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We describe a practical two-stage algorithm, BootComp, for multi-objective optimization via simulation. Our
algorithm finds a subset of good designs that a decision-maker can compare to identify the one that works best
when considering all aspects of the system, including those that cannot be modeled. BootComp is designed to
be straightforward to implement by a practitioner with basic statistical knowledge in a simulation package that
does not support sequential ranking and selection. These requirements restrict us to a two-stage procedure that
works with any distributions of the outputs and allows for the use of common random numbers. Comparisons
with sequential ranking and selection methods suggest that it performs well and we also demonstrate its use
analyzing a real simulation aiming to determine the optimal ward configuration for a UK hospital.

CCS Concepts: • Computing methodologies→ Simulation evaluation;

Additional Key Words and Phrases: Ranking and selection, simulation, subset selection, chance constraints

ACM Reference Format:
Christine S.M. Currie and Thomas Monks. 2019. A Practical Approach to Subset Selection for Multi-Objective
Optimization via Simulation . ACM Trans. Model. Comput. Simul. 100, 100, Article 100 (September 2019),
16 pages. https://doi.org/0000001.0000001

Authors’ addresses: Christine S.M. Currie, University of Southampton, Highfield, Southampton, SO17 1BJ, UK, christine.
currie@soton.ac.uk; Thomas Monks, University of Exeter, St Luke’s Campus, Heavitree Road, Exeter, EX1 2LU, UK,
t.m.w.monks@exeter.ac.uk.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
XXXX-XXXX/2019/9-ART100 $15.00
https://doi.org/0000001.0000001

ACM Trans. Model. Comput. Simul., Vol. 100, No. 100, Article 100. Publication date: September 2019.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001


100:2 Currie and Monks

1 INTRODUCTION
We consider a practical method for optimization via simulation in which a decision-maker wishes
to choose the best of a large set of alternative designs. In practice, the decision over which design to
choose is generally not based on just one outcome measure but instead is a multi-objective problem
in which some aspects of the decision may not be incorporated into the simulation model. In these
large, complex problems simulation is frequently used to reduce the set of possible designs to a
smaller subset of good designs, which the decision-maker(s) can consider in more detail to identify
which will work best in practice.

The method that we describe here is designed to be straightforward to implement such that an
analyst with only a basic understanding of statistics and simulation modeling could use it. This
places a first restriction on the method, that it should work for any distribution of the outputs,
including correlated outputs. Making this restriction assumes that good practice such as the use of
common random numbers can be followed but also that there is no fine print for the experimenter
to read and comply with before running the method. Algorithms that place few restrictions on the
output are typically described as general-purpose and bootstrapping, as used in BootComp, is often
used to avoid constraints on the output distributions [Lee and Nelson 2014, 2015, 2016].
We also make the assumption, based on practical experience, that communication with the

simulation model can be computationally expensive and difficult for a simulation practitioner to
incorporate efficiently. This places a second restriction on the method, that the choice of designs to
replicate over and the number of replications to make of each design can only be changed once
during the experiment. Doing so rules out the fully sequential ranking and selection procedures
that have dominated the literature in recent years and effectively enforces a two-stage process. We
acknowledge that there are off-the-shelf simulation packages that include fully sequential ranking
and selection procedures but the majority do not and this procedure is designed to work well in
those cases. The issue with building a ranking and selection algorithm that sits outside the software
package is that there is likely to be a time delay for communication between the ranking and
selection code and the simulation software, updating the model parameters and (re)initializing the
model. The “hidden cost” of communication time with the simulation model has previously been
described in [Kim and Nelson 2006a] but the difficulty of automating a simulation package to switch
between the different designs being evaluated should not be underestimated, particularly where
there are significant differences in the logic. In such situations, it is possible that the bootstrap
ranking and selection procedures developed by Lee and Nelson may work well as they suggest
conducting ∆n observations at each step rather than just one [Lee and Nelson 2016]. An interesting
practical problem would be to determine the optimal balance between the loss of efficiency that
comes from using a high value of ∆n with the computational cost of communicating more frequently
between the optimization software and the simulation software when ∆n is small.

A further benefit of the two-stage procedure is that it allows for efficient parallelization. Unlike
the original sequential allocation algorithms, there is only a need to communicate results from
different designs twice during the experiment. Where parallelization or cloud computing facilities
are available this can result in a dramatic speed up in the computation times. Recent advances in
sequential algorithms have addressed this issue (e.g. see [Pei et al. 2018]) but BootComp allows for
a straightforward treatment of parallelization.
Multi-objective problems have been considered in three ways previously in the ranking and

selection literature: (i) using a Pareto front approach [Lee et al. 2010]; (ii) via chance constraints
[Hong et al. 2015]; and (iii) optimizing a weighted average of the multiple objectives, e.g. see
[Swisher and Jacobsen 2002]. We use the second approach in which secondary objectives are
reformulated as chance constraints, with the boundary values set based on discussions with system

ACM Trans. Model. Comput. Simul., Vol. 100, No. 100, Article 100. Publication date: September 2019.



A Practical Approach to Subset Selection for Multi-Objective Optimization via Simulation 100:3

experts. While the Pareto approach has obvious merits, as it avoids the subjectivity inherent
in the selection of threshold values for the chance-constraints, it can be difficult to explain to
decision-makers.
A Python implementation of the algorithm that we describe here is available for download

[Monks and Currie 2020]. The algorithm relies on bootstrapping and, given the split into two stages,
lends itself well to parallelization. An implementation using the cloud is available within the Github
repository.

This article extends the work described in [Monks and Currie 2018] in which we introduced the
basic ideas of the method, with the most significant advance being a thorough comparison of its
performance with OCBA-m on a standard set of problems frequently used to measure performance.
We also extend the treatment of the hospital simulation model that was considered previously.

Summarizing the contributions described above, BootComp provides a unique approach to
subset selection via simulation when there are multiple objectives. Its structure as a two-stage
algorithm works well when communication between the simulation model and the optimization is
computationally expensive or otherwise difficult. The procedure is also easy to implement: there are
no restrictions placed on the distribution of the simulation output and the fact that the algorithm
has just two stages makes it both easy to parallelize and straightforward to use with an off-the-shelf
simulation package.
We provide a formulation of the problem before the literature review and methods sections so

that the reader has a clear understanding of what we are aiming to achieve.

1.1 Problem Formulation
Assume that there are in general k ≥ 2 designs being compared and define Xi j to be univariate,
real-valued output data coming from replication j for design i that represents the main performance
measure. We make no assumptions about the distribution of the Xi j and allow for correlations
between observations from different designs in the same replication, which may arise if CRN are
being used. We assume that observations from different replications are independent and identically
distributed. Our main performance measure is assumed to be the mean of the output for a particular
design after n replications,

X̄i =

n∑
j=1

Xi j/n,

and we assume here that small values of X̄i are desirable and that X̄i is positive.
We also define a set of l = 1, . . . ,L secondary outputs, Yi jl coming from replication j for design i .

The Yi jl are real-valued and we assume that their mean values,

Ȳil =
n∑
j=1

Yi jl/n,

are the secondary objectives. The problem is written in such a way that large values of Ȳil are
preferred. Our problem is one of subset selection with chance constraints on the secondary outputs.
We wish to identify a shortlist or subset of designs S∗ which contains designs where the expected
value of the main performance measure is within a proportion β of the expected value of the best
feasible design, X̄ ∗, with a probability 1 − α , and fail the chance constraints with probability less
than γ . Note that we interpret feasibility here as being feasible with respect to the constraints
given above, ignoring any factors that cannot be modeled at this point. We also use a non-standard
measure of proximity to the best in this work, preferring to use a proportion of the mean of the best
design instead of the standard absolute difference. A design is said to satisfy the chance constraints
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if P{Ȳi ≥ 0} ≥ 1 − γ , where we use Yi to represent the vector of sample means Ȳil , l = 1, . . . ,L.
The main performance measure of the best feasible design X̄ ∗ is defined as

X̄ ∗ = max
i=1, ...,n

X̄i such that P{Ȳi ≥ 0} ≥ 1 − γ .

Combining, our problem can be written as one of determining S∗ such that

P

{⋂
i ∈S∗

(X̄i ≤ X̄ ∗(1 + β))
}

≥ 1 − α ,

P{Ȳi ≥ 0} ≥ 1 − γ , i ∈ S∗ (1)

The user and the decision maker setm to be the maximum length of the shortlist. If the size of
S∗, |S∗ | > m, the topm designs in a ranked list of mean outputs of the key measure will be included
in the shortlist. We make no claims that these will be the topm designs, but only that they all lie
within β of the best feasible design with probability 1 − α and that there is a high probability that
the designs we include in the final set are feasible. From a statistical perspective, this is the least
satisfactory part of the method, but it helps in situations where there are a large number of suitable
designs. An alternative would be to reanalyze the results with smaller values for β or α .

2 LITERATURE REVIEW
Selection procedures aim to find the best design or designs from a finite set of possibilities. Ob-
servations of each design are subject to stochastic variability and the best design is generally that
with the maximum or minimum mean. Branke et al. [2007] provides a thorough review of the topic
and splits the approaches into three categories: the indifference zone approach; expected value of
information procedures (VIP) and optimal computing budget allocation (OCBA). While indifference
zone procedures such as [Kim and Nelson 2006b] suggest sequential sampling plans that guarantee
the probability of correct selection (PCS), OCBA procedures first introduced by [Chen 1996] aim to
maximize PCS with a fixed computation budget; and VIP methods choose which design to sample
from based on the expected gain in the value of information [Chick and Inoue 2001b].
Parallelization and advances in cloud computing mean that there is a great deal of scope for

speeding up these sequential selection procedures. For example, preliminary work in [Pei et al.
2018] describes a framework Parallel Adaptive Survivor Selection (PASS), designed to exploit
parallelization when solving ranking and selection problems with large numbers of designs. Instead
of using PCS as an objective, PASS aims to minimize the expected false elimination rate, a statistic
that scales better as the number of designs being tested increases. Methods that are able to easily
transfer to parallel computing seem likely to dominate in the future.
The remainder of the literature review focuses on selection procedures designed for similar

optimization problems to the one we consider here.

2.1 Subset Selection
Much of the literature on optimal subset selection aims to identify the bestm designs out of a total
of k possibilities, where the quality of a design is measured by its average output over all of the
simulation replications. This raises an interesting question for users of the method as to what an
appropriate value form might be and more flexible measures might be more appropriate, e.g., all
designs within some percentage of the best. The difficulty with this latter approach is identifying
the borderline for the subset when the mean output of the best design is unknown.
Early approaches to this problem used a two-stage approach. Sullivan and Wilson [1989] use a

two-stage procedure to find a subset of designs such that the subset contains a design with mean that
is less than δ from the best mean, with probability greater than or equal to a user-defined threshold.
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The two-stage procedure in [Koenig and Law 1985] finds the subset of sizem that contains the
bestm designs with probability at least equal to a threshold, providing that the difference between
the objective of them + 1th andmth designs is no less than an indifference zone parameter. More
recently, Wang et al. [2011] develop a sequential algorithm that finds a subset of designs which are
either desirable or acceptable but not within the elimination region. These categories, which draw
on ideas from indifference zone methods, are taken from [Andradóttir and Kim 2010].

In the numerical examples considered later, we compare our algorithm with OCBA-m [Chen et al.
2008], which aims to find all of the topm out of k designs. There is a subtle difference between this
procedure and earlier subset selection methods such as [Gupta 1965], which aim to find a subset
of designs that contain the best design with a pre-specified probability. The OCBASS algorithm
introduced in [Gao and Chen 2016] solves the same problem as OCBA-m, allocating replications to
the design that is most likely to be “incorrectly observed”. While this principle is similar to the
standard OCBA algorithm, the application is subtly different as the question is now whether a
design is within the boundary of the optimal subset or outside of it, rather than whether a design
is the best or not. Numerical results suggest that OCBASS is more efficient than OCBA-m, with
improvements in efficiency of around 29.2 and 42.5%. Chingcuanco and Osorio [2013] consider the
same problem but have a different approach in which they use all of the possible subsets of sizem
as the different designs in a ranking and selection problem.

Gao and Chen [2015] instead minimize the Expected Opportunity Cost (EOC), measured as the
difference in expected performance between the selected designs and the best designs. The use
of EOC as a measure of the quality of a ranking and selection procedure was first introduced by
Chick and Inoue [2001b] and has a clear practical benefit.

2.2 Multi-Objective Optimization via Ranking and Selection
Hunter et al. [2019] provide a very clear introduction to multi-objective simulation optimization
(MOSO), which has a wider scope than simply multi-objective ranking and selection problems.
Within their discussion of ranking and selection procedures, they assume that these aim to identify
the globally Pareto optimal designs, considering both fixed budget (e.g. MOCBA, [Lee et al. 2010])
and fixed precision procedures. Globally Pareto optimal designs are considered to be those in the
efficient set, i.e., no other design corresponds to an objective vector that is at least as small on all
objectives, and strictly smaller on at least one objective.

An alternative method for dealing with multi-objective problems is to instead reduce the dimen-
sionality of the objective by introducing a multi-attribute variable that is a weighted average of the
different objectives. A particularly relevant paper describing this approach [Swisher and Jacobsen
2002] aims to optimize the medical personnel staffing and facility size for a family practice clinic.
Similar to the case study we describe at the end of this article, the measures of effectiveness of a
policy include several elements and the authors identify appropriate weights to find a sum that
best balances the tradeoffs between them before using the NM method [Nelson and Matejcik 1995]
to carry out the optimization. The use of a weighted sum of objectives is a common method for
addressing multi-objective optimization problems but one that introduces two potential issues:
first, that it becomes harder to distinguish the individual contributions of different objectives in the
weighted sum and second, that the choice of weights is always somewhat arbitrary.

As discussed in the Introduction, we use chance constraints to account for secondary objectives,
an approach that works well for many practical problems and can be easily explained to a decision-
maker. As far as we are aware, there are no other examples of algorithms that apply a two stage
procedure to identifying the optimal subset of designs with chance constraints when the output can
take any distributional form. The main focus of the remainder of our review is on other algorithms
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that use chance constraints as these are likely to be most closely related to the BootComp algorithm
we describe here.

Hong et al. [2015] identify two distinct problems within optimization with chance constraints:
Expectation Constrained Selection of the Best (ECSB) and Chance Constrained Selection of the
Best (CCSB). In ECSB, the expected value of one or more outputs of the simulation model must be
below some fixed value while in CCSB, the constraints imposed by the decision-maker must be
satisfied with a given probability. Andradóttir and Kim [2010], like us, uses the expected value of
the secondary output measure in the constraint equation, making this an ECSB problem. Their
procedure uses an indifference zone to identify the best design that satisfies a single constraint.
While they assume that the main and secondary outputs are normal, the results presented seem
relatively robust to non-normality. Their approach to the chance constraint relies on Bechhofer’s
indifference zone structure [Bechhofer 1954] in which three different regions are identified for the
value of the chance constraint: desirable, acceptable and unacceptable.

Hong et al. [2015] instead solve the CCSB problem and imposing this structure on the constraints
facilitates checking the feasibility of designs. Their approach also assumes normality for the
simulation outputs and selects just one optimal value. It allows for common random numbers (CRN)
and finds a relatively conservative solution for the number of replications due to its assumption
that all chance constraints must be satisfied subject to the Bechhofer indifference zone structure.

Chance constraints have also been included in algorithms that aim to optimally allocate a fixed
simulation budget in ranking and selection problems. For example, [Pasupathy et al. 2014] make an
elegant use of bilevel optimization to determine an algorithm SCORE to solve the ECSB problem;
and [Hunter and Pasupathy 2013] put forward a sequential algorithm that maximizes the asymptotic
rate of decay of the probability of incorrect selection, reliant on knowing the underlying distribution
of the output data.

2.3 Generalized Ranking and Selection
Many of the methods described in the previous sections make some assumption about the simula-
tion outputs, the most common being independence and normality. Several authors have considered
how ranking and selection can be achieved for more general distributions. Lee and Nelson [2016]
describe their methods as general-purpose ranking and selection, and they allow for different out-
put distributions for different designs; and measuring statistics other than the mean, as well as
accounting for dependent observations (as observed when using CRN) and non-normality. In order
to provide guarantees of correct selection, Lee and Nelson [2016] use bootstrapping to estimate the
probability that the observed best design is the best. When this exceeds the threshold, sampling
can stop. Their method does not consider system constraints, a necessary feature of the BootComp
algorithm we develop here. Bekki et al. [2010] have a slightly different aim of developing a flexible
ranking and selection procedure that allows comparisons to be made on any distributional property.
Again the authors use non-parametric bootstrapping as a key part of their approach. The algorithm
that we develop here also makes use of non-parametric bootstrapping as, although computationally
intensive, bootstrapping is a straightforward way of allowing for general distributions.

2.4 Two-Stage Ranking and Selection Methods
Articles on two-stage optimization methods were prevalent during the 1990s and the early 2000s
following the publication of [Koenig and Law 1985] that developed a two-stage procedure for subset
selection. Of particular relevance to this work are [Nelson and Matejcik 1995] and [Chick and Inoue
2001a], which describe two-stage procedures that account for CRN but for selection of a single
design, rather than a subset. Both procedures assume normality in the outputs with [Chick and
Inoue 2001a] having a slightly less restrictive assumption about the covariance structure existing
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between the outputs of the different designs. The procedure described by [Chick and Inoue 2001a]
has more similarities to our work in that it works with a restricted budget and does not include
designs in the second stage that it would be of no benefit to sample further. In contrast, the NM
procedure of [Nelson and Matejcik 1995] aims to estimate the number of replications needed in
stage 2 to achieve a threshold probability of correct selection. Nelson and Matejcik [1995] provide
estimates of the difference between the best design and each of the other designs as a way of
presenting a fuller set of results, allowing the decision-maker to consider other inferior designs that
may have benefits not included in the simulation model. This goes some way towards addressing
our assumption that decision-makers prefer to see a few possibilities rather than just one final result.
Neither of these two-stage procedures considers multi-objective optimization, chance constraints
or non-normal output distributions.

3 METHODOLOGY
The method relies on two bootstrap routines, which are both run twice: first in stage one and again
at the end of stage two. The first, Constraints Bootstrap, is used to determine the probability of
a particular design violating the constraints, while the second, Quality Bootstrap, identifies the
designs with means within a proportion β of the mean of the best remaining designs. We begin by
describing the whole procedure, which is also described in Figure 1, before giving more detailed
descriptions of the two bootstrap routines.

Run n1 replications for 
each system using 

CRN

Run Constraints 
Bootstrap with 𝛾𝛾1

Simulation output data

Set 𝑆𝑆𝑐𝑐1

Run Quality Bootstrap 
with 𝛼𝛼1,𝛽𝛽1

Set 𝑆𝑆∗(1)

Run n2 replications for 
each system in S*(1)

using CRN Stage 2 simulation output data

Repeat bootstrapping 
with final values of 

𝛼𝛼2,𝛽𝛽2, 𝛾𝛾2
Return set 𝑺𝑺∗(𝟐𝟐)or top m 
solutions if m < 𝑺𝑺∗(𝟐𝟐)

Fig. 1. An overview of the methodology.

(1) Run n1 replications of the simulation model for all designs using CRN if available to generate
a set of primary outputs Xi j and secondary outputs Yi jl , where j = 1, . . . ,n1; i = 1, ...,k ;
l = 1, . . . ,L. Run the Constraints Bootstrap described below in Section 3.1 to identify the
set S1

c , which contains designs which have a probability of satisfying the chance constraints
that is greater than 1 − γ1. Inputs to the Constraints Bootstrap are S, the complete set of
designs, Y and γ1.
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(2) Run the Quality Bootstrap described below in Section 3.2 with inputs α1, β1, S1
c and the n1

by k matrix of results for the main output measure X. This outputs the set of designs S∗(1)
that have means within a proportion β1 of the best mean in set S1

c with probability greater
than 1 − α1.

(3) Run n2 replications of the simulation model for all designs in the set S∗(1) using CRN if
available.

(4) Follow steps 2 and 3 using data from both stages in X and Y and parameters γ2,α2, β2. This
results in a final shortlist of feasible and high quality designs S∗(2).

(5) If the number of designs is greater than the desired number m, pick the top m in a non-
decreasing list of means of the main output measure. Ties are decided using secondary output
measures Y.

We use different values for stage 1 and stage 2 parameters in the numerical results. These param-
eters are set by the user and while we provide recommendations in Section 4.3, we acknowledge
that more work is needed on determining optimal values.

3.1 Constraints Bootstrap
Our aim in the Constraints Bootstrap is to identify designs that are likely to violate the chance
constraints. We assume that we have more than one chance constraint and use a fairly conservative
measure of satisfying the chance constraints, as suggested in [Hong et al. 2015] in which we insist
that all of the constraints are satisfied simultaneously.
The routine takes as inputs Y, the secondary outputs of the simulation model such that Yi jl is

the value of the lth secondary output, l = 1, . . . ,L in the jth replication for the ith design. Here,
i ∈ S and j = 1, . . . ,n. Note that n = n1 in stage 1 and n = n1 + n2 in stage 2. Also input is γ , the
threshold probability for failing the chance constraints.

As is standard with bootstrapping, we assume that Y can be viewed as a sample from a true mul-
tivariate distributionG and use bootstrapping to sample from an approximation to this distribution,
Ĝ. The bootstrapping proceeds as follows.

(1) Generate B bootstrap samples of size n using a non-parametric bootstrap in which we sample
with replacement from Y. This yields a set of bootstrap samples Y⋆(1),Y⋆(2), . . . ,Y⋆(B) and
for each of these we calculate Ȳ⋆(b)

il , l = 1, . . . ,L, where Ȳ⋆(b)
il = 1

n
∑n

j=1 Y
⋆(b)
i jl .

(2) Include designs in the final feasible set Sc if

1
B

B∑
b=1

L∏
l=1

I
{
Ȳ⋆(b)
il ≥ 0

}
≥ 1 − γ , (2)

where I (·) is the indicator function, which takes a value of 1 if the condition inside the
parentheses is true and 0 otherwise.

(3) Return Sc .

3.2 Quality Bootstrap
The quality bootstrap aims to identify a set of designs S∗ that all have means within a distance β of
the mean of the best sampled design in S∗ with a probability 1 − α . It takes as inputs α , β , the set of
feasible designs Sc , and X, a set of outputs for the main output measure Xi j , i ∈ Sc , j = 1, . . . ,n,
where n is the number of replications being considered in the bootstrap (n1 in stage 1 and n1 + n2
in stage 2).
(1) Define a new random variable D, with elements Di j , i ∈ Sc , j = 1, . . . ,n, such that

Di j = X ∗
j − Xi j ,
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whereX ∗
j = Xi∗ j , i

∗ = arg max X̄i is the value of the main output measure for the best, feasible
design in stage 1, in replication j of the simulation. We can treat the set of differences Di j as
a sample from the true multivariate distribution for the differences from the best, F .

(2) Generate B bootstrap samples of size n from F̂ , our approximation to F . We do this using a
non-parametric bootstrap in which we sample with replacement from the set ofDi j . This gives
us a new set of samples D⋆(1),D⋆(2), . . . ,D⋆(B), where each D⋆(b) is of the same dimensions
as the original set of differences, D.

(3) Identify S∗ such that it is the biggest set for which

1
B

B∑
b=1

∏
i ∈S∗

I

{
1
n

n∑
j=1

D⋆(b)
i j ≥ −βX̄ ∗

}
≥ 1 − α . (3)

This final step is carried out by ordering the designs in non-increasing order of the main
output measure and working down the list until (3) is true for the set of designs at the top of
the list but would not be true if the next design was included in the set.

(4) Return S∗.

3.3 Python Implementation
An implementation of the optimization procedure, BootComp [Monks and Currie 2020], was devel-
oped in Python 3.7.2 with dependencies NumPy 1.16.2, Pandas 0.24.1, SciPy 1.2.1 and Numba 0.42.0.
Matplotlib 3.0.2 and Seaborn 0.9.0 were used for visualization in the analysis. All numerical exam-
ples, including a cloud executable example of using BootComp, are available online via GitHub and
Binder (https://github.com/CLAHRCWessex/BootComp). For local installation it is recommended
that users install an Anaconda Distribution (https://www.anaconda.com/download/). Our code
implementation includes an environment file that will install the appropriate dependencies. Users
unfamiliar with version control or GitHub can simply download the repository and de-compress the
files. Details of the applied example are found in the Jupyter notebook BootComp_Tutorial.ipynb.

4 NUMERICAL EXAMPLES
We begin this section by demonstrating that the algorithm performs well on a set of test problems
considered in other articles introducing subset selection algorithms. It should be stressed that these
test problems do not contain chance constraints and we compare BootComp with a sequential
algorithm, OCBA-m. As a result, we do not necessarily expect BootComp to be the top performer.
Nonetheless, we feel that including the comparison provides a measure of its quality.

4.1 Comparison to Single Objective OCBA-m
We first compare our two-stage procedure to the Optimal Computing Budget Allocation (OCBA-m)
procedure for returning the top m designs [Gao and Chen 2016]. OCBA-m is a state-of-the-art fully
sequential single objective subset selection method. In our first test bed there are ten competing
designs whose outputs are normally distributed with mean µ1 = 1, µ2 = 2 ... µ10 = 10 and unit
variance. In each experiment, the procedures are set to select the top three largest designs. The use
of Common Random Numbers (CRN) to reduce the variance between competing designs is standard
within commercial off-the-shelf simulation software packages. We compare BootComp and OCBA-
m over a range of different computational budgets (total number of replications), carrying out
10,000 experiments with and without the use of CRN for each budget value. Respectively, this gives
a sense of the best and worst case performance of BootComp.
The second test bed is the well known inventory control problem introduced by [Koenig and

Law 1985] and also considered in [Gao and Chen 2016]. In this example, we simulate 10,000
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experiments of nine competing system designs in the Law inventory problem. CRN have been
employed, achieving 89% variance reduction between simulated designs. We consider two different
optimization problems with this example: first, returning the three designs with the largest mean
and second, the two designs with the lowest mean.
Code and data to reproduce the numerical results are available in GitHub [Monks and Currie

2021]

4.1.1 Ten Designs with CRN. Both OCBA-m and BootComp were run with 20 initial replications
for each design (n1 = 20). In all of the experiments we use the following values for the BootComp
parameters α1 = 0.2,α2 = 0.05, β1 = 0.6, β2 = 0.3. We tested budgets between 300 and 2000 and
found that when competing designs use perfectly synchronized CRN, BootComp correctly selected
the top three designs in all 10,000 experiments for each budget. This result held with a more
restrictive β1 = 0.4. OCBA-m has high PCS in all experiments and selects the top three designs in
all experiments when budgets exceed 800 replications.

4.1.2 Ten Designs without CRN. Both OCBA-m and BootComp were run with 20 initial replications
for each design (n1 = 20). In all of the experiments we use the following values for the BootComp
parameters α1 = 0.2,α2 = 0.05, β1 = 0.6, β2 = 0.3. Again using 10,000 experiments, we tested
budgets of between 600 and 5000 replications. The comparison is illustrated in Figure 2. The
results illustrate the importance of CRN in variance reduction and, as expected, BootComp loses its
advantage over OCBA-m in examples where samples are independent. Without CRN, BootComp
was unable to match OCBA-m under any of the budget assumptions we included. This is not
unexpected as OCBA-m is a sequential algorithm and BootComp includes only two stages. We
make two further observations. First, budgets above 1400 replications yielded a PCS with more
utility for decision making. Second selecting a higher value for α1 often yielded better results than
holding α1 constant and increasing the replication budget.

4.1.3 Inventory Simulation Model. In the inventory example, full synchronization has not been
achieved, but CRN has still induced a high positive correlation across the nine designs. Both OCBA-
m and BootComp select the top three designs (highest mean) in all 10,000 experiments for each
budget. This result held when the problem was changed into a minimization to select the smallest
two designs.

4.2 Hospital Simulation Model
As a final demonstration of the full method, including the chance constraints bootstrap, we apply
BootComp to a problem of hospital ward design coming from a real project with the UK National
Health Service (NHS). The project investigated the design of an NHS community hospital rehabilita-
tion ward in order to minimize delays in the transfer of care of elderly in-patients from a large acute
hospital. The new rehabilitation ward would be created from the merger of two geographically
separate wards. The context and simulation model are described in detail in [Penn et al. 2018] and
the model built in Simul8 Professional 2018 is freely available online [Penn and Monks 2018]
NHS England mandate single sex accommodation for patients. To accommodate this rule and

provide some flexibility, beds within the wards could be put within single rooms or grouped in bays.
Single rooms are in one sense the most efficient way to improve flow; however, single rooms are
more expensive to safely staff. Bays of beds offer a good compromise to single rooms in terms of
staffing costs and patient flow. An empty bay is assigned a gender corresponding to the gender of
the first patient to be admitted. As patients are admitted and discharged from a ward, patients can
be moved and the gender of the bay flipped to admit waiting patients. As there are no differences
in process times for patients in a single room or within a bay, bays are less efficient for flow than
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Fig. 2. Probability of Correct Selection of the Top Three Designs in the Ten Designs without CRN case (10,000
experiments).

single rooms. For example, a male patient requiring rehabilitation may not be able to be placed
on a rehabilitation ward that has a free bed if the free bed is within a female designated bay. The
simulation study, therefore, analyzed, the mix of single rooms and size/number of bays that were
required to keep waiting times for admission low and bed utilization acceptable.
The primary output of the model is the average waiting time for transfer to rehabilitation.

Secondary outputs are utilization (occupancy) of beds, and the number of patient transfers between
gender specific bays. Patient transfers are required when it is not possible to fit the current set
of patients in the ward without breaking the constraint that a bay includes patients of the same
gender. The client requested a set of good designs as opposed to a single optimal design.

4.3 Experiments and Comparisons
In stage one the model was used to conduct 1151 initial simulation experiments (stage 1 repli-
cations n1 = 5; time unit = days; run length = 365 days). The replications can be found in three
.csv files in the Git repository (data\replications_wait_times.csv; data\replications_util.
csv; data\replications_transfers.csv).
Table 1 lists the parameters used in the two-stage optimization. Clients preferred an average

utilization of at least 80% and the upper threshold for the mean number of patient transfers between
bays was set to 50. The number of replications in stage 1 is based on the pragmatic recommendations
from Law and Kelton [2000]; taking the upper bound of their recommended range of at least 3-5
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replications. In the applied example, it took approximately 2.5 hours to generate the stage one
replications for all 1151 designs, using commercial software and a machine of a similar specification
that would be found in use in industry (Simul8 Professional 2017; Dell Laptop; 16GB RAM; i7
processor). Chernick [2007] warns of the limitations of the bootstrap for sample sizes below 10. We
found that results were consistent if stage one replications were extended to 10 per design (with
the associated 5 hour model run time) and consequently report the results with just 5 replications.
The stage 1 and stage 2 values for γ were chosen to allow for the fact that errors will be higher
in stage 1 due to the smaller number of replications, while α was set to 0.05 to mimic accepted
practice in ranking and selection procedures and β to 0.05 based on the clients’ preferences. We set
n2 based on the total computation time available and the number of designs being passed through
to stage 2 |S∗(1) |.

Table 1. Parameters used in the optimization.

Parameter Stage 1 Stage 2
Utilization constraint ≥ 80% ≥ 80%
Patient transfers ≤ 50 ≤ 50
Replications 5 50
γ 0.7 0.95
α 0.05 0.05
β 0.3 0.05

4.4 Chance Constraints
Figure 1 illustrates an initial informal analysis of the conflict between the mean waiting time (Figure
1a), which is the main output measure, and the first chance constraint, which requires utilization
to be greater than 80% (Figure 1b). For reasons of simplicity, the chart only includes results for
designs that have exclusively single rooms and with the number of beds in the range 43-55.
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Fig. 3. Illustration of Stage 1 Utilization Chance Constraint.
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4.5 Optimization Procedure
Figure 4 illustrates our optimization algorithm applied to the rehabilitation model. Stage 1 reduces
the number of designs from 1151 to 37. Most of this reduction in designs is delivered by the chance
constraints – reducing the feasible set to 175. A further 45 replications were conducted in stage
2, resulting in a total of 7285 individual runs of the model in stages 1 and 2. Stage 2 reduced the
number of designs from 37 to 28. Table 2 lists the top 10 final elite designs. These all have 48 beds,
and suggest that bay sizes of 3 or 4 are optimal.

1151 designs in 
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(reps = 5)

428 designs meet 
utilization chance 

constraint 

798 designs meet 
transfers chance 

constraint

175 feasible 
designs

37 designs within 
30% of best 

design in 95% of 

bootstraps 
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transfers chance 
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28 designs within 
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in 95% of 

bootstraps 

Simulate 
for

stage 2

Fig. 4. Optimization procedure in applied example.

Table 2. Details of the top ten scenarios.

Total Beds Bay Size Number of
Bays

Number of
Singles

Waiting Time
(hours)

Utilization Transfers

48 0 0 48 4.9 81.0 0.0
48 3 3 39 4.9 81.0 12.7
48 3 4 36 4.9 81.0 16.5
48 3 5 33 4.9 81.0 20.9
48 3 6 30 4.9 81.0 24.4
48 3 7 27 4.9 81.0 29.9
48 3 8 24 4.9 81.0 35.3
48 3 9 21 4.9 81.0 40.2
48 4 2 40 4.9 81.0 12.5
48 4 3 36 4.9 81.0 17.3
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5 CONCLUSION
Our aim in this work was to develop a tool for multi-objective simulation optimization that is
simple-to-use, fits within typical simulation practice, does not require the user to implement code
to interact with the simulation models, and yet draws on recent research in ranking and selection.
The result is a two-stage method, which reduces simulation effort by removing designs that are
likely to be infeasible or poorly performing at the end of the first stage, and goes on to return a
subset of designs that satisfy one or more chance constraints and are within a fixed tolerance of
the best design.

The paper includes a full comparison of the method on test problems within subset selection and
these results suggest that BootComp performs well in simulation studies where CRN have been
employed and have either fully synchronized or induced a positive correlation. Our experience is
that many simulation practitioners use commercial simulation software that employs CRN. We
have also demonstrated our procedure’s use on a complex simulation from health care, showing
how it can be used in practice. The first stage appears to be very effective at significantly reducing
the number of designs in the second-stage comparison.
We have made available an efficient Python implementation of BootComp. We hope that this

will encourage further testing of the method and subsequent improvements as well as its use in
practice. The framework exploits rudimentary parallelism and for large solution spaces (or for
those where the user wishes to run a very high number of bootstraps) it can make use of multi-
core CPUs to reduce runtime. Parallelization of the Constraints Bootstrap is straightforward as it
deals with marginal probabilities whereas parallelization of the Quality Bootstrap is more difficult.
Parallelizing these bootstrap routines does not give substantial increases in efficiency compared
with parallelizing the simulation.

One of the disadvantages of the method in its current form is that the user is required to decide on
a number of different parameters for threshold probabilities, both for satisfying chance constraints
and for being within a given tolerance of the best design. In the second stage these parameters
have some intrinsic meaning but setting their values in the first stage is not straightforward and
may require some experimentation. We suggest γ1 > γ2. Parameters α1 and β1 should generally
be chosen to be greater than α2 and β2 to ensure that competitive designs are not discarded in
stage 1. In the applied example considered here, we found that increasing the value of γ1 (the
threshold value for failing the chance constraints in stage 1) from 0.7 to 0.8 led to a different set of
elite designs. More experimentation is needed to determine more clearly how the choice of these
parameters affects the final design. One of the benefits of this method is that there is scope for
experimentation with stage 1 parameters before running stage 2 replications; for example, if the
initial choice of parameters suggest either very few or very many designs remain in the process.

Further work could consider how this two-stage approach could be adapted to identify the Pareto
set of designs rather than treating the secondary objectives as chance constraints. There is some
appeal in doing this, particularly for problems in which there is no objective that is clearly more
important than the others.
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