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Despite major advances in climate science over the last 30 years, persistent uncertainties in
projections of future climate change remain. Climate projections are produced with increasingly
complex models that attempt to represent key processes in the Earth system, including atmospheric
and oceanic circulations, convection, clouds, snow, sea ice, vegetation, and interactions with the
carbon cycle. Uncertainties in the representation of these processes feed through into a range of
projections from the many state-of-the-art climate models now being developed and used
worldwide. For example, despite major improvements in climate models, the range of equilibrium
global warming due to doubling carbon dioxide still spans a range of more than 3. Here a promising
way to make use of the ensemble of climate models to reduce the uncertainties in the sensitivities of
the real climate system is reviewed. The emergent constraint approach uses the model ensemble to
identify a relationship between an uncertain aspect of the future climate and an observable variation or
trend in the contemporary climate. This review summarizes previous published work on emergent
constraints and discusses the promise and potential dangers of the approach. Most importantly, it
argues that emergent constraints should be based on well-founded physical principles such as the
fluctuation-dissipation theorem. This review will stimulate physicists to contribute to the rapidly
developing field of emergent constraints on climate projections, bringing to it much needed rigor and
physical insights.

DOI: 10.1103/RevModPhys.93.025004

CONTENTS

I. Introduction 2
II. How Relationships in Model Ensembles Might “Emerge” 4

A. Commonly used ESM ensembles: Multimodel and
perturbed physics ensembles 4

B. Null hypothesis: Emergent relationships
occur by chance 6

C. Low-dimensional relationships emerge from
high-dimensional ESMs 7

D. Range in response due to the same physical process
having a wide range across ESMs 8

E. What is needed for an EC? 9
1. Observable (X) range and uncertainty 9
2. Response (Y) range and uncertainty 9
3. Relationship between X and Y 9
4. Large ensemble size n 9

III. Underlying Theory for Emergent Constraints Based on
Temporal Variability 9

REVIEWS OF MODERN PHYSICS, VOLUME 93, APRIL–JUNE 2021

0034-6861=2021=93(2)=025004(34) 025004-1 © 2021 American Physical Society

https://orcid.org/0000-0002-4548-8922
https://crossmark.crossref.org/dialog/?doi=10.1103/RevModPhys.93.025004&domain=pdf&date_stamp=2021-05-11
https://doi.org/10.1103/RevModPhys.93.025004
https://doi.org/10.1103/RevModPhys.93.025004
https://doi.org/10.1103/RevModPhys.93.025004
https://doi.org/10.1103/RevModPhys.93.025004


A. Relationships between variability of fluxes and the
sensitivity of stores 12

B. Theoretical emergent relationships for idealized
time-varying forcing 12
1. Sinusoidal forcing 12
2. Linearly increasing forcing 13
3. White-noise forcing 13

IV. How Emergent Constraints Might Go Wrong and How to
Guard Against It 13
A. Risks of solely using data mining 14
B. The risk of p hacking and overconfidence 14
C. Missing process in all current models, measurement

errors, and model compensating errors 14
D. System passes through a tipping point 15
E. Problems with common code across many models

and implications for “out-of-sample” testing 16
F. What to do when different ECs are found for the

same quantity but differ in value, or differ
between ensembles 16

G. ECs may cause future CMIP-type climate model
ensembles to have much less spread in projections 17

H. Inability to verify an EC 17
I. Lack of perturbed physics experiments with ESMs 17

V. Emergent Constraints Found in the Earth System 17
A. Equilibrium climate sensitivity 18
B. Cloud feedbacks 20
C. Carbon cycle 21
D. High-latitude processes 21
E. Hydrologic cycle 22

VI. Statistical Underpinnings 23
A. Uncertainty in observations 23
B. Uncertainty from internal variability 23
C. Uncertainty in the functional form of the relationship 24
D. Uncertainty from imperfect models 24
E. Combining sources of uncertainty in an EC 24
F. Combining multiple constraints 25

VII. Outlook 25
A. Key gaps in ECs to date 26
B. Targeted model development 26
C. Use of conceptual models as the basis of emergent

relationships and understanding of
more complex ESMs 26

D. Multidimensional ECs and nonlinear emergent
relationships 27

E. Continued improvement of climate projections
and impact-led requirements 27

F. Better understanding of the effects of parametric
and structural uncertainty on ECs 27

G. Machine learning 27
H. Building connections to other fields 28

VIII. Conclusion 28
Acknowledgments 29
References 29

I. INTRODUCTION

Numerical methods have become a standard technique to
simulate complex systems. The equations governing compo-
nents of such systems may be well known. But their solutions
cannot be solved analytically, creating a need for numerical
approaches. Because of the discretization of time and space
inherent in numerical techniques, modeling complex systems

must involve ways to include effects of unresolved processes.
Often there is no “first principles” approach to do this.
Typically, the effects of unresolved processes are included
by resorting to quasiempirical relationships between them
and explicitly resolved variables, otherwise known as “para-
metrization.” There are usually multiple defensible ways
to parametrize unresolved processes. Thus, independently
developed models of the same complex system might incor-
porate different parametrization choices. The more models
that are independently developed, the greater the diversity of
approaches for modeling the same natural system.
A classic example of this model diversity is the use of

numerical models of the atmosphere to predict hurricane
development. Initial conditions are imposed on a model at
some time, and it is integrated forward in time to produce
simulations of critical hurricane features such as intensity and
track. This approach might be replicated for multiple models
incorporating different parametrization choices, producing an
“ensemble” of hurricane forecasts. The spread in the forecasts
is a measure of the uncertainty in the future hurricane
behavior, given the range of plausible approaches to atmos-
pheric modeling. Over time, with enough hurricanes and
associated predictions, the various models can be evaluated for
their prediction skill. Certain parametrization choices may
emerge as producing systematically better predictions. The
models can then be rebuilt or recalibrated with the better
choices. Over time the ensemble will become more skillful,
with less spread. In fact, this is approximately the process that
has resulted in dramatic improvements not only in hurricane
prediction but also in weather forecasting generally over the
past seven decades.
Earth’s climate is another example of a complex system

whose governing equations can be solved only through
numerical methods. (In fact, the dynamical equations for the
atmospheric component of a climate model are typically
almost identical to those in the previously referred to
hurricane models.) As expected, there are a variety of
plausible approaches to parametrization in the components
of Earth system models (ESMs).1 Thus, modeling groups
throughout the world have built a few dozen ESMs with
different approaches to parametrization. Because of these
differences, these models produce different future climate
states, even when the same scenario of radiative forcing is
imposed (associated, for example, with an increase in
greenhouse gases).
A classic climate change experiment is to double CO2

concentrations in the atmospheric component of an ESM and
measure the surface warming that occurs after the simulation
has equilibrated (Manabe and Wetherald, 1975), an important

1State-of-the-art climate models are also commonly called general
circulation models (GCMs). This was particularly true in the past
when they consisted of just an atmosphere and sometimes an ocean.
As time has progressed and more processes have been included the
term ESM has become more common (previously ESM may have
referred to models of reduced complexity featuring a carbon cycle).
Here we use the term ESM to mean a full complexity dynamical state-
of-the-art climate model, although this could be used interchangeably
with GCM.
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number in climate science referred to as equilibrium climate
sensitivity (ECS). Reaching a true equilibrium with a full
complexity ESM requires long, computationally expensive
simulations of thousands of years, so ECS is usually estimated
from shorter duration CO2 doubling experiments. When these
experiments are done with contemporary ESMs, the spread in
values across the ensemble of ESMs is large, between 1.5 and
6 °C (Forster et al., 2020), although true equilibrium values are
higher (median 17% higher) (Rugenstein et al., 2020). The
international climate science community has organized itself
to generate scenarios of greenhouse gas (GHG) emissions that
result in more realistic future radiative forcing than the CO2

doubling experiment. These correspond to scenarios of con-
trols (or lack thereof) on future GHG emissions (Moss et al.,
2010; Riahi et al., 2017). The scenarios are designed so that
the same radiative forcing time series is imposed on each
ESM. This allows for intercomparison of ESM responses at
some future specified time, say, the end of the 21st century.
The ESM responses vary significantly across the ensemble, an
indicator of deep uncertainty in Earth’s climate future, simply
due to the variety of plausible ways to handle parametrization
within ESM components.
If each ESM is treated as an equally plausible analog of the

real climate system, known as “model democracy,” an
undesirably large factor of 3 difference in future response
to man-made GHG response currently results. Apart from the
subject of this review, there are several techniques used to
reduce this uncertainty and much research effort has been
dedicated to this important task. One approach is to give
ESMs that simulate the real world better (according to some
chosen metric) more weight in future projections. There are
also methods that do not use ESMs at all, by constraining
future response from past observations and those that use a
combination of all of these. Many more details were given by
Eyring et al. (2019) and Sherwood et al. (2020) and in
Chaps. 9 and 11–14 of IPCC (2013).
The approach taken to improve hurricane forecasting

models, to evaluate their performance and adjust parametri-
zations over the course of multiple prediction cycles, is
unfortunately impractical in the case of projecting future
climate with ESMs. With future climate, we have only one
realization of the real system’s trajectory, and our mandate is
to predict it as best we can now. To compound the problem,
the climate system involves many more components than the
atmosphere alone, including the ocean, the land surface,
glaciers and ice sheets, and the marine and terrestrial bio-
spheres. The engineering required to model each component
and allow them to interact in a simulation is impressive. But
the components that can interact with one another in infor-
mation flows are so complex that it is not easy to predict how
behavior in one component might affect behavior in another.
For example, parametrization reformulation or adjustment in
one component can significantly affect the simulated state of
another component for reasons that are not always clear
(Donner et al., 2011).
To circumvent the impossibility of directly evaluating

ESMs for their ability to simulate a future climate state that
has not yet been observed, a new technique has emerged over
the past decade and a half, known as the emergent constraint
(EC) approach (Fig. 1 shows a schematic). The basic idea is to

identify an element X of the observable climate that varies
significantly across the ESM ensemble and that exhibits a
statistically significant relationship with variations in some
important variable Y describing the ESM’s future simulated
state. If we call this relationship f, then Y ¼ fðXÞ þ ε, where
ε is a relatively small departure from f. Since X is an element
of the observable climate, it is a quantity that can be measured.
The relationship f may then place a useful constraint on Y,
provided that the measurement uncertainty in X is small
compared to the range of simulated values. This constraint is
“emergent” because the emergent relationship f cannot be
diagnosed from a single ESM. It becomes apparent only when
the full ensemble is analyzed. If the relationship f arises from
model physics or dynamics common to the ESMs, then
reducing the spread in X through reformulation or adjustment
of parametrizations ought to result in spread reduction in Y. A
corresponding reduction in the spread in other future climate
variables affected by Y should also occur. If the process is
repeated for enough variables X and Y, then we can imagine
that overall simulated spread in multiple aspects of the future
climate would gradually be reduced. We also note that ECs
can be used directly to ascertain the most likely values for a
particular Y.
To further illustrate the concept, the subject of the first

published EC well established across multiple generations of
ESMs is used as an example (Hall and Qu, 2006). In this case,
the future climate variable of interest Y is the snow albedo
feedback (SAF), a climate mechanism characterized by the
retreat of highly reflective snow cover under climate warming
and the associated reduction in surface albedo, which ampli-
fies warming and promotes further snow melt (Hall, 2004;

FIG. 1. Schematic showing the most common procedure used to
derive emergent constraints on Earth system sensitivities. An
ensemble of ESMs (each red dot is an individual ESM) running
the same experiment (the PDF on the right-hand y axis represents
the spread in the ensemble) is used to identify an emergent
relationship (black dashed line with gray uncertainty range)
between an uncertain Earth system sensitivity Y (y axis) and an
observed trend or variationX (x axis). Anobservation of the trend or
variation (blue PDF on the x axis) can then be combined with the
model-based emergent relationship to derive an emergent constraint
on the Earth system sensitivity (green PDF on the left-hand y axis).

Mark S. Williamson et al.: Emergent constraints on climate sensitivities

Rev. Mod. Phys., Vol. 93, No. 2, April–June 2021 025004-3



Bony et al., 2006; Thackeray and Fletcher, 2016). However,
modern ESMs disagree on the strength of this feedback,
exhibiting a nearly threefold spread (Qu and Hall, 2014;
Thackeray, Qu, and Hall, 2018). SAF also occurs each spring
in the current climate when Northern Hemisphere snow cover
recedes from its winter peak to its summer minimum,
enhancing seasonal warming in the process (X). A comparison
between simulated SAF under climate change (Y) and in
the seasonal cycle context (X) uncovers a strong linear
relationship in three different generations of ESM ensembles
(Fig. 2). The strength of this relationship tells us that seasonal
SAF is likely highly predictive of climate change SAF, while
the consistency across model generations illustrates robust-
ness to out-of-sample testing. Furthermore, we can quantify
the seasonal SAF using satellite-derived observations, thus
allowing for model bias to be properly assessed. For example,
an ESM that underestimates observed SAF in the seasonal
context is likely to underestimate SAF in the future climate.
Producing a more accurate SAF in ESMs is more than just an
academic exercise, as variability in SAF can account for a
significant portion of uncertainty in 21st century projections
of warming across Northern Hemisphere extratropical land
(Qu and Hall, 2014). Thus, by reducing variability in SAF we
can expect similar reductions in projections of regional
warming. Figure 3 highlights the first application of this
and several other ECs from the literature (pertaining to the
carbon cycle and climate sensitivity), all of which are further
discussed in Sec. V.
In this review we synthesize what is now understood about

ECs. We discuss how relationships f might emerge in ESM

ensembles in Sec. II, as well as the theory that underlies ECs
in Sec. III. In Sec. IV we note pitfalls associated with ECs and
how to guard against them. In Sec. V we survey the ECs that
have been found in the climate system and describe the
statistics that can be used to apply them rigorously in Sec. VI.
Finally, we discuss how techniques similar to ECs have been
or might be used in other fields, and we consider the outlook
for development of the technique going forward in Sec. VII
before concluding in Sec. VIII.

II. HOW RELATIONSHIPS IN MODEL ENSEMBLES
MIGHT “EMERGE”

ECs are possible because of emergent relationships appear-
ing in an ensemble of ESMs. An emergent relationship Y ¼
fðXÞ þ ε between an element of the observable climate X,
something that can be measured now in the real world, and
the unknown future response Y one wants to know can
then be used to place a constraint on the real world value
of Y via observations of X to give an EC. For example, Cox,
Huntingford, and Williamson (2018) took as the observable
the variability in global annual mean surface air temperature
during roughly the last 100 years, and the unknown future
response was ECS (defined as the magnitude of Earth’s
warming to doubled CO2 levels), one of the oldest and
most important numbers in climate science. Despite decades
of research the latest ESMs still vary widely in their pre-
dictions of this number by a factor of 3 (Forster et al., 2020;
Zelinka et al., 2020).
How might a relationship f between observable and

response emerge in an ensemble of ESMs? In the EC on
ECS given by Cox, Huntingford, and Williamson (2018), an
analytically soluble energy balance model, much reduced in
complexity compared to the ESMs in the ensemble, predicted
a functional form between X and Y for the emergent relation-
ship [although this provoked debate; see Brown, Stolpe, and
Caldeira (2018), Cox et al. (2018), Po-Chedley et al. (2018),
Rypdal et al. (2018), and Williamson, Cox, and Nijsse
(2019)]. This mechanism from high- to low-dimensional
relationship emergence and others are given later. First we
discuss the differences in the types of climate model ensem-
bles commonly used to find emergent relationships.

A. Commonly used ESM ensembles: Multimodel and perturbed
physics ensembles

Model simulations are not perfect reproductions of the
system that they are designed to emulate. Ensembles of
models are used to get a handle on (i) initial condition
uncertainty, (ii) parametric uncertainty, and (iii) structural
uncertainty.
Uncertainty in the initial state is particularly important for

numerical weather prediction. As the equations governing the
weather are chaotic, forecast solutions with small differences
in their initial states, equally likely to be the “real” initial state,
can diverge strongly after just a few days. This sensitivity to
initial conditions means running the weather model just once,
even if the model is a perfect reproduction of the real world,
may produce a significantly different forecast from the one
actually experienced. By running the same weather model

FIG. 2. Emergent relationship between springtime snow
albedo feedback (SAF) across Northern Hemisphere land under
climate change (Y) and an observable snow albedo feedback
associated with the current climate’s seasonal cycle (X). An
observational estimate derived from satellite data is shown as a
vertical bar. Each point represents an individual climate
model from the three most recent generations (CMIP3, CMIP5,
and CMIP6). Methodology for calculating SAF is adapted
from Qu and Hall (2014) [further details were provided by
Thackeray et al. (2021)].
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FIG. 3. Emergent constraints on Earth system sensitivities based on some key examples published in the literature. (a) Snow albedo
feedback derived from the snow seasonal cycle (Hall and Qu, 2006). (b) Sensitivity of tropical land carbon to global warming calculated
from interannual variability in CO2 (Cox et al., 2013). (c) Atmospheric CO2 concentration at 2060 projected from atmospheric CO2

concentration at 2010 (Hoffman et al., 2014). (d) CO2 fertilization of plant photosynthesis calculated from changes in the seasonal cycle
of CO2 (Wenzel et al., 2016). (e) Sensitivity of tropical ocean primary production to warming derived from interannual variability
(Kwiatkowski et al., 2017). (f) Global ocean carbon sink in the 2090s projected from the current day carbon sink in the Southern Ocean
(Kessler and Tjiputra, 2016). (g) Equilibrium climate sensitivity calculated from interannual variability of temperature (Cox,
Huntingford, and Williamson, 2018). (h) Transient climate response determined from the increase in global mean temperature (Nijsse,
Cox, and Williamson, 2020). In each case the emergent constraint was reconstructed from data available in the literature or provided
directly by the authors. The model ensemble used in each original study is shown in the brackets after the panel title.
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many times with different, but equally plausible, initial states
chosen to sample the most unstable and divergent regions of
the model phase space, the likelihood of experiencing a
particular weather forecast can be constructed. Ensemble
forecasting is now a standard tool in numerical weather
prediction (Epstein, 1969; Leith, 1974; Toth and Kalnay,
1993; Molteni et al., 1996). Initial value ensembles in climate
applications are usually used to assess natural climate vari-
ability (Kay et al., 2015; Maher et al., 2019).
Generally speaking, climatic variables are the long-term

statistics of weather and their prediction is less impacted by
initial state uncertainty relative to parametric and structural
uncertainties (Hawkins and Sutton, 2009, 2011). Parametric
uncertainty arises from uncertainty in the values of constants
(“parameters”) in quasiempirical relations (parametrizations)
used to model the effects of unresolved, subgrid scale
processes. Parametric uncertainty can be sampled by running
the same model with different values of these parameters.
ESM model ensembles that do this are known as perturbed
physics or perturbed parameter ensembles (PPEs) (Murphy
et al., 2004). Examples of ESM PPEs are the climatepredic-
tion.net experiment (Stainforth et al., 2005) and the Met
Office’s Quantifying Uncertainties in Model Projections
(QUMP) ensemble (Collins et al., 2011), which both used
the HadCM3 ESM.
Structural uncertainty arises from uncertainty in the func-

tional form of equations. Although many of the model
equations in ESMs are well known, there are multiple, equally
defensible parametrization schemes for unresolved processes
(such as convective precipitation and cloud radiative proper-
ties), so different equations can appear in different ESMs.
ESM ensembles that sample structural uncertainty are called
multimodel ensembles (MMEs). They include the coupled
model intercomparison project (CMIP) ensembles (Meehl,
Covey et al., 2007; Taylor, Stouffer, and Meehl, 2012; Eyring
et al., 2016) used to inform the Intergovernmental Panel on
Climate Change (IPCC) reports (Cubasch et al., 2001; Meehl
et al., 2007; Collins et al., 2013) and are used extensively in
much of the EC literature.
The CMIP MME ensembles consist of a number of

different ESMs developed by different international groups
and thus sample structural uncertainty. Some CMIP groups
also submit multiple initial value runs and occasionally
multiple physics parameter runs performed with the same
model, sampling initial condition and parametric uncertainty
to some degree. Numerical weather prediction ensemble
forecasting has also incorporated more parametric and struc-
tural uncertainty into their forecasting as time has gone on
(Palmer, 2019).
Most ECs have been derived from MME ensembles to date

although there are some examples from PPEs (Knutti et al.,
2006). ECs derived from MMEs are the most believable. Each
model in a MME could be thought of as that particular group’s
best guess of the Earth system. PPEs, on the other hand,
generally vary only a handful of parameters and thus sample
just a few dimensions of the model’s phase space. Because of
the few varied dimensions, relationships hard coded in the
fixed equations between model variables become easy to find
(based on our experience with the QUMP PPE) (Lambert
et al., 2013). These ECs need to be backed up with physical

arguments and ideally tested in MMEs. Collins et al. (2011)
found that long wave cloud feedback was highly correlated to
climate sensitivity in the QUMP HadCM3 PPE ensemble;
however, this correlation was absent in smaller sample size
MMEs. Yokohata et al. (2010) also found that strong
correlations in a PPE with HadSM3 were not always present
in the equivalent MIROC3.2 PPE. Further, Yokohata et al.
(2010) found that the mechanism for variations in climate
sensitivity was different.
Values of parameters chosen to correctly give the proper

balance between opposing processes in MMEs could be
skewed to one of the processes by simultaneously varying
them in a PPE, thus reducing the realism of each ensemble
member solution. However, PPEs can be useful for testing
ECs [see Kamae et al. (2016), Wagman and Jackson (2018),
and Sec. IV.I] and quantifying parametric uncertainty
(Sec. VII.F).

B. Null hypothesis: Emergent relationships occur by chance

A starting null hypothesis is that emergent relationships
occur by chance and are not indicative of a deeper mecha-
nistic relationship (Hall et al., 2019). Data mining an ESM
ensemble for high correlations between pairs of variables
may fall into this category; see also Sec. IV.A. If an ESM
ensemble is reasonably small and the number of variables
output by each ESM is high, the expected number of variable
pairs with high correlation is high purely by chance
(Caldwell et al., 2014).
More precisely, an ESM labeled by the index i in an

ensemble of n ESMs i ¼ f1; 2;…; ng calculates a large
number m of different variables Xl, with each variable labeled
with index l and l ¼ f1; 2;…; mg. In this data-mining
scenario, a pair of variables ðXl

i; X
k
i Þ are chosen for the

prospective emergent constraint, one for the observable Xl

and the other for the response Xk one wants to know in the real
world (previously written Y). In an indiscriminate data-mining
approach, every possible pair of variables are used to create
ð1=2Þmðm − 1Þ datasets, each labeled Skl. Each dataset has n
elements, Skl ¼ fðXl

1; X
k
1Þ; ðXl

2; X
k
2Þ;…; ðXl

n; Xk
nÞg with each

element corresponding to one of the n ESMs. If the pair of
variables making up Skl are a good candidate for an emergent
relationship and we assume that this relationship is linear, then
the correlation rkl in Skl should be high. Correlation here is
defined as rkl ¼ covðXl; XkÞ=σXlσXk , and σX is the standard
deviation of X.
The number of ESMs in a model ensemble n is typically

small, around 10–40 in the state-of-the-art CMIP ensembles,
although numbers increase with each successive generation
(Meehl, Covey et al., 2007; Taylor, Stouffer, and Meehl,
2012; Eyring et al., 2016). If we calculate the correlation rkl

within every one of the ð1=2Þmðm − 1Þ possible datasets,
some will have high correlations purely by chance. The
likelihood increases as the number of models in the ensemble
n gets smaller, giving fewer data points in each Skl. While the
fraction of datasets with high correlations jrj > jrhighj does
not increase as the number of variables m gets larger, the
total number of datasets with correlation above jrhighj will
increase, simply because there are more possible variable
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pairs to correlate. Thus, one must be careful that any
prospective emergent constraint makes physical sense,
particularly in current, small ESM ensembles to avoid this
pitfall.
To illustrate this point in a worst-case-type scenario where

every ESM output variable is uncorrelated to any other output
variable or any of the other ESMs, we can calculate the
correlations expected between all possible pairs of variables as
a function of ensemble size n. Figure 4 shows the fraction of
all possible datasets with a particular correlation for a “toy”
ESM ensemble of n models where each of the toy ESMs is a
modeled as a random number generator. This is an extreme
and unrealistic example, with each ESM producing m random
output variables, the lth one labeled Xl

i, drawn from a normal
distribution with unit standard deviation, Xl

i ∈ N ð0; 1Þ. Even
though there are no mechanistic relationships in this example
by construction, a fraction of the datasets have strong
correlations, particularly in smaller ensemble sizes (small
n). This is purely by chance.

C. Low-dimensional relationships emerge from
high-dimensional ESMs

In the last example, even though all n ×m toy ESM
variables in the ensemble were uncorrelated from each other
by construction, high correlations were still possible. This is
more likely in small ensembles. In reality there are mecha-
nistic relationships between X and Y in any particular ESM.
Real ESMs are not random number generators: the output
of an ESM is the numerical solution of a large set of
coupled, nonlinear equations codifying relationships between
variables representing the ocean and atmosphere dynamics

and thermodynamics and biogeochemical feedbacks.2

However, the exact relationship between any pair of X and
Y is not solely a function of only these two variables, it is
generally also a function ofmany others that prescribe the exact
state of the ESM at every point in space and time on the ESM
grid. Theminimal number of nonunique variables d required to
describe the exact state of the ESMat time t can be thought of as
a point in d-dimensional phase space with coordinates
ðx1; x2;…; xdÞ and in the case of an ESM, the dimension of
this space is extremely high.3 As the ESM state changes with
time, a trajectory is drawn between these phase space coor-
dinates connecting the past and present states. Variables
describing the precise state of the ESM such as temperature
or precipitation, the X, and the Y may be functions of all the d
phase space coordinates as well as the time (dþ 1), i.e.,
X ¼ fXðt; x1; x2;…; xdÞ and Y ¼ fYðt; x1; x2;…; xdÞ.
Although the mechanistic relationship between X and Y is

generally a function of all dþ 1 coordinates, climatic vari-
ables of interest are usually, although not exclusively, long-
term temporal and/or spatial averages that can be thought of as
time-invariant attractors of the phase space reducing the
information relative to a precise configuration at any one
time. In many circumstances the mechanistic relation between
X and Y can be approximated to a good degree by a much
smaller dimensional subset of the full phase space reducing
the effective dimension.
The success of statistical mechanics and science in general4

relies on this effective dimension reduction, that certain
properties of systems with many degrees of freedom can be
well approximated by fewer state parameters. For example, a
container of gas is, as far as we know, most completely
described by the equations of quantum mechanics. In prin-
ciple, one could solve these equations for each of the N gas
molecules, at each position and time in the container. The
dimension of this space increases exponentially with N,
requiring a large number of degrees of freedom to specify
the state exactly even for just a handful of molecules. This
could be useful if the question one wanted to answer required
detailed knowledge of the full quantum state. However, if we
only want to know the configuration of positions and
momenta of the gas molecules, one can use an approximation
of the quantum theory. Treating the gas as a bunch of identical

FIG. 4. High correlations between pairs of variables across
small ESM ensembles are expected by chance. To illustrate this
point, the fraction of all possible pairs of variables across a toy
ESM ensemble of size n plotted against correlation r. Each ESM
is not a real ESM: it is represented by a random variable drawn
from a normal distribution of unit standard deviation, and each of
the n ESMs produces m ¼ 100 output variables, giving 4950
different possible variable pairs to correlate with each other. This
example is designed to be a worst case scenario yet still shows
that a calculated correlation even between uncorrelated objects
can be large in small enough ensembles. Left panel: histograms of
fraction of datasets with correlation falling in a particular interval.
Right panel: total fraction of datasets with magnitude of corre-
lation greater than jrj. Ensemble size is varied for toy ESM
ensemble sizes of n ¼ 5, 30, and 100.

2Many of these equations are well known from other fields of
physics such as the fluid dynamics Navier-Stokes equations. See Ghil
and Lucarini (2020) and references within for the equations that are
commonly featured in ESMs.

3To give an idea of a lower bound on the dimension of the phase
space required to describe a typical CMIP6 era ESM, the atmosphere
is typically cut into a total number of ∼200 × 200 × 100 ¼ 4 × 106

spatial cubes. A single atmospheric prognostic variable will need at
least this many phase space dimensions at each point in time to
specify it exactly. A lower estimate for the number of prognostic
variables required just to specify the physical state of the atmosphere
isOð10Þ. This already gives d ∼ 107 even before including the ocean,
land, and biogeochemistry.

4Low-dimensional models can often mimic the responses of more
complex ones to a good approximation, and this is essentially why
science is successful; i.e., we can comprehend and predict the high-
dimension real world using relatively simple models.
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spheres, each with a mass and a different position and
momentum, the state can be described by a point in 6N-
dimensional phase space, a reduction in the phase space
dimension yet still a massive number of dimensions for a
realistic gas.
Generally, detailed knowledge of a precise system state is

not desired or required. Bulk properties describing the mean
overall state are a useful way of reducing information and
making sense of complex systems. Going back to the con-
tainer of gas, kinetic theory provides a way of mapping the
many degrees of freedom from each of the molecules to the
few bulk parameters of the ideal gas law under reasonable
assumptions; see Schekochihin (2015). That is, the 6N
dimensions effectively reduces to the three encoded by the
relationship pV ¼ nRT. The bulk variable pressure p felt
as a force per unit area on the container wall and is related to
how often and how vigorously on average molecules with
mean square velocity hv2i hit the sides of the container
(p ¼ ðn=3VÞhv2i, where n is the number of moles in the
container of volume V), whereas the temperature T is a
measure of the most probable kinetic energy of a molecule in
the container. R is the ideal gas constant. This approach works
well when N is large, as one finds that more of the 6N states
correspond to the ideal gas law.
Effective dimension reduction in ESMs can also happen

when we want answers to questions about bulk mean states of
the climate. For instance, relations between bulk variables
such as the annual global mean surface air temperature and the
net incoming radiation are well modeled by the few degrees of
freedom in a simple energy balance model [see Hasselmann
(1976), Wigley and Raper (1990), and Gregory (2000)], even
though the exact state of an ESM is given by all prognostic
variables at every point and multiple times on its spatial grid.
If one wanted to ask detailed questions about the state of an
ESM such as, how many days in March does it rain more than
x mm in Madagascar?, then the full ESM theory is best
placed. However, if the question were, how much does the
global mean temperature increase from a spatially uniform
doubling of atmospheric CO2?, a lot of that extra detail seems
unnecessary. The analogy we attempt to present here is that
ESMs are analogous to the solutions to the laws of quantum
mechanics and the effective, reduced dimension relationship
for a particular ESM i, Y ¼ fiðXÞ þ ϵ is analogous to the
ideal gas law. The analogy is far from perfect: ESMs are not
as simple as containers of large numbers of identical
molecules and there is as yet no such elegant route between
the two solutions provided by the statistical mechanical or
kinetic theory recipes. The best candidates for ESM ideal gas
laws to serve as theoretical bases for emergent relationships
are simplified, analytically soluble models of the climate or
its subsystems such as the previously mentioned energy
balance models (Hasselmann, 1976; Wigley and Raper,
1990; Gregory, 2000). These act more as testable, plausible
hypotheses of the bulk behavior of ESMs than derivations
from the basic laws that constitute them.
Thus far we have discussed how a physically plausible,

mechanistic, low-dimensional relationship fi between X and
Y may appear from a particular ESM i, Y ¼ fiðXÞ þ ε. We
have not yet discussed how low-dimensional relationships, the
emergent relationship, could appear across an ensemble of

ESMs. Although each ESM is different, they should be
equally plausible models of the ðX; YÞ relationship in the
real world and it should not be a surprise that ESM solutions
across a model ensemble should also be mechanistically
related. This is because many of the equations are based on
well-established and well tested physics (such as the Navier-
Stokes equations) and are common among ESMs. Indeed, if
all the equations were well known and could be numerically
integrated exactly, the ESMs should produce identical outputs
(and the problem of climate modeling would be solved and
emergent relationships would disappear).
However, some equations cannot be exactly numerically

integrated due to limitations on temporal and spatial reso-
lution. One then has to parametrize subgrid scale processes
and this may be a source of difference between ESM
solutions, with each model giving a different ðX; YÞ pair;
see Sec. II.A. Although they are our best attempts at
understanding the climate, some ESM responses diverge
on important questions. Such a scenario is where the
emergent constraint approach may be helpful. To have a
chance of finding an emergent relationship, the set of n
ðXi; YiÞ data points should be different [i.e., ðY1; X1Þ ≠
ðY2; X2Þ] and span a wide enough range for the emergent
relationship to become apparent. The model relationship fi
also needs to be shared among the model ensemble
[fiðXÞ ≈ fjðXÞ ∀ i; j ¼ f1; 2;…; ng]. Provided that such
a relationship exists, the emergent relationship fðXÞ can
be determined. If this model relation is also shared by the real
world, the real world’s response can also be determined
(along with its uncertainty) to give an emergent constraint;
see Sec. II.E.

D. Range in response due to the same physical process having a
wide range across ESMs

A related mechanism for a low-dimensional relationship to
emerge between X and Y occurs when the magnitude of the
same physical process, correlated to the observable X, differs
appreciatively across the ESM ensemble, and the magnitude
of this process largely determines the size of the response Y.
This is also a case of effective dimension reduction: the range
in response is dominated by the dimensions of phase space of
just that physical process.
An example of this happening was provided by Caldwell,

Zelinka, and Klein (2018), who evaluated ECs on ECS in the
CMIP3 and CMIP5 ESM ensembles. That is, the targeted
unknown response Y among these ECs was the same, ECS,
although different observables X were found to be well
correlated to it. Examples of a few of the X used in the
different ECs were the strength of resolved-scale mixing
between the boundary layer and lower troposphere in the
tropical east Pacific and Atlantic (Sherwood, Bony, and
Dufresne, 2014), error in the distribution of cloud-top
pressure and optical thickness for regions between 60° N
and 60° S (Klein et al., 2013), the fraction of tropical clouds
with tops below 850 mb whose tops are also below 950 mb
(Brient et al., 2016), and variability in global mean air
temperature (Cox, Huntingford, and Williamson, 2018).
Caldwell, Zelinka, and Klein (2018) showed that all
of these observables were also highly correlated to the
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shortwave (SW) cloud feedback, a strong and uncertain
feedback on the resulting global temperature. The SW cloud
feedback in turn was shown to be highly correlated to
intermodel variations in ECS within the CMIP5 ense-
mble. To paraphrase Caldwell, Zelinka, and Klein (2018),
“… intermodel variations in cloud feedback were so big that
they left a strong imprint on intermodel variations in ECS.
This means that fields that are strongly correlated with ECS
are probably correlated with the SW cloud feedback (and
vice versa).”

E. What is needed for an EC?

In addition to having an emergent relationship in a model
ensemble, an EC also ideally requires a few other things
to be useful.

1. Observable (X) range and uncertainty

The range of X in the ESM ensemble should be large
relative to the uncertainty in the value of the real world
observable. Uncertainty in each of the model X should also
be small relative to the range in model X. Ideally the real
world value of the observable Xobs should also fall well
within the range of values in the ESM ensemble to avoid
extrapolation issues.

2. Response (Y) range and uncertainty

One wants a large range in the values of the ESM ensemble
responses relative to the uncertainty in each of the individual

ESM responses. This reduces the uncertainty in the real world
value of Y derived from the EC.

3. Relationship between X and Y

A particular ESM labeled i should have a physically
plausible relationship fi between the observable and response
Y ¼ fiðXÞ þ ε. It should be based on a simplified theory that
predicts a functional response and has clear, testable assump-
tions that can be falsified independently. In addition, all
models in the ensemble should share roughly the same relation
between observable and response, i.e., fi ¼ fj. The stronger
this relationship is, the more useful the emergent constraint
due to the potential uncertainty reduction in Y. This relation-
ship should be shared by the real world.

4. Large ensemble size n

Ideally youwould have a large number of independent ESMs
in your ensemble (larger sample, lower error in estimates, less
chance for high correlations by chance). See Sec. IV.E for
further discussion of ESM ensemble independence.

III. UNDERLYING THEORY FOR EMERGENT
CONSTRAINTS BASED ON TEMPORAL VARIABILITY

Many published EC studies relate the longer-term sensi-
tivity of interest to aspects of the mean climate simulation in
models; see Table I (Volodin, 2008; Kidston and Gerber,
2010; Massonnet et al., 2012; Tian, 2015; Brient and
Schneider, 2016; Simpson and Polvani, 2016; Lin et al.,
2017; Lipat et al., 2017; Siler, Po-Chedley, and Bretherton,

TABLE I. Collection of existing ECs. Note that some of these ECs involve correlations that are lower than those portrayed in Fig. 1, with
correspondingly less potential for uncertainty reduction. The ensemble or ensembles for which the EC appears to have value are also listed (note
that many have been tested only on the ensemble that they were developed on).

Future constrained quantity (Y) Current climate quantity (X) Ensemble Reference

1 Equilibrium climate sensitivity Seasonal cycle of temperature CMIP1 PPE Covey et al. (2000) and
Knutti et al. (2006)

2 Equilibrium climate sensitivity Difference in cloud fraction between the
tropics and SH midlatitudes

CMIP3 CMIP5
CMIP6

Volodin (2008)

3 Equilibrium climate sensitivity TOA radiation balance in the SH CMIP3 Trenberth and Fasullo
(2010)

4 Equilibrium climate sensitivity Features of TOA radiation fluxes CMIP3 Huber et al. (2011) and
Tett et al. (2013)

5 Equilibrium climate sensitivity Variability in climatological May–
August relative humidity and cloud
extent

CMIP3 Fasullo and Trenberth
(2012)

6 Equilibrium climate sensitivity Last Glacial Maximum cooling CMIP3/PMIP2
CMIP5/
PMIP3

Hargreaves et al. (2012)
and Schmidt et al.
(2014)

7 Equilibrium climate sensitivity Vertical mixing strength between the
boundary layer and lower troposphere
over tropical oceans

CMIP3 CMIP5
CMIP6

Sherwood, Bony, and
Dufresne (2014)

8 Equilibrium climate sensitivity Vertically resolved relative humidity and
clouds between 45° S and 40° N

CMIP5 Su et al. (2014)

9 Equilibrium climate sensitivity Precipitation in the double-ITCZ region CMIP3 CMIP5 Tian (2015)
10 Equilibrium climate sensitivity Seasonal sensitivity of low cloud to

SSTs (20–40° latitude)
CMIP3 CMIP5

CMIP6
Zhai, Jiang, and Su (2015)

11 Equilibrium climate sensitivity Height of tropical low clouds CMIP5 Brient et al. (2016)
12 Equilibrium climate sensitivity Sensitivity of subtropical low cloud

albedo to SSTs
CMIP5 CMIP6 Brient and Schneider

(2016)

(Table continued)
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TABLE I. (Continued)

Future constrained quantity (Y) Current climate quantity (X) Ensemble Reference

13 Equilibrium climate sensitivity Climatological latitude of the SH Hadley
cell edge in winter

CMIP5 Lipat et al. (2017)

14 Equilibrium climate sensitivity Statistics of interannual temperature
variability

CMIP5 Cox, Huntingford, and
Williamson (2018)

15 Equilibrium climate sensitivity Cloudy-sky radiative flux sensitivity to
temperature

CMIP5 Lutsko and Takahashi
(2018)

16 Future global warming
(midcentury or end of century)

Recent warming trend in CMIP models
(1981–2017)

CMIP6 Tokarska et al. (2020)

17 Transient climate response and
equilibrium climate sensitivity

Recent warming in CMIP models CMIP5 CMIP6 Jiménez-de-la-Cuesta and
Mauritsen (2019) and
Nijsse, Cox, and
Williamson (2020)

18 Low-cloud feedback sign Low-cloud sensitivity to Pacific
variability

CMIP3 Clement, Burgman, and
Norris (2009)

19 Global mean cloud feedback and
ECS

Climatological latitudinal gradient in the
reflectivity of clouds

CMIP5 Siler, Po-Chedley, and
Bretherton (2018)

20 Low-cloud optical depth change per
degree climate warming

Low-cloud optical depth response to
temperature anomalies

CMIP3 CMIP5 Gordon and Klein (2014)

21 Subtropical low-cloud cover change
under climate warming

Subtropical low-cloud cover response to
interannual temperature and stability
anomalies

CMIP3 CMIP5 Qu et al. (2014, 2015)

22 Global mean cloud feedback under
climate change

Global mean cloud feedback derived
from interannual variability in current
climate

CMIP5 Zhou et al. (2015)

23 Change in upper troposphere relative
humidity and cloud fraction

Vertical gradient in climatological mean
relative humidity and cloud fraction

CMIP5 Po-Chedley et al. (2019)

24 Snow albedo feedback Seasonal snow albedo feedback (spring) CMIP3 CMIP5
CMIP6

Hall and Qu (2006) and Qu
and Hall (2014)

25 Sea-ice albedo feedback Seasonal sea-ice albedo feedback
(summer)

CMIP5 Thackeray and Hall (2019)

26 Timing of Arctic ice-free summer Historical September sea-ice trend CMIP3 Boe, Hall, and Qu (2009)
27 Timing of Arctic ice-free summer Historical sea-ice characteristics CMIP5 Massonnet et al. (2012)
28 Arctic thermal feedbacks Different aspects of northern latitude

regional temperatures
CMIP3 CMIP5 Bracegirdle and

Stephenson (2013)
29 Sensitivity of tropical land carbon

storage to warming
Short-term sensitivity of CO2 to
interannual temperature variability

C4MIP CMIP5 Cox et al. (2013) and
Wenzel et al. (2014)

30 CO2 fertilization of photosynthesis
on the extratropics

Seasonal fluctuations in CO2

concentrations
CMIP5 Wenzel et al. (2016)

31 Global land carbon feedback strength Interannual variations in
evapotranspiration, net biome
productivity, and gross primary
productivity

CMIP5 Mystakidis et al. (2017)

32 Change in tropical primary
production to temperature
anomalies

Sensitivity of tropical primary
production to interannual SST
anomalies

CMIP5 Kwiatkowski et al. (2017)

33 Future permafrost thaw Relationship between mean annual air
temperature and permafrost area

CMIP5 Chadburn et al. (2017)

34 Future CO2 concentration Simulated CO2 concentration by 2010 CMIP5 Hoffman et al. (2014)
35 Change in Arctic gross primary

productivity
Sensitivity of annual maximum leaf area
index to increasing CO2

CMIP5 Winkler et al. (2019)

36 Global ocean carbon uptake Present-day Southern Ocean carbon
uptake

CMIP5 Kessler and Tjiputra
(2016)

37 Future Arctic Ocean acidification Present-day Arctic sea-surface density CMIP5 Terhaar, Kwiatkowski, and
Bopp (2020)

38 Intensification of heavy rainfall
across certain extratropical regions

Scaling of annual maximum daily
precipitation with global land
temperatures

CMIP5 Borodina, Fischer, and
Knutti (2017b)

39 Change in tropical precipitation
extremes under climate warming

Sensitivity of tropical precipitation
extremes to temperature variability

CMIP3 CMIP5 O’Gorman (2012)

40 Indian summer monsoon rainfall
increase with warming

Climatological mean precipitation in the
western tropical Pacific

CMIP5 Li et al. (2017)

41 Future SST change over the Indian
Ocean with application for East
African precipitation

Present-day interannual SST–low level
cloud sensitivity

CMIP5 Rowell (2019)

(Table continued)
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2018; Selten et al., 2020). However, a growing number of
papers are also now relating Earth system sensitivities to
observable temporal variations, such as trends (Boe, Hall, and
Qu, 2009; Jiménez-de-la-Cuesta and Mauritsen, 2019; Nijsse,
Cox, and Williamson, 2020; Tokarska et al., 2020), inter-
annual variability (Clement, Burgman, and Norris, 2009;
O’Gorman, 2012; Cox et al., 2013; Wenzel et al., 2014;
Qu et al., 2015; Kwiatkowski et al., 2017; Cox, Huntingford,
and Williamson, 2018), and seasonal cycles (Hall and Qu,
2006; Knutti et al., 2006; Qu and Hall, 2014; Zhai, Jiang, and
Su, 2015; Wenzel et al., 2016; Thackeray and Hall, 2019). We
discuss here the theoretical basis for emergent constraints
based on such temporal variations.
In the case of changes in relatively fast variables, such as

seasonal snow cover (Qu and Hall, 2007) or marine phyto-
plankton concentration (Kwiatkowski et al., 2017), there may
be a fairly straightforward near one-to-one relationship
between the short-term variability and the longer-term sensi-
tivity because the fast variable will be in a quasiequilibrium
state even with short-term climate variations. For slower
variables (such as the forest carbon storage), short-term
variations are more likely to measure fluxes (or equivalently
the rate of change of the store). In this case, finding a
constraint on future changes in the store requires multiplying
the flux sensitivity to short-term variations by a characteristic
timescale for each model. In some cases, the characteristic
timescale may be similar across the model spectrum, leading
to a simple emergent relationship between the short-term
flux sensitivity and the long-term sensitivity of the store

(Cox et al., 2013; Wenzel et al., 2014). In general, though,
converting a flux sensitivity to a store sensitivity requires an
independent estimate of the characteristic timescale of the
store, which itself requires a theoretical basis (Williamson,
Cox, and Nijsse, 2019).
The fluctuation-dissipation theorem (FDT) provides one

such theoretical framework (Kubo, 1966). The FDT relates the
sensitivity of a system to a small external forcing to the
response of the same system to its own internally generated
fluctuations. FDT is therefore a potential theoretical basis for
ECs, as it links the natural variability of a system to its
sensitivity. The size of the forcing is important because the
theorem strictly applies only to near-equilibrium linear sys-
tems. Nevertheless, FDT-based approaches have had a huge
impact in statistical physics, including Einstein’s work on
Brownian motion (Einstein, 1905), and the understanding of
Johnson-Nyquist noise in electrical circuits (Johnson, 1928;
Nyquist, 1928).
The first proposal to apply FDT to the climate system came

almost 40 years ago (Leith, 1975), but there has been a recent
resurgence of interest in this area fueled by methodological
advances and a detailed comparison of FDT-derived estimates
of climate change to climate model simulations (Majda,
Abramov, and Gershgorin, 2010). In principle, it may be
possible to use FDT to get good estimates of the response of
the real climate system to small forcing (such as that due to
doubling CO2) purely from accurate long-term climate obser-
vations that reveal the full spectrum of natural fluctuations of
the climate (Bell, 1980; Schwartz, 2007). Unfortunately,

TABLE I. (Continued)

Future constrained quantity (Y) Current climate quantity (X) Ensemble Reference

42 Future runoff projections over the
western US

Historical runoff sensitivity to
temperature and precipitation
variations

CMIP5 Lehner et al. (2019)

43 Clear-sky shortwave absorption
(global mean precipitation
increase)

Sensitivity of shortwave radiative
absorption to changes in column
water vapor

CMIP5 CMIP6 DeAngelis et al. (2015)

44 Global hydrologic sensitivity Variation between surface longwave
cloud radiative effect and its
sensitivity

CMIP5 Watanabe et al. (2018)

45 Global transpiration to
evapotranspiration ratio

Local transpiration to evapotranspiration
ratio

CMIP5 Lian et al. (2018)

46 North Atlantic subpolar gyre cooling Stratification of the subpolar North
Atlantic Ocean

CMIP5 Sgubin et al. (2017)

47 Summer warming over the central
USA

Climatological summer temperature
over the central USA

CMIP5 Lin et al. (2017)

48 Change in high-latitude temperature
variability

Historical sea-ice metrics CMIP5 Borodina, Fischer, and
Knutti (2017a)

49 Future continental warming over
Europe

Present-day climatological summer
temperatures over Europe

CMIP5 Selten et al. (2020)

50 Frequency of heat extremes Seasonal land-atmosphere feedbacks CMIP5 Donat, Pitman, and
Angélil (2018)

51 Poleward jet shifts under warming Climatological position of jet stream CMIP5 Simpson and Polvani
(2016)

52 Poleward shift of Southern
Hemisphere eddy-driven jet
stream with climate warming

Climatological latitudinal position of
Southern Hemisphere eddy-driven jet
stream

CMIP3 Kidston and Gerber (2010)

53 Anthopogenic ozone radiative
forcing

Tropospheric ozone effect on outgoing
longwave radiation

ACCMIP Bowman et al. (2013)
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though, the length of the detailed climate records required to
achieve this are typically much longer than those available
(Kirk-Davidoff, 2009) and include the contemporary period
when the mean climate is changing.
In the EC technique model projections are instead used to

define emergent relationships between observable variations
and future climate (Hall et al., 2019), and then specific
observations provide a selection principle to constrain the
range of future climate projections from these model-defined
relationships (Eyring et al., 2019). The EC technique has
yielded many proposed constraints on aspects of the future
climate (Hall et al., 2019) and the carbon cycle (Cox, 2019).
However, this power also comes with a danger: that blind
data mining of multidimensional model outputs could lead to
spurious and misleading constraints (Caldwell et al., 2014).
Protection from this risk can come from tests of robustness
across different model ensembles, and from basing the search
for ECs on firm theoretical and mathematical foundations.
Theory-led ECs can also be considered as hypotheses that
can be tested against the ensemble of complex ESMs. The
remainder of this section aims to describe the reasons why
relationships between Earth system variability and sensitiv-
ity are ubiquitous, and to provide some examples of the
emergent relationships to be expected under different types
of time-varying forcing (such as seasonal cycles and longer-
term trends).

A. Relationships between variability of fluxes and the sensitivity
of stores

We can write the time evolution of a dynamical system
variable V in the general form

dV
dt

¼ FðV; ziÞ; ð1Þ

where F is the net flux into the system and zi are the
environmental variables that affect this net flux. Equation (1)
represents a local conservation law, as it implies that the
variable V can change only if the net flux is nonzero. When
the environmental variables are in a steady state zi ¼ zið0Þ, the
variable V has an equilibrium state V ¼ Vð0Þ, defined by

F(Vð0Þ; zið0Þ) ¼ 0. ð2Þ

In climate science we are typically interested in how a climate
system variable, such as global mean temperature or land
carbon storage in the tropics, varies with environmental
factors, such as the atmospheric carbon dioxide concentration
or the climate in the tropics. Where the associated perturba-
tions Δzi are small compared to zið0Þ, Eq. (1) can be linearly
expanded about the equilibrium state:

dΔV
dt

¼ ∂F
∂V ΔV þ ∂F

∂zi Δzi; ð3Þ

whereΔV is the resulting perturbation to the state variable and
the partial derivatives are calculated around the initial equi-
librium fVð0Þ; zið0Þg. The initial equilibrium is stable if
∂F=∂V < 0, and we can then define an effective timescale

to perturbations of V as τ ¼ ð−∂F=∂VÞ−1. Equation (3) can
therefore be written as

dΔV
dt

þ ΔV
τ

¼ ∂F
∂zi Δzi. ð4Þ

The right-hand side of Eq. (4) can be viewed as the “external”
forcing factors that produce changes inV (such as the radiative
forcing due to increasing atmospheric CO2). For a permanent
time-invariant change in the environmental variable Δzi, V
will be changed by an amount ΔVeq, where

ΔVeq ¼ τ
∂F
∂zi Δzi. ð5Þ

Defining the sensitivity ofV to the environmental variable zi as
ξi ¼ ∂Veq=∂zi, we can rewrite this equation as

ξi ¼ τμi; ð6Þ

where μi ¼ ∂F=∂zi. Equation (6) implies that the sensitivity of
V to a step change in zi will be proportional to the sensitivity of
the net flux F, with a constant of proportionality which is the
characteristic lifetime of perturbations to V. In climate change
research, the equilibrium sensitivities ξi are often the thingswe
would most like to constrain (such as ECS).

B. Theoretical emergent relationships for idealized
time-varying forcing

For emergent constraints we therefore need to find relation-
ships between sensitivities ξi and observable variations in the
climate system. Here we derive candidate emergent relation-
ships for different time variations in the environmental
variables zi. First we rewrite Eq. (4) in the form

dΔV
dt

þ ΔV
τ

¼ μiΔzi. ð7Þ

As we limit ourselves here to this linear model with a single
timescale τ, the following emergent relationships are intended
to be illustrative or used as simple hypotheses to be tested
against the outputs from complex models.

1. Sinusoidal forcing

As an idealized representation of the response of our system
to diurnal and seasonal forcing, we first consider sinusoidal
environmental variations of angular frequency ω and ampli-
tude az, for which Δzi ¼ azeiωt. The solution to Eq. (7) under
these circumstances (after initial transients have died down) is

ΔV ¼ μiaz
τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ω2τ2
p eiðωt−ϕÞ; ð8Þ

where ϕ ¼ arctan ðωτÞ. Therefore, ΔV also has a sinusoidal
variation, but with a phase lag relative to the forcing of ϕ that
asymptotes to π=2 as ωτ → ∞. Substituting Δzi ¼ Azeiωt.
The amplitude of the sinusoidal variation in ΔV, av is
proportional to av but also depends on the frequency of the
sinusoidal forcing:
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av
az

¼ μi
τffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ω2τ2
p . ð9Þ

Using Eq. (6) we can therefore write the sensitivity ξi in terms
of the ratio of the sinusoidal amplitudes:

ξi ¼
av
az

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ω2τ2

p
. ð10Þ

In the limit of slowly varying forcing compared to the system
timescale (ωτ → 0) this formula reduces to

ξi →
av
az

for ωτ → 0. ð11Þ

This is the limit of fast variables that are in a quasiequilibrium
with the sinusoidal forcing, such as seasonal snow cover (Qu
and Hall, 2007) or marine primary production (Kwiatkowski
et al., 2017). However, in the opposite high-frequency limit
(ωτ ≫ 1) the emergent relationship also depends linearly on
the frequency of the forcing:

ξi →
av
az

ωτ for ωτ ≫ 1. ð12Þ

2. Linearly increasing forcing

Contemporary climate change is largely being driven by an
approximately exponential rate of increase in atmospheric
carbon dioxide above the preindustrial level, which yields a
radiative forcing that is approximately linear in time. This has
motivated a long-running series of idealized climate model
experiments that prescribe an exponential increase in carbon
dioxide, including the 1% per year runs which are used to
define the concept of the transient climate response (TCR). In
addition, many other Earth system changes can be approxi-
mated by linear trends. We therefore consider here emergent
relationships under a linear increase in the environmental
variable zi:

Δzi ¼ γt; ð13Þ

where γ is the linear rate of increase zi that begins at time
t ¼ 0. Under this idealized forcing the solution to Eq. (7) is

ΔVðtÞ ¼ τμiγft − τð1 − e−t=τÞg. ð14Þ

From Eq. (5) we note that the sensitivity ξi ¼ τμi, so Eq. (14)
can be rewritten as

ξi ¼
ΔVðtÞ

γ

1

t − τð1 − e−t=τÞ . ð15Þ

The exponential decay term here is a transient response to the
sudden switch on of the linear trend at t ¼ 0. Once this term
has died out the transient solution lags the quasiequilibrium
solution by τ years such that

ξi ¼
ΔVðtÞ
γðt − τÞ . ð16Þ

Equation (16) represents a potential emergent relationship
between the sensitivity ξi and a transient change ΔVðtÞ.

3. White-noise forcing

Emergent relationships have also been proposed between
interannual variability and sensitivities (Schwartz, 2007;
Cox et al., 2013; Nijsse et al., 2019), assuming that the
environmental variable zi is approximately Gaussian white
noise. Under those circumstances Eq. (7) becomes the widely
used Ornstein-Uhlenbeck equation of statistical physics
(Uhlenbeck and Ornstein, 1930). Standard solutions relating
the variance of V to the variance of zi can be derived by
integrating the sinusoidal solution given by Eq. (8) over all
frequencies ω. For interannual variability this yields the
following relationship for the ratio of standard deviations:

σv
σz

¼ μi

ffiffiffi
τ

2

r
¼ ξi

ffiffiffiffiffi
1

2τ

r
; ð17Þ

and an even simpler relationship for the lag-1 autocorrelation
of Y:

αv1 ¼ e−1=τ. ð18Þ

Equations (17) and (18) can be combined to yield an
equation for the sensitivity ξi without needing to know
the timescale τ (Cox, Huntingford, and Williamson, 2018):

ξi ¼
σv
σz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

− lnðαv1Þ

s
. ð19Þ

Similar formulas can be derived for more sophisticated
representations, such as two-box and semi-infinite heat
diffusion models of ocean heat uptake (Williamson, Cox,
and Nijsse, 2019).

IV. HOWEMERGENT CONSTRAINTSMIGHTGOWRONG
AND HOW TO GUARD AGAINST IT

Uncertainty in future projections makes adaptation plan-
ning difficult, so there is pressure on climate researchers to
provide much more refined predictions of expected large-scale
environmental change as atmospheric GHGs rise. However, in
the absence of full knowledge of all climate processes and
their parametrizations, such deficiencies will continue to cause
substantial ESM differences. For this reason, the method of
emergent constraints has attracted substantial attention. Such
interest is because ECs offer a method to potentially “short
cut” current deficiencies in process understanding by provid-
ing better estimates of change. Or, as a minimum, ECs offer
more reliable estimates of bulk aggregated parameters of the
climate system of interest to policy. We believe ECs do
provide a route to reduce uncertainty, and we consider it
appropriate for the technique to substantially underpin societal
decisions regarding both adaptation planning and parallel
mitigation programs to reduce GHG emissions. However, this
brings tremendous responsibility, so the method must be
reliable and robust. It is therefore prudent to discuss the
multiple circumstances in which the method may fail, thus
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making alterations when caution is needed. We now describe
such situations.

A. Risks of solely using data mining

One approach with ECs is to simply “data mine” within
climate model ensembles, such as CMIP5 and CMIP6,
searching for two quantities in each model that when
analyzed form a statistically significant inter-ESM regres-
sion. In these circumstances, the researcher is not led by
process understanding, a hypothesis to be tested, or indeed
intuition (see Sec. II.B for an extreme example). However,
there is a logic that, in some circumstances, this approach
might be valid. In the climate system, there may be links
between different parts of the Earth system, and including
between a contemporary measurable quantity and an attrib-
ute change in a future climate state, that are not immediately
obvious as being connected.
One set of examples could be similar to the ongoing

discovery of teleconnections in the climate system, where
strong correlations are noted between variations in two
parts that are a substantial geographical distance apart
(Nigam and Baxter, 2015). In addition to spatial distances,
discovered teleconnections can contain lags, although,
unlike ECs that are designed to project decades ahead, the
delays are months. These delays are often used to estimate
expected meteorological conditions in the months ahead.
For example, the status of El Niño can strongly weight
the probabilities of particular weather features for land
regions and across the tropics and for the season ahead.
Although El Niño is an obvious system fluctuation to
investigate for its impacts elsewhere, over the last couple
of decades researchers have been investigating other candi-
dates (Feldstein, 2000).
Given the sometimes diverse form of teleconnections, their

discovery can require a data-mining approach, as comparisons
between two different parts of the climate system that
are additionally offset in space and time are unlikely to be
found through intuition-led inspection of ESMs. If novel ECs
exist between diverse parts of the Earth system, then such
mining methods may be needed to aid their discovery. If ECs
are discovered by statistical methods, then the subsequent
process analysis may reveal that the connection has a strong
physical basis. Hall et al. (2019) referred to this as “EC
confirmation,” although this may take many years to achieve,
especially if additional ESM diagnostics are needed to
confirm the size of any transport equation terms between
different spatial locations.
However, while such an approach is expected to reveal new

ECs, caution is needed. The concern is that statistically
significant regressions are likely to be found in a small
number of instances simply by chance, and the resultant
EC is therefore not a robust indicator of future change
(Sec. II.B). That is, presented loosely, if statistical mining
finds a large number of new ECs, all with nonzero regressions
forming them and at a 90% confidence level, then roughly one
in ten will be invalid. This highlights the need to undertake a
process-based confirmation of ECs found through statisti-
cal means.

B. The risk of p hacking and overconfidence

The term “p hacking” was introduced by Nuzzo (2014) and
alerts one to the risk of self-selecting only scientific findings
that are statistically significant. In the context here that would
be ECs having their regressions at small p values, suggestive
of a low probability of an X-Y relation occurring merely by
chance. The concept has strong similarities to the dangers
noted in data mining, where scanning across a range of
potential ECs could lead investigators to concentrate on only a
few with low p values, with the attendant risk that they might
occur by chance. However, p hacking goes further and raises
caution over other decisions that researchers may make in a
rush to find a significant result. Behaviors could include a
deliberate selection of one-sided tests and the stopping of
sampling upon finding a low p value. It could also involve
adjusting the parameters, relationships between data, or time
frequencies considered until lower p values are discovered.
In the case of the climate system and as an example, the
assessment of attributes of the global hydrological cycle
offers many timescales of interest. Precipitation statistics
with potential to form different X and Y quantities of ECs
range from short, intense rainfall events to seasons or even
decades. To account for overconfidence Bretherton and
Caldwell (2020) suggested that ECs be corrected by scaling
up the unexplained variance by a user-defined factor across
the board.

C. Missing process in all current models, measurement errors,
and model compensating errors

ECs most frequently link a fluctuating quantity that is
measurable for the contemporary period to either a future
change (such as the extent of polar ice sheet cover) or an
invariant system attribute that describes change (such as
climate sensitivity). A potential concern for the validity of
an EC is whether there is a missing process in every model that
affects the regression forming the basis for the EC. If that error
affected the X-axis fluctuating quantity, but the measured
quantity were accurate, then this would introduce a bias into
the projection of the future Y-axis quantity.
Such a missing process could itself impact ESM perfor-

mance at all modeled levels of atmospheric GHG concen-
trations. One potential example is that many ESMs
underestimate interception loss, by vegetation, of rainfall
(Lian et al., 2018; Yang et al., 2018). Interception loss is the
return of water from rainfall to the atmosphere that has not
passed through soil but instead is temporarily held on leaves
and branches. If an emergent constraint on a feature of the
atmospheric part of the hydrological cycle that depended
on the overall land-atmosphere exchange of water, then the
EC could have an overly strong dependence on plant
evaporation (i.e., to compensate for the low modeled values
of interception loss). If, then, the true X value were taken
from data of actual plant evaporation, this would introduce
a bias into the estimate of the Y quantity. A straightforward
corollary to this is that if an EC depends on an X quantity
that is modeled well but measurements of it contain a bias,
then this too would lead to inaccurate estimates of the value
of the Y quantity.
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Alternatively, other process omissions could become more
important as GHG levels rise. Until recently, an example of a
component frequently not modeled in ESMs was the terrestrial
nitrogen cycle (Thomas, Jack Brookshire, and Gerber, 2015).
Nitrogen limitation could become an increasingly important
factor as CO2 concentrations rise by suppressing levels of
vegetation fertilization from the increased CO2 in the atmos-
phere. The lack of nitrogen cycle inclusion in the land
components of ESMs could therefore affect ECs linking
current variations of the carbon cycle to future carbon stores,
leading to potential overestimates of the capability of terres-
trial ecosystems to offset future anthropogenic CO2 emissions.
That said, Wenzel et al. (2014) found that two ESMs that
did have the nitrogen cycle included were close to an EC
regression line in an ensemble of carbon cycle only ESMs.
That analysis linked contemporary fluctuations in temperature
and atmospheric CO2 concentrations to the long-term stability
of terrestrial carbon stores under global warming.
A corollary to single model errors is the case where two

contemporary processes are defined but together allow a
model to perform well on some metrics as a consequence
of compensating errors. There is substantial anecdotal evi-
dence that many ESMs have these issues, as model developers
often discover that improvement of one component, by
removing the compensation, actually results in less accurate
contemporary climate simulations. Poor performance is then
resolved only when the process representation of the second
feature is also upgraded. Such compensations present a risk
for ECs. Specifically, if the X-axis quantity of an EC relates to
just one of the two processes that compensate, then that will
introduce a bias. Returning to the interception example, if we
consider the deficiency recognized but accounted for by
parametrizing overly strong plant evaporation amounts, any
EC dependent on plant evaporation X would introduce a bias
in the prediction of Y if actual measurements of X were used.
Ultimately, climate science requires a set of ESMs that

make similar projections and are highly accurate. Hence the
ongoing attempt to include all relevant processes in ESMs,
and to remove compensating errors, remains an appropriate
activity to advance such predictive tools. However, a cobenefit
is that such ESM enhancements will likely raise the accuracy
of any ECs that are used to constrain understanding where
uncertainty remains.

D. System passes through a tipping point

It is arguable that moderate human adjustment to the
climate system is relatively linear, so the expected meteoro-
logical changes increase proportionally with changes to the
combined radiative forcing of atmospheric GHG concentra-
tions. If this same linearity extends to higher frequency system
responses such as interannual variability, then observations of
contemporary fluctuations may give a strong indication of the
system’s response to a more permanent forcing from increased
GHGs. Cox et al. (2013) offered one example, where the
change to tropical atmospheric CO2 concentration in response
to annual temperature variation may project any expected loss
of rainforest carbon stores under sustained global warming.
Hence, there is an assumption of linearity present in each
ESM, or at least a relationship that is monotonic in increasing

temperature. When plotting the simultaneous variations in
temperature and CO2 (X) against response of future carbon
stores in response to warming (Y), then a further linear inter-
ESM relationship is found, and this is the EC itself.
A legitimate question, therefore, is what happens should the

planetary system move beyond linear responses and, further,
start to pass through tipping points (Lenton et al., 2008)?
Many examples of such potential nonlinear behaviors are
conjectured, where a relatively small increase in radiative
forcing could cause major system changes. Potential climate
tipping points such as the collapse of the Atlantic meridional
circulation (Stocker andWright, 1991), Amazon dieback (Cox
et al., 2000), Greenland ice sheet melt (Toniazzo, Gregory,
and Huybrechts, 2004), etc. (Drijfhout et al., 2015) are
presently thought to be low probability, high-risk events,
although there is evidence that subsystems of the climate have
“tipped” many times in the past (Bond et al., 1992). Most of
these “tips” have resulted in regional rather than global
climate changes and have been emulated through simpler
equation systems, amenable to bifurcation analysis to char-
acterize the nonlinearity (Dijkstra, 2013).
Once past a large-scale tipping point, the Earth system

might have radically different responses and feedbacks and
thus behave differently. This is likely to impact the EC
approach is two ways. First, for each ESM for sufficiently
changed climate, the contemporary fluctuating quantity may
no longer give accurate information in that model on future
store size. Second, if there are system tipping points but an EC
is validated only for moderate changes to the climate system
(so the Y-axis quantity is derived only from ESMs operated
under lower emission scenarios), then using it to project to
more severe climate alteration might be inappropriate.
A more abstract but relevant question is whether informa-

tion from pretipping point conditions has any validity at
constraining climatic conditions beyond one? Do tipping
points invalidate “information exchange” between different
GHG levels when passing through one? Two ESMs may have
similar responses up to a tipping point and thereby appear as
points near each other on a standard EC X-Y plot, but
markedly different responses beyond a tipping point, thus
weakening an EC-based inter-ESM regression. Also in the
abstract is a view that ECs are capitalizing on the “hard
wiring” implicit in ESMs, as based on model parametrizations
constrained from contemporary measurement datasets.
Beyond any major tipping point represents a world that has
not yet been witnessed and thus not measured for equation
parametrization purposes.
We hope that climate researchers can be encouraged to

investigate further whether the planet passing through a
tipping point invalidates ECs, and possibly also the period
just beforehand. This could be in the form of a conceptual
model or by analysis of ESMs in the CMIP5 ensemble. ESM
simulations with a tipping point could be split into a future
period pretipping point, and one post-tipping point for a high-
emissions scenario, testing the EC on both modeled time
frames. One obstacle to undertaking such an analysis is that,
although ESMs do exhibit tipping points, they vary markedly
between models regarding their location, component of the
Earth system affected, and level of global warming (Drijfhout
et al., 2015). Notable is that the strong regional features of
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tipping points implies that any ECs that may be affected by
their presence also have to be localized in application.
Possibly of more concern is that if tipping points affect the
predictive capability of ECs, there will be little inter-ESM
consensus on when and how this might occur. This lack of
understanding is due to major model differences in predictions
of tipping point occurrence, or even existence (Drijfhout et al.,
2015), so an “EC-type” modulation factor to the original EC
and common across models is unlikely to be discovered.

E. Problems with common code across many models and
implications for “out-of-sample” testing

ECs rely on the statistics of regressions, which in turn
assume an independence of data points. However, individual
ESMs may not be completely independent. For parts of the
climate system known to respond to well-established and
well-understood physical processes, commonality in models
is to be expected. The concern is for the model parts that are
suspected as characterizing actual processes less well, and
where ECs seek to constrain this uncertainty. The lack of
independence may take the form of individual research centers
offering multiple model versions but at different resolutions.
Alternatively, some components of ESMs are shared between
research centers or are coded in similar ways (Knutti, Masson,
and Gettelman, 2013). The lack of independence could appear
in the range of effective bulk parameters sampled, such as
equilibrium climate sensitivity. Another possibility is there
may be a common component existing between models, and
that an EC seeks to reveal, but the ESM differences to reveal
this are in the fluctuating forcings. These fluctuating quantities
could have relatively low sampling due to similarities between
how ESMs calculate their values.
As part of developing comprehensive process understand-

ing of discovered ECs, Hall et al. (2019) encouraged out-of-
sample testing. Such testing is where the EC relationship is
checked to be valid in additional ESMs that are not part of the
original set used to initially find the EC. New simulations from
individual modeling centers can be analyzed as they become
available. A more comprehensive test is to search within new
ensembles, so an EC found in the CMIP5 climate model
ensemble can be checked for its presence in the newly released
CMIP6 set of ESM simulations. However, this too may not be
a completely independent assessment if modeling centers
retain substantial amounts of model code and parametrizations
between ensemble contributions. We note that the out-of-
sample testing performed by Schlund et al. (2020) assessed
whether the ECs for climate sensitivity, ECS, found in the
CMIP5 ensemble remain valid for the CMIP6 models. As
commented elsewhere, they found that for CMIP6 the CMIP5-
based ECs have less predictive capability and also give
generally higher ECS values. Schlund et al. (2020) noted
that the majority of emergent constraints for ECS are related to
some extent to cloud feedbacks, and this is a major ongoing
area of climate research to create numerical cloud schemes
with strong predictive skill. As many cloud schemes are
currently under development, then their newness implies that
this is an example of little carrying of common code from
CMIP5 to CMIP6. From that perspective, CMIP6 models have
independent features from CMIP5, validating the use of this

more recent ensemble for out-of-sample testing. However, if it
is the new cloud schemes that cause the CMIP6-derived ECs
to have less predictive capability, then this suggests that
previously estimated EC-based uncertainties on ECS from the
CMIP5 models are overly narrow. This form of error differs
from that of Sec. IV.C, which considers how a missing process
in all models may create a systematic bias in an EC projection.
Here, instead, the suspected missing processes associated with
cloud dynamics and feedbacks are such that there likely
remains substantial uncertainty in how to model them accu-
rately. Alternative cloud schemes may weaken ECs by causing
a larger spread around their regression lines, expanding the
bounds on predictions of quantity Y for quantity X and for
which contemporary data also exist.

F. What to do when different ECs are found for the same
quantity but differ in value, or differ between ensembles

In some instances, multiple and different contemporary
measurements have been suggested, via ECs, to be able to
predict the same quantity. This is particularly the situation
where a broad range of climate attributes have been used to
evaluate ECS. However, and notably, cloud-feedback-based
(Sherwood, Bony, and Dufresne, 2014; Zhai, Jiang, and Su,
2015; Brient and Schneider, 2016; Brient et al., 2016) or top-
of-atmosphere (TOA) radiation-flux-based (Brown and
Caldeira, 2017) emergent constraints tend to project higher
ECS values than surface-temperature-based constraints (Cox,
Huntingford, and Williamson, 2018). Investigations need to
continue to ascertain why these ECs disagree. Some disagree-
ments may be due to spurious correlations, affecting Y values.
However, Caldwell, Zelinka, and Klein (2018) showed that
these emergent relationships are highly correlated. With high
correlation but different ECS estimates, this implies that
differences may instead be due to measurement biases in
some X value observations. Alternatively, the real world may
not be sharing the same responses as the models, which could
suggest a persistent error across ESMs for at least one of
the ECs.
As ECs come under increasing scrutiny due to their

growing widespread use, more needs to be understood
about how they operate and any limitations. In that context,
understanding the differences between projections of
the same quantity will be a highly rewarding research
path. However, to generate a single EC-based projection,
Bretherton and Caldwell (2020) presented statistical meth-
ods to merge multiple ECs of the same quantity into a single
range of uncertainty for the quantity being estimated. That
analysis focuses on combining the multiple ECs used by
other researchers to estimate ECS.
As noted in Sec. IV.E, new ensembles provide an out-of-

sample test for existing ECs. The question then is how to use
that new value, especially if it is substantially different than
the value for an earlier ensemble. One possibility is to use the
methods of Bretherton and Caldwell (2020) to merge the
findings from two ensembles. A further possibility is to
introduce a weighting to the Bretherton and Caldwell (2020)
approach, but with a high influence for the more recent
ensemble, corresponding to the hope that newer ESMs are
better models.
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G. ECs may cause future CMIP-type climate model ensembles to
have much less spread in projections

In the most general terms, a reduction of spread of climate
models is to be highly welcomed, especially if their con-
vergence is onto projections that are accurate estimates of
future change. Such a convergence is good if what is learned
from ECs applied to previous ensembles is accurate, and this
has caused climate modelers to make their new simulations
achieve the constrained Y values; see Sec. VII.B. Convergence
may also occur simply because previously uncertain parts of
the Earth system have become better understood. However,
the rapid development of ECs could cause a reduction in
model spread that is potentially unwelcome, precluding
further progress with the methodology.
As ECs are discovered and estimates of future change are

refined, this may cause climate modeling groups to, either
consciously or unconsciously, parametrize new ESMs so as to
estimate changes that fall within those EC-based bounds. This
convergence of projections could be because many modeling
groups might not wish to estimate climatological changes that
fall outside a consensus view based on previous EC-based
estimates. However, this could have two detrimental side
effects and could potentially cause future EC calculations to
be less accurate. First, again noting that it is almost a paradox
of ECs, as designed to constrain estimates of change, they can
work well only with large inter-ESM differences. It is a
substantial spread of ESM estimates that enable “strong”
regressions. Hence any clustering of projections will reduce
the capability to retest ECs for new ensembles of ESMs, and
certainly make them less reliable. Second, it risks that if new
processes are believed to be needed in the majority of new
models, then other balancing processes could be tuned,
incorrectly, to balance these changes in order to fit the earlier
EC. For example, introducing the terrestrial nitrogen cycle
more routinely into ESMs may suppress projections of future
land carbon stores. But to remain in alignment with earlier EC
estimates and as using ESMs mainly without nitrogen
suppression, then instead in new ESMs this could encourage
parametrization of an offsetting and incorrect overly strong
CO2 fertilization effect for vegetation.
Despite the aim of ECs being to reduce the effects of ESM

uncertainty, climate science remains alert to these two con-
cerns, where the existence of an EC may overly reduce the
model spread in any new ensemble (although this is not
something that we have encountered to date). Such a reduction
in a new ensemble, where model developers may want to
replicate the earlier EC, risks, in particular, the propagation of
errors that might be prevalent in the earlier ensemble.

H. Inability to verify an EC

In Sec. IV.A we heed the dangers of ECs based on data
mining, noting that Hall et al. (2019) encouraged the notion
that ECs discovered statistically should first move to having
potential, i.e., contain an element of intuition as their con-
firmation. Detailed process understanding, maybe even as far
as analytical assessment of related key climate-based differ-
ential equations, ideally then move an EC from having
“potential” to being “verified.” At the same time, we suggest

a potential danger whereby it is not possible to follow this
cascade of increased certainly in validity of an EC. For
example, there may be insufficient saved diagnostics from
ESMs to build and study off-line the process interactions that
need understanding to achieve EC verification. The risk here is
that important and informative potential ECs are dismissed, as
their understanding cannot be developed. Although this may
initially appear to be opposite to the suggestions in Sec. IV.A,
we advise such ECs not to be cast aside, thereby with the
danger of losing valuable insight into the climate system.
Instead such potential ECs from data mining can generate
requests to climate research centers to provide related addi-
tional ESM outputs, to allow additional testing.
Any additional ESM diagnostics may also reveal the extent

to which a potential EC is dependent on one major physical
process or is caused by an amalgamation of multiple interact-
ing effects. If more than one major process is present, then this
may make it more difficult to transition from “plausible” to
verified.

I. Lack of perturbed physics experiments with ESMs

The operation of ESMs is extremely computationally
expensive and often there is capacity in research centers
only to perform simulations for standardized scenarios of
changes in future atmospheric greenhouse gas concentrations
[such as the representative concentration pathways (RCPs)]
(Meinshausen et al., 2011). This precludes performing sim-
ulations with varied parameters, especially for those where
there is substantial uncertainty surrounding their true values
(or effective values, if grid dependent). This lack of model
investigation restricts further testing of ECs, in a way that may
either preclude gaining extra confidence in their reliability or
alternatively fails to alert to one that may not be as robust as
initially believed. PPEs may require interpretation in two ways
that are converse to each other. If a parameter value is changed
and if it relates to a part of the Earth system believed to be
independent of the underlying processes associated with a
particular emergent constraint, then for that ESM the Y value
should not change in the EC. Such invariance both confirms
EC robustness and helps illustrate that the EC aligns to the
parts of the model expected from intuition or process under-
standing. The alternative situation is where a parameter
believed to relate to an EC is perturbed and potentially
adjusted to the outer bounds of its expected value or beyond.
The expectation then may be that for that particular ESM the
point moves to the bounds of the EC regression. Such an
anomaly confirms that the EC is affected by the part of the
climate system the parameter pertains to and may indicate that
outlying parameter values are not present in the other ESMs.
If spare computational cycles become available, perturbed

physics experiments with ESMs will be beneficial to the
development and testing of ECs.

V. EMERGENT CONSTRAINTS FOUND IN THE EARTH
SYSTEM

Numerous ECs have been identified across physical and
biogeochemical components of the Earth system (a handful of
which have been discussed thus far), with a substantial
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increase in their number over the past decade. To capture the
breadth of its application in the geosciences, we discuss
previously documented ECs based on their broad geophysical
classification here. A list of EC studies is provided in Table I.
Note that this list is not exhaustive and may be easily
superseded. Moreover, some of the references in Table I offer
more than one potential current climate quantity to explain Y,
in which case we list only one example. For example,
Sherwood, Bony, and Dufresne (2014) provided three metrics
that describe various aspects of lower-tropospheric mixing to
explain equilibrium climate sensitivity. Rather than list all
three metrics, we discuss only the one that appears to be most
robust (Caldwell, Zelinka, and Klein, 2018; Schlund et al.,
2020). An important criterion for establishing credibility of an
EC is to show robustness to the choice of ensemble. Therefore,
Table I also documents the model ensemble(s) for which each
EC appears to have value (i.e., a statistically significant
emergent relationship is present). In several cases this is only
the ensemble from which the EC was derived as many of the
more recent examples have not undergone out-of-sample
verification at the time of this paper. We expect several
upcoming publications to assess the validity of previously
published ECs with the newer CMIP6 ensemble (Pendergrass,
2020; Schlund et al., 2020).
A vast majority of ECs pertain to one of the following

general topics: climate sensitivity, cloud feedbacks, cryo-
spheric feedbacks and change, carbon cycle feedbacks, and
the hydrologic cycle, but in theory the methodology can be
used for any number of applications. There are also addi-
tional examples relating to topics such as radiative forcing
(Bowman et al., 2013), regional air and sea-surface temper-
ature change (Lin et al., 2017; Sgubin et al., 2017; Selten
et al., 2020), frequency of temperature extremes (Donat,
Pitman, and Angélil, 2018), and atmospheric circulation
changes (Kidston and Gerber, 2010; Simpson and Polvani,
2016). For the purpose of this review, we focus primarily
here on the main applications to date. Along with the
differing applications, ECs can also be sorted by the type
of constraint (Fig. 5). One way to think of this is to group
ECs by the timescale of information that defines their X
(such as from multidecadal to extreme events). For example,
a rather simple class of ECs relates climatological biases or
multidecadal trends in some quantity X to the future change
in Y. Similarly, a collection of ECs use seasonal or inter-
annual variations in X to constrain future changes in Y.
In many of these instances, variability in some quantity
to seasonal or interannual temperature variability is
related to sensitivities of that same quantity to future warm-
ing. Constraints using climatological biases or short-term
sensitivities are also common for attempting to constrain
invariant properties such as equilibrium climate sensitivity.
Applications to future changes in higher-order climate sta-
tistics (such as extreme events) are more rare. This highlights
a relatively unexplored area of EC research.

A. Equilibrium climate sensitivity

By far the most popular application of the EC approach has
been in relation to ECS (Table I). ECS is seemingly an ideal
candidate for this technique because of its importance in

predicting future warming rates and its consistently large
spread across various GCMs, which has been a persistent
feature of all model generations. [The likely range of ECS
according to the IPCC (1.5 to 4.5 K) has been largely
unchanged for decades.] A series of contemporary quantities
X have been identified as being closely linked to ECS, many
of which relate to simulated cloud feedbacks or properties. In
general, these cloud-based constraints tend to suggest rela-
tively high ECS values (3.5–4.1 K) (Knutti, Rugenstein, and
Hegerl, 2017; Brient, 2020). Relevant examples include
the height of tropical low clouds (Brient et al., 2016), the
sensitivity of the reflection by subtropical low clouds to sea-
surface temperature (Brient and Schneider, 2016), seasonal
sensitivity of low clouds between 20–40° N and 20–40° S
to sea-surface temperature (Zhai, Jiang, and Su, 2015),
variability in relative humidity and cloud extent (Fasullo
and Trenberth, 2012), vertically resolved zonally average
relative humidity and clouds between 45° S and 40° N (Su
et al., 2014), and the climatological difference between
tropical and Southern Hemisphere midlatitude cloud fraction
(Volodin, 2008).
Another suite of studies relate ECS to intermodel

differences in the characteristics of historical radiative fluxes,
such as climatological TOA energy balance in the Southern
Hemisphere (Trenberth and Fasullo, 2010), features of TOA
radiation fluxes (Huber et al., 2011; Tett et al., 2013; Brown
and Caldeira, 2017), and cloud-sky radiative flux sensitivity to
temperature (Lutsko and Takahashi, 2018). Alternatively,
studies have also used temperature characteristics defined
over a variety of timescales to constrain ECS. This approach

FIG. 5. Different types of emergent constraints proposed in the
literature to date. Each number corresponds to a study listed in
Table I. ECs are sorted by the timescale of their current climate
quantity and the type of future constrained quantity. ECs are also
sorted by whether the future quantity relates to an impact or a
physical or geochemical quantity.
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tends to suggest relatively weaker ECS values than the
others (Knutti, Rugenstein, and Hegerl, 2017). Examples of
X include the seasonal cycle of temperature (Knutti et al.,
2006), 20th century warming (Annan and Hargreaves, 2006),
and statistics of interannual variability (Cox, Huntingford, and
Williamson, 2018). Along the same lines, there is a collection
of studies that have evaluated temperature changes over much
longer timescales (such as global mean cooling during the
Last Glacial Maximum: 19–23 thousand years ago) as derived
from paleoclimate data (Hargreaves et al., 2012; Schmidt
et al., 2014). These paleoclimate-based constraints suggest
ECS of 2.3 and 3.1 K, respectively. However, there is a large
amount of uncertainty surrounding the model simulations of
the Last Glacial Maximum, the proxies used to constrain the
intermodel relationship, and the validity of using data from
these time periods as proxies for anthropogenic warming
(Harrison et al., 2015; Brient, 2020). Avariety of other metrics
have also been proposed as being strongly related to ECS with
large variability in their constrained predictands. The highest
value (4.5 K) is derived from a constraint using vertical
mixing between the boundary layer and the lower troposphere
over tropical oceans (Sherwood, Bony, and Dufresne, 2014).
Tian (2015) used climatological precipitation in the
Intertropical Convergence Zone (ITCZ) region to suggest a
slightly weaker ECS (4.1 K), while the weakest nonpaleo
estimate uses the climatological latitude of the Southern
Hemisphere (SH) Hadley cell edge in December–February
to suggest an ECS of only 2.5 K (Lipat et al., 2017).
As discussed in Sec. IV.F, having such a large number of

ECs for the same quantity can complicate their interpretation
when the constraints suggest differing Y values. In this
instance, rigorous testing of various proposed ECs is neces-
sary for better understanding their validity. Along these lines,
ECs on ECS have been heavily scrutinized over the past few
years with assessments tied to their plausibility and robustness
across both multimodel ensembles (Grise, Polvani, and
Fasullo, 2015; Caldwell, Zelinka, and Klein, 2018; Schlund
et al., 2020) and, to a lesser extent, perturbed physics
ensembles (Kamae et al., 2016; Zhao et al., 2016; Wagman
and Jackson, 2018). Caldwell, Zelinka, and Klein (2018)
provided the most robust assessment to date on the credibility
of various constraints on ECS. In doing so, they found that
several of the aforementioned constraints lack a physically
plausible mechanism connecting the X quantity with ECS
(Volodin, 2008; Su et al., 2014; Tian, 2015; Siler, Po-Chedley,
and Bretherton, 2018). This limits how much faith can be put
in the EC itself, as the statistical relationship could be
fortuitous. Furthermore, many of the constraints are found
to be closely related (Caldwell, Zelinka, and Klein, 2018). For
example, one strongly correlated group relates aspects of
present-day Southern Hemisphere cloud cover with ECS,
suggesting they may all be capturing a single SH mechanism
(Volodin, 2008; Trenberth and Fasullo, 2010; Lipat et al.,
2017; Siler, Po-Chedley, and Bretherton, 2018). Additional
testing of EC robustness comes in the form of out-of-sample
verification (i.e., evaluating the emergent relationship in a
different model ensemble to the one from which the EC was
originally derived). Although there are some known limita-
tions to this approach related to the existence of common
model code across generations (Sec. IV.E), it is still seen as a

valuable exercise for evaluating ECs. For example, Grise,
Polvani, and Fasullo (2015) showed that the Trenberth and
Fasullo (2010) EC derived from CMIP3 is not valuable in
CMIP5 because the emergent relationship exists in only a
subset of models with unrealistic cloud properties in the
Southern Hemisphere subtropics. Caldwell, Zelinka, and
Klein (2018) extended this type of analysis to show that
the Fasullo and Trenberth (2012) EC is also nonexistent in
CMIP5. On the other hand, they found the Volodin (2008)
EC to be present in both CMIP3 and CMIP5, despite lacking
a physically plausible explanation. Schlund et al. (2020)
recently assessed a number of the constraints on ECS
documented here using the CMIP6 ensemble. They found
that most of these constraints appear to be less skillful at
predicting ECS in CMIP6, tied largely to differing repre-
sentation of cloud processes. Three of the ECs discussed here
(Volodin, 2008; Sherwood, Bony, and Dufresne, 2014;
Brient and Schneider, 2016) still exhibit statistically signifi-
cant skill, while two others no longer have value (Su et al.,
2014; Lipat et al., 2017). Finally, two ECs are somewhat in
between, what the researchers defined as “indeterminate”;
they were discussed by Tian (2015) and Cox, Huntingford,
andWilliamson (2018) (Schlund et al., 2020). Further testing
of these ECs has utilized perturbed physics ensembles to
better sample the parametric uncertainty space associated
with various emergent relationships (Sec. II.A). Of particular
interest to these studies is the EC proposed by Sherwood,
Bony, and Dufresne (2014). Results from three different
PPEs show that the physical mechanism proposed by this
study may not be valid, while the emergent relationship
between lower-tropospheric mixing and ECS exists only
when certain convection schemes are used (Kamae et al.,
2016; Zhao et al., 2016; Wagman and Jackson, 2018).
Similar doubts were also reported for the Fasullo and
Trenberth (2012) EC (Wagman and Jackson, 2018).
This collection of analyses implies that the most robust

constraints on ECS (determined by successful out-of-sample
testing and plausible physical mechanisms) are tied to the
present-day response of subtropical low clouds to sea-surface
temperature (SST) variability (Zhai, Jiang, and Su, 2015;
Brient and Schneider, 2016). However, one factor that may
limit confidence in these constraints is the short observational
record of low-cloud characteristics (Brient, 2020). ECs from
Volodin (2008) and Sherwood, Bony, and Dufresne (2014) are
also statistically significant in three ensembles (Table I), but
they face credibility issues tied to their physical mechanism or
lack thereof (Caldwell, Zelinka, and Klein, 2018; Wagman
and Jackson, 2018). Despite these signs of robustness, the
much weaker correlation values associated with these ECs in
CMIP6 (Schlund et al., 2020) supports the belief that it is
unlikely that a single predictor will be able to physically
explain a large amount of ECS variability (Caldwell, Zelinka,
and Klein, 2018; Hall et al., 2019). Rather, several constraints
on various feedback components will likely be needed to
make a difference for such complex processes. In this fashion,
a recent comprehensive assessment of ECS gave little weight
to ECs on ECS when attempting to determine its likely value,
instead favoring observations of actual temperature change
and climate feedbacks (Sherwood et al., 2020). This is also
believed to be true for the global cloud feedback (later
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described in more detail) (Klein and Hall, 2015) given that
the radiative effect of clouds in response to warming is
expected to vary by cloud type and regime (Gettelman and
Sherwood, 2016).
Similar research efforts have recently suggested that

historical decadal warming trends are strongly predictive
of the TCR (defined as the amount of warming that occurs
at the time of atmospheric carbon dioxide doubling, having
increased by 1% each year) (Jiménez-de-la-Cuesta and
Mauritsen, 2019; Nijsse, Cox, and Williamson, 2020;
Tokarska et al., 2020). TCR is of interest because it more
closely resembles the way carbon dioxide concentrations
have changed in the past. These constraints suggest that the
best estimate of TCR is 1.67 K in CMIP5 (Jiménez-de-la-
Cuesta and Mauritsen, 2019) and between 1.60 and 1.68 K in
CMIP6 (Nijsse, Cox, and Williamson, 2020; Tokarska et al.,
2020). The difference between the last two studies largely
stems from the choice of evaluated historical time period
(Nijsse, Cox, and Williamson, 2020). All three of these
estimates are lower than the raw ensemble statistics (median
of 1.95 K in CMIP6). Similar constraints on future warming
have also been developed for regional temperature changes.
Lin et al. (2017) and Selten et al. (2020) both found
that present-day summer temperatures across the central
USA and Europe, respectively, are strongly tied to future
continental summer warming. They hypothesized that the
same physical mechanisms operating in the current climate
(tied to precipitation biases and soil hydrology) also govern
the future climate response. Incorporating observations
allows for the future spread in European summer warming
to be reduced by nearly 50% (Selten et al., 2020).

B. Cloud feedbacks

One of the primary contributors to intermodel spread in
climate sensitivity is the cloud feedback, which encompasses
changes in how clouds modulate the radiation budget in
response to warming. [For a recent synthesis of cloud feed-
backs see Sec. 3.3 of Sherwood et al. (2020).] The global
mean cloud feedback is the most uncertain component of
the total climate feedback (Bony et al., 2006; Ceppi et al.,
2017; Sherwood et al., 2020), varying from −0.36 to
1.17 Wm−2 K−1 in the latest generation of climate models
(Zelinka et al., 2020). Strengthening of ensemble mean cloud
feedback strength in CMIP6 is also thought to be largely
responsible for a recent ECS increase in many models
(Zelinka et al., 2020). Thus, many of the aforementioned
constraints for ECS include cloud effects either directly or
indirectly (Volodin, 2008; Fasullo and Trenberth, 2012; Su
et al., 2014; Zhai, Jiang, and Su, 2015; Brient and Schneider,
2016; Brient et al., 2016; Qu et al., 2018). This means that
there is great interest in constraining cloud feedbacks as well
(Brient and Bony, 2013; Gordon and Klein, 2014; Qu et al.,
2014; Zhou et al., 2015; Siler, Po-Chedley, and Bretherton,
2018). For example, Siler, Po-Chedley, and Bretherton (2018)
proposed a constraint on future global mean cloud feedback
using the climatological latitudinal gradient in cloud reflec-
tivity (a quantity that can be derived from satellite observa-
tions). In general, this EC suggests that ESMs with lower
cloud albedo in warm-SST regions and higher cloud albedo in

cool-SST regions will exhibit greater cloud feedback (and to
a lesser extent ECS). It suggests a global cloud feedback in
the upper range of ESM estimates (0.58� 0.31 Wm−2 K−1).
However, this constraint lacks a testable physical explana-
tion (Caldwell, Zelinka, and Klein, 2018). Another study
that sought to constrain the global mean cloud feedback
was conducted by Zhou et al. (2015). They highlighted
strong similarities between the global mean cloud feedback
and a present-day analog cloud feedback derived from
interannual climate variability (Zhou et al., 2015). This
follows the assumption of several ECs that processes
operating on seasonal to interannual timescales are also
likely to be occurring on longer timescales. However, the
usefulness of this EC is limited because the observational
uncertainty in the present-day quantity is large relative to
intermodel spread.
As previously mentioned, it is unlikely that a single current

climate quantity can fully explain variability in the global
cloud feedback (Klein and Hall, 2015). Thus, a number of
studies have focused on isolating the individual components
of the cloud feedback (high-cloud altitude, tropical marine
low-cloud, tropical anvil cloud-area, land cloud amount,
midlatitude marine low-cloud amount, and high-latitude
low-cloud optical depth). For example, Po-Chedley et al.
(2019) narrowed in on the changes to upper troposphere
clouds and relative humidity across the tropics. They showed
that future changes in the upper troposphere cloud fraction
under climate warming are strongly tied to the vertical
gradient in the climatological mean cloud fraction and relative
humidity. Elsewhere, much of this research concerns tropical
low clouds as ESMs struggle to represent them; they account
for nearly half of the variance in the global mean cloud
feedback (Zelinka, Zhou, and Klein, 2016; Klein et al., 2017).
Moreover, intermodel spread in the low-cloud feedback is
closely tied to variability in ECS (Sherwood et al., 2020). An
early EC along these lines showed that the future low-cloud
feedback sign Y is related to current low-cloud sensitivity as a
result of the natural variability X in CMIP3 (Clement,
Burgman, and Norris, 2009). Unlike most other ECs, this
example simply suggests the sign of a feedback rather than
specific values. Thus, it is not always mentioned in reviews of
this nature (Klein and Hall, 2015; Brient, 2020). More
traditional ECs relating to this topic include the link between
low-cloud optical depth changes with warming and the optical
depth response to temperature anomalies associated with
natural variability (Gordon and Klein, 2014). This feedback
is of limited importance globally but makes an important
contribution at high latitudes (Klein and Hall, 2015). The
Gordon and Klein (2014) EC also has a simple thermody-
namic explanation, which makes it a promising example.
Low-cloud amount changes under future warming play a
much larger role in the global cloud feedback, so this has
naturally been an area of focus (Qu et al., 2014, 2015; Brient
and Schneider, 2016). Qu et al. (2014) identified an EC on this
low-cloud response through the low-cloud response to temper-
ature and stability anomalies derived from interannual vari-
ability. Although weaker in CMIP5 than CMIP3 (Klein and
Hall, 2015), this EC has value in both ensembles and features
a strong physical basis explaining the relationship (Qu et al.,
2014, 2015). This type of process-based evidence can then be
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used in combination to assemble the best estimate of the more
complex global mean cloud feedback. Figure 7 of Sherwood
et al. (2020) illustrates this concept to get a global cloud
feedback of 0.45� 0.33 Wm−2 K−1. Going forward, it is
imperative that we continue to improve our process-based
understanding of individual cloud components, where poten-
tial physical mechanisms are more likely to be uncovered.

C. Carbon cycle

Elsewhere, the EC technique has been used extensively to
constrain elements of climate-carbon cycle feedbacks (Table I,
rows 28–36) (Cox et al., 2013; Hoffman et al., 2014; Wenzel
et al., 2014, 2016; Mystakidis et al., 2017). Climate–carbon
cycle feedbacks are characterized by changes in terrestrial and
ocean carbon storage in response to climate change, which
modify the atmospheric CO2 concentration, thus enhancing
warming. Intermodel differences in feedback strengths lead to
highly variable projections of future atmospheric carbon
dioxide [more than 300 ppmv of intermodel spread at the
end of the 21st century for a high-emissions scenario (Cox,
2019)]. A rather simple relationship was uncovered between
the midcentury atmospheric CO2 concentration in ESMs and
the simulated present-day concentration, but it was shown to
weaken as the influence of varying climate-carbon feedbacks
becomes more apparent later in the 21st century (Hoffman
et al., 2014). This EC suggests a much narrower likely range
for atmospheric CO2 concentrations at the end of the century
(947� 35 ppm) than the full ensemble (980� 161 ppm).
Much of the model uncertainty in future atmospheric CO2

has been shown to stem from differences in the land carbon
sink (Cox et al., 2013; Wenzel et al., 2014). Therefore,
significant effort has gone into constraining this feature of the
carbon cycle. A prominent example uses the historical
sensitivity of the annual atmospheric carbon dioxide
growth-rate to temperature variability (which is strongly
impacted by tropical land carbon storage fluctuations) to
constrain the future loss of terrestrial tropical carbon (Cox
et al., 2013; Wenzel et al., 2014). As with prior examples, the
CO2 growth-rate sensitivity is an observable quantity, thus
allowing for the EC to suggest future tropical land carbon
stability. This EC has been proven robust across both C4MIP
and CMIP5 ensembles (Wenzel et al., 2014)5 but has yet to
undergo testing pertaining to CMIP6. This is an important EC
because there was a fourfold simulated spread in tropical land
carbon reductions per degree of warming in C4MIP
(29–133 GtCK−1) (Jones et al., 2016), with the higher-end
models suggesting potentially catastrophic dieback of the
Amazon rainforest (Cox et al., 2000, 2004). However, the Cox
et al. (2013) EC suggests tropical land carbon reductions
slightly weaker than the ensemble mean (53� 17 GtCK−1).

Another carbon cycle EC uses the change in seasonal
atmospheric CO2 amplitude to constrain CO2 fertilization of
photosynthesis on the extratropics (Wenzel et al., 2016). On a
more regional basis, Winkler et al. (2019) highlighted a strong
relationship between future increases in terrestrial Arctic
gross primary productivity and historical increases in leaf
area index (greening). These two ECs both suggest that most
models are underestimating future changes in gross primary
productivity across the high latitudes (Wenzel et al., 2016;
Winkler et al., 2019). While these ECs have yet to undergo
out-of-sample verification, Winkler, Myneni, and Brovkin
(2019) provided detailed evaluation of the factors contrib-
uting to uncertainty in the Winkler et al. (2019) constraint.
They point to choices relating to the temporal period of the
predictor variable, the choice of observational dataset, and
the rate of CO2 forcing as particularly large sources of
uncertainty (Winkler, Myneni, and Brovkin, 2019). Finally,
additional research identified constraints on terrestrial car-
bon cycle feedbacks using interannual variability in evapo-
transpiration, net biome productivity, and gross primary
productivity. This EC suggests a 40% reduction in the
climate-carbon feedback and a 30% reduction in the
concentration-carbon feedback (Mystakidis et al., 2017).
When it comes to understanding how the ocean carbon

cycle will respond to climate change, one of the main
challenges is to reduce uncertainty in estimates of tropical
ocean primary productivity. Satellite observations of the
interannual variability in ocean productivity resulting from
El Niño–Southern Oscillation- (ENSO-) driven SST anoma-
lies have been used to constrain highly uncertain projected
changes in tropical marine primary productivity with warming
(Kwiatkowski et al., 2017). There is a strong inverse relation-
ship between net primary productivity (NPP) and SST
anomalies in the observational record, but the number of
ENSO events in the satellite record is limited. This EC
suggests a substantial reduction in the long-term tropical
NPP sensitivity (−3.4% to −2.4% K−1) from the uncon-
strained ensemble average (−4.0� 2.2% K−1). Another
recently published EC by Kessler and Tjiputra (2016) relates
future global ocean carbon uptake to the contemporary carbon
uptake by the Southern Ocean. In this example, models with
anomalously low uptake in the current climate project low
global uptake over the course of the 21st century. Uncertainty
in simulated ocean uptake also translates to uncertainty in
projections of future ocean acidification, the impacts of which
are expected to be greatest in the Arctic ecosystem (Terhaar,
Kwiatkowski, and Bopp, 2020). Recent work uses CMIP5
models to identify an EC on future Arctic Ocean acidification
using the simulated density of Arctic Ocean surface waters in
the current climate (Terhaar, Kwiatkowski, and Bopp, 2020).
Observations of sea-surface density, when coupled with this
emergent relationship, imply that future Arctic Ocean acidi-
fication will be greater than previously expected.

D. High-latitude processes

Earth’s high-latitude regions are rapidly warming and there
is a great deal of uncertainty in how various components of the
cryosphere (Earth’s frozen surfaces) will evolve in the future
(Meredith et al., 2019; Mudryk et al., 2020; Notz et al., 2020).

5Note that Wang et al. (2014) also attempted to evaluate this EC
in CMIP5, but their use of RCP8.5 to diagnose the sensitivity of
tropical land carbon loss to tropical warming is not comparable to
the work of Cox et al. (2013) and Wenzel et al. (2014). Given that
there is land-use change in RCP8.5, they conflate changes in
tropical land carbon due to climate change, with changes in land
carbon due to deforestation (for which there is no physical reason to
expect a correlation with X).
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Thus, ECs are an interesting option for reducing intermodel
spread here. One of the earliest documented examples of an
emergent constraint is for the snow albedo feedback (Hall and
Qu, 2006), which was introduced in Sec. I. This is a leading
example of the EC technique because of the simplicity behind
its physical mechanism and its robustness across several
generations of models (Fig. 2). An interesting point on the
SAF EC is that despite substantial time since its initial
publication, we have yet to see a meaningful reduction in
its current climate quantity (X).
Following on from its application to SAF, recent work has

identified that the emergent constraint approach can also be
applied to a similar process over Arctic sea ice (Thackeray and
Hall, 2019). The sea-ice albedo feedback (SIAF) is charac-
terized by the enhancement of future warming through the
reduction of surface albedo as a result of decreasing sea ice
(Holland and Bitz, 2003; Hall, 2004). An analog of this
process operates in the seasonal cycle during the transition
from maximum to minimum ice extent (X). These two
processes are found to be closely linked across the CMIP5
ensemble, forming the basis of an EC. However, given the
projected rapid loss of sea ice in the 21st century, this
constraint exhibits a regime dependence whereby the relation-
ship between seasonal cycle and climate change SIAF begins
to break down in the latter half of the 21st century, when most
models exhibit an ice-free Arctic (Thackeray and Hall, 2019).
This is similar to the concept of tipping points discussed in
Sec. IV.D.
In addition to the aforementioned radiative feedbacks, there

is a large amount of uncertainty when it comes to the fate of a
number of high-latitude Earth system components, notably
sea ice and permafrost (Stroeve et al., 2012; Slater and
Lawrence, 2013). Given this uncertainty and the potentially
widespread implications associated with these changes, ECs
can provide valuable information here. A number of studies
have proposed constraints on projections of future Arctic sea
ice (Boe, Hall, and Qu, 2009; Massonnet et al., 2012; Liu
et al., 2013). Boe, Hall, and Qu (2009) used the observed
historical trend in September Arctic sea-ice extent over the
satellite era to constrain the time in the 21st century when the
Arctic is likely to become ice free during the summer. Similar
research by Massonnet et al. (2012) used a series of historical
ice characteristics and trends in an attempt to constrain the
time period when the Arctic is likely to become seasonally ice
free. Their results suggest ice-free conditions for September
to begin somewhere between 2041 and 2068 under a high-
emissions scenario, a significant reduction from the full
CMIP5 spread that spans nearly 100 years. The presence of
constraints between historical ice properties and the future
change in both CMIP3 and CMIP5 is a promising sign, but we
are not aware of CMIP6 testing for this EC to date. Similar
historical sea-ice metrics have also been used to inform future
changes in high-latitude temperature variability (Borodina,
Fischer, and Knutti, 2017a). Permafrost underlies a significant
portion of the Northern Hemisphere high latitudes and is
highly sensitive to warming (Lawrence, Slater, and Swenson,
2012), with its degradation expected to have detrimental
climate and developmental effects (Teufel and Sushama,
2019). However, modern ESMs struggle to agree upon future
changes in permafrost area (Slater and Lawrence, 2013).

Chadburn et al. (2017) used a relationship between mean
annual air temperature and permafrost area during the his-
torical period (X) to constrain projections of future permafrost
thaw (Y). This constraint suggests that roughly 20% more
permafrost will be lost per degree of warming than previously
expected (Chadburn et al., 2017).

E. Hydrologic cycle

Future changes to precipitation are of great interest to the
climate science community because of wide-ranging impacts
on natural and human systems. However, precipitation is
highly variable in space and time, thus making it difficult to
both observe and predict. These factors contribute to large
intermodel differences in future projections of precipitation.
Reducing this uncertainty is therefore vital for those making
policy and infrastructure decisions based on model projec-
tions. ECs have been applied to multiple aspects of the
hydrologic cycle across various scales (O’Gorman, 2012;
DeAngelis et al., 2015; Li et al., 2017; Watanabe et al., 2018;
Rowell, 2019). First, we consider the globally averaged
changes to the hydrologic cycle. In response to rising
temperatures and increasing atmospheric water vapor, global
mean precipitation is projected to increase. This is because
the atmosphere radiatively cools to space and this radiative
cooling must be balanced by latent heat release from
precipitation, thus setting the radiative-convective balance
(Pendergrass and Hartmann, 2014; DeAngelis et al., 2015).
Under a high-emission scenario, models project a future
increase of between 2% and 10% in global mean precipi-
tation (Kharin et al., 2013). This spread can be partially
explained by differing rates of future warming (Fläschner,
Mauritsen, and Stevens, 2016), although a threefold spread
still exists when the precipitation change is normalized by
warming (Kharin et al., 2013). In an attempt to minimize this
spread, DeAngelis et al. (2015) used the sensitivity of clear-
sky shortwave radiation absorption to changes in column
water vapor to constrain the global mean precipitation
increase with warming (termed hydrologic sensitivity).
This constraint suggests a 35% reduction in the ensemble
spread and a 40% reduction in the ensemble mean hydrologic
sensitivity. This work was followed by Watanabe et al.
(2018), who used the climatological global mean surface
longwave cloud radiative effect (CRE) to constrain the future
surface longwave CRE feedback. In combination with the
most likely sensitivity of clear-sky shortwave radiative
absorption to water vapor (DeAngelis et al., 2015), this
EC suggests a constrained estimate of 1.8% K−1 for global
hydrologic sensitivity, down from an ensemble mean of
2.6% K−1 (Watanabe et al., 2018). However, a recently
published assessment of these constraints in CMIP6 revealed
that although the DeAngelis et al. (2015) EC is still present,
its strength is weakened (Pendergrass, 2020). Moreover, the
Watanabe et al. (2018) EC on hydrologic sensitivity is found
to be nonexistent in the new ensemble. This highlights
the importance of applying out-of-sample testing to the
remainder of the ECs on the hydrologic cycle components
discussed later on.
Another key component of the global hydrologic cycle is

terrestrial evapotranspiration (ET), which is made up of
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evaporation and biological transpiration (T). The ratio of T to
ET is used to estimate land water fluxes, while, because
similar processes influence T and land-atmosphere carbon
exchanges, better estimates of T/ET help to reduce uncertainty
in global carbon cycle projections (Lian et al., 2018). Climate
models exhibit large variability in the global strength of T/ET
spanning a factor of 3. Lian et al. (2018) found a strong
relationship (r2 ¼ 0.93) between simulated local T/ET (aver-
aged over grid cells corresponding to in situ measurements)
and global mean T/ET. This EC reveals that the constrained
global T/ET ratio is significantly higher than the CMIP5
ensemble mean.
Alternatively, several studies have attempted to use this

technique to constrain the change in aspects of the hydrologic
cycle over specific regions. Regional constraints have the
potential for more policy and impacts relevance than globally
averaged metrics. As a first attempt, O’Gorman (2012)
proposed an EC on the change in future daily tropical
precipitation extremes using the observed sensitivity of
tropical precipitation extremes to temperature variability.
They found a strong relationship between the sensitivity of
heavy precipitation (99.9th percentile) to both seasonal and
future temperature changes. The constrained estimate based
on observations (6%–14% K−1) was substantially narrower
than the intermodel spread across the CMIP3 ensemble
(2%–23% K−1). Similarly, Borodina, Fischer, and Knutti
(2017b) found that the scaling of annual maximum one day
precipitation (R × 1 day) with warming global land temper-
atures can be used to constrain the future intensification of
heavy rainfall across extratropical regions with sufficient data
records. This EC suggests that the CMIP5 models are likely
underestimating the future change in extreme rainfall where
climatological rainfall intensity is high.
Another example links biases in simulated historical cli-

mate and future Indian summer monsoon (ISM) rainfall (Li
et al., 2017). In this case, Li et al. (2017) found that models
overestimating historical precipitation across the tropical
western Pacific also exhibit larger increases in monsoon rains
in the future (Li et al., 2017). Using observations of western
Pacific rainfall reduces the projected increase in ISM rainfall
by nearly 50%. CMIP5 models also differ greatly in their
projections of future total East African long rains (March-
April-May mean spanning a region from northwest Tanzania
to southwest Ethiopia), from a 20% decrease to a 120%
increase (Rowell and Chadwick, 2018). Rowell (2019) used
an EC between present-day interannual SST–low level cloud
sensitivity and future SST change over the Indian Ocean to
assess the credibility of projections of East African precipi-
tation. They found that one outlier model, which projects a
doubling of seasonal precipitation, is likely unreliable because
of unrealistic SST–low-cloud processes. This reduction in
intermodel spread is another example of the value that an EC
approach can provide. Along these lines, Lehner et al. (2019)
recently suggested that the sensitivity of historical runoff to
temperature and precipitation change across three watersheds
in the western U.S. is closely tied to projections of future
runoff across a series of ESMs. It is expected that regional
applications of ECs to highly uncertain quantities like pre-
cipitation change will be a key area of future research.

VI. STATISTICAL UNDERPINNINGS

Accurately constraining the unknown future value of Y in
the real world requires one to include and quantify all the
possible sources of uncertainty in each step of the EC
procedure. In this section, we give an overview of four types
of uncertainty that have been incorporated into ECs so far:
those stemming from uncertainty in the real world observation
of X, uncertainty in X from internal variability, uncertainty in
the functional form of the emergent relationship, and uncer-
tainty from ESMs being imperfect replications of the real
world. The section concludes with a discussion on how to
combine those four types of uncertainty in the resulting EC. In
addition, we discuss how to combine multiple emergent
constraints of the same quantity, derived from alternative
features of historical climate.

A. Uncertainty in observations

There are multiple sources of observational error in the real
world value of X. First, a lack of spatial and/or temporal
coverage can be present and this may lead to biases if not
taken into account (Cowtan and Way, 2014). There are two
ways to handle missing data: it can be interpolated and
extrapolated from existing data or, alternatively, model output
can be filtered to reflect only locations and times for which
observational data are present (AchutaRao et al., 2006;
Durack et al., 2014; Cox, Huntingford, and Williamson,
2018). Second, observational records are of finite length,
introducing additional uncertainty from low sample size.
Standard errors quantifying finite size effects can be com-
puted, but care should be taken when time series are
autocorrelated as this increases the standard error by effec-
tively reducing the sample size (Trenberth, 1984). For sta-
tionary processes, standard equations for autocorrelation
errors were given by Zhang (2006).
Estimates of errors in instrumentation and data gathering

are often available in the literature (Hennermann, 2018). If
multiple observational datasets are available, these can be used
to infer uncertainty (Trenberth and Fasullo, 2010;
Kwiatkowski et al., 2017). The errors in these datasets might
not be independent; different satellite products might for
instance have the same biases. Independent sources of error
σ1 and σ2 can be simply computed by σ2total ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ21 þ σ22

p
.

If observational uncertainty makes up a large percentage of
overall uncertainty, care should be taken to assess whether to
use a normal distribution to describe the probability density
function (PDF). It may sometimes be possible to estimate a
full PDF from measurements. Alternatively, stochastic
reduced-form modeling of the system can be used to estimate
the shape (Nijsse and Dijkstra, 2018; Williamson, Cox, and
Nijsse, 2019).
Whatever method is used, it is important for this step of

capturing observational error not to be neglected (Hall
et al., 2019).

B. Uncertainty from internal variability

Like the real world, climate models have internal variabil-
ity. Because of the finite length of the simulation or the
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observed climate record, internal variability can have a
significant impact on the estimation of the predictor.
One possibility is to use long model control simulations to
estimate the size of internal variability if it is believed to be
independent of forcing (Nijsse et al., 2019). Variability may,
however, be dependent on forcing and, consequently, estimat-
ing it from a forced initial value ensemble (see Sec. II.A)
may be preferable (Tokarska et al., 2020). For instance,
global interannual variability is expected to decrease in the
future (Huntingford et al., 2013). Jiménez-de-la-Cuesta and
Mauritsen (2019) used the 100-member historical ensemble of
MPI-ESM1.1 to quantify the effect of internal variability,
whereas Nijsse, Cox, andWilliamson (2020) used all available
historical initial value members from each CMIP6 model to
estimate the mean model variability. Both used model esti-
mates as a proxy for real internal variability.

C. Uncertainty in the functional form of the relationship

Reducing a high-dimensional climate model to a lower
dimension brings some uncertainty. Not all variance will be
explained with only two variables, and performing a regres-
sion is a tool to quantify this. While most emergent
constraints thus far assume linear relationships between X
and Y and use linear regression to infer the emergent
relationship, the regression does not necessarily have to
be linear (Bracegirdle and Stephenson, 2012; Nijsse and
Dijkstra, 2018). If a linear relationship is imposed when, in
reality, the relationship is nonlinear, additional errors will
occur. A nonlinear emergent relationship leads mostly to a
non-normal PDF for Y with a standard deviation that is
potentially significantly larger or smaller than for a linear fit;
see Fig. 6. More data or clear prior information on the
parameters is needed when fitting additional parameters.
Regression dilution takes place as a consequence of errors

in estimating model predictors (such as finite simulation
length): when there is an error in the modeled explanatory
variables, the slope of a linear regression fit will be smaller
than without error and the intercept regresses toward the mean
(Frost and Thompson, 2000). Multiple strategies to reduce this

can be employed: taking the mean of a set of initial value
simulations (Jiménez-de-la-Cuesta and Mauritsen, 2019)
using orthogonal distance regression, which takes into
account errors in both the dependent and independent
variables (Jiménez-de-la-Cuesta and Mauritsen, 2019), or
using a hierarchical Bayesian method that assumes that the
true independent variable is unknown (latent) and using the
realizations to infer this true value simultaneously while
performing the regression (Sansom, 2014; Nijsse, Cox, and
Williamson, 2020).
Regression confidence intervals also depend on sample

size. As climate models often have shared computer code,
effective sample size is probably lower than the total number
of models (Pennell and Reichler, 2011; Masson and Knutti,
2013; Herger et al., 2018), effectively reducing its significance
(Knutti, Masson, and Gettelman, 2013). This commonality
can be partially addressed by selecting only one model per
modeling center (Cox, Huntingford, and Williamson, 2018;
Sansom, Stephenson, and Bracegirdle, 2019), where centers
frequently offer multiple versions of alternative spatial
resolutions or other small differences in model physics.
However, even then effective sample size may be overesti-
mated. As strongly related models in terms of code may have
significantly different values for X and Y, it is not always
clear how important corrections are (Nijsse, Cox, and
Williamson, 2020).

D. Uncertainty from imperfect models

Almost paradoxically, the technique of emergent con-
straints relies on errors in models. Hence some type of errors
are useful, while others simply contribute to widening the
confidence interval. Model error comes from parametric and
from structural errors; see also Sec. II.A. Parameter error is
often examined by PPEs, an ensemble where a single climate
model is run repeatedly with systematically varied parameters
designed to span a large range of model responses. Care
should be taken to include only the physically adequate
parameter choices but to not restrict the parameter space
too much (Wagman and Jackson, 2018).
Usually, due to the expense of running climate models, an

ad hoc ensemble of different models is exploited to establish
emergent constraints, the so-called ensemble of opportunity.
In this case, models should be chosen in such a way that they
are still comparable: If half the models contain a nitrogen
cycle while the other half does not, they are unlikely to fit on a
single regression (Wenzel et al., 2014). Williamson and
Sansom (2019) argued that, due to structural uncertainty,
the derived regression between X and Y should be regarded
not as the real relationship but instead as only informing the
real relationship.

E. Combining sources of uncertainty in an EC

Williamson and Sansom (2019) argued on theoretical
grounds that emergent constraints should be performed using
a Bayesian framework, instead of the more common frequent-
ists’ framework using ordinary least squares fitting (Wenzel
et al., 2014), in which priors are set for the regression
parameters but not for the predictand Y. Bowman et al.

FIG. 6. Using a quadratic relationship decreases the uncertainty
in Y compared to a linear fit provided that the observations line up
with the shallow section of the quadratic function. Illustration
with synthetic data.
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(2018) formulated a Bayesian hierarchical statistical frame-
work that combines uncertainty in observations with uncer-
tainty related to the regression itself. An explicit formula for
the probability distribution can be approximated incorporating
these uncertainties: assuming normality and performing a
linear regression with intercept a, slope b, and confidence
around the regression of σf, the probability density function
for the predictand pðyÞ is computed by integrating the
conditional probability function pðyjxÞ with the observational
probability density pðxÞ. This formula for pðyÞ, rewritten in
the notation of other statistical frameworks and under
Gaussian assumptions, turns into

pðyÞ ¼
Z

∞

−∞
pðyjxÞpðxÞdx

¼ N
�
yjaþ bXobs;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2f þ b2σ2O

q �
. ð20Þ

Here X is the predictor, Y is the predictand, and Xobs is the best
estimate of the observation. The observational uncertainty is
denoted by σO.
To better estimate the regression and incorporate internal

climate variability explicitly, a second hierarchical model was
developed independently by Sansom (2014) and Nijsse, Cox,
and Williamson (2020). Internal climate variability is incor-
porated both as part of the regression and as an additional term
in the uncertainty around observations by using all initial
value simulations Xm;j of each model m and each initial value
member j. Here they are formulated using Gaussian distri-
butions

Xm;j ∼N ðXm; σIÞ; ð21Þ

Ym ∼N ðaþ bXm; σfÞ. ð22Þ

The internal variability is denoted by σI and is assumed
to be independent of Y and X (and therefore model
independent). The probability density function is sampled
from estimates of the observed Xobs and the parameters
of the emergent relationship and gives a similar equation to
Eq. (20):

pðyÞ ¼ N(aþ bN
�
Xobs;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2I þ σ2O

q �
; σf).

Hall et al. (2019) queried the extent to which we should
trust in only partially confirmed ECs. This can be addressed
formally, by inclusion of a researcher’s assessment of how
reliable a certain EC is. Williamson and Sansom (2019)
described a method explicitly incorporating the trust that is
put in any particular EC, including for instance by how much
the EC changes in different ensembles. They introduced an
additional parameter σR that represents the uncertainty
even after having taken all model information into account.
This parameter is set subjectively, judged on the degree of
physical trust the researcher has in the EC and features as
pðyÞ ¼ N ðβx; σ2f þ σ2RÞ, where β is a covariance matrix of the
regression parameters, for which priors are also provided with
information about possible biases or errors in the regression
parameters.

F. Combining multiple constraints

A simple method of combining multiple constraints was
used by Brient (2020), who utilized a Gaussian kernel
density estimation of a histogram of the best values of
previous constraints. To account for the variance, the
posterior variance of the different ECs was included in a
weighted Gaussian kernel density estimation. This method
suffers from multiple drawbacks. Most prominently it cannot
benefit from the increased confidence that results from
multiple independent constraints. Adding a new constraint
with the same mean does not automatically lead to a
narrower combined constraint, with the choice of kernel
bandwidth remaining subjective. It additionally does not take
into account to what extent the different emergent constraints
are related to each other.
Bretherton and Caldwell (2020) combined multiple

emergent constraints using a multivariate Gaussian PDF,
which can be viewed as a form of multilinear regression.
Their “method C” (for correlated) includes information
about correlations between different emergent relationships.
Regularization was applied to deal with the strong colli-
nearity between the emergent relationships. A second
“method U” (for uncorrelated) used a smaller subset of
ECs, those regarded as confirmed constraints. As collinear-
ity is less important with fewer ECs this method simplifies C
by dropping the covariance ECs. Both variants were
extended with a transparent method to account for over-
confidence in the EC: they scale the ratio of the explained to
unexplained variance with a factor α2 ≤ 1, thereby reducing
all correlation coefficients.
Renoult et al. (2020)proposed a simple method to combine

independent ECs to create a tighter estimate for Y. Where the
regression is normally given as pðyjxÞ, they proposed to
instead formulate the statistical model as pðxjyÞ, allowing
for a prior on πðyÞ to be integrated into the emergent
constraint as

pðyÞ ¼
Z

∞

−∞
pðxjyÞπðyÞpðxÞdx: ð23Þ

pðyÞ here is the posterior distribution of a previous EC.
To make sure the two ECs are indeed independent, Renoult
et al. (2020) stated that observations need to be independent
and that, insofar as it is possible, the errors in models should
also stem from different sources. Their example involved a
warm and cold climate state for which temperature change
was reconstructed. Temperature change is dominated by
different processes in this case, so that model error can be
considered independent to first order. This method is not
consistent with the other previously described methods.
Linear regression is typically not symmetric; regression
where X predicts Y, pðyjxÞ describes a different function
than regression where Y predicts X, pðxjyÞ (Smith, 2009), as
illustrated in Fig. 7.

VII. OUTLOOK

Here we give some promising or exciting directions for
future EC research.
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A. Key gaps in ECs to date

The collection of ECs described in Sec. V highlight key
areas of focus to date, but this also demonstrates where gaps
exist, thus highlighting where the potential for EC growth is
greatest going forward. For the most part, ECs have been
traditionally focused on globally aggregated quantities related
to the mean state of climate (climate feedbacks, hydrologic
sensitivity, etc.). However, recent applications to more
regional features of the climate system are particularly
encouraging (such as informing future monsoonal precipita-
tion change over India) (Li et al., 2017). Since these regional
applications have the potential for greater policy impact than
most globally averaged metrics, we anticipate much more
focus in this area going forward. Climate extremes are also of
great societal importance, but from Fig. 5 we can see that few
studies have attempted to constrain the uncertainty in their
future changes. We anticipate a greater focus on these and
other higher-order moments of climate statistics going for-
ward. This advance is spurred on by an ever-lengthening
satellite record that is now long enough to robustly sample
extreme precipitation events. Similarly, improving paleocli-
mate records offer great potential for constraining emergent
relationships pertaining to aspects of the climate system that
vary on long timescales. In terms of their Earth system
components, proposed constraints are heavily skewed toward
atmospheric and biogeochemical fields, while constraints
pertaining to oceanography and ice sheets are lacking. The
latter is a recent addition to ESMs, but as observational
records continue to improve there could be great potential for
reducing uncertainty in critical metrics like sea level rise.
Finally, most ECs pertain to local relationships, but there are
likely many undiscovered remote relationships in the climate
system, where the current variability in one region is strongly
tied to the future change in another region through atmos-
pheric teleconnections (Rowell, 2019). It is also believed that
biases in the position of various climate features may be
systematically tied to how the features respond to future
forcing (Hall et al., 2019). Utilization of these spatial
characteristics of climate for ECs has begun (Kidston and

Gerber, 2010; Simpson and Polvani, 2016), but better detec-
tion of these remote constraints likely requires improved
analysis techniques (Barnes, Hurrell, and Uphoff, 2019).

B. Targeted model development

An appealing yet underused aspect of ECs is targeted model
development for bias reduction in a particular aspect of
climate change (Y), although there are dangers to be aware
of too; see Sec. IV.G. If an EC has strong physical under-
pinnings, then we can expect that taking steps to reduce the
spread in X will result in a corresponding spread reduction in
Y. First, we must assess in detail how the structural and
parametric makeup of the ESMs influence the spread in X.
Through this analysis the best parametrizations or parameters
for simulating X may be uncovered, thus providing guidelines
for modeling centers on how they can efficiently reduce bias in
X going forward. This type of analysis is encouraged for all
well-established ECs but has been completed only for ECs on
hydrologic cycle intensification (DeAngelis et al., 2015), the
sensitivity of extratropical cloud reflectivity to temperature
(Gordon and Klein, 2014), and the snow albedo feedback
(Thackeray, Qu, and Hall, 2018). It is also possible that these
targeted development activities will lead to a reduction in
spread for related attributes of climate change affected by Y.

C. Use of conceptual models as the basis of emergent
relationships and understanding of more complex ESMs

In the earlier years of ECs there may have been a tendency
to data mine for variables with high correlations within ESM
ensembles, potentially resulting in bad ECs; see Sec. II.B.
However, data mining is not necessarily bad if it guides the
search for independently testable mechanisms that may not
have been obvious otherwise (Sec. IV.A).
One way of guarding against fortuitous correlations and

hypothesizing new mechanisms is using conceptual, analyti-
cally soluble models as the basis of the emergent relationship.
Building and solving conceptual models requires one to make
assumptions about the real world. These assumptions are often
clear, simple to understand, and, ideally, testable against real
world and ESM ensemble data (Williamson et al., 2018).
Provided that the assumptions survive these tests, the solution
to the conceptual model can form the basis of the emergent
relationship. This testing of simplified theory not only aids
understanding and intuition of what might (or might not) be
going on in the complex ESMs but also adds a greater degree
of rigor to ECs. There are potential dangers one should be
aware of, however: (i) p hacking might occur (see Sec. IV.B)
and (ii) it might be that a process in the ESM one is trying to
constraint is closer to the conceptual model in the spectrum of
complexity than it is to reality. The use of conceptual models
could therefore be used to justify the relationships arising from
slightly less conceptual parametrizations that are implemented
in the ESMs.
State-of-the-art ESM spatial resolution has continually

increased and more physical and biogeochemical processes
have been incorporated, making these models ever more
comprehensive representations of Earth as time has gone
on. They have become the main theoretical tool in climate

FIG. 7. Standard, ordinary least squares linear regression pðyjxÞ
compared with the reverse regression pðxjyÞ. If the latter were to
be used as the relationship on which the emergent constraint is
founded, the final constraint has a bias.
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science. However, owing to their ever increasing complexity,
their behavior is difficult to understand and predict without the
models themselves being run. They are also frequently treated
as one-stop shops and oracles for any question about the
contemporary or future climate.
In the past, numerical simulation was more limited by

computing power and researchers had to think carefully about
which bits of the Earth system were important to include in
their models to answer a particular question. This led to wider
use of conceptual models specific to that question, analytical
techniques, and better intuition due to the reduction of model
complexity (Budyko, 1969; Hasselmann, 1976; Wigley and
Raper, 1990; Saltzman, 2002; Dijkstra, 2013).
Today, there is even more of an opportunity for the top

down insights of specific conceptual models to meet and
complement the comprehensive, bottom up approach of from
state-of-the-art ESMs; there are many more high quality
observations from satellites (Yang et al., 2013), ocean floats
(Roemmich et al., 2019), and continuous temperature
records; the global warming signal has also become clearer
over time; and there is also a large archive of past and
present ESM simulations. With all the new data, it would be
worth revisiting these simple, understandable models. A
promising way forward to incorporate all the extra informa-
tion from ESMs, conceptual models, and observations is the
EC approach.

D. Multidimensional ECs and nonlinear emergent relationships

Much of the work on ECs has used just two scalar variables,
a predictor X and a response or predictand Y, related linearly.
This could be extended to two or more predictors or
predictands (Renoult et al., 2020). The predictand space to
constrain will become larger, however, and this might be
difficult with small ESM ensembles.
Most of the work to date has also assumed a linear emergent

relationship, with exceptions being the constraints on ECS
using global mean temperature change in Jiménez-de-
la-Cuesta and Mauritsen (2019) and Nijsse, Cox, and
Williamson (2020). This is also not necessary if theoretical
reasoning suggests that a different relation is more suitable.
Equivalent to the use of multiple predictors or predictands,

one could imagine using vectors for X and Y rather than
scalars if theory suggests such a relationship. These vectors
could encode spatial fields of a climate variable (Brown and
Caldeira, 2017), spatial normal modes of variance, referred to
as empirical orthogonal functions in meteorology (von Storch
and Zwiers, 1999) or the leading linear dynamical modes, also
known as principal oscillation patterns in meteorology
(Hasselmann, 1988; Williamson and Lenton, 2015).

E. Continued improvement of climate projections and impact-led
requirements

One prediction we make is that the discovery of new ECs
will be led more by those asking questions as to how climate
impacts of concern may adjust in the future. Many altered
meteorological features expected to have the most detrimental
effect on societal safety, livelihoods, and well-being are the
magnitude and frequency of extreme weather events. A focus

on extremes may result in ECs that are different in compo-
sition than those discovered to date. Rather than a fluctuating
and observable contemporary quantity X projecting a “bulk”
climate property Y of future importance, a different format is
required. That is, summary climate properties of large-scale
features (or trends in them), as an observable quantity X,
require investigation to determine if they can estimate the
future extreme frequency of quantity Y. In addition, a search
for such ECs will focus attention on three further challenges.
First, attributes of extremes and their changes might show
substantial geographical variation. Second, by definition
extremes are rare, so there are few data points available for
investigation in ESM diagnostics where meteorological values
are above thresholds that may be unsafe. Third, the future
connection between observable X and extreme feature Y may
involve a teleconnection between locations, and possibly also
with seasonal inertia.

F. Better understanding of the effects of parametric and
structural uncertainty on ECs

Presently, the most commonly used ESM ensembles in
climate as well as EC research are MMEs (see Sec. II.A)
allowing structural uncertainty and, in more recent MMEs
such as the CMIP datasets, initial condition uncertainty to be
explored. Parametric uncertainty is also captured to some
degree, although not in a systematic way (unlike in PPEs). It
is therefore unclear whether all plausible model parametric
configurations have been explored. See also Secs. IV.I
and VI.D.
The strengths of MMEs and PPEs could be combined in a

“superensemble” of PPEs generated from structurally differ-
ent models. A better assessment of confidence intervals could
be made, and questions about the necessity of plausible ESM
simulations for good ECs could be answered, for example, is it
necessary to filter out unrealistic simulations to strengthen the
EC based on an observation unrelated to the predictor?
Statistical emulators (Sacks et al., 1989) of ESMs may help
give enough effective simulations after filtering unrealistic
simulations from a PPE.

G. Machine learning

Use of machine learning (ML) techniques in ECs may
prove fruitful in future research. ML (Webb and Copsey,
2011) holds a wide definition but encompasses ECs, par-
ticularly supervised-learning-type algorithms. In a super-
vised ML approach, the algorithm builds a mathematical
model from a set of training data that contain both inputs and
desired outputs. In the case of ECs, these training data are
from an ESM ensemble, with the inputs being the observable
X and the outputs being the future projection Y. The
mathematical model is f, i.e., Y ¼ fðXÞ þ ϵ. The math-
ematical model that has been a popular choice in ECs thus far
has been fðXÞ ¼ aX þ b, where a and b are constants fitted
via linear regression.
Phrasing linear regression as an example of supervised ML

could be seen to be an overcomplicated generalization.
However, viewing ECs within this framework potentially
allows one to take advantage of the existing tools within
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ML. For example, the mathematical models fitted by the
supervised ML algorithms could be more elaborate with more
physically or statistically based parameters that give better
explanatory power or more realism. The inputs and outputs
equally could be more elaborate, with extra spatial dimensions
and/or extra variables (Sec. VII.D). This could get as com-
plicated as reproducing the original models that the inputs
and outputs derive from. However, one ideally would like to
walk the line between the physical plausibility and under-
standability of the model and explanatory power to derive a
minimal description.
One also has to be aware of the amount of data available to

fit to a particular mathematical model. Presently, MMEs
consist of around 30 ESMs, thus limiting defensible fits of
mathematical models to a few parameters. However, one may
be able to leverage the extra information in the ESMs spatial
and temporal degrees of freedom to increase data size and
therefore mathematical model complexity.

H. Building connections to other fields

Though our expertise is in the area of climate and Earth
system dynamics, we have found a few examples of EC-like
approaches in other fields.
In the closely related field of weather prediction, an

approach known as “model output statistics” is used to
enhance the quality and relevance of weather forecasts
produced by numerical models (Veenhuis, 2013). As models
are repeatedly used to make forecasts, an archive of past
simulated data accumulate. This archive can be analyzed to
diagnose systematic statistical relationships between model
output and observed quantities of interest. (An example of a
quantity of interest might be temperature at a particular
weather station.) When the models are then used to make
real-time forecasts, these relationships can be applied to the
forecast output, generating values for the quantities of interest.
This is similar to the EC approach in that the structure of
model biases is ascertained and exploited to produce future
predictions that are likely to be more realistic.
We find another example in the field of cosmology, where

models have been created to simulate galaxy development.
Like climate models, these models have tunable parameters.
When the model parameters are varied to produce an ensemble
of simulations, statistical relationships among galaxy compo-
nents across the ensemble can be analyzed. The galaxy model
of Terrazas et al. (2020) produced strong statistical relation-
ship between the black hole mass and the associated stellar
mass; cf. Fig. 7 of that paper. Under certain conditions,
observations of the black hole and stellar mass mirror the
simulated relationship. This suggests that given an observa-
tion of black hole mass for a galaxy without a corresponding
stellar mass observation, the model could be used to make a
meaningful prediction of stellar mass. This example is similar
to ECs in the sense that the intrinsic model (and real world)
physics connecting key quantities of interest can be ascer-
tained only through analysis of a multimodel ensemble.
In the field of economics, past forecasts of economic

performance using multiple economic models have been
analyzed and compared to the actual ensuing economic
performance. Felix, Kraeussl, and Stork (2020) found that

the skewness of the ensemble forecast’s distribution is a strong
predictor of economic surprises. The implication is that if a
current ensemble of economic models produces a skewed
forecast distribution, the likelihood of an economic surprise is
elevated. Such an outcome might not be detectable from more
conventional predictions, such as the ensemble mean forecast.
This example has some similarities to the model output
statistics example from weather forecasting: Model biases
are ascertained from multiple realizations of past forecast
performance and used to improve the current forecast.
This brief survey of a few close cousins to the EC approach

reveals that ECs and their variants are most likely to be useful
where we are trying to understand complex systems in which
experimentation with the real system is not possible or is
cumbersome. In such systems we often need to simulate
dynamical evolution, initializing from a snapshot in time or at
best a relatively short period of observation. Multiple models
of the system are possible, and which model is the correct one
is unknown. Emergent relationships across model variants are
a way to reveal the deeper connections between observable
elements of simulations and model outcomes of interest. There
are likely many more examples of EC-like research being
done on complex systems. These disparate communities
appear to be unaware of one another and could benefit from
organized efforts to convene in workshops and meetings.

VIII. CONCLUSION

The spread in climate change projections has not been
reduced substantially despite major advances in model reso-
lution and process understanding and inclusion over recent
decades. The lack of progress represents a disappointment for
climate science and hinders society’s ability to plan for future
impacts. These challenges cannot be overcome by simply
increasing the resolution of ESMs and including more
physical and biogeochemical processes. A balanced interplay
of observations as well as top down, conceptual and bottom
up, comprehensive modeling and theory is required to achieve
the required progress and scientific understanding. In this
review, we have argued that the EC approach offers a
promising way to incorporate all of these elements and
ultimately reduce key uncertainties in the future climate.
The development of ECs has arisen from the requirement to

reduce often substantial inter-ESM differences in projections
of climate. Large model differences make adaption planning
difficult and risk expenditure of funds set aside to help
societies cope with climate change. For those tasked with
formulating mitigation plans that will reduce greenhouse gas
emissions in order to contain global warming, uncertainty
prevents the formation of accurate trajectories of “allowable”
fossil fuel burning. In this review, we have shown existing
applications of ECs, discussed theoretical issues surrounding
them that will likely require further investigation, and char-
acterized a few circumstances in which they may start to fail.
Nevertheless, although this seemingly points to more required
research, ECs are a key methodology to distill the often
conflicting information from climate modeling centers across
the world. For this reason, we anticipate that the application of
ECs will continue to grow, and results from their application
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will play an increasing role in projecting future change, with
strong representation in future UN reports by the IPCC.
This review has looked at how ECs have become a standard

methodology, used by climate researchers to synthesize
substantial inter-ESM prediction differences, into projections
of change with lower levels of uncertainty. We have made a
critical assessment of the EC technique, and many of the open
questions raised here may lead to exciting avenues of research
in the years ahead. It may also be true that other research
disciplines will find a role for the EC approach. However, it is
always worth recalling that the main scientific issue remains
pressing, as without substantial reductions in emissions, the
climate is expected to change substantially and to a dangerous
state for a large fraction of society. For this reason, intense
scrutiny of the EC method is highly welcome and appropriate.
The relentless need for climate predictions is also likely to
trigger the discovery of new ECs, caused instead by an
impact-led requirement for information taking precedence
over more curiosity-driven investigations.
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