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Abstract 

In this work, Ag-Cu and Ag-Sn nanoparticles (NPs) were synthesized by a physical vapor 

condensation method, i.e. DC arc-discharge plasma. The as-prepared bimetallic nanoparticles 

consist of metallic cores of Ag-Cu or Ag-Sn and ultrathin oxide shells of CuO or a hybrid of SnO 

and SnO2. Ag-Sn NPs exhibit a room temperature resistivity of 4.24×10-5 Ω·cm, a little lower than 

7.10×10-5 Ω·cm of Ag-Cu NPs. Both bimetallic nanoparticles demonstrate a typical metallic 

conduction behavior with a positive temperature coefficient of resistance (TCR) over 25-300 K. Ag-

Sn NPs exhibit thermally competitive stability up to 230 °C and a lower resistivity of 3.18×10-5 

Ω·cm after sintering at 200 °C, making it potential for the flexible printed electronics. 
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1. Introduction 

In recent years, tremendous attention has been devoted to printed electronics behind the desirable 

impact on consumer electronics market that could be estimated as much as hundreds of billions of 

dollars over the next 10 years [1, 2]. Although conventional methods, i.e. photolithography, vacuum 

deposition and electroless plating processes, have been widely adopted in micro-fabrication of 

various electronic devices, these are subject to limitations of complexity, cost-effectiveness and 

environmental consideration, etc. [3, 4]. In this context, the direct digital printing techniques, such 

as inkjet printing and airbrush spraying, have garnered worldwide interest owing to the merits of 

simplicity, cheapness and eco-friendliness [5, 6], as well as their potential applications in transparent 

electrodes, radio frequency identification (RFID), thin film transistors, light emitting devices, solar 

cells, etc. [2, 7-9]. 

As conductive ink is a multi-component system comprising of a conducting material and various 

additives, much effort was paid to the synthesis of conductive materials and their applications. A 

number of nanomaterials including metal nanoparticles (NPs), carbon nanotubes (CNTs), graphene 

oxide (GO), conductive polymers (dissolved or dispersed) as well as organometallic compounds 

have contributed to the conductive materials for printed electronics [10-12]. Among them, the metal 

nanoparticles are considered the stunningly promising conductive materials with excellent electrical 

performances. Apparently, their best candidates are the metals with low electrical resistivity (ρ), 

such as Ag (1.59×10-6 Ω·cm), Cu (1.72×10-6 Ω·cm), Au (2.26×10-6 Ω·cm), Al (2.65×10-6 Ω·cm) 

and Sn (1.01×10-5 Ω·cm) [1, 11, 13, 14]. Up to date, most conductive materials in electronic devices 

are based on silver nanoparticles due to its lowest electrical resistivity and prominent ability against 

oxidation. In practice, pure silver nanoparticles are expensive due to the fact that silver has a high 

price, thus in some way hindering a wide application in the large-area printed electronics. On the 

other hand, silver is found subject to susceptibility of ion migration under relatively high 

temperature and humidity conditions [3]. In view of all these issues, to integrate alternative metals 

such as Cu or Sn with Ag is a worthy strategy for the fabrication of conductive materials for printed 

electronics. Ag-Sn NPs have manifested a cost-effective way for highly conductive materials, where 

the formation of Ag-rich phases of Ag3Sn or Ag4Sn can restrain the generation of β-Sn phase, raise 

the anti-oxidization ability as well as reduce the sintering temperature in following post-treatments 

[4]. It is also indicated that partial substitute of silver with copper element to improve the anti-
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oxidization ability of Ag-Cu NPs is still a crucial challenge [4, 7, 13, 15, 16]. 

Although there are various techniques employed for the preparation of bimetallic nanoparticles, 

two main methods are reported for the synthesis of Ag-based bimetallic nanoparticles [1, 17]. The 

first one essentially requires the use of a reductant, while the second is based on a galvanic 

displacement reaction, i.e. transmetallation reaction. Chen et al. [18] reported air-stable Cu-Ag NPs 

prepared by alcohol reduction with the assistance of microwave irradiation. Jo et al. [4] 

demonstrated highly conductive Ag-Sn NPs through a polyol process with a reducing agent of 

NaBH4. Lee et al. [10] synthesized the uniform core-shell Cu-Ag NPs using a facile two-step process 

of thermal decomposition and galvanic displacement methods. 

Here we present a novel approach of physical vapor condensation, which is applied to synthesize 

Ag-Cu NPs and Ag-Sn NPs using DC arc-discharge plasma as the thermal source. This route 

demonstrated effective in the fabrication of various metal nanoparticles with many advantages of 

easy operation, controllable experiment condition, large-scale production, good dispersion and high 

purity. Excellent electrical/thermal performances of Ag-Cu NPs and Ag-Sn NPs in this work are 

convinced of new opportunities for the conductive patterns of printed electronics. 

 

2. Material preparation and characterization 

The details of DC arc-discharge plasma method have been well described in our publications 

[19-21]. Briefly, Ag-Cu NPs and Ag-Sn NPs were prepared by evaporation of bulk targets under a 

mixture atmosphere of hydrogen (H2, 0.1×105 Pa) and argon (Ar, 0.1×105 Pa). The target was 

prepared by compressing micron-sized silver and copper (or tin) powders, which were first 

homogeneously mixed in a mass ratio of 1:1. To start production of the bimetallic nanoparticles, arc 

plasma was triggered between an anode (the target) and a tungsten rod cathode. Products were 

obtained through successive nucleation and growth processes, along with a passivation stage for 12 

h after introducing a trace of air into the chamber. For electrical resistivity measurement, the testing 

samples were prepared by mechanically pressing pristine nanoparticles into thin sheets in a steel die 

under 20 MPa, which also suffered from a sintering treatment in a tube furnace at various 

temperatures (473, 573, 773 and 973 K) under Ar gas atmosphere for 1 h. The diameter of the thin 

sheets used here is 20 mm with a thickness of ~0.35 mm. 

The crystal structures of the as-obtained nanoparticles were identified using X-ray diffraction 
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(XRD, Shimadzu X-ray 6000) operated at 40 kV and 30 mA with Cu Kα radiation (λ=1.5418 Å). 

The morphology and microstructures of the products were investigated by transmission electron 

microscopy (TEM, Tecnai2 20 S-TWIM) with an accelerating voltage of 200 kV. The mean size and 

distribution of the nanoparticles were obtained by statistical analysis on TEM pictures. The lattice 

spacing of each phase in the nanoparticles was determined by HRTEM, which further confirms the 

detailed core-shell structure. Surface oxide species of the nanoparticles were investigated by X-ray 

photoelectron spectroscopy (XPS, Thermo Escalab 250Xi). Thermogravimetric analysis (TGA) and 

differential scanning calorimetry (DSC) were conducted by the simultaneous thermal analyzer (STA, 

449 F3, Netzsch). The signal was recorded from 50 to 900 °C at a ramp rate of 10 °C min-1 under 

air atmosphere. The electrical resistivity of thin sheets and their annealed samples were measured 

by a four-probe resistance meter (Keithley 2400) fitted with Au tip electrodes. The temperature-

dependent resistivity of testing sheets was also measured from 2 to 300 K on a physical property 

measurement system (PPMS, Quantum Design). 

 

3. Results and discussions 

Fig. 1 shows XRD patterns of the as-prepared bimetallic nanoparticles. It is found that Ag-Cu 

NPs (Fig. 1a) consist of two crystal phases. The Ag grains diffract at 2θ = 38.4°, 44.7°, 65.1° and 

78.0°, which are indexed to (111), (200), (220) and (311) lattice planes of FCC Ag (JCPDS #87-

0720), while the Cu phase is of FCC Cu (JCPDS #04-0836) with diffraction peaks at 2θ = 43.0°, 

50.1° and 73.6° assigned to (111), (200) and (220) crystal planes, respectively. In comparison with 

the lattice constants of bulk Ag (4.077 Å) and Cu (3.616 Å), the calculated ones of the nanoparticles 

are a(Ag) = 4.0507 Å and a(Cu) = 3.640 Å, with a lattice constriction of about -0.67% for the Ag phase 

and a lattice expansion of 0.66% for the Cu phase. The variation of lattice constant implies the 

formation of solid solutions of Ag(Cu) and Cu(Ag) in the nanoparticles [22]. The atomic radii of Cu 

and Ag are 0.14 and 0.16 nm [23], respectively. A hard sphere model is adequately available here: 

since Cu is the smaller atom, the dissolution of Cu in the Ag matrix causes lattice contraction; but 

instead Ag incorporation into the Cu matrix creates lattice expansion. However, according to the 

equilibrium phase diagram of binary Ag-Cu alloy, any Ag-Cu intermetallic compound is not 

generated due to their weak chemical affinity. In Fig. 1(b), Ag-Sn NPs show two sets of diffraction 

profiles: the Ag3Sn phase (JCPDS #71-0530) displays peaks at 2θ = 34.7°, 37.3°, 39.6° and 52.1°, 
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whereas the Sn phase (tetragonal in lattice cell, JCPDS #86-2264) illustrates the peaks at 2θ = 30.8°, 

32.1°, 44.0° and 45.0°. It is noteworthy that the emergence of Ag3Sn phase in the nanoparticles 

indicates an active reaction occurred between Ag and Sn elements, while the intermetallic 

compound product consumed all Ag content. The phase diagram concerning their nanoparticles’ 

system also supports above results [24-26]. The formation of Ag-Sn intermetallic compounds will 

be achieved if the concentration of Sn is higher than 25 wt.%. Thus, it is believed that the 

composition of the raw materials (50 wt.% of Sn) has well satisfied the formation condition for the 

Ag3Sn compound in the nanoparticles [4, 27]. Additionally, it had been confirmed in previous 

studies that the passivation process can result in oxide shells at the surface of metal nanoparticles 

[28]. However, the oxides species have not appeared in the XRD profiles owing to their amorphous 

states and/or being much thinner in thickness, or in a quantity less than 5 wt.%. The oxide shells 

will be easily determined by following TEM and XPS measurements. The average sizes of primary 

crystalline grains are calculated using the Scherrer equation [29]: D(nm) = kλ/βcosθ, where k is the 

shape factor with a typical value of 0.9, λ is the X-ray wavelength (0.154056 nm), β is the line 

broadening full width at half maximum (FWHM) peak height (in radians), and θ is the Bragg angle. 

Based on the peaks of Cu (111), Ag (111), Ag3Sn (211) and Sn (200) planes, the mean sizes of Ag 

and Cu grains are calculated as 14.5 nm and 20.2 nm, respectively, both generally smaller than that 

of Ag3Sn (44.0 nm) and Sn (57.6 nm) grains. This may be ascribed to the fact that the eutectic 

temperature of Ag-Cu alloy (1053 K) is higher than that of Ag-Sn alloy (753 K, 494 K) [24, 30]. 

The eutectic temperature of binary alloy is thought to be significant effect on the supply of growth 

species and subsequent nucleation/growth processes. The raw target is melted and evaporated into 

metal vapor which quickly spreads beyond the arc region, reaches a supersaturation state to form 

metal clusters as growth species and then generate bimetallic nanoparticles through cooling 

nucleation, growth and final condensation deposition. The alloy species with a low eutectic 

temperature are believed more likely to generate the accumulation of metal drop and develop a local 

liquid-rich regime that serves their sufficient nucleation and growth, as well as the generation of 

larger nanoparticles. 
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Fig. 1. XRD patterns of (a) Ag-Cu NPs and (b) Ag-Sn NPs. 

 

The morphology and microstructure of the as-obtained nanoparticles were characterized by TEM 

and high-resolution TEM (HRTEM) as shown in Fig. 2. The TEM images in Figs. 2(a) and 2(b) 

show that all particles are essentially spherical in shape, with an average size of 33 nm for Ag-Cu 

NPs, and 64 nm for Ag-Sn NPs. HRTEM images of Figs. 2(aʹ) and 2(aʺ) further reveal that Ag-Cu 

NPs consist of separated Ag and Cu cores, both of which are encapsulated by amorphous oxide 

shells. The well-resolved lattice fringes of Ag and Cu cores correspond to the (111) crystal planes 

by variable spacing distances of 0.234 nm (FCC Ag) and 0.208 nm (FCC Cu). Figs. 2(bʹ) and (bʺ) 

show that Ag-Sn NPs are featured with the crystal cores of Ag3Sn or Sn, and the tin oxides shells in 

a disordered state. The Ag3Sn core is determined by an interplanar spacing of 0.224 nm belonging 

to the (211) planes, while the Sn core is confirmed by 0.278 nm of the lattice space between (101) 

crystal planes. The amorphous oxide shells are estimated about 1-4 nm in thickness, resulting from 

the nature of self-passivated process of the fresh nanoparticles. Herein, the oxygen-starved 

environment during passivation has caused the ultrathin layers of amorphous oxides. It can be also 

anticipated that Ag-Cu NPs are more active to be oxidized than Ag-Sn NPs, to be justified from the 

thicker oxide layers of Ag-Cu NPs. For this purpose, the further statistics evaluation on the thickness 

of their oxide layers was performed based on the HRTEM images, indicating an average thickness 

of 3.3 nm in range of 1.5-4.0 nm for Ag-Cu NPs and 2.4 nm in range of 2.0-2.5 nm for Ag-Sn NPs. 
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Fig. 2 TEM and HRTEM images of Ag-Cu NPs (a, aʹ, aʺ) and Ag-Sn NPs (b, bʹ, bʺ). The insets 

illustrate the size distribution of the nanoparticles based on the statistical analysis on TEM images. 

 

XPS analysis was carried out to identify the surface oxides (shells) of the as-prepared 

nanoparticles as shown in Fig. 3. The survey spectra in Fig. 3(a) confirm the existence of Ag, Cu 

and O elements in Ag-Cu NPs, and Ag, Sn and O elements in Ag-Sn NPs. The contents of Ag, Cu 

and O in Ag-Cu NPs are detected as 40.9, 52.5, and 6.6 wt. %, while the Ag, Sn and O in Ag-Sn 

NPs are estimated as 38.3, 54.6 and 7.1 wt. %, respectively. The relative mass ratios are Ag/Cu = 

43.8/56.2 and Ag/Sn = 41.2/58.8 for two kinds of the nanoparticles, both of which contain less Ag 

content with respect to the nominal composition of two raw targets (50/50 in mass ratio), implying 

a slight difference in elemental evaporation rates during the co-evaporation process. In Fig. 3(b), 

the spectrum of Ag 3d electrons for Ag-Cu NPs displays two peaks at 368.5 eV (Ag 3d5/2) and 374.5 

eV (Ag 3d3/2), which is attributed to the Ag (Cu) solid solution core with zero-valence of Ag-Cu 

NPs, confirming the existence of Ag-based Ag(Cu) solid solution in the nanoparticles as indicated 

by the XRD result (Fig. 1). However, the binding energies positively shift by about 0.7-0.9 eV in 

comparison with that of pure Ag NPs [18, 31], which is in line with the behavior of previously 

reported bimetallic systems based on silver or platinum-group metals (PGMs) [32-35]. In the case 

of Ag-Sn NPs, Ag 3d electrons show the peaks at 368.3 eV (Ag 3d5/2) and 374.3 eV (Ag 3d3/2), and 
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both are from the intermetallic compound of Ag3Sn [36]. Fig. 3(c) reveals the CuO shell of Ag-Cu 

NPs by the binding energies of Cu 2p electrons at 933.2 eV (Cu 2p3/2) and 953.0 eV (Cu 2p1/2), as 

well as the satellite signals of CuO (two characteristic bands in ranges of 940.6-947.7 eV and 959.7-

965.2 eV). Meanwhile, two peaks at 932.6 eV (Cu 2p3/2) and 952.3 eV (Cu 2p1/2) verify the metallic 

Cu0 state which is actually from the cores of Cu(Ag) solid solution in Ag-Cu NPs. The existence of 

CuO shell is also corroborated by the peak (529.9 eV) of O 1s electrons as illustrated in Fig. 3(d), 

where another peak at 531.0 eV is attributed to the physically absorbed oxygen and/or -OH groups 

[10, 18, 37]. Fig. 3(e) shows the signal of Sn 3d orbitals from Ag-Sn NPs. Two main peaks centred 

at 486.5 and 494.9 eV are assigned to SnO/SnO2, and other two peaks at 484.6 and 493.1 eV are 

ascribed to the metallic Sn0. In Fig. 3(f), O 1s spectrum shows overlapped peaks at 529.7 eV and 

531.0 eV, both of which are from tin oxides, the shell of Ag-Sn NPs. 

Above XPS analyses supply further evidence to the core-shell structures of the nanoparticles, i.e. 

the core of Ag(Cu)/Cu(Ag) solid solution and the shell of CuO layers in Ag-Cu NPs, while the core 

of Sn/Ag3Sn grains and the shell of SnO/SnO2 hybrid layers in Ag-Sn NPs. It is found that all 

bimetallic nanoparticles are coated by the layers of active metal (Cu and Sn) oxides, and no silver 

oxides have been detected. The reason is easier to understand that the Cu and Sn atoms at the surface 

of the nanoparticles have higher activity than Ag atoms; in consequence, they are preferentially 

oxidized by competing with Ag atoms to form the shells. It was also reported that the existence of 

electronic interaction between Ag and Cu/or Sn elements could render the counterpart of more active 

metals passive, thus in turn enhancing the resistance against oxidation of the bimetallic 

nanoparticles, which is similar to the case of Cu NPs grown on Au nanoislands [38]. It is well known 

that in microelectronic devices, the electrochemical migration of Ag component can cause a severe 

short-circuit failure in the presence of moisture and applied bias [39]. Hence, the oxides shells of 

Ag-based bimetallic nanoparticles are thought possible to prevent the diffusion and migration of Ag 

species, and therefore may contribute stable electrical conjunction. 
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Fig. 3 XPS analysis on Ag-Cu NPs and Ag-Sn NPs. (a) Survey spectra; (b) The binding energies 

of Ag 3d5/2 and Ag3d5/2 electrons of two kinds of nanoparticles; (c) and (d) The spectra of Cu 2p 

and O 1s electrons of Ag-Cu NPs, respectively; (e) and (f) The spectra of Sn 3d and O 1s electrons 

of Ag-Cu NPs, respectively. 

 

Thermal stabilities of the as-prepared nanoparticles were measured in air by the simultaneous 

thermal analysis, as shown in Fig. 4. In Fig. 4(a), TGA curve of Ag-Cu NPs exhibits a slight weight 

loss of about 0.3 wt.% below 155 °C due to the volatilization of physisorbed moisture at surface of 

the nanoparticles, followed by a slow weight gain from 155 °C to 266 °C associated with a weak 

broadened exothermic peak of DSC curve centered at 204 °C, which might be attributed to the 
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oxidation of Cu core into Cu2O [18]. A sharp exothermic peak occurs at 280 °C, yielding ~3 wt.% 

weight gain in the range of 266-300 °C, which is thought the further oxidation of Cu2O into CuO 

[40]. As heating up to 750 °C, a successive weight gain without obvious thermal peaks implies 

complete oxidization from Cu to Cu2O, and further to CuO, happened in Ag-Cu NPs. The total mass 

gain of Ag-Cu NPs in whole temperature range is about 13.1 wt.%, nearly close to the estimation 

based on XPS analysis, a mass gain of ~13.21 wt.% if the Cu core is entirely oxidized into CuO. 

The thermal behaviors of Ag-Cu NPs have well confirmed the existence of CuO shells and metallic 

cores in the nanoparticles. Fig. 4(b) presents TGA-DSC curves of Ag-Sn NPs, indicating an air-

stable existence below 230 °C. The DSC curve shows the overlapped endo- and exo-thermal peaks 

along with a shoulder in the temperature range of 200-350 °C. Among them the endo-thermal 

reaction occurred at 221 °C corresponds to the melting of Sn component in Ag-Sn NPs, which is 

about 11 °C lower than the melting point (232 °C) of bulk Sn, plus a slight increase of 8 °C regarding 

to the reported eutectic temperature (207.3 °C) of L → β-Sn + Ag3Sn in bimetallic Ag-Sn NPs (40 

nm) [24, 26]. It is found that this endo-thermal sharp peak with a narrow width of ~6 °C implies a 

small size and its mono-size distribution of the Sn grains in the nanoparticles [41]. The prominent 

exothermic peak around 247 °C is considered the oxidation of molten Sn [4, 24, 27, 42, 43], while 

the shoulder near at 283 °C is from the further oxidizations of SnO products and the SnO shells [43]. 

The endothermic peak at 482 °C is thought as the melting of Ag3Sn phase [27, 44], whereas an 

exothermic peak at 597 °C is ascribed to the oxidation of Sn produced by the decomposition of SnO 

[42] as well as the shoulder, supported by the sustaining weight gain, is due to the deep oxidation 

of SnO. Above thermal analysis results indicate that Ag-Sn NPs are more stable than Ag-Cu NPs in 

air below 200 °C, but suffer from the melting of Sn and Ag3Sn components above 221 °C, and result 

in a breakage of the core/shell structure and further deep oxidizations. It is suggested that Ag-Cu 

NPs favor preserving the core/shell structure under high temperature sintering, through the 

protection from denser oxide layers. It had been proved that the fabrication of Ag-coated Cu@Ag 

core-shell NPs is also one of the most effective routes to protect them from oxidations, where Ag-

Cu NPs are able to remain stable up to 200 °C [15, 45]. In the work, Ag-Cu NPs and Ag-Sn NPs 

are also air-stable up to 200 °C due to protection from the ultrathin oxides layers. 
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Fig. 4 TGA-DSC curves measured in air atmosphere. (a) Ag-Cu NPs, and (b) Ag-Sn NPs. 

 

Fig. 5 demonstrates the relation between electrical resistivity of the nanoparticles and annealing 

temperature. It indicates that Ag-Sn NPs are generally better in electrical conductivity than Ag-Cu 

NPs regardless of annealing temperature. From the resistivity data of bulks, i.e. Sn (1.01×10-5 Ω·cm), 

Ag3Sn (2.50×10-5 Ω·cm), Ag (1.59×10-6 Ω·cm) and Cu (1.72×10-6 Ω·cm) [46], one may recognize 

Ag-Sn NPs system would be higher in resistivity from the fact that it consists of main Ag3Sn and 

Sn phases, while Ag-Cu NPs are comprised of Ag and Cu phases. Herein, the great influences from 

oxides layers (shells) could be expected on the electrical resistivity, that is, the CuO shells with an 

average thickness of 3.3 nm of Ag-Cu NPs are thicker and play more interference in comparison 

with the SnO/SnO2 shells (2.4 nm) in Ag-Sn NPs. This estimation partly supported by the structural 

characterizations, and will be further proved by the temperature-dependent resistivity measurements 

in the following section. Ag-Cu NPs exhibit a room temperature resistivity of 7.10×10-5 Ω·cm, 

which is ~45% that of Cu NPs (1.58×10-4 Ω·cm), and ~17 times higher than that of Ag NPs 
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(3.94×10-6 Ω·cm); meanwhile Ag-Sn NPs are 4.24×10-5 Ω·cm in the resistivity, ~4 times lower than 

that of Sn NPs (2.04×10-4 Ω·cm) and one order higher than that Ag NPs or Ag nanowires (3.25×10-

6 Ω·cm) [47]. 

The resistivity of all testing samples slightly decreases by raising the annealing temperature. It is 

believed that the annealing treatment can promote close contact between particles by metallurgic 

conjunction, and also reduce lattice defects by diffusion, consequently lower the resistivity of 

connected particles [1]. Especially, the melting of components in the nanoparticles can initiate the 

reconfiguration of nanostructures to create new conductive networks with a higher electrical 

conductivity [48]. For example, the melting of Sn grains in Ag-Sn NPs, as measured as 221 °C in 

Fig. 4(b), has harvested a remarkable decrease in the resistivity. Instead, Ag-Cu NPs show a gradual 

decrease in resistivity, owing to their ability to maintain the original core/shell structures up to a 

relatively higher temperature. Apparently, above results suggest the annealing process is favorable 

to get a well-established network with better conductivity, and present an optimal sintering 

temperature range for the bimetallic nanoparticles. It is worth to mention that the lowest resistivity, 

e.g.  = 6.96×10-5 Ω·cm of Ag-Cu NPs, 3.18×10-5 Ω·cm of Ag-Sn NPs, is quite comparable to the 

electrical performance (0.2~1.6 ×10-5 Ω·cm) of commercial Ag conductive inks [10]. It is expected 

that the bimetallic nanoparticles synthesized in this work have provided new opportunities for 

printed electronics. 
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Fig. 5 Room-temperature resistivities of Ag-Cu NPs and Ag-Sn NPs versus the annealing 

temperature. 
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Temperature-dependent resistivity of Ag-Cu NPs and Ag-Sn NPs are presented in Figs. 6(a) and 

6(b), respectively. In Fig. 6(a), Ag-Cu NPs demonstrate a typical metallic conduction behavior over 

25 K with a positive temperature coefficient of resistance (TCR) but, nonetheless, a transition into 

dielectric behavior occurs at ~25 K. As revealed, the cores of Ag-Cu NPs consisting of metallic 

Ag(Cu) and Cu(Ag) solid solutions are attributed to the metallic behavior, while the thicker CuO 

shells are responsible for the dielectric activity at a low temperature. In the competition between 

conductive/dielectric domains, the circumambient temperature has crucial influences on the energic 

states of localized electrons and lattice phonons, as well as the interactions such as scattering, 

vibration and mobility [49]. The dominant metallic behavior is characterized by the electron-phonon 

scattering of crystal lattice [46], and the prevailing dielectric (the inset of Fig. 6a) can be understood 

from weak localization effects of electrons if the de-coherence length exceeds the shell thickness of 

CuO layer at low temperatures [50]. Fig. 6(b) shows a metallic behavior of Ag-Sn NPs, similar to 

the case of Ag-Cu NPs but determined by metallic Sn and Ag3Sn phases. Additionally, a 

superconductive phenomenon is observed at 3.47 K as shown in the magnified inset of Fig. 6(b). It 

is believed that this superconductive behavior is arisen from the existence of Sn phase in Ag-Sn 

NPs, and the corresponding TC (3.47 K) is very close to 3.72 K for the bulk tin [51]. In our previous 

work, the superconductive phenomenon was also found in Sn@CNT nanorods and TC was 

determined as 3.69 K [52]. Above results verify the dominant metallic natures of both kinds of the 

nanoparticles at a higher temperature, even though they are completely coated by the dielectric 

layers of CuO or SnO/SnO2. 
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Fig. 6 Temperature dependence of resistivity of the testing sheets over 2-300 K. (a) Ag-Cu NPs 

and (b) Ag-Sn NPs. The inset of Fig. 6 (a) indicates a transition at 25 K from a dielectric to 

Page 13 of 17 AUTHOR SUBMITTED MANUSCRIPT - NANO-123694.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



14/17 

 

metallic behavior, and the inset of Fig. 6 (b) shows a superconductive phenomenon below 3.47 K. 

 

4. Conclusions 

Ag-based bimetallic (Ag-Cu and Ag-Sn) NPs encapsulated by an ultrathin oxide shell have been 

successfully fabricated by DC arc-discharge method followed by a self-passivation process. The 

structural details of both bimetallic nanoparticles are experimentally confirmed as the metallic cores 

of Ag(Cu) and Cu(Ag) solid solutions for Ag-Cu NPs, and the crystal Ag and Ag3Sn cores for Ag-

Sn NPs. Surface analysis further confirms the CuO shell of Ag-Cu NPs and a hybrid (SnO/SnO2) 

shell of Ag-Sn NPs. The bimetallic nanoparticles stable up to 200 °C in air exhibit a low resistivity, 

i.e. 7.10×10-5 Ω·cm for Ag-Cu NPs and 4.24×10-5 Ω·cm for Ag-Sn NPs. The unique core/shell 

structure of bimetallic nanoparticles makes them metallic and stabilized without a serious sacrifice 

of electrical conductivity. Both bimetallic nanoparticles demonstrate a typical metallic conduction 

behavior with a positive TCR over 25-300 K. Ag-Sn NPs exhibit a superconductive state below the 

metal-superconductor transition at TC = 3.47 K. The bimetallic nanoparticles synthesized by this 

physical route have validated their competitive abilities in the thermal stability and electrical 

conductivity, making them the promising candidates of novel conducting materials for the flexible 

printed electronics. 
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