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ABSTRACT

Wilms tumour (WT), an embryonal kidney cancer, has been extensively characterised for genetic 

and epigenetic alterations, but a proportion of WTs still lack identifiable abnormalities.  To 

uncover DNA methylation changes critical for WT pathogenesis, we compared the epigenome of 

fetal kidney with two WT cell lines, filtering our results to remove common cancer-associated 

epigenetic changes, and to enrich for genes involved in early kidney development.  This identified 

four hypermethylated genes, of which ESRP2 (epithelial splicing regulatory protein 2) was the 

most promising for further study.  ESRP2 was commonly repressed by DNA methylation in WT, 

and this occurred early in WT development (in nephrogenic rests).  ESRP2 expression was 

reactivated by DNA methyltransferase inhibition in WT cell lines.  When ESRP2 was 

overexpressed in WT cell lines, it inhibited cellular proliferation in vitro, and in vivo it suppressed 

tumour growth of orthotopic xenografts in nude mice.  RNA-seq of the ESRP2-expressing WT cell 

lines identified several novel splicing targets.  We propose a model in which epigenetic 

inactivation of ESRP2 disrupts the mesenchymal to epithelial transition in early kidney 

development to generate WT.
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1 INTRODUCTION

Wilms tumour (WT; nephroblastoma) is an embryonal kidney cancer [1, 2], which originates from 

fetal kidney (FK), due to the failure of the mesenchymal to epithelial transition (MET) that the 

metanephric blastema undergoes during early nephrogenesis.  Premalignant lesions 

(nephrogenic rests; NRs) are often found as microscopic lesions in the normal kidney (NK) 

adjacent to WTs [3].  It is hypothesised that genetic and epigenetic defects occur during renal 

development that block MET, leading to the formation of NRs, some of which progress to WT [1-

3].

The molecular events underlying WT pathogenesis involve an array of genetic and epigenetic 

defects [2].  The earliest genetic mutations in WT were found in the WT1 gene, which plays a 

critical role in regulating MET during nephrogenesis [2].  The Wnt pathway is also vital in renal 

development [2], and mutations in Wnt pathway components including CTNNB1 [4, 5] and WTX 

(AMER1) [6] have also been found in WT.  Recent genome-wide sequencing studies have 

identified mutations in microRNA-processing genes, such as DROSHA, DICER and DGCR8, and 

mutations in other renal developmental regulators, including SIX1, SIX2 and SALL1 [7-12].  Most 

of these events show no strong association with clinical outcome, but TP53 mutations are found 

in the rare anaplastic variant of WT, which has a much poorer prognosis than other subtypes [13].

Epigenetic alterations are also common in WT, especially at the 11p15 locus, where the frequent 

loss of imprinting of the fetal growth factor gene IGF2 is associated with DNA hypermethylation at 

H19 [14].  Other epigenetic alterations in WT include loss of imprinting at 11p13 involving 

imprinted WT1 transcripts [14, 15], global hypomethylation [16], DNA hypermethylation at 

individual tumour suppressor genes such as RASSF1A [16-18], and long-range epigenetic 

silencing of the PCDHG@ gene clusters [19].

Despite the identification of many loci with genetic and/or epigenetic lesions in WT, a proportion 

of WTs still lack identifiable driver defects, implying that additional novel genes are involved in 

WT pathogenesis [7].  We previously used genome-wide DNA methylation analysis to identify 

novel epigenetic lesions in WT [19], and here we report further studies comparing WT cell lines to 

fetal kidney.  We have identified novel differentially methylated genes, one of which is the 

alternative splicing regulator ESRP2 (epithelial splicing regulatory protein 2).  ESRP2 is known to 

be important in epithelial to mesenchymal transitions and MET [20], suggesting that epigenetic 

deregulation of MET may be an important factor in WT development.  We show that ESRP2 is 

frequently silenced by DNA hypermethylation in WT, and that it acts as a tumour suppressor A
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gene, regulating alternative splicing in novel genes, some of which affect pathways known to be 

important in kidney development.

2 MATERIALS AND METHODS

2.1 Ethical statement

WT samples were from Bristol Children’s hospital (BCH), or from collaborators at the Royal 

Marsden Hospital (RMH), as part of a UK collaboration.  Samples were obtained with informed 

written consent (from parent and/or legal guardian for children less than 18 years old) and with 

appropriate ethical approval (E5797, Southwest – Central Bristol Research Ethics Committee 

(UK)).  All methods were performed in accordance the relevant regulations specified in the UK 

Human Tissue Act 2004.  The study methodologies conformed to the standards set by the 

Declaration of Helsinki.  All animal experiments and procedures were approved by the UK Home 

Office in accordance with the Animals (Scientific Procedures) Act 1986.  Mice were maintained at 

the Biological Services Unit, University of Exeter, UK.  Housing and handling of mice have been 

done according to the UK Home Office Code of Practice: 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file

/388895/COPAnimalsFullPrint.pdf.
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2.2 Cell lines

WT cell lines Wit49 (a kind gift from Professor Herman Yeger, University of Toronto) [21] and 

17.94 (established in our own lab; available from DSMZ (German Collection of Microorganisms 

and Cell Cultures), https://www.dsmz.de/dsmz) [22] were grown in Dulbecco’s modified Eagle’s 

medium (DMEM) with 10% fetal bovine serum (FBS), 100 U/ml penicillin, 0.1 mg/ml streptomycin 

and 2mM L-glutamine, at 37°C in 5% CO2.  WT cell line identity was confirmed by short tandem 

repeat analysis (supplementary figure S1).

The V200 and E200L cells lines were derived by transfecting Wit49 cells with the inducible 

expression vector pBIG2r [23], either empty (V200) or containing an ESRP2 cDNA insert 

(E200L).  ESRP2 cDNA was amplified by PCR from IMAGE clone 4810948, using a forward 

primer containing a BamHI site and a reverse primer containing an EcoRV site plus a FLAG tag 

(supplementary table S1), then ligated into BamHI/EcoRV-digested pBIG2r (supplementary figure 

S2A).  Transfected cells were selected and maintained in 50 µg/ml hygromycin B (Santa Cruz 

Biotechnology).  Only the ESRP2-transfected Wit49 cells (E200L) expressed vector-derived 

ESRP2 RNA (supplementary figure S2B).  ESRP2 expression was induced with 2-5 µg/ml 

doxycycline (Dox, Sigma), with maximum ESRP2 protein expression at 72 to 96 hrs post-

induction (supplementary figure S2C).

2.3 Transient transfection

WT cell lines Wit49 and 17.94 were seeded into 6 well plates (2x105 cells/well) and transfected 

with 1µg plasmid expressing FLAG-tagged Esrp1 or Esrp2, or empty vector (pIBX-C-FF-B-

Esrp1/2 [24]), using FuGENE 6 (Promega), according to the manufacturer’s instructions.  

Transfected cells were selected with 2.5 µg/ml blasticidin (Sigma) after three days, and after five 

days, adherent cells were trypsinised and counted.
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2.4 Cell growth assays

For mass culture assays, cells were seeded into 6 well plates (1x106 cells/well) and treated with 2 

µg/ml doxycycline or DMSO vehicle control, with medium changes every 3 days.  Cells were 

trypsinised and counted using a Countess cell counter and trypan blue stain to exclude dead 

cells.

For colony assays, cells were seeded into 6 well plates (2x105 cells/well) and treated with 2 µg/ml 

doxycycline or DMSO vehicle control.  Medium was changed every 3 days, then at 14 days cells 

were fixed, stained with methylene blue and colonies counted manually.

To monitor proliferation in real time, cells were seeded in 24-well plates (5x103 cells/well) and 

images were taken in four different fields per well every two hours (IncuCyte ZOOM live cell 

imaging system; Essen BioScience) and phase confluence was calculated as a surrogate for 

growth.

2.5 Transwell assay

Cells were pre-treated for 4 days with 2 µg/ml doxycycline or control media, then seeded into 

transwell inserts (2x105 cells/insert in FBS-free DMEM; 8 µm pore, PET membrane; Falcon, 

353093) in a 6-well plate.  Wells were filled with 1.7 ml 10% FBS in DMEM to produce a 

chemotactic gradient.  After 24 hours, inserts were washed and cells on underside of membrane 

were fixed and stained with crystal violet and counted manually using light microscopy.

2.6 Scratch assay

Cells were seeded into 24 well plates (7.5x105 cells/well) and treated with 2 µg/ml doxycycline or 

DMSO vehicle control, prior to a scratch being performed manually in the centre of each well.  

Wells were washed with PBS to remove dead cells, control/doxycycline media replaced, and 

wells were analysed at 24 and 48 hours via widefield microscopy, using Image J software to 

determine percentage wound closure.

2.7 Cell Trace Violet (CTV) proliferation assayA
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1x106 cells were incubated for 20 min at 37oC in the dark in 1 ml of diluted CTV stain 

(ThermoFisher; C34571; prepared according to manufacturer’s instructions), then staining was 

quenched using 10% FBS in DMEM and cells were seeded into T12.5 flasks.  Controls were 

made by fixing 3x105 stained cells in 1% paraformaldehyde and stored at 4oC in the dark.  

Seeded cells in T12.5 flasks were treated for 6 days with 2 µg/ml doxycycline or control media 

and intensity of CTV staining was analysed using a Novocyte flow cytometer and FlowJo 

software.

2.8 5-Aza-2’-deoxycytidine treatment

Cells were incubated in medium containing 2µM 5-aza-2’-deoxycytidine (Aza; Sigma) or drug 

solvent (DMSO) for up to 6 days, with a medium change every two days.

2.9 Xenografting into nude mice

V200 and E200L cells were transduced with lentivirus expressing firefly luciferase (Amsbio 

LVP326) and transduced cells were selected with blasticidin, according to the manufacturer’s 

protocol.  For orthotopic kidney implantation, male nude mice (two months old; Charles River) 

were anaesthetised using isoflurane, an incision was performed in the left flank of the mice, the 

kidney was exteriorised and 3x106 cells were injected.  Mice were imaged twice weekly (Xenogen 

IVIS), following intraperitoneal injection with luciferin.  When a bioluminescent signal above 

background was detected (demonstrating the establishment of tumour growth) mice were injected 

intraperitoneally with doxycycline three times/week (50 mg/kg in 5% glucose).  Mice were culled 

either when tumours grew to the maximum allowed size (10mm in diameter, according to the 

animal licence), or after two months of imaging.  The sample size was determined by power 

calculations using existing data from similar experiments performed routinely in Dr Oltean’s lab. 

More specifically, the sample size was obtained to be able to see a significant difference (p>0.05) 

for tumour growth with a power value of 0.80 (>80%). We have used statistical principles and 

formulas available on the following websites: www.nc3rs.org.uk; 

http://www.statisticalsolutions.net/pss_calc.php. We have not done randomization in the animal 

experiments and there was no blinding of the investigator.
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2.10 DNA extraction and methyl CpG immunoprecipitation (MCIP)

DNA was extracted from WT cell lines with a DNeasy kit (Qiagen).  Human fetal kidney DNA was 

obtained from BioChain.  MCIP was performed as described previously [25] by co-hybridising 

methylation-enriched DNA fractions with input DNA on to a custom microarray (Nimblegen), 

based on design 2006-04-28_HG18_Refseq_Promoter (see GEO entry for further details).  

Statistical analyses by ChIPMonk software 

(https://www.bioinformatics.babraham.ac.uk/projects/chipmonk/), used windowed T-tests to 

identify differentially methylated genes (supplementary table S2).  MCIP data are accessible 

through GEO Series accession number GSE153047: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE153047.

2.11 Pyrosequencing

DNA was purified by phenol-chloroform extraction, bisulfite converted (EZ DNA Methylation Gold 

kit; Zymo Research), amplified using a Pyromark PCR kit (Qiagen) and pyrosequenced on a 

PyroMark Q96 instrument (Qiagen), using primers listed in supplementary table S3.
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2.12 RNA extraction, cDNA synthesis and RT-PCR

Total RNA was extracted using TriReagent (Sigma) and DNase treated with TURBO DNA-free 

(Ambion).  Human fetal kidney RNA was obtained from BioChain.  cDNA was synthesized using 

the Superscript IV RT-PCR system (Invitrogen).  Gene-specific primers (supplementary table S1) 

were used for end-point PCR (HotStarTaq Plus DNA Polymerase; Qiagen), to detect inclusion or 

exclusion of alternative exons, after electrophoresis on agarose gels (1.5%).  Quantitative real-

time PCR (QPCR) using gene-specific primers (supplementary table S1) was performed using 

QuantiNova SYBR Green mix (Qiagen) on an MX3000P real-time PCR machine (Stratagene), 

normalising the amount of target gene to the endogenous level of TBP.  Human universal RNA 

(Agilent) was used as a reference to standardise results between QPCR batches.

2.13 Protein extraction and Western Blotting

Cells were washed with ice-cold PBS and lysed in cell lysis buffer (Cell Signaling), with complete 

mini-inhibitors (Roche) for 10 min on ice, and then sonicated for 5 min (Diagenode, Bioruptor).  25 

µg proteins were separated on SDS-polyacrylamide gels and analysed by Western blotting.  

Primary antibodies were against ESRP2 (rabbit, Abcam ab155227), FLAG (mouse, Sigma 

F3165) and β-ACTIN (rabbit, Abcam AB8227), followed by secondary HRP-labelled anti-rabbit 

IgG (Sigma A6154) or anti- mouse IgG (Sigma A9044).  Chemiluminescence detection was with 

Lumiglo (KPL).

2.14 Immunofluorescence

Cells were grown on sterile glass slides, fixed for 30 min at room temperature in 1% 

paraformaldehyde in PBS, permeabilised for 10 min in 0.5% Triton X-100 in PBS and finally 

rinsed in 50mM glycine in PBS.  Fixed cells were stained using a primary antibody against FLAG 

(mouse, Sigma F3165) and secondary antibody against mouse IgG (Alexa Fluor 488-labelled; 

Invitrogen) to detect transfected ESRP2, together with Alexa Fluor 594-labelled phalloidin 

(Invitrogen) to detect actin.  Antibodies were diluted in PBS +1% bovine serum albumin, 

containing 0.1 µg/ml DAPI to image nuclei.  Slides were mounted in Fluoroshield (Sigma) and 

examined with a confocal microscope, acquiring eight images at 1µm spacing/field.  Maximum 

intensity projections were merged using Image J software (http://imagej.nih.gov/ij/).A
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2.15 RNA sequencing (RNA-seq)

RNA was extracted from E200L cells 96 hrs after treatment with 2 µg/ml doxycycline, or control 

solvent (DMSO), using an RNAeasy kit (Qiagen), then DNase treated, and quality confirmed 

using an Agilent ScreenTape RNA assay.  Two biological replicates were used for RNA-seq (i.e. 

four samples total).  Sequencing libraries were prepared from total RNA (500 ng) using the 

TruSeq Stranded mRNA Library Preparation kit (Illumina, Inc.) and uniquely barcoded adapters 

(RNA LT adapters, Illumina, Inc).  Libraries were pooled equimolarly for sequencing, which was 

carried out on the NextSeq500 instrument (Illumina, Inc.) using the NextSeq High Output v2 150-

cycle kit (Illumina, Inc.).  Approximately 300 million paired reads (passing filter, PF) were 

obtained, divided between the four experimental samples.  NextSeq Control Software Version 

2.0.0 and RTA v2.4.6 were used for instrument control and primary analysis, respectively.  Reads 

from the four samples were mapped to the human genome (hg19) using the new Tuxedo Suite of 

programs (HISAT2, StringTie, Ballgown; https://www.ncbi.nlm.nih.gov/pubmed/?term=27560171).  

To identify RNA splicing alterations, the four BAM files generated by HISAT2 were used as input 

for rMATS ([26] http://rnaseq-mats.sourceforge.net/user_guide.htm).  Bam files were viewed in 

the Integrative Genomics Viewer (http://software.broadinstitute.org/software/igv/) to produce 

Sashimi plots of alternative splicing.  RNA-seq data are accessible through GEO Series 

accession number GSE154496: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154496.

2.16 Statistical analysis

Comparisons of two datasets were performed using Students’ t-test or a Mann Whitney U-test, 

depending on whether the data met the normal distribution.  A comparison of three or more 

groups was performed using one-way analysis of variance (ANOVA) with Dunnett’s post-test, or 

using Tukey’s pairwise test.  The Chipmonk software used for MCIP analysis, and the rMATS 

software used for RNA-seq analysis, use Benjamini and Hochberg FDR correction for multiple 

testing.  For smaller numbers of samples, Bonferroni correction was used for multiple testing.  

Numbers of samples quoted in figure legends (n), refer to biological replicates.  p<0.05 was 

considered to indicate a statistically significant difference
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3 RESULTS

3.1 Genome-wide DNA methylation analysis

We used MCIP to identify 225 genes that were hypermethylated in two WT cell lines compared to 

fetal kidney (figure 1A and supplementary table S2).  Gene ontology analysis showed that these 

genes were particularly involved in chromatin organisation, developmental processes, and 

transcriptional regulation (figure 1B and supplementary table S4).  To distinguish genes that were 

methylated specifically in WT, two filters were applied; 1) Genes were removed that are polycomb 

repressive complex marked in embryonic stem cells, since such genes are predisposed to DNA 

methylation in a wide range of human cancers [27-29] and therefore might not be WT-specific; 2) 

Positive selection was applied for genes that are upregulated in early nephrogenesis, since their 

inactivation could induce the MET block that is critical for WT development [2].  Using these 

criteria, four candidate genes were pinpointed: CHST2, KIT, PTTG1IP and ESRP2 (also known 

as RBM35B) (figure 1A and supplementary table S2), of which ESRP2 was the most consistently 

methylated in WT (figure 1C).

ESRP2 was particularly attractive for further study, because of its known involvement in epithelial 

to mesenchymal transitions in cancer [30].  Support for a role in WT came from examination of 

the ESRP2 target ENAH.  ESRP2 induces inclusion of the epithelial-specific exon 11a in ENAH 

RNA transcripts [24].  Using RT-PCR, less exon 11A was found expressed in WTs compared to 

normal kidney (NK) and fetal kidney (FK), consistent with down-regulation of ESRP2 in WT 

(figure 1D).  We therefore went on to examine DNA methylation and expression of ESRP2 in two 

large cohorts of WTs using pyrosequencing (supplementary figures S3 and S4).
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3.2 DNA methylation of ESRP2 in Wilms tumour

The first cohort of WTs from Bristol Children’s Hospital (BCH), consisted of tumour samples of all 

stages, obtained at surgical resection, pre-chemotherapy.  72% of these WTs were 

hypermethylated at the ESRP2 (DNA methylation >25%) compared to normal tissue (NT) (figure 

2A and supplementary figure S4A).  The second cohort from the Royal Marsden Hospital (RMH) 

were from stages 1 to 3, taken at surgical resection, post-chemotherapy.  In this different cohort, 

78% of WTs were hypermethylated (figure 2B and supplementary figure S4C).  ESRP1 DNA 

methylation was also tested in the RMH cohort and found to be very low (<2%) in NT and WT, 

and not significantly different (figure 2B).  Additional independent DNA methylation data was 

extracted for the ESRP1 and ESRP2 promoters from the dataset GSE59157, which showed 

hypermethylation of ESRP2 in WTs, with much lower methylation of ESRP1, that was only 

marginally different between NT and WT (figure 2C).  Thus, ESRP2 DNA was hypermethylated in 

three independent cohorts of WTs, but the ESRP2 paralog ESRP1 was not hypermethylated.

There was no significant association between tumour stage and ESRP2 DNA methylation 

(supplementary figures S5A, B), nor between ESRP2 methylation and survival (supplementary 

figure S6), nor between tumour histology and ESRP2 methylation (supplementary figure S7A, C).

ESRP2 is located on chromosome 16q22, a chromosomal region showing frequent loss of 

heterozygosity (LOH) in WT [31].  No difference was observed in the ESRP2 methylation in WTs 

with or without 16q LOH (supplementary figure S5C).

Most WTs are thought to develop via premalignant lesions (NRs) [3].  To characterise the phase 

of WT development at which ESRP2 DNA methylation occurs, it was assayed in two sets of 

matched NK, NR, and WT.  ESRP2 was found to be at a similar level of hypermethylation in NRs 

and matched WTs compared to NKs (figure 2D).  In contrast, RASSF1A, a tumour suppressor 

gene frequently hypermethylated in WT [18], was not hypermethylated in NRs (figure 2D), as 

previously reported [16].  Methylation values were also extracted for NRs from dataset 

GSE59157, and similarly, ESRP2 was significantly more methylated in both NR and WT 

compared to NK (figure 2E), but RASSF1A was only hypermethylated in WTs and not NRs 

compared to NK (figure 2E).

To investigate whether epigenetic changes, including ESRP2 hypermethylation, are associated 

with other clinical and molecular features, the BCH cohort of WTs were grouped by hierarchical 

clustering of DNA methylation values at four loci: ESRP2, the WT1 antisense regulatory region 

[15], H19 [14] and RASSF1A [18] (supplementary figure S8 and supplementary table S5).  A
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Interestingly, of the 22 WTs studied for WT1 mutations, all six WT1-mutant WTs were in the same 

cluster (group 3), whereas ten of the WT1 wild-type WTs were in group 1 or 2 and six in group 3 

(p=0.015, Fisher exact test).  This difference in epigenetic profiles between WT1-mutant and wild-

type WTs is supported by similar findings in a recent comprehensive characterisation of 

molecular defects in WT [7].

ESRP2 DNA hypermethylation was also observed in 10 of 16 (63%) non-WT childhood renal 

tumours (supplementary figure S9A), especially in clear cell sarcomas of the kidney and in 

rhabdoid tumours.  In datasets GSE73187 and GSE4487, ESRP2 was also found to be 

hypermethylated in clear cell sarcomas (supplementary figures S9B, C) and rhabdoid tumours 

(supplementary figure S9C).  Interestingly, examination of TCGA data showed DNA methylation 

changes in ESRP2 in several adult cancers, including hypermethylation in two adult kidney 

cancers (renal clear cell carcinoma and renal papillary cell carcinoma, supplementary figure 

S9D).  This suggests that epigenetic inactivation of ESRP2 may be involved in the pathogenesis 

of several types of renal tumours in adults and children, not just in WT.

3.3 Expression of ESRP2 in Wilms tumour

In the BCH cohort, expression of ESRP2 in WT was very low compared to NT (figure 3A and 

supplementary figure S4B) and hypermethylation was associated with reduced expression of 

ESRP2 (figure 3B).  In the RMH cohort, expression of ESRP2 was also reduced in WT compared 

to NT (figure 3C and supplementary figure S4D), but ESRP1 expression was not significantly 

different (figure 3C).  In dataset GSE2712, ESRP2 expression was lower in WT compared to NT, 

but ESRP1 expression did not differ significantly (figure 3D).  Like methylation results, there was 

no relationship between ESRP2 expression and tumour histology (supplementary figure S7B, D, 

E).  These results showed that ESRP2 but not ESRP1 expression was reduced in WTs compared 

to NT and that reduced expression of ESRP2 was associated with hypermethylation.  When the 

two WT cell lines were treated with the DNA methylation inhibitor 5-aza-2’-deoxycytidine (Aza), 

there was a 5 to 10-fold increase in ESRP2 RNA expression (figure 3E), suggesting a 

mechanistic link between ESRP2 methylation and gene expression.

3.4 Biological function of ESRP2 in vitroA
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The results described above suggested that ESRP2 may have an important functional role in the 

development of WT.  To carry out functional analyses, we initially used transient transfection to 

constitutively overexpress ESRP genes in WT cell lines 17.94 and Wit49.  Overexpression of 

ESRP2, but not of ESRP1, produced strong growth inhibition in both cell lines (supplementary 

figure S10).  Due to the strong growth inhibition by ESRP2, we were unable to establish stable 

cell lines using these constitutively active expression vectors.  We therefore transfected the WT 

cell lines with an inducible ESRP2 expression vector (supplementary figure S2).  Unfortunately, 

we were unable to establish a stable cell line from 17.94, but the WT cell line Wit49 was 

successfully transfected, producing the E200L cell line (V200 was the control cell line transfected 

with empty vector).  E200L showed strong doxycycline-induced expression of ESRP2 RNA (figure 

4A) and protein (figure 4B), with the expected nuclear localisation of ESRP2 protein (figure 4D).  

Induction of ESRP2 drove the splicing of the known target gene ENAH [24] towards its epithelial 

splice form (+exon 11a; figure 4C), demonstrating that the construct produced biologically active 

ESRP2 in a WT cell line.  There was slight leakiness from the expression vector, with more 

ESRP2 RNA detected in uninduced E200L cells compared to V200 cells (figure 4A), which 

probably explains the increased level of ENAH exon 11a in uninduced E200L cells compared to 

V200 cells (figure 4C).

Over-expression of ESRP2 was associated with an apparent redistribution of actin filaments 

towards the cell periphery (figure 4D), compared to a more cytoplasmic distribution of actin stress 

fibres in uninduced cells (figure 4D), as reported in other systems [32, 33].

ESRP2 overexpression caused decreased colony-forming efficiency (figure 4E), as well as 

reduced growth rate in mass cultures (supplementary figure S11).  Real-time analysis of cell 

density showed a slower cell proliferation rate in the doxycycline induced E200L cells (figure 4F), 

associated with a small but significant decrease in the rate of cell division (figure 4G, H).  Cell 

invasion (supplementary figure S12A) and cell motility (supplementary figure S12B) showed no 

changes upon induction of ESRP2 expression.

3.5 Xenograft assays of ESRP2 function in vivo

We used orthotopic xenografts of the Wit49-derived cell lines, under the kidney capsule of nude 

mice [34] (figure 5), to examine the effect of ESRP2 expression in vivo.  After treatment with 

doxycycline, tumours produced by V200 cells continued to proliferate, whilst tumours produced by 

E200L cells stopped growing, or regressed (figure 5A and supplementary figure S13A, B).  V200 A
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cells produced large tumours in four of five mice, but only one mouse out of five injected with 

E200L cells (1E-L) produced a large tumour (figure 5B and supplementary figure S13C).  

Western blotting of excised tumours demonstrated that doxycycline treatment had induced high-

level ESRP2 expression in all E200L tumours, with the notable exception of 1E-L (where the 

tumour grew larger) and V200-induced tumours (figure 5C).  This therefore demonstrated a 

strong correlation between ESRP2 expression and suppression of tumour growth.
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3.6 RNA-seq analysis of alternative splicing in Wilms tumour cell lines

In biological duplicates, we carried out RNA-seq on E200L cells that were doxycycline-induced 

(ESRP2-expressing) or uninduced (non-expressing), obtaining between 70 and 80 million paired-

end reads per sample.  These reads were mapped onto the human genome, examined for 

differential gene expression, and used in rMATS software [26] to identify alternative splicing 

events.

Very few transcripts, apart from ESRP2, showed significant changes in RNA expression (p<0.05, 

fold change >2) when ESRP2 expression was induced (figure 6A, B).  Interestingly, one induced 

gene was GRHL1, and grainyhead-like transcription factors are important in both kidney 

development and MET [35], making them good candidates for an involvement in WT.  However, 

we found no difference in expression of GRHL1 between NT and WT (supplementary figure S14), 

which does not support a role for altered GRHL1 expression in WT pathogenesis.

In contrast to the lack of altered gene transcription, ESRP2 induction was associated with over 

900 splicing events involving over 700 genes, with significant changes (False Discovery Rate, 

FDR<0.05) in skipped exons, mutually exclusive exons and retained introns (figure 6C, 

supplementary tables S6, S7, S8).  The genes involved were particularly enriched for biological 

processes concerned with vesicular and intracellular transport (supplementary table S9).  

Although we found many ESRP target genes in common with other reports [36, 37], we also 

identified over 600 novel target genes (figure 6D).  Comparison with a recent study of MET-

associated alternative splicing changes during kidney development [38] also revealed overlap 

with some of our target genes (figure 6E).  Interestingly, the two lists of genes identified as 

overlapping our ESRP2 targets, included five genes (33-36%) in common (CTNND1, CTTN, 

FLNB, MAP3K7, MPRIP; shown in bold in figures 6D, E), emphasising the importance of ESRP-

regulated alternative splicing in kidney development.

We validated a selection of putative targets by specific RT-PCR assays, to examine exon 

inclusion upon ESRP2 induction.  We successfully validated several previously identified targets; 

CD44, ENAH, FGFR2, SCRIB and SLK (supplementary figure S15), as well as the novel targets 

LEF1, NPHP1 and RAC1 (figure 6F, G, H).  However, some putative target genes showed no 

altered splicing after ESRP2 induction (supplementary figure S16 and supplementary table S10).

To investigate the possible role of ESRP2 target genes in WT pathogenesis, we examined 

alternative splicing of 12 genes (seven novel and five previously described) in FK, NK, and WT 

(figure 7 and supplementary figure S17).  Five genes (42%) showed significant changes in the A
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degree of alternative splicing between normal tissues and WT (figure 7), and seven (58%) did not 

(supplementary figure S17, supplementary table S10).

4 DISCUSSION

This is the first demonstration of ESRP2 repression caused by DNA hypermethylation in WT, 

which implicates RNA splicing alterations as an important pathogenic factor in WT development.  

Investigation of matched sets of NK, NR and WT (figures 2D, E) suggested that inactivation of 

ESRP2 by DNA methylation occurs at an early stage in kidney development, prior to NR 

formation.  We propose that ESRP2 is essential for the differentiation of the metanephric 

blastema into nephrons (figure 8B) and that loss of ESRP2 expression causes a differentiation 

block, initiating NRs, that can undergo further genetic and epigenetic defects to produce WT 

(figure 8C).  Support for this model comes from studies showing that the Esrp paralogs are 

expressed in the developing kidney [39], with increased expression of Esrp 1 and 2 when renal 

precursors undergo epithelial differentiation [38], and that knockout of Esrp genes in mice 

decreases kidney volume, due to a lack of nephrons [40].

Inactivation of ESRP2 as an early premalignant event in WT development, probably explains why 

we found no association with clinical features (supplementary figures S5, S6).  It also explains 

why we found no association between ESRP2 methylation and LOH at 16q (supplementary figure 

S5C), where the ESRP2 gene is located, because we have previously demonstrated that 16q 

LOH occurs after NR formation [14] i.e., after ESPR2 hypermethylation.

We have shown that ESRP1, though an ESRP2 paralogue, is not repressed by hypermethylation 

in WTs (figure 2B, C, and 3C, D).  This implies that ESRP1 and ESRP2 may have different 

biological functions and are regulated differently in some instances, as recently reported in 

prostate cancer, where ESRP2 but not ESRP1 is regulated by androgens [41].

Splicing alterations are frequent in human cancers [42], including ESRP-induced changes in 

breast cancer [43, 33], prostate cancer [44, 41], renal cell carcinoma [45] and colorectal cancer 

[46].  Most studies have reported expression changes without finding underlying genetic or 

epigenetic defects in the ESRP genes themselves [46, 43, 45, 41, 33].  However, there are 

reports of genetic defects in ESRP genes in human cancers, specifically, microsatellite indels [47] A
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or duplications [44] of ESRP1.  In addition, there are reports of DNA methylation changes of 

ESRP1 in prostate cancer [48] and of ESRP2 in breast cancer [49], and our examination of TCGA 

data (supplementary figure S9D) demonstrated ESRP2 methylation changes in several other 

adult cancer types.  Thus, our results add to a growing body of evidence that ESRP genes can be 

either genetically or epigenetically deregulated in a wide range of human cancers.

Our functional studies suggested that the main biological effect of ESRP2 is to regulate cell 

proliferation by slowing cell division (figure 4E to H and supplementary figure S11).  Whilst we 

observed some actin cytoskeleton rearrangement (figure 4 D), we did not observe significant 

expression changes in classical epithelial marker genes (figure 6A, B), nor any changes in cell 

motility or invasion (supplementary figure S12), unlike what occurs when ESRP expression is 

modulated in adult human cancer cell lines [32, 33, 30].  Coupled with our xenograft experiments 

that identify ESRP2 as a bona fide tumour suppressor gene (figure 5), these results suggest that 

the tumour suppressor activity of ESRP2 in WT cell lines occurs mainly by altering cell growth 

properties, rather than by affecting cellular differentiation.

Mechanistically, our RNA-seq results demonstrated that ESRP2 modulated the splicing of a 

diverse range of genes, including both well-established and novel targets (figure 6 and 

supplementary tables S6 to S8).  A subset of these genes showed reduced expression of their 

epithelial splice forms in WT (figure 7), consistent with DNA-hypermethylation induced down-

regulation of ESRP2 in WT (figures 2 and 3).  Interestingly, of the 728 genes that we identified as 

having their splicing modulated by ESRP2 (figure 6), only 62 (9%) are WT1 DNA-binding targets 

[50], whereas 244 (34%) are WT1 RNA-binding targets [51] (figure 8A).  The WT1 RNA-binding 

targets include all five of the ESRP2-regulated genes that we found in common between our 

results and two other RNA-seq studies (figure 6D, E).  This suggests that WT1 and ESRP2 are 

involved in the post-transcriptional regulation of a similar set of genes during renal development.  

Since ESRP2 hypermethylation is an early event, like WT1 mutation [52, 53], this suggests that 

ESRP2 hypermethylation may be another important early event in WT development, which 

contributes to WT pathogenesis by inhibiting MET (figure 8C).  These results, together with 

genetic evidence showing defects in miRNA-processing genes in WT [8-12], reinforce the critical 

role that post-transcriptional gene regulation plays in WT pathogenesis.

5 CONCLUSIONSA
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Our genome-wide DNA methylation analysis of WT has identified ESRP2 as a novel differentially 

methylated gene.  ESRP2 was frequently silenced by DNA hypermethylation in WT, and this 

occurred early in WT development (in nephrogenic rests).  ESRP2 inhibited cellular proliferation 

in vitro, and in vivo it suppressed tumour growth of orthotopic xenografts in nude mice, 

demonstrating that ESRP2 acts as a tumour suppressor gene in WT. Using RNA-seq of the 

ESRP2-expressing WT cell lines, we have identified several novel splicing targets, some of which 

affect pathways known to be important in kidney development.  We propose that epigenetic 

inactivation of ESRP2 disrupts the regulation of alternative splicing during the mesenchymal to 

epithelial transition in early kidney development, to generate WT.
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S1 Cell line STR profiles.
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S14 GRHL1 RNA expression.
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S16 Unsuccessfully validated putative ESRP2 target genes.
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FIGURE LEGENDS

Figure 1: Identification of ESRP2 as a candidate hypermethylated gene

A: Venn diagram showing filtering of the 225 methylated genes that were identified by methyl 

CpG immunoprecipitation (MCIP), firstly by negative selection for genes that are polycomb 

repressive complex (PRC) marked in embryonic stem cells and secondly by positive selection for 

genes that are upregulated in the renal vesicle during kidney development.  The full list of 

methylated genes and filtered lists are shown in supplementary table S2.  dev., development.  B: 

Gene ontology analysis of the 225 methylated genes.  Only categories with a fold enrichment >3 

are shown; see supplementary table S4 for full results.  C: Bar chart of CHST2, KIT, PTTG1IP 

and ESRP2 DNA methylation.  Controls (Blank, Me 0% (unmethylated DNA control), Me 100% 

(fully methylated DNA control)), Cell lines (Wilms tumour cell lines, n=2), FK (fetal kidney, n=4), 

NK (normal kidney, n=2) and Wilms tumours (n=15).  DNA methylation was assayed by 

pyrosequencing; see supplementary table S3 for pyrosequencing primers.  D: Alternative splicing 

of ENAH exon 11A was analysed by RT-PCR followed by agarose gel electrophoresis in 2 WT 

cell lines (Wit49 and 17.94), FK, NK and 4 WTs.  Representative of n=3.

Figure 2: ESRP2 is hypermethylated in Wilms tumours and nephrogenic rests

A: Dot-boxplot of ESRP2 DNA methylation in the BCH cohort.  NT (normal tissue) n=8 (4 NK 

(normal kidney) and 4 FK (fetal kidney), WT (Wilms tumour) n=65, p value from t-test.  B: Dot-

boxplot of ESRP2 and ESRP1 DNA methylation in the RMH cohort.  ESRP2: NT n=18 (all NK), 

WT n=73; ESRP1: NT n=15 (all NK), WT n=69, p values from t-test.  C: Dot-boxplot of ESRP2 

and ESRP1 DNA methylation in dataset GSE59157.  NT n=36 (all NK), WT n=37, p values from t-

test.  D: RASSF1A and ESRP2 methylation in nephrogenic rests in the BCH cohort.  Two sets of 

matched NK, NR (nephrogenic rest) and WT are shown.  E: Dot-boxplot of RASSF1A and ESRP2 

methylation in nephrogenic rests in the GSE59157 dataset.  17 sets of matched NK, NR and WT 

are shown for RASSF1A methylation and 13 sets for ESRP2 methylation, from individuals where 

the WT was hypermethylated compared to the matched NK.  p values from Tukey’s pairwise test.  

DNA methylation was assayed by pyrosequencing in A to D and by Illumina Human Methylation 

450 bead arrays in E.A
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Figure 3: ESRP2 expression is repressed in Wilms tumour and regulated by DNA 
methylation

A: Dot-boxplot of ESRP2 RNA expression relative to FK (fetal kidney) in the BCH cohort.  NT 

(normal tissue) n=6 (3 NK (normal kidney) and 3 FK), WT (Wilms tumour) n=32, p value from t-

test.  B: Dot-boxplot of ESRP2 expression in hypomethylated versus hypermethylated samples in 

the BCH.  Hypomethylated n=14 (ESRP2 methylation<25%, Hypo), Hypermethylated n=24 

(ESRP2 methylation>25%, Hyper), p value from t-test.  C: Dot-boxplot of ESRP2 and ESRP1 

RNA expression relative to NT in the RMH cohort.  ESRP2: NT n=12 (all NK), WT n=51; ESRP1: 

NT n=9 (all NK), WT n=33, p values from t-tests.  D: Dot-boxplot of ESRP2 and ESRP1 RNA 

expression in the GSE2712 dataset.  NT n=3 (all FK), WT n=18, p values from t-tests.  E: 17.94 

and Wit49 WT cell lines were treated with 2µM Aza (5-aza-2’-deoxycytidine) for six days.  ESRP2 

RNA levels expressed relative to untreated cells.  Results are mean ±SD of n=3, p values from 

paired t-tests.  RNA expression was measured by real-time QPCR, normalized to endogenous 

levels of TBP in A, B, C and E, and by Affymetrix Human Genome U133A arrays in D.

Figure 4: Inducible expression of ESRP2 in a Wilms tumour cell line

V200 is a control WT cell line (transfected with empty vector) and E200L is a WT cell line 

expressing doxycycline-inducible ESRP2 (see Materials and Methods).  A: ESRP2 RNA 

expression assayed by QPCR, normalized to endogenous levels of TBP, in V200 and E200L cells 

after 72 hr doxycycline (Dox) induction, shown as fold induction relative to uninduced V200 cells.  

Results are mean ±SD of n=3, p value from paired t test.  B: ESRP2 protein assayed by Western 

blotting in V200 and E200L cells after 72 hr doxycycline induction.  Anti-ESRP2 detected total 

ESRP2 protein, anti-FLAG detected vector-derived ESRP2 and anti-ACTIN was used as a 

loading control.  Representative of n=3.  C: Alternative splicing of ENAH exon 11A was analysed 

by RT-PCR followed by agarose gel electrophoresis to detect different sized amplicons, in V200 

and E200L cells after 72 hr doxycycline induction.  Representative of n=3.  D: 

Immunofluorescence of E200L cells, stained for FLAG-tagged ESRP2 (green) and ACTIN (red) in 

the left-hand panels, and for nuclear DNA with DAPI (blue) in the right-hand panels, after 72 hr 

doxycycline induction (+Dox), or uninduced (-Dox).  Scale bars = 50 µm.  E: Colony-forming 

assay of induced (doxycycline-treated) and uninduced V200 and E200L cells, shown as fold 

colony numbers compared to uninduced controls after 14 days.  Results are mean ± SD of n=3, p A
cc

ep
te

d 
A

rt
ic

le



Molecular Oncology (2020) © 2020 The Authors. Published by FEBS Press and John Wiley & 
Sons Ltd.

values from paired t test.  F: Cell confluence assay (by IncuCyte), showing growth of induced 

(doxycycline-treated) and uninduced V200 and E200L cells.  Results are mean ± SD of n=6, p 

value at 162 hrs from paired t test.  Representative of n=3.  G, H: Cell Trace Violet (CTV) 

proliferation assay of induced (doxycycline-treated) and uninduced V200 and E200L cells.  G: 

CTV staining of triplicates of induced and uninduced cells showing median fluorescence intensity 

histograms at 6 days of treatment.  Red peaks are controls representing staining of cells at day 

zero.  H: Dot-boxplot of quantitation of staining at 6 days (n=3).  p values from paired t tests of 

log-transformed values.

Figure 5: Tumorigenicity of ESRP2-expressing WT cells

Orthotopic xenografts of V200 and E200L cells were produced by injecting cells under the kidney 

capsule of nude mice (n=5 for each cell line).  When a bioluminescent signal was detected above 

background (incipient growth of tumours), mice were injected intraperitoneally with doxycycline 

(Dox) three times per week, as described in Materials and Methods.  A: Time course of tumour 

growth as assayed by in vivo bioluminescence in V200 (left) and E200L (right) xenografts.  Plots 

show tumour signals days after doxycycline induction (i.e., first doxycycline injection = day zero) 

for each individual mouse.  Plot of the average of the bioluminescence traces is shown in 

supplementary figure S13A.  B: Tumours excised from mice (no tumour was excisable in mouse 

1B-0 at day 63, therefore only four E200L tumours are shown).  Full details of tumour size and 

weight are shown in supplementary figure S13C.  C: Western blot of ESRP2 protein expression in 

excised tumours.

Figure 6: RNA-seq analysis identifies ESRP2 targets in a WT cell line

RNA-seq was performed on E200L cells with or without 96 hrs of doxycycline induction (to induce 

high-level ESRP2 expression).  A: Volcano plot of p value versus fold induction of transcripts in 

ESRP2-expressing E200L cells compared to non-expressing cells.  Genes induced >2 fold with 

p<0.05 are indicated in red, and ESRP2 is labelled.  B: List of genes in A that were induced >2 

fold with p<0.05.  C: Number of altered splicing events and affected genes induced by ESRP2 

expression.  SE; skipped exons, MXE; mutually exclusive exons; RI, retained introns.  See 

supplementary tables S6 to S8 for full details.  D: Venn diagram comparing genes identified in 

this study (SE+MXE+RI) with two other RNA-seq analyses of ESRP-induced splicing changes A
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[36, 37].  E: Venn diagram comparing genes identified in this study (SE+MXE+RI) with an RNA-

seq analysis of MET-associated splicing changes in the developing kidney [38].  F, G and H:  

Alternative splicing of novel targets LEF1 (F), NPHP1 (G) and RAC1 (H).  Left-hand panels: 

Sashimi plots of RNA-seq data from E500L cells uninduced (-Dox) or induced to express ESRP2 

(+Dox).  Right-hand panels: Agarose gels of RT-PCRs of amplicons spanning alternatively 

spliced exons (see supplementary table S1 for primers), in V200 and E200L cells, either 

uninduced, or doxycycline-induced to produce high-level ESRP2 expression in E200L cells.
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Figure 7: Alternative splicing of ESRP2 target genes in Wilms tumour

A to E: Left-hand panels: Representative agarose gels of RT-PCRs of amplicons spanning the 

alternatively spliced exons (see supplementary table S1 for primers), from FK (fetal kidney), NK 

(normal kidney), and WT (Wilms tumour).  FGFR2 exon IIIb was detected by restriction digest 

with AvaI [24].  Right-hand panels: Dot-boxplots showing percent splice inclusion (PSI) in NT 

(normal tissue) and WT.  p values from t test.  ENAH (A), NT n=11 (4 FK and 7 NK), WT n=17; 

FGFR2 (B), NT n=5 (3 FK and 2 NK), WT n=12; LEF1 (C), NT n=8 (5 FK and 3 NK), WT n=17; 

SCRIB (D), NT n=5 (2 FK and 3 NK), WT n=9; SLK (E), NT n=5 (2 FK and 3 NK), WT n=8.

Figure 8: ESRP2 action in Wilms tumour

A: Venn diagram comparing the 728 unique genes identified in this study (SE+MXE+RI, skipped 

exons; mutually exclusive exons and retained introns; figure 6) with 1663 WT1 DNA-binding 

targets identified by chromatin immunoprecipitation in developing kidney [50] and 4503 WT1 

RNA-binding targets (protein-coding genes) identified by RNA immunoprecipitation in M15 

mesonephric cells [51].  B: ESRP2 may be required for epithelial differentiation, to form nephrons 

during kidney development.  C: Loss of ESRP2 function by hypermethylation may inhibit normal 

differentiation and therefore promote persistence of undifferentiated blastema, leading to 

nephrogenic rest formation and eventual progression to Wilms tumour.  B and C adapted from 

figure 2 in reference [1].
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