International HapMap Consortium, 2005). I only included 

probes where the p-value for the top cis-eQTL was p<5e-08. I removed SNPs (eQTLs) 

with minor allele frequency MAF <0.01). After filtering, there were 4,874 probes 

(tagging 4180 genes) and 757,479 SNPs. 

5.3.4 Cortex eQTL dataset 

I used a publicly available cortex eQTL dataset downloaded from the SMR website 

(https://cnsgenomics.com/software/smr/#DataResource) originally generated by Qi 

and colleagues (Qi at al., 2018). These data were generated from a meta-analysis of 

three cortex eQTL datasets: the Common Mind Consortium (CMC) (Fromer at al., 

2016), Genotype-Tissue Expression (GTEx) (GTEx Consortium, 2015) and The 

Religious Orders Study and Memory and Aging Project (ROSMAP). Gene expression 

levels of CMC and GTEx were quantified by RNA sequencing, and the annotation was 

from GENCODE Version 19 (Harrow at al., 2012). The GTEx summary data are 

available at dbGaP (http://www.gtexportal.org/home/). The sample size of the GTEx 

brain tissue goes up to 125 and consists of up to 24,762 transcripts across 10 cortex 

regions and ~6.5 million imputed SNPs (imputed using 1000 Genomes). CMC data 

were generated from PFC tissue from 467 cortex samples and the eQTL summary 

data consists of 14,366 transcripts and ~1.1 million imputed ~SNPs (imputed using 

1000 Genomes). The ROSMAP eQTL data were generated from PFC tissue and 

consists of 494 individuals, 12,979 transcripts and ~6.4 million SNPs. The final meta-

analysis consisted of 1194 individual, 28,538 expression sites and 7,425,225 SNPs. I 

limited my analyses to probes where the p-value for the top cis-eQTL was p<5e-08, 

leaving 7,370 gene expression sites (tagging 7,345 genes).  

https://support.illumina.com/downloads/humanht-12_v3_product_files.html
https://support.illumina.com/downloads/humanht-12_v3_product_files.html
https://cnsgenomics.com/software/smr/#DataResource
http://www.gtexportal.org/home/
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5.3.5 Generating mQTLs in Whole Blood 

I performed mQTL analysis for each chromosome whereby I tested 765,013 DNAm 

probes against 5,359,678 SNPs using the R package MatrixEQTL (Shabalin, 2012). 

This package was built to enable fast computation of QTLs and only saves QTLs more 

significant than a certain threshold which I set to p<1e-05. I fitted an additive linear 

model, testing if the number of alleles (which were coded as 0, 1 or 2) predicted DNAm 

at each DNAm site. The covariates included in the analysis were age, sex, six 

estimated cellular composition variables (B cells, CD8 T cells, CD4 T cells, monocytes, 

granulocytes, and natural killer T cells), a binary batch variable for cohort, and ten 

principal components from the genotype data to control for population stratification 

and ethnicity differences. Since the majority of mQTLs with effects which are 

detectable in our sample are cis acting (as we are limited by samples size, and 

therefore power), I limited my analysis to cis mQTLs; defined as situations where the 

distance between QTL SNP and DNAm site is ≤ 500 kilobases (kb). In order to identify 

the number on independent associations for each DNAm sites in cases where they 

were associated with >1 mQTL I used the clump command in PLINK1.9 with the 

following parameters: --clump-p1 1e-8 --clump-p2 1e-8 --clump-r2 0.1 --clump-kb 250. 

5.3.6 Generating mQTLs in Cortex tissue 

I performed a genome-wide mQTL analysis whereby I tested 763,451 DNAm probes 

and 6,607,832 SNPs using the R package MatrixEQTL (Shabalin, 2012) using the 

same parameters I set for the whole blood QTL analysis (see above section 5.3.5). 

The covariates included in the analysis were age, sex, neuronal cell proportions 

(derived using the CETS algorithm (Guintivano at al., 2013) and ten principal 

components from the genotype data to control for population stratification and ethnicity 

differences. Since the majority of mQTLs are cis acting, I limited my analysis to cis 

mQTLs. In order to identify the number on independent associations for each DNAm 

sites in cases where they were associated with >1 mQTL, I used the clump command 

in PLINK1.9 using the same parameters as described above (see section 5.3.5).  
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5.3.7 Enrichment analyses 

Enrichment analyses were conducted to identify if mQTLs were overrepresented in 

certain genic or CpG island (CGI) features. DNAm sites were annotated to genic and 

CGI features based on the Illumina manifest. Sites are defined as being annotated to 

genes if they are within the gene body or < 1,500 base pairs (bp) from the transcription 

start site. Sites are defined as CGIs if they are located within the boundaries of a CpG 

island, to a shore if they are 2,000 bp from an island and a shelf if they are 2000-4000 

bp from a CGI. I generated frequency tables to identify how many sites were annotated 

to each feature. A Fisher’s exact test was used to determine if there are non-random 

associations between two categorical variables (i.e. if they if a certain genic feature is 

over-represented this suggests there is enrichment for this category).  

5.3.8 Bayesian colocalisation 

I applied Bayesian colocalisation to both the whole blood and the cortex datasets to 

characterise the relationship between genetic variants which influence DNAm and 

identify if there is an underlying regional correlation structure. In order to run the 

colocalisation analysis all SNPs need to be included, not just those which surpass the 

mQTL significant threshold. Therefore, I re-ran the mQTL analysis for the DNAm sites 

which were associated with a significant mQTL (p < 1e-10; whole blood DNAm sites n 

= 167,854; cortex DNAm sites n = 42,926) including all SNPs. Using the DNAm sites 

which were associated with at least one significant mQTL (p < 1e-10), all pairs of 

DNAm sites located on the same chromosome and which were within 250 kb of each 

other were tested for co-localisation. Co-localisation analysis was performed with the 

R coloc package.  

 

Using the mQTL results I input the regression coefficients, their variances, and SNP 

minor-allele frequencies. Prior probabilities were set as their default values. This 

methodology allowed me to quantify the support across the results of each GWAS for 

five hypotheses (Hi) by calculating the posterior probabilities (PPi) as described in 

section 5.1. 
 

The strength of the association can be determined using the posterior probabilities 

(PP) which are outputs from Coloc. Based on criteria derived by Gou and colleagues 
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(Guo at al., 2015), the posterior probability (PP) provides evidence for a co-localized 

association within the same genomic region if PP3 + PP4 > 0.99. There is “suggestive” 

evidence to support associations between both DNAm sites with the same causal 

mQTL variant if PP3 + PP4 > 0.99 & PP4/PP3 > 1. There is “convincing” evidence to 

support associations between both DNAm sites with the same causal mQTL variant 

of PP3 + PP4 > 0.99 & PP4/PP3 > 5. 
 

5.3.9 SMR analysis 

SMR analyses were performed using publicly available software 

(https://cnsgenomics.com/software/smr/#SMR) (Zhu at al., 2016). SMR uses a 

Mendelian randomisation approach, where the most significant QTL (mQTL/eQTL) 

SNP (which was tested within the AD GWAS) is used as a genetic instrument. SMR 

analysis involves two steps. First, a two-sample MR is performed with the two-step 

least squares approach (2SLS), using the effect size of the top cis-QTL SNP and its 

corresponding effect in the GWAS. Second, the SMR tool then tests for heterogeneity 

effects by using alternative SNPs as the instrumental variable. If there is one singular 

causal variant the association statistics remain the same irrespective of the genetic 

instrument used. However, if there are two distinct causal variants there will be 

variation in the results. In order to distinguish pleiotropy from linkage the HEIDI test 

(HEIDI p > 0.01) is applied. If the HEIDI p > 0.01 this suggest there is a pleiotropic 

effect on a GWAS trait and DNAm. In the analyses I used the default SMR settings 

which excluded SNPs in LD with the top cis-mQTL at r2 >0.9; SNPs in near perfect LD 

with the top cis-mQTL are not informative for the HEIDI test (Zhu at al., 2016). 

https://cnsgenomics.com/software/smr/#SMR
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 LOAD GWAS  

I used the two most recent and publicly available LOAD GWAS datasets (Jansen at 

al., 2019; Kunkle at al., 2019) for the SMR analysis, both of which were released in 

2019. Of note, there have been several LOAD GWAS preprints published within the 

last six months on medrxiv (Bellenguez at al., 2020; de Rojas at al., 2020; Wightman 

at al., 2020) (see Chapter 1 section 1.2 for more details), however these data are not 

yet publicly available. One further GWAS has very recently been published 

(Schwartzentruber at al., 2021), although the summary statistics were not available at 

the time I conducted the analysis for this Chapter.  

First, I used the Kunkle at al. (2019) GWAS, which included clinically and autopsy-

documented LOAD cases (35,274 cases and 59,163 controls). Kunkle and colleagues 

conducted a GWAS meta-analysis of non-Hispanic whites from the International 

Genomics of Alzheimer’s Project (IGAP) and 25 LOAD risk loci were identified. 

Second, I used the Jansen at al. (2019) GWAS which was based both on clinically 

diagnosed AD and AD-by proxy (based on family history) cases (71,880 cases, 

383,378 controls) and 29 LOAD risk loci were identified. See Chapter 1 section 1.2 for 

more details on these GWAS. 

 

I used both of these LOAD GWAS in my analyses as together they provide the most 

comprehensive list of AD SNPs currently publicly available. Of note, the genetic 

correlation between clinically diagnosed AD and self-reported parental history of AD 

has been reported in previous studies to be between 0.66-0.91 (Marioni at al., 2018), 

suggesting the AD by-proxy measure captures much of the same underlying genetic 

architecture as case-control studies while increasing power to detect LOAD risk loci. 

To confirm these previous findings, I calculated the correlation between the effect 

sizes of the two 2019 LOAD GWAS, using a clumped set of variants (clumped using 

PLINK1.9 (Chang at al., 2015) and the --clump flag, with the default parameters), 

keeping only overlapping and nominally significant probes (p<0.05) from each GWAS. 

There was a correlation of 0.89 between the effect sizes of the two GWAS (see  
Figure 5.6). In addition, 18 genome-wide significant (p<5e-08) SNPs overlap between 

the two GWAS. Although the GWAS are generally similar there are some differences 

between them and therefore including both in the SMR analysis provides the 

opportunity to potentially prioritise more AD genes.  
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Figure 5.6: The Kunkle at al. and Jansen at al. LOAD GWAS effect sizes are highly correlated (r=0.89). 
Shown is a plot of effects sizes for the Kunkle at al. LOAD GWAS (x-axis) against the Jansen at al. LOAD GWAS 
effect sizes (y-axis). Overlapping SNPs between the two GWAS and SNPs reaching nominal significance (p<0.05) 
in both were included in the analysis.  

 mQTL enrichment analysis for variants associated with LOAD 

I performed mQTL enrichment analyses using GARFIELD (Iotchkova at al., 2016, 

2019), a software tool which tests for enrichment of GWAS associated variants in 

genomic annotation categories. The workflow applied in GARFIELD is shown in 
Figure 5.7. Briefly, this method requires the user to provide GWAS p-values for all 

variants and an annotation file which indicates if these variants are located in the 

functional categories being tested. The first step involves ‘LD pruning’, which is 

performed using a greedy algorithm to extract independent variants based on LD 

clumping (r2 ≥ 0.01) and distance information. The second step is the ‘LD tagging 

annotation step’ – each variant (or a variant in high LD with that variant; r2 ≥ 0.8) with 

a regulatory annotation is annotated if it overlaps the features. Next, the odds ratio 

(OR) and enrichment p-values at different GWAS p-value thresholds are calculated 

using a logistic regression for each annotation. To identify the number of independent 

annotations eigenvalues are calculated using a correlation matrix of the annotation 

overlap matrix (as shown in Figure 5.7) and subsequently a Bonferroni correction is 

applied at the 95% significance threshold.  
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Both LOAD GWAS datasets were reformatted to be input into GARFILED. The mQTLs 

were used to define an annotation category. I tested for the enrichment among whole 

blood and cortex mQTLs for variants associated with LOAD at four p-value thresholds 

(p < 5e-05, 5 e-06, 5 e-07, 5 e-08). As I ran four analyses (whole blood mQTLs and 

cortex mQTLs with the Jansen and Kunkle GWAS) I used a relevant Bonferroni 

correction threshold (p<0.05/4 = 0.0125). 

 
Figure 5.7: Outline of the GARFIELD method. Top panel: three inputs (annotation, p-value and linkage 
disequilibrium (LD) data) are used for the first two analytical steps (LD pruning and variant functional annotation), 
which result in a binary annotation overlap matrix of V pruned variants and A annotations. Middle panel: a logistic 
regression approach is used for testing for enrichment at a GWAS significance p-value threshold T while controlling 
for confounding features such as TSS distance and number of LD proxies. Bottom panel: model selection procedure 
for multiple annotations. Figure and legend taken directly from (Iotchkova at al., 2016). 
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 SMR analyses in whole blood 

5.3.9.3.1 Identifying putative pleiotropic relationships between DNAm and 
LOAD  

I used the significance threshold of p<1e-10 to select whole blood mQTLs to use as 

genetic instruments for the 167,854 probes that were included in the SMR analysis. I 

reformatted the AD GWAS SNPs to be in the 1000 Genomes format (chr:bp) to align 

them with the mQTL output - these reformatted files were used for all of the SMR 

analyses in this chapter. SMR analyses were run using both the Kunkle at al. (2019) 

and the Jansen at al. (2019) GWAS summary statistics. Significant pleiotropic 

associations between DNAm and LOAD were selected as those with SMR p < 3.5e-

07 (corrected for 167,854 DNAm sites tested in the SMR analysis) and HEIDI p > 0.01.  

5.3.9.3.2 Identifying putative pleiotropic relationships between gene 
expression and LOAD  

I used SMR with a publicly available whole blood eQTL dataset generated by Westra 

and colleagues (n = 5,111) which identified eQTLs for 4,874 probes (annotated to 

4180 genes). SMR analyses were run using both the Kunkle at al. (2019) and the 

Jansen at al. (2019) GWAS summary statistics. Significant pleiotropic associations 

between gene expression and AD were selected as those with SMR p < 8.38e-06 

(corrected for 4,874 gene expression probes tested) and HEIDI p > 0.01. 

5.3.9.3.3 Identifying putative pleiotropic relationships between DNAm and gene 
expression 

I also used SMR to identify relationships between DNAm and gene expression. The 

Westra data were used as the eQTL dataset. All DNAm-expression combinations were 

tested where (1) the DNAm site had a significant mQTL (P< 1e-10); (2) the gene had 

a significant eQTL (P<5e-8); and (3) there was a significant common genetic variant 

tested within 500 kb of the gene expression probe and DNAm site. The standard 

Illumina manifest used to annotate the EPIC DNAm data is not necessarily the most 

functionally relevant as it is based on the nearest gene. I therefore used the mQTL-

eQTL SMR results to refine the gene annotations for DNAm sites.  Significant 

pleotropic associations between DNAm and gene expression were selected as those 

with SMR p < 4.47e-07 (corrected for 119,352 pairs of probes tested) and HEIDI p > 
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0.01. I conducted enrichment analysis of the mQTL-eQTL results as described in 

5.3.7. 

5.3.9.3.4 Identifying putative pleiotropic relationships between DNAm, Gene 
Expression and LOAD 

To identify pleiotropic relationships between DNAm, expression and LOAD (i.e. to test 

if DNAm, gene expression and LOAD are associated because of a shared causal 

variant), I utilised the mQTL-eQTL, DNAm-LOAD and expression-LOAD results, 

identifying situations where the association signals were consistent across the three 

analyses at a locus. First, I tested these relationships using the whole blood SMR 

results which were generated using the Kunkle at al. GWAS. I then repeated the 

analysis using the SMR results generated using the Jansen at al. GWAS. I included 

SMR significant mQTL results but relaxed the threshold of the SMR expression results 

(eQTL p SMR < 1e-4) since an mQTL-eQTL relationship would strengthen the 

hypothesis of a gene being involved in the pathogenesis of LOAD.  

5.3.9.3.5 Pathway analysis 

An important downstream analysis after genome-wide DNAm studies (e.g. EWAS and 

SMR) is gene set analysis, whereby significant DMPs and genes can be related to 

known biological functions. I ran a gene ontology (GO) pathway analysis using the 

methylglm  function within the methylGSA package (2019). methylglm adjusts for the 

number of DNAm sites in the logistic regression model (see Chapter 2 section 2.3.4 

for more details). I used the default settings of the package. Pathway analysis was run 

for both mQTL SMR analyses (Kunkle blood DNAm and Jansen blood DNAm). I 

included DNAm sites which had an SMR p-value < 5e-5 and passed the HEIDI test.  
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 SMR analyses in the Cortex 

5.3.9.4.1 Identifying putative pleiotropic relationships between DNAm and 
LOAD  

I applied SMR to the cortex mQTLs. I used the significance threshold of p<1e-10 for 

the mQTLs in the cortex sample to identify genetic instruments for the 42,926 probes 

that were included in the SMR analysis. SMR analyses were run using both the Kunkle 

at al. (2019) and the Jansen at al. (2019) GWAS summary statistics. Significant 

pleotropic associations between DNAm and LOAD were selected as those with SMR 

p < 1.15e-06 (corrected for 42,926 DNAm probes tested) and HEIDI p > 0.01. 

5.3.9.4.2 Identifying putative pleiotropic relationships between gene 
expression and LOAD  

I applied SMR to a publicly available cortex eQTL dataset (n=1,194) where eQTLs are 

available for 7,370 gene expression sites (annotated to 7,345 genes). Data were 

downloaded from the SMR site 

(https://cnsgenomics.com/software/smr/#DataResource) and represent results from a 

meta-analysis of three cortex eQTL datasets: GTEx cortex (GTEx Consortium 2017), 

CMC (Fromer at al. 2016), and ROSMAP (Ng at al. 2017). SMR analyses were run 

using both the Kunkle at al. (2019) and the Jansen at al. (2019) GWAS summary 

statistics. Significant pleotropic associations between gene expression and LOAD 

were selected as those with SMR p < 7.4e-06 (corrected for 6,740 gene expression 

probes tested) and HEIDI p > 0.01. 

 

5.3.9.4.3 Identifying putative pleiotropic relationships between DNAm and 
Gene Expression  

I used SMR to identify relationships between DNAm and gene expression in cortex 

using the methodology described in 5.3.9.3.3. Significant pleotropic associations 

between DNAm and gene expression were selected as those with SMR p < 2.14e-6 

(corrected for 23,333 pairs of probes tested) and HEIDI p > 0.01. I conducted 

enrichment analysis of the mQTL-eQTL results as described in 5.3.7 

https://cnsgenomics.com/software/smr/#DataResource
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5.3.9.4.4 Identifying putative pleiotropic relationships between DNAm, Gene 
Expression and LOAD 

To identify pleiotropic relationships between DNAm, expression and LOAD I utilised 

the mQTL-eQTL, DNAm-LOAD and expression-LOAD cortex results, identifying 

situations where the association signals were consistent across the three analyses 

using the methodology described in 5.3.9.3.4.  

5.3.9.4.5 Pathway analysis 

Pathway analysis was applied to the results from each of the cortex mQTL SMR 

analyses (Kunkle cortex DNAm, and Jansen cortex DNAm) as described above in 

section 5.3.9.3.5.  

5.3.10 Comparing Blood and Cortex SMR results 

I compared the SMR results from blood and cortex. First, I had to take into 

consideration whether or not the same genes and DNAm sites were tested, and 

therefore limited the results to genes of DNAm sites which were tested across the 

datasets. Using the mQTL SMR results I evaluated the consistency of effect sizes 

across the analysis including SMR associations which had nominal significance 

(p<0.05). A binomial sign test was applied to gauge the significance of this effect. This 

analysis was repeated for the eQTL SMR results.   
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5.4 Results 

5.4.1 Overview of results  

Figure 5.8: Overview of results for chapter 5: Methylation quantitative trait loci (mQTL) analysis and summary data-based Mendelian randomisation (SMR). The results 
N are the number of sites which passed both Bonferroni significant and the HEIDI test, the number in the grey square brackets represent the Bonferroni significant hits without 
the HEIDI correction.  eQTL = expression QTL; LOAD = late onset Alzheimer’s disease; bonfP = Bonferroni corrected P value and DNAm = DNA methylation. 
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5.4.2 DNA methylation quantitative trait loci in whole blood  

I generated a database of DNAm mQTLs in whole blood tissue using the MatrixEQTL  

package (Shabalin, 2012), testing 5,359,678 SNPs against 765,013 DNAm sites which 

were on the Illumina EPIC array and passed stringent QC criteria (see Methods 5.2). 

At a highly conservative Bonferroni threshold (p < 5e-08/765,013 = 6.5e-14) I identified 

23,859,815 significant cis (distance between the QTL SNP and DNAm site ≤ 500Kb) 

mQTL associations between 3,731,711 SNPs and 142,964 DNAm sites. This is 88% 

more mQTLs than the UKHLS study alone (12,689,548 mQTLs were identified in the 

study by Hannon and colleagues (2018)) which reflects the increased power. This is 

currently the most comprehensive mQTL dataset in EPIC blood samples. There was 

a mean percentage change in DNAm per additional reference allele of 2.5% (standard 

deviation [SD] =2.6%) across the associated mQTL sites. DNAm sites associated with 

genetic variants were associated with a median of 81 mQTLs (interquartile range [IQR] 

= 27-167), likely reflecting linkage disequilibrium – the correlation structure between 

proximal variants. Each mQTL variant was associated with a median of 3 DNAm sites 

(IQR=1-7). Examples of mQTLs identified in whole blood are shown in Figure 5.9A 
and Figure 5.10A. 

The set of mQTLs used throughout this chapter are based on associations meeting a 

more relaxed “discovery” threshold of p<1e-10 as defined in the previous SMR paper 

conducted by our group (Hannon at al., 2018). At this threshold I identified 30,432,023 

significant cis mQTL associations between 4,030,902 SNPs and 167,854 DNAm sites. 

The inclusion of EXTEND with UKHLS led to the identification of 80% more QTLs than 

using UKHLS alone (17,051,673 mQTLs were identified in the study by Hannon and 

colleagues (2018) at the “discovery” threshold). There was a mean percentage change 

in DNAm per additional reference allele of 2.2% (standard deviation [SD] =2.4%) 

across the associated mQTL sites. DNAm sites associated with genetic variation were 

associated with a median of 89 mQTLs (interquartile range [IQR] = 29-224). Each 

mQTL variant was associated with a median of 4 DNAm sites (IQR=2-9). To identify 

independent associations with each DNAm site I conducted LD clumping of the 

mQTLs; there were a total of 262,461 independent associations (0.86% of the total 

number of un-clumped mQTL associations) with a median of 1 (IQR=1–2) mQTL 

associated with each DNAm site. The whole blood mQTLs were enriched in intergenic 

regions (OR=2.61; p=2.23e-308), gene bodies (odds ratio [OR] =1.85; p=2.23e-308), 
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transcription start sites (OR=1.51; p= 2.71e-147), and in CpG shores (OR=1.91, 

p=2.23e-308), shelves (OR=1.5; p= 1.63e-71) and seas (OR=2.91; p=2.23e-308). In 

contrast, they were significantly less likely to be located within CGIs (OR=0.94; p= 

1.80e-05). 

5.4.3 DNA methylation quantitative trait loci in cortex tissue  

I ran the same analysis pipeline to generate a database of mQTLs in cortex tissue 

using the MatrixEQTL package (Shabalin, 2012) as described above (section 5.4.2). 

In the prefrontal cortex (PFC) I tested 6,607,832 SNPs against 763,451 DNAm sites 

passing our stringent QC criteria. At a conservative Bonferroni threshold (p< 5e-

08/763,451 = 6.5e-14). I identified 3,153,315 significant cis mQTL associations 

between 1,347,502 SNPs and 32,420 DNAm sites, which is about 13% of the number 

of mQTLs identified in whole blood at this threshold due to the smaller sample size. 

There was a mean percentage change in DNAm per additional reference allele of 4.8% 

(standard deviation [SD] =3.3%) across the associated mQTL sites. This is higher than 

the whole blood mQTL mean percentage change, reflecting the lower power and 

therefore only stronger mQTL effects can be identified. DNAm sites associated with 

genetic variation were associated with a median of 45 mQTLs (IQR = 15-112) and 

each mQTL variant was associated with a median of one DNAm sites (IQR=1-2. 

Examples of mQTLs identified in the cortex are shown in Figure 5.9B and Figure 
5.10B. 

The set of cortex mQTLs used throughout this chapter are based on associations 

meeting a more relaxed “discovery” threshold of p<1e-10 as defined in the previous 

SMR paper conducted by our group (Hannon at al., 2018). I identified 4,623,966 

significant cis mQTL associations between 1,744,102 SNPs and 42,926 DNAm sites 

using this threshold, which is considerably lower (15%) of the number of mQTLs 

identified in the whole blood mQTL analysis at the same threshold. There was a mean 

percentage change in DNAm per additional reference allele of 4.25% (SD=3.0%) 

across the associated mQTL sites. DNAm sites associated with genetic variation were 

associated with a median of 49 mQTLs (IQR = 15-123. Each mQTL variant was 

associated with a median of one DNAm sites (IQR=1-3). To identify independent 

associations with each DNAm site I conducted LD clumping of the mQTLs; there were 

a total of 82,296 independent associations (1.25% of the total number of un-clumped 
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mQTL associations) with a median of a single mQTL (IQR=1-1) associated with each 

DNAm site, which is about 30% of the number of independent whole blood mQTLs. 

The cortex mQTLs showed a similar enrichment pattern to the whole blood mQTLs 

being enriched in intergenic regions (OR=2.01; p=2.23e-308), gene bodies (odds ratio 

[OR] =1.61; p=2.23e-308), transcription start sites (OR=1.24; p=3.04e-53), and in CpG 

shores (OR=1.69, p=2.23e-308), shelves (OR=1.12; p=2.49e-09) and seas (OR=2.45; 

p=2.23e-308), with an underrepresentation in CGIs (OR=0.84; p= 4.18E-34). 

5.4.4 Comparison between whole blood and cortex mQTLs 

There was an overlap of 2,686,279 mQTLs between the two mQTL datasets at the 

“discovery” threshold (p<1e-10). There was a strong correlation of individual mQTL 

effect sizes across tissues (r=0.79, binomial sign test p= 2.23e−308; see Figure 5.9), 

although the direction differed for some variants, providing evidence that there are 

some tissue-specific differences (see Figure 5.10). Since there was more power to 

detect whole blood mQTLs we can only identify if there are cortex-specific mQTLs; we 

cannot rule out that the mQTLs identified in the whole blood analysis would not be 

identified in the cortex if we had equal power. Of note, some of the identified cortex 

mQTLs were not tested for in the whole blood mQTL, although 3,971,969 (86%) were. 

Of these cortex mQTLs, 1,285,690 (32%) were not identified as a significant mQTL in 

whole blood. This provides further evidence that there are tissue specific mQTL 

effects. 
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Figure 5.10: Shown is an example of an mQTL between 11.67433708 and cg01240599 in (A) the whole blood 
and (B) the cortex. The direction of effect differs in whole blood (hypomethylated with increasing number of effect 
alleles) and the cortex (hypermethylated with increasing number of effect alleles).The x-axis represents the 
genotype group (number of effect alleles  - in this case C) and the y-axis represent the % DNA methylation for that 
cg sites for each indiviual in the different genotype groups. 

Figure 5.9: Shown is an example of an mQTL between 11:122325025 and cg20905796 in (A) the whole 
blood and (B) the cortex. The direction of effect is consistent in whole blood and the cortex 
(hypermethylated with increasing number of effect alleles).The x-axis represents the genotype group (number 
of effect alleles  - in this case T) and the y-axis represent the % DNA methylation for that cg site for each 
individual in the different genotype groups. 
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5.4.5 mQTL associations influence DNAm at sites which are heritable 

Using the results from a twin study (van Dongen at al., 2016) where DNAm was 

derived in whole blood using the Illumina 450K array, I investigated if the heritability 

(h2) of DNAm sites which were associated with at least one mQTL variant were more 

strongly influenced by additive genetic factors than other tested DNAm sites. In the 

whole blood mQTL dataset, mQTL sites had a higher heritability (median h2 =42%; 

IQR= 26%-59%) than all DNAm sites (median h2=12%; IQR= 4.2%-30%; Mann-

Whitney P<2.23E−308). Correspondingly, in the PFC mQTL dataset mQTL sites also 

had a higher heritability (median h2=41%; IQR= 17%-65%) compared to all DNAm 

sites (median h2=12%; IQR= 4.2%-30%; Mann-Whitney p < 2.23E−308). 

5.4.6 mQTLs are enriched in LOAD associated variants 

I ran enrichment analysis using GARFIELD to assess if whole blood and cortex mQTLs 

are enriched for LOAD-associated variants at four p-value thresholds (pTs; pT < 5e-

05, 5 e-06, 5 e-07, 5 e-08). There was an enrichment of LOAD-associated variants 

amongst whole blood and cortex mQTLs for at least two GWAS pTs for all analyses 

(see Figure 5.11 and Table 5.1). Whole blood mQTLs were significantly enriched (p 

< 0.0125) for LOAD variants across all Kunkle and Jansen GWAS pTs, with the most 

significant enrichment occurring at the less stringent GWAS threshold - pT<5e-05 

(Kunkle OR=2.27, p=6.19e-08; Jansen OR=2.74, p=2.79e-18) (see Figure 5.11 and 

Table 5.1). There was an enrichment of Jansen LOAD-associated variants amongst 

the cortex mQTLs across all GWAS thresholds, with the most significant being pT<5e-

05 (OR=2.76; p=1.37e-15). There was an enrichment of Kunkle LOAD-associated 

variants amongst the cortex mQTLs at two GWAS thresholds (pT<5e-05 and 5e-06), 

with the most significant being pT<5e-05 (OR=2.34; p=3.16e-07). Here I found that 

genetic variants exhibiting genome-wide significant association with LOAD showed a 

threefold enrichment amongst whole blood and cortex mQTLs, directly implicating 

altered gene regulation in the aetiology of LOAD, and providing evidence that these 

mQTL datasets are suitable for SMR analysis of LOAD.  
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Figure 5.11: Enrichment analysis of whole blood and cortex mQTLs with LOAD GWAS variants. The left 
panel (A, C, E and G) is the significance threshold of the enrichment analysis and the right panel (B, D, F and H) 
is the enrichment fold change (odds ratios) with 95% confidence intervals. The x-axis represents the p-value 
threshold for the mQTLs to be included in the analysis. A p-value < 0.0125 and an odds ratio > 1 = evidence for 
enrichment which is represented by the horizontal red lines. The colours represent the different p-value threshold 
of the LOAD GWAS variants to be tested for enrichment. A = whole blood (WB) mQTL significance of the Kunkle 
GWAS enrichment; B =WB mQTL odds ratio of the Kunkle GWAS enrichment; C = WB mQTL significance of the 
Jansen GWAS enrichment; D =WB mQTL odds ratio of the Jansen GWAS enrichment; E = cortex mQTL 
significance of the Kunkle GWAS enrichment; F =cortex mQTL odds ratio of the Kunkle GWAS enrichment; G = 
cortex mQTL significance of the Jansen GWAS enrichment; and H = cortex mQTL odds ratio of the Jansen GWAS 
enrichment. pT = p-value threshold. 
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Table 5.1: Table of results for the enrichment analysis of whole blood and cortex mQTLs with LOAD GWAS 
variants. mQTL/ GWAS = mQTL dataset used in the enrichment analysis / GWAS used in the enrichment analysis. 
pT = p-value threshold. OR = odds ratio.  

mQTL/ GWAS pT OR P Beta SE 
WB/ Kunkle 5.00e-05 2.27 6.19E-08 0.82 0.15 

WB/ Kunkle 5.00e-06 2.56 3.70E-05 0.94 0.23 

WB/ Kunkle 5.00e-07 2.05 7.70E-03 0.72 0.27 

WB/ Kunkle 5.00e-08 2.34 4.56E-03 0.85 0.30 

WB/ Jansen 5.00e-05 2.52 1.08E-15 0.92 0.12 

WB/ Jansen 5.00e-06 3.1 5.29E-11 1.16 0.18 

WB/ Jansen 5.00e-07 3.08 1.14E-07 1.12 0.21 

WB/ Jansen 5.00e-08 3.11 2.94E-06 1.14 0.24 

Cortex/ Kunkle 5.00e-05 2.34 3.16E-07 0.85 0.17 

Cortex/ Kunkle 5.00e-06 2.49 1.73E-04 0.91 0.24 

Cortex/ Kunkle 5.00e-07 1.98 0.02 0.68 0.30 

Cortex/ Kunkle 5.00e-08 1.82 0.08 0.60 0.34 

Cortex/ Jansen 5.00e-05 2.76 1.37E-15 1.01 0.13 

Cortex/ Jansen 5.00e-06 2.98 4.27E-09 1.09 0.19 

Cortex/ Jansen 5.00e-07 2.63 1.86E-05 0.97 0.23 

Cortex/ Jansen 5.00e-08 2.93 1.87E-05 1.07 0.25 

 

 

5.4.7 Bayesian colocalisation  

There is a strong correlation structure amongst proximally located SNPs, a concept 

known as LD (see Chapter 1 section 1.2 for more details). Similarly, evidence suggests 

there is a correlation structure between DNAm levels at neighbouring DNAm sites 

(Hannon at al., 2018). I aimed to characterise the relationship between genetic 

variants which influence DNAm, to identify if there is an underlying regional correlation 

structure. To statistically test if proximally located DNAm sites are influenced by the 

same causal variant, I used a Bayesian co-localisation approach – implemented with 

the Coloc package within R – identifying if any pairs of DNAm sites which were located 

within 250 kb of each other were associated with a shared mQTL variant. 

In the whole blood mQTL dataset I tested 3,535,812 pairs of DNAm sites (median 

distance between sites = 110,493bp; IQR = 47,914 - 178,085bp). The posterior 
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probability for 3,520,781 (99.5%) of these sites provided evidence for a co-localized 

association within the same genomic region (PP3 + PP4 > 0.99). This is as expected 

since only cis mQTLs were considered. 281,898 of these sites (7.7%) had ‘suggestive’ 

evidence to support associations between both DNAm sites with the same causal 

mQTL variant (PP3 + PP4 > 0.99 & PP4/PP3 > 1). The median distance between pairs 

of sites with ‘suggestive’ evidence was 15,119bp (IQR = 1,456 – 54,396bp). 234,460 

of these sites (6.6%) had ‘convincing’ evidence to support associations between both 

DNAm sites with the same causal mQTL variant (PP3 + PP4 > 0.99 & PP4/PP3 > 5). 

The median distance between these sites was 12,394bp (IQR = 1,004- 49,110 bp). An 

example heatmap showing the Bayesian colocalisation relationship on chromosome 

11 around the BRSK2 locus is shown in Figure 5.12 where multiple DNAm sites along 

this gene have a common underlying genetic signal. BRSK2 been shown to be 

involved in the phosphorylation of tau in AD (Morshed at al., 2020). Of note, these 

DNAm sites are not contiguous; several of the genetically mediated DNAm sites 

located within this gene do not share the same mQTL signal.  

In the cortex PFC mQTL dataset I tested 524,966 pairs of DNAm sites (median 

distance between sites = 106,096bp; IQR = 41,324- 176,055bp). The posterior 

probability for 523,983 (99.8%) of these sites provided evidence for a co-localized 

association within the same genomic region. Again, this is as we would expect since 

only cis mQTLs were considered. 50,151 of these sites (9.6%) had suggestive 

evidence to support associations between both DNAm sites with the same causal 

mQTL variant. The median distance between pairs of sites with ‘suggestive’ evidence 

was 2,600bp (IQR = 235 – 25,834), which was closer in comparison to the whole 

blood, although these may be driven by the power differences between the two 

tissues.  42,661 of these sites (8.1%) had ‘convincing’ evidence to support 

associations between both DNAm sites with the same causal mQTL variant. The 

median distance between pairs of sites with ‘convincing’ evidence was 1,351bp (IQR 

= 197 – 9,714bp), which was about 11 time closer than observed in whole blood data, 

probably resulting from the reduced power in my cortex data. 
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Figure 5.12: Heatmap of the whole blood Bayesian co-localisation results for all pairs of DNA-methylation sites with at least one significant mQTL (p < 1e-10) in a 
genomic region on chromosome 11 (chr11:1403751– 1456379). Each square represents the relationship between two DNA-methylation sites (ordered by genomic location). 
The colour of each square indicates the strength of the evidence for a shared genetic signal (from blue [weak] to red [strong]). This strength is calculated as the ratio of the 
posterior probabilities that they share the same causal variant (PP4) compared to two distinct causal variants (PP3). The ratio was capped to a maximum value of 10. 
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5.4.8 Identifying putative pleiotropic relationships between DNA 
methylation and Alzheimer’s disease in whole blood using SMR 

As described earlier (section 5.1) there has been a focus on utilising QTLs to help 

refine genetic signals with the goal of prioritising causal genes for diseases. I used 

SMR to test the 167,854 DNAm sites identified in my whole blood mQTL analysis (see 

above; Section 5.4.2) using the two latest AD GWAS with available summary statistics 

(Jansen at al., 2019; Kunkle at al., 2019). SMR analysis involves two steps as 

previously described (see section 5.1). The methodology can be interpreted as an 

analysis to test if the effect size of a SNP on AD is mediated by DNAm (Zhu at al., 

2016). 

 SMR results using the Kunkle at al. GWAS 

Using the Kunkle at al. GWAS, which used clinically defined cases, I applied SMR and 

identified 81 associations which passed a Bonferroni significant threshold (p < 3.5e-

07) and 26 which passed both the significance threshold and the HEIDI threshold (p > 

0.01; see Table 5.2; Figure 5.13). Of these 26, 21 (80.8%), were positively associated 

with LOAD (i.e. hypermethylation is associated with increased susceptibility for 

developing LOAD at these sites and the cis-mQTL and GWAS SNP tested in the SMR 

analysis had the same direction of effect; see Figure 5.14A) and the remaining 5 

DNAm sites were negatively associated with LOAD (i.e. hypermethylation is 

associated with decreased susceptibility for developing LOAD at these sites and the 

cis-mQTL and GWAS SNP tested in the SMR analysis had opposite directions of 

effect; see Figure 5.14B). All of the associations were identified in regions proximal to 

GWAS peaks, including several along chromosome 11 where 4 distinct GWAS loci 

have previously been identified annotated to the genes SPI1, MS4A2, PICALM and 

SORL1 (see Figure 5.15).  
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Figure 5.13: Manhattan plots of Summary data-based Mendelian Randomisation (SMR) tests for pleiotropic 
effects between LOAD and regulatory markers in whole blood.  (A) using DNA methylation quantitative trait 
loci (mQTL) and the Kunkle et al GWAS summary statistics; (B) using mQTLs and the Jansen et al GWAS summary 
statistics; (C) using expression quantitated trait loci (eQTLs) and the Kunkle et al GWAS summary statistics; and 
(D) using eQTLs and the Jansen et al GWAS summary statistics. The x axis is the genomic position, segregated 
by chromosome. Shown on the y-axis of each plot is the –log10 p-value from the SMR analysis using mQTLs (A) 
and (B) or eQTLs (C) and (D). Each point represents an SMR test for a particular mQTL/ eQTL site which passed 
the Bonferroni and HEIDI significant thresholds. The red horizontal line represents the genome-wide multiple 
testing significance threshold. 
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Figure 5.14: Example plots of the effect sizes of SNPs (included in the HEIDI test) from the Kunkle et al. GWAS plotted against those for SNPs from the 
whole blood mQTL dataset for two significant SMR hits.  (A) The effect sizes of the SNPs positively correlated for the association between cg21111824 and LOAD 
(annotated to CLU, chromosome 8). (B) The effect sizes of the SNPs negatively correlated for the association between cg01496416 and LOAD (annotated to PVR, 
chromosome 19). The colour of the SNPs corresponds to the LD strength (light blue = lower r2, dark blue = higher r2) of cis-mQTLs with the top cis-mQTL (red). Error 
bars are the standard errors of SNP effects. The orange dashed lines represents the estimate of bxy at the top cis-eQTL. 
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Table 5.2: Summary data-based Mendelian Randomisation (SMR) test results for pleiotropic effects between LOAD and DNA methylation using the Kunkle at al. 
GWAS and the whole blood mQTL dataset (N = 26 hits where p < 3.5e-07 and HEIDI > 0.01). CHR: chromosome; BP: base position (hg19); Instrument: top cis-mQTL for 
DNAm site with smallest p-value for association; Beta SMR: estimate for the effect of DNA methylation on LOAD; P SMR: p-value for SMR association; HEIDI: p-value for the 
HEIDI test; N SNP HEIDI; number of SNPs included in the HEIDI test. 

DNA site GWAS SMR HEIDI 

Probe ID CHR BP Annotated 
Gene 

Instrument 
(CHR:BP) 

Ref 
MAF Beta SE P P N SNP 

cg20172563 6 47487173 CD2AP 6:47525202 0.27 3.12 0.61 2.66E-07 1.96E-02 20 

cg05908241 7 143109367 - 7:143109208 0.17 4.62 0.88 1.44E-07 8.14E-02 20 

cg16292768 8 27467783 CLU 8:27467821 0.39 12.11 2.06 4.31E-09 1.93E-01 10 

cg22217144 8 27468166 CLU;MIR6843 8:27467821 0.39 18.11 2.96 9.82E-10 7.34E-02 20 

cg21111824 8 27468171 CLU;MIR6843 8:27467821 0.39 24.27 3.84 2.52E-10 7.46E-02 20 

cg08871934 10 11720283 - 10:11720308 0.36 -1.96 0.38 2.68E-07 8.80E-02 20 

cg25206146 11 47383181 SPI1 11:47391745 0.32 8.33 1.43 5.59E-09 4.54E-01 20 

cg20449816 11 47432366 SLC39A13 11:47432034 0.32 3.47 0.57 1.08E-09 1.20E-01 20 

cg27552578 11 47621330 - 11:47663049 0.35 6.93 1.25 3.10E-08 2.07E-02 20 

cg05585544 11 47624801 - 11:47725306 0.34 8.25 1.55 1.11E-07 4.73E-02 20 

cg17688768 11 47628441 - 11:47650138 0.35 1.58 0.28 1.72E-08 1.85E-02 20 

cg18512352 11 47633146 - 11:47650138 0.35 4.09 0.73 2.64E-08 1.07E-02 20 

cg02521229 11 60019236 - 11:60019161 0.41 0.90 0.12 7.12E-15 1.01E-02 20 

cg18684128 11 60033393 - 11:60030559 0.41 7.97 1.22 6.58E-11 1.98E-01 20 

cg18959616 11 85814918 - 11:85812210 0.36 2.47 0.35 1.00E-12 2.51E-01 20 

cg23423086 11 85856245 - 11:85856187 0.32 -6.72 0.92 2.91E-13 2.46E-01 20 

cg24251493 11 85866690 - 11:85868640 0.38 34.50 6.60 1.74E-07 8.83E-01 13 

cg04441687 11 85869322 - 11:85868640 0.38 1.47 0.18 1.00E-15 2.28E-01 20 

cg23484461 14 92936957 SLC24A4 14:92936690 0.20 1.39 0.27 3.29E-07 1.63E-01 20 
cg01496416 19 45147715 PVR 19:45149235 0.24 -40.41 7.63 1.17E-07 3.43E-02 8 
cg15233575 19 45221584 - 19:45233343 0.19 -27.59 4.44 5.15E-10 1.14E-01 3 

cg03793277 19 45416910 APOC1 19:45416291 0.38 35.17 4.63 3.09E-14 1.96E-02 7 

cg23270113 19 45417587 APOC1 19:45410444 0.38 -27.91 4.07 7.35E-12 2.94E-01 7 
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cg27353824 19 45445521 APOC4 19:45450033 0.46 19.25 3.51 4.20E-08 3.53E-02 11 

cg25017250 19 45445693 APOC4 19:45448465 0.36 13.72 2.34 4.37E-09 1.45E-01 11 

cg13766031 19 45457706 CLPTM1 19:45454759 0.46 17.27 2.73 2.54E-10 1.70E-02 15 
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 Figure 5.15: Manhattan plots of Summary data-based Mendelian Randomisation (SMR) tests for pleiotropic effects between LOAD and DNA methylation across chromosome 11, using 
the Kunkle et al. AD GWAS results in combination with (A) the whole blood mQTL dataset; (B) the brain PFC mQTL dataset; and (C) the Kunkle et al GWAS results. The x axis is the 
genomic position, segregated by chromosome. In (A) and (B) shown on the y-axis of each plot is the –log10 P-value from the SMR analysis using DNA methylation quantitative trait loci (mQTL). 
Each point represents an SMR test for a particular DNA methylation site. The red horizontal line represents the genome-wide multiple testing significance threshold. In (C) shown on the y-axis is the 
–log P-value from the GWAS. Each point represents a SNP. The red horizontal line represents the genome-wide significance threshold (P<5e-8). 
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5.4.8.1.1 Identifying regions in the Kunkle whole blood SMR analysis 

Since there is a correlation structure between SNPs and DNAm sites, I aimed to 

identify regions (defined as probes within 250kb of each other) within my SMR results, 

as there were several significant results around LOAD GWAS variants – e.g. the same 

genetic instrument is associated with three different DNAm sites located within the 

CLU gene (see Table 5.3). To investigate this, I used the Bayesian colocalisation 

results to identify if each pair of DNAm probes in cis had evidence for colocalisation. I 

identified 21 pairs of DNAm sites in cis across 5 regions within the Kunkle SMR results. 

All 21 pairs had evidence for a co-localized association within the same genomic 

region (PP3 + PP4 > 0.99). 13 pairs of sites had ‘suggestive’ evidence to support 

associations between both DNAm sites with the same causal mQTL variant (PP3 + 

PP4 > 0.99 & PP4/PP3 > 1) (see Table 5.3). 12 pairs of sites had ‘convincing’ evidence 

to support associations between both DNAm sites with the same causal mQTL variant 

(PP3 + PP4 > 0.99 & PP4/PP3 > 5) (see Table 5.3) which suggests these sites are 

genetically co-regulated by a mutual genetic variant. I identified co-localised sites 

around CLU and several along chromosome 11, including 7 pairs around the SPI1 

GWAS region, a pair around the MSA4A2 GWAS region and a pair around the 

PICALM GWAS region (see Table 5.2 and Figure 5.15). Although there were several 

SMR associations identified on chromosome 19 around the APOE locus, there was 

no evidence that these were genetically co-regulated using Bayesian colocalisation. 

This can also be seen by differing directions of effect from the SMR analysis (see 

Table 5.2) suggesting multiple independent SNPs may be having an effect on LOAD 

in this region mediated by DNAm at different sites. This goes in line with previous 

studies showing that multiple independent SNPs in this region have an independent 

influence on LOAD risk (Cervantes at al., 2011).  
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Table 5.3: Bayesian Colocalisation results for the Kunkle et al whole blood SMR significant DNA methylation probes where there was evidence for colocalisation 
with the same causal mQTL variant. There is evidence for colocalisation for four pairs of the DNA methylation probes which had a significant SMR result. The posterior 
probability all sites tested provided evidence for a co-localized association within the same genomic region (PP3 + PP4 > 0.99). 13 pairs of sites had ‘suggestive’ evidence to 
support associations between both DNAm sites with the same causal mQTL variant (PP3 + PP4 > 0.99 & PP4/PP3 > 1). 12 pairs of sites had ‘convincing’ evidence to support 
associations between both DNAm sites with the same causal mQTL variant (PP3 + PP4 > 0.99 & PP4/PP3 > 5). The strength of the evidence is based on co-localisation criteria 
developed by Guo and colleagues (Guo at al., 2015). PP.Hi.abf = Posterior probability for each of the Bayesian Colocalisation hypotheses (i).  

DNA methylation sites Bayesian Colocalisation results 

Site 1 CHR BP Annotated  
Gene Site 2 BP Annotated 

Gene N snps PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf P3 + P4 P4/P3 
cg22217144 8 27468166 CLU;MIR6843 cg16292768 27467783 CLU 2597 5.35e-29 1.92e-14 1.29e-17 3.65e-03 9.96e-01 1.00 273.28 
cg21111824 8 27468171 CLU;MIR6843 cg16292768 27467783 CLU 2598 1.37e-32 1.55e-14 3.31e-21 2.75e-03 9.97e-01 1.00 362.95 
cg21111824 8 27468171 CLU;MIR6843 cg22217144 27468166 CLU;MIR6843 2600 9.75e-36 1.10e-17 3.51e-21 2.98e-03 9.97e-01 1.00 334.97 

cg20449816 11 47432366 SLC39A13 cg25206146 47383181 SPI1 1342 6.52e-142 3.55e-14 7.34e-129 0.40 0.60 1.00 1.51 
cg05585544 11 47624801  - cg27552578 47621330  - 1454 9.43e-52 1.97e-34 2.28e-19 0.05 0.95 1.00 20.40 
cg17688768 11 47628441  - cg27552578 47621330  - 1449 0 1.30e-34 0 0.03 0.97 1.00 31.92 
cg17688768 11 47628441  - cg05585544 47624801  - 1450 0 1.82e-19 0 0.04 0.96 1.00 25.90 
cg18512352 11 47633146  - cg27552578 47621330  - 1441 3.41e-121 1.10e-34 8.25e-89 0.03 0.97 1.00 38.13 
cg18512352 11 47633146  - cg05585544 47624801  - 1442 7.46e-106 2.40e-19 1.56e-88 0.05 0.95 1.00 19.32 
cg18512352 11 47633146  - cg17688768 47628441  - 1445 0 0 4.24e-89 0.01 0.99 1.00 78.10 
cg18684128 11 60033393  - cg02521229 60019236  - 1884 0 0 8.52e-19 0.08 0.92 1.00 11.27 
cg23423086 11 85856245  - cg18959616 85814918  - 2087 4.02e-56 2.10e-32 1.25e-25 0.06 0.94 1.00 14.53 
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Figure 5.16: Heatmap of Bayesian co-localization results for all pairs of DNA-methylation sites with at least one significant mQTL (p < 1 × 10−10) in a genomic region 
on chromosome 11 (chr11: 47610098– 48028299). Each square represents the relationship between two DNA-methylation sites (ordered by genomic location). The colour of 
each square indicates the strength of the evidence for a shared genetic signal (from blue [weak] to red [strong]). This strength is calculated as the ratio of the posterior probabilities 
that they share the same causal variant (PP4) compared to two distinct causal variants (PP3). The ratio was capped to a maximum value of 10. 
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5.4.8.1.2 The SMR associations are relevant in the context of LOAD 

Several of the DNAm sites prioritised by SMR as having pleiotropic associations with 

SNPs and LOAD are not annotated to a gene within the Illumina manifest. 13 of the 

DNAm sites do have gene annotations and have previously been implicated in LOAD.  

Three of these sites were identified as being a region based on the Bayesian 

colocalisation analysis (i.e. evidence that these sites are genetically co-regulated): 

cg16292768, cg22217144, cg21111824 which are located on chromosome 8 and 

annotated to CLU (see Table 5.3). These sites were positively associated with LOAD 

(p=4.31e-09; p=9.82e-10; and p=2.52e-10 (see Figure 5.14A), respectively; see 

Table 5.2). CLU is an AD risk gene, is involved in brain function during ageing and 

studies have demonstrated that CLU risk carriers have increased rates of cognitive 

decline (Thambisetty at al., 2013). 

Six sites on chromosome 11 were identified as being a region based on the Bayesian 

colocalisation results (see Table 5.3). cg25206146 located on chromosome 11, 

annotated to SPI1 - which is the nearest gene to one of the top LOAD GWAS loci 

(Kunkle, 2019) - was positively associated with LOAD (p= 5.59e-09; see Table 5.2). 

cg20449816, located on chromosome 11, annotated to SLC39A13 was positively 

associated with LOAD (p= 1.08e-09; see Table 5.2). This gene is found in the LD block 

of SPI1. cg27552578, cg05585544, cg17688768 and cg18512352 were all positively 

associated with LOAD (p=3.10e-08; p=1.11e-07; p=1.72e-08; and p=2.64e-08, 

respectively). These four sites do not have a gene annotation based on the Illumina 

manifest, however the Bayesian colocalisation results suggest they are genetically co-

regulated with DNAm sites associated around the SPI1 region.  

Several sites were not identified as regions within the Bayesian colocalisation analysis 

but had a significant SMR result including: 

• cg20172563 located on chromosome 6 and annotated to CD2AP was positively 

associated with LOAD (p=2.66e-07; see Table 5.2). CD2AP is an AD risk gene. 

Evidence suggests CD2AP increases AD risk through tau-induced 

neurotoxicity, Aβ processing, abnormal neurite structure modulation and blood-

brain barrier dysfunction (Qing-Qing, Yu-Chao, & Zhi-Ying, 2018).   
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• cg23484461, located on chromosome 14 and annotated to SLC24A4 (see 

Figure 5.17) was positively associated with LOAD (p= 3.29e-07; see Table 
5.2). SLC24A4 encodes a member of the potassium-dependent 

sodium/calcium exchanger protein family. SLC24A4 has previously been 

associated with AD in GWAS and evidence suggests this gene also plays a role 

in cognitive ageing (Yu at al., 2015). In addition, differential methylation in the 

PFC of a DNAm site located within the SLC24A4 locus has been associated 

with LOAD pathology (Yu at al., 2015). 

• cg01496416, located on chromosome 19, annotated to PVR was negatively 

associated with LOAD (p=1.17e-07; see Table 5.2 and Figure 5.14B). PVR is 

a LOAD-risk gene which resides near the APOE region. Previous research 

suggests this gene is potentially mediated by both gene expression and DNAm 

in the PFC (Marioni at al., 2018).  

• cg03793277, cg27353824, and cg25017250, located on chromosome 19 were 

positively associated with LOAD (p= 3.09e-14; p= 4.20e-08; and p= 4.37e-09, 

respectively; see Table 5.2). DNAm at cg23270113 was negatively associated 

with LOAD (p= 7.35e-12; see Table 5.2). These sites are annotated to the loci 

APOC1 and APOC4, which both reside near the APOE region and are known 

are APOE cluster genes. APOC1 is known to facilitate dementia under oxidative 

stress (Prendecki at al., 2018) and a SNP located in APOC4 has been 

associated with increased AD risk independently from APOE ε4 (Cervantes at 

al., 2011). 

Many of the DNAm sites without a current gene annotation based on the illumina 

manifest were located close to genes (within 250kb) which have been implicated in 

LOAD. I identified two regions within these results based on the Bayesian 

colocalisation results. There was evidence that cg02521229 and cg18684128 were 

genetically co-regulated (see Table 5.2). These sites are located on chromosome 11 

near (~50kb away) the MS4A6A locus, which is the nearest gene to a leading LOAD 

GWAS loci, were positively associated with LOAD (p = 7.12e-15; p = 6.58e-11, 

respectively; see Table 5.1). MS4A6A is part of the MS4A locus which contains several 

genes implicated in immune modulation (Villegas-Llerena, Phillips, Garcia-Reitboeck, 

Hardy, & Pocock, 2016). MS4A6A is highly expressed in microglia and is thought to 

play a role insoluble TREM2 production. MS4A6A expression in the parietal lobe is 
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associated with more advanced cortex pathology in AD patients (Villegas-Llerena at 

al., 2016).  

There was evidence that cg24251493 and cg04441687 were also genetically co-

regulated based on the Bayesian-colocalisation results (see Table 5.2). These sites 

were positively associated with LOAD (p=1.74e-07 and p=1.00e-15, respectively) and 

are located near the PICALM region (85kb away). PICALM is a LOAD risk gene 

identified by GWAS (Jansen at al., 2019; Kunkle at al., 2019). 

Several of the unannotated sites were not genetically co-regulated with another SMR 

significant DNAm site. This includes cg05908241, located on chromosome 7 which is 

found ~3kb from the EPHA1 locus (see Figure 5.18), which was positively associated 

with LOAD (p= 3.29e-07; see Table 5.2).  EPHA1 is a LOAD GWAS gene and 

evidence supports a role for the regulation of this gene via eQTLs in whole blood (Liu 

at al., 2018).  Additionally, cg08871934 located on chromosome 10 and is found ~3kb 

away from the ECHDC3 of the locus (see Figure 5.18), was negatively associated 

with LOAD (p=2.68e-07). ECHDC3 is LOAD GWAS gene (Jansen at al., 2019; Kunkle 

at al., 2019) 
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Figure 5.17: Prioritizing genes at the SLC24A4 GWAS locus using SMR analysis with whole blood mQTLs and the Kunkle et al LOAD GWAS. Shown are results at the 
SLC24A4 locus (chromosome 14) for LOAD. Top plot, grey dots represent the P values for SNPs from the Kunkle et al LOAD GWAS, diamonds represent the P values for probes 
from the SMR test – those filled in and highlighted in red passed the SMR and HEIDI tests. Bottom plots, the mQTL P values of SNPs from the whole blood dataset for the probes 
around the SLC24A4 locus. The top and bottom plots include all the SNPs available in the region in the GWAS and mQTL summary data, respectively, not just the SNPs common 
to both datasets. 
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Figure 5.18: Prioritizing genes at the EPHA1 GWAS locus using SMR analysis with whole blood mQTLs and the Kunkle et al LOAD GWAS. Shown are results at the EPHA1 locus 
(chromosome 7) for LOAD. Top plot, grey dots represent the P values for SNPs from the Kunkle et al LOAD GWAS, diamonds represent the P values for probes from the SMR test – those filled 
in and highlighted in red passed the SMR and HEIDI tests. Bottom plots, the mQTL P values of SNPs from the whole blood dataset for the probes around the EPHA1 locus. The top and bottom 
plots include all the SNPs available in the region in the GWAS and mQTL summary data, respectively, not just the SNPs common to both datasets.  
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5.4.8.1.3 Pathway analysis 

In order to relate the identified DNAm sites prioritised by SMR to biological functions I 

ran gene ontology (GO) pathway analysis using the R package methylGSA. I ran the 

analysis including probes which reached the threshold p<5e-5 (92 probes, tagging 43 

genes). I identified 287 significant pathways (see Figure 5.19) including several lipid 

related pathways such as cholesterol metabolism and transport. Lipids are involved in 

APP processing and trafficking and influence the formation of amyloid-beta (Aβ) 

peptides which are involved in AD pathogenesis (Penke at al., 2018). In addition, 

multiple amyloid and tau related pathways were identified including Aβ binding and 

tau binding pathways.  
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 SMR results using the Jansen at al. GWAS 

As the power of the GWAS has a large influence on the ability of the SMR approach 

to detect pleiotropic associations, I identified more pleiotropic associations when using 

the Jansen at al. GWAS which incorporated both clinically diagnosed AD cases and 

AD-by-proxy (71,880 cases, 383,378 cognitively normal controls). I applied SMR and 

identified 106 associations which passed the Bonferroni significant threshold (p < 3.5e-

07) and 48 which passed both the significance threshold and the HEIDI threshold (p > 

Figure 5.19: Pathway analysis of the whole Blood mQTL SMR results which incorporated the Kunkle et al 
(2019) GWAS. Shown are the top 50 significant result from the pathway analysis. The y-axis is the gene ontology 
pathway.  The x axis is size, which represents the number of genes included in the pathway.  
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0.01; see Table 5.4 and Figure 5.13). Of these 48, 24 (50%) were positively 

associated with LOAD. Like for the Kunkle SMR analysis, many of the associations 

were identified in regions proximal to GWAS peaks, including several along 

chromosome 11, where 4 distinct GWAS loci have previously been identified which 

are annotated to the genes SPI1, MS4A2, PICALM and SORL1 (see Figure 5.20).  

Of the 48 significant probes which passed the SMR and HEIDI analysis, 32 (67%) 

were annotated to genes. Seven of these genes had multiple tagging probes, providing 

internally consistent - although not necessarily independent - replications of the 

results. This included DNAm sites annotated to the genes: BTNL2, CD2AP, GPC2, 

STAG3, MS4A3, ADAM10, SCIMP, C17orf87 and PVR which have all been implicated 

in LOAD (Bellenguez at al., 2020; Jansen at al., 2019; Kunkle at al., 2019; Rosenthal 

& Kamboh, 2014).  



 

340 
 

Table 5.4: Summary data-based Mendelian Randomisation (SMR) test results for pleiotropic effects between LOAD and DNA methylation using the Jansen at al. 
GWAS and the whole blood mQTL dataset. (N = 48 hits where p < 3.5e-07 and HEIDI > 0.01). CHR: chromosome; BP: base position (hg19 P); Instrument: top cis-mQTL for 
DNAm site with smallest p-value for association; Beta SMR: estimate for the effect of DNAm on LOAD; P SMR: p-value for SMR association; HEIDI: p-value for the HEIDI test; 
N SNP HEIDI; number of SNPs included in the HEIDI test. 

DNA site GWAS SMR HEIDI 

Probe ID CHR BP Annotated Gene Instrument (CHR:BP) Ref MAF Beta SE P P N SNP 

cg03100814 6 32367672 BTNL2 6:32376746 0.32 -0.91 0.174 1.91E-07 7.73E-02 20 

cg14241129 6 32367729 BTNL2 6:32368087 0.32 -0.75 0.140 8.28E-08 5.72E-02 20 

cg12672189 6 32427868 - 6:32423194 0.16 -0.13 0.023 5.54E-08 8.07E-02 20 

cg20946741 6 32428328 - 6:32418657 0.16 -0.22 0.039 3.28E-08 2.19E-02 20 

cg10556520 6 32428377 - 6:32423194 0.16 -0.36 0.068 1.06E-07 2.06E-01 20 

cg08265274 6 32490444 HLA-DRB5 6:32681277 0.36 -0.05 0.010 1.49E-07 1.59E-02 20 

cg15710545 6 32578114 - 6:32590331 0.32 0.09 0.017 1.44E-07 3.91E-02 20 

cg03149641 6 47444455 CD2AP 6:47552180 0.27 0.30 0.054 1.55E-08 3.87E-02 20 

cg20172563 6 47487173 CD2AP 6:47525202 0.27 0.50 0.092 4.22E-08 9.76E-02 20 

cg18090197 7 99769602 GPC2 7:99792608 0.26 1.76 0.336 1.60E-07 2.07E-02 20 

cg00048759 7 99775422 STAG3;GPC2 7:99807146 0.26 -0.82 0.157 1.64E-07 1.01E-01 20 

cg10084644 7 99775521 STAG3;GPC2 7:99816179 0.26 -0.67 0.117 1.12E-08 3.91E-02 20 

cg00553149 7 99775558 STAG3;GPC2 7:99807146 0.26 -0.38 0.066 6.98E-09 3.90E-02 20 

cg10407106 7 99779719 STAG3 7:99784704 0.26 0.79 0.136 7.95E-09 4.28E-02 20 

cg17830204 7 99819110 GATS;PVRIG 7:99787372 0.26 0.50 0.081 5.59E-10 1.46E-02 20 

cg19116668 7 99932089 PMS2L1 7:99971834 0.31 0.73 0.100 2.61E-13 4.04E-01 20 

cg03579757 7 100091793 NYAP1 7:100012579 0.30 0.91 0.133 7.26E-12 3.55E-01 20 

cg03760621 7 143104506 EPHA1-AS1;EPHA1 7:143104331 0.41 1.05 0.178 3.00E-09 2.10E-02 20 

cg18997129 7 143105850 EPHA1 7:143104331 0.41 1.77 0.302 4.82E-09 1.74E-02 20 

cg16292768 8 27467783 CLU 8:27467821 0.39 1.84 0.300 9.27E-10 1.15E-01 10 

cg22217144 8 27468166 CLU;MIR6843 8:27467821 0.39 2.74 0.429 1.60E-10 4.83E-02 20 

cg21111824 8 27468171 CLU;MIR6843 8:27467821 0.39 3.68 0.554 3.10E-11 3.35E-02 20 

cg08871934 10 11720283 - 10:11720308 0.36 -0.31 0.056 3.21E-08 4.25E-01 20 
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cg17173423 11 59823993 MS4A3 11:59852569 0.28 1.18 0.197 1.89E-09 1.70E-02 20 

cg01440285 11 59837091 MS4A3 11:59826677 0.31 1.06 0.190 2.66E-08 2.81E-02 20 

cg18684128 11 60033393 - 11:60030559 0.41 1.05 0.175 1.64E-09 2.18E-02 20 

cg18959616 11 85814918 - 11:85812210 0.36 0.39 0.051 1.84E-14 7.06E-02 20 

cg01904978 11 85847072 - 11:85845473 0.39 1.78 0.343 2.32E-07 2.50E-02 20 

cg16209351 11 85850230 - 11:85858497 0.47 4.80 0.932 2.56E-07 2.21E-01 20 

cg19619504 11 85850481 - 11:85858497 0.47 1.50 0.229 5.98E-11 3.47E-02 20 

cg24251493 11 85866690 - 11:85868640 0.38 5.36 1.005 9.94E-08 3.56E-01 13 

cg04441687 11 85869322 - 11:85868640 0.38 0.23 0.027 3.97E-17 3.23E-01 20 

cg10816016 11 85873480 - 11:85854176 0.44 3.68 0.699 1.35E-07 6.34E-02 20 

cg23484461 14 92936957 SLC24A4 14:92936690 0.20 0.24 0.039 1.68E-09 2.75E-02 20 

cg20288868 15 59042462 ADAM10 15:59016315 0.28 -0.95 0.177 6.90E-08 2.71E-01 20 

cg15770593 15 59042482 ADAM10 15:59042012 0.28 -0.72 0.133 4.74E-08 1.49E-01 20 

cg20532450 15 59042728 ADAM10 15:59016315 0.28 -0.73 0.141 2.56E-07 8.11E-02 20 

cg09265987 15 59050614 - 15:59052210 0.30 -0.47 0.084 3.19E-08 1.33E-01 20 

cg18702655 17 5138293 SCIMP;LOC100130950 17:5158714 0.12 -0.78 0.136 1.15E-08 6.75E-01 20 

cg10520397 17 5138461 SCIMP;LOC100130950 17:5155919 0.12 -1.10 0.203 6.03E-08 6.31E-01 20 

cg03146371 17 5138469 SCIMP;LOC100130950 17:5158714 0.12 -0.98 0.180 4.75E-08 7.38E-01 20 

cg21337881 17 5138645 C17orf87 17:5155919 0.12 -1.29 0.231 2.25E-08 3.99E-01 20 

cg17588003 17 5138696 C17orf87 17:5155919 0.12 -0.70 0.124 1.45E-08 5.33E-01 20 

cg03167326 17 5158046 - 17:5155919 0.12 -0.29 0.050 3.96E-09 4.17E-01 20 

cg12439163 17 5165803 - 17:5155919 0.12 -0.55 0.096 6.53E-09 2.88E-01 20 

cg23619370 17 5168138 - 17:5155919 0.12 -0.48 0.082 5.14E-09 1.80E-01 20 

cg15233575 19 45221584 - 19:45233343 0.19 -4.11 0.669 7.99E-10 5.04E-02 3 

cg02400211 19 51727987 CD33 19:51736383 0.33 -0.52 0.099 1.00E-07 1.00E-01 20 
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Figure 5.20: Manhattan plots of Summary data-based Mendelian Randomisation (SMR) tests for pleiotropic effects between LOAD and DNA methylation, using the 
Jansen et al. GWAS along chromosome 11 in (A) the whole blood mQTL dataset; (B) the brain PFC mQTL dataset; and (C) the Jansen et al GWAS results. The x axis is the 
genomic position, segregated by chromosome. In (A) and (B) shown on the y-axis of each plot is the –log10 P-value from the SMR analysis using DNA methylation quantitative 
trait loci (mQTL). Each point represents an SMR test for a particular DNA methylation site. The red horizontal line represents the genome-wide multiple testing significance 
threshold. In (C) shown on the y-axis is the –log P-value from the GWAS. Each point represents a SNP. The red horizontal line represents the genome-wide significance threshold 
(P<5e-8). 
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5.4.8.2.1 Identifying regions in the Jansen whole blood SMR analysis  

I used the Bayesian colocalisation results to identify if each pair of DNAm probes in 

the same region had evidence for colocalisation, in total examining 82 pairs of sites.  

All 82 pairs had evidence for a co-localized association within the same genomic 

region (PP3 + PP4 > 0.99). 57 pairs of DNAm sites had ‘suggestive’ evidence to 

support associations between both DNAm sites with the same causal mQTL variant 

(PP3 + PP4 > 0.99 & PP4/PP3 > 1). 56 pairs of sites had ‘convincing’ evidence to 

support associations between both DNAm sites with the same causal variant (see 

Table 5.5). This includes a region of 28 pairs of sites around the SCIMP locus, a region 

of 16 pairs of sites around the ZCWPW1 locus, a region of 6 pairs of sites around the 

ADAM10 locus, a region of three sites at the CLU locus, a region of two pairs of sites 

around the CD2AP locus, a pair of sites at the MS4A3 locus and a pair of sites at the 

EPHA1 locus (see Table 5.5). This suggests there is genetic co-regulation within 

multiple regions and therefore we can use these data to aid the interpretation of the 

SMR results by grouping results. Several of these regions were also identified in the 

Kunkle et al analysis, including sites annotated to CLU and MS4A3 (for a more 

extensive comparison between analyses see 5.3.10). 
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Table 5.5: Bayesian Colocalisation results for the Jansen et al whole blood SMR significant DNA methylation probes. There is evidence for colocalisation for several of 
the DNA methylation probes which had a significant SMR result. The posterior probability for all pairs of sites tested provided evidence for a co-localized association within the 
same genomic region (PP3 + PP4 > 0.99). 55 pairs of sites had ‘suggestive’ evidence to support associations between both DNAm sites with the same causal mQTL variant 
(PP3 + PP4 > 0.99 & PP4/PP3 > 1). 54 pairs of sites had ‘convincing’ evidence to support associations between both DNAm sites with the same causal mQTL variant (PP3 + 
PP4 > 0.99 & PP4/PP3 > 5). The strength of the evidence is based on co-localisation criteria developed by Guo and colleagues (Guo at al., 2015). PP.Hi.abf = Posterior probability 
for each of the Bayesian Colocalisation hypotheses (i).  

DNA methylation sites Bayesian Colocalisation results 

Site 1 CHR BP Gene Site 2 BP Gene N snps PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf P3 + P4 P4/P3 

cg20172563 6 47487173 CD2AP cg03149641 47444455 CD2AP 2277 9.60E-155 2.51E-94 1.91E-62 0.0490 0.951 1 19.40 

cg20946741 6 32428328 - cg12672189 32427868   8138 1.12E-133 3.50E-81 3.90E-54 1.21E-01 8.79E-01 1 7.26 

cg18997129 7 143105850 EPHA1 cg03760621 143104506 EPHA1-AS1 628 4.10E-28 2.75E-19 3.77E-11 2.43E-02 9.76E-01 1 40.07 

cg17830204 7 99819110 GATS cg18090197 99769602 GPC2 994 1.22E-71 5.37E-09 2.03E-64 8.83E-02 9.12E-01 1 10.33 

cg17830204 7 99819110 GATS cg00048759 99775422 STAG3 998 1.47E-71 6.44E-09 2.21E-64 9.61E-02 9.04E-01 1 9.41 

cg17830204 7 99819110 GATS cg10084644 99775521 STAG3 998 4.43E-85 1.94E-22 2.76E-64 1.20E-01 8.80E-01 1 7.33 

cg17830204 7 99819110 GATS cg00553149 99775558 STAG3 998 1.58E-108 6.91E-46 3.24E-64 1.41E-01 8.59E-01 1 6.08 

cg17830204 7 99819110 GATS cg10407106 99779719 STAG3 1003 4.46E-82 1.96E-19 1.21E-64 5.22E-02 9.48E-01 1 18.15 

cg03579757 7 100091793 NYAP1 cg19116668 99932089 PMS2L1 916 2.24E-53 7.17E-30 5.21E-25 1.66E-01 8.34E-01 1 5.02 

cg00048759 7 99775422 STAG3 cg18090197 99769602 GPC2 1037 4.32E-16 6.50E-09 7.17E-09 1.07E-01 8.93E-01 1 8.34 

cg10084644 7 99775521 STAG3 cg18090197 99769602 GPC2 1037 1.03E-29 6.40E-09 1.71E-22 1.05E-01 8.95E-01 1 8.49 

cg10084644 7 99775521 STAG3 cg00048759 99775422 STAG3 1041 7.48E-30 4.66E-09 1.13E-22 6.91E-02 9.31E-01 1 13.46 

cg00553149 7 99775558 STAG3 cg18090197 99769602 GPC2 1037 2.98E-53 6.12E-09 4.95E-46 1.01E-01 8.99E-01 1 8.92 

cg00553149 7 99775558 STAG3 cg00048759 99775422 STAG3 1041 2.31E-53 4.76E-09 3.48E-46 7.06E-02 9.29E-01 1 13.16 

cg00553149 7 99775558 STAG3 cg10084644 99775521 STAG3 1041 4.15E-67 8.54E-23 2.58E-46 5.22E-02 9.48E-01 1 18.15 

cg10407106 7 99779719 STAG3 cg18090197 99769602 GPC2 1037 2.09E-26 5.68E-09 3.47E-19 9.35E-02 9.06E-01 1 9.69 

cg10407106 7 99779719 STAG3 cg00048759 99775422 STAG3 1041 2.10E-26 5.71E-09 3.16E-19 8.51E-02 9.15E-01 1 10.76 

cg10407106 7 99779719 STAG3 cg10084644 99775521 STAG3 1041 4.73E-40 1.29E-22 2.95E-19 7.92E-02 9.21E-01 1 11.63 

cg10407106 7 99779719 STAG3 cg00553149 99775558 STAG3 1041 1.42E-63 3.86E-46 2.92E-19 7.85E-02 9.22E-01 1 11.74 
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cg22217144 8 27468166 CLU;MIR6843 cg16292768 27467783 CLU 2597 5.35E-29 1.92E-14 1.29E-17 3.65E-03 9.96E-01 1 273.28 

cg21111824 8 27468171 CLU;MIR6843 cg16292768 27467783 CLU 2598 1.37E-32 1.55E-14 3.31E-21 2.75E-03 9.97E-01 1 362.95 

cg21111824 8 27468171 CLU;MIR6843 cg22217144 27468166 CLU;MIR6843 2600 9.75E-36 1.10E-17 3.51E-21 2.98E-03 9.97E-01 1 334.97 

cg01440285 11 59837091 MS4A3 cg17173423 59823993 MS4A3 1775 4.79E-24 2.47E-20 3.01E-05 1.54E-01 8.46E-01 1 5.48 

cg15770593 15 59042482 ADAM10 cg20288868 59042462 ADAM10 1803 2.97E-125 6.48E-28 5.25E-99 1.14E-01 8.86E-01 1 7.78 

cg20532450 15 59042728 ADAM10 cg20288868 59042462 ADAM10 1803 1.25E-40 1.79E-28 2.22E-14 3.06E-02 9.69E-01 1 31.65 

cg20532450 15 59042728 ADAM10 cg15770593 59042482 ADAM10 1803 2.22E-112 3.16E-100 4.85E-15 5.92E-03 9.94E-01 1 167.97 

cg09265987 15 59050614 - cg20288868 59042462 ADAM10 1777 2.47E-51 1.62E-27 4.36E-25 2.86E-01 7.14E-01 1 2.5 

cg09265987 15 59050614 - cg15770593 59042482 ADAM10 1777 3.16E-123 2.08E-99 6.90E-26 4.44E-02 9.56E-01 1 21.51 

cg09265987 15 59050614 - cg20532450 59042728 ADAM10 1777 4.33E-38 2.84E-14 6.17E-26 3.96E-02 9.60E-01 1 24.27 

cg21337881 17 5138645 C17orf87 cg18702655 5138293 SCIMP 2337 2.28E-48 4.77E-29 4.22E-22 7.83E-03 9.92E-01 1 126.74 

cg21337881 17 5138645 C17orf87 cg10520397 5138461 SCIMP 2337 1.78E-32 3.71E-13 1.21E-21 2.44E-02 9.76E-01 1 40.01 

cg21337881 17 5138645 C17orf87 cg03146371 5138469 SCIMP 2337 4.30E-32 8.98E-13 5.30E-22 1.01E-02 9.90E-01 1 98.17 

cg17588003 17 5138696 C17orf87 cg18702655 5138293 SCIMP 2337 5.66E-57 9.46E-29 1.05E-30 1.65E-02 9.83E-01 1 59.49 

cg17588003 17 5138696 C17orf87 cg10520397 5138461 SCIMP 2337 2.45E-41 4.09E-13 1.67E-30 2.70E-02 9.73E-01 1 36.1 

cg17588003 17 5138696 C17orf87 cg03146371 5138469 SCIMP 2337 4.50E-41 7.52E-13 5.55E-31 8.29E-03 9.92E-01 1 119.69 

cg17588003 17 5138696 C17orf87 cg21337881 5138645 C17orf87 2338 3.06E-50 5.11E-22 6.39E-31 9.69E-03 9.90E-01 1 102.18 

cg10520397 17 5138461 SCIMP cg18702655 5138293 SCIMP 2339 1.71E-39 1.17E-28 3.17E-13 2.07E-02 9.79E-01 1 47.4 

cg03146371 17 5138469 SCIMP cg18702655 5138293 SCIMP 2339 4.79E-39 5.91E-29 8.86E-13 9.94E-03 9.90E-01 1 99.57 

cg03146371 17 5138469 SCIMP cg10520397 5138461 SCIMP 2339 3.48E-23 4.29E-13 2.37E-12 2.83E-02 9.72E-01 1 34.32 

cg03167326 17 5158046 - cg18702655 5138293 SCIMP 2310 8.70E-155 3.68E-29 1.61E-128 5.81E-03 9.94E-01 1 171.06 

cg03167326 17 5158046 - cg10520397 5138461 SCIMP 2310 6.65E-139 2.81E-13 4.54E-128 1.82E-02 9.82E-01 1 53.91 

cg03167326 17 5158046 - cg03146371 5138469 SCIMP 2310 2.39E-138 1.01E-12 2.95E-128 1.15E-02 9.88E-01 1 85.91 

cg03167326 17 5158046 - cg21337881 5138645 C17orf87 2311 7.55E-148 3.19E-22 1.58E-128 5.68E-03 9.94E-01 1 175.1 

cg03167326 17 5158046 - cg17588003 5138696 C17orf87 2312 1.43E-156 6.04E-31 2.39E-128 9.11E-03 9.91E-01 1 108.81 

cg12439163 17 5165803 - cg18702655 5138293 SCIMP 2304 7.30E-100 5.27E-29 1.35E-73 8.77E-03 9.91E-01 1 113.04 
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cg12439163 17 5165803 - cg10520397 5138461 SCIMP 2304 4.21E-84 3.04E-13 2.88E-73 1.98E-02 9.80E-01 1 49.49 

cg12439163 17 5165803 - cg03146371 5138469 SCIMP 2304 1.22E-83 8.82E-13 1.50E-73 9.89E-03 9.90E-01 1 100.16 

cg12439163 17 5165803 - cg21337881 5138645 C17orf87 2305 4.67E-93 3.38E-22 9.77E-74 6.06E-03 9.94E-01 1 163.91 

cg12439163 17 5165803 - cg17588003 5138696 C17orf87 2306 7.30E-102 5.27E-31 1.22E-73 7.83E-03 9.92E-01 1 126.75 

cg12439163 17 5165803 - cg03167326 5158046   2345 1.34E-199 9.68E-129 5.66E-74 3.10E-03 9.97E-01 1 322.01 

cg23619370 17 5168138 - cg18702655 5138293 SCIMP 2302 9.91E-101 6.55E-29 1.83E-74 1.11E-02 9.89E-01 1 88.82 

cg23619370 17 5168138 - cg10520397 5138461 SCIMP 2302 5.21E-85 3.44E-13 3.56E-74 2.25E-02 9.77E-01 1 43.38 

cg23619370 17 5168138 - cg03146371 5138469 SCIMP 2302 1.18E-84 7.82E-13 1.46E-74 8.65E-03 9.91E-01 1 114.56 

cg23619370 17 5168138 - cg21337881 5138645 C17orf87 2303 6.13E-94 4.05E-22 1.28E-74 7.47E-03 9.93E-01 1 132.88 

cg23619370 17 5168138 - cg17588003 5138696 C17orf87 2304 7.10E-103 4.69E-31 1.19E-74 6.85E-03 9.93E-01 1 144.92 

cg23619370 17 5168138 - cg03167326 5158046   2343 2.04E-200 1.35E-128 8.62E-75 4.70E-03 9.95E-01 1 211.76 

cg23619370 17 5168138 - cg12439163 5165803   2351 1.11E-145 7.32E-74 8.01E-75 4.30E-03 9.96E-01 1 231.74 
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Figure 5.21: Heatmap of Bayesian co-localisation results for all pairs of DNA-methylation sites with at least one significant mQTL (p < 1e-10) in a genomic region on 
chromosome 7 (chr7: 99754227– 100091793). Each square represents the relationship between two DNA-methylation sites (ordered by genomic location). The colour of each 
square indicates the strength of the evidence for a shared genetic signal (from blue [weak] to red [strong]). This strength is calculated as the ratio of the posterior probabilities 
that they share the same causal variant (PP4) compared to two distinct causal variants (PP3). The ratio was capped to a maximum value of 10.White indicates pairs of DNA-
methylation sites that were not tested for co-localisation. 
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5.4.8.2.2 The SMR associations are relevant in the context of LOAD 

Of the DNAm sites which were prioritised by SMR as having a pleiotropic relationship 

between a SNP and LOAD several are annotated to genes which have previously 

been implicated in LOAD. This includes a region (see Table 5.5) of eight sites located 

around the ZCWPW1/NYAP1 GWAS locus. Of note, several of the DNAm sites are 

annotated to alternative genes residing near this locus (-200kb - + 120kb away) (see 

Table 5.4). One site included in this region is cg03579757, which is annotated to 

NYAP1 and was positively associated with LOAD (p= 7.26e-12; see Table 5.3). 

NYAP1 has been identified as a LOAD-risk factor through GWAS and has previously 

been nominated as a candidate eQTL gene (Kikuchi at al., 2019). NYAP1 regulates 

neuronal morphogenesis and is upregulated in the AD hippocampus (Kikuchi at al., 

2019). Several of the other DNAm sites within this region were annotated to STAG3, 

which has also been associated with LOAD.  Of note, not all sites shared the same 

direction of effect, suggesting multiple independent SNPs could be having an effect 

on LOAD in this region mediated by DNAm at different sites.  

I identified a region of four sites around the ADAM10 locus located on chromosome 

15. Within this region cg20288868, cg15770593 and cg20532450 were annotated to 

ADAM10 and were negatively associated with LOAD (p=6.90e-08; p=4.74e-08; and 

p=2.56e-07, respectively; see Table 5.4). One additional site in this region - 

cg09265987 - was not annotated to a gene based on the Illumina manifest however it 

was also negatively associated with LOAD (p=3.19e-08). The unannotated DNAm site 

is located ~30kb from ADAM10. ADAM10 has been identified as a LOAD risk factor 

through GWAS (Kunkle, 2019) and has been identified as the primary α-secretase in 

the process of amyloid-beta (Aβ) protein precursor cleavage and plays a role in 

reducing the generation of the Aβ peptides. 

A region of two sites located around the EPHA1 locus located on chromosome 7 was 

identified, with cg03760621 and cg18997129 being positively associated with LOAD 

(p=3.00e-09; p=4.82e-09, respectively; see Table 5.4 and Figure 5.22). EPHA1 is a 

LOAD risk gene and evidence supports a role for the regulation of this gene via eQTLs 

in whole blood (Liu at al., 2018) 

A region of two sites around the MSA43 locus located on chromosome 11 was 

identified, with cg17173423 and cg01440285 being were positively associated with 



 

349 
 

LOAD (p=1.89e-09; and p=2.66e-08, respectively; see Table 5.4). MS4A3 is part of 

the MS4A locus. MS4A3 gene expression varies between tissues but is limited to cells 

that have functions related to the immune response and haematopoietic cells (Naj at 

al., 2011). 

Several DNAm sites around the HLA region were identified as having an effect on 

LOAD (see Table 5.4). However, there was no evidence of genetic co-regulation in 

the Bayesian colocalisation analysis suggesting several independent genetic variants 

may have an effect on LOAD in this region which are mediated by DNAm at different 

sites. One site identified as having a pleiotropic relationship with load was cg08265274 

– located on chromosome 6 and annotated to HLA-DRB5 – which was negatively 

associated with LOAD (p= 1.49e-07; see Table 5.4). The expression of HLA-DRB5 in 

microglia is positively associated with measures of AD pathology (Villegas-Llerena at 

al., 2016).  

Several sites were not identified as regions within the Bayesian colocalisation analysis 

but had a significant SMR result including cg02400211 – located on chromosome 19, 

annotated to CD33 (see Figure 5.23), a risk factor for LOAD – and was negatively 

associated with LOAD (p= 1.00e-07; see Table 5.4).  CD33 is a sialic acid-binding 

immunoglobulin-like lectin that regulates innate immunity. It is expressed in microglia 

and exhibits increased expression in AD and numbers of CD33 immunoreactive 

microglia positively correlate with Aβ plaque burden. CD33 has also been shown to 

inhibit microglial uptake of Aβ (Griciuc at al., 2013). 
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Figure 5.22 Prioritizing genes at the EPHA1 GWAS locus using SMR analysis with whole blood mQTLs and the Jansen et al LOAD GWAS. Shown are results at the EPHA1 
locus (chromosome 7) for LOAD. Top plot, grey dots represent the P values for SNPs from the Jansen et al LOAD GWAS, diamonds represent the P values for probes from the SMR 
test – those filled in and highlighted in red passed the SMR and HEIDI tests. Bottom plots, the mQTL P values of SNPs from the whole blood dataset for the probes around the EPHA1 
locus. The top and bottom plots include all the SNPs available in the region in the GWAS and mQTL summary data, respectively, not just the SNPs common to both datasets. 
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Figure 5.23: Prioritizing genes at the CD33 GWAS locus using SMR analysis with whole blood mQTLs and the Jansen et al LOAD GWAS. Shown are results at the CD33 
locus (chromosome 19) for LOAD. Top plot, grey dots represent the P values for SNPs from the Jansen et al LOAD GWAS, diamonds represent the P values for probes from the 
SMR test – those filled in and highlighted in red passed the SMR and HEIDI tests. Bottom plots, the mQTL P values of SNPs from the whole blood dataset for the probes around 
the CD33 locus. The top and bottom plots include all the SNPs available in the region in the GWAS and mQTL summary data, respectively, not just the SNPs common to both 
datasets. 
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5.4.8.2.3 Pathway analysis 

In order to relate the DNAm sites prioritised by SMR to biological functions I ran GO 

pathway analysis using the R package methylGSA. I ran the analysis including probes 

which reached the threshold p<5e-5 (172 probes, tagging 74 genes). I identified 148 

significant pathways (see Figure 5.24) including pathways related to cellular 

processes in the cortex such as oligodendrocyte development, microglial and glial cell 

activation, gliogenesis and myelination.  Neuronal and glial cell interactions are vital 

for synaptic homeostasis and research suggest these processes are disrupted in AD 

cases (Nordengen at al., 2019). 
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Figure 5.24: Pathway analysis of the whole Blood mQTL SMR results which incorporated the Jansen et al 
(2019) GWAS. Shown are the top 50 significant result from the pathway analysis. The y-axis represents the gene 
ontology biological processes.  The x axis is size, which represents the number of genes included in the pathway. 
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5.4.9 Identifying putative pleiotropic relationships between DNA 
methylation and Alzheimer’s disease in the prefrontal cortex using 
SMR 

I used SMR to test the 42,926 DNAm sites identified in my cortex PFC mQTL analysis 

(see above; section 5.4.3) with the two latest AD GWAS with publicly available 

summary statistics.  

 SMR results using the Kunkle et al GWAS 

Using the Kunkle at al. GWAS I applied SMR and identified 19 associations which 

passed the Bonferroni significant threshold (p < 1.15e-06) and 10 which passed both 

the significance threshold and the HEIDI threshold (p > 0.01; see Table 5.6 and Figure 
5.25). Of these, five (50%) were positively associated with LOAD. Many of the 

associations were identified in regions proximal to GWAS peaks (see Figure 5.15(B)), 
including several along chromosome 11.  
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Figure 5.25: Manhattan plots of Summary data-based Mendelian Randomisation (SMR) tests for pleiotropic 
effects between LOAD and regulatory markers in cortex.  (A) using DNA methylation quantitative trait loci 
(mQTL) and the Kunkle et al GWAS summary statistics; (B) using mQTLs and the Jansen et al GWAS summary 
statistics; (C) using expression quantitated trait loci (eQTLs) and the Kunkle et al GWAS summary statistics; and 
(D) using eQTLs and the Jansen et al GWAS summary statistics. The x axis is the genomic position, segregated 
by chromosome. Shown on the y-axis of each plot is the –log10 p-value from the SMR analysis using mQTLs (A) 
and (B) or eQTLs (C) and (D). Each point represents an SMR test for a particular mQTL/ eQTL site which passed 
the Bonferroni and HEIDI significant thresholds. The red horizontal line represents the genome-wide multiple 
testing significance threshold.
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Table 5.6: Summary data-based Mendelian Randomisation (SMR) test results for pleiotropic effects between LOAD and DNA methylation using the Kunkle at al. 
GWAS and the cortex mQTL dataset. (N = 10 hits where p < 1.15e-06 and HEIDI > 0.01). CHR: chromosome; BP: base position (hg19 P); Instrument: top cis-mQTL for 
DNAm site with smallest p-value for association; Beta SMR: estimate for the effect of DNAm on LOAD; P SMR: p-value for SMR association; HEIDI: p-value for the HEIDI test; 
N SNP HEIDI; number of SNPs included in the HEIDI test. 

DNAm site GWAS SMR HEIDI 

Probe ID CHR BP Gene Instrument 
(CHR:BP) 

Ref 
MAF Beta SE P P N SNP 

cg13076785 6 32520916 HLA-DRB6 6:32561656 0.43 -0.61 0.11 6.91E-08 4.36E-01 20 

cg15710545 6 32578114 - 6:32576894 0.42 1.08 0.20 6.43E-08 2.12E-01 17 

cg20307385 11 47447363 PSMC3 11:47462140 0.40 5.86 1.15 3.89E-07 4.00E-02 20 

cg09507712 11 47616693 C1QTNF4 11:47606483 0.37 -1.73 0.30 1.24E-08 4.50E-02 20 

cg07409245 11 47616751 C1QTNF4 11:47687147 0.37 -1.51 0.29 1.97E-07 1.60E-02 20 

cg15575356 11 47616757 C1QTNF4 11:47687147 0.37 -1.86 0.36 3.30E-07 1.90E-02 20 

cg27051260 11 47616825 C1QTNF4 11:47606483 0.37 -2.02 0.36 1.44E-08 1.20E-02 20 

cg17688768 11 47628441 - 11:47550835 0.37 2.94 0.56 1.46E-07 1.60E-02 20 

cg24977308 11 47636548 - 11:47486885 0.37 2.33 0.43 7.19E-08 8.40E-02 20 

cg02521229 11 60019236 - 11:60020112 0.41 0.81 0.11 1.06E-14 5.10E-02 20 
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5.4.9.1.1 Identifying regions in the Kunkle cortex SMR analysis 

I used the Bayesian colocalisation results to identify if each pair of DNAm sites in the 

same region (defined as probes within 250kb of each other) had evidence for 

colocalisation. In total I looked at 16 pairs of sites, and all demonstrated evidence for 

a co-localized association within the same genomic region (PP3 + PP4 > 0.99). 10 

pairs of DNAm sites had ‘suggestive’ evidence to support associations between both 

DNAm sites with the same causal mQTL variant (PP3 + PP4 > 0.99 & PP4/PP3 > 1) 

(see Table 5.7), all of which also met the criteria for ‘convincing’ evidence to support 

associations between both DNAm sites with the same causal mQTL variant (PP3 + 

PP4 > 0.99 & PP4/PP3 > 5) (see Table 5.7). The DNAm sites in the region are all 

located on chromosome 11 around the SPI1 LOAD GWAS locus, although they are 

annotated either to C1QTNF4 (which is located ~200kb from SPI1) or do not have a 

gene annotation. These results suggest that these DNAm sites are genetically co-

regulated and it is likely they have a shared causal variant associated with DNA 

methylation level. Therefore, I considered this as a region to aid the interpretation of 

the SMR results. 
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Table 5.7: Bayesian Colocalisation results for the Kunkle et al cortex SMR significant DNA methylation probes. There is evidence for colocalisation for several of the 
DNA methylation probes which had a significant SMR result. The posterior probability for all pairs of sites tested provided evidence for a co-localized association within the same 
genomic region (PP3 + PP4 > 0.99). 10 pairs of sites had ‘suggestive’ evidence to support associations between both DNAm sites with the same causal mQTL variant (PP3 + 
PP4 > 0.99 & PP4/PP3 > 1). 10 pairs of sites had ‘convincing’ evidence to support associations between both DNAm sites with the same causal mQTL variant (PP3 + PP4 > 
0.99 & PP4/PP3 > 5). The strength of the evidence is based on co-localisation criteria developed by Guo and colleagues (Guo at al., 2015). PP.Hi.abf = Posterior probability for 
each of the Bayesian Colocalisation hypotheses (i). 

DNA methylation sites Bayesian Colocalisation results 

Site 1 CHR BP Annotated 
 Gene Site 2 BP Annotated 

Gene N SNPs PP.H0.abf PP.H1.abf PP.H2.abf PP.H3.abf PP.H4.abf P3 + P4 P4/P3 

cg07409245 11 47616751 C1QTNF4 cg09507712 47616693 C1QTNF4 1364 1.69e-77 4.89e-43 2.52e-36 7.23e-02 9.28e-01 1 12.84 
cg15575356 11 47616757 C1QTNF4 cg09507712 47616693 C1QTNF4 1364 4.23e-69 4.18e-43 6.33e-28 6.15e-02 9.38e-01 1 15.25 
cg15575356 11 47616757 C1QTNF4 cg07409245 47616751 C1QTNF4 1364 9.73e-63 9.60e-37 2.82e-28 2.69e-02 9.73e-01 1 36.16 
cg17688768 11 47628441 - cg09507712 47616693 C1QTNF4 1350 9.15e-71 3.43e-43 1.37e-29 5.03e-02 9.50e-01 1 18.86 
cg17688768 11 47628441 - cg07409245 47616751 C1QTNF4 1350 5.72e-64 2.14e-36 1.66e-29 6.13e-02 9.39e-01 1 15.32 
cg17688768 11 47628441 - cg15575356 47616757 C1QTNF4 1350 1.48e-55 5.54e-28 1.46e-29 5.37e-02 9.46e-01 1 17.61 
cg24977308 11 47636548 - cg09507712 47616693 C1QTNF4 1341 1.81e-77 3.48e-43 2.70e-36 5.11e-02 9.49e-01 1 18.56 
cg24977308 11 47636548 - cg07409245 47616751 C1QTNF4 1341 7.59e-71 1.46e-36 2.21e-36 4.15e-02 9.59e-01 1 23.10 
cg24977308 11 47636548 - cg15575356 47616757 C1QTNF4 1341 2.05e-62 3.94e-28 2.02e-36 3.79e-02 9.62e-01 1 25.36 
cg24977308 11 47636548 - cg17688768 47628441  - 1358 4.39e-64 8.44e-30 1.64e-36 3.07e-02 9.69e-01 1 31.60 
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5.4.9.1.2 The SMR associations are relevant in the context of LOAD 

Of the DNAm sites which were prioritised by SMR as having a pleiotropic relationship 

between a SNP and LOAD, six are annotated to genes (three unique genes) which 

have all previously been implicated in LOAD. This includes a region (region identified 

using Bayesian colocalisation; see Table 5.7) of six sites located around the SPI1 

LOAD GWAS locus located on chromosome 11, although several of the DNAm sites 

are annotated to alternative genes residing near this locus (see Table 5.4). Four of the 

sites in this region - cg09507712, cg07409245, cg15575356 and cg27051260 – 

located on chromosome 11 and annotated to the gene C1QTNF4 – were negatively 

associated with LOAD (p=1.24e-08; p=1.97e-07; p=3.30e-07; p= 1.44e-08, 

respectively; see Table 5.6). C1QTNF4 is located in the same LD block as SPI1. 

However, AD genetic studies have found 8 independent variants in LD within the SPI1 

region which are also eQTLs for C1QTNF4 (Rosenthal & Kamboh, 2014). SPI1 may 

be acting in combination with or serving as a proxy for other genes around this region 

that mediate AD risk. This is further supported by the fact two of the other sites in this 

region - cg17688768 and cg24977308 – are positively associated with LOAD 

(p=1.46e-07 and p=7.19e-08), suggesting that there may be more than one genetic 

variant acting within the region which are mediated by DNAm at different sites. 

Several sites were not identified as regions within the Bayesian colocalisation analysis 

but had a significant SMR result including cg13076785 – located on chromosome 6, 

annotated to gene HLA-DRB6 (see Figure 5.26), a LOAD risk gene involved in 

immune response – which was negatively associated with LOAD (p = 6.91e-08; see 

Table 5.6). It resides in in the LD block of HLA-DRB1. The expression of HLA-DRB1 

in microglia is positively associated with measures of AD pathology (Villegas-Llerena 

at al., 2016). Additionally, cg20307385, located on chromosome 11, annotated to gene 

PSMC3, was positively associated with LOAD (p = 3.89e-07; see Table 5.6). PSMC3 

is located in the LD block of SPI1, a LOAD risk gene, however there was no evidence 

that this site genetically co-regulated with the sites above, providing further evidence 

that there may be several SNPs which have an effect on LOAD independently and are 

mediated by DNAm are different sites. 
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Figure 5.26: Prioritizing genes at the HLA GWAS locus using SMR analysis with brain prefrontal cortex mQTLs and the Kunkle et al LOAD GWAS. Shown are results at the HLA 
locus (chromosome 6) for LOAD. Top plot, grey dots represent the P values for SNPs from the Jansen et al LOAD GWAS, diamonds represent the P values for probes from the SMR test 
– those filled in and highlighted in red passed the SMR and HEIDI tests. Bottom plots, the mQTL P values of SNPs from the whole blood dataset for the probes around the HLA locus. The 
top and bottom plots include all the SNPs available in the region in the GWAS and mQTL summary data, respectively, not just the SNPs common to both datasets. 
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5.4.9.1.3 Pathway analysis 

In order to relate the DNAm sites prioritised by SMR to biological functions I ran GO 

pathway analysis using the R package methylGSA. I ran the analysis including probes 

which reached the threshold p<5e-5 (22 probes, tagging 11 genes). I identified 18 

significant pathways (see Figure 5.27) including pathways related to Aβ processing 

including metabolic processes and Aβ formation.  

 

Figure 5.27: Pathway analysis of the cortex mQTL SMR results which incorporated the Kunkle et al (2019) 
GWAS. Shown are the significant result from the pathway analysis (n=18). The y-axis represents the gene ontology 
biological processes.  The x axis is size, which represents the number of genes included in the pathway. 
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 SMR results using the Jansen et al GWAS 

Using the Jansen at al. GWAS I applied SMR and identified 22 associations which 

passed the Bonferroni significant threshold (p < 1.15e-06) and four which passed both 

the significance threshold and the HEIDI threshold (p > 0.01; see Table 5.8 and Figure 
5.25). Of these four, three (75%) were positively associated with LOAD. Of the DNAm 

sites which were prioritised by SMR as having a pleiotropic relationship between a 

SNP and LOAD, all are annotated to genes which have previously been implicated in 

LOAD: 

• cg08265274, located on chromosome 6, annotated to gene HLA-DRB5 was 

negatively associated with LOAD (p=5.97e-10; see Table 5.8). HLA-DRB5 

resides in the LD block of HLA-DRB1. The expression of HLA-DRB1 in 

microglia is positively associated with measures of AD pathology (Villegas-

Llerena at al., 2016). 

• cg03579757, located on chromosome 7 annotated to gene NYAP1 was 

positively associated with LOAD (p=8.19e-10; see Table 5.8). NYAP1 has been 

identified as a LOAD-risk factor through GWAS (Kunkle, 2019). NYAP1 

regulates neuronal morphogenesis and is upregulated in the AD hippocampus 

(Kikuchi at al., 2019). 

• cg23484461, located on chromosome 14, annotated to gene SLC24A4 was 

positively associated with LOAD (5.13e-08; see Table 5.8). SLC24A4 has 

previously been identified as an AD GWAS gene and evidence suggests this 

gene plays a role in neural development (Yu at al., 2015). In addition, differential 

methylation in the PFC of a DNAm site located within the SLC24A4 locus has 

been associated with LOAD pathology (Yu at al., 2015). 

 

These sites were all located on different chromosomes and therefore there was no 

evidence that they are genetically co-regulated with each other. 
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Table 5.8: Summary data-based Mendelian Randomisation (SMR) test results for pleiotropic effects between LOAD and DNA methylation using the Jansen at al. 
GWAS and the cortex mQTL dataset. (N = 4 hits where p < and HEIDI > 0.01). CHR: chromosome; BP: base position (hg19 P Instrument: top cis-mQTL for DNAm site with 
smallest p-value for association; Beta SMR: estimate for the effect of DNAm on LOAD; P SMR: p-value for SMR association; HEIDI: p-value for the HEIDI test; N SNP HEIDI; 
number of SNPs included in the HEIDI test. 

DNAm site GWAS SMR HEIDI 

Probe ID CHR BP Annotated Gene Instrument (CHR:BP) Ref MAF Beta SE P P N SNP 

cg08265274 6 32490444 HLA-DRB5 6:32573415 0.19 -0.11 0.02 2.51E-09 2.30E-02 20 

cg03579757 7 100091793 NYAP1 7:100012579 0.19 -0.10 0.02 5.97E-10 1.50E-02 20 

cg02521229 11 60019236 - 11:60020112 0.28 0.39 0.06 8.19E-10 4.27E-01 20 

cg23484461 14 92936957 SLC24A4 14:92937293 0.41 -0.16 0.02 2.47E-12 1.21E-01 20 
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Figure 5.28 Prioritizing genes at the NYAP1 GWAS locus using SMR analysis with brain prefrontal cortex mQTLs and the Jansen et al LOAD GWAS. Shown are results at the NYAP1 
locus (chromosome 7) for LOAD. Top plot, grey dots represent the P values for SNPs from the Jansen et al LOAD GWAS, diamonds represent the P values for probes from the SMR test – 
those filled in and highlighted in red passed the SMR and HEIDI tests. Bottom plots, the mQTL P values of SNPs from the whole blood dataset for the probes around the NYAP1 locus. The top 
and bottom plots include all the SNPs available in the region in the GWAS and mQTL summary data, respectively, not just the SNPs common to both datasets. 
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5.4.9.2.1 Pathway analysis 
 

In order to relate the DNAm sites prioritised by SMR to biological functions I ran GO 

pathway analysis using the R package methylGSA including genes annotated to 

DNAm sites reaching the threshold p<5e-5 (24 probes, tagging 17 genes). I identified 

40 significant pathways (see Figure 5.29) including pathways relating to ion 

processing such as calcium transport. The calcium hypothesis of AD states that 

dysregulation to mechanisms which regulate calcium homeostasis may play a role in 

neuronal dysfunction in AD (Alzheimer’s Association Calcium Hypothesis Workgroup, 

2017). Interestingly, the pathways identified from the SMR analysis incorporating 

cortex mQTLS are more related towards neurotransmitters, whereas the whole blood 

analysis was had more pathways related to lipid processing which suggests there are 

some tissue specific differences. 
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Figure 5.29: Pathway analysis of the cortex mQTL SMR results which incorporated the Jansen et al (2019) 
GWAS. Shown are the significant result from the pathway analysis (n=40). The y-axis represents the gene ontology 
biological processes. The x axis is size, which represents the number of genes included in the pathway. 
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5.4.10 Comparing the whole blood and cortex mQTL SMR results 

I compared the whole blood and cortex mQTL SMR results. First, I looked for 

consistency in the direction of effect of the SMR beta values, including SMR results 

which reached nominal significance (p SMR<0.05), since more stringent thresholds 

resulted in too few sites for comparison across tissues. The effects were generally 

concordant across both tissues and both LOAD GWAS (see Figure 5.30), which was 

confirmed by highly significant (Bonferroni p < 0.05/24 = 0.002) sign test p-values for 

all comparisons (see Figure 5.30). These results suggest the mQTLs included in the 

analyses are generally consistent across tissues. However, the direction was not 

consistent for all DNAm sites. This may represent heterogeneity between tissues and 

the summary statistics. Of note, since a more relaxed p-value threshold was used we 

cannot make definitive conclusions regarding this as it is likely there are some false 

positive results included in this analysis.  
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Figure 5.30: The direction of effect is generally consistent across all mQTL SMR analyses when 
considering nominally significant probes (p SMR < 0.05).  p= binomial sign test p-value. 
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I explored if there was any overlap across the Bonferroni significant whole blood and 

cortex mQTL SMR results. I included results generated both with the Kunkle at al. 

(2019) and Jansen at al. (2019) GWAS summary statistics so I could evaluate the 

differences between the summary statistics as well as between tissues. There were 

multiple overlapping sites between the SMR results (see Figure 5.31) suggesting 

there are correlations across tissues.  

When comparing the Kunkle and Jansen blood mQTL results there was an overlap of 

11 sites (see Table 5.9), four of which were on chromosome 11 and three on 

chromosome 8 annotated to CLU. When comparing the Kunkle and Jansen cortex 

mQTL results there was an overlap of one site - cg02521229 (chromosome 11) – this 

site has no proximal gene annotate but is located 60kb from the MS4A region. This 

site also overlapped with the Kunkle blood mQTL results.  

Of note, many of the DNAm SMR associations identified in the blood mQTL SMR 

analysis were not tested in the cortex mQTL SMR analysis; fewer mQTLs were 

identified in the cortex cohort due to the smaller sample size. A Venn diagram showing 

the overlapping probes when limited to probes tested across all mQTL SMR analyses 

is shown in Figure 5.32. Six SMR significant probes overlapped across blood and 

cortex results with. In addition to cg02521229, when looking at comparisons between 

the Kunkle at al. blood and cortex SMR there was an overlap of an additional probe 

(see Table 5.10), located on chromosome 11 near the SPI1 gene. When looking at 

comparisons between the Jansen at al. blood and cortex SMR results there were three 

overlapping probes (see Table 5.11) which were located on chromosomes 6, 7 and 

14 and annotated to the genes HLA-DRB5, NYAP1 and SLC24A4, respectively. One 

of these three DNAm probes - cg23484461, annotated to SLC24A4 – was also found 

in the Kunkle at al. blood analysis. cg15710545 (chromosome 6) overlapped between 

the Kunkle cortex and the Jansen blood SMR analyses.  
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Figure 5.31: Overlap of the Summary data-based Mendelian Randomisation (SMR) test results for 
pleiotropic effects between LOAD and DNA methylation in whole blood and cortex mQTL datasets using 
both the Kunkle et al GWAS (2019) and the Jansen et al GWAS (2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.32: Overlap of the Summary data-based Mendelian Randomisation (SMR) test results for 
pleiotropic effects between LOAD and DNA methylation in whole blood and brain mQTL datasets using 
both the Kunkle et al GWAS (2019) and the Jansen et al GWAS (2019), limited to probes tested across all 
analyses.  
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Table 5.9: Overlapping DNA methylation sites from the results between 2 whole blood mQTL SMR analysis: 
(1) using the Kunkle et al GWAS and (2) the Jansen et al GWAS. DNAm: DNA methylation; CHR: chromosome; 
BP: position (hg19). 

DNAm Probe ID CHR BP Annotated Gene 
cg20172563 6 47487173 CD2AP 
cg16292768 8 27467783 CLU 
cg22217144 8 27468166 CLU 
cg21111824 8 27468171 CLU 
cg08871934 10 11720283 - 
cg18684128 11 60033393 - 
cg18959616 11 85814918 - 
cg24251493 11 85866690 - 
cg04441687 11 85869322 - 
cg23484461 14 92936957 SLC24A4 
cg15233575 19 45221584 - 

 
Table 5.10: Overlapping DNA methylation sites from the results between the blood and cortex mQTL SMR 
analysis using the Kunkle et al GWAS. DNAm: DNA methylation; CHR: chromosome; BP: position (hg19). 

DNAm Probe ID CHR BP Annotated Gene 
cg02521229 11 60019236 - 
cg17688768 11 47628441 - 

 

Table 5.11: Overlapping DNA methylation sites from the results between the blood and cortex mQTL SMR 
analysis using the Jansen et al GWAS. DNAm: DNA methylation; CHR: chromosome; BP: position (hg19). 

DNAm Probe ID CHR BP Annotated Gene 
cg08265274 6 32490444 HLA-DRB5 
cg03579757 7 100091793 NYAP1 
cg23484461 14 92936957 SLC24A4 

 

Eight DNAm probes were uniquely identified in the Kunkle cortex mQTL SMR analysis 

(see Table 5.12). One of these sites was annotated to HLA-DRB6. The remaining 

seven sites were all located in the same region (~200kb long) around chromosome 11 

and annotated to the genes PSMC3 and C1QTNF4, genes which are located adjacent 

to the SPI1 GWAS locus. Expression of several genes around this locus are highly 

correlated with one another and have been associated with AD status (Karch at al., 

2016). SPI1 may be acting in combination with or serving as a proxy for other genes 

around this region that mediate AD risk. These results indicate there may be tissue 

specific regulation of some of these genes.  

 



 

372 
 

Table 5.12: Unique DNA methylation sites identified in the cortex mQTL SMR analysis using the Kunkle et 
al (2019) GWAS. These sites were uniquely identified in this analysis, but they were tested in all four mQTL SMR 
analyses. DNAm: DNA methylation; CHR: chromosome; BP: position (hg19). 

DNAm Probe ID CHR BP Gene 
cg13076785 6 32520916 HLA-DRB6 
cg20307385 11 47447363 PSMC3 
cg09507712 11 47616693 C1QTNF4 
cg07409245 11 47616751 C1QTNF4 
cg15575356 11 47616757 C1QTNF4 
cg27051260 11 47616825 C1QTNF4 
cg17688768 11 47628441 - 
cg24977308 11 47636548 - 

 

 

Seven DNAm probes were uniquely identified in the Jansen blood mQTL SMR 

analysis (see Table 5.13). Three were located around the same region on 

chromosome 6 (within 509 bases) and are located near the HLA region. Three Sites 

were identified around the same region (within 10kb) on chromosome 7. These sites 

are annotated to GPC2 and STAG3. A recent study investigating the relationship 

between cardiovascular risk and AD identified a novel association with AD (by 

conditioning on cardiovascular risk factors) on chromosome 7 tagging GATS, STAG4 

or PIVRIG which was not in LD with the other GWAS SNP in this region (Broce at al., 

2019). Our results support a role for these genes in the pathogenesis of AD in whole 

blood.  

Table 5.13: Unique DNA methylation sites identified in the whole blood mQTL SMR analysis using the 
Jansen et al (2019) GWAS. These sites were uniquely identified in this analysis but they were tested in all four 
mQTL SMR analyses. DNAm: DNA methylation; CHR: chromosome; BP: position (hg19). 

DNAm Probe ID CHR BP Gene 
cg12672189 6 32427868 - 

cg20946741 6 32428328 - 

cg10556520 6 32428377 - 

cg18090197 7 99769602 GPC2 
cg00553149 7 99775558 STAG3 
cg10407106 7 99779719 STAG3 
cg09265987 15 59050614 - 

 

No DNAm probes were uniquely identified in the Jansen cortex mQTL SMR analysis. 
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5.4.11 Identifying putative pleiotropic relationships between gene 
expression and Alzheimer’s disease in whole blood using SMR 

I used SMR with a publicly availably whole blood eQTL data generated by (Westra at 

al., 2015), which included 4,179 genes with the two latest AD GWAS with publicly 

available summary statistics.  

 SMR results using the Kunkle et al GWAS 

Using the Kunkle at al. GWAS I applied SMR and identified eight associations which 

passed the Bonferroni significant threshold (p < 8.38 e-06) and three which passed 

both the significance threshold and the HEIDI threshold (p > 0.01; see Table 5.15 and 
Figure 5.13). All three sites (100%) were positively associated with LOAD (i.e. 

increased gene expression was associated with LOAD). Of the genes which were 

prioritised by SMR as having a pleiotropic relationship between a SNP and LOAD all 

three are annotated to genes which have previously been implicated in LOAD: 

• ILMN_2330966 – located on chromosome 8, annotated to the gene PTK2B 

(see Figure 5.33), was positively associated with LOAD (p=8.55e-07; see 

Table 5.15). PTK2B  is a LOAD risk gene which localizes specifically to neurons 

in adult cortex (Salazar at al., 2019). PTK2B is directly implicated in a neuronal 

Aβ signalling pathway and can cause impaired synaptic anatomy and function 

(Salazar at al., 2019). 

• ILMN_1721035 located on chromosome 11, annotated to the gene MS4A6A 

(see Figure 5.34) was positively associated with LOAD (p=1.18e-13; see Table 
5.15). MS4A6A is the nearest gene to one of the top LOAD GWAS loci. For 

more details on the MS4A see 5.3.9.4.2. 

• LMN_2370336 - located on chromosome 11, annotated to the gene MS4A4A 

(see Figure 5.34) was positively associated with LOAD (p=7.51e-08; see Table 
5.15). Interestingly, in a recent study a significant LOAD GWAS SNP 

(rs1582763; 11:60021948) was associated with both the expression of 

MS4A4A and MS4A6A (Deming at al., 2019), suggesting both of these genes 

likely play a role in the aetiology of LOAD.  

Even at a more relaxed threshold of p<1e-04 there were too few genes identified in 

this analysis to run GO analysis.  
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Table 5.14: Summary data-based Mendelian Randomisation (SMR) test results for pleiotropic effects between LOAD and gene expression using the Kunkle at al. 
GWAS and the blood eQTL dataset. (N = 3 hits where p < and HEIDI > 0.01). CHR: chromosome; BP: base position (hg19 P); Instrument: top cis-eQTL for gene with smallest 
p-value for association; Beta SMR: estimate for the effect of gene expression on LOAD; P SMR: p-value for SMR association; HEIDI: p-value for the HEIDI test; N SNP HEIDI; 
number of SNPs included in the HEIDI test. 

 

 

 

 

 

 

 

 

 

 

Expression site GWAS SMR HEIDI 
Probe ID CHR BP Annotated Gene Instrument (CHR:BP) Ref MAF Beta SE P P N SNP 

ILMN_2330966 8 27316679 PTK2B 8:27227554 0.31 0.33 0.07 8.55E-07 4.29E-02 6 

ILMN_1721035 11 59940569 MS4A6A 11:59945745 0.41 0.24 0.03 1.18E-13 4.58E-02 20 

ILMN_2370336 11 60075868 MS4A4A 11:60099225 0.36 0.76 0.14 7.51E-08 6.03E-01 19 
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Figure 5.33: Prioritizing genes at the PTK2B GWAS locus using SMR analysis with whole blood eQTLs and the Kunkle et al LOAD GWAS. Shown are results at the 
PTK2B locus (chromosome 8) for LOAD. Top plot, grey dots represent the P values for SNPs from the Kunkle et al LOAD GWAS, diamonds represent the P values for probes 
from the SMR test – those filled in and highlighted in red passed the SMR and HEIDI tests. Bottom plots, the eQTL P values of SNPs from the whole blood dataset for the probes 
around the PTK2B locus. The top and bottom plots include all the SNPs available in the region in the GWAS and mQTL summary data, respectively, not just the SNPs common 
to both datasets.
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Figure 5.34: Prioritizing genes at the MS4A GWAS locus using SMR analysis with whole blood eQTLs and the Kunkle et al LOAD GWAS. Shown are results at the MS4A 
locus (chromosome 8) for LOAD. Top plot, grey dots represent the P values for SNPs from the Kunkle et al LOAD GWAS, diamonds represent the P values for probes from the SMR 
test – those filled in and highlighted in red passed the SMR and HEIDI tests. Bottom plots, the eQTL P values of SNPs from the whole blood dataset for the probes around the MS4A 
locus. The top and bottom plots include all the SNPs available in the region in the GWAS and mQTL summary data, respectively, not just the SNPs common to both datasets. 
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 SMR results using the Jansen et al GWAS 

 

Using the Jansen at al. GWAS I applied SMR and identified 11 associations which 

passed the Bonferroni significant threshold (p < 8.38 e-06) and seven which passed 

both the significance threshold and the HEIDI threshold (p > 0.01; see Table 5.16 and 
Figure 5.13). Six (85.7%) were positively associated with LOAD. Of the gene 

expression probes which were prioritised by SMR as having a pleiotropic relationship 

between a SNP and LOAD, several are annotated to genes which have previously 

been implicated in LOAD: 

• ILMN_1729915 - located on chromosome 7, annotated to PILRA was positively 

associated with LOAD (p=1.68e-06; see Table 5.16). PILRA has been linked to 

LOAD via GWAS and in addition whole exome sequencing supports a role for 

this gene in LOAD (Patel at al., 2018).  

• ILMN_2330966 - located on chromosome 8 PTK2B was positively 

associated with LOAD (p=3.55e-07; see Table 5.16). PTK2B  is a LOAD risk 

gene which localizes specifically to neurons in adult cortex (Salazar at al., 

2019). PTK2B is directly implicated in a neuronal Aβ signalling pathway and 

can cause impaired synaptic anatomy and function (Salazar at al., 2019). 

• ILMN_2370336 - located on chromosome 11 annotated to MS4A4A was 

positively associated with LOAD (p=1.43e-07; see Table 5.16). MS4A4A is the 

nearest gene to one of the top LOAD GWAS loci. It is part of the MS4A locus 

(see 5.4.8.1.2 for more details on the MS4A locus). 

• ILMN_1657797 - located on chromosome 11 annotated to FIBP was negatively 

associated with LOAD (p=9.89e-06; see Table 5.16). FIBP is differentially 

expressed in the hippocampus and evidence suggests it may play a role in AD 

pathogenesis (Zhang at al., 2015). 

• ILMN_1693394 - located on chromosome 16 annotated to BCKDK was 

positively associated with LOAD (p=8.21e-06; see Table 5.16). BCKDK is an 

AD risk loci with involved in the regulation of the valine, leucine, and isoleucine 

catabolic pathways. 

The analysis also highlighted novel genes, which have not been previously been 

implicated in LOAD including: 
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• ILMN_1794364 - located on chromosome 11 annotated to CTSW was positively 

associated with LOAD (p=6.28e-06; see Table 5.16). CTSW is a lysosomal 

cathepsin; a proteolytic enzyme. CTSW is found in CD8+ T cells and natural 

killer cells. The expression of CTSW in cytotoxic T-lymphocytes suggests it is 

involved in regulation of T-cell cytolytic activity (Linnevers, Smeekens, & 

Brömme, 1997). Differentiated CD8+ T-cells lacking cytolytic activity have 

identified in white matter of AD cases (Smolders at al., 2013). 

• ILMN_1739236 - located on chromosome 16 annotated to ZNF668 was 

positively associated with LOAD (p=7.81e-06; see Table 5.16). ZNF668 is a 

zinc finger protein and although this specific gene has not been implicated in 

AD, zinc finger genes are known to play a role in the development of AD. 

Even at a more relaxed threshold of p<1e-04 there were too few genes identified in 

this analysis to run GO analysis.  
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Table 5.15: Summary data-based Mendelian Randomisation (SMR) test results for pleiotropic effects between LOAD and gene expression using the Jansen at al. 
GWAS and the blood eQTL dataset. (N = 7 hits where p < and HEIDI > 0.01). CHR: chromosome; BP: base position (hg19 P); Instrument: top cis-eQTL for gene with smallest 
p-value for association; Beta SMR: estimate for the effect of gene expression on LOAD; P SMR: p-value for SMR association; HEIDI: p-value for the HEIDI test; N SNP HEIDI; 
number of SNPs included in the HEIDI test. 

 

Expression site GWAS SMR HEIDI 
Probe ID CHR BP Annotated Gene Instrument (CHR:BP) Ref MAF Beta SE P P N SNP 

ILMN_1729915 7 99997440 PILRA 7:99971313 0.32 0.14 0.03 1.68E-06 8.90E-01 9 

ILMN_2330966 8 27316679 PTK2B 8:27227554 0.31 0.05 9.60E-03 3.55E-07 1.11E-01 7 

ILMN_2370336 11 60075868 MS4A4A 11:60099225 0.36 0.11 0.02 1.43E-07 4.65E-01 19 

ILMN_1794364 11 65651156 CTSW 11:65646557 0.19 0.01 2.64E-03 6.28E-06 6.44E-01 20 

ILMN_1657797 11 65651435 FIBP 11:65655393 0.19 -0.03 6.78E-03 9.89E-06 2.04E-01 18 

ILMN_1739236 16 31072282 ZNF668 16:31048079 0.39 0.02 5.53E-03 7.81E-06 1.75E-02 19 

ILMN_1693394 16 31123837 BCKDK 16:31141993 0.38 0.04 8.30E-03 8.21E-06 2.89E-01 20 
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5.4.12 Identifying putative pleiotropic relationships between gene 
expression and Alzheimer’s disease in the cortex using SMR 

I used SMR utilising publicly availably cortex eQTL data which included 7,370 

expression probes (annotated to 7345 genes; a meta-analysis of 3 cortex eQTL 

datasets) with the two latest AD GWAS with publicly available summary statistics. 

 SMR results using the Kunkle et al GWAS 

Using the Kunkle at al. GWAS I applied SMR, identifying seven associations which 

passed the Bonferroni significant threshold (p < 6.78e-06) and two which passed both 

the significance threshold and the HEIDI threshold (p > 0.01; see Table 5.17 and 
Figure 5.25). Both are annotated to genes which have previously been implicated in 

LOAD: 

• ILMN_1711611 - located on chromosome 1, annotated to gene CR1 was 

positively associated with LOAD (p = 1.98e-09; see Table 5.17). CR1 encodes 

a type-I transmembrane glycoprotein, has been identified as a risk gene for 

LOAD. CR1 is linked to elevated cerebrospinal fluid Aβ42 levels in AD patients 

(Cruchaga at al., 2013) and influences the severity of vascular amyloid 

deposition (Biffi at al., 2012). 

• ILMN_1693242 - located on chromosome 19 annotated to gene ZNF296 was 

negatively associated with LOAD (p = 5.96e-06; see Table 5.17). ZNF296 is a 

zinc finger protein found around the APOE region.  

Even at a more relaxed threshold of p<1e-04 there were too few genes to run GO 

analysis.  
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Table 5.16: SMR test results for pleiotropic effects between LOAD and gene expression using the Kunkle at al. GWAS and the cortex eQTL dataset. (N = 2 hits where 
p < 6.78e-06 and HEIDI > 0.01). CHR: chromosome; BP: base position (hg19 P); Instrument: top cis-eQTL for gene with smallest p-value for association; Beta SMR: estimate 
for effect of gene expression on LOAD; P SMR: p-value for SMR association; HEIDI: p-value for the HEIDI test; N SNP HEIDI; number of SNPs included in the HEIDI test. 

Expression site GWAS SMR HEIDI 

Probe ID  CHR BP Annotated  
Gene Instrument (CHR:BP) Ref MAF Beta SE P P N SNP 

ILMN_1711611 1 207741742 CR1 1:207750568 0.82 0.26 0.04 1.98E-09 3.73e-01 15 

ILMN_1693242 19 45577302 ZNF296 19:45584692 0.83 -0.32 0.07 5.96E-06 1.05e-02 19 

 

 

 

 

 

 

 

 

 

 



 

382 
 

 SMR results using the Jansen et al GWAS 

Using the Jansen at al. GWAS I applied SMR and identified nine associations which 

passed the Bonferroni significant threshold (p < 6.78e-06) and five which passed both 

the significance threshold and the HEIDI threshold (p > 0.01; see Table 5.18 and 
Figure 5.25). Of these five, one (20%) was positively associated with LOAD. Of the 

gene expression sites which were prioritised by SMR as having a pleiotropic 

relationship between a SNP and LOAD all five are annotated to genes which have 

previously been implicated in LOAD. 

• ILMN_1789342 – located on chromosome 1, annotated to gene NDUFS2 was 

negatively associated with LOAD (p= 4.28e-06; see Table 5.18). NDUFS2 is a 

mitochondrial gene which is differentially expressed in APP/PS1 transgenic 

mice (Lachén-Montes at al., 2016).   

• ILMN_1711611 – located on chromosome 1, annotated to gene CR1 was 

positively associated with LOAD (p= 5.17e-10; see Table 5.18). For more 

details in CR1 see 5.4.13.2. 

• ILMN_1683737 – located on chromosome 11, annotated to gene SNX32 was 

negatively associated with LOAD (p= 3.81e-06; see Table 5.18). Previous 

research found a protein QTL (pQTL) at SNX32 co-localised with Alzheimer 

disease (Kibinge, Relton, Gaunt, & Richardson, 2020). 

• ILMN_3239881 – located on chromosome 16, annotated to gene PRSS36 was 

negatively associated with LOAD (p= 4.70e-06; see Table 5.18).  PRSS36 is 

an AD GWAS gene which has been implicated via eQTL association in the 

hippocampus, a cortex region highly affected early in AD pathogenesis (Jansen 

at al., 2019). 

• ILMN_3179620 – located on chromosome 17, annotated to AC012146.7, was 

negatively associated with LOAD (p=1.03E-06; see Table 5.18). AC012146.7 

is located 120kb from the LOAD risk gene SCIMP which has been implicated 

in innate immunity and immune response (Jansen at al., 2019).  

Even at a more relaxed threshold of p< 1e-04 there were too few genes to run GO 

analysis.  
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Table 5.17: Summary data-based Mendelian Randomisation (SMR) test results for pleiotropic effects between LOAD and gene expression using the Jansen at al. 
GWAS and the cortex eQTL dataset. (N = 5 hits where p < 6.78e-06 and HEIDI > 0.01). CHR: chromosome; BP: base position (hg19 P); Instrument: top cis-eQTL for gene 
with smallest p-value for association; Beta SMR: estimate for effect of gene expression on LOAD; P SMR: p-value for SMR association; HEIDI: p-value for the HEIDI test; N SNP 
HEIDI; number of SNPs included in the HEIDI test. 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

Expression site GWAS SMR HEIDI 
Probe ID  CHR BP Annotated Gene Instrument (CHR:BP) Ref MAF Beta SE P P N SNP 

ILMN_1789342 1 161175539 NDUFS2 1:161186313 0.69 -0.03 7.31E-03 4.28E-06 2.48E-01 20 

ILMN_1711611 1 207741742 CR1 1:207750568 0.82 0.04 6.76E-03 5.17E-10 2.30E-02 15 

ILMN_1683737 11 65612739 SNX32 11:65601560 0.85 -0.01 2.10E-03 3.81E-06 2.90E-02 20 

ILMN_3239881 16 31155830 PRSS36 16:31154146 0.72 -0.02 3.64E-03 4.70E-06 1.07E-01 20 

ILMN_3179620 17 5016531 AC012146.7 17:5014212 0.90 -0.02 5.04E-03 1.03E-06 1.57E-01 20 
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5.4.13 Comparing the whole blood and cortex eQTL SMR results 

I looked for consistency in the direction of effect across the expression SMR analyses, 

including all SMR results which reached nominal significance (p SMR<0.05). There 

was concordance across the two LOAD GWAS summary statistics within the same 

tissue as highlighted by the positive correlations and highly significant (Bonferroni p < 

0.05/24 = 0.002) sign test p-values (see Figure 5.35 A, D, G and J). Several of the 

eQTL SMR analyses were characterised by the same direction of effect including the 

Kunkle whole blood and Jansen cortex (sign test p=0.0018; see Figure 5.35C), 

Jansen whole blood and Jansen cortex (sign test p=6.9e-06; see Figure 5.35F) and 

the Jansen cortex and the Jansen whole blood (sign test p=9.5e-05; see Figure 
5.35K).  However, there was evidence of heterogeneity between tissues. For example, 

when comparing the Kunkle cortex to the Jansen whole blood eQTL SMR analysis 

there was no concordance between the effect sizes (p=0.24; see Figure 5.35I). These 

results suggest that although there is evidence for homogeneity for some SMR-

nominated loci across tissues, there was also evidence of heterogeneity inferring there 

may be tissue specific transcriptomic differences.  
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Figure 5.35: Comparisons of the direction across all eQTL SMR analyses when considering nominally 
significant probes (p SMR < 0.05).  p= binomial sign test p-value. 
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I next looked at the overlapping Bonferroni significant expression sites and genes 

identified from the eQTL SMR analyses, finding three overlapping sites across the 

analyses (see Figure 5.36). When comparing the Kunkle and Jansen blood eQTL 

results there was an overlap of 2 sites (see Table 5.19), one was located on 

chromosome 8 (annotated to PTK2B) and the other was located on chromosome 11 

(annotated to MS4A4A). When comparing the Kunkle and Jansen cortex eQTL results 

there was an overlap of one site (see Table 5.20), which was located on chromosome 

1 (annotated to CR1). The replication of these results across the two AD GWAS 

provides internally consistent replication of results and suggests these genes have a 

role in LOAD pathogenesis and could be targeted for functional experiments. There 

was no overlap in the sites or genes identified when looking across the blood and 

cortex eQTL SMR results, however not all expression sites were tested in each 

analysis.  

 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.36: Overlap of the Summary data-based Mendelian Randomisation (SMR) test results for 
pleiotropic effects between LOAD and gene expression in whole blood and cortex mQTL datasets using 
both the Kunkle et al GWAS (2019) and the Jansen et al GWAS (2019). 
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Table 5.18: Overlapping expression sites from the results between 2 cortex eQTL SMR analysis: (1) using 
the Kunkle et al GWAS and (2) the Jansen et al GWAS.DNAm: DNA methylation; CHR: chromosome; BP: 
position (hg19).

DNAm Probe D CHR BP Gene 
ILMN_2330966 8 27316679 PTK2B 

ILMN_2370336 11 60075868 MS4A4A 
 

 

 
Table 5.19: Overlapping expression sites from the results between 2 cortex eQTL SMR analysis: (1) using 
the Kunkle et al GWAS and (2) the Jansen et al GWAS. DNAm: DNA methylation; CHR: chromosome; BP: 
position (hg19). 

DNAm Probe D CHR BP Gene 
ILMN_1711611 1 207741742 CR1 
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5.4.14 Identifying putative pleiotropic relationships between DNA 
methylation and gene expression in whole blood using SMR 

There is evidence indicating that DNAm is directly associated with levels of gene 

expression, although the mechanisms involved are not well characterised. Generally 

DNAm has been associated with transcriptional repression which is thought to occur 

in DNAm dense promoter regions as a consequence of reduced transcription factor 

binding (Ng & Adrian, 1999). However, DNAm in the gene body has been shown to be 

a marker of transcription with a potential role in alternative splicing. To investigate 

associations between DNAm and gene expression in whole blood I used the SMR tool. 

I included sites based on 3 inclusion criteria: (1) DNAm sites which had a significant 

mQTL (P<1e-10); (2) expression sites which had a significant eQTL (P<5e-08); and 

(3) there was a common genetic variant tested within 500 kilobases of the gene 

expression probe and DNAm site. In whole blood tested I 119,352 pairs between 

61,098 DNAm sites and 5,512 gene expression probes (annotated to 4,780 unique 

genes). I identified 105,389 pairs which had a significant SMR result (Bonferroni p= 

4.47e-07). I identified 26,978 pairs, comprised of 20,598 DNAm sites and 4,624 

expression sites which had a significant SMR result and which passed the HEIDI test 

(HEIDI p > 0.01). DNAm sites which have a pleiotropic association with expression are 

enriched in gene bodies (OR=1.83; p=2.2e-308) and 200bp from the transcription start 

site (OR=1.78; p=7.06e-173) but are less represented in intergenic regions (OR=0.95; 

p= 3.24e-04). 12,505 DNAm sites (46%) have positive associations with gene 

expression. In situations where DNAm is negatively associated with gene expression 

(54%), there was evidence that these sites are enriched in promoter and enhancer 

regions including transcription start sites (200bp from transcription start site OR=1.55, 

p= 1.61E-30; 1500bp from transcription start site, OR=1.72, p= 1.97E-103), 5’UTR 

(OR=1.54; p= 2.13E-51), 3’UTR (OR=1.40; p= 6.75E-10) and 1stExon (OR=1.52; p= 

2.60E-16). This goes in line with previous research suggesting that promoter DNAm 

generally represses gene expression (Tate & Bird, 1993).  

I used these results in combination with the SMR analysis for each molecular marker 

to identify pleiotropic relationships between DNAm, expression and LOAD (i.e. to test 

if DNAm, a transcript and LOAD are associated because of a shared causal variant). 

In addition, I used this information as a means of annotating DNAm sites to genes 

where there was no such annotation on the Illumina manifest. 
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 SMR results using the Kunkle et al GWAS 

To identify pleiotropic relationships between DNAm, expression and LOAD (i.e. to test 

if DNAm, a transcript and LOAD are associated because of a shared causal variant), 

I utilised the mQTL-eQTL, DNAm-LOAD and expression-LOAD results, identifying 

situations where the association signals were consistent across the three analyses at 

a locus. First, I tested these relationships using the whole blood SMR results which 

were generated using the Kunkle at al. GWAS. I included SMR significant mQTL 

results but relaxed the threshold of the SMR expression results (eQTL p SMR < 1e-4) 

since an mQTL-eQTL relationship would strengthen the hypothesis of a gene being 

involved in the pathogenesis of LOAD. By incorporating the whole blood mQTL-eQTL 

analysis with the whole blood Kunkle at al. SMR mQTL and eQTL analyses, I identified 

nine pleiotropic relationships where DNAm, a transcript and LOAD have a pleiotropic 

association with a shared variant (see Table 5.21). Of these nine, three (27%) DNAm 

sites had a positive association with gene expression (i.e. hypermethylation is 

associated with gene expression).   

Where there is no gene annotation based on proximity e.g. for cg27552578, 

cg05585544, cg17688768 and cg18512352, the gene annotation of the associated 

expression site can be used, and in this case these sites were negatively associated 

with the gene expression probe ILMN_1686516, which resides in the locus of 

CELF1/CUGBP1 (p=4.45e-08; p=1.35e-07; p= 1.03e-08; and p=1.63e-08, 

respectively). The four DNAm sites were positively associated with LOAD in the 

DNAm-LOAD analysis (see Table 5.2), whereas the expression site was negatively 

associated with LOAD in the expression-LOAD analysis (p= 5.18e-05). Therefore, 

increased DNAm and decreased expression is associated with LOAD which is further 

supported by the mQTL-eQTL results, where DNAm is associated with reduced gene 

expression (see Table 5.21). Additionally, these four DNAm sites were identified to be 

genetically co-regulated with each other using Bayesian colocalisation; there is 

evidence that DNAm at these sites are driven by the same genetic variant and are 

correlated with one another (see Table 5.3). In addition, the sites cg25206146 

(annotated to SPI1 based on the illumina manifest), and cg20449816 (annotated to 

SLC39A13 based on the illumina manifest) were significantly associated with the same 

expression site (p=7.68e-07; p= 8.15e-08, respectively). These results suggest the 

most functionally relevant gene around this region based on these data is 
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CELF1/CUGBP1. These DNAm sites cover a broad genomic region (~250kb), 

although all DNAm sites are negatively associated with expression of the same gene 

expression probe (ILMN_1686516).  The CELF1 locus is located adjacent to the SPI1 

gene and different GWAS have prioritised either SPI1 or CELF1 as the top gene to a 

GWAS loci (Gjoneska at al., 2015; Jansen at al., 2019; Karch at al., 2016). Expression 

of several genes within the CELF1 locus are highly correlated with one another and 

have been associated with AD status (Karch at al., 2016).  

In addition, the mQTL-expression-LOAD results suggest that the most relevant genes 

around the MS4A locus are MS4A4A and MS4A6A (see Table 5.21 and Figure 5.37). 

Two of the unannotated probes in this region (cg02521229 and cg18684128) were 

positively associated with expression of ILMN_2370336 which is annotated to 

MS4A4A (2.01e-13; p=5.31e-10, respectively). cg18684128 was also significantly 

associated with a second expression site - ILMN_1721035 (p=1.50e-25) - which is 

annotated to MS4A6A (see Figure 5.37). Additionally, the two DNAm sites were 

identified to be genetically co-regulated with each using Bayesian colocalisation (see 

Table 5.3). Both the DNAm site and expression probe were independently positively 

associated with LOAD. These results highlight the complex relationship between 

SNPs, DNAm, gene expression and LOAD. 

Overall, when considering pleiotropic relationships between DNAm, gene expression 

and LOAD, the genes CELF1/CUGBP1, MS4A4A and MS4A6A were prioritised by my 

analyses. These results suggest these genes may be the most functionally relevant 

within these regions based on our data and could be potential targets for future 

functional studies.  
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Table 5.20: SMR test results for pleiotropic effects between DNAm and gene expression in whole blood based on the Kunkle et al QTL SMR results. Shown are the 
SMR results for pleiotropic effects between DNAm and gene expression, where the DNAm sites and expression sites were previously identified as having a pleiotropic association 
with LOAD when incorporating the Kunkle at al. GWAS, mQTLs and DNAm in SMR analysis. CHR: chromosome; BP: base position (hg19 P); Instrument: top cis-mQTL for gene 
with smallest p-value for association; Beta SMR: causal estimate for effect of each unit increase in DNA methylation on gene expression; P SMR: p-value for SMR association; 
HEIDI: p-value for the HEIDI test; N SNP HEIDI; number of SNPs included in the HEIDI test. 

DNAm Site Expression Site GWAS SMR HEIDI 

Probe ID CHR BP Annotated  
Gene Probe ID CHR BP Annotated  

Gene Instrument (CHR:BP) Ref MAF Beta SE P P N 
SNP 

cg25206146 11 47383181 SPI1 ILMN_1686516 11 47490374 CELF1;CUGBP1 11:47391039 0.32 -9.26 1.87 7.68E-07 1.09E-01 13 

cg20449816 11 47432366 SLC39A13 ILMN_1686516 11 47490374 CELF1;CUGBP1 11:47432034 0.32 -4.07 0.76 8.15E-08 1.69E-01 13 

cg27552578 11 47621330 - ILMN_1686516 11 47490374 CELF1;CUGBP1 11:47663049 0.35 -9.19 1.68 4.45E-08 2.48E-01 14 

cg05585544 11 47624801 - ILMN_1686516 11 47490374 CELF1;CUGBP1 11:47716324 0.34 -10.88 2.06 1.35E-07 3.25E-01 14 
cg17688768 11 47628441 - ILMN_1686516 11 47490374 CELF1;CUGBP1 11:47648042 0.35 -2.16 0.38 1.03E-08 2.12E-01 14 

cg18512352 11 47633146 - ILMN_1686516 11 47490374 CELF1;CUGBP1 11:47648042 0.35 -5.58 0.99 1.63E-08 8.00E-02 14 

cg02521229 11 60019236 - ILMN_2370336 11 60075868 MS4A4A 11:60013857 0.42 1.15 0.16 2.01E-13 2.30E-02 20 

cg18684128 11 60033393 - ILMN_1721035 11 59940569 MS4A6A 11:60030457 0.41 32.09 3.07 1.50E-25 4.00E-02 20 

cg18684128 11 60033393 - ILMN_2370336 11 60075868 MS4A4A 11:60030457 0.41 10.03 1.61 5.31E-10 2.78E-01 20 
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Figure 5.37: Results of SNP and SMR associations across mQTL, eQTL and GWAS in the whole blood datasets 
using the Kunkle et al GWAS. The top plot shows −log10 (P) of SNPs from the Kunkle et al LOAD GWAS. The red 
diamonds and blue circles represent −log10 (P) from SMR tests for associations of gene expression and DNAm probes 
with LOAD, respectively. The solid diamonds and circles are the probes not rejected by the HEIDI test. The second plot 
shows −log10(P) of the SNP association for gene expression probes ILMN_1721035 (tagging MS4A6A) and  
ILMN_2370336 (tagging MS4A6A  from the Westera eQTL study. The third plot shows −log10 (P) of the SNP 
associations for DNAm probe cg18684128 from the mQTL study. The yellow star indicates the previously reported causal 
variant rs1582763 (11:60021948, annotated to gene MS4A4A). 
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 SMR results using the Jansen et al GWAS 

To identify pleiotropic relationships between DNAm, expression and LOAD, I applied 

the same method as described above (section 5.4.15). I identified nine pleiotropic 

associations where DNAm, a transcript and LOAD were associated because of a 

shared causal variant (see Table 5.22). Of these nine, six (67%) DNAm sites had a 

positive association with gene expression – i.e. increased methylation was associated 

with increased expression.  

There was one probe which was not annotated from the SMR mQTL analysis - 

cg18684128 – and using the mQTL-eQTL SMR results, this probe was positively 

associated with expression of ILMN_2370336 which is annotated to MS4A4A and 

goes in line with the Kunkle results.  

Each of the DNAm probes prioritised by SMR in the mQTL-eQTL analysis are located 

on chromosome 7 within a 320kb region of one another, and were associated with 

expression of the same probe (ILMN_1729915) annotated to PILRA (see Figure 5.38). 

It is possible to refine the annotations based on the expression data as opposed to 

using the proximally located genes.  Although these results suggest a role for PILRA 

in the development of LOAD, several of the genes prioritised from the mQTL SMR 

analysis were not tested in the eQTL SMR analysis (GPC2, STAG3, NYAP1, and 

PMS2L1). Therefore it may not be the only functionally relevant gene in this region. 

Overall, these results prioritised the genes PILRA and MS4A4A for further 

investigation in LOAD. 
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Table 5.21: SMR test results for pleiotropic effects between DNAm and gene expression in whole blood based on the Jansen et al SMR results. Shown are the SMR 
results for pleiotropic effects between DNAm and gene expression, where the DNAm sites and expression sites were previously identified as having a pleiotropic association 
with LOAD when incorporating the Jansen at al. GWAS, mQTLs and DNAm in SMR analysis. CHR: chromosome; BP: base position (hg19); Instrument: top cis-mQTL for gene 
with smallest p-value for association; Beta SMR: causal estimate for effect of each unit increase in DNA methylation on gene expression; P SMR: p-value for SMR association; 
HEIDI: p-value for the HEIDI test; N SNP HEIDI; number of SNPs included in the HEIDI test. 

DNAm Site Expression Site GWAS SMR HEIDI 

Probe ID CHR BP Annotated  
Gene Probe ID CHR BP Annotated  

Gene Instrument (CHR:BP) Ref MAF Beta SE P P N SNP 

cg18090197 7 99769602 GPC2 ILMN_1729915 7 99997440 PILRA 7:99792608 0.26 13.70 3.02 5.72E-06 4.40E-02 6 
cg00048759 7 99775422 STAG3 ILMN_1729915 7 99997440 PILRA 7:99807146 0.26 -6.36 1.41 6.13E-06 2.31E-01 6 
cg10084644 7 99775521 STAG3 ILMN_1729915 7 99997440 PILRA 7:99815247 0.26 -4.98 1.05 2.36E-06 5.80E-02 6 
cg00553149 7 99775558 STAG3 ILMN_1729915 7 99997440 PILRA 7:99807146 0.26 -2.94 0.61 1.14E-06 1.90E-01 6 
cg10407106 7 99779719 STAG3 ILMN_1729915 7 99997440 PILRA 7:99784704 0.26 5.69 1.21 2.39E-06 1.67E-01 6 
cg17830204 7 99819110 GATS ILMN_1729915 7 99997440 PILRA 7:99787372 0.26 3.66 0.74 8.44E-07 8.80E-02 6 
cg19116668 7 99932089 PMS2L1 ILMN_1729915 7 99997440 PILRA 7:99971834 0.31 4.56 0.91 4.76E-07 5.30E-02 6 
cg03579757 7 100091793 NYAP1 ILMN_1729915 7 99997440 PILRA 7:100004446 0.30 6.13 1.19 2.37E-07 8.30E-02 6 
cg18684128 11 60033393 - ILMN_2370336 11 60075868 MS4A4A 11:60030457 0.41 10.00 1.61 5.31E-10 2.78E-01 20 
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Figure 5.38: Results of SNP and SMR associations across mQTL, eQTL and GWAS in the whole blood 
datasets using the Jansen et al GWAS. The top plot shows −log10 (P) of SNPs from the Jansen et al LOAD 
GWAS. The red diamonds and blue circles represent −log10 (P) from SMR tests for associations of gene 
expression and DNAm probes with LOAD, respectively. The solid diamonds and circles are the probes not rejected 
by the HEIDI test. The second plot shows −log10 (P) of the SNP association for gene expression probes 
ILMN_1729915 (tagging PILRA) from the Westra eQTL study. The third plot shows −log10 (P) of the SNP 
associations for DNAm probes cg1916668, cg03579757, cg17830204 and cg02531703 from the mQTL study. The 
yellow star indicates the previously reported causal variant rs1859788 (7: 99971834, annotated to gene ZCWPW1). 
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5.4.15 Identifying putative pleiotropic relationships between DNA 
methylation and gene expression in cortex using SMR 

Using SMR, I tested 23,333 pairs between 13,210 DNAm sites and 4,265 gene 

expression probes (annotated to 4,251 unique genes). I identified 18,412 pairs which 

had a significant SMR results (Bonferroni p = 2.14e-6). I identified 8,321 pairs, 

comprised of 6,326 DNAm sites and 2,786 expression sites which had a significant 

SMR result and which passed the HEIDI test (HEIDI p > 0.01). DNAm sites which have 

a pleiotropic association with expression are enriched in gene bodies (OR=1.89; p= 

1.82e-187) and the transcription start sites (OR=2.63; p= 1.04e-113) but are less 

represented in intergenic regions (OR=0.81; p= 1.26e-15). 3,782 DNAm sites (45%) 

have positive effects on gene expression. In situations where DNAm is negatively 

associated with gene expression (55%), there was evidence that these sites are 

enriched in promoter and enhancer regions including transcription start sites (200bp 

from transcription start site OR=2.32, p=1.42E-65; 1500bp from transcription start site, 

OR=2.07, p= 8.71E-95), 5’UTR (OR=1.81; p=1.71E-45), 3’UTR (OR=1.82; p=3.05E-

14) and 1stExon (OR=2.27; p=5.28E-32). This is concordant with the whole blood 

results and again goes in line with previous research suggesting that promoter DNAm 

represses gene expression (Tate & Bird, 1993). 

 SMR results using the Kunkle et al GWAS 

In order to identify pleiotropic relationships between DNAm, gene expression and AD 

in cortex I applied the same method as described in 5.4.15. First, I tested these 

relationships using the cortex SMR results which were generated using the Kunkle at 

al. GWAS. By incorporating the cortex mQTL-eQTL analysis with the cortex Kunkle at 

al. SMR mQTL and eQTL analyses, I identified four pleiotropic relationships where 

DNAm, a transcript and LOAD were associated because of a shared causal variant 

(see Table 5.23). The four DNAm sites were associated with the expression of two 

gene expression probes (ILMN_1671710 and ILMN_1808122). There was one DNAm 

probe which was not annotated from the SMR mQTL analysis: cg24977308.  

Using the mQTL-eQTL SMR results, this probe has an effect on the expression of 

C1QTNF4 and this gene is potentially the most functionally relevant in this region. The 

DNAm site cg09507712 was associated with expression of ILMN_1671710 which is 

annotated to MADD and not C1QTNF4 (the illumina gene annotation). However, 
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MADD was not tested in the mQTL dataset and therefore we cannot robustly state this 

is the only relevant gene annotation for this DNAm probe in relation to LOAD. These 

results suggest there is likely a role for two genes within the same region: MADD and 

C1QTNF4 based on pleiotropic relationships between DNAm, gene expression and 

AD. 

 SMR results using the Jansen et al GWAS 

I ran the same analysis as above using the Jansen et al SMR results. No results 

passed both the p SMR thresholds set; there currently is not enough evidence to make 

conclusions about the effect of DNAm on gene expression and LOAD with these data. 
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Table 5.22 SMR test results for pleiotropic effects between DNAm and gene expression in cortex based on the Kunkle et al SMR results. Shown are the SMR results 
for pleiotropic effects between DNAm and gene expression, where the DNAm sites were previously identified as having a pleiotropic association with LOAD when incorporating 
the Kunkle at al. GWAS, mQTLs and DNAm in SMR analysis. Beta SMR: estimate for effect of DNA methylation on gene expression; P SMR: p-value for SMR association; 
HEIDI: p-value for the HEIDI test; N SNP HEIDI; number of SNPs included in the HEIDI test. 

 

 

 

 

 

 

 

DNAm Site Expression Site GWAS SMR HEIDI 

Probe ID CHR BP Annotated  
Gene Probe ID  CHR BP Annotated  

Gene Instrument (CHR:BP) Ref MAF Beta SE P P N SNP 

cg09507712 11 47616693 C1QTNF4 ILMN_1671710 11 47321147 MADD 11:47606483 0.35 4.56 0.97 
2.34E-06 

2.20E-02 20 

cg07409245 11 47616751 C1QTNF4 ILMN_1808122 11 47613713 C1QTNF4 11:47687147 0.35 -5.57 0.97 
9.36E-09 

4.50E-02 20 

cg15575356 11 47616757 C1QTNF4 ILMN_1808122 11 47613713 C1QTNF4 11:47687147 0.35 -6.87 1.22 
1.99E-08 

4.40E-02 20 

cg24977308 11 47636548 - ILMN_1808122 11 47613713 C1QTNF4 11:47486885 0.35 7.92 1.44 
3.46E-08 

2.69E-01 20 
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5.5 Discussion  

5.5.1 Overview of results 

In this Chapter I conducted an assessment of the genetic architecture of DNAm in both 

whole blood and the cortex and identified genome-wide associations between 

common genetic variants and DNAm sites (mQTLs) utilising the Illumina EPIC array. 

I took forward the two mQTL databases generated in my analyses and characterised 

the relationship between neighbouring DNAm sites using a Bayesian colocalisation 

approach, identifying many occurrences where proximally located DNAm sites are 

genetically co-regulated with the same causal variant. This goes in line with previous 

research which identified that a high proportion of DNAm sites are influenced by 

shared genetic variants (Hannon at al., 2018; Liu at al., 2014). These results suggest 

that differentially methylated regions associated with traits identified by EWAS are 

potentially genetically mediated. The mQTLs were then used for SMR analyses, which 

identified multiple situations where SNPs are pleiotropically associated with LOAD; I 

found evidence that this relationship is mediated by either DNAm, gene expression or 

both. A number of pathways which have previously been implicated in AD were 

enriched for SMR prioritised genes including lipid and cholesterol metabolism (Di 

Paolo & Kim, 2011; Jones at al., 2010; Penke at al., 2018), Aβ (Kunkle at al., 2019; 

Sadigh-Eteghad at al., 2015), tau (Kosik, Joachim, & Selkoe, 1986; Kunkle at al., 

2019) and APP processing (Eggert, Thomas, Kins, & Hermey, 2018), neuronal, glial 

and oligodendrocyte cell processes (Nordengen at al., 2019) and innate immune 

response (Cao & Zheng, 2018; Jones at al., 2010; Kunkle at al., 2019). 

The whole blood and cortex mQTL databases showed high overlap, suggesting that 

QTL effects are generally conserved across tissues. This goes in line with previous 

studies demonstrating that a relatively high proportion of mQTLs co-vary across 

tissues (Hannon at al., 2016; Smith at al., 2014). These data further support the notion 

that whole blood may be a valid correlate of physiological processes in other tissues 

for genetically mediated sites. However, I found evidence for cortex-specific genetic 

effects at certain loci suggesting there is some heterogeneity between whole blood 

and cortex. Since LOAD is a disease of the brain this highlights the importance of 

utilising the relevant tissue where possible. Additionally, I found a significant 

enrichment of LOAD-associated GWAS variants in both whole blood and cortex 
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mQTLs, indicating that common genetic variants conferring risk for LOAD are 

associated with variable DNAm in both tissues. These results further support the utility 

of applying mQTLs to refine GWAS signals and goes in line with existing literature 

suggesting LOAD GWAS variants act via mechanisms of gene regulation.  

To refine the LOAD GWAS signals I considered multiple mechanisms of gene 

regulation and applied SMR, incorporating DNAm and gene expression data. The 

SMR analyses identified several situations where SNPs were pleiotropically 

associated with DNAm, gene expression and LOAD. The associations nominated sites 

which were in the vicinity (within 250kb) of GWAS SNPs. Several associations were 

identified in both the whole blood and cortex analyses along chromosome 11, which 

contains four established AD GWAS loci. In the whole blood analyses MS4A4A and 

MS4A6A were identified as having a pleiotropic association with LOAD mediated by 

DNAm and gene expression. Interestingly, a genome-wide-significant LOAD SNP 

(rs1582763; 11:60021948) has previously been associated with both MS4A4A and 

MS4A6A (Deming at al., 2019). Evidence suggests that differential expression of 

MS4A4A and MS4A6A alter TREM2 concentrations and this has been associated with 

increased levels of tau (Deming at al., 2019). These results further support these two 

genes being the most appropriate annotation for the MSA4 region and good 

candidates for future functional studies. In the cortex analysis C1QTNF4 was identified 

as having a pleiotropic association with LOAD mediated by DNAm and gene 

expression. C1QTNF4 is located in the same LD block as SPI1, which is currently the 

gene annotated to a top LOAD GWAS loci. However, AD genetic studies have found 

eight independent variants in LD within the SPI1 region which are also eQTLs for 

C1QTNF4 (Rosenthal & Kamboh, 2014). SPI1 may be acting in combination with (or 

serving as a proxy for) other genes around this region that mediate AD risk. Our results 

suggest C1QTNF4 may be a functionally relevant gene in this region, however since 

not all genes in the region were tested in the gene expression analysis it may not be 

the only relevant gene. Overall, these SMR results show the utility of applying multi-

omics methods to refine and fine-map GWAS signals to identify potential targets for 

future functional studies. 

Several of the DNAm sites identified as having pleiotropic relationships with LOAD 

currently are not annotated to a specific gene as they are classified as intergenic. 

However, mounting evidence suggest proximity may not necessarily be the most 
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relevant in terms of functional effects on transcription. For example, a number of 

DNAm sites were associated with the expression of genes which are not proximally 

located to these sites. In addition, not all DNAm sites were associated with gene 

expression, suggesting that differential methylation may not always be involved in 

transcription. These results go in line with research by Hannon at al. (2018) and 

Bonder at al. (2017), who also conducted analysis of DNAm on gene expression. They 

found similar patterns of results to the analysis in this Chapter, where there were both 

positive and negative associations between DNAm and gene expression and the sites 

with a DNAm-expression relationship were enriched in transcription start sites and 

enhancers. The SMR results could be applied to EWAS data to refine the annotations 

of DNAm sites and improve the interpretation of LOAD GWAS data.  

5.5.2 Limitations  

There are several limitations to consider within the work presented in this Chapter. 

First, the SMR & HEIDI analyses used to identify DNAm–LOAD, gene expression–

LOAD and DNAm–gene expression relationships were conducted separately as there 

is currently no tool which enables all three to be tested simultaneously. The analyses 

were based on identifying consistent association signals at a particular locus. This is 

not the most optimal method and results in a loss of power due to the strict Bonferroni 

thresholding at each step. Hence, I relaxed the threshold of the gene expression–

LOAD analyses, although this could potentially introduce false positive results into the 

analysis. In future, a tool which combines all three genomic data-types would be a 

more optimal strategy for identifying situations were a SNP is pleiotropically associated 

with both DNAm, gene expression and a trait. We also need to consider that the Wald 

ratio used to detect an effect (the influence of the SNP-outcome effect divided by the 

mQTL or eQTL effect) can help identify pleiotropic associations between two traits, but 

it does not provide information about the intermediate mechanisms involved in any 

potential ‘causal’ process. Additionally, there is a limitation of using proxy instrumental 

variables. If multiple mQTLs have the same significant threshold and LD relationships 

there is an element of randomness for which one is picked. Leading on from this we 

also need to take into consideration that SMR does not identify “causal” relationships 

as it cannot distinguish between two variants in high LD and this is why the 

relationships identified are referred to as “pleiotropic” associations. It must be noted 

that SMR and other MR tools are hypothesis generating; the results from SMR are not 
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definitive and are not necessarily biologically relevant. However, they do provide a list 

of prioritised genes for follow-up functional studies.  

Within the analyses in this Chapter I only considered cis mQTL effects. Although cis 

effects are easier to detect in the current sample sizes available for mQTLs (as they 

are generally larger than trans effects), studies suggest trans effects ultimately 

account for a higher proportion of variation (Gaunt at al., 2016). In future, trans effects 

could also be considered as QTL datasets become larger. 

The samples used in this Chapter are all of European ancestry, which reduces the 

population validity as these results do not necessarily translate across different 

ethnicities. Additionally, although I utilised the latest Illumina technology (the EPIC 

array) only a small proportion of the total number of DNAm sites across the genome 

were assayed and there is light coverage of certain regulatory features. 

Since the analyses in the Chapter have been conducted, additional LOAD GWAS have 

been published (Bellenguez at al., 2020; de Rojas at al., 2020; Schwartzentruber at 

al., 2021; Wightman at al., 2020). My analyses should be conducted again using a 

more comprehensive dataset of variants associated with LOAD. This would increase 

the power and potentially lead to the identification of more pleiotropic SMR 

associations, advancing our understanding of the regulatory mechanisms involved in 

disease pathogenesis.  

5.5.3 Conclusion 

To my knowledge, I have generated the largest mQTL databases in both whole blood 

and the cortex. The results in this Chapter have further demonstrated that genetic 

variants have genome-wide effects on DNAm. Additionally, by integrating SNPs and 

DNAm with LOAD GWAS and gene expression I have been able to explore the 

mechanisms underlying disease, advancing our understanding of the interaction 

between gene regulation and expression, and enabling the prioritisation of candidate 

genes involved in disease aetiology.  
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6 Methylomic variation associated with polygenic risk for 
Alzheimer’s disease 

 

This Chapter includes a methods (see 6.3.4) and results (see 6.4.4) section taken 

directly from a peer-reviewed publication I co-authored which has been published in 

‘Brain Communications’ (Hannon at al., 2020). See Appendix A for the full published 

manuscript.  

6.1 Introduction 

Although genetic studies have identified risk factors for early onset familial Alzheimer’s 

disease (fEOAD) including mutations in APP, PSEN1 and PSEN2 (which are all 

involved in amyloid-beta [Aβ] processing), the genetic aetiology of late onset sporadic 

Alzheimer’s disease (LOAD) is less well defined. LOAD is a complex disease; risk is 

mediated by a combination of genetic, lifestyle and environmental factors (Sims, Hill, 

& Williams, 2020). The first gene implicated in LOAD was Apolipoprotein E (APOE), 

which is located on chromosome 19 and remains the strongest risk locus for LOAD. 

Following the discovery of APOE, genome wide association studies (GWAS) - which 

systematically identify common genetic variants associated with disease (see Chapter 

1 section  1.2 for more details on GWAS) - have identified >75 SNPs associated with 

LOAD (Bellenguez at al., 2020; de Rojas at al., 2020; Jansen at al., 2019; Kunkle at 

al., 2019; Schwartzentruber at al., 2021). 

To further investigate the genetic architecture of polygenic traits including LOAD, 

polygenic risk scores (PRS) have been developed which combine the information 

provided by independent SNPs. PRS quantify genetic burden as an accumulative 

genetic score for each individual in a sample. They are calculated as a sum of trait-

associated variants, weighted by effect sizes estimated from a discovery GWAS (see 

Chapter 1 section 1.2.2 for more details). There has been considerable success in 

applying PRS in LOAD to significantly predict disease status (Escott-Price at al., 2019; 

Escott-Price, Myers, at al., 2017; Escott-Price at al., 2015). Although the variance 

explained by a PRS is generally low (~1-5%) (Escott-Price at al., 2015), PRS are 

currently one of the best predictors for LOAD and have aided understanding about the 

contributors to variation in the disease. See Chapter 1 section 1.2.3 for more details 

on PRS in LOAD.  
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In addition to the robust associations between PRS and disease status, LOAD PRS 

have been shown to associated with several other AD related traits including MCI and 

cognitive decline (Felsky at al., 2018; Ge at al., 2018; Kauppi at al., 2020; Marioni at 

al., 2017; Mormino at al., 2016); memory impairment (Marioni at al., 2017; Mormino at 

al., 2016); brain measurements such as hippocampal volume (Axelrud at al., 2018) 

and cortical thickness (Sabuncu at al., 2012); cerebrospinal biomarkers (Martiskainen 

at al., 2015); inflammatory biomarkers (Morgan at al., 2017); and neuropathological 

measures (Desikan at al., 2017; Felsky at al., 2018; Hannon at al., 2020). The 

extensiveness of the associations with LOAD PRS highlights the complexity of 

understanding the genetic pathways involved in LOAD pathogenesis.  

The integration of genetic and DNA methylation (DNAm) data could help us better 

understand the molecular mechanisms involved in AD, particularly due to the high 

heritability of LOAD (h2=56-79% (Gatz at al., 2006)) and research showing how the 

epigenome is directly influenced by genetic variation (Hannon at al., 2016; Hannon, 

Gorrie-Stone, at al., 2018b; Hannon, Schendel, at al., 2018). It is possible to look at 

the effect of genome-wide genetic risk on regulatory processes in order to identify the 

molecular consequences of elevated risk burden. Recent studies have explored the 

effects of variable PRS on genome-wide DNAm to explore the molecular genomic 

mechanisms involved in disease pathogenesis (Hannon at al., 2016; Hannon, 

Schendel, at al., 2018; Viana at al., 2017). PRS-associated epigenetic variation is 

potentially less affected by factors associated with the disease itself (such as 

medication and other confounders) making it an ideal experimental design to explore 

disease phenotypes. Recent research by Hannon at al. used this approach to identify 

methylomic variation associated with a PRS for schizophrenia (Hannon at al., 2016); 

they conducted an EWAS of SCZ PRS against genome-wide DNAm identifying 

multiple differentially methylation position (DMPs) associated with elevated genetic 

burden (Hannon at al., 2016). PRS EWAS relationships in brain disorders have also 

been investigated in peripheral tissues. Hannon, Schendel and colleagues (2018) 

conducted an autism spectrum disorder (ASD) – PRS study whereby they quantified 

neonatal methylomic variation from archived blood spots in 1263 infants (50% later 

developed ASD) and identified multiple sites where the ASD PRS was associated with 

variable DNAm. PRS have proven a useful tool for associating the genetic contribution 
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of a disease - essentially as a biomarker - with epigenetic variation, enabling the 

exploration of molecular genomic mechanisms driving disease pathogenesis.  

In this chapter I aimed to identify how known genetic risk factors for Alzheimer’s 

disease (AD) influence the development of different aspects of neuropathology and 

how methylomic variation in the cortex and blood associates with polygenic risk burden 

for LOAD. 

6.2 Chapter aims 

1. To identify if AD PRS significantly predicts disease status in BDR, using 

neuropathologically defined disease status. 

2. To explore how known genetic risk factors for AD influence the development of 

different aspects of neuropathology in the BDR cohort. 

3. To identify if methylomic variation in whole blood is associated with polygenic 

burden for LOAD. 

4. To identify if methylomic variation in the cortex is associated with polygenic 

burden for LOAD. 

5. To identify differences and similarities between the methylomic signatures of 

elevated polygenic burden for LOAD in whole blood and cortex. 
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6.3 Methods 

6.3.1 Whole blood data 

For the whole blood datasets, I utilised matched DNAm and SNP data from eight 

studies, totalling 6,106 unrelated European samples (56% male; age range=18-98, 

mean age=52.2). A breakdown of the cohorts included in my analyses is shown in 

Table 6.1. Several of these cohorts have been described in detail elsewhere, either 

within this thesis or in published papers (see ‘Reference’ column of Table 6.1). Briefly, 

the ‘Aberdeen’ case-control schizophrenia cohort contains individuals who were born 

in the British Isles (95% in Scotland) (International Schizophrenia Consortium, 2008; 

Stefansson at al., 2008). The ‘Dublin’ case-control schizophrenia cohort was selected 

from the Irish Schizophrenia Genomics consortium (Morris at al., 2014). The 

‘European Network of National Schizophrenia Networks Studying Gene-Environment 

Interactions (EU-GEI) cohort was set up to test hypotheses about variations in 

incidence within and between countries and the role of multiple environmental and 

genetic risk factors, and their interactions, in the development of psychotic disorders 

(Jongsma at al., 2018). The ‘Exeter 10,000 (EXTEND)’ study is a research biobank 

funded by the National Institute for Health Research (NIHR) and is a population study 

of >10,000 individuals >18 years of age who live within 25 miles of Exeter (Devon, UK; 

https://exetercrfnihr.org/about/exeter-10000/); for more details on the genotyping and 

DNAm data see Chapter 5 section 5.3.1.3.2. The ‘Kings College London (KCL) 1 and 

2’ cohorts are part of ProjectMinE (Project MinE ALS Sequencing Consortium, 2018) 

which is a collaboration of international groups with the aim of collecting 22,500 DNA 

profiles to investigate rare and common genetic and epigenetic variation contributing 

to the development of Amyotrophic Lateral Sclerosis (ALS) and the data in this chapter 

consisted of a subset of individuals of UK nationality from the UK National DNA Bank 

for MND Research who were put forward for DNAm profiling. The University College 

London (UCL)’ case-control schizophrenia cohort is comprised of unrelated 

ancestrally matched cases and controls from the UK (Datta at al., 2010; International 

Schizophrenia Consortium, 2008). The ‘UK Household Longitudinal Study (UKHLS)’ 

was established in 2009 and is a longitudinal panel survey of 40,000 UK households 

from England, Scotland, Wales and Northern Ireland (Buck & McFall, 2011). Although 

several of these cohorts are either schizophrenia (SCZ) or ALS case-control cohorts, 

none has a phenotypic focus on LOAD. Of note, AD is not genetically correlated with 

https://exetercrfnihr.org/about/exeter-10000/
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SCZ after correcting for multiple testing (rg=0.103; p=0.042) (Jansen at al., 2019) but 

is modestly correlated with ALS when using the most recent ALS GWAS (rg = 0.31; 

p=9.6e-03) (van Rheenen at al., 2021). 

6.3.2 Human cortex dataset 

For the cortex dataset I utilised the matched DNAm and SNP data from the Brains for 

Dementia Research (BDR) cohort (see Chapter 4 section 3.2.2 and Chapter 5 section 

5.3.2.2), totalling 1,047 European unrelated samples (53% male; age range=41-104, 

mean age=83.37; see Table 6.2). Briefly, the BDR cohort was established with the 

aim of generating a large comprehensive neuropathological dataset from multiple 

brain banks using standardised procedures to enable the investigation of dementia 

through detailed phenotypic and multi-omics datasets (Francis, Costello, & Hayes, 

2018). For more details on this cohort see Chapter 4 section 4.3.1. 
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Table 6.1: Sample characteristics of the whole blood cohorts included in my EWAS meta-analysis of variable DNAm associated with AD PRS. 

 

 

 

Cohort N  Male Female 
Age (years) Illumina 

DNAm array Genotyping Array(s) References 
Range  Median  Mean (SD) 

Aberdeen 797 568 229 18.3-80.7  45.6 44.63 (12.93) 450K  HumanHap300 HumanHap550  
Affymetrix GeneChip 

(International 
Schizophrenia 
Consortium, 2008; 
Stefansson at al., 
2008) 

Dublin 634 454 180 17-70.9  58 56.39 (11.93) 450K  Affymetrix 6.0 Illumina 1.2M-Duo (Morris at al., 
2014) 

EuGEI 634 346 288 18-64  45.6 36.39 (12.92) EPIC Illumina HumanCoreExome-24 
BeadChip 

(Jongsma at al., 
2018) 

EXTEND 983 467 516 19-80  58 56.42 (11.72) EPIC Illumina Infinium Global Screening Array Chapter 5 5.3.1 

KCL1 698 398 300 24-91  63 62.34 (11.33) 450K Illumina OmniExpress 

(Project MinE ALS 
Sequencing 
Consortium, 2018; 
van Rheenen at 
al., 2016) 

KCL2 612 341 271 27-87  63 62.47 (11.30) 450K Illumina OmniExpress 

Project MinE ALS 
Sequencing 
Consortium, 2018; 
van Rheenen at 
al., 2016) 

UCL 649 383 266 18-90  37 40.43 (15.10) 450K  
Affymetrix Genome Wide Human SNP 
Array 5.0 
Affymetrix 500K 

(Datta at al., 2010; 
International 
Schizophrenia 
Consortium, 2008) 

UKHLS 1099 455 644 28-98  59 58.5 (14.74) EPIC  Illumina Infinium HumanCoreExome 
BeadChip 

(Hannon at al., 
2018) 

TOTAL 6106 3412 2695 18-98 58 52.2 (12.75) - - - 
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Table 6.2: Sample characteristics of the subset of the BDR cohort included in the polygenic risk score EWAS analysis. 

 

 

 

Table 6.3: APOE genotypes for the BDR cohort. Number of alleles = the number of ε2 or ε4 alleles carried by an individual. 

 

Cohort Donors 
Samples M F Age (years) Illumina DNAm 

array 
Genotyping 
Array Reference 

Total OCC PFC     Range Median Mean (SD) 

BDR 541 1047 525 522 493 554 41-104 84 83.37 (9.03) EPIC  Illumina 
NeuroChip 

(Shireby at 
al., 2020)  

Phenotype Number of alleles Occipital Prefrontal Total Samples Donors 

APOE-ε2 
0 536 534 1070 553 
1&2 61 62 123 65 

Total  - 597 596 1193 618 

APOE-ε4 
0 279 277 556 285 
1 275 278 553 290 
2 43 41 84 43 

Total  - 597 596 1193 618 
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 DNA methylation data pre-processing 

Unless otherwise reported, all statistical analysis was conducted in the R statistical 

environment (version 3.5.2; https://www.r-project.org/). Raw data for all datasets were 

used, prior to any QC or normalisation, and processed using the wateRmelon (Pidsley 

at al., 2013) and bigmelon (Gorrie-Stone at al., 2019) packages. The stringent DNAm 

QC pipeline described in Chapter 3 section 3.2.4 was used on each dataset. Smoking 

score was estimated in the blood cohorts using the algorithm which is based on the 

DNAm profile at 183 sites known to be associated with smoking (Elliott at al., 2014). 

For more details on the QC pipeline see Chapter 2 section 2.1.4. 

6.3.3 Genotyping and imputation 

Genotype QC and imputation was run individually on each of the datasets using the 

same pipeline as described in Chapter 5 section 5.3.1.3. For more details on the 

genotyping QC see Chapter 2 section 2.2.1. 

 APOE genotyping  

In order to determine APOE status in the BDR cohort, samples were genotyped for 

APOE ε2, ε3 and ε4 alleles using the TaqMan assay for SNPs rs7412 and rs429358 

(Applied Biosystems). The genotype call rate was 99.7% (Brookes at al., 2018).  APOE 

status was modelled as two numeric variables counting the number ε2 and ε4 alleles 

each individual had. ε2 is rare and only 3 donors had an ε2/ε2 genotype, therefore the 

ε2/ε2 individuals were combined with the individuals with one ε2 allele (for total 

samples in each group see Table 6.3). 

 Polygenic risk scores 

Polygenic risk scores were calculated using an additive method (i.e. by summing up 

trait associated variants, weighted by effects sizes estimated from GWAS) for each 

individual in the whole blood and cortex datasets. GWAS results from two of the latest 

LOAD GWAS with publicly available data were used to calculate the LOAD PRS for 

each individual: the Kunkle at al. LOAD GWAS (Kunkle at al., 2019) which is based 

on clinically defined cases compared to controls; and the Jansen at al. LOAD GWAS 

(Jansen at al., 2019) which is based on clinically defined cases and controls and proxy 

AD based on family history (see Chapter 1 section 1.2 for more details). To distinguish 

https://www.r-project.org/
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the effects of APOE from other genetic variants associated with AD I ran all PRS 

analyses first including, and second excluding, variants in the APOE region 

(chr19:45,116,911–46,318,605) (Kunkle at al., 2019). I generated PRS using PRSice 

(v2.0) (Choi & O’Reilly, 2019) which ‘clumps’ the AD GWAS summary statistics such 

that the most significant variant in each LD block is retained. The PRS was calculated 

in each dataset for each individual, as the number of reference alleles multiplied by 

the log odds ratio for that SNP (taken from the Kunkle at al. and Jansen at al. AD 

GWAS), and then summed across all retained clumped variants with a GWAS p-value 

< p-value threshold (PT). A range of PTs (p< 5e-08, 1e-05, 1e-04, 1.5e-04, 2e-04, 5e-

04, 0.001, 0.05, 0.09, 0.1, 0.2, 0.4, 0.5) were used initially in the BDR cohort to 

generate multiple possible PRS, and the optimal PRS was selected as the score that 

explained the highest proportion of variance (Nagelkerke’s pseudo R2) in AD case 

control status.  In this analysis, AD cases and controls were defined as Braak high 

(Braak NFT stages V-VI) and low (Braak NFT stages 0-II) respectively, and PRS was 

tested using a logistic regression model with the first eight genetic principal 

components as covariates. In the BDR cohort the optimal threshold for selecting SNPs 

for the PRS was p< 5e-8 both when excluding APOE from the PRS (see Figure 6.2 
and Figure 6.3 in Results section 6.4.1) and when including APOE in the PRS (see 

Figure 6.4 and Figure 6.5 in Results section 6.4.1) for both the Kunkle at al. (2019) 

and Jansen at al. (2019) GWAS. Therefore, this threshold was used in all analyses to 

generate PRS values for use in subsequent EWAS analyses. Prior to analysis the PRS 

calculated at this threshold was standardised to have a mean of 0 and SD of 1, and 

therefore the interpretation is in units of SDs.  

6.3.4 Genetic analysis of neuropathology  

Genetic associations between either APOE status or Alzheimer’s disease PRS 

(generated using the Kunkle at al. GWAS excluding the APOE region) and the 

continuous neuropathology variables (Braak NFT stage, Thal Aβ stage, CERAD stage, 

Braak Lewy body [LB] stage) and the Clinical Dementia Rating (CDR global rating) 

were tested using a linear regression model. TDP-43 proteinopathy (a binary variable) 

was analysed with logistic regression, but the model framework was the same. Up to 

four regression models were fitted for each variable. First, the effects of APOE status 

and Alzheimer’s disease PRS were estimated separately using Model 1 and Model 2 

below. 
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Model 1: 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ~ 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴4 + 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐 + 𝑔𝑔𝑣𝑣𝑔𝑔𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐 𝐴𝐴𝑃𝑃𝑐𝑐1 − 8 

Model 2: 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∼  𝐴𝐴𝑃𝑃𝑃𝑃 + 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐 + 𝑔𝑔𝑣𝑣𝑔𝑔𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐 𝐴𝐴𝑃𝑃𝑐𝑐1 − 8. 

If APOE (either variable) and PRS were significantly associated with an outcome, then 

a multiple regression analysis was additionally fitted testing APOE and PRS 

simultaneously to confirm these were independent associations (Model 3). 

Model 3: 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∼  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴4 + 𝐴𝐴𝑃𝑃𝑃𝑃 + 𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐 + 𝑔𝑔𝑣𝑣𝑔𝑔𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐 𝐴𝐴𝑃𝑃𝑐𝑐1 − 8 

Finally, an interaction model (Model 4) between APOE and PRS was fitted to test if 

PRS associations differed depending on APOE genotype. 

Model 4: 

𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 ∼  𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴4 + 𝐴𝐴𝑃𝑃𝑃𝑃 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴2 ∗ 𝐴𝐴𝑃𝑃𝑃𝑃 + 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴4 ∗ 𝐴𝐴𝑃𝑃𝑃𝑃 +  𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐 

+𝑔𝑔𝑣𝑣𝑔𝑔𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐 𝐴𝐴𝑃𝑃𝑐𝑐1 − 8 

All analyses included age at death, sex and BDR centre as covariates and the first 

eight genetic principal components.  

6.3.5 Regression models against LOAD polygenic risk  

I looked at associations between the genetic loading for LOAD (quantified as PRS; 

see section 6.3.3.2) and variable DNAm in both whole blood and cortex tissues.  

In whole blood I conduced EWAS for each of the four LOAD PRS (Kunkle at al. GWAS, 

Jansen et al GWAS, with and without APOE) using linear regressions controlling for 

age, sex, batch (96 well plate on which the sample was run), smoking score and 

derived cell proportions. Equations for the linear regression models are shown below. 
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EWAS of LOAD PRS, where 𝑣𝑣 = DNAm probe and PRS = Kunkle at al. LOAD PRS 

including APOE, Kunkle at al. LOAD PRS excluding APOE, Jansen at al. LOAD PRS 

including APOE and Jansen at al. LOAD PRS excluding APOE. 

𝐷𝐷𝐷𝐷𝐴𝐴 𝑚𝑚𝑣𝑣𝑐𝑐ℎ𝑦𝑦𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐𝑔𝑔[𝑣𝑣]~ 𝐴𝐴𝑃𝑃𝑃𝑃 + 𝑣𝑣𝑔𝑔𝑣𝑣 + 𝑐𝑐𝑣𝑣𝑠𝑠 + 𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐ℎ + 𝑐𝑐𝑚𝑚𝑐𝑐𝑠𝑠𝑣𝑣𝑔𝑔𝑔𝑔 𝑐𝑐𝑐𝑐𝑐𝑐𝑣𝑣𝑣𝑣 +  𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑣𝑣𝑐𝑐𝑝𝑝𝑐𝑐𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐𝑔𝑔𝑐𝑐 

In the cortex I conducted and EWAS for LOAD PRS (for both GWAS and including 

and excluding the APOE region) using mixed effect regression models where age, 

sex, batch, PC1 and derived cell proportions were included as fixed effects and 

individual was included as a random effect. To identify the p-value I used an ANOVA 

comparing the full model including the PRS to a null model in which this measure was 

excluded. Equations for the mixed effect regression models are shown below. 

EWAS of LOAD PRS full model, where 𝑣𝑣 = DNAm probe and PRS = LOAD PRS 

including APOE, LOAD PRS excluding APOE. 

𝐷𝐷𝐷𝐷𝐴𝐴 𝑚𝑚𝑣𝑣𝑐𝑐ℎ𝑦𝑦𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐𝑔𝑔[𝑣𝑣]~ 𝐴𝐴𝑃𝑃𝑃𝑃 + 𝑣𝑣𝑔𝑔𝑣𝑣 + 𝑐𝑐𝑣𝑣𝑠𝑠 + 𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐ℎ +  𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑣𝑣𝑐𝑐𝑝𝑝𝑐𝑐𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐𝑔𝑔𝑐𝑐 + 𝐴𝐴𝑃𝑃1 + (1|𝑣𝑣𝑔𝑔𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣) 

EWAS of LOAD PRS null model, where 𝑣𝑣 = DNAm probe. 

𝐷𝐷𝐷𝐷𝐴𝐴 𝑚𝑚𝑣𝑣𝑐𝑐ℎ𝑦𝑦𝑣𝑣𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐𝑔𝑔[𝑣𝑣]~ 𝑣𝑣𝑔𝑔𝑣𝑣 + 𝑐𝑐𝑣𝑣𝑠𝑠 + 𝑣𝑣𝑣𝑣𝑐𝑐𝑐𝑐ℎ +  𝑐𝑐𝑣𝑣𝑣𝑣𝑣𝑣 𝑝𝑝𝑣𝑣𝑐𝑐𝑝𝑝𝑐𝑐𝑣𝑣𝑐𝑐𝑣𝑣𝑐𝑐𝑔𝑔𝑐𝑐 + 𝐴𝐴𝑃𝑃1 + (1|𝑣𝑣𝑔𝑔𝑖𝑖𝑣𝑣𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑣𝑣𝑣𝑣) 

 

6.3.6 Meta-analysis of whole blood LOAD PRS EWAS 

The whole blood PRS EWAS results from individual cohorts were subsequently meta-

analysed using an inverse variance weighted (IVW) method which summarises effect 

sizes from multiple independent studies by calculating the weighted mean of the effect 

sizes using the inverse of the variance of each study as weights. Probes were limited 

to those present in at least two of the cohorts (n= 484,581 DNAm probes) and the P 

value was Bonferroni corrected to control for this number of sites 

(p<0.05/484,581=1.03e-07). The inverse variance is roughly proportional to sample 

size and therefore more weight is generally given to larger studies. I used plink1.9 

(Chang at al., 2015) to run the meta-analysis applying the --meta-analysis flag. I report 

the results from the random effects and fixed effects model in the tables. However, I 

focus on the random effect in the interpretation of results due to the number of cohorts 

included in the meta-analysis being more than three, meaning accurate heterogeneity 
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statistics can be estimated. In addition, this model permits the true effect size to differ 

between cohorts.  

6.3.7 Identifying differentially methylated regions 

In order to identify differentially methylated regions (DMRs) I used dmrff (Suderman at 

al., 2018). Dmrff identifies regions by combining summary statistics from proximally 

located DNAm sites. Dmrff identifies candidate regions (regions containing ≥3 probes) 

as sequences of DNAm sites with EWAS values that reach a certain Pt. I used the 

input threshold p<0.05. For more details on dmrff see Chapter 2 section 2.3.3. I applied 

dmrff to each of the EWAS run above (to each of the meta-analysed whole blood 

EWAS and each cortex EWAS) whereby I input the beta estimates, p-values estimated 

in each of the EWAS as well as the normalised DNAm data matrix. 

6.3.8 Comparing results between and across tissues and with recent 
Alzheimer’s disease EWAS  

To identify differences and similarities across the results for each PRS and tissue, I 

first explored if there was any overlap in the significant DMPs identified in each EWAS. 

Then within each tissue and across tissues I compared the effect sizes of the DMPs 

reaching suggestive significance (p<5e-05) to those for the same DNAm sites in other 

EWAS analyses. To calculate the strength of the correlation I used Pearson’s 

correlation and to determine if there was enrichment for the same direction of effect, I 

used a binomial sign test. Next, I compared results from the PRS EWAS analyses to 

those from two recent EWAS of AD pathology. First, I compared against the results 

from Chapter 4 where I conducted a Braak NFT Stage EWAS in the BDR cohort (see 

section 4.4.5). I then compared results to a recent whole blood AD EWAS conducted 

by Nabais and colleagues (Nabais at al., 2021) using three AD cohorts: The Australian 

Imaging, Biomarkers and Lifestyle (AIBL) cohort (Ellis at al., 2009), The Alzheimer’s 

Disease Neuroimaging Initiative (ADNI) (Vasanthakumar at al., 2020) and 

AddNeuroMed - The European Collaboration for the Discovery of Novel Biomarkers 

for Alzheimer's Disease (Lovestone at al., 2009) . 
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6.4 Results 

Figure 6.1: Overview of experimental design and summary of results for Chapter 6: Methylomic variation associated with polygenic risk for Alzheimer’s disease. PRS = 
polygenic risk scores. LOAD = late onset Alzheimer’s disease. a/mQTLs = associated with a methylation quantitative trait loci (mQTL) which is included in the PRS. WB = whole blood.   
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6.4.1 PRS derived at genome-wide significance is the optimal threshold 

In order to derive the optimal p-value threshold (i.e. the threshold which explains the 

most variation in the phenotype of interest) I generated PRS for each individual in the 

BDR cohort at several significance thresholds (p< 5e-08, 1e-05, 1e-04, 1.5e-04, 2e-

04, 5e-04, 0.001, 0.05, 0.09, 0.1, 0.2, 0.4, 0.5) using PRSice(v2.0)(Choi & O’Reilly, 

2019) incorporating both the Kunkle et al and Jansen at all summary statistics. Each 

PRS was tested against AD status using a logistic regression model. The most 

significant threshold for each of the four PRS generated (LOAD PRS Kunkle at al. 

excluding APOE [PRS-Kunkle]; LOAD PRS Kunkle at al. including APOE [PRS-

KunkleAPOE]; LOAD PRS Jansen at al. excluding APOE [PRS-Jansen]; and LOAD PRS 

Jansen at al. including APOE [PRS-JansenAPOE]) was p=5e-08 (see Figure 6.2; 
Figure 6.3; Figure 6.4; and Figure 6.5). Of note, the variance explained for both the 

PRS-Kunkle and PRS-Jansen was around 6% (see Figure 6.2 and  Figure 6.4), which 

is fourfold smaller than the PRS including APOE (~22% for PRS-KunkleAPOE and PRS-

JansenAPOE; see Figure 6.3 and Figure 6.5). Both the PRS-Jansen and PRS-

JansenAPOE did not significantly predict AD status or explain a substantial amount of 

variation in AD at p-value thresholds of p>0.001, suggesting that including genetic 

variants with p>0.001 introduces a lot of noise into the Jansen derived PRS. By 

including many variants which are unlikely to have true associations with AD, there is 

reduced power to detect an association with disease status. 
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Figure 6.2: The PRS-Kunkle significantly and optimally predicts Alzheimer’s disease status when including genome wide 
significant (p<5e-08) GWAS variants. PRS-Kunkle = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated 
using the Kunkle et al. GWAS excluding the APOE region. (A) Bar plot from PRSice2 showing results at broad P-value thresholds for 
the PRS-Kunkle predicting LOAD status. The y-axis indicates the proportion of variance explained and the colour of the bar indicates 
the P-value of the association, which is also provided above each bar. The most significant P-value threshold is 5e-08 at which the 
PRS explains 6.3% of the variation in LOAD and is significantly associated with AD status (p=1.4e-06) (B) PRS-Kunkle deciles against 
odds ratio for developing LOAD. The X-axis shows the range of different deciles for PRS for individuals in the BDR cohort where PRS 
were generated using the most predictive threshold (p < 5e-08).  The Y-axis shows the odds ratio for developing LOAD when comparing 
PRS from different deciles with the reference deciles (quantile 5 = average PRS in sample) with the bars corresponding to 95% 
confidence intervals of the odds ratio.  
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Figure 6.3: The PRS-KunkleAPOE significantly and optimally predicts Alzheimer’s disease status when including genome wide 
significant (p<5e-08) GWAS variants. PRS-KunkleAPOE = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) 
calculated using the Kunkle et al. GWAS including the APOE region. (A) Bar plot from PRSice2 showing results at broad P-value 
thresholds for the PRS-Kunkle predicting LOAD status. The y-axis indicates the proportion of variance explained and the colour of the 
bar indicates the P-value of the association, which is also provided above each bar. The most significant P-value threshold is 5e-08 at 
which the PRS explains 22.1% of the variation in LOAD and is significantly associated with AD status (p=2.3e-17) (B) PRS-Kunkle deciles 
against odds ratio for developing LOAD. The X-axis shows the range of different deciles for PRS for individuals in the BDR cohort where 
PRS were generated using the most predictive threshold (p < 5e-08).  The Y-axis shows the odds ratio for developing LOAD when 
comparing PRS from different deciles with the reference deciles (quantile 5 = average PRS in sample) with the bars corresponding to 
95% confidence intervals of the odds ratio. 
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Figure 6.4: The PRS-Jansen significantly and optimally predicts Alzheimer’s disease status when including genome wide 
significant (p<5e-08) GWAS variants. PRS-Jansen = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) 
calculated using the Jansen et al. GWAS excluding the APOE region. (A) Bar plot from PRSice2 showing results at broad P-value 
thresholds for the PRS-Jansen predicting LOAD status. The y-axis indicates the proportion of variance explained and the colour 
of the bar indicates the P-value of the association, which is also provided above each bar. The most significant P-value threshold 
is 5e-08 which explains 6.1% of the variation in developing load and is significantly associated with AD status (p=2.1e-06) (B) 
PRS-Jansen deciles against odds ratio for developing LOAD. The X-axis shows the range of different deciles for PRS for 
individuals in the BDR cohort where PRS were generated using the most predictive threshold (5e-08).  The Y-axis shows the odds 
ratio for developing LOAD when comparing PRS from different deciles with the reference deciles (quantile 5 = average PRS in 
sample) with the bars corresponding to 95% confidence intervals of the odds ratio. 
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6.4.2 PRS is elevated in LOAD cases compared to low pathology 
controls  

There were significant differences between cases and controls for each of the four 

PRS, with cases having a higher PRS compared to controls (see Figure 6.6). Both the 

PRS-KunkleAPOE (p=2.3e-17) and the PRS-JansenAPOE (p=2.6e-17) had a large 

difference between disease status, with cases having on average a PRS 1 SD higher 

than controls; this is nearly double the magnitude of effect compared to the PRS where 

APOE was excluded. The PRS-Kunkle was characterised by marginally stronger 

differences between cases and controls (beta=0.32; p=1.4e-06) than the PRS-Jansen 

(beta=0.51; p=2.1e-06) (see Figure 6.6). These results are as we would expect; 

although previous studies have consistently shown that PRS can significantly 

differentiate between cases and controls of disease phenotypes including AD (Escott-

A B 

Figure 6.5: The PRS-JansenAPOE significantly and optimally predicts Alzheimer’s disease status when including genome 
wide significant (p<5e-08) GWAS variants. PRS-JansenAPOE = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) 
calculated using the Jansen et al. GWAS including the APOE region (A) Bar plot from PRSice2 showing results at broad P-value 
thresholds for the PRS-JansenAPOE predicting LOAD status. The y-axis indicates the proportion of variance explained and the colour 
of the bar indicates the P-value of the association, which is also provided above each bar. The most significant P-value threshold is 
5e-08 which explains 22% of the variation in developing load and is significantly associated with AD status (p=2.6e-17) (B) PRS-
JansenAPOE  deciles against odds ratio for developing LOAD. The X-axis shows the range of different deciles for PRS for individuals 
in the BDR cohort where PRS were generated using the most predictive threshold (5e-08).  The Y-axis shows the odds ratio for 
developing LOAD when comparing PRS from different deciles with the reference deciles (quantile 5 = average PRS in sample) with 
the bars corresponding to 95% confidence intervals of the odds ratio. 
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Price at al., 2019; Escott-Price, Myers, at al., 2017; Escott-Price at al., 2015), generally 

these differences are small and are close to the population mean (see Figure 6.7). Of 

note, the larger differences between cases and controls when APOE was included in 

the PRS probably reflects the very strong effect of this gene compared to any of the 

other AD risk variants (Strittmatter at al., 1993; van der Lee at al., 2018). 

 

 

Figure 6.6: All four polygenic risk scores (PRS) for LOAD were significantly higher in AD cases compared 
to controls. Shown are the results for analyses stratifying samples based on (A) a PRS generated using the 
Kunkle at al. GWAS excluding variants in the APOE region; (B) a PRS generated using the Kunkle at al. GWAS 
including variants in the APOE region; (C) a PRS generated using the Jansen at al. GWAS excluding variants in 
the APOE region; and (D) a PRS generated using the Jansen at al. GWAS including variants in the APOE region. 
AD = Alzheimer’s disease. AD status CTRL = Braak neurofibrillary tangle stage < III and AD status CASE = Braak 
neurofibrillary tangle stage > IV. 



 

422 
 

 

 

Figure 6.7: The distribution of polygenic risk scores (PRS) for LOAD were significantly higher in AD cases 
compared to controls. Shown are the results for analyses stratifying samples based on (A) a PRS generated 
using the Kunkle at al. GWAS excluding variants in the APOE region; (B) a PRS generated using the Kunkle at al. 
GWAS including variants in the APOE region; (C) a PRS generated using the Jansen at al. GWAS excluding 
variants in the APOE region; and (D) a PRS generated using the Jansen at al. GWAS including variants in the 
APOE region. AD = Alzheimer’s disease. AD status CTRL = Braak neurofibrillary tangle stage < III and AD status 
CASE = Braak neurofibrillary tangle stage > IV. 
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6.4.3 The four different LOAD PRS correlate with each other  

As expected, the four different PRS were significantly (Bonferroni p<0.05/6=0.0083) 

correlated with each other (see Figure 6.8). The strongest correlation was seen 

between the PRS-KunkleAPOE and the PRS-JansenAPOE (r=0.91; p=2.2e-308; see 

Figure 6.8). The next strongest correlation was between the PRS-Kunkle and the 

PRS-Jansen (r=0.65; p=7.4e-126), suggesting the inclusion or exclusion of APOE 

likely leads to a similar set of genetic variants in the PRS (see Figure 6.8) and that it 

is likely to be a major driver of the PRS. This is further supported by the weaker 

correlations between the PRS-Kunkle and PRS-KunkleAPOE (r=0.33; p=1.97e-27) and 

the PRS-Jansen and PRS-JansenAPOE (r=0.34; p=5.6e-29; see Figure 6.8). The 

weakest correlations were between the PRS-Jansen and PRS-KunkleAPOE (r=0.26; 

p=1.42e-17) and the PRS-Kunkle and PRS-JansenAPOE (r=0.24; p=5.6e-15), which 

likely reflects the differences in the set of genetic variants included in each PRS (see 

Figure 6.8).  
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Figure 6.8: Correlations between PRS values generated two different GWAS datasets, including and 
excluding variants in the APOE region, in BDR donors. Shown are correlations between PRS derived using 
data from (A) the Kunkle et al GWAS and the Jansen at al. GWAS including variants in the APOE region, (B) the 
Kunkle at al. GWAS and the Jansen et al GWAS excluding variants in the APOE region, (C) the Jansen at al. 
GWAS including variants in the APOE region and the Jansen at al. GWAS excluding variants in the APOE region, 
(D) the Kunkle at al. GWAS including variants in the APOE region and the Kunkle at al. GWAS excluding variants 
in the APOE region, (E) the Kunkle at al. GWAS including variants in the APOE region and the Jansen at al. GWAS 
excluding variants in the APOE regions, and (F) the Kunkle at al. GWAS excluding variants in the APOE region 
and the Jansen at al. GWAS including variants in the APOE region.  
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6.4.4 Common genetic risk factors for Alzheimer’s disease are 
associated with multiple aspects of neuropathology 

The number of APOE ε4 alleles was positively associated (Bonferroni 

p< 0.05/36=0.00014) with all four semi-quantitative neuropathology measures (see 

Table 6.4). The most significant association was with Braak NFT stage: each ε4 allele 

was associated with an increase in 1.16 Braak NFT stages (p=4.16e−24). 

Associations were also found between ε4 status and Thal Aβ phase (mean difference 

per ε4 allele = 0.981 phases; p=3.96 e−20), neuritic plaque density (mean difference 

per ε4 allele = 0.713 stages; p=1.03e−19) and Braak Lewy body stage (mean 

difference per ε4 allele = 0.555 stages; p=2.64e−04). PRS-Kunkle was associated with 

two measures of neuropathology (see Table 6.4): a higher polygenic burden was 

associated with Braak NFT stage (mean difference per SD of PRS = 0.354 stages; 

p=1.36e−6) and neuritic plaque density (mean difference per SD of PRS = 0.202 

stages; p=5.27 e−5). TDP-43 was not associated with either APOE genotype or 

Alzheimer’s disease PRS. Although variants in the APOE region were excluded from 

the PRS, we tested both APOE and PRS against Braak NFT stage and neuritic plaque 

density simultaneously to confirm that the identified associations were independent. 

The estimated effects of ε4 on both Braak NFT stage and neuritic plaque density were 

unaffected, while the Alzheimer’s disease PRS associations were slightly attenuated 

(see Table 6.4) but remained significant. In addition to an additive model, we tested 

whether there was evidence for a multiplicative effect between Alzheimer’s disease 

PRS and APOE genotype on neuropathological burden to explore the hypothesis that 

in individuals with protective APOE genotypes, Alzheimer’s disease PRS is more 

important (i.e. has a larger effect on neuropathology). In this analysis, none of the five 

neuropathological variables had statistically significant differences across APOE 

genotype groups (p > 0.05) (see Table 6.5). Taken together, these results suggest that 

APOE status and Alzheimer’s disease PRS are independently associated with 

neuropathology, combining in an additive manner to influence an individual’s 

accumulation of tauopathy (NFTs) and Aβ plaques. 
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Table 6.4: Common genetic risk factors for Alzheimer’s disease are associated with multiple aspects of neuropathology 

Analytical model Neuropathological variable 

APOE 

PRS Coefficient %VarExp 

Number of ε 2 alleles Number of ε 4 alleles 

P-value Coefficient %VarExp P-value Coefficient %VarExp P-value 
Model 1  Braak NFT Stage  0.0877  −0.357  0.958  4.16E−24  1.16  15.1        

Thal amyloid stage  0.00333  −0.562  1.54  3.96E−20  0.981  13.5        

CERAD stage  0.0224  −0.329  1.99  1.03E−19  0.713  13.4        

Braak LB stage  0.988  −0.00439  0.0809  0.000264  0.555  2.59        

TDP-43  0.859  −0.0574  0.00821  0.00158  0.537  2.58        

Model 2  Braak NFT Stage              1.36E−06  3.4  0.354  

Thal amyloid stage              0.00288  1.1  0.201  

CERAD stage              5.27E−05  2.95  0.202  

Braak LB stage              0.267  0.167  0.105  

TDP-43              0.315  0.26  0.104  

Model 3  Braak NFT stage  0.0885  −0.3505  0.9580  9.40E−24  1.132  15.119  4.97E−06  0.309  2.465  

CERAD stage  0.0224  −0.3254  1.9865  2.02E−19  0.700  13.402  1.30E−04  0.179  2.192  
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Table 6.5: No evidence of differential effect on neuropathology by Alzheimer's Disease PRS when stratified by APOE status. 

Neuropathology 
variable 

Main effects Interaction effects 

APOE 
Polygenic risk score Number of E2 

alleles x PRS 
Number of E4 alleles 
x PRS Number of E2 alleles Number of E4 alleles 

P-value Coeff. %VarExp P-value Coeff. %VarExp P-value Coeff. %VarExp P-value %VarExp P-value %VarEx
p 

Braak NFT stage  0.0665 -0.381 0.958 2.27e-23 1.13 15.1 3.78e-05 0.387 2.46 0.609 0.461 0.272 0.194 

Thal amyloid stage 0.00146 -0.61 1.54 6.49e-19 0.95 13.5 0.00269 0.257 0.589 0.0554 0.167 0.266 0.0559 

CERAD stage 0.0172 -0.342 1.99 4.01e-19 0.699 13.4 0.00045
9 0.223 2.19 0.626 0.425 0.359 0.0985 

Braak LB stage 0.941 -0.021 0.0809 0.000147 0.58 2.59 0.0717 0.232 0.0964 0.338 0.198 0.0376 0.104 

TDP-43 0.924 -0.0312 0 0.00183 0.534 0 0.798 0.0376 0 0.712 0.0356 0.689 0.0418 
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Given that the two molecular pathologies—tauopathy and β-amyloidosis—that define 

Alzheimer’s disease are highly correlated (see Figure 6.9), we wanted to establish 

whether APOE or Alzheimer’s disease PRS had a specific (or primary) effect on a 

particular aspect of neuropathology. To this end, we repeated the analysis of how 

Alzheimer’s disease PRS and APOE influence pathology, sequentially controlling for 

other neuropathology variables. This analysis revealed some interesting patterns. 

First, after controlling for any of the other three quantitative neuropathological 

variables, Braak Lewy body stage was not significantly associated with APOE ε4 (see 

Table 6.6) suggesting that the association we detected was largely driven by the fact 

that individuals with Lewy bodies have also NFTs and Aβ plaques. Second, after we 

controlled for Braak NFT stage, neither of the plaque measures remained significantly 

associated with APOE ε4. In contrast, Braak NFT stage remained significantly 

associated with APOE ε4 status after controlling for plaque variable (adjusted for Thal 

phase, mean difference per APOE ε4 allele = 0.468; p=6.44 -07; adjusted for neuritic 

plaque density, mean difference per ε4 allele = 0.238; p=1.82 e-04), albeit with an 

attenuated magnitude of effect. Considering the two measures of plaque burden, only 

Thal Aβ phase remained significantly associated with ε4 after controlling for neuritic 

plaque density (mean difference per ε4 allele = 0.265; p=3.4e-04). Neither Braak NFT 

stage nor neuritic plaque density remained significantly associated with Alzheimer’s 

disease PRS after controlling for the other measure of pathology. These results 

indicate that APOE ε4 has a specific influence on tauopathy (NFTs) as well as a 

shared effect on both plaque and NFT development, whereas the PRS is more 

generally associated with an increased burden of Alzheimer’s disease 

neuropathology. 
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Figure 6.9: Heatmap of correlations between semi-quantitative measures of Neuropathology. NFT- neurofibrillary tangles, LB – Lewy body. 
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Table 6.6: APOE is associated with a shared effect on neurofibrillary tangles and Aβ. Results from regression models testing for associations between APOE or 
Alzheimer’s disease PRS and neuropathology while controlling for other measures of neuropathology. 

  
APOE 

Polygenic risk score 
Number of E2 alleles Number of E4 alleles 
P-value Coeff. %VarExp P-value Coeff. %VarExp P-value Coeff. %VarExp 

Covary for 
Braak  NFT 
stage 

Thal amyloid stage 0.00755 -0.377 1.66 0.00202 0.257 13.7 0.394 -0.0402 0.52 

CERAD stage 0.0431 -0.15 2.07 0.223 0.0515 13.4 0.855 0.00447 2.34 

Braak  Lewy body 
stage 0.863 0.0489 0.0874 0.0625 0.305 2.53 0.804 0.0236 0.093 

TDP-43 0.952 -0.0205 0.00101 0.238 0.221 0.389 0.84 -0.0228 0.0114 

Covary for 
Thal 
amyloid 
stage 

Braak  NFT stage 0.486 0.111 0.868 8.08e-07 0.459 16.5 0.000124 0.202 2.33 

CERAD stage 0.951 -0.00601 1.91 0.00265 0.169 13.7 0.00113 0.105 2.25 
Braak  Lewy body 
stage 0.609 0.146 0.0946 0.0999 0.276 2.57 0.396 0.081 0.18 

TDP-43 0.73 0.12 0.0355 0.401 0.163 0.212 0.81 0.0275 0.0173 

Covary for 
CERAD 
stage 

Braak  NFT stage 0.335 0.108 0.87 0.000159 0.239 15 0.0304 0.0799 2.54 
Thal amyloid stage 0.0533 -0.247 1.61 0.000336 0.265 13.6 0.379 -0.0374 0.5 

Braak  Lewy body 
stage 0.695 0.11 0.0735 0.0896 0.273 2.51 0.745 0.0305 0.111 

TDP-43 0.808 0.0832 0.0168 0.134 0.277 0.646 0.82 -0.0257 0.0149 

Covary for 
Braak  LB 
stage 

Braak  NFT stage 0.269 -0.238 0.656 9.48e-19 1.07 15.5 3.10e-05 0.3 2.41 

Thal amyloid stage 0.00506 -0.541 1.44 5.37e-17 0.923 14.3 0.0327 0.138 0.576 

CERAD stage 0.0442 -0.29 1.82 6.32e-17 0.669 14 0.000664 0.163 2.01 

TDP-43 0.806 0.0817 0.0176 0.00281 0.539 2.61 0.651 0.0509 0.0605 

Covary for 
TDP-43 

Braak NFT stage 0.16 -0.294 0.787 7.90e-21 1.07 15.1 3.09e-05 0.285 2.16 

Thal amyloid stage 0.0113 -0.49 1.23 1.39e-17 0.919 13.2 0.0285 0.139 0.478 

CERAD stage 0.0373 -0.3 1.8 3.62e-17 0.659 13.7 0.000192 0.175 2.24 

Braak Lewy body 
stage 0.988 0.00446 0.11 0.000263 0.573 3.02 0.443 0.0741 0.0544 
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6.4.5 Methylomic variation is associated with LOAD PRS in the cortex 

To identify if polygenic burden for LOAD is associated with variable DNAm in the cortex 

I first calculated PRS using summary statistics from two recent LOAD GWAS (Kunkle 

et. al and Jansen at al.) for individuals in the BDR cohort which consists of 522 PFC 

and 525 OCC samples (see Methods section 6.3.2 for more details). To assess the 

effects of including APOE in the PRS on DNAm, PRS were calculated both including 

and excluding the APOE locus. Mixed effects regression models were then run against 

genome-wide DNAm controlling for age, sex, batch, derived neural cell proportions 

and genetic PC1 as fixed effects and individual as a random effect (see Chapter 4 

section 4.4.2 for details on the covariates chosen). To identify if any DMPs reflect a 

direct cis-genetic effect on DNAm, I utilised the cortex mQTL results generated in 

Chapter 5 (see section 5.4.3). I only considered methylation quantitative trait loci 

(mQTLs; SNPs associated with DNAm) which were included in the PRS or variants 

which are in high LD with these SNPs (r2 ≥ 0.8), which I refer to as PRS-mQTLs. 

 Multiple differentially methylated positions are associated with PRS-
Kunkle in the cortex 

I identified seven experiment-wide significant DMPs associated with PRS-Kunkle (see 
Figure 6.10). Three (43%) of the DMPs were significantly hypermethylated with 

elevated PRS and the other four (57%) were hypomethylated (see Figure 6.11; Table 
6.7). There was no evidence of statistical inflation in this analysis, as shown by the 

quantile-quantile plots (λ =1.03; see Figure 6.12). The average absolute magnitude of 

effect for the significant DMPs per SD increase in LOAD PRS was 1.11% (inter-quartile 

range [IQR] = 0.85-1.29%). To identify if any of these DMPs reflect a direct cis-genetic 

effect on DNAm, I utilised the cortex mQTL results generated in Chapter 5 (section 

5.4.3). There was evidence of a relationship between a PRS-mQTL and DNAm for six 

(86%) of the DMPs, indicating that these sites are under direct genetic control at the 

SNP level. Three DMPs had no gene annotation but the other four (cg09507712, 

cg07409245, cg02848401 and cg27051260) are annotated to C1QTNF4 

(chromosome 11) and were hypomethylated with elevated PRS, with a 0.64-1.39% 

decrease in DNAm per SD increase in PRS (see Figure 6.13). C1QTNF4 has been 

associated with AD in eQTL studies and resides around the SPI1 GWAS locus. The 

expression of several genes within this locus are highly correlated with one another 
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and have been associated with AD status (Karch at al., 2016). These results suggest 

C1QTNF4 is potentially a LOAD risk locus in addition to the currently implicated SPI1 

locus. No DMRs were significantly associated with PRS-Kunkle in the cortex. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.10: Cortex EWAS of LOAD PRS highlights experiment-wide significant differentially methylated 
positions. Manhattan plots showing results of four EWAS across two cortical regions (prefrontal cortex and 
occipital cortex). DNA methylation was regressed against PRS where in (A) LOAD PRS was generated using the 
Kunkle at al. GWAS excluding APOE (B) LOAD PRS was generated using the Kunkle at al. GWAS including APOE; 
(C) LOAD PRS was generated using the Jansen at al. GWAS excluding APOE; and (D) LOAD PRS was generated 
using the Jansen at al. GWAS including APOE. The significant differentially methylated positions are annotated 
with their Illumina UCSC gene name, unless they are unannotated to a gene. The X-axis shows chromosomes 1-
22 and the Y-axis shows -log10(P), with the horizontal red line representing experiment wide significance (p< 9e-
8). Late onset Alzheimer’s disease. PRS = Polygenic risk scores. 
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Figure 6.11: Volcano plot of differentially methylated positions (DMPs) identified in the cortex LOAD PRS 
EWAS. DNA methylation was regressed against PRS where in (A) LOAD PRS was generated using the Kunkle at 
al. GWAS excluding APOE (B) LOAD PRS was generated using the Kunkle at al. GWAS including APOE; (C) 
LOAD PRS was generated using the Jansen at al. GWAS excluding APOE; and (D) LOAD PRS was generated 
using the Jansen at al. GWAS including APOE. The X-axis shows beta effect size (ES) and the Y-axis shows -
log10(p). Red probes indicate a p-value that reaches experiment-wide significance (EWS) (p < 9e-08). LOAD = 
Late onset Alzheimer’s disease. PRS = Polygenic risk scores. 
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Figure 6.12: Quantile-quantile plots of the LOAD-PRS EWAS conducted in the cortex. Shown are the 
expected (x-axis) against the observed (y-axis) quantiles in each EWAS against LOAD PRS where (A) LOAD PRS 
was generated using the Kunkle at al. GWAS excluding APOE (B) LOAD PRS was generated using the Kunkle at 
al. GWAS including APOE; (C) LOAD PRS was generated using the Jansen at al. GWAS excluding APOE; and 
(D) LOAD PRS was generated using the Jansen at al. GWAS including APOE. Lambda= genomic inflation factor.  
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Figure 6.13: cg09507712 is hypomethylated with elevated PRS-Kunkle in the cortex. The x-axis represents 
the standardised (mean of 0, standard deviation=1) PRS-Kunkle and the y-axis represents DNA-methylation 
adjusted for confounders. PRS-Kunkle = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) 
calculated using the Kunkle at al. GWAS excluding the APOE region 
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Table 6.7: Differentially methylated positions were associated with the PRS-Kunkle at experiment wide significance (p< 9E− 8) in the cortex. Listed for each probe is 
the chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. Assoc. mQTL = associated with a methylation quantitative trait loci (mQTL) 
which was included in the PRS. PRS-Kunkle = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS excluding the APOE 
region. 

CpG Chr BP Gene Gene Region Beta (%) SE (%) P Assoc. mQTL 

cg14317533 2 127886316 - - 1.77 0.22 1.77e-15 mQTL 
cg09507712 11 47616693 C1QTNF4 TSS1500 -1.39 0.23 1.11e-09 mQTL 
cg07409245 11 47616751 C1QTNF4 TSS1500 -1.18 0.20 1.41e-09 mQTL 
cg02848401 11 47617346 C1QTNF4 TSS1500 -0.64 0.11 1.18e-08 - 
cg24977308 11 47636548 - - 0.92 0.16 2.04e-08 mQTL 
cg27051260 11 47616825 C1QTNF4 TSS1500 -1.07 0.19 2.35e-08 mQTL 
cg17688768 11 47628441 - - 0.77 0.14 2.80e-08 mQTL 
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 Multiple differentially methylated positions and regions were 
associated with PRS-KunkleAPOE in the cortex 

I identified four experiment-wide significant DMPs associated with PRS-KunkleAPOE 

(see Figure 6.10). Two (50%) of the DMPs were significantly hypermethylated with 

elevated PRS and the other two (50%) were hypomethylated (see Figure 6.11; Table 
6.8). There was slight p-value inflation in this analysis, as shown by the quantile-

quantile plots (λ =1.46; see Figure 6.12), however, the test statistics were normally 

distributed suggesting the results have not been influenced by bias. The average 

absolute magnitude of effect for the significant DMPs per SD increase in LOAD PRS 

was 0.62% (inter-quartile range [IQR] = 0.55-0.66%).  To identify if any of these DMPs 

reflect a direct cis-genetic effect on DNAm, I utilised the cortex mQTL results 

generated in Chapter 5 (section 5.4.3). There was evidence of a relationship between 

a PRS-mQTL and DNAm for one of these DMPs - cg17928676 - which is located 2.8kb 

away from APOE. Of the four DMPs, three were annotated to genes. Two of the PRS-

KunkleAPOE associated DMPs are annotated to genes which are of relevance in the 

context of AD and associated neurobiological functions. These include: 

• cg07332724 located on chromosome 12 and annotated to ZNF385A was 

hypermethylated with increasing PRS, with a 0.56% increase (p= 1.69e-09) for 

every SD increase in PRS. Elevated DNAm in ZNF385A has previously been 

associated with Braak stage in the PFC (Smith at al., 2018). 

• cg02613937 located on chromosome 19 and annotated to TOMM40 was 

hypomethylated for PRS, with a 0.82% decrease (p= 2.55e-09) for every SD 

increase in PRS (see Figure 6.14). TOMM40 is in the same LD region as APOE 

(located 2.1kb away from APOE) and has been associated with age of onset of 

LOAD (Roses at al., 2010). Multiple regulatory elements, spanning the 

TOMM40-APOE-APOC2 cluster have been shown to regulate gene expression 

across this region (Shao at al., 2018). In addition, variable DNAm in this region 

correlates with AD-related biomarkers and TOMM40/ APOE expression in AD 

(Shao at al., 2018). 

cg13258599 located on chromosome 7 and annotated to WDR86, was 

hypomethylated with elevated PRS, with a 0.61% decrease (p= 2.11e-08) for every 

SD increase in PRS. WDR86 is expressed throughout the brain although it has not 
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previously been implicated in AD or other neurodegenerative diseases and its 

functions are unknown. 

Variation in PRS-KunkleAPOE was associated with two DMRs. One region was 

significantly hypermethylated with elevated PRS (p=5.29e-10) and annotated to 

KLHL33 (chromosome 14), which is a protein coding gene predominantly expressed 

in the brain in primary hippocampal neurons, astrocytes and oligodendrocytes and 

studies suggests it plays a role in the functioning and development of the nervous 

system and in the differentiation of oligodendrocytes (Jiang at al., 2005; Soltysik-

Espanola at al., 1999). The other was significantly hypomethylated with elevated PRS 

(p=2.78e-09) and was annotated to PITPNM2 (chromosome 12). PITPNM2 is a part 

of the phosphatidylinositol pathway, which have been implicated in neuropsychiatric 

disorders such as bipolar, depression and schizophrenia (Lescai at al., 2017; 

Schizophrenia Working Group of the Psychiatric Genomics Consortium, 2014). 
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Figure 6.14: cg02613937 is hypomethylated with elevated PRS-KunkleAPOE in the cortex. The x-axis represent 
the standardised (mean of 0, standard deviation=1) PRS-KunkleAPOE and the y-axis represents DNA-methylation 
adjusted for confounders. PRS-KunkleAPOE = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) 
calculated using the Kunkle at al. GWAS including the APOE region. 
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Table 6.8: Differentially methylated positions associated with the PRS-KunkleAPOE in the cortex at experiment wide significance (p< 9E− 8). Listed for each probe is the 
chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. Assoc. mQTL = associated with a methylation quantitative trait loci (mQTL) 
which was included in the PRS. PRS-KunkleAPOE = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS including the 
APOE region. 

CpG Chr BP Gene Gene Region Beta (%) SE (%) P Assoc. mQTL 
cg17928676 19 45414742 - - 0.52 0.08 7.07e-11 mQTL 
cg07332724 12 54773114 ZNF385A;LOC102724050 Body 0.56 0.09 1.69e-09 - 
cg02613937 19 45395297 TOMM40 Body -0.82 0.14 2.55e-09 - 

cg13258599 7 151089761 WDR86 Body -0.61 0.11 2.11e-08 - 

 

 

 
Table 6.9: Differentially methylated regions associated with PRS-KunkleAPOE in the cortex. Two regions were identified. Listed for each probe is the chromosomal location 
(h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. BP start = base position the region begins. BP end = base position where the region ends. N = 
number of probes in the region. P adjusted = Bonferroni corrected P value adjusted for the number of independent tests. PRS- KunkleAPOE = Late onset Alzheimer’s disease 
(LOAD) polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS including the APOE region. 

 

Chr BP start BP end n Gene Beta (%) SE (%) P P adjusted 
14 20903410 20904169 11 KLHL33 8.23 1.33 5.29e-10 4.80e-04 

12 123469284 123469669 3 PITPNM2 -4.6 0.77 2.78e-09 2.52e-03 
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 Multiple differentially methylated positions were associated with 
PRS-Jansen 

I identified 40 experiment-wide significant DMPs associated with PRS-Jansen (see 
Figure 6.10). 15 (37.5%) of the DMPs were characterised by significant 

hypermethylation with elevated PRS and the other 25 (62.5%) were hypomethylated 

(see Figure 6.11; Table 6.10). There was no evidence of statistical inflation in this 

analysis, as shown by the quantile-quantile plots (λ =0.93; see Figure 6.12).The 

average absolute magnitude of effect for the significant DMPs per SD increase in 

LOAD PRS was 2.99% (inter-quartile range [IQR] = 1.95-4%). To identify if any of 

these DMPs reflect a direct cis-genetic effect on DNAm, I utilised the cortex mQTL 

results generated in Chapter 5 (section 5.4.3). There was evidence of a relationship 

between a PRS-mQTL and DNAm for 15 of the DMPs, indicating that these sites are 

under direct genetic control at the SNP level. Of the 40 DMPs, 32 were annotated to 

genes, and several are of relevance in the context of AD and associated 

neurobiological functions including: 

• 27 DMPs (68%) were annotated to the HLA region (chromosome 6) with the 

most significant being cg13076785 which is annotated to HLA-DRB6 and was 

hypomethylated with elevated PRS with a 6.29% decrease PRS in DNAm for 

every SD increase in PRS (p=9.74e-42; see Figure 6.15). cg08265274, which 

is annotated to HLA-DRB5 was hypomethylated with elevated PRS with a 

5.83% decrease in DNAm for every SD increase in PRS (p=1.48e-29). Several 

of these PRS-associated DMPs were also associated with a PRS-mQTL, 

suggesting there are cis-genetic effects at this locus. In concordance with the 

Kunkle-PRS, these results support a role for the function of the immune system 

in the aetiology of AD. Epidemiological studies have long suggested a role of 

immune system dysregulation in AD and the HLA region encodes several 

proteins that play major roles in the immune system and is highly expressed in 

microglia and other myeloid cells. The HLA region has been associated with 

AD and the top candidate gene in HLA locus is HLA-DRB1 (Jansen at al., 2019; 

Kunkle at al., 2019) and four DMPs were annotated to this gene. This region is 

known for its complex organisation and fine mapping analyses used by Kunkle 

and colleagues (2019) of HLA and genetic correlations suggest LOAD has a 
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shared genetic architecture with several immune-mediated and cognitive 

phenotypes.  

• cg20636526, cg09452510 and cg25457674 located on chromosome 6 and 

annotated to C6orf10. All three DMPs are associated with a PRS-mQTL, 

suggesting there is a cis-genetic effect at this locus. cg20636526 was 

hypomethylated with elevated PRS (2.19% decrease per SD in PRS; p=1.33e-

13) whereas cg09452510 and cg25457674 were hypermethylated with 

elevated PRS (1.96% and 0.78% increase in DNAm per SD in PRS, 

respectively; p=2.59e-11, p=3.00e-09). C6orf10 is an AD risk gene, which has 

been strongly associated with Tau pathology (Ma at al., 2020). 

• cg09618893 located on chromosome 6 and annotated to EHMT2 was 

significantly hypomethylated with elevated PRS with a decrease of 1.23% in 

DNAm (p=2.26e-08) for every SD increase in PRS. EHMT2 is an AD risk gene, 

and has been associated with differential histone methylation in AD cases 

(Coneys & Wood, 2020), and mice deficient in EHMT2 have learning deficits 

(Maze at al., 2010). In addition, evidence suggests in AD patients high EHMT2 

levels results in reduced synapse strength leading to a detrimental effect on 

cognition (Coneys & Wood, 2020). 

• cg02521229 located on chromosome 11 had no gene annotation, however it 

resides in the vicinity (within 50kb) of the MS4A locus which contains several 

genes which have been implicated in AD via GWAS (Jansen at al., 2019; 

Kunkle at al., 2019).  

Several of the identified DMPs are annotated to genes which have not previously been 

implicated in neurodegeneration. For example, cg10640833 located on chromosome 

6 and annotated to SKIV2L was significantly hypermethylated with elevated PRS with 

an increase of 1.39% in DNAm for every SD increase in PRS (p=1.79e-09). SKIV2L is 

a DEAD box protein is involved in nucleic acid binding and helicase activity and there 

is no literature suggesting it have been implicated in neurodegenerative disease.  

I identified one significant DMR, which was annotated to the HLA region (see Table 
6.11). 
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Table 6.10: Differentially methylated positions associated with PRS-Jansen in the cortex at experiment wide significance (p< 9E− 8). Listed for each probe is the 
chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation.  Assoc. mQTL = associated with a methylation quantitative trait loci (mQTL) 
which was included in the PRS. PRS-Jansen = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Jansen at al. GWAS excluding the 
APOE region. 

CpG Chr BP Gene Gene Region Beta (%) SE (%) P Assoc. mQTL 
cg13076785 6 32520916 HLA-DRB6 Body -6.29 0.43 9.74e-42 mQTL 
cg23365293 6 32489984 HLA-DRB5 Body -6.94 0.54 2.01e-33 - 
cg08265274 6 32490444 HLA-DRB5 Body -5.83 0.49 1.48e-29 mQTL 
cg20022036 6 32549496 HLA-DRB1 Body -4.91 0.48 2.37e-22 - 
cg15710545 6 32578114 - - 2.60 0.28 7.60e-19 mQTL 
cg05938207 6 32489750 HLA-DRB5 Body -2.59 0.29 1.82e-18 - 
cg09139047 6 32552042 HLA-DRB1 Body -4.73 0.54 2.35e-17 mQTL 
cg26036029 6 32552443 HLA-DRB1 Body -6.11 0.72 1.15e-16 - 
cg17360552 6 32725332 HLA-DQB2 Body -3.67 0.45 1.30e-15 - 
cg07007382 6 32578070 - - 2.14 0.26 2.12e-15 mQTL 
cg07984380 6 32547019 HLA-DRB1 Body 5.47 0.69 1.31e-14 mQTL 
cg12296550 6 32728862 HLA-DQB2 Body 2.37 0.31 3.47e-14 - 
cg20636526 6 32305145 C6orf10 Body -2.19 0.29 1.33e-13 mQTL 
cg15074838 6 32406521 HLA-DRA TSS1500 1.99 0.26 1.35e-13 - 
cg13778567 6 32609783 HLA-DQA1 Body -1.25 0.17 1.78e-13 mQTL 
cg15602423 6 32552095 HLA-DRB1 Body -2.85 0.38 3.81e-13 - 

cg14255617 6 32729118 HLA-DQB2 Body 2.01 0.28 6.90e-13 - 

cg00551313 6 32521737 HLA-DRB6 Body -2.62 0.36 1.36e-12 - 

cg02521229 11 60019236 - - 3.15 0.44 1.74e-12 mQTL 
cg00440797 6 32493873 HLA-DRB5 Body 2.96 0.42 2.42e-12 - 

cg22233843 6 32632565 HLA-DQB1 Body -4.75 0.67 3.81e-12 - 

cg11986643 6 32634316 HLA-DQB1 1stExon -3.40 0.49 1.32e-11 - 

cg24283019 6 32381449 - - -0.69 0.10 1.56e-11 - 
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cg09452510 6 32330188 C6orf10 Body 1.96 0.29 2.59e-11 mQTL 
cg10466124 6 32498285 HLA-DRB5 TSS1500 2.30 0.34 3.76e-11 - 
cg00119778 6 32466447 - - 3.33 0.50 4.29e-11 mQTL 
cg14645244 6 32552205 HLA-DRB1 Body -4.34 0.65 4.42e-11 mQTL 
cg11404906 6 32551749 HLA-DRB1 Body -1.92 0.29 4.93e-11 mQTL 
cg01815645 6 32548627 HLA-DRB1 Body -2.93 0.45 1.11e-10 - 

cg16345566 6 32633102 HLA-DQB1 Body -4.79 0.75 3.49e-10 - 

cg24631579 6 32609181 HLA-DQA1 Body 2.36 0.38 7.15e-10 - 

cg24242384 6 32551954 HLA-DRB1 Body -2.43 0.39 7.48e-10 - 

cg10640833 6 31930323 SKIV2L Body 1.39 0.23 1.79e-09 - 

cg25457674 6 32303820 C6orf10 Body 0.78 0.13 3.00e-09 mQTL 
cg08188015 6 32489553 HLA-DRB5 Body 0.72 0.12 3.98e-09 - 

cg09666540 6 32381456 - - -0.40 0.07 8.30e-09 - 

cg09618893 6 31856773 EHMT2 Body -1.23 0.22 2.26e-08 - 

cg15820961 6 32558459 HLA-DRB1 TSS1500 -3.89 0.69 2.32e-08 - 

cg08238829 11 60011506 - - -1.76 0.32 5.10e-08 - 

cg20946741 6 32428328 - - -1.40 0.26 8.83e-08 mQTL 
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Figure 6.15: cg13076785 is hypomethylated with elevated PRS-Jansen in the cortex. The x-axis represents 
the standardised (mean of 0, standard deviation=1) PRS-Jansen and the y-axis represents DNA-methylation 
adjusted for confounders. PRS- Jansen = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) 
calculated using the Jansen at al. GWAS excluding the APOE region. 

 

 

 
Table 6.11: Differentially methylated region associated with PRS-Jansen in the cortex. Listed for each probe 
is the chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. BP start 
= base position the region begins. BP end = base position where the region ends. N = number of probes in the 
region. P adjusted = Bonferroni corrected p-value adjusted for the number of independent tests. PRS- Jansen = 
Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Jansen at al. GWAS 
excluding the APOE region. 

 

 

 

 

 

 

Chr BP start BP end n Gene Beta (%) SE (%) P P adjusted 
6 32551749 32551954 3 HLA-DRB1 -23.72 3.37 1.94e-12 1.60e-06 
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 Multiple differentially methylated positions and regions were 
associated with PRS-JansenAPOE 

I identified two experiment-wide significant DMPs associated with PRS-JansenAPOE 

(see Figure 6.10).  Both DMPs were significantly hypermethylated with elevated PRS 

(see Figure 6.11; Table 6.12). Although there was slight inflation of p-values, as 

shown by the quantile-quantile plots (λ =1.44; see Figure 6.12), the test statistics were 

normally distributed suggesting my results are not affected by bias. The average 

absolute magnitude of effect for the significant DMPs per SD increase in LOAD PRS 

was 1.35% (inter-quartile range [IQR] = 1.33-1.37%). To identify if any of these DMPs 

reflect a direct cis-genetic effect on DNAm, I utilised the cortex mQTL results 

generated in Chapter 5 (section 5.4.3). There was evidence of a relationship between 

a PRS-mQTL and DNAm for both DMPs (cg14123992 and cg20051876), indicating 

they are under direct genetic control at the SNP level. Both DMPs were annotated to 

the same gene – APOE– and were hypermethylated with elevated PRS, with a 1.31-

1.39% increase in DNAm per SD increase in PRS respectively (p=6.56e-09; p=3.47e-

08; see Figure 6.16 for plot of DNAm against PRS at cg14123992).   

I identified eight DMRs (38% hypermethylated) which were associated with PRS-

JansenAPOE (see Table 6.13). Of these, seven were annotated to genes including 

APOE (chromosome 19), SSBP3 (chromosome 1), LOC100130872; LOC100130872-

SPON2 (chromosome 4), CCDC102B; TMX3 (chromosome 18), STAT5A 

(chromosome 18), GPR68 (chromosome 17), and KLHL33 (chromosome 14). 

CCDC102B is of interest in the context of neurodegenerative disease and has been 

associated with frontotemporal lobar degeneration (Andrés-Benito at al., 2019). Folate 

deficiency has been associated with AD risk and STAT5A has been shown to be 

differentially expressed when there is dysregulated folate metabolism (Li at al., 2016). 

The remaining DMRs are annotated to genes which have not previously been 

implicated in AD and currently little is known about their function. KLHL33 was also 

identified in the cortex PRS-KunkleAPOE EWAS. 

 

 

 

 



 

447 
 

 
Table 6.12: Differentially methylated positions associated with the PRS-JansenAPOE in the cortex at experiment wide significance (p< 9E− 8). Listed for each probe is 
the chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. Assoc. mQTL = associated with a methylation quantitative trait loci (mQTL) 
which was included in the PRS. PRS-JansenAPOE = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Jansen at al. GWAS excluding the 
APOE region. 

CpG Chr BP Gene Gene Region Beta (%) SE (%) P Assoc. mQTL 
cg14123992 19 45407868 APOE TSS1500 1.39 0.21 6.56e-09 mQTL 
cg20051876 19 45407860 APOE TSS1500 1.31 0.20 3.47e-08 mQTL 

 

 

 
Table 6.13: Differentially methylated regions associated with PRS-JansenAPOE in the cortex. Listed for each probe is the chromosomal location (h19/GRCh37 genomic 
annotation) and the Illumina UCSC gene annotation. BP start = base position the region begins. BP end = base position where the region ends. N = number of probes in the 
region. P adjusted = Bonferroni corrected P value adjusted for the number of independent tests. PRS- JansenAPOE = Late onset Alzheimer’s disease (LOAD) polygenic risk 
scores (PRS) calculated using the Jansen at al. GWAS including the APOE region. 

Chr BP start BP end n Gene Beta (%) SE (%) P P adjusted 
19 45407860 45407945 3 APOE 20.66 2.82 2.50e-13 2.25e-07 
1 54821853 54822103 5 SSBP3 -6.37 1.05 1.25e-09 1.12e-03 

4 1202509 1203104 16 LOC100130872; 
LOC100130872-SPON2 -4.36 0.72 1.28e-09 1.16e-03 

18 66382226 66382465 5 CCDC102B;TMX3 -5.68 0.94 1.48e-09 1.33e-03 
17 40439132 40439492 3 STAT5A 5.03 0.83 1.72e-09 1.55e-03 
14 91720173 91720578 9 GPR68 -4.68 0.78 1.80e-09 1.62e-03 
5 132155233 132155460 4 - -5.66 0.98 7.70e-09 6.93e-03 
14 20903410 20904169 11 KLHL33 7.42 1.33 2.32e-08 2.09e-02 
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Figure 6.16: cg14123992 is hypermethylated with elevated PRS-JansenAPOE in the cortex. The x-axis 
represents the standardised (mean of 0, standard deviation=1) PRS-JansenAPOE and the y-axis represents DNA-
methylation adjusted for confounders. PRS-JansenAPOE = Late onset Alzheimer’s disease (LOAD) polygenic risk 
scores (PRS) calculated using the Jansen at al. GWAS including the APOE region.
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 The effect sizes were generally consistent across the four cortex 
PRS EWAS 

Although there was no direct overlap in the significant DMPs in the cortex associated 

with each of the AD PRS, the direction of the effect was consistent across analyses 

(as evaluated by a binomial sign-test and Pearson’s correlation) of the DMPs reaching 

suggestive significance (p<5e-05) across the cortex PRS EWAS (see Figure 6.17). 

The most significant effects were between the PRS-KunkleAPOE and PRS-JansenAPOE 

EWAS (sign test p=5.1e-144; see Figure 6.17). These results suggest that regardless 

of LOAD PRS, similar effects on DNAm occur, suggesting they are not just reflecting 

mQTLs as different variants were included in the PRS. Interestingly, there was 

evidence for opposite directions of effect between the PRS-KunkleAPOE and the PRS-

Jansen (see Figure 6.17), which is also supported by the non-significant sign test. 

This may be a result of the differing combinations of SNPs included from each GWAS 

in addition to the inclusion of the APOE region.  

 

 
 

 

 

 

 

 

 

 

 

 

 
 

Figure 6.17: Comparing the effect sizes of DMPs reaching suggestive significance (p<5e-05) in each LOAD-
PRS EWAS in cortex. PRS.Kunkle = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) 
calculated using the Kunkle at al. GWAS excluding the APOE region.  PRS.Kunkle.APOE = Late onset Alzheimer’s 
disease (LOAD) polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS including the APOE region. 
PRS.Jansen = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Jansen at 
al. GWAS excluding the APOE region. PRS.Jansen.APOE = Late onset Alzheimer’s disease (LOAD) polygenic risk 
scores (PRS) calculated using the Jansen at al. GWAS including the APOE region. Cortex = cortex EWAS. Colour 
represents the strength of the Pearson correlation. The numbers inside the squares represent the Pearson’s 
correlation coefficient and the binomial sign test p-values which are within parentheses. 
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6.4.6 Methylomic variation is associated with LOAD PRS in whole blood  

I next explored if methylomic variation in whole blood is also associated with LOAD 

polygenic burden by undertaking an EWAS of variable PRS in eight whole blood 

cohorts totalling 6,106 unrelated European samples (see section 6.3.1 for more details 

on the cohorts). PRS were calculated using two recent LOAD GWAS (Kunkle et. al. 

(2019) and Jansen at al. (2019)). To assess the effects of including APOE in the PRS 

on DNAm, PRS were calculated both including and excluding the APOE locus. Linear 

regressions were then run against genome-wide DNAm controlling for age, sex, batch, 

smoking score and derived cell proportions. The results were meta-analysed using the 

IVW method (see section 6.3.6).  

To identify if any DMPs identified reflect a direct cis-genetic effect on DNAm, I utilised 

the whole blood mQTL results generated in Chapter 5 (see sections 5.4.2), using the 

same method as described above in 6.4.6.  

 Multiple differentially methylated positions and regions were 
associated with PRS-Kunkle in whole blood 

I identified 27 experiment-wide significant DMPs (Bonferroni p<1.03e-07) in whole 

blood associated with PRS-Kunkle (see Figure 6.18). 16 (59%) of the DMPs were 

significantly hypermethylated with elevated PRS (see Table 6.14 and Figure 6.19) 

and the other 11 (41%) were hypomethylated with elevated PRS; see Table 6.14 and 
Figure 6.19). The direction of effects were consistent across cohorts as shown by the 

heterogeneity statistics (see columns Q and I2 in Table 6.14) with the majority of the 

Q statistics (calculated as the weighted sum of squared differences between individual 

study effects and the pooled effect across studies) being >0.05 and I2 (which describes 

the percentage of variation across studies that is due to heterogeneity) being below 

50%. There was no evidence of p-value inflation in this analysis, as shown by the 

quantile-quantile plots and the genomic inflation factor - lambda (λ) - being ≤ 1 (λ 

=0.84; see Figure 6.20). The average absolute magnitude of effect for the significant 

DMPs per SD in PRS-Kunkle was 1.18% (inter-quartile range [IQR] = 0.43-1.94%). To 

identify if any of these DMPs reflect a direct cis-genetic effect on DNAm, I utilised the 

whole blood mQTL results generated in Chapter 5 (see 5.4.2). There was evidence of 

a relationship between a PRS-mQTL and DNAm for 13 of the DMPs, providing 

evidence that these sites are under direct genetic control at the SNP level. Of the 27 
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DMPs, 20 were annotated to genes and 11 of these were unique. The majority of the 

PRS-Kunkle associated DMPs are annotated to genes that are of relevance in the 

context of AD and associated neurobiological functions. These include: 

• cg09580214 and cg20307385 which are located on chromosome 11, are 

annotated to PSMC3. Interestingly they have an opposite direction of effect 

where cg09580214 was significantly hypomethylated with elevated PRS-

Kunkle, with a decrease in DNAm of 1.65% (p=1.28e-21) for every SD increase 

in PRS (see Figure 6.22), whereas cg20307385 was significantly 

hypermethylated with elevated PRS-Kunkle, with an increase of 0.21% 

(p=1.71e-15) for every SD increase in PRS. PSMC3 is an AD GWAS gene, 

residing around the SPI1 locus (nearest gene(s) identified to top GWAS loci in 

the Kunkle at al. (2019) GWAS) and is thought to mediate tau toxicity (Karch at 

al., 2016). See section 6.4.5.1 for more details on SPI1. 

• cg20796544 was which is located on chromosome 7 and annotated to HIP1, 

was significant hypermethylated with elevated PRS, with a 0.56% increase (p= 

2.52e-09) in DNAm per SD increase in PRS. HIP1 has been shown to be 

hypermethylated for multiple system atrophy – a fatal late onset 

neurodegenerative disease and similarly to Parkinson’s and DLB it is a α-

synucleinopathy (Bettencourt at al., 2020). In addition cell studies suggest there 

is a role for HIP1 for initiating apoptosis in the pathogenesis of Huntington’s 

disease (Wanker, 2002).  

• cg08168897 and cg02887598 located on chromosome 2 and annotated to 

BIN1. cg08168897 was hypermethylated with elevated PRS, with an 0.47% 

increase (p= 4.81e-18; see Figure 6.22) per SD in PRS and this concurs with 

previous evidence suggesting there is hypermethylation of BIN1 in AD patients 

(De Jager at al., 2014). cg02887598 has the opposite direction of effect, where 

it was hypomethylated with elevated PRS, with a 2.34% decrease (p=1.15e-11) 

per SD increase in PRS. Interestingly, increased expression of BIN1 has been 

found to mediate AD risk by modulating Tau pathology.  

• cg18774435 and cg02771260 which are located on chromosome 11 and 

annotated to MS4A3. Both sites were hypermethylated with elevated PRS, with 

cg02771260 having a threefold larger effect (0.97% increase per SD in PRS; 

p= 7.89e-11) in comparison the cg18774435 (0.3% increase per SD in PRS; p= 
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3.66e-12). MS4A3 resides in the LD block of the nearest gene to a top AD loci 

(Jansen at al., 2019; Kunkle at al., 2019) and is part of the MS4A locus which 

contains several genes implicated in immune modulation. Increased MS4A3 

expression is associated with more advanced brain pathology in AD patients, 

and in addition elevated MS4A3 levels in both blood and brain tissue have been 

associated with AD risk (Villegas-Llerena, Phillips, Garcia-Reitboeck, Hardy, & 

Pocock, 2016). 

• cg05377527 which is located on chromosome 11 and is annotated to PTPMT1. 

cg05377527 was hypomethylated with elevated PRS with a -0.19% decrease 

(p= 6.11e-10) in DNAm per SD increase in PRS. PTPMT1 expression is altered 

in AD brains (Karch at al., 2016). 

• cg20172563 which is located on chromosome 6, is annotated to CD2AP, was 

significantly hypermethylated with elevated PRS, with a 0.33% increase (p= 

7.01e-09) in DNAm per SD increase in PRS. CD2AP is the nearest gene to a 

top AD GWAS loci (Jansen at al., 2019; Kunkle at al., 2019) and has been 

associated with AD phenotypes including neuritic plaque burden (Shulman at 

al., 2013) and tau biomarkers (Ramos de Matos at al., 2018). This DMP is 

associated with a PRS-mQTL.  

• cg12568536 which is located on chromosome 11 and has no gene annotation 

based on proximity, however it resides within the vicinity (within 100kb) of 

PICALM, an AD GWAS gene involved in APP metabolism (Jansen at al., 2019; 

Kunkle at al., 2019).cg09139047, cg14645244, cg17369694, cg17369694, 

cg22933800, cg17416722, cg15708909, cg13423887, cg19575208 

cg02919082 and cg18816397 are located on chromosome 6 and are annotated 

to genes within the HLA region (HLA-DRB1; HLA-DRB5; HLA-DQA1l HLA-

DQB1). cg09139047 and cg14645244 have an mQTL association. See section 

6.4.5.3 for more details on HLA.cg24672777 which is located on chromosome 

11, is annotated to a gene that has not previously been implicated in dementia: 

OR4C45. cg24672777 was hypomethylated with elevated PRS, with a 0.52% 

decrease (p= 6.60e-09) in DNAm per SD increase in PRS.  OR4C45 is an 

olfactory receptor and has been associated with Aicardi syndrome, a severe 

neurodevelopmental disorder with a complex and largely unknown aetiology 

(Piras at al., 2017). 
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In addition to identifying DMPs, I used the software tool dmrff to identify DMRs. I 

identified 10 regions (60% hypermethylated) using the PRS-Kunkle in whole blood 

(see Table 6.15). The majority of regions were annotated to genes identified in the 

DMP analysis including the HLA region, PSMC3 and BIN1. 

 

Figure 6.18: Whole blood EWAS of polygenic variation associated with LOAD highlights experiment-wide 
significant differentially methylated positions. Manhattan plots showing results of EWAS meta-analyses of 
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polygenic burden for AD conducted in whole blood using (A) a PRS generated using the Kunkle at al. GWAS 
excluding variants in the APOE region, (B) a PRS generated using the Kunkle at al. GWAS including variants in 
the APOE region, (C) a PRS generated using the Jansen at al. GWAS excluding variants in the APOE region, and 
(D) a PRS generated using the Jansen at al. GWAS including variants in the APOE region. Significant differentially 
methylated positions are annotated to their proximal gene, unless they are unannotated. The X-axis shows the 
probe location across chromosomes 1-22 and the Y-axis shows EWAS significance (-log10(P)), with the horizontal 
red line representing an experiment wide significance threshold (p< 1.03e-07).  

 

 
Figure 6.19: Volcano plot of differentially methylated positions (DMPs) identified in the whole blood LOAD 
PRS EWAS meta-analyses. DNA methylation was regressed against PRS where in (A) LOAD PRS was generated 
using the Kunkle at al. GWAS excluding APOE (B) LOAD PRS was generated using the Kunkle at al. GWAS 
including APOE; (C) LOAD PRS was generated using the Jansen at al. GWAS excluding APOE; and (D) LOAD 
PRS was generated using the Jansen at al. GWAS including APOE. The X-axis shows beta effect size (ES) and 
the Y-axis shows -log10(p). Red probes indicate a p-value that reaches experiment-wide significance (EWS) (p < 
1.03e-07). LOAD = Late onset Alzheimer’s disease. PRS = Polygenic risk scores. 
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Figure 6.20: Quantile-quantile plots of p-values from AD PRS EWAS meta-analyses conducted in whole 
blood. Shown are the expected (x-axis) against the observed (y-axis) quantiles in each EWAS of polygenic burden 
where (A) PRS were generated using the Kunkle at al. GWAS excluding APOE variants, (B) PRS were generated 
using the Kunkle at al. GWAS including APOE variants, (C) PRS were generated using the Jansen at al. GWAS 
excluding APOE variants, and (D) PRS were generated using the Jansen at al. GWAS including APOE variants. 
Lambda= genomic inflation factor. 
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Table 6.14: Differentially methylated positions (DMPs) associated with the PRS-Kunkle in whole blood at experiment wide significance (p< 1.03e-07).  Listed for each 
probe is the chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. FE refers to statistics for the fixed effects meta-analysis model. 
RE refers to statistics from the random-effects meta-analysis model. Q = Cochran’s Q – a measure of heterogeneity. I = the percentage of variation across studies that is due to 
heterogeneity.  Assoc. mQTL = associated with a methylation quantitative trait loci (mQTL) which was included in the PRS. PRS-Kunkle = Late onset Alzheimer’s disease (LOAD) 
polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS excluding the APOE region. 

CpG Chr BP Gene Gene Region Beta FE (%)  P FE (%)  Beta RE (%) P RE (%) Q I Assoc. mQTL 
cg09580214 11 47448534 PSMC3   TSS1500 -1.64 8.34e-38 -1.65 1.28e-21 0.08 44.64 - 
cg20307385 11 47447363 PSMC3 Body 0.20 2.44e-37 0.21 1.71e-15 0.01 64.57 mQTL 
cg20135002 11 47629003  -  - 0.38 1.35e-33 0.38 1.35e-33 0.58 0 mQTL 
cg05585544 11 47624801  -  - 0.26 7.17e-24 0.27 5.33e-19 0.26 21.34 mQTL 
cg20796544 7 75253334 HIP1 Body 0.56 1.48e-18 0.56 2.52e-09 0.09 50.32 - 
cg08168897 2 127865431 BIN1 TSS1500 0.47 4.81e-18 0.47 4.81e-18 0.89 0 mQTL 
cg18512352 11 47633146  -  - 0.57 1.42e-17 0.57 1.42e-17 0.64 0 mQTL 
cg06223080 2 127868745  -  - 0.48 1.67e-15 0.52 1.57e-10 0.11 39.98 mQTL 
cg09139047 6 32552042 HLA-DRB1 Body -2.28 2.60e-14 -2.27 7.12e-12 0.30 17.93 mQTL 
cg12568536 11 85873778  -  - -2.98 3.03e-14 -2.96 1.27e-09 0.19 34.62 - 
cg16618979 7 143108841  -  - 2.51 2.52e-12 2.51 2.52e-12 0.41 0 - 
cg18774435 11 59838540  MS4A3 3'UTR 0.30 3.66e-12 0.30 3.66e-12 0.44 0 mQTL 
cg14645244 6 32552205 HLA-DRB1 Body -1.93 4.22e-12 -1.92 1.00e-08 0.21 30.12 mQTL 
cg02887598 2 127841945 BIN1 Body -2.34 1.15e-11 -2.34 1.15e-11 0.71 0 - 
cg05377527 11 47586666 PTPMT1 TSS1500 -0.20 4.62e-11 -0.19 6.11e-10 0.35 10.56 mQTL 
cg02771260 11 59836817 MS4A3 Body 0.97 7.89e-11 0.97 4.62e-09 0.28 18.53 mQTL 
cg17369694 6 32485396 HLA-DRB5 3'UTR 1.95 2.84e-10 1.95 6.90e-10 0.38 4.18 - 
cg22933800 6 32605704 HLA-DQA1 Body 2.06 4.95e-10 2.05 3.67e-09 0.36 8.65 - 
cg17416722 6 32554385 HLA-DRB1 Body 1.36 4.96e-10 1.36 4.31e-08 0.28 21.24 - 
cg15708909 6 32487314 HLA-DRB5 Body -1.48 4.99e-10 -1.47 4.82e-08 0.28 20.99 - 
cg13423887 6 32632694 HLA-DQB1 Body -2.17 6.26e-10 -2.16 2.43e-08 0.30 17.52 - 
cg20172563 6 47487173 CD2AP Body 0.33 6.66e-10 0.33 7.01e-09 0.33 12.5 mQTL 
cg13879655 8 27450777  -  - -0.37 1.11e-09 -0.37 1.92e-08 0.31 14.87 mQTL 
cg24672777 11 48374446 OR4C45 TSS1500 -0.52 6.60e-09 -0.52 6.60e-09 0.72 0 - 
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cg19575208 6 32551888 HLA-DRB1 Body -1.08 1.17e-08 -1.08 1.33e-08 0.40 0.73 - 
cg02919082 6 32605694 HLA-DQA1 Body 1.16 3.08e-08 1.16 3.08e-08 0.43 0 - 
cg18816397 6 32489555 HLA-DRB5 Body 1.43 7.45e-08 1.43 7.45e-08 0.63 0 - 
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Figure 6.22: A forest plot of a significant DMP identified in the PRS-KunkleAPOE EWAS in whole blood 
(cg08168897:2:127865431: BIN1, p = 4.81e-18). Across all studies PRS-Kunkle was associated with 
hypermethylation at this DNA methylation site. The X-axis shows the beta effect size (% DNA methylation difference 
per SD increase in LOAD PRS), with squares representing effect size and arms indicating the 95% confidence 
intervals. PRS-KunkleAPOE = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using 
the Kunkle at al. GWAS including the APOE region. 

 

Figure 6.21: A forest plot of the most significant DMP identified in the PRS-Kunkle EWAS meta-analysis in 
whole blood (cg09580214 located at chr11:47448534 and annotated to PSMC3, p = 1.28e-21). Across all studies 
PRS-Kunkle was associated with hypomethylation at this DNA methylation site. The X-axis shows the beta effect size 
(% DNA methylation difference per SD increase in LOAD PRS), with squares representing effect size and arms 
indicating the 95% confidence intervals. PRS-Kunkle = Late onset Alzheimer’s disease (LOAD) polygenic risk scores 
(PRS) calculated using the Kunkle et al. GWAS excluding the APOE region.  
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Table 6.15: Differentially methylated regions associated with the PRS-Kunkle in a whole blood EWAS meta-analysis. Listed for each probe is the chromosomal location 
(h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. BP start = base position the region begins. BP end = base position where the region ends. N = 
number of probes in the region. P adjusted = Bonferroni corrected P value adjusted for the number of independent tests. PRS- Kunkle = Late onset Alzheimer’s disease (LOAD) 
polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS excluding the APOE region. 

Chr BP start BP end n Gene Beta (%) SE (%) P P adjusted 
6 32551749 32552453 15 HLA-DRB1 -9.89 0.07 0 0 
6 32632565 32633157 18 HLA-DQB1 -8.12 0.09 0 0 
6 32728862 32729442 11 HLA-DQB2 5.44 0.13 0 0 
6 32606385 32607509 4 HLA-DQA1 12.31 0.2 0 0 
11 47448223 47448534 4 PSMC3 -17.27 0.55 1.97e-220 9.27e-215 
6 32632331 32632338 3 HLA-DQB1 8.38 0.35 3.88e-126 1.82e-120 
6 32526342 32526414 3 HLA-DRB6 -9.64 0.45 2.48e-100 1.17e-94 
6 32609094 32609212 4 HLA-DQA1 7.26 0.52 7.51e-44 3.53e-38 
6 32629786 32629955 4 HLA-DQB1 4.88 0.66 1.94e-13 9.13e-08 
2 127865248 127865431 3 BIN1 11.92 1.8 3.71e-11 1.75e-05 
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 One differentially methylated position and multiple differentially 
regions were associated with PRS-KunkleAPOE in whole blood 

I identified a single experiment-wide significant (p<1.03e-07) DMP associated PRS-

KunkleAPOE (see Table 6.16). This DMP - cg06750524 - was significantly 

hypermethylated with elevated PRS (p=6.74e-08; see Figure 6.18) and is annotated 

to APOE; for every SD increase in PRS there was a 0.44% increase in DNAm (see 

Table 6.16). The direction of effect was consistent across studies (see Figure 6.18), 

although there was evidence of some heterogeneity (Q=0.02; I2=59.43; see Table 
6.16). There was no evidence of statistical inflation in this analysis, as shown by the 

quantile-quantile plots (λ =0.7; see Figure 6.20). No other DMPs were identified in this 

analysis suggesting that APOE diminishes the majority of effects from the other 

genetic variants included in the PRS due to its large effect. There was evidence of a 

relationship between a PRS-mQTL and DNAm at this site.  

In the DMR analysis PRS-KunkleAPOE   was associated with 5 regions (40% 

hypermethylated; see Table 6.17). Some of the genes identified by the DMR analysis 

are relevant in the context of AD and other neurobiological functions: 

• The HLA region (chromosome 6) has been associated with AD and is an AD 

risk locus (Jansen at al., 2019; Kunkle at al., 2019) (see section 6.4.6.1 above 

for more details). This association suggests that although APOE dominates the 

PRS when it is included, some of the other genetic effects still persist. The 

association with HLA suggests that the none-APOE variants included in the 

PRS still influence DNAm, although these effects are attenuated when APOE 

is included.  

• APOC1 (chromosome 19) is in LD with the APOE region and is known to is 

known to facilitate dementia onset under oxidative stress (Prendecki at al., 

2018). 

The remaining DMRs with a gene annotation have not been previously implicated in 

AD or any other any neurological phenotypes: 

• OR2V2 (chromosome 5) is an olfactory receptor involved in g-protein coupled 

receptor signalling. Although this specific olfactory gene has not been 

implicated in AD, high copy number variations in a cluster of olfactory receptors 

on chromosome 14 have been associated with a younger AD age of onset 
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(Shaw at al., 2011) supporting the theory that olfactory receptors play a role in 

the aetiology of AD. 

• D2HGDH (chromosome 2) regulates alpha-ketoglutarate levels and 

dioxygenase function and has been associated with a rare neuro-metabolic 

disorder - D2HGA1 - caused by pathogenic variants in this gene (Lin at al., 

2015). 

Figure 6.23: A forest plot of the significant DMP identified in the PRS- KunkleAPOE EWAS in whole blood 
(cg06750524:19:45409955: APOE, p = 6.74e-08). Across all studies PRS-Kunkle was associated with 
hypomethylation at this DNA methylation site. The X-axis shows the beta effect size (% DNA methylation 
difference per SD increase in LOAD PRS), with squares representing effect size 22 and arms indicating the 95% 
confidence intervals. DMP= differentially methylated position. PRS- KunkleAPOE = Late onset Alzheimer’s disease 
(LOAD) polygenic risk scores (PRS) calculated using the Kunkle et al. GWAS including the APOE region. 
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Table 6.16: Differentially methylated position associated with the PRS-KunkleAPOE in whole blood at experiment wide significance (p< 1.03e-07). Listed for each probe 
is the chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. . FE refers to statistics for the fixed effects meta-analysis model. RE 
refers to statistics from the random-effects meta-analysis model. Q = Cochran’s Q – a measure of heterogeneity. I = the percentage of variation across studies that is due to 
heterogeneityAssoc. mQTL = associated with a methylation quantitative trait loci (mQTL) which was included in the PRS.. PRS- KunkleAPOE = Late onset Alzheimer’s disease 
(LOAD) polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS including the APOE region. 

CpG Chr BP Gene Gene Region Beta FE (%) P FE (%) Beta RE (%) P RE (%) Q I Assoc. mQTL 

cg06750524 19 45409955 APOE Body 0.44 1.20e-17 0.44 6.74e-08 0.02 59.43 mQTL 

 

 
Table 6.17: Differentially methylated regions associated with PRS-KunkleAPOE in whole blood. Listed for each probe is the chromosomal location (h19/GRCh37 genomic 
annotation) and the Illumina UCSC gene annotation. BP start = base position the region begins. BP end = base position where the region ends. N = number of probes in the 
region. P adjusted = Bonferroni corrected P value adjusted for the number of independent tests. PRS- KunkleAPOE = Late onset Alzheimer’s disease (LOAD) polygenic risk scores 
(PRS) calculated using the Kunkle at al. GWAS including the APOE region. 

Chr BP start BP end n Gene Beta (%) SE (%) P P adjusted 

6 32489991 32490421 3 HLA-DRB5 5.33 0.04 0 0 

6 32552095 32552453 5 HLA-DRB1 -5.1 0.16 7.21e-234 3.34e-228 

19 45417587 45418020 5 APOC1 -11.66 0.38 3.35e-209 1.55e-203 

5 180581301 180581761 4 OR2V2 4.9 0.31 2.58e-56 1.20e-50 

2 242692882 242693323 3 D2HGDH 5.38 0.46 1.65e-31 7.67e-26 
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  Multiple differentially methylated positions and regions were 
associated with PRS-Jansen in whole blood 

I identified nine experiment-wide significant (p<1.03e-07) DMPs associated with PRS-

Jansen (see Figure 6.18). Four (44%) of the DMPs were significantly hypermethylated 

with elevated PRS and the other five (66%) were hypomethylated (see Table 6.18). 

There was no evidence of statistical inflation in this analysis, as shown by the quantile-

quantile plots (λ =0.9; see Figure 6.11). There was an average absolute magnitude of 

effect for the significant DMPs per SD in PRS-Jansen was 1.02% (inter-quartile range 

[IQR] = 0.39-1.16). To identify if any of these DMPs reflect a direct cis-genetic effect 

on DNAm, I utilised the whole blood mQTL results generated in Chapter 5. There was 

evidence of a relationship between a PRS-mQTL and DNAm for six of the DMPs, 

providing evidence that these sites are under direct genetic control at the SNP level. 

Several of the PRS-Jansen associated DMPs are of relevance in the context of AD. 

These include: 

• cg02887598 and cg00436254 located on chromosome 2 and annotated to 

BIN1 – an AD risk gene identified by GWAS and EWAS (for more details on 

BIN1 see section 6.4.6.1). cg02887598 was hypomethylated with elevated PRS 

with a 4.05% decrease (p= 1.00e-14) in DNAm per SD increase in PRS. 

cg00436254 was hypermethylated with elevated PRS with a 0.21% increase 

(p= 4.10e-10) in DNAm per SD increase in PRS and has previously been 

associated with an mQTL. BIN1 is as AD risk gene (De Jager at al., 2014; 

Jansen at al., 2019; Kunkle at al., 2019) and was also identified in the PRS-

Kunkle whole blood analysis (see section 6.4.6.1 for more details). 

• cg23472400 located on chromosome 7, is annotated to TAF6 and has 

previously been associated with an mQTL. Cg23472400 was hypermethylated 

with elevated PRS, with a 0.87% increase (p= 4.88e-10) in DNAm per SD 

increase in PRS (see Figure 6.24). TAF6 has been identified as a potential AD 

risk gene which influences transcriptional regulation (Jones at al., 2010) 

although its role in neurodegeneration is largely unknown.  

• cg24329783 located on chromosome 1, is annotated to ADAMTS4 and has 

previously been associated with an mQTL. cg24329783 was hypomethylated 

with elevated PRS, with a 0.65% decrease in DNAm per SD increase in PRS 

(see Figure 6.25). ADAMTS4 is the nearest gene to an AD GWAS loci (Jansen 
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at al., 2019; Marioni at al., 2018). It is highly expressed in the brain and 

predominately in neurons. It is a proteinase involved in the cleaving of reelin, 

which has been shown to aggregate and lead to the depositing of Aβ, tau 

phosphorylation, and neurofibrillary tangle formation in the hippocampus 

(Kocherhans at al., 2010). 

• cg06204447 and cg26331067 located on chromosome 6 and annotated to the 

HLA region (specifically HLA-DRB1 and HLA-DRB6, respectively). Both were 

significantly hypermethylated with increasing PRS, with a ~1.2% increase in 

DNAm per SD increase in PRS. More details on HLA have been describe 

previously. 

I identified 13 DMRs (54% hypermethylated) associated with PRS-Jansen. Six of 

these were annotated to the HLA region. Four other DMRs were annotated to genes 

located proximal to the HLA cluster including HCG27 (chromosome 6), HCG4P6 

(chromosome 6), LOC285830 (chromosome 6) and TAP2 (chromosome 6). TAP2 

genotype has been associated with AD in APOE-ε4 carriers (Bullido at al., 2007). 

There were two other DMRs annotated to genes: C1orf10 (chromosome 1), and 

WDR60 (chromosome 7). WDR60 is a gene involved in the neurodevelopmental 

processes, and been shown to be differentially expressed (upregulated) in the cortex 

of AD patients (Sun, Yang, Sun, Li, & Duan, 2019). C1orf10 encodes a member of the 

fused gene family of proteins and is involved in cell proliferation (Imai at al., 2005) and 

has not previously been implicated in AD or neurodegenerative diseases. 

6.4.7 Two differentially methylated regions are associated with PRS-
JansenAPOE in whole blood 

No DMPs were associated with PRS-JansenAPOE at experiment wide significance. I 

identified two DMRs associated with PRS-JansenAPOE (see Table 6.20). One DMR 

was hypomethylated with elevated PRS and was annotated to APOC1 (chromosome 

19) – a gene which is in the LD block of APOE (see section 6.4.6.2 for more details). 

The other DMR was hypermethylated with elevated PRS and was annotated to OR2V2 

(chromosome 5), an olfactory receptor, which was also identified as a DMR associated 

with PRS-KunkleAPOE (see section 6.4.6.2 for more details). 
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Table 6.18: Differentially methylated positions associated with the PRS-Jansen in whole blood at experiment wide significance (p<1.03e-07). Information is provided 
corresponding to chromosomal location (h19/GRCh37 genomic annotation) and the Illumina UCSC gene annotation. FE refers to statistics for the fixed effects meta-analysis 
model. RE refers to statistics from the random-effects meta-analysis model. Q = Cochran’s Q – a measure of heterogeneity. I = the percentage of variation across studies that is 
due to heterogeneityAssoc. mQTL = associated with a methylation quantitative trait loci (mQTL) which was included in the PRS.. PRS-Jansen = Late onset Alzheimer’s disease 
(LOAD) polygenic risk scores (PRS) calculated using the Jansen at al. GWAS excluding the APOE region. 

CpG Chr BP Gene Gene Region Beta FE (%) P FE (%) Beta RE (%) P RE (%) Q I Assoc. mQTL 
cg02887598 2 127841945 BIN1 Body -4.13 1.48e-33 -4.05 1.00e-14 0.06 56.43 - 

cg23472400 7 99704848 TAF6 3'UTR 0.85 7.98e-15 0.87 4.88e-10 0.13 37.02 mQTL 

cg22906224 7 99728672  -  - -0.14 1.08e-13 -0.14 1.09e-11 0.31 15.13 mQTL 

cg04803944 8 27450844  -  - -0.49 1.05e-11 -0.49 1.05e-11 0.72 0 mQTL 

cg24329783 1 161160887 ADAMTS4 3'UTR -0.64 1.65e-11 -0.65 4.92e-09 0.24 23.9 mQTL 

cg06204447 6 32546665 HLA-DRB1 3'UTR 1.17 1.68e-11 1.16 9.24e-08 0.18 35.71 - 

cg00436254 2 127862614 BIN1 Body 0.21 3.78e-11 0.21 4.10e-10 0.34 11.15 mQTL 

cg13879655 8 27450777  -  - -0.39 8.00e-11 -0.39 8.00e-11 0.81 0 mQTL 

cg26331067 6 32522535 HLA-DRB6 Body 1.23 1.65e-10 1.22 3.46e-09 0.33 13.18 - 
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Table 6.19: Differentially methylated regions associated with PRS-Jansen in the whole blood. Listed for each probe is the chromosomal location (h19/GRCh37 genomic 
annotation) and the Illumina UCSC gene annotation. BP start = base position the region begins. BP end = base position where the region ends. N = number of probes in the 
region. P adjusted = Bonferroni corrected p-value adjusted for the number of independent tests. PRS- Jansen = Late onset Alzheimer’s disease (LOAD) polygenic risk scores 
(PRS) calculated using the Jansen at al. GWAS excluding the APOE region. 

Chr BP start BP end n Gene Beta (%) SE (%) P P adjusted 
6 32362407 32362744 9 - -7.6 0.22 1.05e-256 4.97e-251 
6 32725270 32725438 4 HLA-DQB2 -6.81 0.28 4.73e-129 2.23e-123 
6 29701563 29702509 3 LOC285830 3.61 0.15 7.03e-125 3.32e-119 
6 32632565 32632694 4 HLA-DQB1 -3.86 0.16 1.27e-123 5.99e-118 
6 32525813 32526702 7 HLA-DRB6 9.66 0.42 4.23e-117 2.00e-111 
6 33048444 33048919 16 HLA-DPB1 7.04 0.37 1.53e-81 7.24e-76 
6 32797476 32797578 3 TAP2 -3.53 0.24 1.95e-48 9.18e-43 
1 38156462 38156652 4 C1orf109 3.82 0.43 5.96e-19 2.81e-13 
7 158712251 158712291 3 WDR60 -4.25 0.52 2.57e-16 1.21e-10 
6 29893944 29894228 9 HCG4P6 4.44 0.59 6.35e-14 3.00e-08 
6 32632731 32632957 7 HLA-DQB1 6.13 0.96 1.74e-10 8.22e-05 
6 31166504 31166799 3 HCG27 -8.67 1.41 9.03e-10 4.26e-04 
6 32728862 32729174 8 HLA-DQB2 6 1.03 5.25e-09 2.48e-03 
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Figure 6.24: A forest plot of a significant DMP identified in the PRS-Jansen EWAS in whole blood 
(cg23472400:7:99704848:TAF6, p = 1.00e-14). Across all studies PRS-Jansen was associated with 
hypermethylation at this DNA methylation site. The X-axis shows the beta effect size (% DNA methylation difference 
per SD increase in LOAD PRS), with squares representing effect size and arms indicating 95% confidence 
intervals. PRS-Jansen = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the 
Jansen at al. GWAS excluding the APOE region. 

 

 
Figure 6.25: A forest plot of a significant DMP identified in the PRS-Jansen EWAS in whole blood 
(cg24329783:1:161160887:ADAMTS4). Across all studies PRS-Jansen was associated with hypomethylation at 
this DNA methylation site. The X-axis shows the beta effect size (% DNA methylation difference per SD increase 
in LOAD PRS), with squares representing effect size and arms indicating 95% confidence intervals. PRS-Jansen 
= Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Jansen at al. GWAS 
excluding the APOE region. 
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Table 6.20: Differentially methylated regions associated with PRS-JansenAPOE in the whole blood. Listed for each probe is the chromosomal location (h19/GRCh37 genomic 
annotation) and the Illumina UCSC gene annotation. BP start = base position the region begins. BP end = base position where the region ends. N = number of probes in the 
region. P adjusted = Bonferroni corrected p-value adjusted for the number of independent tests. PRS- JansenAPOE = Late onset Alzheimer’s disease (LOAD) polygenic risk scores 
(PRS) calculated using the Jansen at al. GWAS including the APOE region. 

Chr BP start BP end n Gene Beta (%) SE (%) P P adjusted 
19 45417587 45418020 5 APOC1 -11.76 0.54 5.85e-107 2.72e-101 
5 180581301 180581761 4 OR2V2 6.12 0.54 6.29e-30 2.93e-24 
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 Effect sizes at individual DMPs are generally consistent across the 
four whole blood PRS EWAS meta-analyses 

Of the experiment wide significant DMPs identified in each of the four whole blood 

analyses, two directly overlapped: cg02887598 (chr2: 127841945:BIN1) and 

cg13879655 (chr8:27450777) which were significant in both the PRS-Kunkle and 

PRS-Jansen EWAS. In addition to BIN1, there were several DMPs identified around 

the HLA locus in both analyses, suggesting an overlapping signal for this region of the 

genome. This hypothesis was further supported when comparing the direction of effect 

(as evaluated by a binomial sign-test and Pearson’s correlation) of the DMPs reaching 

suggestive significance (p<5e-05) across the PRS EWAS (see Figure 6.26). The most 

consistent overlap of effects were between the PRS-Kunkle and PRS-KunkleAPOE 

EWAS (sign test p=3e-17; see Figure 6.26), however when tested the other way 

around, using the suggestive significant DMPs from the PRS-KunkleAPOE, the sign test 

was not significant. This is expected since all the SNPs included in the PRS with APOE 

included all of the SNPs in the PRS without APOE but not vice versa. In addition, there 

were Bonferroni significant (sign test p<0.004) positive correlations for the majority of 

PRS EWAS analyses, and nominally significant (sign test p<0.05) positive correlations 

for all analyses with the exception of between the PRS-KunkleAPOE and the PRS-

Jansen. These results support the notion that a similar genetic signal is being captured 

in the PRS calculated using either GWAS (see Figure 6.26). However, there is 

evidence of some differences which could be a result of the slightly differing 

combinations of genetic variants in each PRS. Similarly to the cortex, there was 

evidence for opposite directions of effect between the PRS-KunkleAPOE and the PRS-

Jansen (see Figure 6.26). 
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Figure 6.26: Comparing the effect sizes of DMPs reaching suggestive significance (p<5e-05) in each LOAD-
PRS EWAS in whole blood (WB). PRS.Kunkle = Late onset Alzheimer’s disease (LOAD) polygenic risk scores 
(PRS) calculated using the Kunkle at al. GWAS excluding the APOE region.  PRS.Kunkle.APOE = Late onset 
Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS including the 
APOE region. PRS.Jansen = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using 
the Jansen at al. GWAS excluding the APOE region. PRS.Jansen.APOE = Late onset Alzheimer’s disease (LOAD) 
polygenic risk scores (PRS) calculated using the Jansen at al. GWAS including the APOE region. WB = whole 
blood EWAS. Colour represents the strength of the Pearson correlation. The numbers inside the squares represent 
the Pearson’s correlation coefficient and the binomial sign test p-values which are within parentheses. 
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6.4.8 There are tissue specific effects when comparing results across 
whole brain and cortex  

Interestingly, the associations with PRS were stronger in the cortex than the blood 

(see Figure 6.26), with more DMPs yielding suggestive significance in the cortex. This 

might be due to tissue specific effects in the cortex, which is the area primarily affected 

in AD and the fact the cortex samples are from a dementia cohort so are likely to have 

higher genetic loading for AD.  

Across the significant DMPs identified in the blood and cortex analyses there was a 

direct overlap of two loci from the PRS-Kunkle whole blood and the PRS-Jansen 

cortex analyses:  cg09139047 (6:32552042) and cg14645244 (6:32552205), which 

are both annotated to HLA-DRB1 and were hypomethylated with elevated PRS. 

Across tissues, multiple DMPs and DMRs annotated to the HLA region, or cluster 

genes proximally located within this region, further supporting the hypothesis that 

immune dysfunction is associated with AD. In addition, in the PRS EWAS excluding 

APOE there was evidence for cis effects of the genome-wide AD variants on 

chromosome 11, most notably around the SPI1 GWAS locus. In contrast, when APOE 

was included in the PRS it seemed to reduce the effects of these variants in the PRS, 

and signals on chromosome 11 and 6 were diminished in both tissues.    

When comparing the overall direction of effect of the suggestive significant probes 

(sign test p<5e-05) in whole blood against those same probes in the cortex, there was 

little consistency (Figure 6.27). The PRS-JansenAPOE whole blood and the PRS-

Jansen cortex were the only analyses characterised by the same direction of effect 

(sign test p=0.0037). Similarly, when comparing the direction of effect of the 

suggestive significant probes (p<5e-05) in cortex against those same probes in whole 

blood there was little evidence for enrichment of the same direction of effect (Figure 
6.27). However, the PRS-Jansen cortex and both the PRS-Jansen whole blood (sign 

test p=0.00018), and PRS-Kunkle whole blood (sign test p=0.0025) were 

characterised by the same direction of effect. These results suggest that despite some 

specific overlaps, PRS may have different effects on DNAm in blood and cortex.  
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Figure 6.27: Comparing the effect sizes of DMPs reaching suggestive significance (p<5e-05) in each LOAD-
PRS EWAS across tissues (whole blood and cortex). (A) Effect sizes of top 100 DMPS for each WB EWAS 
compared to the effect sizes of those same probes in the cortex EWAS. (B) Effect sizes of top 100 DMPS for each 
cortex EWAS compared to the effect sizes of those same probes in the WB EWAS.  PRS.Kunkle = Late onset 
Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS excluding the 
APOE region.  PRS.Kunkle.APOE = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated 
using the Kunkle at al. GWAS including the APOE region. PRS.Jansen = Late onset Alzheimer’s disease (LOAD) 
polygenic risk scores (PRS) calculated using the Jansen at al. GWAS excluding the APOE region. 
PRS.Jansen.APOE = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the 
Jansen at al. GWAS including the APOE region. WB = whole blood EWAS. Cortex = cortex EWAS. Colour 
represents the strength of the Pearson correlation. The numbers inside the squares represent the Pearson’s 
correlation coefficient and the binomial sign test p-values which are within parentheses. 
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6.4.9 There are tissue specific effects when comparing results to Braak 
NFT Stage and Alzheimer’s disease case-control EWAS  

LOAD PRS was significantly associated with AD status (see Figure 6.6) and direct 

measures of AD neuropathology (see section 6.4.4). Therefore, we can hypothesise 

that there may be consistent patterns of differential DNAm when comparing the results 

from the Braak NFT stage EWAS conducted in Chapter 4 to the PRS EWAS results 

described in this Chapter.  The PRS EWAS and Braak NFT-EWAS were compared 

using a binomial sign-test and Pearson’s correlation including probes reaching 

suggestive significance (p<5e-05).  

Differential DNAm associated with AD PRS in the cortex was characterised by the 

same direction of effect as Braak NFT stage in the cortex (see Figure 6.28 and Figure 
6.29). The strongest association with Braak NFT stage was identified between PRS-

KunkleAPOE and (sign test p=8.1e-131), followed by the PRS-JansenAPOE (sign test 

p=2.1e-88). All cortex PRS EWAS were positively correlated with Braak NFT stage 

(see Figure 6.28 and Figure 6.29). However, the PRS-Jansen had a non-significant 

sign test with Braak NFT stage, although when examined vice versa, the DMPs were 

enriched for the same direction of effect (sign test p=0.003). There was no evidence 

for Braak NFT stage associated differential DNAm in the cortex at sites found to be 

associated with AD PRS in whole blood (see Figure 6.28 and Figure 6.29).  

I compared all eight sets of EWAS results generated in this Chapter to a case-control 

EWAS of three AD cohorts conducted in whole blood  (Nabais at al., 2021). The 

correlations with the PRS EWAS were generally weak, around 0 (see Figure 6.30 and 
Figure 6.31), and the only the evidence of enrichment for the same direction of effect 

at a nominal p-value (p<0.05) was with the whole blood PRS-JansenAPOE (sign test 

p=0.016; see Figure 6.30). However, the correlations of each whole blood PRS EWAS 

to the whole blood AD EWAS were generally positive, whereas the relationship with 

cortex was negative (see Figure 6.30), mirroring what I found in the cortex analyses 

above. Of note, the whole blood PRS EWAS were conducted across none-AD cohorts 

whereas the cortex EWAS was conducted using the same dementia cohort which may 

explain some of the differences in the results and the strengths of the associations; 

the samples are not independent. Again, these results indicate there may be tissue 

specific effects driven by PRS.
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Figure 6.28: Comparing the effect sizes Of DMPs reaching suggestive significance (p<5e-05) in each LOAD-PRS EWAS to the cortex Braak neurofibrillary tangle 
stage EWAS results. PRS.Kunkle = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS excluding the APOE region.  
PRS.Kunkle.APOE = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS including the APOE region. PRS.Jansen = Late 
onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Jansen at al. GWAS excluding the APOE region. PRS.Jansen.APOE = Late onset Alzheimer’s 
disease (LOAD) polygenic risk scores (PRS) calculated using the Jansen at al. GWAS including the APOE region. WB = whole blood EWAS. Cortex = cortex EWAS. Colour 
represents the strength of the Pearson correlation. The numbers inside the squares represent the Pearson’s correlation coefficient and the binomial sign test p-values which are 
within parentheses. 
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Figure 6.29: Comparing the effect sizes of the top 100 cortex Braak neurofibrillary tangle stage EWAS results to 
the effects sizes of those DMPS in each LOAD-PRS EWAS.  PRS.Kunkle = Late onset Alzheimer’s disease (LOAD) 
polygenic risk scores (PRS) calculated using the Kunkle et al. GWAS excluding the APOE region.  PRS.Kunkle.APOE = Late 
onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Kunkle et al. GWAS including the 
APOE region. PRS.Jansen = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the 
Jansen et al. GWAS excluding the APOE region. PRS.Jansen.APOE = Late onset Alzheimer’s disease (LOAD) polygenic 
risk scores (PRS) calculated using the Jansen et al. GWAS including the APOE region. WB = whole blood EWAS. Cortex 
= cortex EWAS. Colour represents the strength of the Pearson correlation. The numbers inside the squares represent the 
Pearson’s correlation coefficient and the binomial sign test p-values which are within parentheses. 
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Figure 6.30: Comparing the effect sizes Of DMPs reaching suggestive significance (p<5e-05) in each LOAD-PRS EWAS to a whole blood AD case-control EWAS 
results. PRS.Kunkle = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS excluding the APOE region.  
PRS.Kunkle.APOE = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Kunkle at al. GWAS including the APOE region. PRS.Jansen = Late 
onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Jansen at al. GWAS excluding the APOE region. PRS.Jansen.APOE = Late onset Alzheimer’s 
disease (LOAD) polygenic risk scores (PRS) calculated using the Jansen at al. GWAS including the APOE region. WB = whole blood EWAS. Cortex = cortex EWAS. Colour 
represents the strength of the Pearson correlation. The numbers inside the squares represent the Pearson’s correlation coefficient and the binomial sign test p-values which are 
within parentheses
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Figure 6.31: Comparing the effect sizes of the top 100 whole blood AD case-control EWAS results to the effects 
sizes of those DMPS in each LOAD-PRS EWAS.  PRS.Kunkle = Late onset Alzheimer’s disease (LOAD) polygenic 
risk scores (PRS) calculated using the Kunkle et al. GWAS excluding the APOE region.  PRS.Kunkle.APOE = Late onset 
Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Kunkle et al. GWAS including the APOE 
region. PRS.Jansen = Late onset Alzheimer’s disease (LOAD) polygenic risk scores (PRS) calculated using the Jansen 
et al. GWAS excluding the APOE region. PRS.Jansen.APOE = Late onset Alzheimer’s disease (LOAD) polygenic risk 
scores (PRS) calculated using the Jansen et al. GWAS including the APOE region. WB = whole blood EWAS. Cortex 
= cortex EWAS. Colour represents the strength of the Pearson correlation. The numbers inside the squares represent 
the Pearson’s correlation coefficient and the binomial sign test p-values which are within parentheses. 
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6.5 Discussion 

6.5.1 Overview of results 

In this chapter I aimed to investigate the association between polygenic burden for AD 

and variable DNAm in the cortex and whole blood. To my knowledge, this represents 

the largest EWAS of polygenic risk across tissues for any disease and is the first study 

to look at the effects of PRS on DNAm in LOAD. LOAD PRS were generated using 

two publicly available GWAS (Jansen at al., 2019; Kunkle at al., 2019). To assess the 

effects of the inclusion of APOE in a PRS, PRS were generated both including and 

excluding the APOE region. The optimal p-value thresholds for the PRS were based 

on definitive AD status derived from neuropathology. The variance explained by the 

PRS on AD was marginally higher than previous estimates (Escott-Price at al., 2015). 

However, I utilised more recent AD GWAS which included additional variants and 

studies have demonstrated that AD-PRS performs best (i.e. correctly predicts cases/ 

controls) when applied to pathologically confirmed LOAD cases (Valentina Escott-

Price, Myers, Huentelman, & Hardy, 2017). I identified multiple DMPs and DMRs 

associated with polygenic burden for AD across both tissues. Many of the PRS-

associated loci are annotated to genes which have previously implicated in the 

aetiology of AD and other neurodegenerative diseases.  

The genetic analysis against neuropathology indicates that APOE influences AD 

disease neuropathology via two independent pathways, one where Aβ accumulation 

correlates with the development of tauopathy, and a second pathway with direct 

effects on NFTs independent of β-amyloidosis. The relationship between common 

genetic variants associated with AD and neuropathology is more complex, with each 

individual variant potentially having a different effect on neuropathology and cognition. 

Taken together, these results provide insights into how the symptoms of AD manifest 

and how genetic risk factors influence the development of pathology. 

In the PRS EWAS excluding the APOE locus, several loci in the HLA locus were 

identified to be differentially methylated across both tissues. The HLA locus is located 

on chromosome 6 and encodes several molecules that have a major role in innate 

immunity and has been implicated in genetic studies of AD (Jansen at al., 2019; Karch 

at al., 2016; Kunkle at al., 2019). In addition, there were consistent signals across 

tissues on chromosome 11 around the MS4A and SPI1 GWAS loci (Kunkle at al., 
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2019), including DMPs annotated to PSMC3 and C1QTNF4. Several genes within the 

SPI1 locus are highly correlated with one another and have been associated with AD 

status (Karch at al., 2016). Coupled with the HLA findings, these results implicate 

genes which are highly expressed in microglia, astrocytes or other myeloid cell types 

in AD pathogenesis, further supporting the involvement of immune related pathways 

in AD.  

On the other hand, when APOE was included in the PRS analyses it diminished the 

associations on chromosome 6 and 11, with the predominant associations being 

driven by cis effects of the APOE region, which is supported by the associations of 

SNPs included in the PRS and the DMPs (mQTLs). Genome-wide Complex Trait 

Analysis (GCTA) (Yang, Lee, Goddard, & Visscher, 2011) - a software tool that can 

estimate the proportion of phenotypic variance explained by all genome-wide SNPs 

for complex traits – indicated that SNPs explain 53% of the variation in AD (Ridge at 

al., 2016). 16% of the variation in AD was explained by known variants, and 13% is 

attributed to APOE (Ridge at al., 2016); APOE is a major locus in the PRS so it is 

unsurprising that the effects differ drastically when it is included. Since the study by 

Ridge and colleagues (2016) was published several larger AD GWAS have been 

conducted (Bellenguez at al., 2020; de Rojas at al., 2020; Jansen at al., 2019; Kunkle 

at al., 2019; Wightman at al., 2020), and therefore more of the variance in AD is likely 

explained by known GWAS SNPs and GCTA should be conducted on these datasets 

to validate this claim. Due to the large influence APOE has on DNAm when included 

the PRS, I recommend the APOE region is removed from PRS analyses, and where 

possible APOE genotype should be incorporated separately to assess the effect it has 

on methylomic variation independently of other common genetic variants. 

Given my previous findings that there is an enrichment of mQTLs amongst genetic 

variants associated with AD (see Chapter 5 section 5.4.6), I investigated if any of the 

PRS-associated DMPs resulted directly from these associations, utilising the results 

generated in Chapter 5. I only considered instances where mQTLs were included in 

the PRS or were in high LD with these SNPs. Several PRS-associated DMPs had a 

PRS-mQTL association, suggesting that direct genetic cis effects may be driving the 

methylomic changes at these sites. However, not all the DMPs were associated with 

a PRS-mQTL, and therefore our data suggest that PRS-associated variation at these 

loci may be a consequence of the combined effects of multiple genetic variants 
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associated with AD. Of note, there may not have been the power to detect an mQTL 

at these sites and therefore we cannot definitively make this conclusion.  

There was overlap in the genes annotated to DMPs identified in the analyses of cortex 

and whole blood (e.g. APOE and HLA), which suggests there are consistent effects of 

PRS on DNAm across tissue types. These data support the notion that whole blood 

may be a valid correlate of physiological processes in other tissues. However, there 

was also evidence of tissue heterogeneity and the associations were stronger in the 

cortex than whole blood. This might be due to tissue specific effects in areas primarily 

affected in AD (e.g. the cortex) in comparison to peripheral tissues (e.g. whole blood) 

or the fact a dementia cohort was used in the cortex; these samples are likely to have 

higher genetic loading than the whole blood non-AD cohorts. Together, these results 

suggest whole blood can be utilised to investigate LOAD PRS-associated DNAm 

variation, however there are limitations. Where possible multiple tissues should be 

considered to increase our understanding of disease pathogenesis.  

Several of the DMPs and DMRs associated with genetic burden for AD were 

independent of the changes observed in the Braak NFT stage EWAS conducted in 

Chapter 4. However, there was an enrichment for the direction of effect with the cortex 

PRS EWAS results, indicating the results are not entirely independent from 

neuropathology. Of note, the cortex PRS EWAS and Braak NFT EWAS were both 

conducted utilising BDR, which is a dementia cohort, and this may partly explain the 

co-variation between these analyses.  

6.5.2 Limitations 

There are several limitations to consider within this Chapter. First, the use of bulk 

tissue is a potential confounder in DNAm studies (Guintivano, Aryee, & Kaminsky, 

2013). Future studies could look at the associations between PRS and derived cell 

proportions and compare these to the bulk tissue results.  

Although I used the two most recent publicly available LOAD-GWAS, several GWAS 

meta-analysis pre-prints have been recently published (Bellenguez at al., 2020; de 

Rojas at al., 2020; Schwartzentruber at al., 2021; Wightman at al., 2020). In addition, 

there is still a large proportion of the genetic component of AD which is unaccounted 

for, a concept known as “missing heritability” (Manolio at al., 2009). Using larger and 
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more comprehensive GWAS would increase the power of the PRS. However, it is 

worth noting all PRS used in this chapter significantly differentiated cases from 

controls, emphasising the robustness of the PRS. It is also worth considering that the 

majority of large AD GWAS have been conducted in European samples, and therefore 

all my analyses were limited to Europeans, reducing the population validity of my 

results as they may not be consistent for other ethnicities. 

The PRS were not completely independent from the Braak NFT stage EWAS as they 

were conducted in the same sample. Therefore, there is a chance that the correlation 

between the two may confound the results.  However, since genetic loading for AD is 

associated with Braak NFT stage this is to be expected and the overlap was small 

between the two, indicating there are independent effects.  

6.5.3 Conclusion 

This is the first study investigating DNAm changes associated with genetic burden for 

AD and is the first to incorporate non-disease specific blood cohorts, highlighting the 

utility of PRS for identifying molecular pathways associated with aetiological variation 

across multiple tissues. EWAS conducted using PRS are likely to be less confounded 

by environmental or disease driven factors such as smoking, medication or 

neuropathology since they only incorporate genetic factors which are unaffected by 

these. Although PRS in AD are currently not clinically useful due to the small 

differences between cases and controls, this Chapter indicates they can be used to 

aid our understanding of AD and identify potential therapeutic targets.  

7 Discussion 

In this PhD I have assessed the regulatory genomic processes (i.e. epigenomic and 

transcriptomic) involved in the aetiology of Alzheimer’s disease (AD) across multiple 

tissues (two regions of the cortex and whole blood) utilising multi-omics methods. In 

this final discussion I present an overview of my primary findings and relate them to 

existing literature on genomic variation in AD. I also summarise the strengths, 

limitations and future directions of the research presented in my thesis. 
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7.1 Key findings  

7.1.1 Recalibrating the epigenetic clock: Implications for assessing 
biological age in the human cortex  

In Chapter 3 I developed a novel epigenetic age model specifically for the human 

cortex - the cortical DNAm clock (DNAmClockCortical) - built using an extensive 

collection of DNA methylation (DNAm) data derived from >1000 human cortex 

samples. The model dramatically outperforms existing DNAm-based biomarkers for 

age prediction in data derived from the human cortex. I demonstrated that previous 

epigenetic clocks systematically underestimate age in older samples and do not 

perform optimally in human cortex tissue. I established that the age distribution and 

tissue type of samples included in training datasets for epigenetic clocks are important 

to consider when building and applying epigenetic clock algorithms to human 

epidemiological or disease cohorts. Additionally, the lack of association between 

accelerated ageing estimated using the DNAmClockCortical and neuropathological 

measures in the BDR cohort indicate that although 1st generation epigenetic clocks 

are good predictors of age, they may not be directly associated with neuropathology. 

My findings suggest that previous associations between predicted DNAm age and 

neurodegenerative phenotypes may represent false positives resulting from 

suboptimal calibration of DNAm clocks for the tissue being tested and for phenotypes 

that manifest at older ages. 

7.1.1 Epigenome wide association study of neuropathology in the Brains 
for Dementia Research cohort 

In Chapter 4 I examined the association between DNAm and five different 

neuropathology measures (Braak neurofibrillary tangle [NFT] stage, Thal phase, 

CERAD density, Braak Lewy body [LB] stage and TDP-43 status) utilising samples 

from two cortical regions from donors in the BDR study. I identified a number of 

differentially methylated positions (DMPs) and differentially methylated regions 

(DMRs) that were associated neuropathology. Many of these neuropathology 

associated-loci were annotated to genes which have previously been implicated in 

neurodegenerative diseases, including several annotated to the HOXA gene cluster 

(Gasparoni at al., 2018; R. G. Smith at al., 2018). Additionally, a number of novel loci 

which have not previously been implicated in dementia were identified, which warrant 
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future exploration in neurodegenerative diseases. The WGCNA analysis identified 

several modules of co-methylated sites which were associated with neuropathology. 

These modules were enriched for genes involved in functional pathways implicated in 

AD such as in cholesterol metabolism (Picard at al., 2018), gliogenesis (Rusznák, 

Henskens, Schofield, Kim, & Fu, 2016) oligodendrocyte differentiation (Desai at al., 

2010) and the immune response (Heppner, Ransohoff, & Becher, 2015). The findings 

from this Chapter indicate that methylomic variation associated with neuropathology 

may be a consequence of general neurodegeneration as opposed to being involved 

in specific neuropathological processes. This conclusion highlights the strength of the 

experimental design which incorporated numerous neuropathology measures, 

enabling us to better understand disease pathogenesis.    

7.1.2 Methylation quantitative trait loci (mQTL) analysis and summary 
data-based Mendelian randomisation (SMR) 

In Chapter 5 I explored the genetic architecture of DNAm in both whole blood and the 

cortex. I identified associations between common genetic variants and DNAm sites 

(mQTLs), finding evidence of co-variation across tissues for a large proportion of sites. 

The mQTL databases were subsequently used to characterise the relationship 

between proximally located DNAm sites, and I identified numerous examples where 

neighbouring DNAm sites are genetically co-regulated with the same causal variant. 

This finding concurs with previous research which identified that multiple DNAm sites 

are influenced by overlapping variants (Hannon at al., 2018; Liu at al., 2014). The 

mQTLs were used for SMR analyses, which identified multiple situations where SNPs 

are pleiotropically associated with LOAD with evidence that this relationship is 

mediated by either DNAm, gene expression or both. Many of the prioritised genes 

were identified in the vicinity (within 250kb) of AD risk loci including several which were 

pleiotropically associated with both DNAm and gene expression such as MS4A4A 

(Deming at al., 2019), MS4A6A (Deming at al., 2019) and CELF1 (Karch at al., 2016), 

in whole blood and C1QTNF4 (Rosenthal & Kamboh, 2014) in the cortex. A number 

of GO pathways were enriched among genes prioritised by SMR including lipid and 

cholesterol metabolism (Di Paolo & Kim, 2011; Jones at al., 2010; Penke at al., 2018), 

Aβ (Kunkle at al., 2019; Sadigh-Eteghad at al., 2015), tau (Kosik, Joachim, & Selkoe, 

1986; Kunkle at al., 2019), APP processing (Eggert, Thomas, Kins, & Hermey, 2018) 

and the innate immune response (Cao & Zheng, 2018; Jones at al., 2010; Kunkle at 
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al., 2019). By integrating SNPs and DNAm with LOAD GWAS variants and gene 

expression I was able to explore the mechanisms underlying disease, advancing our 

understanding of the interaction between gene regulation and expression, and 

enabling the prioritisation of candidate genes involved in disease aetiology.  

7.1.3 Methylomic variation associated with polygenic risk for Alzheimer’s 
disease 

In Chapter 6 I examined the relationship between DNAm and polygenic risk burden 

for LOAD in both whole blood and the cortex. PRS were generated both including and 

excluding the APOE region using two recent GWAS datasets. When excluding APOE 

from the PRS, I identified a number of DMPs and DMRs which were associated PRS 

and many of these were annotated to genes which are relevant in the context of 

neurodegenerative disease including HLA (Jansen at al., 2019; Karch at al., 2016; 

Kunkle at al., 2019), PSMC3 (Karch at al., 2016), C1QTNF4 (Karch at al., 2016), 

MS4A3 (Villegas-Llerena, Phillips, Garcia-Reitboeck, Hardy, & Pocock, 2016) and 

BIN1 (De Jager at al., 2014). When APOE was included in the PRS it diminished the 

associations at these loci, with the predominant associations being driven by cis 

effects of the APOE locus itself. PRS-associated loci are largely independent of 

changes observed in the case-control EWAS of neuropathology presented in Chapter 
4. However, there was an enrichment for consistent directions of effect with the cortex 

PRS EWAS results, indicating and overlap between differences associated with 

disease neuropathology. There was evidence for direct cis genetic influences on 

DNAm at several PRS-associated loci as identified by utilising the mQTL analyses 

presented in Chapter 5, although a number of associations were likely driven by the 

cumulative effect of the PRS. There was overlap in the genes annotated to DMPs 

identified in the analyses of cortex and whole blood (e.g. APOE and HLA), which 

suggests there are several consistent effects of PRS on DNAm across tissues. 

However, there was also evidence for tissue heterogeneity, potentially reflecting tissue 

specific effects between areas primarily affected in AD (e.g. the cortex) compared to 

peripheral tissues (e.g. whole blood). This research highlights the utility of PRS for 

identifying molecular pathways associated with aetiological variation. 
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7.2 Integration of AD findings  

Over the past few decades, researchers have made progress in understanding the 

underlying biological mechanisms involved in the development of AD. Several 

pathways are hypothesised to be involved in the aetiology of AD including lipid and 

cholesterol metabolism (Di Paolo & Kim, 2011; Jones at al., 2010; Penke at al., 2018), 

Aβ (Kunkle at al., 2019; Sadigh-Eteghad at al., 2015), tau (Kosik at al., 1986; Kunkle 

at al., 2019) and APP processing (Eggert at al., 2018), as well as an extensive role of 

the immune system (Cao & Zheng, 2018; Jones at al., 2010; Kunkle at al., 2019). 

Additionally, the genetic component of AD has been well established and genome 

wide-association studies (GWAS) have identified numerous variants which are 

robustly associated with disease (Bellenguez at al., 2020; de Rojas at al., 2020; 

Jansen at al., 2019; Kunkle at al., 2019; Lambert at al., 2013; Schwartzentruber at al., 

2021; Wightman at al., 2020). However, little is known about the functional 

mechanisms by which risk variants mediate disease susceptibility; as the majority of 

these variants do not index coding variants affecting protein structure they are 

hypothesised to influence gene regulation (Kikuchi at al., 2019; Marzi at al., 2018). To 

my knowledge, this thesis consists of the most comprehensive study of genomic, 

methylomic and transcriptomic variation across tissues in AD and represents an 

important contribution to the field by providing support for these hypotheses. 

 

Across Chapter 4-6 I identified a number of associations with genes and pathways 

implicated in immune regulation, lipid and cholesterol metabolism and Aβ, tau and 

APP processes. For example, in Chapter 4 several DMPs and DMRs were annotated 

to key immune related genes (e.g. TNFRSF1A and OSCAR). In combination with the 

pathway analysis of the neuropathology-associated WGCNA modules highlighting an 

abundance of immune pathways (e.g. B and T cell processes and humoral immune 

response), these findings provide further evidence that immune regulation plays a role 

in the aetiology of AD and other dementias (Heppner at al., 2015). Additionally, in 

Chapter 5 and 6 several immune related genes were prioritised from the analyses 

including a number of loci annotated to HLA. The HLA locus encodes several 

molecules that have a major role in innate immunity and has been implicated in genetic 

studies of AD (Jansen at al., 2019; Karch at al., 2016; Kunkle at al., 2019). Several 

other immune related genes were identified including PSMC3 (Karch at al., 2016), 
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C1QTNF4  (Karch at al., 2016), MS4A3 (Villegas-Llerena at al., 2016), and BIN1 (De 

Jager at al., 2014). These results implicate genes which are highly expressed in 

microglia, astrocytes or other myeloid cell types in AD pathogenesis, further supporting 

the involvement of immune related pathways in AD. Several other AD associated 

biological pathways were implicated in Chapter 5 including lipid related pathways such 

as cholesterol metabolism and transport. Lipids are involved in APP processing and 

trafficking and influence the formation of Aβ peptides which are involved in AD 

pathogenesis (Penke at al., 2018). Furthermore, multiple amyloid and tau related 

pathways were identified including Aβ binding and tau binding pathways and a number 

loci were annotated to genes involved in these processes such as MS4A4A, MS4A6A 

and CR1 (Cruchaga at al., 2013; Deming at al., 2019). My results provide further 

support for a role of lipid and cholesterol metabolism, Aβ, tau, APP processes and the 

immune system in the aetiology of AD.  

Chapters 5 and 6 utilised different methods for understanding the relationship 

between genetics and methylomic variation, with both approaches supporting the 

hypothesis that GWAS variants are involved in gene regulation. Several prioritised loci 

were consistent across analyses including HLA, MS4A, BIN1 and multiple loci on 

chromosome 11 where there are four AD GWAS associations (Bellenguez at al., 2020; 

Kunkle at al., 2019). These analyses indicate that both direct cis genetic effects and 

indirect cumulative polygenic effects are associated with methylomic variation and are 

involved in the aetiology of AD. The genetic effects were largely independent of the 

neuropathology EWAS results generated in Chapter 4. However, there was an 

enrichment for the direction of effect with the cortex PRS EWAS results, indicating 

genetically mediated methylomic changes in AD are not fully independent from 

neuropathology. Although the genetic-DNAm associations are unlikely to be 

confounded by disease course and medication intake, it is important to establish 

whether the neuropathology associated differences are causal and have a direct 

impact on disease aetiology. The breadth of associations between genetically 

mediated and neuropathology driven DNAm variation highlights the complexity of 

understanding the molecular pathways involved in the aetiology of AD and warrant 

future exploration.  
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The results from Chapters 3, 5 and 6 highlight that some degree of inter-individual 

epigenetic variation is conserved across tissues. For example, in Chapter 3 the 

DNAmClockCortical outperformed existing DNAm-based biomarkers for age prediction 

in data derived from the human cortex. However, DNAm age predicted using the 

DNAmClockCortical correlated with chronological age in whole blood, albeit with lesser 

accuracy. In Chapter 5 the whole blood and cortex mQTL databases showed high 

overlap, suggesting that the majority of mQTL effects are concordant across tissues. 

This corroborates previous studies demonstrating that a relatively high proportion of 

mQTLs co-vary across tissues (Hannon at al., 2016; Smith at al., 2014). Additionally, 

a number of pleiotropic associations between DNAm, gene expression and LOAD 

identified by SMR were characterised by consistent signals at certain loci in both whole 

blood and the cortex. This pattern was also reflected in the results from Chapter 6, 
which provided evidence for consistent PRS-associated DNAm effects at some loci 

across tissues. Collectively, these results further support the notion that whole blood 

may be a valid correlate of physiological processes in other tissues for both 

genetically-mediated and age-associated sites. However, my analyses suggest that 

epigenetic clocks work optimally in the tissues that they are trained in, and additionally 

there was evidence for cortex-specific genetic effects at certain loci, indicating there 

is some regulatory heterogeneity between whole blood and cortex. This is accordance 

with research conducted by Hannon and colleagues (2015) suggesting that EWAS 

using whole blood for disorders where the brain is primarily affected may provide 

limited information relating to the underling pathological process. Since LOAD is a 

disease of the brain, this highlights the importance of utilising relevant tissue where 

possible, although it does not discount the utility of using a blood-based in epigenetic 

studies to identify potential biomarkers of neurodegenerative phenotypes. 

 

7.3 Limitations and future directions 

Several AD associated genes have been highlighted by the analyses presented within 

this thesis. Since the methods used throughout this thesis are hypothesis generating 

(i.e. providing statistical evidence for an association with different aspects of AD), it is 

unknown if the genes are biologically relevant. The next step would be to functionally 

validate these genes. This research could potentially be conducted using cell culture 
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and genetic editing approaches such as CRISPR/cas9 (Hsu, Lander, & Zhang, 2014). 

This would be an interesting approach to take since CRISPR/cas9 has recently been 

applied to induce epigenetic changes, enabling the exploration of the effects variable 

DNAm has on the expression of a gene in specific cell lines (Liao at al., 2017). Leading 

on from this, considering the dynamic and potentially reversible nature of DNAm, AD 

associated loci identified in this thesis are potential therapeutic targets. It may be 

possible to develop compounds which modify abnormally differentially methylated 

genes. Currently, there has been limited successes in AD drug trials and epigenetic 

mechanisms represent a promising target for future studies.  

As discussed in individual chapters, there are several limitations of my work that need 

to be taken into consideration. First, the analyses conducted throughout this thesis 

were all based on ‘bulk’ tissue comprising of a complex mixture of cells types in both 

whole blood and cortex and therefore no cell-type-specific conclusions can be drawn. 

Cellular heterogeneity is important to consider in AD as pathology affects specific 

neural populations in the brain including loss of neurons, glial cell activation and 

hypertrophy of astrocytes. Areas of the cortex which are heavily impacted by 

neuropathology are highly susceptible to these changes. In order to account for 

cellular heterogeneity between individuals I included a measure of derived cell 

proportions in my analyses. However, there is no method to confirm that the 

proportions have been adequately controlled for. Moreover, it is possible some 

important disease associated variation is missed if one cell type negates the effects of 

a different cell type. Sorted cell populations should be incorporated into future 

analyses. For example, the isolation of purified nuclei populations using methods such 

as fluorescence-activated nuclei sorting (FANS) could be utilised to isolate nuclei 

populations which are enriched for cells involved in the aetiology of AD such as 

neurons, oligodendrocytes and microglia. Currently, there are limited studies which 

have utilised these methods in samples which cover the entire span of AD 

neuropathology. The BDR cohort could potentially be utilised for these analyses. 

EWAS of neuropathology could be conducted on the purified cell populations and 

comparisons between bulk and single cell profiles could be conducted. mQTLs could 

be identified in these specific cell populations enabling us to explore the extent to 

which AD risk loci are associated with these QTLs in different cell types. Following 

this, SMR analyses could be conducted to identify genetic variants which are 
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pleiotropically associated with AD and molecular markers of regulation in specific cell 

types.  

 

Within this thesis I focused exclusively on one epigenetic mechanism – DNAm. 

However, recent studies have indicated the importance of incorporating other 

regulatory marks. For example 5-hydroxymethyl cytosine (5hmC) - another 

modification which occurs to DNA - has been associated with active transcription and 

is associated with AD pathology in the cortex (A. R. Smith at al., 2019). Of note, 5hmC 

is indistinguishable from DNAm when standard bisulfite approaches are used, and this 

could potentially confound the results identified in this thesis. Additionally, histone 

modifications such as lysine H3K27 acetylation (H3K27ac) - a mark of enhancer and 

promoter activation – has been associated with AD (Marzi at al., 2018), where 

differentially acetylated peaks were identified near genes which have been implicated 

in AD pathology (e.g. APP, PSEN1, PSEN1 and regions enriched for LOAD GWAS 

variants). Future studies should focus on incorporating a number of epigenetic 

mechanisms in order to increase our understanding of the regulatory genomic 

mechanisms involved in AD pathology.  

Within the exception of the analyses of neuropathology, throughout this thesis I have 

focused on prioritising genes for AD. The methods used in Chapters 5 and 6 could be 

applied to other neurodegenerative diseases including PD, DLB and FTD. Future 

studies should focus on identifying associations between genetic and methylomic 

variation utilising the SMR and PRS EWAS methods for these diseases. It would be 

particularly interesting to compare cross-disorder results since there is evidence of 

pleiotropy between these diseases. For example, SNPs annotated to HLA, MAPT and 

APOE all contribute to increased risk for FTD, AD and PD (Ferrari at al., 2017). There 

have been several studies suggesting that PD, DLB and AD share underlying 

mechanisms and there are strong genetic correlations between these diseases 

(Desikan at al., 2015; Guerreiro at al., 2016). Previous EWAS have also identified 

methylomic similarities in neurodegenerative diseases (2016) and this hypothesis was 

further supported by the analyses in Chapter 4.  

DNAm sites are generally annotated to genes based on proximity. However, the SMR 

analysis revealed that these are not necessarily the most functionally relevant. Future 

studies should focus on incorporating eQTL data in order to identify the most relevant 
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genes. Additionally, the mQTL-eQTL information from this thesis could be utilised to 

create a novel gene annotation manifest which takes into consideration regulatory 

processes as opposed to proximity. Additionally, since only cis QTLs were considered, 

future studies should look at trans QTL effects and incorporate these results into the 

refined annotation manifest. Hi-C data could also be utilised to better annotate 

regulatory domains to genes. It has revealed there are contacts between distant 

genomic regions within the same or across different chromosomes, which has many 

implications for gene regulation. Hi-C assesses this 3D chromatin conformation and 

can be used to elucidate how the spatial organisation of DNA affects gene regulation 

by identifying interactions and topologically associating domains (Kikuchi at al., 2019; 

Pombo & Dillon, 2015). 

In future analyses, sequencing-based approaches could be used to give better 

coverage of variable DNAm across the genome. Most of the existing genomic, 

methylomic and transcriptomic studies of AD have been conducted using microarray 

technologies as they are cost-effective and high throughput. However, the content on 

these arrays is constrained. The Illumina EPIC array for example, contains a small 

proportion of the total number of genome-wide DNAm sites and has sparse coverage 

of certain regulatory features which are often represented by one DNAm probe 

(Pidsley at al., 2016). Whole genome bisulfite sequencing (WGBS) provides a more 

comprehensive method of DNAm quantification, covering the entire genome 

(Stirzaker, Taberlay, Statham, & Clark, 2014). However, there are limitations to this 

methodology; the high costs and technical expertise required to generate WGBS has 

limited its application in the context of large cohort studies (Ziller, Hansen, Meissner, 

& Aryee, 2015). In the future, long-read sequencing technologies which are currently 

under active development will enable the identification of both genetic and regulatory 

variation in the same sample and could be utilised to gain deeper insights into the 

functional regulatory processes involved in the pathogenesis of AD (Amarasinghe at 

al., 2020).  

7.4 Conclusion  

In conclusion, the work presented throughout my thesis represents a comprehensive 

assessment of genomic, methylomic and transcriptomic variation in AD across two 

tissues: whole blood and the cortex. I have prioritised numerous loci that could be 
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targeted for future functional studies which could confirm their biological relevance in 

relation to AD. I provide further support for several pathways which are hypothesised 

to be involved in AD pathogenesis such as lipid and cholesterol metabolism, Aβ, tau 

and APP processing, as well as a role for the immune system. The analyses 

incorporating genetic and methylomic variation suggests that there are both direct cis 

genetic effects and indirect polygenic effects on regulatory processes which are 

involved in the aetiology of AD. A high proportion of mQTLs were conserved across 

tissues and there were consistent findings at a number of loci across both the whole 

blood and cortex PRS EWAS and SMR analyses. However, there was also evidence 

for heterogeneity across tissues suggesting that some tissue specific effects occur in 

areas primarily affected in AD (e.g. the cortex) in comparison to peripheral tissues. 

The data in this thesis provides a foundation for future work which could focus on 

validating the prioritised genes. Overall, my work further advances our understanding 

of the regulatory genomic process involved in the aetiology of AD. 
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Genetic risk for Alzheimer’s disease influences
neuropathology via multiple biological
pathways

Eilis Hannon,1 Gemma L. Shireby,1 Keeley Brookes,2 Johannes Attems,3 Rebecca Sims,4

Nigel J. Cairns,1 Seth Love,5 Alan J. Thomas,3 Kevin Morgan,6 Paul T. Francis1,7 and
Jonathan Mill1

Alzheimer’s disease is a highly heritable, common neurodegenerative disease characterized neuropathologically by the accumulation

of b-amyloid plaques and tau-containing neurofibrillary tangles. In addition to the well-established risk associated with the APOE

locus, there has been considerable success in identifying additional genetic variants associated with Alzheimer’s disease. Major chal-

lenges in understanding how genetic risk influences the development of Alzheimer’s disease are clinical and neuropathological het-

erogeneity, and the high level of accompanying comorbidities. We report a multimodal analysis integrating longitudinal clinical

and cognitive assessment with neuropathological data collected as part of the Brains for Dementia Research study to understand

how genetic risk factors for Alzheimer’s disease influence the development of neuropathology and clinical performance. Six hun-

dred and ninety-three donors in the Brains for Dementia Research cohort with genetic data, semi-quantitative neuropathology

measurements, cognitive assessments and established diagnostic criteria were included in this study. We tested the association of

APOE genotype and Alzheimer’s disease polygenic risk score—a quantitative measure of genetic burden—with survival, four

common neuropathological features in Alzheimer’s disease brains (neurofibrillary tangles, b-amyloid plaques, Lewy bodies and

transactive response DNA-binding protein 43 proteinopathy), clinical status (clinical dementia rating) and cognitive performance

(Mini-Mental State Exam, Montreal Cognitive Assessment). The APOE e4 allele was significantly associated with younger age of

death in the Brains for Dementia Research cohort. Our analyses of neuropathology highlighted two independent pathways from

APOE e4, one where b-amyloid accumulation co-occurs with the development of tauopathy, and a second characterized by direct

effects on tauopathy independent of b-amyloidosis. Although we also detected association between APOE e4 and dementia status

and cognitive performance, these were all mediated by tauopathy, highlighting that they are a consequence of the neuropathologic-

al changes. Analyses of polygenic risk score identified associations with tauopathy and b-amyloidosis, which appeared to have

both shared and unique contributions, suggesting that different genetic variants associated with Alzheimer’s disease affect different

features of neuropathology to different degrees. Taken together, our results provide insight into how genetic risk for Alzheimer’s

disease influences both the clinical and pathological features of dementia, increasing our understanding about the interplay between

APOE genotype and other genetic risk factors.
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Abbreviations: BDR ¼ Brains for Dementia Research;CDR ¼ clinical dementia rating;CERAD ¼ Consortium to Establish a

Registry for Alzheimer’s disease;GWAS ¼ genome-wide association studies;MMSE ¼Mini-Mental State Examination;MoCA ¼
Montreal Cognitive Assessment;NFT ¼ neurofibrillary tangle;PRS ¼ polygenic risk score;SD ¼ standard deviation;SNP ¼ single nu-

cleotide polymorphism;TDP-43 ¼ transactive response DNA-binding protein 43.

Introduction
Alzheimer’s disease is a common neurodegenerative dis-

ease characterized clinically by progressive memory and

cognitive decline leading to dementia and neuropathologi-

cally by b-amyloid plaques and tau-containing neurofib-

rillary tangles (NFTs). The most frequent manifestation

of Alzheimer’s disease is late onset Alzheimer’s disease

where onset occurs after the age of 65. Late onset

Alzheimer’s disease is highly heritable (Gatz et al., 2006)

with the most established genetic risk factor being var-

iants of the APOE gene. Relative to the most common

genotype (e3/e3), the e4 allele increases the risk of

Alzheimer’s disease, with e4 homozygosity associated

with �20-fold increase in risk (Farrer et al., 1997). In

contrast, the e2 allele of APOE has strong protective

effects (Reiman et al., 2020). Genome-wide association

studies (GWAS) in large sample cohorts (Lambert et al.,

2013; Marioni et al., 2018; Jansen et al., 2019; Kunkle

et al., 2019) have identified additional variants in more

than 40 regions of the genome which individually confer

subtler effects on risk, but cumulatively account for a

large proportion of genetic risk. To index an individuals’

genetic risk profile, disease-associated variants—typically

including those below genome-wide significance—can be

combined into a ‘polygenic risk score’ (PRS). PRSs quan-

tify the number of genetic risk variants an individual has,

weighted by their effect size, and have been shown to im-

prove prediction models of Alzheimer’s disease (Escott-

Price et al., 2015, 2019; Cruchaga et al., 2018). Of note,

the Alzheimer’s disease PRS has greatest predictive power

where disease status has been defined by standardized

neuropathological assessment (Escott-Price et al., 2017),

and is most elevated in sporadic early-onset cases

(Cruchaga et al., 2018).

In addition to genetic prediction, PRSs provide a

powerful mechanism to investigate how genetic risk medi-

ates the development of symptoms, and can potentially

be used to disentangle the primary causal features from

the secondary consequences of disease. As well as being

associated with dementia status, the Alzheimer’s disease

PRS has been shown to correlate with mild cognitive im-

pairment (Adams et al., 2015; Chaudhury et al., 2019),

cognitive decline (Mormino et al., 2016; Marioni et al.,

2017; Felsky et al., 2018), memory impairments

(Mormino et al., 2016; Marioni et al., 2017), cortical

thickness (Sabuncu et al., 2012; Corlier et al., 2018), hip-

pocampal volume (Lupton et al., 2016; Mormino et al.,

2016), cerebrospinal biomarkers (Martiskainen et al.,

2014; Louwersheimer et al., 2016; Desikan et al., 2017)

and neuropathology (Desikan et al., 2017; Felsky et al.,

2018; Tasaki et al., 2018). The breadth of associations

highlights the complexity of understanding the pathways

from genetic risk to symptomatic disease. Furthermore,
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many of these analyses have included the APOE locus

within the PRS, meaning their results may reflect APOE-
specific effects rather than the consequences of a broader

polygenic risk burden. To truly understand how multiple

genetic risk factors combine to influence the interplay of

the clinical, cognitive and neuropathological characteris-

tics of Alzheimer’s disease, we need large, longitudinal

cohorts with post-mortem tissue that can align genetics,

clinical data and standardized neuropathological

assessments.

A major challenge in understanding how genetic risk

influences the development of Alzheimer’s disease relates

to clinical and neuropathological heterogeneity, and the

high level of accompanying comorbidities associated with

a diagnosis of Alzheimer’s disease. The presence of the

neuropathological hallmarks of Alzheimer’s disease can

only be confirmed following post-mortem brain examin-

ation. Standardized sampling and staining methods, along

with the introduction of a number of semi-quantitative

classification schemes, each focused on a single neuro-

pathological feature (Thal et al., 2002; Braak et al.,

2003, 2006), promote consistency making it easier to

harmonize data across brain banks and ultimately the re-

producibility of findings across studies. It is now recog-

nized that sporadic dementia in older people is

predominantly due to multiple pathologies (Robinson

et al., 2018). The most frequent comorbidity is Lewy

body pathology affecting up to 50% of sporadic

Alzheimer’s disease cases (Toledo et al., 2013). Another

common comorbidity is the presence of inclusion bodies

containing aggregates of transactive response DNA-bind-

ing protein 43 (TDP-43), particularly in the oldest old

(Amador-Ortiz et al., 2007; Uryu et al., 2008; James

et al., 2016). As well as influencing cognitive impairment

in non-Alzheimer’s disease cases (Nag et al., 2017), these

comorbidities contribute to the cognitive decline observed

in Alzheimer’s disease cases beyond that associated with

b-amyloid and NFT pathology (Wilson et al., 2013;

Nelson et al., 2019), hence it is important to consider

multiple neuropathological features simultaneously, to

understand the processes that underlie cognitive perform-

ance in old age.

The paucity of comprehensive neuropathological data

in large sample cohorts has limited previous genetic stud-

ies of Alzheimer’s disease-associated neuropathology. To

address this gap, the Brains for Dementia Research

(BDR) cohort was established in 2007 recruiting both de-

mentia patients and unaffected controls over the age of

65 to partake in routine longitudinal assessments collect-

ing cognitive, clinical, lifestyle and psychometric data,

prior to post-mortem brain donation (Francis et al.,
2018). The inclusion of standardized semi-quantitative

data for a range of neuropathological features facilitates

analyses into the specificity of genetic risk factors for the

different abnormalities, and an assessment of their clinical

contributions. In this study we report the first multimodal

analysis of the BDR cohort, integrating longitudinal

clinical and cognitive assessment with neuropathological

data to explore how known genetic risk factors for

Alzheimer’s disease influence the development of different

aspects of neuropathology and cognitive performance in

old age. We focus on four common neuropathological

features observed in Alzheimer’s disease brain tissue:

NFTs, b-amyloid plaques, Lewy bodies and TDP-43 pro-

teinopathy. The results of this study provide insights into

the neurobiological pathways to cognitive decline by

refining our understanding of the complex interplay of

genetic risk, clinical presentation and neuropathological

burden.

Materials and methods

BDR cohort description

BDR was established in 2007 and consists of a network

of six dementia research centres in England and Wales

(King’s College London, Bristol, Manchester, Oxford,

Cardiff and Newcastle Universities) and the associated

university brain banks handling the donations (Cardiff

brain donations were banked in London). Participants

over the age of 65 were recruited using national and

local press, TV and radio coverage, articles in charity

newsletters, national magazines with an older following,

BDR posters, leaflets, memory clinics, talks at carer/sup-

port groups, Women’s Institute and the University of the

Third Age. There was no screening to exclude or include

individuals with particular diagnoses or those carrying

genetic variants associated with neurodegenerative dis-

eases. The cohort includes individuals with and without

dementia, spanning the full spectrum of dementia diagno-

ses. Participants underwent a series of longitudinal cogni-

tive and psychometric assessments and registered for

brain donation. An extensive description of the recruit-

ment strategy, demographics, assessment protocols and

neuropathic assessment procedures can be found in

(Francis et al., 2018).

Longitudinal cognitive and clinical
assessments

All assessments were conducted by a trained psychologist

or research nurse. Exclusion criteria to undergo assess-

ments included: (i) factors precluding brain donation (e.g.

brain injury/trauma, major stroke), (ii) being younger

than 65 for healthy controls (except where they were

spouses/partners of participants with dementia), (iii) hav-

ing insufficient English language skills for completing

assessments and (iv) being geographically too remote

from an assessment centre. Baseline assessments were

conducted face-to-face (in the participant’s place of resi-

dence or a BDR centre), follow-up assessments were usu-

ally face-to-face but telephone interviews were also used

for some healthy control participants. Follow-up
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interviews were annual for participants with cognitive im-

pairment, and every 1–5 years (depending on age) for

cognitively healthy participants. Clinical assessment was

performed using the clinical dementia rating (CDR)

(Morris, 1993). Cognitive assessment measures relevant

to this study included the Mini-Mental State Examination

(MMSE) (Folstein et al., 1975) and Montreal Cognitive

Assessment (MoCA) (Nasreddine et al., 2005).

Post-mortem neuropathological
assessment

After removal, the brain was examined macroscopically

and digitally recorded. After slicing, the brain was compre-

hensively sampled according to the BDR protocol by expe-

rienced neuropathologists in each of the five network brain

banks. This protocol, arrived at by consensus across the

BDR network and based on the BrainNet Europe initiative

(Bell et al., 2008), was used to generate a description of

the regional pathology within the brain together with

standardized scoring. In this study we considered five varia-

bles representing four neuropathological features: (i) Braak

tangle stage which captures the progression of NFT path-

ology (Braak and Braak, 1991; Braak et al., 2006), (ii)

Thal b-amyloid phase which captures the regional distribu-

tion of plaques (Thal et al., 2002), (iii) Consortium to

Establish a Registry for Alzheimer’s disease (CERAD) stage

which profiles neuritic plaque density (Mirra et al., 1991;

Montine et al., 2012), (iv) Braak Lewy body stage (Braak

et al., 2003) and (v) TDP-43 status (a binary indicator of

the absence/presence of TDP-43 inclusions, as assessed by

immunohistochemistry of the amygdala and the hippocam-

pus and adjacent temporal cortex for phosphorylated TDP-

43). All variables apart from TDP-43 were analysed as

continuous variables, using their semi-quantitative nature to

capture dose-dependent relationships of increasing neuro-

pathological burden.

Genetic data

DNA extraction was performed using a standard phenol

chloroform method on 100 mg of brain tissue. DNA

quality was assessed using the Agilent 2200 TapeStation

DNA integrity number and quantified using NanoDrop

3300 spectrometry. Genotyping was performed on the

NeuroChip array which is a custom Illumina genotyping

array with an extensive genome-wide backbone

(n¼ 306 670 variants) and custom content covering

179 467 variants specific to neurological diseases

(Blauwendraat et al., 2017). Genotype calling was per-

formed using GenomeStudio (v2.0, Illumina) and quality

control was completed using PLINK1.9 (Chang et al.,

2015). Individuals were excluded if either (i) they had >

5% missing data, (ii) their genotype predicted sex using

X chromosome homozygosity was discordant with their

reported sex (excluding females with an F value > 0.2

and males with an F value < 0.8), (iii) they had excess

heterozygosity [>3 standard deviation (SD) from the

mean], (iv) they were related to another individual in the

sample (pi hat > 0.2), where one individual from each

pair of related samples was excluded considering data

quality and phenotype or (v) they were classed as non-

European, determined by merging the BDR genotypes

with data from HapMap Phase 3 (http://www.sanger.ac.

uk/resources/downloads/human/hapmap3.html), linkage

disequilibrium pruning the overlapping single nucleotide

polymorphisms (SNPs) such that no pair of SNPs within

1500 bp had r2> 0.20 and visually inspecting the first

two genetic principal components along with the known

ethnicities of the HapMap sample to define European

samples (Supplementary Fig. 1). Prior to imputation SNPs

with high levels of missing data (>5%), Hardy-Weinberg

equilibrium P< 0.001 or minor allele frequency <1%

were excluded. The genetic data were then recoded as vcf

files before uploading to the Michigan Imputation Server

(Das et al., 2016) (https://imputationserver.sph.umich.edu/

index.html#!) which uses Eagle2 (Loh et al., 2016) to

phase haplotypes, and Minimac4 (https://genome.sph.

umich.edu/wiki/Minimac4) with the most recent 1000

Genomes reference panel (phase 3, version 5). Imputed

genotypes were then filtered with PLINK2.0alpha, exclud-

ing SNPs with an R2 INFO score < 0.5 and recoded as

binary PLINK format. Proceeding with PLINK1.9, sam-

ples with >5% missing values, and SNPs with >2 alleles,

>5% missing values, Hardy-Weinberg equilibrium

P< 0.001 or a minor allele frequency of <5% were

excluded. The final quality controlled imputed set of gen-

otypes contained 6 607 832 variants.

Polygenic risk scores

GWAS results from Kunkle et al. (2019) were used to cal-

culate an Alzheimer’s disease PRS for each individual. We

choose this GWAS as it is based on clinically defined cases

compared to controls. To separate the effects of APOE

from other genetic variants associated with Alzheimer’s dis-

ease, we excluded the APOE region (chr19:45 116 911–

46 318 605) (Kunkle et al., 2019) from the PRS calcula-

tions. We generated PRS using PRSice (v2.0) (Choi and

O’Reilly, 2019) which ‘clumps’ the Alzheimer’s disease

GWAS summary statistics using the BDR genotype data

such that the most significant variant in each linkage dis-

equilibrium block was retained. The PRS was then calcu-

lated in the target (BDR) dataset for each individual, as

the number of reference alleles multiplied by the log odds

ratio for that SNP (taken from the Kunkle et al.

Alzheimer’s disease GWAS), and then summed across all

retained clumped variants with an Alzheimer’s disease

GWAS P-value < PT. A range of P-value thresholds (PT)

were used initially, to generate multiple possible PRS,

where the optimal PRS was selected as the score that

explained the highest proportion of variance (Nagelkerke’s

pseudo R2) in Alzheimer’s disease case control status. In

this analysis, Alzheimer’s disease cases and controls were
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defined as Braak high (Braak tangle stages V and VI) and

low (Braak tangle stages 0–II) respectively, and PRS was

tested using a logistic regression model with the first 8 gen-

etic principal components as covariates. In the BDR cohort

the optimal threshold for selecting SNPs for the PRS was

P< 5 � 10�8 (Supplementary Fig. 2). Prior to analysis the

PRS calculated at this threshold was standardized to have

a mean of 0 and SD of 1; therefore the interpretation is in

units of SDs.

APOE genotyping

The APOE SNPs rs7412 and rs429358 were genotyped

with TaqMan assays using standard protocols. Where

APOE genotype by TaqMan assay was not available, it

was generated from the NeuroChip data (n¼ 44). The

NeuroChip array includes multiple probes to assay the

two APOE SNPs; based on the optimal concordance

with the TaqMan assay (91% concordant across assays)

we used the probes rs7412.B3 and rs429358.T2 to deter-

mine APOE status. In all statistical analyses, APOE sta-

tus was modelled as two numeric variables counting the

number e2 alleles and number of e4 alleles an individual

had. Given the rarity of e2/e2 genotype [only four occur-

rences (0.58%) in this sample], the e2/e2 individuals were

combined with the individuals with one e2 allele.

Statistical analysis

All statistical analyses were performed in R version 3.5.2.

All analytical code is available via GitHub (https://github.

com/ejh243/BDR-Genetic-Analyses).

Survival analysis

To test whether APOE and Alzheimer’s disease PRS were

associated with younger age at death, we fitted Cox’s

proportional hazards models using the R package sur-

vival. Three models were fitted with age at death as the

outcome to test (i) APOE genotype modelled as two vari-

ables, (ii) Alzheimer’s disease PRS and (iii) APOE geno-

type and Alzheimer’s disease PRS simultaneously. All

models included covariates for sex, BDR centre and eight

genetic principal components.

Genetic analysis of neuropathology
and clinical/cognitive status at death

Genetic associations between either APOE status or

Alzheimer’s disease PRS and any of the continuous

neuropathology variables (Braak tangle stage, Thal b-

amyloid stage, CERAD stage, Braak Lewy body stage),

clinical (CDR global rating) or cognitive status at death

(MMSE, MoCA) were tested using a linear regression

model. TDP-43 proteinopathy as a binary variable was

analysed with logistic regression, but the model frame-

work was the same. Up to four regression models were

fitted for each variable. First, the effects of APOE status

and Alzheimer’s disease PRS were estimated separately

using Model 1 and Model 2 below.

Model 1:

variable � APOEe2 þ APOEe4 þ covariates
þ genetic PCs1�8:

Model 2:

variable � PRSþ covariatesþ genetic PCs1�8:

If APOE (either variable) and PRS were significantly

associated with an outcome, then a multiple regression

analysis was additionally fitted testing APOE and PRS

simultaneously to confirm these were independent associ-

ations (Model 3).

Model 3:

variable � APOEe2 þ APOEe4 þ PRSþ covariates
þ genetic PCs1�8:

Finally, an interaction model (Model 4) between APOE

and PRS was fitted to test if PRS associations differed de-

pending on APOE genotype.

Model 4:

variable � APOEe2 þ APOEe4 þ PRSþ APOEe2�PRS
þ APOEe4�PRSþ covariatesþ genetic PCs1�8:

All analyses included age at death, sex and BDR centre

as covariates and the first eight genetic principal compo-

nents. Analyses for clinical or cognition measures also

included a covariate that measured the time lapse be-

tween the last assessment and death.

Longitudinal clinical and cognition
analyses

To test how APOE and Alzheimer’s disease PRS affected

clinical status and cognitive trajectories, we fitted multi-

level regression models using all available pre-mortem as-

sessment data. A time variable was created which meas-

ured the number of days after the first visit that an

assessment took place. Each cognitive variable was then

tested as the dependent variable against this time variable

included as a fixed effect along with covariates for age,

sex, BDR centre and the first eight genetic principal com-

ponents and a random effect for individual. To test for

genetic effects on the cognitive trajectory, either APOE

(coded as two variables) or Alzheimer’s disease PRS, was

included in the model as a main effect and as an inter-

action with time. Models were fitted using the R pack-

ages lme4 and lmTest.

Multiple testing

In total, we tested 12 outcomes against 3 genetic varia-

bles. Our outcomes comprised five neuropathological var-

iables, one clinical variable at death, two cognitive

measures, one longitudinal clinical, two longitudinal
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cognitive measures and a survival analysis of age at

death. Against these 12 outcomes, we tested 3 genetic

variables (Alzheimer’s disease PRS and two variables to

model APOE genotype). Therefore, we performed a mul-

tiple testing correction for 36 tests, reporting significant

associations as those with P< 0.0014. Given the correla-

tions between the neuropathological, clinical and cogni-

tive variables this is likely to be a conservative approach.

Data availability

Genetic, clinical and cognitive data are available through

the Dementia’s Platform UK (DPUK; https://www.demen

tiasplatform.uk/) platform upon application.

Results

Both tauopathy and b-amyloidosis
are present at high frequencies in
the BDR cohort

To profile the effects of both APOE genotype and

Alzheimer’s disease PRS, our analyses were limited to

BDR donors who had undergone neuropathological as-

sessment and had NeuroChip array data (n¼ 693,

Table 1). The participants had a mean age at death of

83.5 years (SD ¼ 9.34 years) and 52.8% were male.

Consistent with epidemiological reports, females were sig-

nificantly older at death than males (mean difference ¼
3.84 years; P¼ 4.87 � 10�8). Within this cohort, 57.3%

of individuals had dementia at their first assessment (i.e.

at baseline), with 63.3% of the cohort affected by de-

mentia at death. At recruitment, individuals had a mean

CDR of 1.42 (SD ¼ 1.36), a mean MMSE score of 22.3

(SD ¼ 8.81) and a mean MoCA score of 17.2 (SD ¼
10.6). These scores indicate that the majority of partici-

pants only suffered mild cognitive impairment, although

the full range of cognitive performance was represented

in the cohort. Participants underwent a mean of 2.85

assessments (SD ¼ 1.71) prior to death. Individuals who

had at least two assessments (N¼ 486) were followed for

a mean of 3.40 years (SD ¼ 2.00 years) with a mean of

1.42 years between assessments (SD ¼ 0.67 years). Our

genetic analyses focused on four semi-quantitative and

one indicator neuropathology variable. In 672 samples

NFT pathology was quantified using Braak NFT stage

(Braak and Braak, 1991; Braak et al., 2006) with a mean

of 3.76 (SD ¼ 1.90). Two variables reflecting the extent

of b-amyloidosis were considered: b-amyloid distribution

was measured by Thal b-amyloid phase (Thal et al.,

2002) with a mean value of 3.14 (SD ¼ 1.78) across 612

individuals and neuritic plaque density was scored using

the CERAD classification (Mirra et al., 1991; Montine

et al., 2012) with a mean value of 1.72 (SD ¼ 1.26)

across 634 individuals. a-Synuclein pathology was quanti-

fied using Braak Lewy body stage, where across 634 indi-

viduals the mean was 1.36 (SD ¼ 2.26). TDP-43 status

was available for 658 individuals, with 150 (22.8%) indi-

viduals classed as being TDP-43 positive.

Genetic risk factors for Alzheimer’s

disease are associated with

increased mortality

To determine whether higher genetic risk for Alzheimer’s

disease was associated with increased mortality we

Table 1 Summary of BDR cohort

% Mean SD N

Demographics Sex (male) 52.8 693

Age 83.5 9.34 693

Clinical assessments Number of assessments 2.85 1.71 693

Time in study (years) 3.40 2.00 486

Time between assessments (years) 1.42 0.67 486

Dementia status at first assessment Dementia 57.3 693

MCI/inconclusive 13.3 693

No dementia 29.3 693

Dementia status at last assessment Dementia 63.3 693

MCI/inconclusive 14.2 693

No dementia 22.5 693

Neuropathology Braak stage tangle 3.76 1.9 672

Thal amyloid stage 3.14 1.78 612

CERAD stage 1.72 1.26 634

Braak Lewy body stage 1.36 2.26 597

TDP-43 22.8 658

Cognitive scores at first assessment CDR 1.42 1.36 639

MMSE 22.3 8.81 469

MoCA 17.2 10.6 270

Cognitive scores at last assessment CDR 1.79 1.3 639

MMSE 19.1 10.3 469

MoCA 16.1 11 270
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analysed survival with Cox’s proportional hazard models

(Table 2). APOE genotype was modelled as two varia-

bles—the number of e4 alleles and the number of e2
alleles, to distinguish the hypothesized risk effects of e4
(Corder et al., 1993; Farrer et al., 1997) from the pro-

tective effects of e2 (Reiman et al., 2020). Analysis of

APOE genetic risk found that APOE e4 status was sig-

nificantly associated with younger age at death, with

each additional e4 allele associated with 29% increased

risk of death (hazard ratio ¼ 1.29; P¼ 9.66 � 10�5).

Alzheimer’s disease PRS was nominally associated with

an increased mortality (hazard ratio ¼ 1.11; P¼ 8.97 �
10�3), although this was not significant after correcting

for multiple testing.

APOE and Alzheimer’s disease PRS

independently influence tauopathy

and b-amyloidosis

The number of APOE e4 alleles was positively associated

(P< 0.00014) with all four semi-quantitative neuropathol-

ogy measures (Table 3). The most significant association

was with Braak NFT stage: each e4 allele was associated

with an increase in 1.16 Braak NFT stages (P¼ 4.16 �
10�24). Associations were also found between e4 status

and Thal b-amyloid phase (mean difference per e4 allele

¼ 0.981 phases; P¼ 3.96 � 10�20), neuritic plaque

density (mean difference per e4 allele ¼ 0.713 stages;

P¼ 1.03 � 10�19) and Braak Lewy body stage (mean dif-

ference per e4 allele ¼ 0.555 stages; P¼ 2.64 � 10�4).

Alzheimer’s disease PRS was associated with two meas-

ures of neuropathology (Table 3): a higher polygenic bur-

den was associated with Braak NFT stage (mean

difference per SD of PRS ¼ 0.354 stages; P¼ 1.36 �
10�6) and neuritic plaque density (mean difference per

SD of PRS ¼ 0.202 stages; P¼ 5.27 � 10�5). TDP-43

was not associated with either APOE genotype or

Alzheimer’s disease PRS. Although variants in the APOE

region were excluded from the PRS, we tested both

APOE and PRS against Braak NFT stage and neuritic

plaque density simultaneously to confirm that the identi-

fied associations were independent. The estimated effects

of e4 on both Braak NFT stage and neuritic plaque dens-

ity were unaffected, while the Alzheimer’s disease PRS

associations were slightly attenuated (Table 3) but

remained significant. In addition to an additive model,

we tested whether there was evidence for a multiplicative

effect between Alzheimer’s disease PRS and APOE geno-

type on neuropathological burden to explore the hypoth-

esis that in individuals with protective APOE genotypes,

Alzheimer’s disease PRS is more important (i.e. has a

larger effect on neuropathology). In this analysis, none of

the five neuropathological variables had statistically sig-

nificant differences across APOE genotype groups

(P> 0.05) (Supplementary Table 1). Taken together, these

Table 2 APOE is associated with increased mortality

Analytical model APOE PRS

Number of e2 alleles Number of e4 alleles

Hazard ratio SE P-value Hazard ratio SE P-value Hazard ratio SE P-value

Model 1 0.835 0.123 0.142 1.293 0.066 9.66E�05

Model 2 1.105 0.038 8.97E�03

Model 3 0.839 0.124 0.155 1.292 0.066 1.00E�04 1.106 0.038 8.41E�03

Table 3 Common genetic risk factors for Alzheimer’s disease are associated with multiple aspects of

neuropathology

Analytical

model

Neuropathological

variable

APOE PRS

Number of e 2 alleles Number of e 4 alleles

P-value Coefficient %VarExp P-value Coefficient %VarExp P-value Coefficient %VarExp

Model 1 Braak stage tangle 0.0877 �0.357 0.958 4.16E�24 1.16 15.1

Thal amyloid stage 0.00333 �0.562 1.54 3.96E�20 0.981 13.5

CERAD stage 0.0224 �0.329 1.99 1.03E�19 0.713 13.4

Braak Lewy body stage 0.988 �0.00439 0.0809 0.000264 0.555 2.59

TDP-43 0.859 �0.0574 0.00821 0.00158 0.537 2.58

Model 2 Braak stage tangle 1.36E�06 3.4 0.354

Thal amyloid stage 0.00288 1.1 0.201

CERAD stage 5.27E�05 2.95 0.202

Braak Lewy body stage 0.267 0.167 0.105

TDP-43 0.315 0.26 0.104

Model 3 Braak stage tangle 0.0885 �0.3505 0.9580 9.40E�24 1.132 15.119 4.97E�06 0.309 2.465

CERAD stage 0.0224 �0.3254 1.9865 2.02E�19 0.700 13.402 1.30E�04 0.179 2.192
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results suggest that APOE status and Alzheimer’s disease

PRS are independently associated with neuropathology,

combining in an additive manner to influence an individ-

ual’s accumulation of tauopathy (NFTs) and b-amyloid

plaques.

Given that the two distinct molecular pathologies—tau-

opathy and b-amyloidosis—that define Alzheimer’s dis-

ease are highly correlated (Supplementary Fig. 3), we

wanted to establish whether APOE or Alzheimer’s dis-

ease PRS had a specific (or primary) effect on a particu-

lar aspect of neuropathology. To this end, we repeated

the analysis of how Alzheimer’s disease PRS and APOE

influence pathology, sequentially controlling for other

neuropathology variables. This analysis revealed some

interesting patterns. First, after controlling for any of the

other three quantitative neuropathological variables,

Braak Lewy body stage was not significantly associated

with APOE e4 (Supplementary Table 2) suggesting that

the association we detected was largely driven by the fact

that individuals with Lewy bodies have also NFTs and b-

amyloid plaques. Second, after we controlled for Braak

NFT stage, neither of the plaque measures remained sig-

nificantly associated with APOE e4 (Supplementary Table

2). In contrast, Braak NFT stage remained significantly

associated with APOE e4 status after controlling for pla-

que variable (adjusted for Thal phase, mean difference

per APOE e4 allele ¼ 0.468; P¼ 6.44 � 10�7; adjusted

for neuritic plaque density, mean difference per e4 allele

¼ 0.238; P¼ 1.82 � 10�4), albeit with an attenuated

magnitude of effect. Considering the two measures of pla-

que burden, only Thal b-amyloid phase remained signifi-

cantly associated with e4 after controlling for neuritic

plaque density (mean difference per e4 allele ¼ 0.265;

P¼ 3.42 � 10�4). Neither Braak NFT stage nor neuritic

plaque density remained significantly associated with

Alzheimer’s disease PRS after controlling for the other

measure of pathology (Supplementary Table 2). These

results indicate that APOE e4 has a specific influence on

tauopathy (NFTs) as well as a shared effect on both pla-

que and NFT development, whereas the PRS is more gen-

erally associated with an increased burden of Alzheimer’s

disease neuropathology.

Association between APOE and
cognitive performance is
confounded by neuropathology

We determined clinical and cognitive status at death from

the final pre-mortem assessment (Table 1). Data were

available from 639 individuals who had had at least one

CDR assessment with a mean final score of 1.79 (SD ¼
1.30) measured a mean of 353 days (SD ¼ 374 days)

prior to death. In addition, 469 individuals had had at

least one MMSE assessment with a mean final score of

19.1 (SD ¼ 10.3) measured a mean of 594 days (SD ¼
521 days) prior to death and 270 individuals had a

MoCA assessment (mean ¼ 16.1; SD ¼ 11.0) measured

a mean of 617 days (SD ¼ 590 days) prior to death.

APOE was significantly associated with dementia severity

with each e4 allele associated with an increase in 0.492

(P¼ 2.14 � 10�9) in pre-mortem CDR score (Table 4).

APOE was also significantly associated with lower cogni-

tive performance in MMSE prior to death (Table 4) with

each e4 allele being associated with a decrease in 4.86

(P¼ 1.30 � 10�8). In contrast, Alzheimer’s disease PRS

was not significantly associated with any of the measures

of clinical or cognitive status prior to death. To test

whether the association between APOE and clinical

measures was mediated by neuropathology we repeated

these analyses including Braak NFT stage as an addition-

al covariate; this variable had the largest effect in the

genetic analyses described above, and its effect additional-

ly captured associations with plaque pathology. In this

model, the associations between APOE e4 and CDR or

MMSE were attenuated and neither remained significant

(Supplementary Table 3). In contrast, on retesting Braak

NFT stage whilst controlling for the clinical variables in

turn, we observed that APOE e4 remained significantly

associated (Supplementary Table 3). This indicates that

the association between APOE and clinical variables is a

consequence of an increased burden of neuropathology.

APOE e4 is associated with faster
cognitive decline in old age, but this
is driven by Alzheimer’s disease
neuropathological burden

Participants had a mean of 2.85 (SD ¼ 1.71 visits) clinic-

al assessment visits spread over a mean of 3.40 years (SD

¼ 2.00 years) with a mean time between visits of

1.42 years (SD ¼ 0.67 years). Over the course of all par-

ticipants’ involvement in the BDR study, there was an

overall decline in clinical status and cognitive perform-

ance. On average the CDR increased by a mean of 0.139

per year (P¼ 2.02 � 10�31), while MMSE declined by a

mean of 1.07 per year (P¼ 3.00 � 10�29). APOE geno-

type was associated with worse cognitive scores at the

start of the study and faster rates of decline as the study

progressed (Table 5). For every e4 allele, MMSE score

was 3.19 points lower (P¼ 4.92 � 10�5) at the start of

the study, and individuals then accumulated an additional

decrease in 0.803 in their score per allele per year

(P¼ 1.58 � 10�8). In contrast, although APOE was asso-

ciated with a higher CDR score at the start of the study

(mean difference per e4 allele ¼ 0.468; P¼ 4.34 � 10�8),

there was no significant difference in the change in clinic-

al status related to APOE as the study progressed. There

was no significant association with MoCA scores and

APOE genotype. There was no significant association be-

tween Alzheimer’s disease PRS and longitudinal clinical

or cognitive profiles or clinical or cognitive status at

study entry. On repeating these analyses using the
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participant’s age rather than time in the study, we found

no significant linear associations with either cognitive sta-

tus at study entry or performance as the study progressed

(Table 5).

Given our previous observation that genetic associa-

tions with clinical status and cognition are mediated by

neuropathology, we wanted to confirm whether the longi-

tudinal analyses were similarly affected. First, we tested

whether change in clinical status was associated with

neuropathology measured by Braak NFT stage, independ-

ent of genetic status (Supplementary Table 5). As

expected, those with higher levels of tangle pathology at

death had a more severe clinical rating, even at the start

of the study (mean difference in CDR per Braak NFT

stage ¼ 0.355; P¼ 7.30 � 10�42) and declined quicker;

each additional Braak NFT stage was associated with an

additional increase in 0.0247 in CDR per year (P¼ 3.99

� 10�5). We observed similar results for cognitive per-

formance measured by MMSE; at study entry, each add-

itional Braak NFT stage was associated with a decrease

in 2.58 in MMSE score (P¼ 7.27 � 10�26) and partici-

pants accumulated an additional decrease in 0.384 in

MMSE per Braak NFT stage per year (P¼ 3.90 �
10�15). Repeating the APOE analysis with a covariate

for the potential confounder of neuropathology found

that in line with the cross-sectional analyses, the associa-

tions with both clinical severity and cognition were no

longer significant after adjusting for Braak NFT stage

(Supplementary Table 6). These results suggest that cogni-

tive performance prior to death, and even many years

before death, is a consequence of accumulating

Alzheimer’s disease neuropathology.

Discussion
In this study, we used the longitudinal cognitive and

neuropathological assessment data in the BDR cohort to

investigate how genetic risk factors for Alzheimer’s dis-

ease influence the accumulation of b-amyloid plaques,

tauopathy, synucleinopathy and TDP-43 proteinopathy,

and progressive decline in clinical status and cognitive

performance. Our results indicate that APOE e4 status

has the most dramatic influence on tauopathy (NFT bur-

den) and that although APOE genotype is also associated

with b-amyloidosis, synucleinopathy and cognition, these

relationships are largely confounded by their correlation

with tangle burden. Furthermore, our results indicate that

APOE has a specific direct effect on NFT independent of

other neuropathologies. Although this finding contradicts

the predictions of the ‘amyloid cascade hypothesis’ in

which tau tangle formation is considered secondary to

b-amyloid pathology (Hardy and Allsop, 1991; Selkoe,

1991), it is consistent with careful neuropathologic stud-

ies that show that tauopathy can precede beta-amyloid-

osis, at least in some brain areas (Duyckaerts, 2011).

Our results also agree with previous research showing

that although the influence of APOE on tau tangles is

largely mediated indirectly through neurobiological path-

ways associated with b-amyloid, approximately one-third

Table 5 APOE e4 is associated with steeper cognitive decline prior to death

Time

variable

Cognitive

variable

Time APOE Interaction (time 3 APOE)

Number of e2 alleles Number of e4 alleles Time 3 e2 Time 3 e4

Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value Coefficient P-value

Time since

study

entry

(days)

CDR 2.78E�04 2.45E�08 0.075 0.642 0.468 4.34E�08 �1.34E�04 0.121 1.28E�04 9.83E�03

MMSE �1.39E�03 7.50E�05 1.209 0.371 �3.195 4.92E�05 �3.73E�04 0.529 �2.20E�03 1.58E�08

MoCA �1.33E�03 0.146 �0.663 0.710 �2.335 0.040 1.98E�03 0.151 �3.18E�03 0.024

Age (years) CDR 2.01E�03 0.797 �0.058 0.965 �0.868 0.216 4.99E�04 0.974 0.017 0.042

MMSE �0.258 2.20E�04 4.759 0.675 2.574 0.689 �0.040 0.766 �0.086 0.268

MoCA 0.011 0.904 �4.510 0.783 �5.281 0.616 5.21E�02 0.785 0.031 0.809

Table 4 APOE is associated with clinical and cognitive status at death

Analytical

model

Cognitive

variable

APOE PRS

Number of e 2 alleles Number of e 4 alleles

P-value Coefficient %VarExp P-value Coefficient %VarExp P-value Coefficient %VarExp

Model 1 CDR 0.706 �0.058 0.336 2.14E�09 0.492 9.83

MMSE 0.693 0.574 0.310 1.30E�08 �4.859 10.05

MoCA 0.876 �0.299 0.157 5.00E�03 �3.403 3.19

Model 2 CDR 0.034 0.109 1.82

MMSE 0.025 �1.136 2.03

MoCA 0.785 0.191 0.089
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of its influence on tangle development is via an alterna-

tive non-amyloid pathway (Yu et al., 2014). Our findings

also support the 2-process model proposed by Mungas

et al. (2014), according to which neocortical NFTs are

mediated by b-amyloid deposition and medial temporal

lobe NFTs and may be the consequence of a separate

age-associated process.

In our analysis of pathologies that frequently co-occur

with the accumulation of b-amyloid and tauopathy, we

replicated the positive association between Lewy body

burden and the APOE e4 allele (Tsuang et al., 2013;

Beecham et al., 2014). However, when we adjusted for

either b-amyloid or NFTs, this association was attenu-

ated, indicating that in our sample, the association may

be a consequence of the higher levels of tau and b-amyl-

oid in individuals with Lewy bodies. It should be noted

that the majority of participants in our study were free

of any Lewy body pathology, with 423 individuals

(70.8%) having a Braak Lewy body stage of 0. Therefore

these analyses may be underpowered, particularly in the

context of disentangling the effects on multiple correlated

neuropathology variables. In addition, we were not able

to replicate associations between APOE genotype and the

presence of TDP-43 proteinopathy (Josephs et al., 2014;

Yang et al., 2018), although the direction of effect was

consistent with previous reports. Although TDP-43 pro-

teinopathy was not infrequent in the BDR cohort, with

22.8% participants classed as positive, our simple binary

classification may have decreased our power to detect an

effect. Although BDR is not limited to a particular de-

mentia subtype, and includes unaffected controls,

Alzheimer’s disease is the most common form of demen-

tia and therefore the sample is enriched for NFT and b-

amyloid pathology. To truly establish whether APOE

genotype has an independent, direct effect on the com-

mon comorbidities associated with Alzheimer’s disease,

such as Lewy bodies and TDP-43 proteinopathy, we will

likely require a larger number of samples to detect re-

sidual effects after accounting for correlations between

neuropathological variables.

As well as our examination of associations with

APOE, we tested the cumulative effect of common

Alzheimer’s disease-associated genetic variants on neuro-

pathology, clinical status and cognition. Given that indi-

vidual variants only confer a small amount of additional

risk, we used a combined PRS to improve power.

Although Alzheimer’s disease PRS was associated with

both tauopathy (NFTs) and b-amyloidosis, there was no

evidence of independent effects on either, suggesting that,

in combination, common genetic variants have a broader,

more general effect on the neuropathological burden pre-

sent in Alzheimer’s disease. This contrasts with findings

from a previous study testing the consequences of an

Alzheimer’s disease PRS without APOE, which only

reported a significant association with NFTs and not b-

amyloid plaques (Felsky et al., 2018). Of note, in that

study the PRS was based on an older GWAS with fewer

significant association signals, and therefore our study

might highlight the additional power derived using var-

iants from the latest GWAS for Alzheimer’s disease.

While leveraging multiple genetic variants into a single

PRS is a powerful approach, particularly where sample

sizes are small, it can be challenging to interpret shared

associations. As the PRS is a harmonized variable gener-

ated in our case from seventeen genetic variants, our

results could be explained by different subsets of variants

being causally associated with the distinct pathologies.

This explanation fits with results from previous studies

that have tested individual SNPs associated with

Alzheimer’s disease against multiple measures of neuro-

pathology reporting some variants having specific effects,

while others were associated with multiple aspects

(Beecham et al., 2014; Mäkelä et al., 2018).

Furthermore, it is likely that some genetic risk factors do

not act via either plaques or tauopathy (NFTs), possibly

affecting other aspects of neuropathology such as vascu-

lar disease which was not included in this study.

We found that clinical and cognitive status at study re-

cruitment and prior to death, in addition to decline over

the course of the study, are not directly associated with

APOE genotype but are likely to be a consequence of

neuropathological burden and in particular the accumula-

tion of NFTs. This concurs with results from a previous

study in a slightly larger cohort that focused specifically

on episodic memory and non-episodic cognition (Yu

et al., 2014). Alzheimer’s disease-associated cognitive de-

cline is hypothesized to start as much as 17 years prior to

death, with the rate of decline fastest in those with the

most extensive neuropathology; tauopathy, b-amyloidosis,

TDP-43 proteinopathy and synucleinopathy are all posi-

tively associated with decline (Boyle et al., 2017). While

a strength of our study is the availability of longitudinal

cognitive data, clinical data was only available for up to

three years before death, limiting our ability to character-

ize the effects of neuropathology on cognitive trajectories.

Furthermore, multiple aspects of neuropathology have

been independently negatively associated with cognitive

performance (Boyle et al., 2013). Although Alzheimer’s

disease is characterized by b-amyloidosis and tauopathy,

it is increasingly apparent that in older cohorts, there

may be additional comorbidities which potentially con-

found this relationship (Schneider et al., 2009; James

et al., 2012, 2016; Robinson et al., 2018). At present,

the presence of multiple comorbidities makes it difficult

to resolve cause from effect as each comorbidity may af-

fect different domains of cognition at different times dur-

ing pathogenesis. When considering the regional presence

and global burden of different pathologies, there is exten-

sive variation in the specific combination of neuropatho-

logical features that an individual develops ultimately

having a unique effect on their individual cognitive per-

formance over time (Boyle et al., 2018). The strengths of

the BDR study design, collating repeated measures of

cognitive performance in addition to standardized
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protocols for high quality neuropathological assessments

in a large sample size make it an ideal dataset to ultim-

ately disentangle the role of mixed pathologies on cogni-

tion and dementia and more extensive analyses will be

possible in the future.

Our results should be considered in light of a number

of limitations. First, the participants were self-selecting,

which in line with many other observational cohorts

introduces bias into the sample; they are from less

deprived socio-economic areas and have higher levels of

education than the general population. Second, consistent

with the majority of genetic studies, our analysis was lim-

ited to participants of European ancestry to remove the

biases associated with population stratification. Third, we

only included a subset of Alzheimer’s disease and related

neuropathology phenotypes, which were selected for prac-

tical reasons in that they were observed with sufficient

frequency in the current sample. Analyses of rarer pheno-

types will be possible with subsequent waves of the data

as the overall sample size and number of cases increases.

Fourth, our measures were of global cognition, rather

than specific domains. As previous studies have found

that different pathologies have specific effects of different

cognitive domains (Yu et al., 2014), this may mean we

miss some of the nuances of the relationship between

neuropathology and cognition. Fifth, to aid interpretation

of the analytical models we converted semi-quantitative

neuropathological variables into continuous variables

which assume an equal effect between all pairs of con-

secutive stages. This simplification may obscure some

more complex patterns in the data but should enable us

to pick up general correlations which were our primary

interest. Finally, we did not control for severity of ischae-

mic brain damage or any vascular risk factors, which are

common in Alzheimer’s disease cases and negatively influ-

ence cognition.

In summary, our data indicate that APOE influences

Alzheimer’s disease neuropathology via two independent

pathways, one where b-amyloid accumulation correlates

with the development of tauopathy (NFTs), and a second

pathway with direct effects on NFTs independent of b-

amyloidosis. It is as a consequence of these neuropatho-

logical changes that cognitive performance is then

impaired. The relationship between common genetic var-

iants associated with Alzheimer’s disease and neuropath-

ology is more complex, with each individual variant

potentially having a different effect on neuropathology

and cognition. Taken together, these results provide

insights into how the symptoms of Alzheimer’s disease

dementia manifest and how genetic risk factors influence

the development of pathology.
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ABSTRACT 

Epigenome-wide association studies of Alzheimer’s disease have highlighted neuropathology-

associated DNA methylation differences, although existing studies have been limited in sample 

size and utilized different brain regions. Here, we combine data from six DNA methylomic 

studies of Alzheimer’s disease (N=1,453 unique individuals) to identify differential 

methylation associated with Braak stage in different brain regions and across cortex. We 

identified 236 CpGs in the prefrontal cortex, 95 CpGs in the temporal gyrus and ten CpGs in 

the entorhinal cortex at Bonferroni significance, with none in the cerebellum. Our cross-cortex 

meta-analysis (N=1,408 donors) identified 220 CpGs associated with neuropathology, 

annotated to 121 genes, of which 84 genes had not been previously reported at this significance 

threshold. We have replicated our findings using two further DNA methylomic datasets 

consisting of a > 600 further unique donors. The meta-analysis summary statistics are available 

in our online data resource (www.epigenomicslab.com/ad-meta-analysis/). 
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INTRODUCTION 

Alzheimer’s disease (AD) is a chronic neurodegenerative disease that is accompanied by 

memory problems, confusion and changes in mood, behavior and personality. AD accounts for 

~60% of dementia cases, which affected 43.8 million people worldwide in 20161. The disease 

is defined by two key pathological hallmarks in the brain: extracellular plaques comprised of 

amyloid-beta protein and intracellular neurofibrillary tangles of hyperphosphorylated tau 

protein2-4. These neuropathological changes are thought to occur perhaps decades before 

clinical symptoms manifest and the disease is diagnosed4. AD is a multi-factorial and complex 

disease, with the risk of developing disease still largely unknown despite numerous genetic and 

epidemiological studies over recent years.  

 

Several studies have suggested that epigenetic mechanisms may play a role in disease etiology. 

In recent years a number of epigenome-wide association studies (EWAS) have been performed 

in AD brain samples, which have predominantly utilized the Illumina Infinium 

HumanMethylation450K BeadChip (450K array) in conjunction with bisulfite-treated DNA to 

assess levels of DNA methylation in cortical brain tissue from donors with varying degrees of 

AD pathology5-12. Independently these studies have identified a number of loci that show robust 

differential DNA methylation in disease, and many of these overlap between studies, for 

example loci annotated to ANK1, RHBDF2, HOXA3, CDH23 and RPL13 have been 

consistently reported. Here we have performed a meta-analysis of six independent existing 

EWAS of AD brain5-8,10,12, totalling 1,453 independent donors, to identify robust and consistent 

differentially methylated loci associated with Braak stage, used as a measure of neurofibrillary 

tangle spread through the brain, before replicating these signatures in two further independent 

DNA methylation datasets. Our meta-analysis approach provides additional power to detect 

DNA methylomic variation associated with AD pathology at novel loci, in addition to 

providing further replication of loci that have been previously identified in the smaller 

independent EWAS. 

 

RESULTS 

Pathology-associated DNA methylation signatures in discrete cortical brain regions 

We identified six EWAS of DNA methylation in AD that had been generated using the 450K 

array and had a cohort size of > 50 unique donors. All had data on Braak stage available, which 

we used as a standardized measure of tau pathology spread through the brain (Table 1). We 

were interested in identifying epigenomic profiles associated with Braak stage in specific brain 



 4 

regions, leveraging additional power by meta-analysing multiple studies to identify novel loci. 

To this end, we performed an EWAS in each available tissue and cohort separately, looking 

for an association between DNA methylation and Braak stage, whilst controlling for age and 

sex (all tissues) and neuron/glia proportion (cortical bulk tissues only), with surrogate variables 

added as appropriate to reduce inflation. For discovery, we then used the estimated effect size 

(ES) and standard errors (SEs) from these six studies (N = 1,453 unique donors) for a fixed-

effect inverse variance weighted meta-analysis separately for each tissue (prefrontal cortex: 

three cohorts, N = 959; temporal gyrus: four cohorts, N = 608, entorhinal cortex: two cohorts, 

N = 189 cerebellum: four cohorts, N = 533) (Supplementary Figure 1).  

 

The prefrontal cortex represented our largest dataset (N = 959 samples) and we identified 236 

Bonferroni significant differentially methylated positions (DMPs) (P < 1.238 x 10-7 to account 

for 403,763 probes), of which 193 were annotated to 137 genes, with 43 unannotated loci based 

on Illumina UCSC annotation (Figure 1a, Supplementary Figure 2, Supplementary Table 

1). Previous EWAS of the prefrontal cortex have consistently reported the HOXA gene cluster 

as a region that is hypermethylated in AD6,7, with a cell-type specific EWAS demonstrating 

this is neuronal-derived11. Indeed, the most significant DMP in the prefrontal cortex in our 

meta-analysis resided in HOXA3 (cg22962123: ES [defined as the methylation difference 

between Braak 0 and Braak VI] = 0.042, P = 5.97 x 10-15), with a further 16 of the Bonferroni 

significant DMPs also annotated to this gene. This locus appeared to be particularly 

hypermethylated with higher Braak stage in the prefrontal cortex, and to a slightly lesser extent 

in the temporal gyrus (Supplementary Figure 3). There was no significant difference in 

methylation at this locus in the entorhinal cortex (P = 0.864), which is interesting given that 

the entorhinal cortex may succumb to pathology early in the disease process (Braak stage III). 

Of the 236 prefrontal cortex DMPs, 92% (217 probes) were nominally significant (P < 0.05) 

in the temporal gyrus, of which 12% (28 probes) were Bonferroni significant, whilst 9% (22 

probes) were nominally significant in the entorhinal cortex, with 1% (3 probes) reaching 

Bonferroni significance (Figure 1b). The effect sizes for the 236 Bonferroni significant 

prefrontal cortex DMPs were correlated with the effect sizes for the same probes in both the 

temporal gyrus (Pearson’s correlation coefficient (r) = 0.94, P = 6.17 x 10-112) and entorhinal 

cortex (r = 0.58, P = 1.80 x 10-22) and  were enriched for probes with the same direction of 

effect (sign test: temporal gyrus P = 5.07 x 10-67, entorhinal cortex P = 6.88 x 10-26) 

(Supplementary Figure 4). For the 236 Bonferroni significant prefrontal cortex DMPs these 

had the largest effect sizes in the prefrontal cortex, with a smaller effect size in the temporal 
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gyrus and entorhinal cortex (Figure 1c). Of these 236 DMPs, 29 of these had being previously 

reported at Bonferroni significance in previous publications on the individual cohorts5-7,12, 

including one probe annotated to ANK1, one probe annotated to HOXA3, one probe annotated 

to PPT2/PRRT1 and two probes annotated to RHBDF2, amongst others. However, our 

approach has identified 207 novel Bonferroni significant DMPs (although several had been 

reported in previous studies at a more relaxed significance threshold, or in regional analyses). 

This included several additional probes residing in genes already identified (from another 

probe) in earlier studies, for example a further 16 probes in HOXA3 and two probes in 

PPT2/PRRT1. Interestingly, we also identified a number of novel genes, including some which 

featured multiple Bonferroni significant DMPs including for example seven probes in AGAP2 

and five probes in SLC44A2, amongst others. One other noteworthy novel Bonferroni 

significant DMP in the prefrontal cortex was cg08898775 (ES = 0.019, P = 4.03 x 10-9), 

annotated to ADAM10, which encodes for α-secretase which cleaves APP in the non-

amyloidogenic pathway. A differentially methylated region (DMR) analysis, which allowed us 

to identify areas of the genome consisting of  ≥ 2 DMPs, revealed 262 significant DMRs in the 

prefrontal cortex (Supplementary Table 2), the most significant containing 20 probes and 

located in HOXA3 (chr7:27,153,212-27,155,234: Sidak-corrected p = 8.21 x 10-50, 

Supplementary Figure 5), as well as several other DMRs in the HOXA gene cluster. 

 

A meta-analysis of temporal gyrus EWAS datasets (N = 608 samples) identified 95 Bonferroni 

significant probes, of which 75 were annotated to 53 genes, with 20 unannotated probes using 

Illumina UCSC annotation (Figure 1a, Supplementary Figure 6, Supplementary Table 3). 

The most significant probe was cg11823178 (ES = 0.029, P = 3.97 x 10-16, Supplementary 

Figure 7), which is annotated to the ANK1 gene, with the fifth (cg05066959: ES = 0.042, P = 

4.58 x 10-13) and 82nd (cg16140558: ES = 0.013, P = 8.44 x 10-8) most significant probes in the 

temporal gyrus also being annotated to nearby CpGs in that gene. This locus has been widely 

reported to be hypermethylated in AD from prior EWAS5,6,8,12, as well as in other 

neurodegenerative diseases such as Huntington’s disease and Parkinson’s disease13. Another 

noteworthy gene is RHBDF2, where five Bonferroni significant DMPs in the temporal gyrus 

were annotated to (cg05810363: ES = 0.029, P = 2.25 x 10-11; cg13076843: ES = 0.031, P = 

2.97 x 10-11; cg09123026: ES = 0.012, P = 3.46 x 10-9; cg12163800: ES = 0.025, P = 5.85 x 

10-9; cg12309456: ES = 0.016, P = 1.33 x 10-8); and which has been highlighted in previous 

EWAS in AD in the individual cohorts5,6,12. Of the 95 Bonferroni significant DMPs in the 

temporal gyrus, 88% (84 probes) were nominally significant in the prefrontal cortex, of which 
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29% (28 probes) were Bonferroni significant, whilst 54% (51 probes) were nominally 

significant in the entorhinal cortex, of which 6% (6 probes) were Bonferroni significant 

(Figure 1b). Given the high degree of overlapping significant loci between the temporal gyrus 

and other cortical regions, it was not surprising that the ES of the 95 Bonferroni significant 

temporal gyrus probes were highly correlated with the ES of the same loci in both the prefrontal 

cortex (r = 0.91, P = 5.09 x 10-38) and entorhinal cortex (r = 0.77, P = 4.02 x 10-20) and were 

enriched for the same direction of effect (sign test: prefrontal cortex P = 5.05 x 10-29, entorhinal 

cortex = 2.30 x 10-25) (Supplementary Figure 8). The majority of the 95 Bonferroni significant 

DMPs in the temporal gyrus were hypermethylated, and the mean ES was greater in the 

temporal gyrus than the prefrontal cortex or entorhinal cortex (Figure 1c). Thirty-two of the 

95 Bonferroni significant DMPs in the temporal gyrus have been previously reported to be 

significantly differentially methylated in published EWAS, including for example three probes 

in ANK1 and the five probes in RHBDF2. Our meta-analysis approach in the temporal gyrus 

has identified 63 novel DMPs (at Bonferroni significance), including some novel genes with 

multiple DMPs, for example four probes in RGMA and two probes in CCND1, amongst others. 

Finally, our regional analysis highlighted 104 DMRs (Supplementary Table 4); the top DMR 

resided in the ANK1 gene (chr8:41,519,308-41,519,399) and contained two probes (Sidak-

corrected P = 1.72 x 10-21) (Supplementary Figure 9). The five DMPs in RHBDF2 that we 

already highlighted also represented a significant DMR (Sidak-corrected P = 8.47 x 10-21), with 

three other genomic regions containing large, significant  DMRs consisting of  ≥ 10 probes, 

such as MCF2L (chr13:113698408-113699016 [10 probes], Sidak-corrected P = 1.16 x 10-19), 

PRRT1/PPT2 (chr6:32120773-32121261 [17 probes],  Sidak-corrected P = 4.90 x 10-15) and 

HOXA5 (chr7:27184264-27184521 [10 probes], Sidak-corrected P = 1.60 x 10-7). 

 

The final cortical region we had available was the entorhinal cortex (N = 189), where we 

identified ten Bonferroni significant probes in our meta-analysis, all of which were 

hypermethylated with higher Braak stage (Figure 1a, Supplementary Figure 10, 

Supplementary Table 5). These ten probes were annotated to eight genes (Illumina UCSC 

annotation), with two Bonferroni significant probes residing in each of the ANK1 and SLC15A4 

genes. As with the temporal gyrus, the most significant DMP was cg11823178 (ES = 0.045, P 

= 5.22 x 10-10, Supplementary Figure 7), located within the ANK1 gene, with the fourth most 

significant DMP being located within 100bp of that CpG (cg05066959: ES = 0.062, P = 2.93 

x 10-9). In total, eight of the ten DMPs in the entorhinal cortex had been reported previously at 

Bonferroni significance, including the two probes in ANK1. Two of the Bonferroni significant 
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DMPs we identified in the entorhinal cortex were novel CpGs (cg11563844: STARD13, 

cg04523589: CAMP), having not been reported as Bonferroni significant in previous EWAS. 

Of the ten entorhinal cortex probes, 90% (9 probes) were nominally significant in the temporal 

gyrus, of which 60% (6 probes) were Bonferroni significant, whilst 70% (7 probes) were 

nominally significant in the prefrontal cortex, of which 30% (3 probes) were Bonferroni 

significant (Figure 1b). Of the four DMPs that were Bonferroni significant in only the 

entorhinal cortex, three of these were nominally significant in at least one other tissue, with 

just one probe unique to the entorhinal cortex, annotated to STARD13 (cg11563844, ES = 

0.027, P = 1.07 x 10-8). The effect sizes of the ten Bonferroni significant DMPs in the entorhinal 

cortex were significantly correlated with the effect size of the same probes in the prefrontal 

cortex (r = 0.74, P = 0.01) and temporal gyrus (r = 0.85, P = 1.52 x 10-3) and were enriched for 

the same direction of effect (sign test: prefrontal cortex P = 0.021, temporal gyrus P = 1.95 x 

10-3) (Supplementary Figure 11). The ten DMPs were hypermethylated in all three cortical 

regions, with the greatest Braak-associated ES in the entorhinal cortex (Figure 1c). A regional 

analysis identified seven DMRs (Supplementary Table 6); the top three DMRs (RHBDF2: 

chr17:74,475,240-74,475,402 [five probes], P = 7.68 x 10-14, Supplementary Figure 12; 

ANK1: chr8:41519308-41519399 [two probes], P = 4.89 x 10-13; SLC15A4: chr12:129281444-

129281546 [three probes], P = 5.24 x 10-12) were significant in at least one of the other cortical 

regions we meta-analyzed.  

 

To date, a few independent EWAS in AD have been undertaken in the cerebellum and none of 

these have reported any Bonferroni significant DMPs. In our meta-analysis we identified no 

Bonferroni significant DMPs, nor any DMRs in the cerebellum (Supplementary Figure 13), 

despite this analysis including 533 independent samples. There was no correlation of the ES 

for the Bonferroni significant DMPs we had identified in the meta-analyses of the three cortical 

regions with the ES of the same probes in the cerebellum (prefrontal cortex: r = 0.11, P = 0.08; 

temporal gyrus: r = 0.14, P = 0.17; entorhinal cortex: r = 0.48, P = 0.16; Supplementary Figure 

14).  

 

220 CpGs are differentially methylated across the cortex in AD 

We were interested in combining data from across the different cortical tissues to identify 

common differentially methylated loci across the cortex and also to provide more power by 

utilizing data from 1,408 unique individuals with cortical EWAS data available. As multiple 

cortical tissues were available for some cohorts, a mixed-effects model was utilized.  In this 
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analysis we controlled for age, sex and neuron/glia proportion, with surrogate variables added 

as appropriate to reduce inflation. Using this approach, we identified 220 Bonferroni significant 

probes, of which 168 were annotated to 121 genes, with 52 DMPs unannotated using Illumina 

UCSC annotation. Figure 2a, Figure 2b, Table 2, Supplementary Table 7, Supplementary 

Figure 15). All of the 220 probes were nominally significant (P < 0.05) in ≥ two cohorts, with 

ten of these probes being nominally significant in all six cohorts (Supplementary Figure 16), 

which included single probes annotated to ANK1, ABR, SPG7 and WDR81, two probes in 

DUSP27, three probes in RHBDF2 and one unannotated probe. We observed similar DNA 

methylation patterns across all cortical cohorts and tissues for the 220 probes with 219 of the 

220 DMPs showing the same direction of effect in at least five cohorts. In total, 154 of the 

DMPs were hypermethylated, with 66 hypomethylated, representing an enrichment for 

hypermethylation (P = 4.85 x 10-10). This pattern of methylation  was evident across all cortical 

tissues but was not seen in the cerebellum (Supplementary Figure 17). Of the 220 DMPs we 

identified, 46 of these have been previously reported at Bonferroni significance in published 

EWAS, including multiple previously identified probes in ANK1 (cg05066959, cg11823178), 

MCF2L (cg07883124, cg09448088), PCNT (cg00621289, cg04147621, cg23449541) and 

RHBDF2 (cg05810363, cg12163800, cg12309456, cg13076843). The most significant probe 

we identified in our cross-cortex analysis was cg12307200 (Table 2, ES = -0.015, P = 4.48 x 

10-16), which is intergenic and found at chr3:188664632, located between the TPRG1 and LPP 

genes and had been previously reported at Bonferroni significance by De Jager and colleagues 

with respect to neuritic plaque burden6 and by Brokaw and colleagues with respect to post-

mortem diagnosis12. Our cross-cortex meta-analysis approach has identified 174 novel DMPs 

(at Bonferroni significance), annotated to 102 genes. Although 11 of these genes had 

previously been reported at Bonferroni significance (another probe within that gene), the 

remaining 96 genes represent robust novel loci in AD. Many of these novel differentially 

methylated genes had multiple Bonferroni significant probes, for example five probes in 

AGAP2, three probes in HOXB3 and SLC44A2, and two probes in CDH9, CPEB4, DUSP27, 

GCNT2, MAMSTR, PTK6, RGMA, RHOB, SMURF1, THBS1, ZNF238 and ZNF385A 

(Supplementary Table 7). Although some of these loci may have been reported in earlier AD 

EWAS, none of these were at Bonferroni significance and so here represent robust novel loci.  

 

We were interested to investigate whether specific functional pathways were differentially 

methylated in AD cortex and so performed a gene ontology pathway analysis of the 121 genes 

annotated to the 220 Bonferroni significant cross-cortex DMPs. We highlighted epigenetic 
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dysfunction in numerous pathways (at nominal significance), interestingly including a number 

of developmental pathways, mainly featuring the HOXA and HOXB gene clusters 

(Supplementary Table 8). Given that we identified multiple DMPs in some genes, we were 

interested to investigate the correlation structure between probes in close proximity to each 

other to establish how many independent signals we had identified. Using a method developed 

to identify single nucleotide polymorphisms (SNPs) in linkage disequilibrium (LD)14, we 

collapsed the 220 Bonferroni significant loci into 165 independent (non-highly correlated [r < 

0.6 over 1mb]) signals (Supplementary Table 9). We found that the largest reduction in 

signals occurred in the HOXA and HOXB gene clusters, with the 18 DMPs in the HOXA region 

representing only two independent signals, whilst the seven DMPs in the HOXB region 

represented one independent signal.. Next we undertook a formal regional analysis to identify 

genomic regions of multiple adjacent DMPs and identified 221 DMRs, with the top DMR 

containing 11 probes and covering the HOXA region (chr7:27,153,212-27,154,305: P = 3.84 x 

10-35) (Figure 2c, Supplementary Table 10). The HOXA gene cluster further featured a 

number of times in our DMR analysis; four of the ten most significant DMRs fell in this 

genomic region, including DMRs spanning four probes (chr7:27146237-27146445: P = 4.11 x 

10-27), 33 probes (chr7:27183133-27184667: P = 2.22 x 10-20) and ten probes (chr7:27143235-

27143806: P = 1.75 x 10-18).  

 

Replication of pathology associated DMPs in the cortex  

To replicate our findings and to determine the cellular origin of DNA methylomic differences 

we used the estimated coefficients and SEs for these 220 probes generated in a seventh 

independent (“Munich”) cohort, which consisted of 450K data generated in the prefrontal 

cortex (N = 45) and sorted neuronal and non-neuronal nuclei from the occipital cortex (N = 26) 

(Table 1). This cohort had not been used in our discovery analyses as < 50 samples were 

available. Notably, we identified a similar pattern of Braak-associated DNA methylation 

changes for the 220 Bonferroni significant cross-cortex probes in this replication cohort, with 

a significantly correlated effect size between the discovery dataset and the replication 

prefrontal cortex (r = 0.64, P = 5.24 x 10-27), neuronal (r = 0.45, P = 1.56 x 10-12) and non-

neuronal datasets (r = 0.79, P= 1.43 x 10-47) with a similar enrichment for the same direction 

of effect (sign test: prefrontal cortex P = 4.59 x 10-28, neuronal P = 6.13 x 10-15, non-neuronal  

P = 1.06 x 10-42) (Figure 3a). The most significant probe from the cross-cortex meta-analysis 

(cg12307200) showed consistent hypomethylation in disease in all cohorts in all cortical brain 

regions, with this direction of effect replicated in the prefrontal cortex and non-neuronal nuclei 
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samples, but not the neuronal nuclei samples, suggesting that this is primarily driven by non-

neuronal cell types, which are likely to be glia (Figure 3b). We have developed an online 

database (www.epigenomicslab.com/ad-meta-analysis/), which can generate a forest plot 

showing the ES and SE across any of the discovery cohorts and the Munich sample types for 

any of the 403,763 probes that passed our quality control. This allows researchers to determine 

the consistency of effects across cohorts for a given CpG site as well as the likely cellular origin 

of the signature. In addition, our tool can generate mini-Manhattan plots to show DMRs 

utilizing the summary statistics from the cross-cortex meta-analysis. 

 

Finally, we had access to DNA methylation data generated in an eighth independent (“Brains 

for Dementia Research [BDR]”) cohort. This consisted of Illumina Infinium 

HumanMethylation EPIC BeadChip (EPIC array) data in the prefrontal cortex in 590 

individuals15. As this is the successor to the 450K array (which had been used for the other 

seven cohorts), there are some differences in genome coverage, and for the 220 Bonferroni 

significant cross-cortex DMPs we had identified in the discovery cohorts, only 208 probes are 

also present on the EPIC array. For these overlapping 208 probes, we observed a significantly 

correlated effect size between the discovery dataset and the BDR dataset (r = 0.53, P = 4.13 x 

10-16) (Figure 3c), with all 208 probes showing the same direction of effect (sign test P = 4.86 

x 10-63).  

 

Cross-cortex AD-associated DMPs are enriched in specific genomic features 

To identify if the cross-cortex DMPs reside in specific genomic features, we used a Fisher’s 

exact test to look for an enrichment of the 220 DMPs using Slieker annotations16 

(Supplementary Table 11, Supplementary Figure 18). We observed a significant over 

representation of Bonferroni significant DMPs in CpG islands of gene bodies (odds ratio [OR] 

= 3.199, P = 4.76 x 10-10), and in CpG island shelves and non-CpG island areas of proximal 

promoters (OR = 3.571, P = 9.09 x 10-3 and OR = 1.641, P = 0.03, respectively). However, 

DMPs located in CpG islands in the proximal promoter were under-represented (OR = 0.353, 

P = 2.08 x 10-6). There was a significant over representation of the 220 cross-cortex DMPs in 

the first exon (OR = 1.80, P = 0.02), with an under enrichment within 1500bp of the 

transcription start site (OR = 0.49, P = 3.82 x 10-3) (Supplementary Table 12, Supplementary 

Figure 19).  

 

 

http://www.epigenomicslab.com/ad-meta-analysis/
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DNA methylomic signatures in the cortex can explain variance in the degree of pathology 

We were interested to investigate whether the Braak-associated DNA methylation patterns we 

had identified across the cortex could accurately predict the pathological load of a brain sample 

and how much variance this explained. To this end we took samples within the discovery 

cohorts with either low pathology (Braak 0-II “controls”: N = 407), or high pathology (Braak 

V-VI “AD”: N = 589) and used these as a “training” dataset.  We then used elastic net 

regression to identify 110 probes in the 220 cross-cortex Bonferroni significant loci 

(Supplementary Table 13) that were able to explain the most variance between post-mortem 

low pathology “control” from high pathology “AD” status in our training dataset (N = 996) 

(Supplementary Table 14, Figure 4). In our training data, we achieved an Area Under the 

Curve (AUC) of the Receiver Operating Characteristic (ROC) of 94.33% (CI = 92.88-95.64%, 

variance explained = 71.11%).. We then tested its performance in the Munich replication 

samples (N = 38) and the BDR replication samples (N = 454), where it achieved an AUC of 

73.95% (CI = 55.17-88.89%, variance explained = 20.18%) and 70.36% (CI = 65.52-75.12%, 

variance explained = 15.87%), respectively (Supplementary Table 14, Figure 4).  

 

DNA methylation signatures in AD cortex are largely independent of genetic effects 

DNA methylomic variation can be driven by genetic variation via methylation quantitative trait 

loci (mQTLs). To explore whether SNPs may be driving the methylation differences we 

observed (in cis) we used the xQTL resource to identify cis-mQTLs associated with the 220 

Bonferroni significant cross-cortex DMPs17. We identified 200 Bonferroni corrected mQTLs, 

which were associated with DNA methylation at 18 of the 220 cross-cortex DMPs 

(Supplementary Table 15). This suggests that the majority of Braak-associated DMPs are not 

the result of genetic variation in cis. None of these mQTLs overlapped with lead SNPs (or 

SNPs in LD) identified in the most recent genome-wide association study (GWAS) of 

diagnosed late-onset AD from Kunkle et al18. Next, we were interested in exploring whether 

DNA methylation is enriched in genes known to harbor AD-associated genomic risk variants. 

Using the AD variants from Kunkle et al18 we examined the enrichment of Braak-associated 

DNA methylation in 24 LD blocks harboring risk variants. Twenty of these LD blocks 

contained > 1 CpG site on the 450K array and using Brown’s method we combined P values 

within each of these 20 genomic regions. We observed Bonferroni-adjusted significant 

enrichment in the cross-cortex data in the HLADRB1 (Chr6: 32395036-32636434: adjusted P 

= 1.20 x 10-3), SPI1 (Chr11: 47372377- 47466790, adjusted P = 5.76 x 10-3), SORL1 (Chr11: 

121433926- 121461593, adjusted P = 0.019), ABCA7 (Chr19: 1050130- 1075979, adjusted P 
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= 0.022) and ADAM10 (Chr15: 58873555- 59120077, adjusted P = 0.022) LD regions 

(Supplementary Table 16).   

 

 

DISCUSSION 

This study represents the first meta-analysis of AD EWAS utilizing six published independent 

sample cohorts with a range of cortical brain regions and cerebellum available as a discovery 

dataset. Two further independent cortical datasets where then used for replication, including 

data from sorted nuclei populations. Our data can be explored as part of an online searchable 

database, which can be found on our website (https://www.epigenomicslab.com/ad-meta-

analysis). By performing a meta-analysis within each tissue, we have been able to identify 236, 

95 and ten Bonferroni significant DMPs in the prefrontal cortex, temporal gyrus and entorhinal 

cortex, respectively. Although far fewer loci were identified in the entorhinal cortex compared 

to the other cortical regions, this is likely due to the reduced sample size in this tissue. In the 

cerebellum despite meta-analyzing > 500 unique samples, we identified no Braak-associated 

DNA methylation changes. Furthermore, there was no correlation of the effect size of 

Bonferroni significant DMPs identified in any of the cortical regions with the effect size of the 

same probes in the cerebellum. Taken together, this suggests that DNA methylomic changes 

in AD are cortex cell type specific. This observation is interesting as the cerebellum is said to 

be “spared” from AD pathology, with an absence of neurofibrillary tangles, although some 

diffuse amyloid-beta plaques are reported19. Interestingly, a recent spatial proteomics study of 

AD reported a large number of protein changes in the cerebellum in AD; however, the proteins 

identified were distinct from other regions examined and thus the authors suggested a potential 

protective role20. 

 

Although many loci showed similar patterns of Braak-associated DNA methylation across the 

different cortical regions, some loci did show some regional specificity. In order to identify 

CpG sites that showed common DNA methylation changes in disease we performed a cross-

cortex meta-analysis. Using this approach we identified 220 Bonferroni significant probes 

associated with Braak stage of which 46 probes had been previously reported at Bonferroni 

significance in the individual cohort studies that we had used for our meta-analysis, for example 

two probes in ANK1, four probes in RHBDF2 and one probe in HOXA3, amongst others. 

Interestingly, our approach did identify 174 novel CpGs, corresponding to 102 unique genes, 

of which 84 genes had not been previously reported at Bonferroni significance in any of the 

https://www.epigenomicslab.com/ad-meta-analysis
https://www.epigenomicslab.com/ad-meta-analysis
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previously published AD brain EWAS, highlighting the power of our meta-analysis approach 

for nominating new loci. This included 15 novel genes with at least two Bonferroni significant 

DMPs each, including five probes in AGAP2, three probes in SLC44A2 and two probes each 

in CDH9, CPEB4, DUSP27, GCNT2, MAMSTR, PTK6, RGMA, RHOB, SMURF1, THBS1, 

ZNF238 and ZNF385A. These genes had not been identified previously in an AD EWAS at 

this significance threshold, although a number of these genes had been previously identified 

from DMR analyses, which have a less stringent threshold. However, we did identify one novel 

gene (HOXB3) with three Bonferroni significant DMPs, which had not been identified at this 

significance threshold in previous EWAS DMP or DMR analyses in AD brain. The nomination 

of loci in the HOXB gene cluster is interesting; a recent study of human Huntington’s disease 

brain samples also highlighted significantly increased HOXB3 gene expression in the prefrontal 

cortex21, an interesting observation given that both AD and Huntington’s disease are disorders 

that feature dementia. Furthermore, we have recently reported AD-associated 

hypermethylation of the HOXB6 gene in AD blood samples22. Our pathway analysis 

highlighted differential methylation in a number of developmental pathways, mainly featuring 

the HOXA and HOXB gene clusters. Although it is unclear why developmental genes may be 

changed in a disease that primarily affects the elderly, it has been implied that genes such as 

these may be involved in neuroprotection after development23. A number of the other novel 

genes with multiple DMPs are also biologically relevant in the context of AD, for example 

GCNT2 was recently shown to be differentially expressed in the Putamen between males and 

females with AD24. Interestingly, some of the protein products of genes we identified have also 

been previously linked with AD; PTK6 is a protein kinase whose activity has been shown to 

be altered in post-mortem AD brain25. Similarly, RGMA has been shown to be increased in 

AD brain, where it accumulated in amyloid-beta plaques26.  

 

 

Our genomic enrichment analyses identified an over representation of hypermethylated loci in 

AD and methylation in specific genomic features, for example CpG islands in gene bodies, and 

shelves and non-CpG island regions in proximal promoters. We demonstrated that the majority 

of DMPs we identified (N = 202) were not driven by genetic variation as only 18 of the 220 

CpG sites have reported mQTLs. However, we did observe a significant enrichment of cross-

cortex loci in the LD regions surrounding the AD-associated genetic variants HLADRB1, SPI1, 

SORL1, ABCA7 and ADAM10 after controlling for multiple testing Finally, we have developed 

a classifier that could accurately predict control samples with low pathology, from those with 
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a post-mortem AD diagnosis due to high pathology using methylation values for 110 of the 

220 Bonferroni significant probes, further highlighting that distinct genomic loci reproducibly 

show epigenetic dysfunction in AD cortex. Although the clinical utility of such a classifier is 

limited as it is developed in post-mortem cortical brain tissue, it does illustrate that specific 

robust patterns of DNA methylation differences occur as the disease progresses. These 

signatures require further investigation as they could represent novel therapeutic targets, 

particularly given the classifier had an AUC > 70% in all the training and replication datasets. 

However, it is worth noting that the variance explained by the 110 CpG signature was lower in 

the replication datasets than the discovery samples, which could be due to a low sample number 

(Munich) or the different Illumina array platform (BDR). 

 

There are some limitations with our study. First, as we have largely utilized methylation data 

generated in bulk tissue, this will contain a mixture of different cell types. Furthermore, it is 

known that the proportions of the major brain cell types are altered in AD, with reduced 

numbers of neurons and increased glia. As such, it is possible that the identified DNA 

methylation changes represent a change in cell proportions. To address this, we have included 

neuron/glia proportions as a co-variate in our models to minimize bias and used data from 

sorted cell populations as part of our replication. Although this is the optimal strategy for the 

current study given the EWAS data had already been generated, future EWAS should be 

undertaken on sorted cell populations with larger sample numbers than the Munich replication 

cohort, or ideally at the level of the single cell. It is important to note that the data from the 

sorted nuclei populations in the Munich replication cohort were generated in the occipital 

cortex, which was not a bulk tissue used for any of the discovery cohorts. In the future it would 

be interesting to explore whether different disease-associated DNA methylation signatures 

were observed in neurons and glia isolated from different cortical brain regions. Second, our 

study has utilized previously generated EWAS data generated on the 450K array or EPIC array. 

Although the Illumina array platform has been the most widely used platform for EWAS to 

date, it is limited to only analyzing a relatively small proportion of the potential methylation 

sites in the genome (~400,000 on the 450K array) and given the falling cost of sequencing, 

future studies could exploit this by performing reduced representation bisulfite sequencing to 

substantially increase the coverage. In our study we have primarily used the UCSC annotation 

provided by Illumina to identify the gene relating to each DMP. However, this can lead to the 

annotation of overlapping genes, or no gene annotation, which can make it difficult to establish 

the gene of interest in the absence of functional studies. Our study has primarily focused on the 
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results of a fixed-effects meta-analysis, as the majority of Bonferroni-significant DMPs do not 

display a high degree of heterogeneity. However, ~15% of the cross-cortex DMPs did have a 

significant heterogeneity P value and in this instance, it is worthwhile also considering the 

results of the random-effects meta-analysis. Although this heterogeneity could be driven by 

differences between cohorts, it is also plausible that it may be driven by tissue-specific effects 

as we used different cortical brain regions in the model. For example cg22962123 annotated to 

the HOXA3 gene has a significant heterogeneity P value in the cross-cortex meta-analysis, but 

we had already shown this loci to be differentially methylated in the prefrontal cortex and 

temporal gyrus, but not the entorhinal cortex in our intra-tissue meta-analysis.  

 

Another limitation of our study is that we have focused our analyses on Braak (neurofibrillary 

tangle)-associated methylation changes, as this measure was available in all cohorts. Given that 

amyloid-beta is another neuropathological hallmark of AD, it would also be of interest to 

identify neuritic plaque-associated DMPs. Unfortunately, this was not feasible in the current 

study as this measure was not available in all samples. In a similar vein, we did not exclude 

individuals with mixed pathology, or protein hallmarks of other neurodegenerative diseases, 

such as the presence of lewy bodies, or TDP-43 pathology. In the future, larger meta-analyses 

should stratify by the presence of these protein aggregates, particularly given that very few 

EWAS have been undertaken in other dementias. Indeed, only three DNA methylomic studies 

have been undertaken in cortical samples of individuals with other dementias to date27-30, with 

none of these studies utilizing > 15 individuals for EWAS. Further studies exploring common 

and unique DNA methylation signatures and our classifier in other diseases characterized by 

dementia will be vital for identifying disease-specific epigenetic signatures that could represent 

novel therapeutic targets. Finally, one key issue for epigenetic studies in post-mortem tissue is 

the issue of causality, where it is not possible to determine whether disease-associated 

epigenetic loci are driving disease pathogenesis, or are a consequence of the disease, or even 

the medication used for treatment. One method that can be used to address this is Mendelian 

Randomization31 however, this does require the CpG site to have a strong association with a 

SNP. Given that we only identified mQTLs at 18 of the 220 Bonferroni significant cross-cortex 

DMPs, this approach is not suitable for most of the loci we identified. At an experimental level 

establishing causality is difficult to address in post-mortem human studies, and therefore 

longitudinal studies in animal models, or modelling methylomic dysfunction through 

epigenetic editing in vitro will be useful approaches to address these issues.  In addition, 

examining DNA methylation signatures in brain samples in pre-clinical individuals (i.e. during 
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midlife) will be important for establishing the temporal pattern of epigenetic changes relative 

to the pathology.  

 

In summary we present the first meta-analyses of AD EWAS, highlighting numerous 

Bonferroni significant DMPs in the individual cortical regions and across the cortex, but not in 

the cerebellum, which were replicated in two independent cohorts. A number of these loci are 

novel and warrant further study to explore their role in disease etiology. We highlight that the 

nominated epigenetic changes are largely independent of genetic effects, with only 18 of the 

220 Bonferroni significant DMPs showing a mQTL. We provide the first evidence that robust 

epigenomic changes in the cortex can predict the level of pathology in a sample. Looking to 

the future it will be important to explore the relationship between DNA methylation and gene 

expression in AD brain. 

 

 

METHODS 

Cohorts 

Six sample cohorts were used for “discovery” in this study as they all had DNA methylation 

data generated on the 450K array for > 50 donors, enabling us to take a powerful meta-analysis 

approach to identify DNA methylation differences in AD. As our analyses focused specifically 

on neuropathology (tau)-associated differential methylation, inclusion criteria for all samples 

used in the “discovery” or “replication” cohorts was having post-mortem neurofibrillary tangle 

Braak stage available. For each discovery sample cohort DNA methylation was quantified 

using the 450K array. The “London 1” cohort comprised of prefrontal cortex, superior temporal 

gyrus, entorhinal cortex, and cerebellum tissue obtained from 113 individuals archived in the 

MRC London Neurodegenerative Disease Brain Bank and published by Lunnon et al.5. The 

“London 2” cohort comprised entorhinal cortex and cerebellum  samples obtained from an 

additional 95 individuals from the MRC London Neurodegenerative Disease Brain Bank 

published by Smith and colleagues8. The “Mount Sinai” cohort comprised of prefrontal cortex 

and superior temporal gyrus tissue obtained from 146 individuals archived in the Mount Sinai 

Alzheimer's Disease and Schizophrenia Brain Bank published by Smith and colleagues7. The 

“Arizona 1” cohort consisted of 302 middle temporal gyrus and cerebellum samples from The 

Sun Health Research Institute Brain Donation Program32 published by Brokaw et al.12. The 

“Arizona 2” cohort consisted of an additional 88 temporal gyrus and cerebellum samples from 

Lardonije et al.10. The “ROSMAP” cohort consisted of 709 samples from the Rush University 
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Medical Center: Religious Order Study (ROS) and the Memory and Aging Project (MAP), 

which were previously published by De Jager and colleagues6. For replication purposes we 

used two further replication datasets. The “Munich” cohort” from Neurobiobank Munich 

(NBM), which had bulk prefrontal cortex  450K array data from 45 donors, and 450K array 

data from fluorescence-activated cell sorted  neuronal and non-neuronal (glial) populations 

from the occipital cortex from 26 donors as described by Gasparoni et al.11. The “Brains for 

Dementia Research (BDR)” cohort consisted of bulk prefrontal cortex Illumina Infinium EPIC 

array data from 590 donors, as described by Shireby et al15. Demographic information for all 

eight cohorts is available in Table 1. 

 

Data quality control and harmonization 

All computations and statistical analyses were performed using R 3.5.233 and Bioconductor 

3.834. A MethylumiSet object was created from iDATs using the methylumi package35 and 

RGChannelSet object was created using the minfi package36. Samples were excluded from 

further steps if (a) the mean background intensity of negative probes < 1,000, (b) the mean 

detection P values > 0.005, (c) the mean intensity of methylated or unmethylated signals were 

three standard deviations above or below the mean, (d) the bisulfite conversion efficiency < 

80%, (e) there was a mismatch between reported and predicted sex, or (f) the 65 SNP probes 

on the array show a modest level of correlation (using a cut-off of 0.65) between two samples 

(whereby the sample with the higher Braak score was retained). Sample and probe exclusion 

was performed using the pfilter function within the wateRmelon package37, with the following 

criteria used for exclusion: samples with a detection  P > 0.05 in more than 5% of probes, 

probes with < three beadcount in 5% of samples and  probes having 1% of samples with a 

detection P value > 0.05. Finally, probes with common (minor allele frequency > 5%) SNPs in 

the single base extension position or probes that are nonspecific or mis-mapped were 

excluded38,39, leaving 403,763 probes for analysis. Samples numbers after quality control are 

those shown in Table 1. 

 

Quantile normalization was applied using the dasen function in the wateRmelon package37. 

For the discovery cohorts, DNA methylation data was corrected by regressing out the effects 

of age and sex in all samples in each cohort and tissue separately, with neuron/glia proportions 

included as an additional covariate in cortical regions. The neuron/glia proportions were 

calculated using the CETS package40, and were not included as a co-variate for the cerebellum 

as the neuronal nuclear protein (NeuN) that was used to generate the neuron/glia algorithm is 
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not expressed by some cerebellar neurons41. These three variables (age, sex, neuron/glia 

proportions) were regressed out of the data as we found that they strongly correlated with either 

of the first two principal components of the DNA methylation data in most of the datasets. 

Other potential sources of technical and biological variation (post-mortem interval, ancestry, 

plate, chip, study and bisulfite treatment batch) did not correlate as strongly with methylation 

in most datasets. We opted to use surrogate variables as a consistent method to control for 

variation derived from these measured and other unknown variables across all datasets. 

Surrogate variables were calculated using the sva function in the SVA package42. Linear 

regression analyses were then performed with respect to Braak stage (modelled as a continuous 

variable) using residuals and a variable number of surrogate variables for each study until the 

inflation index (lambda) fell below 1.2 (see Supplementary Table 17). The surrogate variables 

included for each cohort correlated with the technical and biological variables that we had not 

regressed out earlier, demonstrating that this method appropriately controlled for variation not 

driven by Braak stage. Quantile-quantile plots for the four intra-tissue and the cross-cortex 

meta-analyses are shown in Supplementary Figure 20. Although it appears from these plots 

that there is P value inflation, it is worth noting that (a) lambda for all meta-analyses < 1.2 and 

(b) P value inflation is commonly observed in many DNA methylation studies and standard 

methods to control for this in GWAS are not suitable for EWAS data43.  

 

Intra-tissue meta-analysis  

We used the estimated coefficients and SEs from the six “discovery” cohorts to undertake an 

inverse variance intra-tissue meta-analysis independently in each available tissue using the 

metagen function within the Meta package44, which applies inverse variance weighting. The 

estimates and SEs from individual cohort Braak linear regression analyses were added to the 

model for each tissue. The prefrontal cortex analyses included three cohorts (N = 959: London 

1, Mount Sinai, ROSMAP), the temporal gyrus analyses included four cohorts (N = 608: 

London 1, Mount Sinai, Arizona 1, Arizona 2) and the entorhinal cortex analyses included two 

cohorts (N = 189: London 1, London 2). The cerebellum analyses included data from four 

cohorts (N = 533: London 1, London 2, Arizona 1 and Arizona 2) although the cerebellum data 

for the Arizona 1 and 2 cohorts was generated in the same experiment, and so these were 

combined together as a single dataset. The ESs and corresponding SEs reported in this study 

correspond to the corrected DNA methylation (beta) difference between Braak 0 and Braak VI 

individuals. Bonferroni significance was defined as P < 1.238 x 10-7 to account for 403,763 

tests. A fixed effects meta-analysis are the results primarily reported as it is the most 



 19 

appropriate model for our study as it can more reliably estimate the pooled effect and therefore 

the standard error and P value. However, in the supplementary tables we do also report the 

results of the random effects meta-analysis as ~10% of Bonferroni significant DMPs in the 

intra-tissue meta-analysis had high heterogeneity and in which case the results from the 

random-effects model should also be considered. 

 

Cross-cortex meta-analysis 

As multiple cortical brain regions were available for the “London 1” and “Mount Sinai” 

cohorts, a mixed model was performed using the lme function within the nlme package45. 

Estimate coefficients and SEs from each EWAS were extracted and were subjected to bacon43 

to control for bias and inflation, after which a fixed-effect inverse variance meta-analysis was 

performed across all discovery cohorts using the metagen function. A fixed effects model was 

selected in this instance for consistency with the intra-tissue meta-analysis, although the 

random effects meta-analysis results also shown in Supplementary Table 7. 

 

Replication analyses 

For the Munich replication cohort, we extracted the beta values for the 220 cross-cortex 

Bonferroni significant DMPs. This DNA methylation data was then corrected for age, sex and 

neuron/glia proportions (bulk tissue only) prior to performing a linear regression analysis with 

respect to Braak stage. For the BDR replication cohort, we were provided with beta values for 

the 208 cross-cortex Bonferroni significant DMPs that were present on the EPIC array. This 

data had been corrected for age, sex, neuron/glia proportions, batch and principal component 

1, before the linear regression analysis was performed with respect to Braak stage, with Bacon 

used to control for inflation. Additional information on the BDR dataset can be found in 

Shireby et al15. 

 

Annotations, pathway and regional analyses  

Probes were annotated for tables using both the Illumina (UCSC) gene annotation (which is 

derived from the genomic overlap of probes with RefSeq genes or up to 1500bp from the 

transcription start site of a gene) and “Genomic Regions Enrichment of Annotations Tool” 

(GREAT)46 annotation (which annotates a DMP to genes with a transcription start site within 

5kb upstream, or 1kb downstream). Pathway analyses were performed on the Illumina (UCSC) 

annotated genes corresponding to the 220 Bonferroni significant cross-cortex DMPs (N = 121 

genes). We used the ‘gometh’ function within the missMethyl package (version 1.20.0)47, 
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which performs one-sided hypergeometric tests and adjusts the test for the uneven number of 

probes per gene and pathway redundancy. The identified GO terms were subjected to the online 

tool REViGO (available at http://revigo.irb.hr/)48, to reduce the number of redundant functional 

terms based on semantic similarity between ontology terms. Resnik's measure was used to 

compute the similarity of terms and a medium between terms similarity of 0.7 was allowed. As 

methylation at neighboring CpG sites can be highly correlated we used a method developed to 

identify SNPs in LD to identify independent signals14. For the 220 Bonferroni significant cross-

cortex DMPs we used a threshold of r < 0.6 over 1mb to identify 165 independent (non-highly 

correlated) methylation signals. To identify DMRs consisting of multiple DMPs we used 

comb-p49 with a distance of 500bp and a seeded P value of 1.0 x 10-4. Comb-p was selected for 

DMR identification over alternative methods as it uses P values as input and so was the most 

suitable method for calling DMRs in the cross-cortex meta-analysis where multiple brain 

regions were available for some of the individuals. 

 

Genomic enrichment analyses 

To test for an enrichment of DMPs in specific genomic features (i.e. CpG islands, shelves, 

shores, non-CpG island regions) in certain genomic regions (i.e. intergenic, distal promoter, 

proximal promoter, gene body, downstream) we annotated all DMPs with Slieker annotation16 

and performed a two-sided Fisher's exact test comparing to all probes analyzed (N = 403,763). 

We also used a Fisher’s exact test to test for an enrichment of DMPs in genomic regions related 

to transcription based on the Illumina annotation (TSS1500, TSS200, 5’ UTR, 1st exon, gene 

body, 3’ UTR). To investigate whether any of the 220 Bonferroni significant cross-cortex 

DMPs were driven by genetic variation we used the xQTL resource to identify which of these 

DMPs are established cis-mQTLs17. To explore whether Braak-associated methylation was 

enriched in known AD GWAS variants we used Brown’s method to combine together P values 

from our meta-analyses for probes residing in the LD blocks around the genome-wide 

significant (P  < 5.0 × 10-8) GWAS variants identified by the stage one meta-analysis of Kunkle 

et al.18 Of the 24 LD blocks reported by Kunkle and colleagues, 20 contained  > 1 CpG site on 

the 450K array and the P values for each CpG in a given block were combined using Brown’s 

method, which accounts for the correlation structure between probes, with the regional P values 

adjusted to correct for multiple testing. 

 

Quantifying variance in Braak pathology explained by DNA methylation signatures 
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For this analysis control samples (Braak low [0-II]: N = 407) and AD cases (Braak high [V-

VI]: N = 589) from the cross cortex discovery dataset were used for training a classifier. A 

penalized regression model was used to select the optimum (N = 110) CpG probes from the 

220 cross-cortex Bonferroni significant  DMPs that determined case-control status in the 

training dataset using the R package GLMnet50. Elastic net uses a combination of ridge and 

lasso regression, in which alpha (α) = 0 corresponds to ridge, whilst α = 1 corresponds to lasso, 

the elastic net α parameter used was 0.5. The lambda value was derived when using 10-fold 

cross validation on the training dataset. The model was then tested for AUC ROC value, 

confidence intervals (CI) and variance explained in the testing dataset as well as the 

independent replication Munich (Braak 0-II: N = 9, Braak V-VI: N = 29) and BDR (Braak 0-

II: N = 196, Braak V-VI: N = 258) prefrontal cortex datasets. 
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Figure 1: Intra-tissue meta-analyses of AD methylomic studies highlights Bonferroni significant differentially

methylated positions (DMPs) in all cortical tissues. (a) A Manhattan plot for the prefrontal cortex (red), temporal gyrus

(green) and entorhinal cortex (blue) meta-analyses, with the ten most significant DMPs circled on the plot and Illumina

UCSC gene name shown if annotated, or CpG ID if unannotated. The X-axis shows chromosomes 1-22 and the Y-axis shows

-log10(p), with the horizontal red line denoting Bonferroni significance (P < 1.238 x 10-7). (b) A Venn diagram highlighting

overlapping DMPs at Bonferroni significance across the cortical tissues. (c) In each cortical brain region the Bonferroni

significant DMPs identified in that region usually had a greater effect size (ES) there, than in any of the other cortical regions.

The X-axis represents the methylation (beta) ES between individuals that are Braak stage 0 and VI. Data is separated on the

Y-axis by tissue analysis (large text) with the corresponding data at these probes in other tissues (small text). The white dot in

the centre represents the median, the dark box represents the interquartile range (IQR), whilst the whisker lines represent the

“minimum” (quartile 1 – 1.5 x IQR) and the “maximum” (quartile 3 + 1.5 x IQR). The coloured violin represents all samples

including outliers, meaning that the “minimum” and “maximum” may not extend to the end of the violin.
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Figure 2: A cross-cortex meta-analysis identifies 220 Bonferroni significant differentially methylated positions

(DMPs) associated with Braak stage. (a) A Miami plot of the cross-cortex meta-analyses. Probes shown above the X-

axis indicate hypermethylation with higher Braak stage, whilst probes shown below the X-axis indicate hypomethylation

with higher Braak stage. The chromosome and genomic position are shown on the X-axis. The Y-axis shows –log10(p).

The red horizontal lines indicate the Bonferroni significance level of P < 1.238 x 10-7. Probes with a methylation (beta)

effect size (ES: difference between Braak 0- Braak VI) ≥ 0.01 and P < 1.238 x 10-7 are shown in blue. The 20 most

significant DMPs are circled on the plot and Illumina UCSC gene name is shown if annotated, or CpG ID if unannotated.

(b) A volcano plot showing the ES (X-axis) and –log10(p) (Y-axis) for the cross-cortical meta-analysis results. Gray

probes indicate an ES between ≥ 0.01, whilst blue probes indicate an ES ≥ 0.01 and P < 1.238 x 10-7. (c) The most

significant cross-cortex differentially methylated region (DMR) (chr7:27153212-27154305) contained 11 probes and

resided in the HOXA region. The horizontal red line denotes the Bonferroni significance level of P < 1.238 x 10-7. Red

probes represent a positive ES ≥ 0.01, blue probes represent a negative ES ≥ 0.01. Underneath the gene tracks are shown

in black with CpG islands in green.
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Figure 3: Independent replication of the Bonferroni significant cross-cortex differentially methylated loci. (a) The 

methylation (beta) effect size (ES) of the 220 cross-cortex differentially methylated positions (DMPs) identified in the 

discovery cohorts (X-axis) were significantly correlated with the ES in the Munich replication cohort in the prefrontal cortex 

(red, r = 0.64, P = 5.24 x 10-27), sorted neuronal cells (light blue, r = 0.45, P = 1.56 x 10-12) and non-neuronal cells (purple, r = 

0.79, P = 1.43 x 10-47) (Y-axis). (b) A forest plot of the most significant cross-cortex DMP (cg12307200, chr3:188664632, P = 

4.48 x 10-16). The effect size is shown in the prefrontal cortex (red), temporal gyrus (green) and entorhinal cortex (blue) for 

the different discovery cohorts. The X-axis shows the beta ES, with dots representing ES and arms indicating standard error 

(SE). ES from the intra-tissue meta-analysis using all available individual cohorts are represented by polygons in the 

corresponding tissue color. The black polygon represents the cross-cortex data. Shown in purple on the plot is the ES in the 

Munich replication cohort in the prefrontal cortex and sorted neuronal cells and non-neuronal cells, with the direction of 

effect suggesting the hypomethylation seen in the discovery cohorts is driven by changes in non-neuronal cells. (c) In the 

BDR replication cohort DNA methylation data was available in the prefrontal cortex for 208 of the 220 Bonferroni significant 

cross-cortex DMPs. The ES of these 208 cross-cortex DMPs in the discovery cohorts (X-axis) were significantly correlated 

with the ES in the BDR replication cohort (r = 0.53, P = 4.13 x 10-16) (Y-axis).
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Figure 4: Receiver Operating Characteristic (ROC) graphs highlighting the Area Under the Curve (AUC) for the 110

cross-cortex probes that can best explain the variance in Braak pathology. An elastic net penalized regression model was

used to identify a subset of 110 of the Bonferroni significant cross-cortex probes that could best predict whether a sample has

low pathology (Braak 0-II: “control”) compared to high pathology (Braak V-VI: “AD”) in a training dataset comprised of 996

discovery samples (Braak 0-II: N = 407, Braak V-VI: N = 589). This model had an Area Under the ROC Curve (AUC) of

94.33% (confidence interval [CI] = 92.88-95.64%) and explained 71.11% of the pathological variance (black line). The 110

probe signature was then tested in two independent replication cohorts. In the Munich prefrontal cortex samples (Braak 0-II:

N = 9, Braak V-VI: N = 29) the model had an AUC of 73.95% (CI = 55.17-88.89%), explaining 20.18% of the variance (blue

line). In the BDR prefrontal cortex samples (Braak 0-II: N = 196, Braak V-VI: N = 258) the model had an AUC = 70.36% (CI

= 65.52-75.12%), explaining 15.87% of the variance (green line). A list of the 110 probes and their performance

characteristics can be found in Supplementary Tables 13 and 14, respectively.
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Table 1: Demographic information for cohorts included in the meta-analyses. Sample numbers, split of males (M)/females 

(F) and mean age at death in years (± standard deviation [SD]) are shown for individuals with low pathology (Braak 0-II), mid-

stage pathology (Braak III-IV) and severe pathology (Braak V-VI) in each cohort. Shown are the bulk tissues available from each 

cohort, which included the cerebellum, entorhinal cortex, middle temporal gyrus, prefrontal cortex and superior temporal gyrus. In 

the discovery meta-analyses, we used data from six EWAS using the 450K array, which all had > 50 unique donors. For 

replication we used two cohorts. The Munich cohort had 450K data from bulk prefrontal cortex tissue, as well as data available 

from sorted neuronal and non-neuronal cell populations from the occipital cortex. The BDR cohort had EPIC array data available 

from bulk prefrontal cortex samples. For the meta-analyses, superior temporal gyrus and middle temporal gyrus samples were 

both classed as temporal gyrus samples. Shown are final numbers for all cohorts after data quality control. Ancestry is reported for 

the discovery cohorts and is the number of unique individuals that had the following inferred ethnicities from the 1000 genomes 

reference panel: European (Eu), African (Af), American (Am), East Asian (As). 

Stage Cohort Unique 

individuals 

Ancestry 

(Eu/Af/Am/As) 

Braak Number Sex 

(M/F) 

Age at 

death in 

(± SD) 

Tissues analysed 

 

D
IS

C
O

V
E

R
Y

 

 

London 1 113 

 

112/0/1/0 

0-II 29 13/16 77.6 (12.8) Prefrontal cortex, entorhinal 

cortex, superior temporal 

gyrus, cerebellum (Bulk) 
III-IV 18 7/11 88.5 (5.2) 

V-VI 66 26/40 85.4 (8.1) 

 

London 2 95 

 

92/1/2/0 

0-II 23 12/11 76.1 (10.0)  

Entorhinal cortex, 

cerebellum (Bulk) 
III-IV 16 3/13 87.6 (6.4) 

V-VI 56 26/30 81.5 (8.6) 

 

Mount 

Sinai 
146 

 

113/20/11/2 

0-II 60 32/28 82 (7.6)  

Prefrontal cortex, superior 

temporal gyrus (Bulk) 
III-IV 42 12/30 88.8 (6.6) 

V-VI 44 12/32 88.0 (7.5) 

 

Arizona 1 302 

 

302/0/0/0 

0-II 61 40/21 80.3 (8.2)  

Middle temporal gyrus, 

cerebellum (Bulk) 
III-IV 97 50/47 86.9 (6.9) 

V-VI 144 63/81 82.3 (8.5) 

 

Arizona 2 88 

 

88/0/0/0 

0-II 16 10/6 82.5 ( 5.0)  

Middle temporal gyrus, 

cerebellum (Bulk) 
III-IV 45 21/24 86.7 (5.1) 

V-VI 27 12/15 84.6 (7.1) 

 

ROS/MAP 709 

 

709/0/0/0 

0-II 143 70/73 83.2 (6.0)  

Prefrontal cortex (Bulk) III-IV 409 144/266 86.9 (4.1) 

V-VI 157 45/113 87.8 (3.5) 

 

R
E

P
L

IC
A

T
IO

N
 

 

 

 

Munich 

45 

 

- 

0-II 9 5/4 76.7 (10.9)  

Prefrontal cortex 

(Bulk)  
III-IV 7 1/6 82.1 (5.2) 

V-VI 29 12/17 79.2 (8.5) 

26 

 

- 

0-II 11 7/4 75.9 (8.5)  

Occipital cortex 

(Sorted cells) 
III-IV 5 1/4 85.0 (6.5) 

V-VI 10 4/6 77.9 (6.6) 

 

BDR 

 

590 

 

- 

0-II 196 100/96 83.6 (10.6)  

Prefrontal cortex (Bulk) III-IV 136 91/65 85.1 (7.45) 

V-VI 258 128/130 82.5 (8.5) 



 

 

Table 2: The 25 most significant differentially methylated positions (DMPs) associated with Braak stage from the cross-cortex meta-analysis. Probe information is 

provided corresponding to chromosomal location (hg19/GRCh37 genomic annotation), Illumina gene annotation, closest genes with a transcription start site upstream or 

downstream (from GREAT annotation). Shown for each DMP is the methylation (beta) effect size (ES), standard error (SE) and corresponding unadjusted P value from the 

inverse variance fixed effects meta-analysis model in the cross-cortex data. All ES and SE have been multiplied by six to demonstrate the difference between Braak stage 0 

and Braak stage VI samples. A more comprehensive table is provided in Supplementary Table 7. 

 

Probe Position 
Illumina Gene 

Annotation 

GREAT annotation - closest genes with 

transcription start site upstream (distance to site) 

GREAT annotation - closest genes 

with transcription start site 

downstream (distance to site) 

ES SE P 

cg12307200 chr3:188664632   TPRG1 (-225131) LPP (+733912) -0.015 0.002 4.48E-16 

cg01419713 chr8:42038135 PLAT   PLAT (+27107), AP3M2 (+27672) 0.022 0.003 2.20E-14 

cg04874795 chr16:86477638   FOXF1 (-66495) IRF8 (+545230) -0.022 0.003 3.95E-14 

cg11823178 chr8:41519399 ANK1;MIR486 NKX6-3 (-14522) ANK1 (+234881) 0.016 0.002 3.24E-13 

cg07061298 chr7:27153847 HOXA3 HOXA2 (-11418) HOXA3 (+5367) 0.018 0.002 4.57E-13 

cg13076843 chr17:74475294 RHBDF2   RHBDF2 (+22195), AANAT (+25862) 0.021 0.003 7.57E-13 

cg25018458 chr17:980014 ABR   TIMM22 (+79658), ABR (+103154) 0.008 0.001 7.87E-13 

cg07883124 chr13:113634042 MCF2L F7 (-126079) MCF2L (+10508) 0.017 0.002 9.10E-13 

cg03223072 chr10:116398913 ABLIM1 AFAP1L2 (-234670) ABLIM1 (+19144) -0.014 0.002 1.10E-12 

cg05066959 chr8:41519308 ANK1;MIR486 NKX6-3 (-14431) ANK1 (+234972) 0.024 0.003 1.45E-12 

cg17881200 chr7:27138850   HOXA1 (-3258)   0.017 0.002 1.83E-12 

cg19240213 chr7:27163095 HOXA3 HOXA3 (-3882)   0.020 0.003 2.29E-12 

cg10045881 chr1:111770291 CHI3L2 CHIA (-63247) CHI3L2 (+26899) -0.015 0.002 2.38E-12 

cg02674693 chr11:45109122   TP53I11 (-137412), PRDM11 (-59772)   0.018 0.003 3.57E-12 

cg06800235 chr1:7692367 CAMTA1 VAMP3 (-138962) CAMTA1 (+846984) -0.017 0.002 3.71E-12 

cg18264562 chr1:26253412   STMN1 (-20456) PAFAH2 (+71236) 0.014 0.002 5.46E-12 

cg01964852 chr7:27146262 HOXA3 HOXA2 (-3833)   0.016 0.002 5.96E-12 

cg01111041 chr6:32121055 PPT2;PRRT1 PRRT1 (-1327), PPT2-EGFL8 (-944), PPT2 (-245)   0.009 0.001 6.83E-12 

cg15974867 chr11:69464012 CCND1   CCND1 (+8158), ORAOV1 (+26103) 0.018 0.003 7.46E-12 

cg17907520 chr15:31680189     KLF13 (+61132), OTUD7A (+267353) 0.011 0.002 9.65E-12 

cg16988611 chr10:82224946 TSPAN14   TSPAN14 (+11025) 0.011 0.002 9.98E-12 

cg13579486 chr20:39314091     MAFB (+3789) -0.012 0.002 1.01E-11 

cg01681367 chr16:29676071 SPN QPRT (-14287) SPN (+1492) -0.015 0.002 1.25E-11 

cg01301319 chr7:27153580 HOXA3 HOXA2 (-11151) HOXA3 (+5634) 0.017 0.003 1.54E-11 

cg02317313 chr12:122235206 LOC338799 RHOF (-3039)   0.017 0.003 1.69E-11 
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