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Abstract: Grid-connected microgrids consisting of renewable energy sources, battery storage, and
load require an appropriate energy management system that controls the battery operation. Tradi-
tionally, the operation of the battery is optimised using 24 h of forecasted data of load demand and
renewable energy sources (RES) generation using offline optimisation techniques, where the battery
actions (charge/discharge/idle) are determined before the start of the day. Reinforcement Learning
(RL) has recently been suggested as an alternative to these traditional techniques due to its ability
to learn optimal policy online using real data. Two approaches of RL have been suggested in the
literature viz. offline and online. In offline RL, the agent learns the optimum policy using predicted
generation and load data. Once convergence is achieved, battery commands are dispatched in real
time. This method is similar to traditional methods because it relies on forecasted data. In online RL,
on the other hand, the agent learns the optimum policy by interacting with the system in real time
using real data. This paper investigates the effectiveness of both the approaches. White Gaussian
noise with different standard deviations was added to real data to create synthetic predicted data to
validate the method. In the first approach, the predicted data were used by an offline RL algorithm.
In the second approach, the online RL algorithm interacted with real streaming data in real time, and
the agent was trained using real data. When the energy costs of the two approaches were compared,
it was found that the online RL provides better results than the offline approach if the difference
between real and predicted data is greater than 1.6%.

Keywords: reinforcement learning (RL); microgrid; battery management; offline and online RL; opti-
misation

1. Introduction

Grid-connected microgrids are becoming the main building blocks of smart grids.
They facilitate the vast deployment and better utilisation of RES, reduce stress on the
existing power grid, and provide consumers with uninterrupted power supply. The main
aim for any Energy Management System (EMS) for grid-connected microgrids is to reduce
operational costs by reducing the cost of power imported from the grid. This is achieved by
controlling the Battery Energy Storage System (BESS) to store power when RES generation
is higher than load demand and release power when it is less than the load demand.
However, BESS capacity is finite and hence, depending on the battery size, imported
power from the grid is likely to be used. Therefore, grid tariffs, which can vary during the
day, must be taken into account when deciding charging and discharging commands. In
addition, the feed-in tariff can also be available to enable consumers or prosumers to sell
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their excess power to the grid [1]. These factors demonstrate the need for an intelligent
optimisation method. However, due to the lack of information regarding future generation
and load profiles, this presents a challenge for EMS.

Inspired by the classical economic dispatch of power systems, various studies have
suggested different optimisation techniques to plan, schedule, and control the BESS in
grid-connected microgrids. These studies have formulated the operation of the BESS as a
dispatch optimisation problem and solved it using Linear Programming (LP) [2,3], Mixed
Integer Programming (MIP) [4], Mixed-Integer Linear Programming (MILP) [5–7], and
Mixed-Integer Nonlinear Programming (MINLP) [8,9]. In Chen et al. [2], a general algebraic
modelling system (GAMS) was developed and solved by CPLEX solver and then tested
in a physical system based in Taiwan. The study compared two models to determine the
impact of energy storage on optimal scheduling. The first model consisted of thermal and
electrical loads and a CHP unit. The second model used additional thermal and electrical
storage. Both models used in this work relied on the prediction of load profiles. In Luna
et al. [5], the model reflects a deterministic problem that promotes self-consumption based
on 24 h look-ahead forecast data. The microgrid consists of a supervisory control stage that
compensates for any mismatch between the offline scheduling process and the real-time
microgrid operation. In Li et al. [7], the microgrid optimisation problem is formalised using
a general algebraic modelling system (GAMS) via a discretised step transformation (DST)
approach and finally solved using the CPLEX solver. This paper proposes a new optimal
scheduling mode by modelling the uncertainty of spinning reserves provided by energy
storage with probabilistic constraints. These achievements are highly dependent on the
proper estimation of spinning reserves, which is a big challenge while working on a real
system. In Mosa and Ali [9], the MINLP algorithm was used to reduce the operational
cost of a DC microgrid consisting of a photovoltaic (PV), fuel cell (FC), micro turbine (MT),
diesel generator (DE), and battery/BESS. This study uses Egyptian grid load profiles over
four seasons of the year based on the prediction.

The above traditional approaches require a detailed and accurate mathematical model
of the system, while some of them require the linearisation of the system. In addition,
previous knowledge of future RES generation and load demand over a period is required
as an input to the optimisation problem. The accuracy of the prediction may affect the
accuracy of the BESS operation. Therefore, different forecasting algorithms that can handle
the stochastic nature of load demand and RES have been suggested in the literature. These
algorithms are designed to forecast short (daily), medium (seasonal), and long (yearly) load
demand and availability of RES. Most advanced forecasting algorithms include Artificial
Neural Networks (ANN), dynamic programming (DP)-based optimisation, and fuzzy logic
by considering the weather conditions. Although forecasting techniques vary within the
vast amount of existing literature [10–18], the most common objective of these techniques is
to decrease the forecasting error by better modelling the uncertainties in real time. Although
forecasting algorithms have improved in recent years, it is still challenging to predict the
future load demand and availability of RES with minimum error, especially if the decision
making is implemented in real time.

Recent studies [19–26] have introduced reinforcement learning as a potential solution
for the optimal operation of BESS due to its ability to develop an optimal policy online.
In RL, an agent interacts with the surrounding environment and develops an optimal
policy for taking the right action after exploring its state. The agent takes the action
to maximise a future accumulative reward. The main advantage for RL over traditional
methods is that it does not need any model of the environment and it can learn the optimum
policy in real time. Yoldas et al. [27] used the MINLP technique guided by a Q-learning
algorithm to decrease the daily energy cost and emission of harmful gases simultaneously.
Performance comparisons were made using only conventional Q-learning. The result
showed an approximately 1.2% reduction of the daily operational costs associated with the
proposed technique over conventional Q-learning approaches.



Energies 2021, 14, 5688 3 of 18

There are two main types of online RL algorithms: off-policy and on-policy. In
off-policy methods (e.g., Q-learning), the action-valued function is approximated inde-
pendently of the policy being followed. Conversely, in on-policy approaches, e.g., in
state–action–reward–state–action (SARSA), the action-valued function is continuously up-
dated according to the developed policy, which makes it harder to converge [28]. Whereas
with off-policy RL, the agent does not need to follow any specific policy and in fact could
even act randomly, on-policy schemes rely on the policy that is being established. Despite
the possibly random behaviour, off-policy methods, including the Q-learning algorithm,
can converge onto the optimal policy independent on the policy employed during ex-
ploration [29]. On the other hand, offline, or data-driven RL develops the policy on
pre-collected data. Once the policy is developed, it is deployed to control the system. The
policy is not updated by interacting with the system in real time. Offline learning, such
as batch RL and other conventional techniques such as MILP, MINLP, and LP algorithms,
work with data in bulk. Therefore, the uncertainty of some unknown variables such as load
demand and PV profiles make these offline methods more challenging because the training
is done on forecasted and not real data. Conventionally, offline learning algorithms need to
be re-run from scratch in order to learn from modified or new data.

In Mbuwir et al. [19], the authors proposed batch reinforcement learning, offline RL, to
solve the optimisation of the microgrid problem in order to achieve a cost-efficient solution.
The goal was to find or statistically learn the pattern of the best control policy from the
training data (previous year’s load and PV profiles) in the form of several smaller batches
(sets) and then use this policy on the current environment in real time. When the batch
RL was compared to the MILP approach, it was shown to be 19% less efficient than MILP.
Kuznetsova et al. [30] developed a two-step-ahead RL algorithm to cut down utility bills
by learning the stochastic behaviour of the environment using RL and then scheduling
the battery two hours ahead from the current time. RL trains the agent and produces the
optimal actions of the battery using forecasted wind and load demand power profiles.
Liu et al. [20] proposed a cooperative RL algorithm for distributed economic dispatch in
microgrids. However, the challenge of using forecasted PV and load data, which can affect
function approximation, is not addressed in this paper. Jiang and Fei [21], suggested a
Q-learning based, economical smart microgrid with two-level hierarchical agents with
flexible demand response and distributed energy resource management. The authors claim
that the suggested scheme is very effective while satisfying the user’s preference. However,
the suggested work requires load demand from the user before scheduling its distributed
units and batteries. This can affect the cost optimisation adversely if the user’s demand
request changes during real-time operations.

In [22,25,31–43], shallow and deep neural networks have been suggested to approxi-
mate the Q-value function to achieve better optimisation results with shorter convergence
time. Low convergence time is also desirable for online applications. Lu et al. [22] used
deep RL to develop an energy-trading scheme according to the predicted future renewable
energy generation, estimated future power demand, and battery level. This work also
depended on forecasted renewable energy power generation. In Bui et al. [25], a double
deep neural network (DDQN) was proposed for function approximation of Q-values. The
authors claim that this method trains the model faster as compared with a single deep
(having one network) RL algorithm. This work also depends on the estimation of future
load demand and PV generation. Zhou et al. [24] suggested an algorithm to train the agent
in real time using real data profiles instead of forecasted datasets. A fuzzy Q-learning
approach is adopted for a system consisting of household users and a local energy pool in
which customers are free to trade with the local energy pool and enjoy low-cost renewable
energy while avoiding the installation of new energy generation equipment. Another
online approach was proposed in Kim et al. [26] in which real-time pricing is used to
reduce the system cost. Both Zhou et al. [24] and Kim et al. [26] do not provide informa-
tion regarding the efficiency of their algorithms with respect to other offline Q-learning
techniques. Another study by Kim and Lim [44] applied Q-learning directly in real time.
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Optimal cost was achieved for the whole year rather than for a single day. In contrast to
other offline approaches, this direct online approach trains the agent in real time using real
data by moving from one day to another. In the beginning, the agent experience is low;
however, as days progress, the agent starts exploiting more actions, and an optimal policy
is developed.

The literature reviewed here suggests that offline policies (including RL) require
predicted data in order to produce optimal results if the real data is the same as the
predicted data, i.e., zero prediction error. The RL online approach, on the other hand, does
not rely on predictions and uses real streaming data. However, it is not clear how effective
the online RL algorithm is as compared to the offline approaches when the prediction error
increases. Motivated by this shortcoming in the existing literature, this paper provides
a comprehensive comparison between the two approaches. Using one year of real PV
generation and load data obtained from [45], different profiles for predicted data were
created by generating random noise with different standard deviations. The noise was
added to the real data to create synthetic predicted data. Then, the 24 h of predicted data
were used to train the RL agent, and then, the optimised battery command achieved in
this process was applied to the real data (offline RL approach). The online RL, on the other
hand, interacted with real data in real time. Then, the energy costs of the two approaches
were compared to help users make decisions on the most appropriate approach given
the accuracy of the available forecasted data. Finally, the case with zero prediction error
was considered in the comparison of MINLP versus RL to establish a benchmark between
conventional offline approaches versus the offline RL.

2. Energy Management System

The aim of the EMS is to reduce the cost of the power imported from the grid as
shown in Figure 1. Thus, the grid supplies energy only if the RES and BESS do not fulfil the
demand, and the time of transfer is chosen in order to minimise the cost. Export of energy
to the main grid might also be possible if a feed-in tariff is available. Renewable energy, PV
in this study, has a priority to fulfil the load requirement first. If it is not sufficient, then
the battery, main grid, or combination of both are used to fulfil the demand. The BESS
may charge from the PV directly or charge from or discharge into the main grid if needed.
The EMS can make use of different tariff rates within the day by charging the BESS during
low-tariff periods and discharging it during high-tariff periods. In this work, a fixed feed-in
tariff is assumed, and there are three different tariffs (peak, mid, low) which are assumed
to import the energy from the main grid depending on time of the day.
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In this paper, an RL algorithm is used to interact with the microgrid and take auto-
mated decisions to control the BESS, taking into account a dynamically changing envi-
ronment characterised by the available PV output, load demand, and the level of battery
charge (SOC). The decisions are in the form of actions for the battery to charge, discharge,
or remain idle. The recommended actions for the BESS are developed through Q-learning.

2.1. System States

The state space (S) is discretised at ∆t = 30 min, which suggests that the learning agent
captures the information related to the dynamics of the microgrid after the time interval of
30 min. In Equation (1), t represents the time period, which has 48 states in 24 h of a day
due to its discretisation every 30 min.

st = [SOC, eNet
t , t] ∈ S, (1)

where SOC, eNet
t are the battery state of charge and net power demand, respectively. The

eNet
t is the difference between the load demand and the energy generated by PV such that:

eNet
t = edemand

t − ePV
t . (2)

The SOC should be bounded by maximum and minimum limits such that:

SOCmin ≤ SOC(t) ≤ SOCmax. (3)

We discretise the state space as shown in Equation (4) below in which the i, j, k indices
represent the SOC, eNet

t and t, respectively as:

Sdiscrete =
{

Si,j,k

}
, (4)

where each index in the state space has the following levels: i = 3 levels, j = 2 levels, i.e.,
positive (eNet

t ≥ ePV
t ) or negative (eNet

t < ePV
t ), and k = 48 levels. Thus, the total number of

states is 48× 3× 2 = 288.

2.2. Action Space

The action space consists of the charge, discharge, and idle command of the battery
such as:

A = { a|(Discharge, Idle, Charge)}. (5)

At each time step t, one action is selected from the action space A. If the action
“Discharge” is chosen, the battery discharges into the main grid, supplies the load, or both.
In case of the action “Idle”, the load demand is fulfilled by the PV source, main grid, or
both. If the “Charge” action is selected, the battery is charged from the PV, the grid, or
both.

2.3. Backup Controller

In this work, we used a backup controller, which acts as a filter for every control action
resulting from the policy π to take care of the practical constraint, such as the inability of the
battery to charge or discharge beyond its maximum and minimum SOC level, respectively.
In addition, there is a certain limit of battery charging or discharging at time t. For example,
if the “Charge” action is selected by the RL agent at time t and one of the discrete states is
(eNet

t > ePV
t ), then the battery should charge from the main grid up to a certain limit (∆e)

defined in Table 1 even if the capacity of the battery is more than ∆e. Moreover, if at time
t, one of the discrete states is (eNet

t < ePV
t ) and the RL agent selects the action “Charge”,

the battery will charge from the extra PV available (after fulfilling the load demand) by
respecting the charging rate parameter of the battery. If for example the current PV power is
more or less than the charging rate of the battery, the battery is charged up to the maximum
charging rate (∆e) or current PV power, respectively.
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Table 1. Chosen parameters of the microgrid used in this paper.

Name Values

Total capacity of the battery 12,000 KWh
Max/Min charging rate of battery (∆e) (2300/2) KW

SOCmax 100%
SOCmin 70%

Initial SOC of the battery (SOC(0)) [min, max]
Time step lenght (∆t ) 30 min

α, γ, ε 0.5, 0.5, 0.6
Total iterations (Offline) 10,000–15,000

2.4. Reward

The reward function r(st,at) is the immediate incentive gained by taking a specific
action a at time t in states. The reward function is chosen to minimise the running cost
of importing power from the grid and maximise the revenue of selling power to the grid.
The cost is calculated every 30 min (as ∆t = 30) by multiplying the respective tariff rates,
as mentioned in Section 2.5. The reward function is the negative of the cost of imported
energy or the cost of exported energy. Hence, the reward function can be formulated as
follows:

r(st, at) =

{
−Pgrid

t × ∆t× Tari f fimp, Pgrid ≥ 0
Pgrid

t × ∆t× Tari f fexp, Pgrid < 0

}
, (6)

where Tari f fimp and Tarri f fexp are the import and export tariffs, respectively. Pgrid
t is the

grid power and is given by:
Pt

grid = et
Net + Pt

batt, (7)

where Pbatt
t is the power used to charge the battery.

2.5. Tariff

The import tariff has three different values depending on the time of use:

Tari f fimp =


0.05£/kWh low peak, 22 : 00 to 8 : 00
0.08£/kWh medium peak, 9 : 00 to 12 : 00
0.171£/kWh high peak, 19 : 00 to 21 : 00

. (8)

The export tariff does not vary and it is Tari f fexp = 0.033£/kWh.

3. Q-Learning Algorithm

The backbone of the Q-learning algorithm is based on the two components described
in Equation (9) as:

Rt
π = r(st, at) +

∞

∑
i=1

γi.r(st+i.at+i). (9)

The first component shows the impact of the current action on future rewards, and
the second component is the total discounted rewards at time step t under a given policy
π. Therefore, Rπ

t is defined as the sum of the instant reward at time step t plus the
future discounted rewards. The parameter γ is the discount factor used to determine
the importance of future rewards from the next time step (t + 1) up to infinity. If γ = 0,
the algorithm considers the current reward only, while if γ = 1, both current and future
rewards have equal weight. In Q-learning, the policy is learned implicitly without any
prior knowledge. This is done by approximating the action-value function by repeatedly
updating the Q(st, at) through experience such as:

Q(st, at) = Q(st, at) + α[r(st, at) + γmaxQ(st+1, at+1)−Q(st, at)]. (10)
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To approximate the Q-table, it is important to estimate all state–action pairs of the
table. Parameter α is the learning rate that determines how much the newly obtained
value overrides the old value of Q(st, at). If α = 0, the newly obtained information is
ignored during training, whereas if α = 1, only the latest information is used. Therefore,
in Q-learning, the selection of α (ranging between 0 and 1) is very important to keep a
balance between the old and new information. The RL agent takes random actions in the
beginning if it follows an ε-greedy policy, which is adopted in this work. The idea behind
the purely ε-greedy approach is to try every decision once and then keep picking the one
that results in the highest reward as learning progresses. After certain iterations and by
performing different actions in each state of the Q-table, the agent learns to maximise the
value (state–action) of the Q-table by taking greedy actions. Random and greedy actions
correspond to exploration (ε) versus exploitation, respectively. In this work, taking a greedy
action, the decision is based on:

ε← ε/
√

M(s)−Mmax (11)

where M(s) is the number of times a certain action is taken in a specific state. Mmax is the
maximum constant value selected after which greedy actions are selected by the Q-learning
algorithm.

3.1. Offline RL Implementation

In this section, the implementation of offline RL to control BESS in microgrids will
be discussed. At the beginning of each day, the forecasted PV and load data are gathered
as inputs to RL. Then, Q-learning is run using the same input data until convergence is
achieved. The policy developed at the end of this phase is used to generate the charging,
discharging and idle commands for the next 24 h. This strategy is repeated for each day.
The backup controller monitors the control parameters of the battery. After selecting
the control actions of the battery from Q-learning, the backup controller ensures that all
physical constraints and limitations are met before actually applying the battery actions on
the physical system. Figure 2 illustrates the offline implementation of RL-based EMS.
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This offline RL implementation is similar to the traditional EMS approaches such as
MILP, where estimated data are used by the optimiser to produce decision variables, such
as charging/discharging/idle commands of the battery. The estimated synthetic data for
PV generation and load consumption for the next 24 h are used by RL to schedule the
battery command. Each episode of one day consists of 48 steps (30 min time interval). The
RL keeps on using the same data until convergence is achieved. A total of 10,000–15,000
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iterations were employed for better convergence. The optimised battery commands are
dispatched at the start of the following day for the battery to operate in real time. The same
process is repeated for every day of the year. As we are interested to find the total cost of
a complete year (365 days), for the initialization of offline Q-learning, the Q-table simply
initialises the action-value function at time step 0 with the value of 0 or ∞.

3.2. Online RL Implementation

Online RL is applied directly to real data in real time. Therefore, the agent learns the
optimal policy by interacting with the real system. There is no pre-training in this online
approach, unlike offline techniques. Figure 3 shows the online RL for EMS. The online
RL algorithm updates the actions of the battery and dispatches them every 30 min in real
time regardless of the status of convergence. Learning can be very slow, especially in first
few days. Before convergence, the performance would be suboptimal. With time, the
agent develops an optimal policy. The function of the backup controller in the online RL
implementation is the same as for offline RL, as described in Section 2.3.
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Figure 3. Online implementation of the RL algorithm.

There is no separate training stage in online RL; rather, the agent gathers experiences
during real-time interaction with the environment. Therefore, in the beginning, the Q-table
is initialised with a shortsighted future reward with the algorithm hyper-parameter γ set
to 0. Then, the table will be updated in real time by interacting with the real system. This
simple initialisation step reduces the convergence time substantially as per [44].

3.3. Prediction Error Generation

To compare the performance of both offline and online Q-learning, there is a need
to create a difference between forecasted data (PV and load) and real data to represent
the prediction error. We use an algorithm to add random noise to the real net power
demand given by eNet

t = edemand
t − ePV

t . The real PV and load profiles for a complete year
are obtained from [45]. The noise is generated using normally distributed white Gaussian
noise having different standard deviation (σ) values. For each σ, five noise profiles are
generated, averaged, and then added to the real net power demand data to produce the
forecasted net power demand, as shown in Figure 4. The increase in the σ value will
increase the standard deviation error. Thus, the forecasted net demand with higher sigma
values represents an increasing trend of deviation with respect to the real power demand
and vice versa.
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4. Simulation Results

This section evaluates the performance of the offline and online optimisation tech-
niques. The offline and online RL were both applied on a daily basis with an interval of
30 min. Firstly, we compared the results of offline RL with MILP to analyse the efficiency of
both algorithms in terms of cost saving in a grid-tied microgrid system. Then, we compared
offline RL with online RL after establishing a benchmark between the offline RL and MILP
techniques. In this regard, both the offline and online RL optimisation techniques need to
be investigated in terms of cost saving per year. This work compares the behaviour of both
the approaches when there is a different percentage of errors present between forecasted
and real data profiles (PV and load). This information can be used to decide between offline
and online RL when the real data (PV and Load) profiles deviate from the forecasted data.
The real data assumed in this work are gathered from the online open-source data platform
in reference [45]. The chosen parameters used to simulate the behaviour of the microgrid
are provided in Table 1.

Below, Figure 5 shows the average net forecasted esum/year
f orecast /5 demand per year using

all five samples at each σ. Then, Equation (12) is used to find the percentage error between
the real and forecasted power demand per year:

Neterror/year =
1
n

n

∑
1

 esum/year
Real − esum/year

f orecast

esum/year
Real

. (12)

The error bars in Figure 5 above show the Neterror/year for each sigma using the highest
and lowest sample of esum/year

f orecast . The arrows indicating 1 and 2 in Figure 5 indicate the

constant esum/year
real and varying Neterror/year in Equation (12), respectively.

Figure 6 depicts the difference between the generated esum/year
f orecast /5 and the real power

demand. The difference of the total real power demand per year with the highest and
lowest sum of the generated forecasted power demand per year out of five samples at each
sigma is described using the error bars on the secondary axis of Figure 6.
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The two datasets, real (original) and forecasted (synthetic), are related to the net power
demand per year and used to compare the performance of offline and online RL. Firstly,
we compare offline MILP with offline RL by considering both the forecasted and real data
profiles (PV, load demand) to be the same for both approaches. The results (Figure 7) show
that both approaches have almost identical performance in terms of cost optimisation of
the microgrid, with negligible difference. Over that small difference, MILP behaves slightly
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better due to the convergence requirements of RL. Therefore, the offline approaches, such
as MILP and RL, which use the same forecasted and real data (having 0% error) for training,
are equally good in real time.
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Figure 8 shows the convergence in terms of cost using offline RL. In this figure, only
real data (PV and load) profiles were employed to analyse the convergence pattern of the
offline RL as an ideal case. In the beginning, the cost is high and the curve shows random
behaviour. As the number of episodes increases, the learning ability of the agent improves
until the Q-table converges to show the optimal cost.
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4.1. Offline vs. Online RL with No Forecast Error

The performance of the two RL approaches is first compared when there is no forecast
error; i.e., the forecast data are the same as real data. Of course, this ideal situation does not
exist in practice, but it provides an initial benchmark for the results. Both RL approaches
are implemented as explained earlier in Section 3.1 and Section 3.2. In addition, MILP was
also used to optimise the battery operation. Figures 9 and 10 show the energy imported
from the grid with respective cost on a daily basis, respectively. It can be seen that when
the forecast error is zero, offline RL produces superior results. In Figures 9 and 10, it can
be seen that before the convergence of the online RL algorithm, a higher amount of grid
energy is imported; therefore, the cost is also higher with respect to offline RL in the initial
days. However, as the days progress and online RL learning converges to the optimal
policy, the controller follows the same pattern as offline RL in terms of cost saving and
reducing the imported energy. In this work, convergence was achieved in between 75 and
90 days in the case of online RL.
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Figure 11 shows the overview of the battery actions generated in an average day after
applying the Q-learning algorithm. We used the offline RL for a single day in Figure 11 to
show the different states of the battery after convergence during different time intervals of
the day with respect to load demand and PV availability. The difference between the load
and PV (eNet

t ) is shown in the graph below at each time step. The eNet
t can be negative if
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the PV power generated is greater than the load demand at time t. The suggested battery
actions by the RL agent pass through the backup controller to accommodate all physical
constraints, as described in Section 2.3. As shown in Figure 11, when ePV

t > eNet
t at time

t, the battery charges from the current PV power up to the maximum level of ∆e after
fulfilling the load demand. The outstanding PV power is sold to the main grid. During
discharging, the battery discharges up to maximum level of ∆e either to fulfil the load
demand or sell power to the utility grid.
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Figure 11 is the randomly selected day of the year when both online and offline RL
converge. The plot shows the same battery actions for both offline and online RL. Therefore,
the cost achieved in both approaches are also same.

4.2. Offline vs. Online with Varying Forecast Error

The forecasted profiles generated in Section 3.3 are used by the offline RL to create the
battery charge/discharge/idle commands, which are then applied to the real data as was
explained in Section 3.1 and Figure 2. For online RL, real data are used to generate the bat-
tery commands that are directly applied to the physical microgrid system. Figure 12 shows
the overview of the battery actions (kW) generated in an average day after introducing
1.6% forecasted error with respect to the real net demand. Figure 12 also showed the daily
cost of offline and online RL. The offline RL cost is higher than that of online RL at the time
steps 31 to 35. Therefore, the overall average cost of offline RL in a day is higher than that
of online RL (after convergence).

Figure 13 shows the optimal average cost achieved per year for both offline and online
RL.

The results show that the average cost and imported energy of the offline Q-learning
increase as the relative error between the forecasted and real power demand grows or
vice versa. The error between real and synthetic predicted profiles are calculated using
Equation (12). A rise in the value of the standard deviation reflects the increase in the error
(in percent), as shown in Figure 5. Therefore, the noise level (σ) and the relative error are
proportional to each other. At the start, when the error of the forecasted demand with
respect to the real demand is low, the offline Q-learning performs better in comparison
with the online RL in terms of cost optimisation per year. However, as the error increases,
for example at 1.61% (between forecasted and real net demand), the online Q-learning
begins to perform better and results in a lower cost than the offline Q-leaning.
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5. Discussion

In this study, we report a comparison between the offline and online optimisation
approaches to reduce the operational cost of a grid-connected microgrid by optimally
managing the BESS in the presence of forecasting error. A variation between the forecasted
and real-time demand may occur due to a change in the weather, ultimately affecting the
suggested real-time optimal battery actions obtained through offline training. Hence, the
results may not be optimal in terms of reducing cost. To avoid the complication of using
forecasted data profiles (PV, load) offline, the literature suggested the online Q-learning [44].
However, online Q-learning needs some days to converge, as its training happens online
after exploring real-time data. This knowledge gap in the existing research indicated a need
for thorough analysis and comparison of both offline and online approaches. Therefore,
we proposed the comparison between offline versus online algorithms on an annual basis.
Conventional MILP and offline RL show approximately similar behaviour in terms of
saving cost in microgrid operation. Then, the average annual costs of offline and online RL
approaches were analysed using different forecasted data profiles. The synthetic forecasted
data with respect to real data were produced by adding random white Gaussian noise with
specified standard deviation.
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Table 2 suggested the possible implementation of offline or online RL on modern
research to optimise the economy of power systems. For example, different type of opti-
misation problems were solved by using different methods in the past, as mentioned in
Section 1. These solutions faced a range of challenges, including convergence, inefficient
optimisation (cost, Co2 Emission), and computational time under different or varied condi-
tions. The scope of this article suggests that reinforcement learning (offline/online) has full
potential to deal with the different types of optimisation problems and challenges.

Table 2. Proposed offline and online RL on the current application scenario.

Reference Application Used Method Future Approach and Strategy

[3] Sizing large-scale thermal energy
storage (TES) MILP Apply offline day beforeApply online

in real time

[4] Minimise the use of fossil fuels LP and MILP Online RL

[7] Reduce the cost GAMSCPLEX Online RL

[27] Multi-objective Optimisation MINLP guided by Q-learning Multi-objective RL (online/offline)

[46] Control load shedding IOT, mathematical modelling Online RL

[47] Energy trading and security Blockchain based Compare block-chain based
mechanism with RL (online/offline)

[48] Power
management Fuzzy logic controller Offline RL

This work BESS management in MG Offline and online RL Apply offline RL for training, online
RL at real time

6. Conclusions

The following are the key findings of this paper:

• When the error is in between 0 and 1.5%, the offline RL algorithm performs better in
terms of cost with respect to the online RL.

• In the first few days, RL performs better as it converges from day 1, while online RL
shows better results in terms of cost after a few days. The number of days may vary
depending upon the difference between the real and forecasted demand.

• The operating cost of the microgrid is proportional to the imported energy from the
main grid by considering PV and battery operating cost equal to zero.

• The computational cost and time of offline RL is higher than that of online RL.
• In the literature [10–18], it was evident that the forecasting of PV has less accuracy

than load forecasting.

Therefore, a higher difference between forecasted and real PV and load profiles
suggests adopting an online Q-learning approach. For example, there are certain countries
and areas where the forecasting of PV and load demand are not certain due to abrupt
changes in the weather condition or the user behaviour. The actual energy demand at
run times may change a lot in contrast to the predictions. The online Q-learning for cost
optimisation provides a better solution in these regions. While operating in favourable
prediction conditions, the offline Q-learning performs better.

In the future, there may be other quantification methods such as root mean square
error (RMSE) that can be used to introduce errors in forecasted data with respect to real
data to compare these two approaches for other type of noise distributions. In the future,
both offline and online Q-learning approaches may be employed as a two-layer structure.
This can provide a better and more efficient solution for the cost optimisation in a real
microgrid.
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Nomenclature

ANN Artificial Neural Networks
BESS Battery Energy Storage System
CHP Combined Heat and Power
DDQN Double Deep Neural Network
DG Diesel Generator
DP Dynamic Programming
DSP Discretised Step Transformation
EMS Energy Management System
FC Fuel Cell
GAMS General Algebraic Modelling System
LP Linear Programming
MC Micro Turbine
MILNP Mixed-Integer Nonlinear Programming
MILP Mixed-Integer Linear Programming
MIP Mixed Integer Programming
PV Photovoltaic
RES Renewable Energy Sources
RL Reinforcement Learning
SOC State of Charge
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