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Abstract 27 

 28 

This study provides an assessment of changes in mean and extreme climate in northeast 29 

Thailand, focusing on the near-future period (2021-2050). Spatiotemporal changes in climate 30 

extremes and return values are investigated compared to 1981-2010. Climate model-related 31 

uncertainties are quantified using 14 models from the Coupled Model Intercomparison Project 32 

phase five (CMIP5) and 8 models from phase six (CMIP6). CMIP6 models have a higher 33 

sensitivity to external forcings as the CMIP6 ensemble suggests an increase in maximum and 34 

minimum temperatures by 1.45°C (0.8-1.9°C) and 1.54°C (1.1-1.9°C) under the high emission 35 

scenario, which is greater than by CMIP5 ensemble: 1.10°C (0.5-1.7°C) and 1.13°C (0.7-36 

1.6°C) respectively. No significant changes in annual rainfall are projected, although it will be 37 

temporally more uneven with decreases (6-11%) during the pre-rainy season (March-May) 38 

and increases (2-8%) during the rainy season (June-October). The bootstrap technique shows 39 

the inter-model uncertainties for rainfall projections in CMIP6 have reduced by 40% compared 40 

to CMIP5. The annual number of hot days will increase more than twofold and warm nights, 41 

more than threefold. Near-future will experience an increase in the rainfall intensity, a 42 

decrease in the number of rainy days, and an increase in the 20-year return values of annual 43 

maximum 1-day rainfall and consecutive 5-days rainfall (>30%). In addition, the rainy season 44 

will be shortened in the future as onset and retreat are delayed, which may have implications 45 

in agricultural activities in the basin since cultivation is primarily rainfed. These findings 46 

suggest that anthropogenic activities will significantly amplify the climate extremes. The study 47 

results will be useful for managing climate-related risks and developing adaptation measures 48 

to improve resilience towards potential climate hazards. 49 

 50 

Keywords: Climate change, climate extremes, uncertainties, HighResMIP, Thailand 51 

  52 



3 
 

1. Introduction 53 

 54 

Anthropogenic activities are major drivers of long-term changes in the earth’s climate system. 55 

These changes have manifested as rises in global temperature, prolonged heat spells, altered 56 

precipitation patterns, increased magnitude and frequency of extreme climatic events, rapid 57 

decline of the cryosphere, sea-level rise, etc. (IPCC, 2013). 2015-2019 was the warmest 5-58 

year period in recorded history: it was 1.1 ± 0.1 °C warmer than the per-industrial era (1850-59 

1900) and 0.20 ± 0.08 °C warmer than the 2011-2015 period (WMO, 2019). The estimated 60 

rate of temperature increase is currently about 0.2°C (between 0.1°C-0.3°C) per decade due 61 

to past and ongoing greenhouse gas emissions (IPCC, 2018). Global warming is expected to 62 

further intensify the global water cycle, exacerbate extreme events, and lead to a global 63 

redistribution of water resources at multiple temporal and spatial scales (Chen et al., 2017). 64 

Warming over the period of several decades has been attributed to changes in large-scale 65 

hydrological cycles such as atmospheric water vapor content and changes in rainfall pattern, 66 

which ultimately lead to increased flood and drought events (Bates et al., 2008). At the global 67 

scale, atmospheric warming and extreme events have been found to have a positive 68 

correlation with one another (Alfieri et al., 2017). The impacts of climate change, particularly 69 

manifested as increased frequency and severity of extreme hydro-meteorological events, will 70 

challenge the reliability of water management systems globally (Quevauviller and Gemmer, 71 

2015). 72 

 73 

Extreme climatic events are getting more intense and frequent in recent decades and are likely 74 

to worsen under climate change scenarios. Extreme rainfall events are one of the most 75 

devastating climate extremes, and they have severe implications for the environment and 76 

society (Ohba and Sugimoto, 2019; Kim et al., 2020). With increased temperature, air can 77 

hold more moisture and energy, and along with changes in large-scale atmospheric circulation 78 

patterns (Schiermeier, 2018), storms are likely to get stronger in the future. Climate change 79 

has been reported to contribute to many of the recent extreme events. Burke and Stott (2017) 80 

analyzed the data on the East Asian summer monsoon domain from 1960 to 2015 and 81 

concluded that anthropogenic climate change has led to a decrease in the summer monsoon 82 

rainfall, though most extreme rainfall events are getting more intense and shorter. Sun and 83 

Miao (2018) reported that anthropogenic climate change contributed about 35% to extreme 84 

precipitation in Yangtze-Huai, China, in June-July 2016. Kew et al. (2019) found the probability 85 

of heatwaves in southern Europe, similar to that of 2017 is at least 3.5 times higher now 86 

compared to 1950. Funk et al. (2019) found that an increase in sea surface temperatures due 87 

to human activities contributed to the East African drought of 2017. In the case of the South 88 

Asian summer monsoon, peak seasonal rainfall is found to have decreased over the period of 89 
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1951-2011; alongside, there was an increase in the variability of daily-scale rainfall, the 90 

frequency of dry spells, and the intensity of wet spells (Singh et al., 2014). In India, the length 91 

of dry spells and the total number of dry days have been increasing, along with an increase in 92 

short spell heavy rainfall events in recent decades (Mishra and Liu, 2014; Dash and Maity, 93 

2019). 94 

 95 

Several recent studies have projected an increase in the frequency and magnitude of extreme 96 

rainfall in the future (Hui et al., 2018; Ohba and Sugimoto, 2019; Adeyeri et al., 2019; Di Luca 97 

et al., 2020; Kim et al., 2020). A study by Hosseinzadehtalaei et al. (2020) in Europe projected 98 

that sub-daily extreme rainfall for 50- and 100-year return periods would be tripled by the end 99 

of the 21st century under the high emission scenario. Similarly, Wang et al. (2020) estimated 100 

that a rise in global warming by 1.5°C and 2.0°C would increase the 5-day maximum rainfall 101 

by 4.0% and 7.6%, and the rainfall in very wet days by 17.4% and 34.4%, respectively. Ali et 102 

al. (2019) found that increasing trends in temperature extremes will be higher than the trends 103 

of average temperature under all future scenarios in Pakistan. A study conducted by 104 

Pendergrass and Knutti (2018) found that almost half of the annual precipitation occurs in the 105 

12 wettest days of the year globally, and this uneven temporal distribution will be amplified in 106 

the future.  107 

 108 

Thailand is also not immune to extreme climate events as the country frequently experiences 109 

floods and droughts. Notably, the recent drought of 2015-17 resulted in an estimated damage 110 

of 3.3 billion USD (EM-DAT, 2019) and the catastrophic flooding of 2011/12, prompted by 111 

exceptional rainfall events (Limsakul and Singhruck, 2016), caused damages worth 112 

approximately 45.7 billion USD (DDPM, 2015). Climate change projection studies in Thailand 113 

have shown that temperature will continue to increase in the future; however, projections about 114 

rainfall are not unanimous (Babel et al., 2011; Pholkern et al., 2018; Shrestha et al., 2018). 115 

Some past studies show that extreme rainfall events in the future are likely to increase 116 

(Singhrattna, 2011; Komori et al., 2018; Supari et al., 2020). The assessment of mean climate 117 

for the future can provide a broad overview of climate change; however, there are also 118 

significant socio-economic impacts on society and the ecosystem due to changes in extreme 119 

events, resulting in heatwaves, droughts, storms, and floods (Swain et al., 2020; Tegegne et 120 

al., 2020). Thus, it is imperative to assess climate change beyond projected changes in the 121 

mean and emphasize changes in extreme events.  122 

 123 

Improving projections and understanding future extremes form the basis for formulating 124 

policies and addressing climate-related risks. At present, no such detailed assessment of 125 

climate extremes is available for northeast Thailand. The present study attempts to fill the 126 
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knowledge gap by providing a comprehensive assessment of climate projections in terms of 127 

changes in mean and extreme events in northeast Thailand. The near-future period (2021-128 

2050) is focused on because of its relevance to adaptation planning and action. 129 

Spatiotemporal changes in/of these extreme events are investigated using temperature and 130 

rainfall-based indices. In addition, projected shifts in the rainy season in the near-future are 131 

also investigated. To reduce uncertainties and provide a robust future projection, a subset of 132 

the climate models from the fifth and sixth phases of Coupled Model Intercomparison Project 133 

(CMIP), which have proven to be better at simulating the regional climate of the study area, 134 

are utilized. The finding of this study will be useful for updating disaster mitigation plans and 135 

policies based on projected changes in climate extremes. It will also have relevance in disaster 136 

risk reduction and disaster preparedness, infrastructure planning, and developing adaptation 137 

measures for the basin to cope with changes in climate extremes in the future. 138 

 139 

2. Study Area and Data 140 

 141 

2.1. Study area 142 

 143 

The Mun River Basin (shown in Fig. 1) is the largest in northeast Thailand and has a catchment 144 

area of about 53,800 km2. It is part of the Korat plateau, where the elevation varies between 145 

64 masl in the central region to 1,351 masl in the surrounding hills in the southwest. The basin 146 

comprises four provinces, namely Nakhon Ratchasima, Buriram, Surin, Si Sa Ket, and partially 147 

another four (Roi Et, Maha Sarakham, Khon Khen, and Ubon Ratchathani). The Mun River is 148 

one of the main tributaries of the Mekong River, which originates in the Khao Yai National 149 

Park in the Nakhon Ratchasima province. Located between 14.1 to 16.0°N latitudes and 101.2 150 

to 104.9°E longitudes, the basin experiences a tropical climate with three distinct seasons.  151 

 152 

The rainy season typically lasts from June till October, when 80% of the annual rainfall occurs. 153 

The southwest monsoonal winds from the Indian Ocean and the Intertropical Convergence 154 

Zone (ITCZ) are the main drivers of the rainy season (Singhrattna et al., 2012). However, the 155 

rainfall anomaly associated with ITCZ represents only 10% of the total rainfall that typically 156 

occurs during the monsoon season (Waliser and Jiang, 2015). Byrne et al. (2018) assessed 157 

the impacts of climate change on ITCZ characteristics using the CMIP5 models and projects 158 

no significant change in its location in the 21st century. However, 22 out of 32 models 159 

suggested ITCZ will be narrowed in the future by -0.52%/K, and its strength will reduce by 160 

0.69%/K warming. These findings show that the southwest monsoon will dominate the 161 

projected change in the rainfall in the region under climate change with little impact from a 162 

changing ITCZ. Similarly, the winter season in the basin occurs due to the northeast monsoons 163 
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bringing in cool and dry winds from November to February, and  the pre-rainy season goes on 164 

from March to May. April is the hottest month with an average temperature of about 30.6°C, 165 

while December is the coolest month with an average temperature of 20.2°C. Annual average 166 

rainfall varies between 900mm in the western parts to 1,600mm in the eastern parts of the 167 

basin.  168 

 169 

2.2. Data 170 

 171 

2.2.1. Observed climatic data 172 

 173 

The daily rainfall data collected from 43 stations in the Mun River Basin is interpolated to grids 174 

of 0.25 degrees using the inverse distance weighting (IDW) method (as shown in Fig. 1). 175 

Similarly, daily maximum temperature (Tmax) and minimum temperature (Tmin) data is 176 

acquired from the Climate Prediction Center (CPC) Global Land Surface Air Temperature 177 

Analysis (Fan and van den Dool, 2008). In addition to the CPC temperature data, Khadka et 178 

al. (unpublished data) compared two other global temperature products - ECMWF Re-Analysis 179 

land surface temperature (ERA5 - 0.25° grids) (Hersbach et al., 2020) and The Berkley Earth 180 

Surface Temperature land surface air temperature data (BEST – 1.0° grids) (Rohde et al., 181 

2013) - with the observed temperature data available at a few stations within the basin. It was 182 

found that the CPC data was closer to the observed data with an average correlation 183 

coefficient above 0.95 and a Root Mean Square Error of about 0.8°C. CPC data is available 184 

since 1979 at the spatial resolution of 0.5°; this was regridded to 0.25° using bilinear 185 

interpolation. 186 

 187 

Fig. 2 shows the observed rainfall and temperature in the Mun River Basin for 1981-2010. The 188 

annual average rainfall in the basin shows a significant spatial variation with a gradual 189 

increment from the west to the east. The Nakhon Ratchasima province in the west receives 190 

the least rainfall, while the Si Sa Ket province in the east receives the most rainfall in the basin. 191 

The average maximum and minimum temperatures in the basin vary between 32.3°C to 192 

33.3°C and 21.9°C to 23.0°C, respectively. The highest temperature has been recorded in the 193 

central part, while the lowest is in the south-western region of the basin. 194 

 195 

2.2.2. Climate model simulations 196 

 197 

This study used the multimodel ensemble from CMIP5 and CMIP6 for projecting mean and 198 

extreme climate for the near-future period (2021-2050). Khadka et al. (2021) ranked 28 climate 199 

models from CMIP5 and 32 climate models from CMIP6 for their ability to represent regional 200 
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climate in southeast Asia, with an emphasis on the simulation of the summer monsoon rainfall 201 

using 25 metrics. In the current study, 14 top-ranking models from CMIP5 and 8 models from 202 

CMIP6 under the High-Resolution Model Intercomparison Project (HighResMIP), for which 203 

data was available at the time of the analysis, have been considered. The details of these 204 

climate models used from CMIP5 and CMIP6 are provided in Table 1. For future projections, 205 

simulations for an intermediate emission scenario, RCP4.5 (Clarke et al., 2007), and a high 206 

emission scenario, RCP8.5 (Rohde et al., 2013), are considered for the CMIP5 models. In 207 

CMIP6, new socio-economic development scenarios called Shared Socioeconomic Pathways 208 

(SSPs) are used for future projections (O’Neill et al., 2017; Almazroui et al., 2020). The future 209 

simulations from the HighResMIP climate models are available for SSP5-8.5. The SSP5-8.5 210 

represents a high emission scenario and is similar to RCP8.5 in a radiative forcing pathway 211 

(Kriegler et al., 2017).  212 

 213 

Biases in the temperature and rainfall represented by the multimodel ensemble (MME) of 214 

CMIP5 and CMIP6 during the 1981-2005 period are presented in Fig. 2. Both CMIP5 and 215 

CMIP6 MMEs have spatially consistent negative biases for Tmax and Tmin. It can be seen 216 

from the subplots 2d, e, g, and h that the biases for Tmax have reduced in the CMIP6 MME 217 

(average of -1.4°C) compared to the CMIP5 MME (average of -2.0°C). However, no 218 

improvements can be seen for the Tmin, and the biases are slightly higher in CMIP6 MME 219 

(average of -1.5°C) than CMIP5 MME (average of -1.1°C). The biases in the MME rainfall for 220 

both CMIPs are less consistent within the basin (Fig. 2f and i). The CMIP5 MME has an 221 

average wet bias of 149mm/year, while the CMIP6 MME has a dry bias of -81mm/year. 222 

Moreover, CMIP5 MME shows higher (wet) rainfall biases in the western part of the basin 223 

while less (or dry) biases in the eastern part, while CMIP6 MME show less (or dry) biases in 224 

the western part and higher (dry) biases in the eastern part of the basin. The results show 225 

some improvements in simulating the observed climate (rainfall and temperature) by CMIP6 226 

MME. Higher spatial resolutions in the CMIP6 model could be one of the reasons for the 227 

improvement. However, the results may have also been affected by the different number of 228 

models considered from CMIP5 and CMIP6. 229 

 230 

3. Methodology 231 

 232 

3.1. Bias correction using quantile mapping for future projections 233 

 234 

Since all climate models inherit systemic biases, it is imperative to remove such biases before 235 

these models are applied in climate change studies. Bias correction techniques vary in method 236 

and purpose: simple linear scaling (Lenderink et al., 2007) corrects the monthly mean; power 237 
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transformation (Leander and Buishand, 2007) and variance scaling (Chen et al., 2011) correct 238 

the mean and the variance; quantile mapping (Ines and Hansen, 2006) corrects the higher-239 

order moments of the distribution. Comparative analyses of various bias correction methods 240 

have found that quantile mapping is superior for temperature and rainfall other methods 241 

(Teutschbein and Seibert, 2012; Teng et al., 2015; Smitha et al., 2018); hence, we adopted 242 

this method in the study. The basic concept of quantile mapping is to compare the cumulative 243 

distribution function (CDF) of the climate model with that of observed data for the reference 244 

period and generate the correction function, which is then applied for a future time series. It 245 

can be expressed as 246 

 247 

𝑉𝑎𝑟(𝑐𝑜𝑟),𝑖 = 𝐹𝑜𝑏𝑠
−1(𝐹𝐺𝐶𝑀(𝑉𝑎𝑟(𝑟𝑎𝑤),𝑖)) ... 1 248 

  249 

Where Var refers to any climatic variables such as temperature or rainfall from a climate model 250 

for any day i; Fobs
-1 and FGCM are the inverse CDF of the observed climatic variables and the 251 

CDF of the corresponding output from the climate model during the reference period. 252 

 253 

Bias correction of rainfall data is carried out using empirical distribution, which avoids 254 

assumptions about distribution fitting and corrects rainfall intensity and frequency (Boé et al., 255 

2007; Themeßl et al., 2011). This method is more effective in reducing biases than using 256 

theoretical distribution (Gudmundsson et al., 2012). For future rainfall values larger than those 257 

during the reference period, a correction factor for the highest quantile is used (Boé et al., 258 

2007; Themeßl et al., 2012). Bias correction of temperature (both maximum and minimum) is 259 

carried out using a normal distribution (Teutschbein and Seibert, 2012). Theoretical 260 

distribution is a better choice when frequent extrapolation, as in future temperature, is 261 

required. Observed data from 1979-2005 for CMIP5 and 1979-2014 for CMIP6 are used for 262 

bias correction in the current study. 263 

 264 

Daily maximum temperature (Tmax), minimum temperature (Tmin), and rainfall are projected 265 

for the near-future period of 2021-2050, and the relative changes are assessed with respect 266 

to the reference period of 1981-2010. Considering the climate models and the emission 267 

scenarios, future projections in the study consist of three cases:  268 

 269 

(i) Case A: CMIP5 multi-model ensemble under RCP4.5 scenario  270 

(ii) Case B: CMIP5 multi-model ensemble under RCP8.5 scenario  271 

(iii) Case C: CMIP6 multi-model ensemble under SSP5-8.5 scenario  272 

 273 
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Case B and Case C allowed for comparison between CMIP5 and CMIP6 models under high 274 

emission scenarios. Inter-model uncertainty (IMU) is estimated as the standard deviation (SD) 275 

of the projected changes from the climate model ensemble (Hawkins and Sutton, 2012; Gu et 276 

al., 2019) given by 277 

 278 

𝐼𝑀𝑈 = √
1

𝑛
∑ (𝑀𝑖 − 𝑀̅)2𝑛

𝑖=1   ... 2 279 

 280 

where ‘𝑀̅’ is the ensemble mean projected change, and n is the number of climate models. 281 

IMU is expressed as a deviation from the ensemble average (in °C for temperature and mm 282 

for rainfall). 283 

 284 

3.2. Climate extreme analysis using ETCCDI 285 

 286 

The Expert Team on Climate Change Detection and Indices (ETCCDI), a collaboration 287 

between the World Meteorological Organization (WMO), Commission of Climatology (CCI), 288 

and the Climate Variability and Predictability project (CLIVAR), has identified 27 indices for 289 

climate extremes (Peterson, 2005; Zhang et al., 2011). These temperature and rainfall-based 290 

indices are often used in climate change impact studies and to detect changes in climate 291 

extremes (Adeyeri et al., 2019; Chen et al., 2020; Kim et al., 2020). In this study, 14 extreme 292 

indices (5 for temperature and 9 for rainfall) are used to assess projected changes in climate 293 

extremes for the near-future period. The details of these indices are presented in Table 2.  294 

 295 

The indices are computed on an annual basis for reference and future periods. The Mann-296 

Kendall (M-K) trend test (Mann, 1945; Kendall, 1975) is applied to assess the trends in climate 297 

indices. It is a rank-based test that employs Kendall Tau to measure the monotonic 298 

relationship between the variables and is not sensitive to whether the trend is linear or non-299 

linear (Hisdal et al., 2001). The test is nonparametric and independent of the distribution of 300 

the data. Trends are tested at a 95% significance level (p<0.05). The magnitude of the trends 301 

is quantified using Sen’s slope estimator, a nonparametric procedure (Sen, 1968). The method 302 

computes the linear trend of the time series as a median value of slopes between all data 303 

pairs. 304 

 305 

3.3. Onset and retreat of the rainy season 306 

 307 

The onset and retreat dates of the rainy season are estimated using the cumulative daily 308 

anomaly of average rainfall in the basin, following Noska and Misra (2016) and Misra et al. 309 
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(2018). The onset date of the rainy season for a given year is defined as the day after the 310 

cumulative anomaly reaches the absolute minimum, and the retreat date is defined as the day 311 

on which the cumulative anomaly reaches the absolute maximum. The cumulative anomaly 312 

for the day i of the year m is computed as 313 

 314 

𝐶′
𝑚(𝑖) = ∑ [𝑅𝑚(𝑛) − 𝐶̿]𝑖

𝑛=1  ... 3 315 

 316 

where  𝐶̿ = 1
𝑀𝑁⁄ ∑ ∑ 𝑅𝑚(𝑛)𝑁

𝑛=1
𝑀
𝑚=1 ... 4 317 

 318 

Rm(n) is the daily average rainfall for the day i of year m in the basin and C  is the climatology 319 

of annual average rainfall over N days in M years.  320 

 321 

The onset and retreat dates are computed for each year during the reference and the future 322 

periods using observed and climate model simulated rainfall data. 323 

 324 

3.4. Probability distribution 325 

 326 

To analyze more extreme climate statistics, the annual time series of TXx, TNx, RX1day, and 327 

RX5day are fitted into the Generalized Extreme Value (GEV) distribution, and the magnitudes 328 

of 20-year return period events during the reference and the near-future periods are estimated. 329 

GEV distribution has been extensively applied for climate extremes (Kharin et al., 2013; Kim 330 

et al., 2020). The CDF of GEV distribution is given by: 331 

 332 

𝐹(𝑥|𝜇, 𝜎, 𝑘) = {
𝑒𝑥𝑝[−𝑒𝑥𝑝(−

𝑥 − 𝜇
𝜎⁄ )], 𝑘 = 0

        𝑒𝑥𝑝 [−{1 + 𝑘(
𝑥 − 𝜇

𝜎⁄ )}
−1

𝑘⁄
] , 𝑘 ≠ 0

 ... 5 333 

 334 

Where μ, σ, and k are the location, scale, and shape parameters, respectively. The parameters 335 

are estimated using probability-weighted moments (Greenwood et al., 1979; Hosking et al., 336 

1985). 337 

 338 

4. Results and Discussion 339 

 340 

4.1. Projected change in mean climate 341 

 342 
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Fig. 3 and Table 3 present the projections of monthly and annual spatially-averaged Tmax, 343 

Tmin, and rainfall for the near-future period using the multimodel ensembles from CMIP5 and 344 

CMIP6. In the three cases (CMIP5 under RCP4.5, CMIP5 under RCP8.5, and CMIP6 under 345 

SSP5-8.5), the temperature is projected to rise in all the months in the near-future period, and 346 

the projected increase in Tmin is higher than Tmax. A higher rise in temperatures will be 347 

observed from March to May, while the least increase will occur from September to January, 348 

as suggested by CMIP5. However, CMIP6 models show the highest Tmin increment during 349 

November and December. The average increases in Tmax and Tmin suggested by CMIP5 350 

multi-models are, respectively, 0.95°C and 0.97°C under the intermediate emission scenario 351 

and 1.10°C and 1.13°C under the high emission scenario. Similarly, the CMIP6 multimodel 352 

average indicates an increase of 1.29°C and 1.37°C in Tmax and Tmin relative to the 353 

reference period. As is evident, CMIP6’s estimates are higher than CMIP5’s projections. 354 

These results are similar to the findings by Almazroui et al. (2020) for South Asia, where 355 

temperature projections by CMIP6 models are 1-3°C higher than those by CMIP5 models for 356 

the 21st century. Zelinka et al. (2020) found that the increased sensitivity of CMIP6 models to 357 

external forcings is mainly due to stronger positive cloud feedback from decreasing low cloud 358 

coverages and albedo. The increased feedbacks are more prominent in the extratropics. 359 

 360 

Unlike the temperature projections, monthly rainfall projection bands do not show any definite 361 

direction of future changes (Fig. 3g, h, and i), indicating high variability among the models’ 362 

projections. However, using the multimodel average, we can estimate that monthly rainfall will 363 

decrease during the pre-rainy season (March to May) and increase during the rainy season 364 

(June to October) and the cool season (November to February). The pattern is consistent for 365 

CMIP5 and CMIP6 as well as for different cases. Overall, annual rainfall is projected to 366 

increase by 3% (37mm) for Case A, 4% (48mm) for Case B, and 0.5% (6mm) for Case C in 367 

the near-future. 368 

 369 

Annual anomaly time-series of Tmax, Tmin, and rainfall for the reference and the near-future 370 

periods are shown in Fig. 4. During the reference period, trends of 0.018°C/year, 371 

0.023°C/year, and 4.37mm/year are observed for Tmax, Tmin, and rainfall, respectively. 372 

However, only the temperature trends are significant at a 95% confidence level (CL). In the 373 

near-future, temperature shows strong increasing trends, significant at 95% CL. The CMIP6 374 

multimodel average shows the highest trends for temperatures (about 0.05°C/year), while the 375 

trends are the lowest for the CMIP5 multimodel average under RCP4.5 (Case A). For rainfall, 376 

though all cases show increasing trends, they are significant only for Case B (4.91mm/year).  377 

 378 
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Spatial patterns for projected changes are presented in Fig. 5. Tmax does not show 379 

considerable spatial variation in any cases, though the highest temperature rise can be seen 380 

in the western part (the Nakhon Ratchasima province) and the south-eastern part (the Si Sa 381 

Ket province). For Tmin, the highest increase is in the eastern part (Surin, Roi Et, and Si Sa 382 

Ket provinces). The increase is close to 2°C (for Case C), compared to the reference period. 383 

The spatial pattern for projected change in rainfall shows variations in the basin within the 384 

range of -3% to +9%. Case A projects a decrease in rainfall for some locations in the western 385 

parts of the basin (Fig. 5g), while the highest projected increase is in the central part. A similar 386 

spatial pattern can also be seen for Case B, although with a higher percentage change. Mixed 387 

patterns are observed for Case C, with a projected decrease in rainfall (up to 3%) in the 388 

northwest and southeast of the basin. In all the cases, the highest increase is expected in the 389 

central part of the basin, while the western part (Nakhon Ratchasima) will observe the least 390 

change(increase or decrease) in annual rainfall. 391 

 392 

The spatial pattern of Inter-model uncertainty (IMU), expressed as one standard deviation 393 

(SD) from the multimodel average, is presented in Fig. 6. Variations in IMU for temperature 394 

projections by the CMIP5 models lie between 0.20°C to 0.36°C and are found to be higher for 395 

Tmax. Since IMU for both Tmax and Tmin is less than the projected change for the near-future 396 

period, we can conclude that there is good agreement among the models and higher 397 

confidence in the projections. Interestingly, temperature projections using CMIP6 models 398 

show larger IMU (up to 0.6°C as shown in Fig. 6c and f) than CMIP5 models, despite having 399 

fewer ensemble members. It indicates high variation in temperature projections among the 400 

ensemble members in CMIP6. 401 

 402 

In contrast, IMU for rainfall is larger in the CMIP5 ensembles than in the CMIP6 ensembles 403 

(Fig. 6g, h, and i). IMU for CMIP5 under RCP8.5 (Case B) ranges from 69mm to 158mm in 404 

the basin, while for CMIP6 (Case C), it varies between 42mm and 97mm. One argument could 405 

be that the reduced IMU in CMIP6 is because of fewer models considered (8 in CMIP6 406 

compared to 14 in CMIP5). To address this issue, we applied the bootstrap technique for 407 

CMIP5 models in which 8 models are sampled from a pool of 14 models without replacement, 408 

and the corresponding IMU is calculated. The procedure is repeated 1,000 times to generate 409 

1,000 realizations for statistics. From these 1,000 sets, it is found that the minimum IMU in the 410 

basin has an average value of 62mm (with SD of 10mm) and an average maximum value of 411 

156mm (with SD of 19mm). These values of IMU are not very different from those calculated 412 

using the 14 models and are still higher than the IMU for the CMIP6 multimodel ensemble. 413 

Thus, analysis shows that the models’ uncertainties for rainfall projection in CMIP6 have 414 

reduced compared to CMIP5. Nevertheless, the IMU for rainfall in all cases is significantly 415 
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higher than the projected changes in the near-future period, which implies that rainfall 416 

simulations by these climate models do not have the same level of confidence as for 417 

temperature.  418 

 419 

4.2. Projected changes in climate extremes 420 

 421 

Fig. 7 presents the projected changes in the climate extremes using ETCCDI indices 422 

compared to the baseline period using model ensemble. There is an explicit agreement among 423 

the cases that temperature extremes will increase in the near-future and will be more than in 424 

the mean temperature (Fig. 7a and b). A 20-year return value of Tmax and Tmin are projected 425 

to increase on average by 2.3, 2.4, and 3.3°C and 1.7, 2.0, and 1.8°C for Case A, Case B, 426 

and Case C, respectively. In all cases, the increase in TN90p is higher than TX90p, which 427 

means a higher frequency of warm nights. It is similar to the findings of Ali et al. (2019). Model 428 

ensembles for Case A, Case B, and Case C show that TX90p will increase by 29, 33, and 38 429 

days; TN90p will increase by 78, 90, and 110 days; and WSDI will increase by 26, 29, and 32 430 

days in the near-future. The spread among the model projections is higher for Case C. 431 

 432 

Projections for the changes in the rainfall extremes are presented in Fig. 7c and d. SDII in the 433 

near-future will increase 5-10%. While few GCMs project decrease in the R95p and R99p, the 434 

ensemble average suggests an average increase of 4-6% and 8-11%. The 20-year RVs of 1-435 

day and 5-day maximum rainfall are expected to increase by 30-35% and 30-50%, 436 

respectively. Similarly, R20 and R40 are also projected to slightly increase (1-5 days) in the 437 

future. Interestingly, the annual number of rainy days is projected to decrease by 7, 8, and 6 438 

days for Case A, Case B, and Case C, respectively. Model ensembles suggest there will be 439 

no change in CDD, although the projected range by individual models varies between -13 to 440 

+23 days. Annual CWD is projected to increase marginally (1-3 days). 441 

 442 

The spatial patterns of the projected changes in the climate extremes based on the ensemble 443 

average are presented in Fig. 8, Fig. 9, and Fig. 10. TX90p is projected to increase between 444 

25-33, 29-37, 34-44 days, and TN90p is projected to increase between 69-88, 80-100, and 445 

90-135 days for Case A, Case B, and Case C, respectively. The central part of the basin will 446 

observe a higher increase in TX90p, while the southern part will observe a higher increase in 447 

TN90p. In addition, WSDI will increase by 21-33 days for Case A, 23-37 days for Case B, and 448 

26-40 days for Case C in the basin. These results are suggestive of increased hot days 449 

frequency in the near-future. 450 

 451 
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All cases suggest increment in the future SDII, particularly in the northern and western parts 452 

of the basin (up to 16, 18, and 11% for Case A, Case B, and Case C, respectively). The 453 

number of rainy days will also decrease (Fig. 9n, o, and p), which is more prominent in the 454 

western part. CMIP5 models show that a higher increase in R95p and R99p will occur in the 455 

western parts (Nakhon Ratchasima and Buriram provinces) under both scenarios. In contrast, 456 

the CMIP6 model ensemble shows the highest increases in the southern part of Nakhon 457 

Ratchasima and Si Sa Ket provinces. CMIP5 models show that an increase in CDD will occur 458 

over a larger area and to greater magnitudes than CMIP6 models, although both sets of 459 

models agree that the decrease will be more in the western part of the basin. In some areas 460 

in the Nakhon Ratchasima province, the projected increase in CDD is up to 13 days. These 461 

are the exact locations where extreme rainfall is also projected to increase in the future. It 462 

implies that future rainfall will be temporally more uneven, resulting in increased severity for 463 

both extremities (wet and dry). 464 

 465 

4.3. Analysis of climate trends for the reference and the near-future periods 466 

 467 

Trends for Tmax, Tmin, and rainfall during the reference and the near-future periods are 468 

shown in Fig. S1 (Supplementary Material). For the reference period, spatially, the trends for 469 

Tmax and Tmin vary between 0.01 – 0.04°C/year and 0.01 – 0.03°C/year, respectively. Trends 470 

are more robust in the northeast and southwest for Tmax, while they are stronger in the 471 

western part of the basin for Tmin. The spatial variation of these trends appears to reduce in 472 

future projections. The near-future trends for Tmax and Tmin are projected to be between 473 

0.014-0.020°C/year and 0.021-0.030°C/year for Case A and between 0.021-0.027°C/year and 474 

0.029-0.039°C/year for Case B, respectively. Compared to CMIP5, CMIP6 models project 475 

significantly higher trends (0.042-0.057°C/year for Tmax and 0.048-0.064°C/year for Tmin). 476 

The annual average rainfall during the reference period also shows slightly increasing trends 477 

in most of the grids (Fig. S1i), and the results from the CMIP5 multimodel ensemble indicate 478 

that the increasing trend will prevail in the near-future period as well (trends under RCP8.5 479 

are higher and up to 10 mm/year in the east). No significant trend is observed for most of the 480 

grid points using the CMIP6 multimodel ensemble.  481 

 482 

Temperature extremes also show robust increasing trends (presented in Fig. S2 -483 

Supplementary Material), particularly for TN90p. The spatial patterns of rainfall extremes 484 

trends are not as consistent or prominent as the temperature, although the variabilities will 485 

reduce in the near-future (Fig. S3 – Supplementary Material).  The significance of the trend 486 

analysis for the climate indices is checked at 95% CL for each grid point. Fig. 11 is a boxplot 487 

providing information on the number of grids for which the trends are significant in the climate 488 
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model ensemble during the reference and the near-future periods. The number of grids with 489 

trends significant at 95% CL is higher for temperature indices than the rainfall indices. During 490 

the reference period, the trends significant at 95% CL for annual Tmin are observed in 91 grids 491 

(entire basin) while they are significant in 75 grids for annual Tmax and 29 grids for annual 492 

rainfall. The number of grid points with trends significant at 95% CL for annual rainfall will be 493 

less in the future compared to the reference period For temperature indices, number of grids 494 

with significant trends will increase for all cases while for rainfall indices, only a few grids 495 

(below 20) have significant trends. Further details on the trend analyses can be referred in the 496 

Appendix S1 (Supplementary Material). Overall analyses suggest more confidence in the 497 

increase in temperature extremes than in rainfall extremes. It is also evident that temperature 498 

extremes will be felt across a larger spatial extent. 499 

 500 

4.4. Projected changes in the onset and retreat of the rainy season 501 

 502 

The simulations of the onset and retreat dates of the rainy season vary significantly among 503 

the climate models during the reference period. While the median onset date for the 504 

observation is 27 April, most climate models (10 out of 14 CMIP5 and 4 out of 8 CMIP6 GCMs) 505 

show the late onset of the rainy season (Fig. 12). Similarly, the median retreat dates are early 506 

for 12 out of 14 CMIP5 and all 8 CMIP6 climate models compared to the observed date (16 507 

October) for the reference period. In general, climate models appear to simulate a shorter 508 

rainy season than the observed data suggests. The variability of the onset date, measured by 509 

inter-quartile range (IQR), for most climate models is also higher than the observed data. 510 

However, the variability is comparable for the retreat dates.  511 

 512 

In the near-future period, projections using climate models show a general trend of delay in 513 

the onset of the rainy season. The projected changes in the median value of the onset, retreat, 514 

and length of the rainy season are presented in Fig. S4 (Supplementary Material). For Case 515 

A, 9 out of 14, for Case B, 11 out of 14, and for Case C, 6 out of 8 models show a delay in the 516 

onset dates compared to the respective median dates during the reference period. Similarly, 517 

median values also show that for Case A, 10 out of 14, for Case B, 9 out of 14, and for Case 518 

C, 4 out of 8 models predict  a late retreat of the rainy season in the near-future period. 519 

However, results from most of the models show a reduction in the length of the rainy season. 520 

For Case A, 9 models show a decrease in the rainy season length on average by 9 days; Case 521 

B, 6 models show an average decrease of 5 days, while 8 models show an average increase 522 

of 5 days; Case C, 5 models show an average decrease of 13 days. Among CMIP5 models, 523 

FGOALS-s2 and MIROC5 show the most changes in the onset and retreat dates, while similar 524 
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changes are exhibited by CNRM-CM6-1, EC-Earth3P-HR, and HadGem3-GC31-MM in 525 

CMIP6.  526 

 527 

Fig. 12 also suggests that variability (especially for the onset date) in the near-future period 528 

will be significantly more than during the reference period. With the reduced length of the rainy 529 

season and increased variabilities in the onset and retreat dates, future rainfall is likely to have 530 

more extremes (as previously suggested by the extreme indices). The projected changes in 531 

the onset date of the rainy season will not only have implications for climate extremes and 532 

severely affects agricultural activities in the basin since cultivation here is primarily rainfed.  533 

 534 

4.5. Return periods of annual maxima of temperature and rainfall 535 

 536 

Spatial patterns of 20-year return period values (RVs) for TXx, TNx, RX1day, and RX5day 537 

during the reference and the near-future periods (using the multimodel average) are presented 538 

in Fig. 13. 20-year RVs of TXx and TNx are expected to increase by 2.30 and 1.72 for Case 539 

A, by 2.38 and 2.05 for Case B, and 3.18 and 1.87 °C for Case C. Higher increment in the RV 540 

of TXx is projected for the northwestern part (in the Nakhon Ratchasima province) while for 541 

TNx, the RV is projected for the northeastern part of the basin (in Roi Et and Si Sa Ket 542 

provinces). The results show that projected changes in RVs are greater than the average 543 

temperature changes. Similarly, RVs of RX1day and RX5day are also expected to increase in 544 

the future. The CMIP5 multimodel ensemble suggests that projected increases in RX5day will 545 

be higher than in RX1day, while the CMIP6 model ensemble shows a similar percentage 546 

increase in both extremes. RX1day and RX5day are projected to increase by 31 and 48% for 547 

Case A, 32 and 49% for Case B, and 31 and 26% for Case C in the near-future period. The 548 

RVs for rainfall are higher in the eastern part of the basin compared to the western part. 549 

 550 

The projected changes in the future rainfall can be either attributed to changes in the dynamic 551 

component (pertinent to changes in the large-scale convergence) or the thermodynamic 552 

component (pertinent to changes in the atmospheric moisture content). The Asian monsoon 553 

systems are primarily caused by shifts in atmospheric circulation (Oh et al., 2018), driven by 554 

the thermal contrast between the Euroasian landmass and the surrounding oceans (Wang et 555 

al., 2014). For the South Asian Summer monsoon (covering the study area), (Walker et al., 556 

2015) estimate that the dynamic component accounts for 92% of the annual rainfall variability 557 

while the thermodynamic component accounts for only 8%. This implies that changes in the 558 

dynamic components under climate change are the main driver of future rainfall changes. In 559 

addition, Sørland and Sorteberg (2015) and Sudharsan et al. (2020) reported that changes in 560 

dynamics also dominate changes in the extreme rainfall event over the South Asian Monsoon 561 
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domain. Under the climate change scenario, Dairaku and Emori (2006) also found that 562 

extreme rainfall over the South Asian landmass will be enhanced due to changes in the 563 

dynamics. In the case of the study area, although the annual rainfall is not projected to change 564 

significantly in the future, extreme rainfall events (as indicated by SDII, R95p, R99p, RX1day, 565 

and RX5day) will increase and are likely to be contributed by changes in the atmospheric 566 

circulation governing the summer monsoonal rainfall. Verification of contributions of dynamics 567 

and thermodynamics changes in the extreme climate in the basin is beyond the scope of the 568 

present study and will be undertaken in future work. 569 

 570 

4.6. Inter- and Intra- CMIP comparison of near-future projections for the high emission 571 

scenario 572 

 573 

The projected mean and the extreme climate by the individual models from CMIP5 and CMIP6 574 

under the high emission scenario (RCP8.5 for CMIP5 and SSP5-8.5 for CMIP6 models) are 575 

compared. Although the numbers of models considered in CMIP5 and CMIP6 are different, 576 

the results can still show the climatic response of the models under the high emission external 577 

forcings scenario. Table 4 presents the basin’s average projected changes in mean and the 578 

extreme climate indices by each model considered in the study. The 14-member CMIP5 579 

ensemble shows that the highest increase in average temperature is projected by HadGEM2-580 

AO, FGOALS-s2, GFDL-CM3, and IPSL-CM5A-MR, while CNRM-CM5, BNU-ESM, and 581 

NorESM1-M project the lowest increases. It is also found that changes in mean temperature 582 

have strong positive correlations with changes in temperature extremes (correlation of 0.90 583 

with TX90p, 0.93 with TN90p, and 0.81 with WSDI). HadGEM2-AO projected the highest 584 

increases in temperature extremes (64, 123, and 63 days annually for TX90p, TN90p, and 585 

WSDI respectively) while CNRM-CM5 projected the lowest increases (13, 53, and 8 days 586 

annually for TX90p, TN90p, and WSDI, respectively). Similarly, like temperature indices, 587 

projected changes in average rainfall also appear to have a strong correlation with the 588 

projected changes in rainfall extremes. For instance, rainfall has a positive correlation with 589 

SDII (0.65), R20 (0.91), R40 (0.84), and wet days count (0.72), and a negative correlation with 590 

R95p (-0.51) and R99p (-0.41). No significant correlation is found with CDD and CWD. Can-591 

ESM2, IPSL-CM5A-MR, MPI-ESM-MR, and NorESM1-M show the biggest changes in rainfall 592 

extremes in the near-future period. 593 

 594 

For the 8-member CMIP6 ensemble, all the models from MOHC have projected higher 595 

increases in temperature indices, while models from CNRM have projected the least increase 596 

(same as in the CMIP5 ensemble). The correlations between average temperature changes 597 

with changes in temperature extremes are above 0.9 for CMIP5 models. Similarly, the 598 
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correlations between average rainfall changes with rainfall extremes are also more in CMIP6 599 

(0.86 for SDII, 0.98 for R20, 0.81 for R40, 0.83 for wet days count, -0.54 for R95p, and -0.60 600 

for R99p). It shows that an increase in average rainfall in the future will most likely be reflected 601 

as an increase in extreme rainfall. Overall, the assessment of the climate in CMIP6 shows 602 

higher temperature extremes than by CMIP5 models. However, the multimodel ensemble of 603 

CMIP6 is primarily influenced by climate models from MOHC (4 out of 8), which have projected 604 

the highest increases. For extreme rainfall indices, the CMIP6 ensemble results are less 605 

severe than the results of the CMIP5 ensemble. It is also worth noting that models which 606 

project higher severities in temperature indices show moderate severities in rainfall indices 607 

and vice-versa. 608 

 609 

5. Conclusions 610 

 611 

There is consensus among the scientific community that climate change has been contributing 612 

to many recent extreme events, and such events are likely to increase in severity and 613 

frequency in the future. Assessments of how the extremes will change under climate change 614 

scenarios can provide vital information for managing climate-related risks and developing 615 

climate change adaptation measures, ultimately helping to improve human resilience towards 616 

these potential hazards. This study provides a comprehensive assessment of the changes in 617 

mean and extreme climate conditions in northeast Thailand for the near-future period (2021-618 

2050).  619 

 620 

Climate simulations from 14 CMIP5 and 8 CMIP6 models are bias-corrected using the quantile 621 

mapping method, and the projected changes are assessed using 14 ETCCDI and 20-year 622 

return values. We found that the rate of temperature increase in the near-future will be higher 623 

than the rate observed in the recent decades, and the project changes in extremes will exceed 624 

the mean changes. Notably, the latest climate models from CMIP6 show that temperature 625 

might increase by up to 0.5°C per decade. The maximum increase in average temperature 626 

will be during the pre-rainy season months (March to May). The projected changes in annual 627 

rainfall are not as unanimous among the climate models as for temperature. Only about half 628 

of the climate models from both phases suggest an increase in annual rainfall. Though no 629 

significant change in annual average rainfall is projected, monthly climatology shows that 630 

rainfall will decrease during the pre-rainy season (March to May) and increase during the rainy 631 

season (June to October). For temperature, model-related uncertainties (assessed using IMU) 632 

are higher in CMIP6 than CMIP5, although the projected temperature changes in both CMIP 633 

phases are much more significant than the uncertainties. For rainfall, model-related 634 

uncertainties are reduced in CMIP6 (by 40%); however, they are still larger than the projected 635 
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changes. As rainfall involves complicated physical processes, feedback, and interactions 636 

among various climate system components, it may not be fully represented by current climate 637 

models. Moreover, rainfall often occurs at a spatial extent smaller than a climate model’s 638 

resolutions. So, rainfall projections are associated with larger uncertainties than temperature. 639 

In CMIP6, an improved resolution of the models could be a reason for reduced IMU for rainfall 640 

than in CMIP5 models.  The reduced length of the rainy season, along with the increased 641 

variability in the onset and retreat dates, will certainly have implications for future extremes 642 

and agricultural activities in the basin. 643 

 644 

Significant increases in TX90p, TN90p, and WSDI are projected for the near-future period, 645 

especially under high emission scenario and by CMIP6 climate models. Increases in Tmin 646 

indices are higher than those for Tmax, suggesting that warmer nights in the future will heavily 647 

contribute to the rise in temperature. The results also suggest that hot spells will be more 648 

frequent and more prolonged in the near-future period. The magnitude of extreme rainfall is 649 

also expected to increase, although the projected increase by CMIP6 models is smaller than 650 

by CMIP5 models. All the CMIP6 models (except HadGem3-GC31-HM) project that average 651 

rainfall intensity will increase in the future, and most of the models (10 out of 14 CMIP5 and 7 652 

out of 8 CMIP6) indicate a decrease in the annual number of rainy days, by as much as 15 653 

days. Along with these, the projected increase in R20, R40, R95p, and R99p points towards 654 

the temporal redistribution of rainfall, which will result in increased severity of both rainfall 655 

extremities (wet and dry). The multimodel ensembles used here also suggest that the 20-year 656 

RV of RX1day and RX5day will increase by more than 30%. It will have severe implications 657 

for the design of infrastructure since the current design criteria may prove inadequate.  658 

 659 

This study has provided an assessment of climate extremes based on multimodel ensembles 660 

from CMIP5 and CMIP6. The present work can be taken further to assess impacts on the 661 

basin’s hydrology and for developing appropriate water resources management strategies. 662 
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Table 1: Details of climate models selected from CMIP5 and CMIP6. 927 

 928 

S.N. Model Designation Modeling Group 
Atmospheric 
resolution (lat 

× lon) 

Number 
of vertical 

levels 

Ensemble 
member 

  CMIP5         

1. ACCESS1-0 
Commonwealth Scientific and Industrial 
Research Organization (CSIRO) and 
Bureau of Meteorology (BOM), Australia  

1.25° × 1.875° 38 r1i1p1 

2. BNU-ESM Beijing Normal University 2.8° × 2.8° 26 r1i1p1 

3. CanESM2 
Canadian Centre for Climate Modelling 
and Analysis 

2.8° × 2.8° 35 r1i1p1 

4. CCSM4 
US National Center for Atmospheric 
Research 

0.9° × 1.25° 27 r1i1p1 

5. CMCC-CM 
Centro Euro-Mediterraneo per I 
Cambiamenti Climatici 

0.75° × 0.75° 31 r1i1p1 

6. CNRM-CM5 

Centre National de Recherches 
Meteorologiques / Centre Europeen de 
Recherche et Formation Avancees en 
Calcul Scientifique 

1.4° × 1.4° 31 r1i1p1 

7. FGOALS-s2 

The State Key Laboratory of Numerical 
Modeling for Atmospheric Sciences and 
Geophysical Fluid Dynamics, The 
Institute of Atmospheric Physics 

1.7° x 2.8° 26 r1i1p1 

8. GFDL-CM3 
NOAA Geophysical Fluid Dynamics 
Laboratory 

2° × 2.5° 24 r1i1p1 

9. HadGEM2-AO 
National Institute of Meteorological 
Research/ Korea Meteorological 
Administration 

1.25° x 1.875° 60 r1i1p1 

10. HadGEM2-ES UK Met Office Hadley Centre  1.25° × 1.875° 38 r1i1p1 

11. IPSLCM5A-MR Institut Pierre-Simon Laplace, France 1.25° × 2.5° 39 r1i1p1 

12. MIROC5 

University of Tokyo, National Institute for 
Environmental Studies, and Japan 
Agency for Marine-Earth Science and 
Technology  

1.4° x 1.4° 40 r1i1p1 

13. MPI-ESM-MR 
Max Planck Institute for Meteorology 
(MPI-M) 

1.875° × 
1.875° 

95 r1i1p1 

14. Nor-ESM1-M Norwegian Climate Centre 1.9° × 2.5° 26 r1i1p1 

  CMIP6         

1. CNRM-CM6-1 

Centre National de Recherches 
Meteorologiques  (CNRM)/ Centre 
Europeen de Recherche et Formation 
Avancees en Calcul Scientifique 

1.4° x 1.4° 91 r1i1p1f2 

2. CNRM-CM6-1-HR 

Centre National de Recherches 
Meteorologiques (CNRM) / Centre 
Europeen de Recherche et Formation 
Avancees en Calcul Scientifique 

0.5° x 0.5° 91 r1i1p1f2 

3. EC-Earth3P EC-EARTH consortium 0.7° x 0.7° 91 r1i1p2f1 

4. EC-Earth3P-HR EC-EARTH consortium 0.35° x 0.35° 91 r1i1p2f1 

5. HadGEM3-GC31-HH UK Met Office Hadley Centre  0.23° x 0.35° 85 r1i1p1f1 

6. HadGEM3-GC31-HM UK Met Office Hadley Centre  0.23° x 0.35° 85 r1i1p1f1 

7. HadGEM3-GC31-MM UK Met Office Hadley Centre  0.55° x 0.83° 85 r1i1p1f1 

8. HadGEM3-GC31-LL UK Met Office Hadley Centre  1.25° x 1.875° 85 r1i1p1f1 
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Table 2: Details of ETCCDI used in the study. 930 

 931 

S.N. Index Description unit 

1. TX90p Time when daily maximum temperature > 90th percentile  day 

2. TN90p Time when daily minimum temperature > 90th percentile  day 

3. TXx 1-day maximum of daily maximum temperature °C 

4. TNx 1-day maximum of daily minimum temperature °C 

5. WSDI 
Annual count when at least six consecutive days of maximum 

temperature > 90th percentile 
day 

6. RX1day Annual maximum 1 day precipitation mm 

7. RX5day Annual maximum consecutive 5 days precipitation mm 

8. SDII The ratio of annual total precipitation to the number of wet days (≥ 1 mm) mm/day 

9. R20 Annual count when precipitation ≥ 20 mm day 

10. R40 Annual count when precipitation ≥ 40 mm day 

11. CDD Maximum number of consecutive days when precipitation < 1 mm day 

12. CWD Maximum number of consecutive days when precipitation ≥ 1 mm day 

13. R95p Annual total precipitation from days > 95th percentile mm 

14. R99p Annual total precipitation from days > 99th percentile mm 

 932 

  933 
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Table 3: Monthly and annual projected changes in Tmax, Tmin, and rainfall in the near-future 934 

period using the multimodel average of CMIP5 and CMIP6. 935 

 936 

Climatic 

variables 
Period Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Tmax 

(°C) 

1981-2010 31.23 33.67 35.56 36.3 34.66 33.64 32.99 32.41 31.9 31.27 30.74 29.97 32.86 

2021-2050 Projected change in °C 

CMIP5 - RCP4.5 0.85 0.76 1.27 1.42 1.20 0.83 1.18 1.00 0.81 0.75 0.67 0.69 0.95 

CMIP5 - RCP8.5 1.12 0.93 1.41 1.50 1.37 1.00 1.24 1.10 0.97 0.84 0.86 0.80 1.10 

CMIP6 – SSP5-8.5 1.10 1.23 1.45 1.52 1.44 1.07 1.20 1.27 1.12 1.22 1.45 1.42 1.29 

Tmin 

(°C) 

1981-2010 18.17 20.67 23.06 24.80 24.91 24.87 24.52 24.34 24.02 23.13 20.74 18.07 22.61 

2021-2050 Projected change in °C 

CMIP5 - RCP4.5 1.03 0.94 1.09 1.16 1.06 0.91 1.18 1.07 0.73 0.82 0.92 0.90 0.98 

CMIP5 - RCP8.5 1.34 1.15 1.25 1.27 1.20 1.07 1.29 1.25 0.88 0.93 1.06 0.92 1.13 

CMIP6 – SSP5-8.5 1.45 1.43 1.29 1.26 1.40 1.28 1.50 1.41 0.96 1.11 1.65 1.77 1.37 

Rainfall 

(mm) 

1981-2010 5.0 15.1 40.9 83.1 163.1 154.5 164.6 203.4 244.5 137.3 28.8 2.8 1,243 

2021-2050 Projected change in mm 

CMIP5 - RCP4.5 1.2 2.5 -2.5 -10.5 -9.9 2.1 0.6 11.2 27.6 9.3 4.2 1.6 37 

CMIP5 - RCP8.5 2.5 2.0 -6.2 -11.1 -13.3 4.5 9.0 16.4 24.9 15.2 3.6 1.2 49 

CMIP6 – SSP5-8.5 1.3 -0.5 -3.0 -8.9 -4.1 16.8 0.6 -4.4 6.2 0.8 0.1 1.4 6 

 937 
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Table 4: Comparison of projections by climate models from CMIP5 and CMIP6 for the high emission scenario. 938 

 939 

ID Climate models 

Projected changes in 
Projected changes in 20-

year return period 

Tmax Tmin Rainfall TX90p TN90p WSDI SDII R20 R40 
wet 

days 
R95p R99p CDD CWD TXx TNx RX1day RX5day 

  (units) (°C) (°C) (%) (days) (days) (days) (%) (days) (days) (days) (%) (%) (days) (days) (°C) (°C) (%) (%) 

  CMIP5                                     

1. ACCESS1-0 1.22 1.17 -6.7% 51 106 51 10% -0.2 0.5 -17.9 5.0% 2.5% -4 4 1.18 1.81 10% 30% 

2. BNU-ESM 0.75 0.92 12.1% 21 95 15 11% 2.7 1.8 0.8 1.4% 0.8% 16 7 1.79 1.55 18% 56% 

3. Can-ESM2 1.20 1.16 14.3% 37 98 26 20% 4.1 1.9 -5.4 3.1% 2.3% -11 1 2.51 2.10 44% 53% 

4. CCSM4 1.04 0.75 -1.0% 17 68 16 4% 0.1 0.0 -6.5 1.5% 0.9% 4 1 2.82 1.41 21% 33% 

5. CMCC-CM 1.01 1.24 1.9% 29 82 27 15% 2.1 1.4 -14.0 4.2% 1.7% 23 1 1.86 2.36 22% 13% 

6. CNRM-CM5 0.47 0.81 10.5% 13 54 8 8% 1.4 0.8 2.1 0.5% 1.7% -13 0 1.38 1.72 85% 63% 

7. FGOALS-s2 0.91 1.44 -3.8% 31 119 23 7% -0.5 0.9 -11.9 5.6% 3.7% -1 0 2.69 3.14 28% 44% 

8. GFDL-CM3 1.56 1.46 -0.8% 46 116 40 10% 1.1 0.5 -12.6 3.3% 1.5% 6 7 2.91 2.32 19% 69% 

9. HadGEM2-ES 0.87 0.90 -10.1% 30 70 35 3% -1.6 -0.3 -16.1 4.6% 2.6% 1 1 0.34 0.63 19% 29% 

10. HadGEM2-AO 1.71 1.59 -2.9% 65 124 63 3% -1.7 0.1 -7.7 2.4% 2.6% -5 2 2.17 2.11 26% 35% 

11. IPSL-CM5A-MR 1.50 1.15 12.0% 45 110 38 21% 3.3 1.8 -9.7 3.0% 2.2% 2 7 5.10 2.93 82% 129% 

12. MIROC5 0.95 1.23 6.7% 26 79 19 4% 1.4 0.5 2.5 -1.3% -0.6% 0 6 2.45 2.49 11% 24% 

13. MPI-ESM-MR 1.18 1.29 10.6% 33 78 29 20% 3.6 2.1 -8.7 3.4% 1.9% 13 1 2.63 2.53 24% 33% 

14. NorESM1-M 0.97 0.77 12.9% 20 63 22 12% 3.2 2.0 1.0 2.2% 1.2% -13 2 3.52 1.58 36% 72% 

  CMIP6                                     

1. CNRM-CM6-1-HR 0.99 1.12 9.9% 32 81 20 8% 3.0 0.9 1.0 -0.9% -0.5% -11 4 2.49 1.05 5% 6% 

2. CNRM-CM6-1 1.14 1.18 -1.5% 30 70 21 2% -0.5 0.2 -5.0 2.0% 1.7% -7 3 2.32 1.48 21% 33% 

3. EC-Earth3P-HR 1.18 1.42 2.1% 26 99 30 7% 1.3 0.7 -5.8 2.0% 1.2% 5 4 2.23 2.25 16% 21% 

4. EC-Earth3P 0.80 1.07 2.6% 17 67 20 7% 0.8 1.0 -4.5 2.6% 1.6% -1 2 1.86 1.65 16% 16% 

5. HadGem3-GC31-HH 1.82 1.89 -0.1% 49 141 43 5% 0.0 0.1 -6.2 2.2% 2.2% 1 -2 4.10 2.21 70% 42% 

6. HadGem3-GC31-HM 1.97 1.97 -5.2% 53 144 36 -1% -1.1 -0.4 -6.1 1.4% 1.0% -6 -2 4.17 1.80 32% 13% 

7. HadGem3-GC31-LL 1.80 1.93 2.3% 49 144 49 8% 1.2 1.0 -6.9 3.7% 2.3% -6 0 4.15 1.99 44% 46% 

8. HadGem3-GC31-MM 1.90 1.80 -5.2% 54 139 42 1% -1.2 0.1 -8.4 3.0% 2.1% -5 -2 5.18 1.94 44% 28% 

 940 


