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Abstract

Computer models are becoming increasingly common in many areas of science

and engineering; aiding in the understanding of scientific processes and providing

critical information for important decisions. These models often rely on complex

mathematics, and they can use a large amount of computing power to perform a

single simulation. This greatly limits the usefulness of these models, because many

simulations are needed for most real world problems.

A common solution to this is to train a second, statistical, model using a small

set of initial simulations. This statistical model is simpler and quicker to run (and is

often known as an emulator, with the computer model known as a simulator). This

may initially seem like a convoluted approach, but it has shown great promise and

continues to gain use in practice.

Properly designing emulators often depends on properties of the simulator in

question, and so tailoring emulators to the specific problem at hand is essential.

Stochastic simulators are one type of computer model which give randomly different

outputs each time they are run, even if they are run for the exact same scenario (i.e.

the exact same inputs). This thesis deals primarily with stochastic simulators, and

how to build and use emulators for these. These simulators can be very difficult to

build emulators for, as the emulator will need to learn both the underlying trends

and the structure of the randomness.

This thesis also uses the engineering design of buildings to exemplify some of

the issues and the developed techniques. Before a building is made, engineers can

simulate different properties of the building (such as its internal temperature), and

use that to make modifications to the design. We argue in this thesis that this process

should be done stochastically, modifying the simulators to produce random outputs

as a result of the random nature of weather (which affects the internal properties of

any building). This then provides motivation for the stochastic emulation techniques
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and also acts as an interesting case-study.

Outside of these two guiding objectives, the first three chapters in this thesis

(after the introduction) can generally be read independently: we develop techniques

for checking the quality of a stochastic emulator; we develop a methodology for

improved stochastic emulation by using deterministic (non-stochastic) simulations;

and we propose a framework for deciding on an acceptable building design. The

remaining chapters then discuss some attributes of specific emulation techniques,

and provide concluding remarks.
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Chapter 1

Introduction

1.1 Building Simulation

Before constructing a building, we sometimes want to simulate certain properties of

the building (for example, the expected heating bills for whoever owns the building)

to check that its design is fit for purpose. Additionally, simulations can be used to

help with the design of the building itself - adjusting certain properties to obtain a

better design. This can be useful for both the construction of new buildings and the

modification of existing buildings.

EnergyPlus (Crawley et al., 2000) is one such tool for simulating building designs.

Given a building design (and other attributes such as the weather conditions),

EnergyPlus calculates the energy usage of the building (as well as other properties

such as the internal temperature). Like many simulation programs, EnergyPlus can

take a non-trivial amount of time to run (with the specific time depending on the size

and complexity of the building design). This reduces the usefulness of these tools, as

more comprehensive analyses often require many simulations. A common solution (in

the wider simulation community) is to construct a surrogate model for the computer

model that is faster to run and captures most of the important relationships (Sacks

et al., 1989; Kennedy and O‘Hagan, 2001; Sullivan, 2015). To mitigate the confusion

arising from talking about two distinct models, the surrogate model is often referred

to as an emulator, and the computer model is often referred to as a simulator. This

idea is powerful, allowing more information to be learnt from the simulator, and

emulators have been built and used for building performance simulators already

(Kim et al., 2013; Yan et al., 2013; Kim and Park, 2016; Kim, 2016).
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With EnergyPlus (and other building performance simulators), there are often

many inputs that are less interesting, but are still important. For example, the

outside weather has a large impact on the specific energy performance of a building

for any given year, but it is rarely of interest on its own (it is at least not an attribute

of the building that could be changed or controlled). Similar arguments can be made

for other inputs, such as the activity of occupants inside the building. Additionally,

these ancillary inputs are often very complex and difficult to parametrise efficiently.

Together, these properties mean that these inputs are often fixed in practice. For

example, the weather is usually input as some ‘typical’ (or some reasonably extreme)

fixed values (Eames, 2016; Eames et al., 2016).

Fixing these inputs does allow those inputs of greater interest to be more easily

interrogated, especially if the fixed values are carefully chosen. However, a complete

quantification of uncertainty is lost, and so any resulting conclusions are somewhat

dubious as a result. With an emulator, one possible strategy might be to include

these ancillary inputs as standard inputs, and then perform the necessary uncertainty

analysis afterwards (Oakley and O‘Hagan, 2002), but this can greatly increase the

input dimensionality of the problem (if the ancillary inputs can be parametrised at

all).

An alternative strategy, and the one followed within this work, is to randomly

generate these ancillary inputs (for example, random weather generators are common

tools (Richardson, 1981; Peleg et al., 2017)), and use these draws as inputs to the

simulator each time it is run. This means that the simulations (when taking the

entire process as a simulation) are now stochastic: repeat simulations will produce

different outputs even when using the same inputs. This is a known way of creating

a stochastic simulator (Marrel et al., 2012).

Using a stochastic version of EnergyPlus like this better quantifies the real uncer-

tainties in the system, which may help reduce the observed performance gap between

simulated buildings and constructed buildings (Imam et al., 2017). The downside

is that stochastic systems are harder to emulate, with the emulation of stochastic

simulators its own sub-field in the wider subject of uncertainty quantification (Baker

et al., 2020b). As such, the focus of much of this thesis is on stochastic emulation

more generally.

We do note here that, more recently, there has also been introductory work

emulating a stochastic version of EnergyPlus by Wate et al. (2020). Their work

13



involves coupling a stochastic occupancy simulator with EnergyPlus, and then

using a stochastic emulator to quantify the various uncertainties, which bears many

resemblances to the initial set-up in this thesis.

1.2 Stochastic Emulation

Statistically modelling complex computer models is a widely researched idea, often

revolving around the use of a Gaussian process (Sacks et al., 1989; Kennedy and

O‘Hagan, 2001; O’Hagan, 2006). In the deterministic literature, the widespread use of

a Gaussian process is motivated by its flexibility in capturing many different possible

relationships, its comprehensive and analytical quantification of uncertainty, and

because it can interpolate observed simulations. Not all simulators are deterministic

however, and randomness (stochasticity) can also be present. This stochasticity

can be present due to approximations needed to numerically evaluate the simulator

(Herbei and Berliner, 2014), because randomness is a core attribute of the simulator

(often the case with agent based models, Johnson (2010)), or because certain inputs

are being provided randomly (as in our case). Regardless, the key attribute of such

simulators is that they provide a different output each time they are run, even if

the exact same user-defined inputs are used. This makes the standard, noiseless,

Gaussian process emulator used in deterministic problems unsuitable for stochastic

problems, where the interpolation of simulations is undesirable.

However, with deterministic problems (and indeed, in the wider statistical mod-

elling and machine learning literature, Rasmussen and Williams (2006)), it is common

to include a ‘nugget’ parameter which accounts for any noise in the data. For deter-

ministic problems, this is usually a very small value included for numerical stability

reasons (Andrianakis and Challenor, 2012), although it has also been argued to

provide improved prediction performance in general (Gramacy and Lee, 2012). Either

way, this nugget parameter is essential for stochastic problems.

For reference, the Gaussian process model formulation, with the notation that

will be used throughout this thesis, is provided below:

y(x) ∼ GP (m(x), K(x,x′) + σ2), (1.1)

where y is the simulator output for a vector of inputs x. Formally, a Gaussian process

(GP ) is a stochastic process where, for every set of inputs (x1, . . . ,xN ) and every finite
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N , the outputs (y(x1), . . . , y(xN)) are multivariate normally distributed with mean

m(x1), . . . ,m(xN)) and covariance matrix KN with entries K(xi,xj) (Rasmussen

and Williams, 2006). Less formally, the mean function m(x) captures global trends,

and can be used to provide prior beliefs about the shape of the relationship; and the

covariance function K(x,x′) captures local structures, providing a flexible overall

shape. The σ2 term is the nugget parameter in deterministic experiments, and

represents the intrinsic variance of the simulator in stochastic experiments.

Two important assumptions are made by this model with regard to stochastic

simulators. The first assumption is that the intrinsic variability of the simulator is

normally distributed. The normal assumption makes sense in deterministic settings,

where it only represents a modellers personal uncertainty (the epistemic uncertainty)

as to what future simulations could be. In stochastic settings, the nugget parameter

extends the normal assumption to also apply to the true intrinsic variance of the

simulator (the aleatoric uncertainty). This isn’t always valid, as sometimes there

can be multi-modality, high levels of skewness, or other non-Gaussian attributes.

In this thesis we (mostly) continue to make the normal assumption, as it is still

relevant for our problems, and continues to be a widely made assumption (due

in part to its attractive properties, the widespread prevalence of approximately

normally distributed quantities in practice, and its reasonable degree of robustness).

Modifications to Gaussian processes to account for non-normal output also exist,

whether this involves using a latent Gaussian process with a different likelihood

for the data (Rasmussen and Williams, 2006), or using Gaussian processes to help

non-parametrically model other distributions (Plumlee and Tuo, 2014; Fadikar et al.,

2018).

The second important assumption made is that the intrinsic variance σ2 is constant

for all x. This can also be a strange assumption to make, despite its prevalence

throughout standard statistics (for example, with linear regression). The Gaussian

process structure in Equation (1.1) can provide a flexible shape for the mean of a

stochastic simulator, but it is constrained to only a single constant value for the

variance of the stochastic simulator. For complex systems, as are often represented

with simulators, this assumption can be invalid.

Boukouvalas et al. (2014a) consider a simple parametric form for the intrinsic

variance. Whilst variance processes might (be believed to) be simpler, or of lesser

importance, than the mean process, such simple parametric forms can still be overly
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restrictive.

A more relaxed assumption, and one more intuitively consistent, is to also model

the intrinsic variance with a Gaussian process. This is not a novel concept, dating

back at least as far as Goldberg et al. (1998), with additional research attention

since (Kersting et al., 2007; Boukouvalas and Cornford, 2009; Ankenman et al., 2010;

Binois et al., 2018). Mathematically, this idea can be written as:

y(x) ∼ GP
(
m(x), K(x,x′) + σ2(x)

)
; (1.2)

log(σ2(x)) ∼ GP (mσ(x), Kσ(x,x′)),

where the logarithm of the intrinsic variance is modelled as a Gaussian process

instead of the intrinsic variance itself to enforce positivity. Prediction for new points

X∗, conditional on observed simulations y at inputs X, can then be obtained using

the standard Gaussian process predictive equations (Rasmussen and Williams, 2006):

y(X∗) | y, σ2(X∗), σ2(X) ∼ N
(
M(X∗),V(X∗)

)
; (1.3)

M(X∗) = m(X∗) +K(X∗, X)
(
K(X,X) + σ2(X)I

)−1(
y−m(X)

)
,

V(X∗) = K(X∗, X∗) + σ2(X∗)I −K(X∗, X)
(
K(X,X) + σ2(X)I

)−1
K(X,X∗),

where K(X∗, X) is a matrix whose (i, j) entry equals the covariance between the

ith row of X∗ and the jth row of X (and similarly for K(X,X), K(X∗, X∗), and

later covariance functions and matrices)), m(X∗) is a vector whose ith entry equals

the mean function value for the ith row of X∗ (and similarly for m(X), and later

mean functions and matrices), and I is the identity matrix. The predictions for the

intrinsic variance at new points can be obtained similarly:

log(σ2(X∗)) | log(σ2(X)) ∼ N
(
Mσ(X∗),Vσ(X∗)

)
; (1.4)

Mσ(X∗) = mσ(X∗) +Kσ(X∗, X)Kσ(X,X)−1
(

log(σ2(X))−mσ(X)
)
,

Vσ(X∗) = Kσ(X∗, X∗)−Kσ(X∗, X)Kσ(X,X)−1Kσ(X,X∗).

Fitting (and predicting with) this model relies on values for the intrinsic variance at

the input points (σ2(X)), which are usually unknown. If a simulation is replicated

many times, then the sample variance at the simulated input point xi can be used as

a substitute for the intrinsic variance at that point (σ2(xi)), ignoring any uncertainty

in this estimate. This is the strategy taken in Ankenman et al. (2010), with maximum

likelihood estimation used for the remaining Gaussian process parameters. This
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approach is commonly known as stochastic Kriging. The main issue with this

strategy is that many replicates are needed to obtain accurate sample estimates for

the values of σ2(xi) (in their illustrative example, Ankenman et al. (2010) start with

20 replicates at each point).

A different strategy is to treat the values of the intrinsic variance at the training

input points as a set of additional parameters which need to be learnt.

Goldberg et al. (1998) does this in a fully Bayesian way, using a Markov chain

Monte Carlo (MCMC) sampler. This approach can be effective, and does not need

replicated simulations to work. Whilst this fully Bayesian approach quantifies the

uncertainty in the variance parameters, MCMC for this complex model can be

prohibitively slow in practice.

Point estimates can instead be used for these variance parameters, which loses

the complete quantification of uncertainty, but provides increased computational

efficiency. In Chapters 3 and 4, these variance parameters (and all other Gaussian

process hyperparameters) are taken as their maximum a posteriori (MAP) estimates,

learnt using the optimizing function in Stan (Stan Development Team, 2016).

hetGP (Binois and Gramacy, 2017) provides R software for this model structure,

using the implementation from Binois et al. (2018). Their implementation again uses

point estimates for variance parameters, structuring the intrinsic variance values at

the training inputs to instead only be the predictive mean of a Gaussian process on

different latent variables.

More specifically, they express the top-level covariance function K(x,x′) as

σZC(x,x′), where σZ is an epistemic uncertainty term and C is a correlation func-

tion, and aim to learn values for λ2(x) = σ2(x)/σ2
Z . With the variance level covariance

function Kσ(x,x′) expressed in the form σgCg(x,x
′) and a zero-mean for the vari-

ance level mean function mσ(x), intrinsic variance values at inputs X∗ are taken as

log(λ2(X∗)) = Cg(X
∗, Xn) (Cg(Xn, Xn) + gR−1)

−1
∆. Here, ∆ is a vector of hyper-

parameters to be learnt (of length n), g is another parameter to be learnt, and R

is a diagonal matrix with the ith diagonal entry equal to the number of replicate

simulations for the ith training input. The added gR−1 term encourages smooth

estimates for the intrinsic variances. This formulation provides a fixed functional

form for the intrinsic variances, but again does not quantify the uncertainty in the

latent variance parameters.

The hetGP package also makes use of simplified predictive mean, predictive
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variance, and likelihood equations, which are derived to only require the inversion of

an n×n matrices (instead of the usual N ×N), facilitating computational speed-ups

when replicates are present (but still not requiring them). Maximum likelihood

estimation is then used to estimate all unknown parameters.

This implementation is used in Chapters 2 and 5.

As a general rule for stochastic emulators, even when replicates aren’t required by

the specific implementation, more simulations in general are often needed to obtain

a good emulator, due to the noisy nature of the simulations. Loeppky et al. (2009)

recommends 10 simulations per input dimension for deterministic simulators, whereas

in an investigation between different design considerations, Binois et al. (2019) uses

up to 25 times this number. More information about stochastic emulation can be

found in Baker et al. (2020b).

1.3 Thesis Outline

� In Chapter 2 we outline the importance of validating an emulator after it is

built. We also show how current diagnostic tools developed for deterministic

emulators are not always well-suited to emulators of stochastic models. We

then develop new diagnostic tools developed specifically for the stochastic

setting, which use replicated simulations to validate the mean predictions and

variance estimates separately.

� In Chapter 3 we develop the idea that a deterministic simulator and a stochastic

simulator for the same system can be linked together, providing an overall

improved emulator. EnergyPlus has both a deterministic version (the default)

and a stochastic version (where the ancillary input is randomised), providing

the motivation for this method. Stochastic simulators typically demand addi-

tional simulation, compared to deterministic simulators, to provide accurate

conclusions. Our developed method mitigates this problem, allowing capable

emulators to still be built when the simulator is complex and the simulation

budget is small.

� In Chapter 4 we return to the building performance simulator. Here, we provide

a case study, showing how a practitioner could efficiently find a set of building

designs which meet some required criteria. The developed methodology used is
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a modified version of history matching, iteratively homing in on the acceptable

buildings. This goal is different to optimisation, as a set of acceptable buildings

are found, rather than just one, allowing a practitioner to choose a final building

based on other preferences (such as its appearance or ease of construction).

� Chapter 5 is more open-ended, discussing history matching more generally, ex-

perimenting with the different options available, and comparing to alternatives.

� Chapter 6 then provides concluding remarks.
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Chapter 2

Diagnostics for Stochastic

Emulators

2.1 Introduction

Consider the toy stochastic simulator in Equation (2.1)

y(x) = sin(16x) + cos(24x) + 8x+ ε;

ε ∼ N
(
0, (0.1 + 0.9x)2

)
.

(2.1)

Figure 2.1 shows two sets of simulated data for this simulator, and their respective

emulator fits using the hetGP package.
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Figure 2.1: Two heteroscedastic Gaussian process emulators, fit to two different

datasets, both from the same stochastic simulator. Blue represents the mean and 2

standard deviation intervals from the emulator. Black represents the truth.

Also shown is the truth. It should be immediately apparent that the emulator

on the left is substantially less useful than the emulator on the right. The emulator
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on the right appears to be a fairly good substitute for the simulator, accurately

capturing the mean and variance. The emulator on the left however, fails to capture

any of the nuance in the mean, and generally overestimates the variance. In fact, as

figure 2.2 shows, the uncertainty intervals around the mean are also inaccurate, as

the true mean is regularly outside the emulator’s 95% prediction intervals for the

mean.
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Figure 2.2: The mean and 2 standard deviation prediction intervals for the mean

from the ‘bad’ emulator from the left of Figure 2.1 (in blue). Also superimposed is

the true mean of the simulator (in black).

This means that, not only is the emulator on the left less useful than the

emulator on the right, but it is also inaccurate. This type of emulator flaw, where

an overestimated intrinsic variance leads to a poor estimation of the mean, is not a

new discovery, and it has already been documented in the deterministic emulation

literature where the inclusion of intrinsic variance (for numerical reasons) can cause

this issue (Andrianakis and Challenor, 2012).

Whilst details depend on the specific application and goal, using the emulator on

the left could lead to incorrect conclusions, especially if the mean-variance structure

is important. It is therefore important that, after the construction of an emulator,

tests are done to ensure that the emulator is fit for purpose.

In practice, identifying flaws can be difficult. Problems are often of higher

dimension, and access to the truth is rarely (if ever) available, and so simple plots
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like those above cannot be used to check the quality of an emulator. However, other

checks can be done using a set of ‘validation data’ (i.e. a set of data from the

simulator, preferably not the same set used to fit the emulator), to assess the quality

of an emulator. The more the emulator’s predictions and the validation data match

up, the better confidence one can have in the emulator.

For example, standardised errors can be calculated and used to check for local

emulator misspecifications (Bastos and O‘Hagan, 2009). The standardised errors are

equal to:
y∗i −M(x∗i )√
V(x∗i )

, (2.2)

where y∗i is a validation simulation for the inputs x∗i . These should be normally

distributed with mean zero and variance 1, and so, as a rule-of-thumb, any points

with absolute value larger than 2 should be investigated as potential emulator flaws.

Plotting these against each input dimension can also be used to identify any trends

or local patterns.

Bastos and O‘Hagan (2009) also provide modified standardised errors which

account for the correlation between points, such as the Cholesky errors, which can

be calculated as:

G−1(y∗ −M(X∗)), (2.3)

where y∗ is the set of validation simulations, for inputs X∗, and G−1 is the standard

deviation matrix obtained from performing pivoted Cholesky decomposition (such

that P TV(X∗)P = GGT , G is an upper triangular matrix, and P is a permutation

matrix). These no longer have the same interpretation when plotted against input

variables, although other insights are possible (for example, when plotted against

the pivoting order, large (or small) values to the left of the plot indicate poor

variance estimation and large (or small) values to the right indicate overestimation

(or underestimation) of the correlation parameters (Bastos and O‘Hagan, 2009).

We can also use the standardised errors to plot a QQ plot, which should appear

close to a 45 degree line if the emulator is accurate.

Bastos and O‘Hagan (2009) also suggest using the Mahalanobis distance (Equation

(2.4)) to score an emulator’s predictions. Should the observed distance appear too

large or too small, then confidence in the emulator is decreased.

(y∗ −M(X∗))T (V(X∗))−1(y∗ −M(X∗)). (2.4)
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Additionally, Al-Taweel (2018) developed a similar diagnostic for checking the overall

fit of the emulator via the credible interval diagnostic. With this, for a given α, the

100α% central credible interval can be obtained from the emulator, and the number

of validation simulations which lie within this interval can be calculated (and should

be close to 100α%). This can be repeated for many values of α. Plotting these

percentages against α should then also look like a 45 degree straight line. Samples

drawn from the emulator can be used to obtain confidence bands for each credible

interval statistic, and these can be superimposed onto the plot.

After obtaining 50 validation data points from the toy simulator in Equation

(2.1), the diagnostic plots in Figure 2.3 can be obtained for the ‘bad’ emulator from

before.
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Figure 2.3: Four diagnostic plots from Bastos and O‘Hagan (2009) and Al-Taweel

(2018) for the ‘bad’ emulator. The top left is a plot of individual standardised errors

against x; top right is a plot of the pivoted Cholesky errors against the pivoting

order; bottom left is a QQ plot of the standardised errors; bottom right is a credible

interval diagnostic plot.

The Mahalanobis distance is equal to 44.95 and its reference interquartile range

(obtained by sampling data points from the emulator and calculating the Mahalanobis
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distance for them) is (43.25 55.94). In general, these diagnostics do not flag anything

wrong with the ‘bad’ emulator. A keen eye might notice that none of the standardised

errors have a larger absolute value than 2, which, with 50 validation points, is

mild evidence towards the total emulator uncertainty being too large, but small

standardised errors are often considered to be a good result. Additionally, one might

also notice some mild structure in the individual standardised errors, but this can

often be the case in good fitting 1D emulators.

As a reference point, Figure 2.4 presents these diagnostics, but for the ‘good’

emulator.
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Figure 2.4: The four diagnostic plots from Bastos and O‘Hagan (2009) and Al-Taweel

(2018) for the ‘good’ emulator. The top left is a plot of individual standardised errors

against x; top right is a plot of the pivoted Cholesky errors against the pivoting

order; bottom left is a QQ plot of the standardised errors; bottom right is a credible

interval diagnostic plot.

The Mahalanobis distance is equal to 33.09 and its reference interquartile range is

(42.90, 56.32). The ‘good’ diagnostic results are essentially indistinguishable from the

‘bad’ diagnostic results. In fact, these seem slightly worse because the Mahalanobis

distance is outside the reference interval for the ‘good’ emulator but not the ‘bad’

24



emulator. This provides evidence that the diagnostics developed for deterministic

emulators are not always appropriate for stochastic emulators. Additionally, even if

the deterministic diagnostics were to identify problems (which is possible, especially

with an abundance of validation data), it is not always clear how to properly interpret

such results. For example; a large standardised error could signify a poorly estimated

mean process, an underestimated intrinsic variance process, or both. It would

be essentially impossible to recognize an acceptably accurate mean process but

an overestimated intrinsic variance. The presence of intrinsic simulator variance

inevitably makes diagnostic tools developed for deterministic emulators (which do

not distinguish between intrinsic variance and epistemic uncertainty) less useful.

2.2 Stochastic Emulator Diagnostics

The discussion above suggests that a component-wise diagnostic procedure could

be useful; that is, specifically checking the mean and variance (and normality) of a

stochastic emulator separately and independently. With this framing, diagnostics

developed for deterministic emulators can be viewed as diagnostics for checking the

overall accuracy of an emulator.

Any diagnostic method ultimately relies heavily on the information contained

within the validation data. It is not possible to obtain values of the mean and

variance from a simulator (at least, not often), and so directly validating the mean

process and variance process is not possible. However, insights into the mean process

and variance process can be obtained by replicating simulations. Replication enables

the calculation of sample means and sample variances, which can then be compared

with the predictions and estimates from an emulator. The diagnostic tools developed

here provide techniques for using sample means and sample variances to validate

and diagnose a stochastic emulator.

We will first outline diagnostic methods for assessing the quality of the mean.

2.2.1 Assessing the Mean

Sample means cannot be directly compared with the mean of an emulator, as the

sample mean will never exactly equal the true mean even with a perfect emulator

(with no epistemic uncertainty), due to sampling variation (unless the simulator is
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deterministic). If the intrinsic variance of the simulator is quite small, or the number

of samples is very large, then this effect will be quite small. If the intrinsic variance

is large, or the number of samples is small, then a sample mean can be a poor direct

substitute for the true mean.

Luckily, if a random variable Z is normally distributed with mean µ and variance

σ2 (Z ∼ N
(
µ, σ2

)
), then the distribution of the sample mean Z̄ of n samples is known

to still be normal, but with a smaller variance (Z̄ ∼ N
(
µ, σ2/n

)
). This means that

emulator predictions for a sample mean can be easily obtained: standard Gaussian

process predictions are Gaussian (Rasmussen and Williams, 2006), and therefore, an

emulator’s prediction for the sample mean remains Gaussian, obtained via Equation

(2.5):

ȳ(X∗)|y, σ2(X∗), σ2(X) ∼ N
(
M(X∗),V(X∗)

)
; (2.5)

M(X∗) = m(X∗) +K(X∗, X)
(
K(X,X) + σ2(X)I

)−1(
y−m(X)

)
,

V(X∗) = K(X∗, X∗) + σ2(X∗)R∗ −K(X∗, X)
(
K(X,X) + σ2(X)I

)−1
K(X,X∗),

where ȳ is the sample mean, X∗ is now the matrix of input points for the validation

data, and R∗ is a diagonal matrix with entries 1/r∗i corresponding to the reciprocal

of the number of simulator runs used to calculate the ith sample mean

With this, emulator predictions for a sample mean can be obtained analytically,

which can be compared to the observed sample mean. Any mismatch then implies an

issue with the predicted mean process of the emulator. Because these predictions are

still normally distributed, all the same diagnostic techniques from the deterministic

setting remain valid, and can thus be easily re-tooled to apply to the sample means.

Obtaining different validation data for the toy stochastic simulator in Section 2.1,

this time with 10 unique x values each run 5 times, we can produce the standardised

error plot for the ‘bad’ emulator, but this time for the sample means (Figure 2.5).

This uses the same total number of validation points as the previous diagnostics

did in Section 2.1, but now it is very clear that there is a problem. Out of 10 sample

means, two lie outside the two standard deviation interval, which is unlikely to

happen by chance. Also, one of the sample mean standardised errors has a value over

three, which is an indication of a serious mismatch between the emulator and the

truth. Overall, these sample mean standardised errors provide reasonable evidence

that the emulator’s mean is inaccurate. This is good for two reasons: firstly, they

correctly identify a problem when previous diagnostics did not; secondly, they also
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Figure 2.5: Sample mean standardised errors against x for the ‘bad’ emulator.

provide information as to what is wrong with the emulator.

With knowledge of the truth (as we have access to Figure 2.2), we can see that the

two standardised errors with absolute value larger than two match up with locations

where the true mean lies outside the uncertainty bound for the emulator’s mean.

However, there is no standardised error with absolute value larger than two around

x = 0.75 which is another location where the truth and the emulator’s mean do not

match. This is because there is still residual noise in the sample means, and so not

every problem has been identified, but a substantially better job has been done than

before.

An issue with these mean diagnostics however, is that they assume we have

knowledge of the true intrinsic variance values, whereas we use the emulator’s

intrinsic variance estimates as a substitute. As a result, should the emulator’s

intrinsic variance be estimated poorly, then errors can appear in the mean diagnostics

even if there are no actual errors in the mean process, or errors may not appear in

the mean diagnostics even if there are actual errors in the mean process.

For example, if the bad emulator had estimated the intrinsic variance to be five

times larger than what it currently estimates, but was identical otherwise, the mean

27



should still be shown to be poor. However, as Figure 2.6 reveals, this is not the case.
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Figure 2.6: Sample mean standardised errors against x for the ‘bad’ emulator, if the

intrinsic variance estimates were five times larger.

With a much larger estimated intrinsic variance, the natural sample variation from

the observed sample means is much less than expected, and so no observed sample

means are unexpectedly large or small, wrongly suggesting the mean is acceptable.

This is clearly problematic, and we were lucky it did not happen naturally with the

previous example. The opposite problem can also occur, with phantom problems in

the mean appearing if the emulator seriously underestimates the variance.

To avoid this problem, we want to test the emulator’s mean in isolation and avoid

using the emulator’s intrinsic variance estimates in the validation of the mean. We

can assume the intrinsic variance process is unknown (rather than assuming it is

known and equivalent to the emulator’s intrinsic variance estimates) and instead use

the sample variances from the replicated validation simulations to obtain the sample

mean distributions (which can then be compared to the observed sample means).

Directly substituting the sample variances as a substitute for σ2(X∗) in Equation

(2.5) is likely to lead to different problems, as then the mean diagnostics would

depend on the accuracy of the sample variances (which could be more inaccurate

than the emulator’s intrinsic variance estimates). As such, the inaccuracy of the

sample variances needs to be accounted for in the predictive distributions for the

sample means. For normally distributed variables like this, when the true intrinsic
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variance is unknown and sample variances are used as a substitute, the distribution

for sample means is known and can be obtained from:

(ȳi(x
∗
i )−M(x∗i ))

√
r∗i

Ŝi
∼ tr∗i−1, (2.6)

where Ŝ2
i is the observed sample variance (Stuart and Ord, 1994). This can then be

combined with predictive samples for the mean from the emulator to obtain a new

predictive distribution for the sample means.

This distribution is no longer normal (except when r∗i is large, as then the tr∗i−1

distribution would tend towards the normal distribution, but we would not expect

this in practice), and so comprehensive diagnostics such as the standardised errors

are no longer possible. What we instead develop is an alternative to the individual

standardised errors which can be applied to any distribution.

Standardised errors (as previously and in Bastos and O‘Hagan (2009)) were a

useful diagnostic tool, as they readily show how unexpected any given simulation

is, assuming the emulator is correct. Since every standardised error should have

the same distribution (N
(
0, 1
)
), a consistent scale is obtained, making it easy to

compare and identify trends and unexpected values. It is with this consistent scale

in mind that we develop a new diagnostic.

If the probability distribution can be obtained for a given observation, such as a

sample mean or sample variance, then the cumulative distribution should be available,

and therefore one can calculate the probability of observing a value less than the

realised observation. For a sample mean, that is: P (ȳ(x∗i ) ≤ ˆ̄y(x∗i )) where ˆ̄y(x∗i ) is

the observed sample mean. Unexpectedly large observed sample means will have a

large value of P (ȳ(x∗i ) ≤ ˆ̄y(x∗i )) and unexpectedly small observed sample variances

will have a small value of P (ȳ(x∗i ) ≤ ˆ̄y(x∗i )). It is with this as a foundation that we

define the “unexpectedness” U as:

U = 2(0.5− P (Z ≤ Ẑ)), (2.7)

where Z is some random quantity (e.g. the sample mean at a given coordinate), Ẑ

is an observation for that random quantity, and 2 and 0.5 are scaling factors 1. As

P (Z ≤ Ẑ)) is bound between 0 and 1, U is always bound between 1 and -1. A large

1Note that an unexpectedness is very similar to a re-scaled p-value. We choose to use a different

term to encourage a slightly different use-case, but we do acknowledge that this difference is basically

arbitrary.
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positive value for U corresponds with an unexpectedly small value for the observation,

and thus the emulator likely overestimates Z; and a large negative value implies an

unexpectedly large value for Z and thus the emulator likely underestimates Z.

Unexpectedness values can be interpreted in much the same way as individual

standardised errors (albeit inverted). For normally distributed observations; any

U with absolute value greater than 0.95 is (roughly) the same as any standardised

error with absolute value greater than 2, as the 2 standard deviation intervals match

(roughly) with the 95% prediction intervals, and the 0.95 unexpectedness intervals

match exactly with the 95% prediction intervals. Similarly, any U with absolute value

greater than 0.995 is very unlikely and corresponds to an absolute standard error of

-2.8. Differences between the two plots in the normal case are there, especially for

the extremes, as the unexpectedness should be uniformly distributed between -1 and

1, and the standardised errors should look standard normally distributed about 0,

but a lot of information is conveyed in the same way. A good set of unexpectedness

values would not reveal any clear trend, and there should not be too many extreme

values (with the number of acceptable extreme values depending on the number of

unexpectedness values: roughly 5% of values should have an absolute value larger

than 0.95, 1% larger than 0.99 and so on).

Figure 2.7 plots the unexpectedness values against x for the ‘bad’ emulator, whilst

still assuming the emulator’s intrinsic variance to be correct (i.e. with normally

distributed sample means).

Here, the unexpectedness looks a lot like Figure 2.5 but flipped. Two unexpect-

edness values have absolute value greater than 0.95 and one is smaller than -0.995,

which again suggests the emulator’s mean is inaccurate.

The unexpectedness has been designed in such a way that the plots are flipped

compared to the standardised error plots, because now large values of U imply

the emulator’s mean is too large, and small values imply it is too small (similarly

for the sample variance unexpectedness later), which is perhaps a more natural

interpretation. If the alternative is preferred, the scale can be flipped. The downside to

the unexpectedness compared to the standardised errors is that extremely unexpected

values are not quite as obvious - an unexpectedness value of 0.999 is much worse

than 0.95, but appears similar when plotted. As such, we instead recommend direct

interrogation of extreme unexpectedness to check their value. Alternative solutions

could involve transforming the unexpectedness to be normally distributed (using
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Figure 2.7: Sample mean unexpectedness against x for the ‘bad’ emulator, wrongly

assuming the emulator’s intrinsic variance estimates are correct.

the inverse normal cumulative distribution function) and so extreme values would

appear as they do in standardised errors; or superimposing the values of extreme

points onto plots.

Returning now to the example where the intrinsic variance is artificially inflated

to 5 times is value, we can obtain the mean unexpectedness values using the sample

variances (i.e., the sample means are t distributed). Figure 2.8 shows these sample

mean unexpectedness values.

We can see from this plot that using the observed sample variances to calculate

the sample mean distribution leads to more robust sample mean checks, as they

are able to identify a poorly estimated mean process even if the emulator’s intrinsic

variance is large: as before, two unexpectedness values are outside the (-0.95, 0.95)

interval, and one is as low as -0.999. These results are the exact same as before,

because using the sample variances to calculate the sample mean distribution (and

assuming t distributed variation) leads to mean diagnostics which are independent of

the emulator’s intrinsic variance estimates. This is a useful adjustment, as it allows

us to check the emulator’s mean in relative isolation. From this point onwards, this

strategy is what we refer to as the sample mean unexpectedness diagnostics.
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Figure 2.8: Sample mean unexpectedness against x for the ‘bad’ emulator if the

intrinsic variance estimates were five times larger, using the sample variances to

calculate the sampling distribution.

2.2.2 Assessing the Variance

With unexpectedness, diagnosing problems in the variance process can follow roughly

the same procedure as with the mean: obtain the emulator predictive distribution

for the sample variances and compare to the observed sample variances. For the

sample variance, the sampling distribution is again known, and again not normal.

Given the intrinsic variance σ2(x∗i ), the distribution for the sample variance S2 is

known (Stuart and Ord, 1994) and can be obtained from:

(r∗i − 1)S2(x∗i )

σ2(x∗i )
∼ χ2

r∗i−1. (2.8)

A strength of unexpectedness is that it can be applied to almost any quantity as long

as it is continuous and its distribution is known (or can be empirically estimated).

As such, we can easily apply it to the sample variances, using Equation (2.8). The

plot on the left in Figure 2.9 plots the sample variance unexpectedness against x for

the ‘bad’ emulator.

From this it is clear that the emulator overestimates the variance generally - nine

out of ten of the unexpectedness values are positive, and one has a value larger

than 0.95 (the value is 0.9964, which is quite extreme). Together with the mean

unexpectedness plot, these diagnostics reveal information that wasn’t known before -
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Figure 2.9: Sample variance unexpectedness against x for the ‘bad’ emulator. Left is

the uncorrected version, right is the corrected version.

the mean is poorly estimated, and the variance is systematically overestimated.

However, there is a problem with any variance process diagnostic for heteroscedas-

tic Gaussian process emulators: most implementations do not feature any (or have

reduced) epistemic uncertainty around the variance (Kersting et al., 2007; Bouk-

ouvalas and Cornford, 2009; Binois et al., 2018). This is done for computational

reasons, but it does raise an important philosophical question when it comes to

validation: if there is no uncertainty around the variance estimates, does this mean

every variance estimate is always wrong? Variances lie in the continuous domain,

and so no estimate will ever be perfectly accurate. Without uncertainty, this means

that, technically, every variance estimate is always wrong, and so we should always

(given enough data), invalidate every heteroscedastic Gaussian process emulator,

including the ‘good’ one previously.

We reject this notion, as it is not practical, in favour of a modification. We

introduce a “tolerance to error” as a substitute for epistemic uncertainty around the

variance. We do so by specifying a distribution that represents our tolerance to error

for the variance estimates, and using that as if it were the epistemic uncertainty.

We suggest substituting the standard deviation estimates with the distribution

U(0.8σ, 1.2σ), which corresponds with a tolerance to any true standard deviation

which is within 20% of our estimate. Tolerance to error is a subjective notion, and so

a practitioner might want to use a different distribution to quantify their tolerance

to error. A uniform distribution was chosen here arbitrarily and implies indifference

between a perfect variance estimate and an imperfect estimate that is within the

specified bounds. A triangular distribution tolerance-to-error would perhaps be more
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reasonable.

To clarify the practical necessity of this tolerance to error, and the effects of it,

Figure 2.10 plots four sample variance unexpectedness plots.
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(a) 5 replicates, no tolerance to error
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(b) 5 replicates, tolerance to error
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(c) 100 replicates, no tolerance to error
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(d) 100 replicates, tolerance to error

Figure 2.10: Sample variance unexpectedness against x for the ‘good’ emulator. Top

left is for 5 replicates per point and without any tolerance to error; top right is for 5

replicates per point and with tolerance to error; bottom left is for 100 replicates per

point and without any tolerance to error; bottom right is for 100 replicates per point

and with tolerance to error.

Each of these plots are for the same ‘good’ emulator, and should all imply the

emulator is accurate. The first column shows two different unexpectedness plots, one

for when there are five replicates in the validation data and one for when there are

100. For five replicates, no problems seem to present themselves (except perhaps that

the variance might be mildly overestimated). For 100 replicates however, it seems as

if the emulator’s variance is poor, with two unexpectedness values larger than 0.95,

and one less than -0.95. This is because, with 100 replicates, the sampling variation

in the sample variance is greatly reduced, and so the effects of having no epistemic
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uncertainty around the variance is revealed. Figure 2.1 showed that this emulator

has an acceptable fit, and so it is problematic that this diagnostic would flag issues.

The second column shows the effects of including the tolerance to error. When there

are few replicates, the results remain essentially the same, as the sampling variation

masks the tolerance to error. When there are many replicates, however, we no longer

wrongly identify problems. The earlier plot in the right of Figure 2.9 also presents

the unexpectedness plot for the ‘bad’ emulator including the tolerance to error. In

this case, the inclusion of tolerance to error does not prevent the real issues in the

‘bad’ emulator from being identified. As such, the inclusion of tolerance to error

seems to be a good inclusion for the variance diagnostics, improving the robustness

of these tools.

2.2.3 Assessing the Normality Assumption

With stochastic simulators, normality can be a strong assumption. Checking this

assumption is therefore important if one is to have any confidence in a resulting

emulator. A QQ plot of the standardised residuals is a standard method for testing

the normality assumption, and is also recommended by (Bastos and O‘Hagan, 2009).

The issue with QQ plots is that they only check for conditional normality; i.e.

whether the observed data is normally distributed around the mean, assuming the

mean and variance estimates are correct.

This means that a QQ plot should reveal problems if the simulator is not normal,

or if the mean and/or variance estimates are flawed. Similarly, because the mean

(and variance) diagnostics rely on the normality assumption to some degree, these

can wrongly reveal problems when instead the normality assumption is broken. This

would be acceptable if the only purpose of diagnostics were to raise issues when

they exist, and to allow further study, but an important purpose of diagnostics is

to also diagnose what the problems are. As such, it would be helpful to have some

diagnostics which assess the normality assumption in isolation, rather than assessing

the conditional normality assumption.

Following a similar strategy as those used to assess the mean and variance,

we make use of replicated simulations to check the normality assumption. If it is

affordable, a single heavily replicated simulation could allow for visual assessment of

the normal assumption via a histogram. However, this would be an inefficient use of
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simulation time, as this set of runs would not provide any information about the

mean or variance across the input space, nor would it reveal issues if the normality

assumption is only broken in a different region of input space. As such, we would

also like normality diagnostics which can use the same data as the other diagnostics,

and which can assess the normality assumption throughout the input space.

Because normally distributed variables are characterised entirely by their first

two moments (the mean and the variance), the later moments are the same for all

normally distributed quantities. These are what we will use to check the normality

assumption.

The third moment is the skewness, and represents the asymmetry of the distri-

bution. A distribution with a positive skew will have a longer upper tail, and a

distribution with a negative skew will have a longer lower tail. An important attribute

of the normal distribution is that it is symmetric, and so for the normal distribution,

the skewness should be 0. In much the same way as before, we cannot obtain values

of the simulator skewness directly, only sample skewness from replicated simulations,

and we can compare these to reference distributions to see how unexpected the

sample values are. The (standardised) sample skewness can be given by:

1/n
∑

(yj − ȳ)3

Ŝ3
, (2.9)

where ȳ is the sample mean and S is the sample standard deviation (Stuart and

Ord, 1994). Taking the standardised sample skewness removes the impact of the

variance. To obtain a reference distribution for this, we can generate data points

using our emulator, obtain a generated value of the sample skewness, and repeat

to obtain an empirical reference distribution for the sample skewness. We can then

use this reference distribution and the observed sample skewness to calculate the

unexpectedness using Equation (2.7). Large values suggest the emulator needed to

have assumed a distribution with a larger skew, and small values the opposite (in

other words, large unexpectedness values suggest the simulator has negative skew,

and small values suggest the simulator has positive skew).

We can repeat this exact procedure, but also for the fourth moment: the kurtosis.

The kurtosis is a measure of how large the tails are. Kurtosis values are often

compared to the normal distribution, which has a kurtosis of 3 (3 is often subtracted

from the kurtosis, making the normal distribution the base case with an excess

kurtosis of 0). Distributions with a kurtosis less than the normal distribution will
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have smaller tails and a lesser propensity to extreme values. Distributions with a

kurtosis greater than the normal distribution will have larger tails and a greater

propensity to extreme values. The (standardised) sample (excess) kurtosis can be

given by:
1/n

∑
(yj − ȳ)4

Ŝ4
− 3, (2.10)

where ȳ is the sample mean and S is the sample standard deviation (Stuart and Ord,

1994). And so the kurtosis unexpectedness values can be calculated along with the

skewness unexpectedness values. Large kurtosis unexpectedness values suggest the

emulator needed to have assumed a distribution with larger tails, and small values

the opposite (in other words, large unexpectedness values suggest the simulator has

a negative excess kurtosis, and small values suggest the simulator has a positive

excess kurtosis). Together, these higher moments provide information about the

simulator’s distribution, and should allow for key non-normality structures to be

noticed (such as heavy skewness or bimodality). Even higher moments could be used

as well, but the fifth moment (and above) is less interpretable, less easily understood,

and requires more data than the skewness and kurtosis.

As examples, consider the toy simulator from Equation (2.1), which we know to

be normal. Using the “good” emulator (although the “bad” emulator results will

be identical), and the uniformly replicated validation data set from Section 2.2, we

obtain the skewness unexpectedness values and the kurtosis unexpectedness values

in Figure 2.11.
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Figure 2.11: Skewness unexpectedness and kurtosis unexpectedness for the “good”

emulator in Section 2.1.

These diagnostics (correctly) don’t reveal any issues with this emulator. Both

the skewness and the kurtosis unexpectedness look approximately uniform between
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-1 and 1, with no values larger than 0.95 or smaller than -0.95, and are (reasonably)

evenly allocated above and below 0.

As a different example, consider the same toy simulator, but where the intrinsic

noise is instead gamma distributed (given again in Equation (2.11)).

y(x) = sin(16x) + cos(24x) + 8x+ ε;

ε ∼ Gamma
(
1, 1
)
.

(2.11)

Following the same procedure (training a heteroscedastic GP using 20 unique locations

chosen via the same maximin Latin hypercube, each run 20 times, and validating

with 10 validation coordinates each run 5 times) should lead to diagnostics which

flag issues, and they do:
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Figure 2.12: Skewness unexpectedness and kurtosis unexpectedness for the emulator

of the gamma distributed toy simulator in Equation (2.11).

The skewness unexpectedness plot in Figure 2.12 reveals the skewness of the

emulator to be too small (and so the skewness of the simulator is larger than the

normal distribution). 9 out of 10 of the skewness unexpectedness values are less than

0, and 2 are less than -0.995. The kurtosis also reveals issues, with two unexpectedness

values less than -0.95, suggesting a similar problem where the kurtosis of the simulator

is larger than the normal distribution. Both of these statements are correct, and so

we are then warned that the normality assumption may be insufficient.

This is reassuring, and Figure 2.12 now also acts as a guide for how gamma

distributed noise can appear with the provided diagnostics. Less skew noise (whether

gamma or otherwise) may be less obvious to spot (at least without more valida-

tion data), but serious differences from the normal case are indeed independently

diagnosable now.

38



As another example, consider the modified toy simulator in Equation (2.12):

y(x) = sin(16x) + cos(24x) + 8x+ ε;

ε ∼ N
(
round(τ) ∗ 3, (0.1 + 0.9x)2

)
;

τ ∼ Uniform
(
0, 1
)
.

(2.12)

For low values of x, there is a large degree of bimodality - there are two distinct,

normally distributed peaks. As x gets larger, the bimodality becomes less pronounced,

as the noise of each peak grows and they begin to merge together. This is a slightly

more complex non-normality, as the non-normality changes through the input space.

Nonetheless, the normality diagnostics are able to identify problems here.
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Figure 2.13: Skewness unexpectedness and kurtosis unexpectedness for the emulator

of the bimodal distributed toy simulator in Equation (2.12).

Figure 2.13 reveals this bimodality in a slightly less understandable way, but it

does still reveal normality issues. The skewness appears mostly acceptable, except

for one point where the skewness is less than -0.95 (1 out of 10 is not unbelievable

however). This low value is because, of the validation runs for this point, 4 are for

the lower peak, and one for the upper peak; this gives the impression of a large

degree of skew, and thus the sample skewness is unexpectedly quite high here. The

kurtosis provides more obvious evidence for non-normality, and raises the issue, but

it is less intuitive alone as to why an issue is raised.

2 of the kurtosis unexpectedness values are larger than 0.95, and one less than

-0.95, which is more than one would expect if the simulator was indeed normal. The

two that are larger than 0.95 are the natural result - the bimodal distribution for low

x does indeed have a low kurtosis (and thus the unexpectedness values should be

large). The one less than -0.95 is due to the aforementioned perceived skew for this

point - with 4 points tightly clustered together, and one outlier, the kurtosis is quite
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large, by chance (and so the unexpectedness is quite small). By coincidence this

kurtosis unexpectedness is small, but it is still caused by the underlying bimodality,

even if not in a way one would expect.

A second feature one could identify from the kurtosis diagnostic, is that there are

no problematic unexpectedness values for large x. This is a true feature, as mentioned

before, as the bimodality is less pronounced for large values of x. Structures like this

however are difficult to truly spot with a low number of unique validation coordinates,

and are also difficult to trust without an abundance of unique validation coordinates.

One thing that is noticeable from this example, is that whilst the normality

diagnostics can reveal problems with the normality assumption, the specifics of these

problems are not always identified. With bimodality, the kurtosis plots can reveal

problems, but a large (or small) kurtosis need not always be caused by bimodality (a

t distribution also has a different kurtosis than the normal distribution). From this

point, if one wishes to know how and why a simulator is not normally distributed,

a single heavily replicated run may be the only option. Because the distribution

could change throughout the input space, and therefore only exhibit non-normality

in a specific region of input space, the heavily replicated point can be chosen as

the same input point as one of the previously obtained problematic skewness or

kurtosis unexpectedness values. Nonetheless, a single heavily replicated point is not

an efficient use of a simulation budget, and so should only be used as a last resort,

or when the simulation budget is sufficiently large. Further distinguishing between

the different ways in which a stochastic simulator can be non-normal in an efficient

way remains an open question.

Overall, whilst these normality diagnostics are reasonably data efficient, they are

more data hungry than the mean and variance diagnostics, as higher order moments

are more difficult to precisely estimate. We need at least 3 runs per point to calculate

the sample skewness, and at least 4 for the sample kurtosis. As such, if both of these

diagnostics are desired, then 3 replicates are needed.

For these examples, obtaining the reference distributions was done via sampling

from the emulator. Technically, since the sample skewness values and sample kurtosis

values do not depend on the mean or variance of the normal distribution, any normal

distribution could have been used to obtain the reference distribution (the N(0, 1)

distribution, for example). This would have been computationally cheaper to obtain,

and should not produce differing results.
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Normality Diagnostics Tolerance

An issue with assessing the normality assumption, is that whilst many real life

processes appear roughly normal, they are rarely exactly normal. Emulators, and

statistical models more generally, typically have no uncertainty about the distribution:

the data is assumed to be normal (or whichever distribution is assumed) with 100%

certainty. As such, as the number of replicates increases and the aleatoric uncertainty

from the sample skewness and the sample kurtosis decreases, the diagnostics will

ultimately always reveal the normal distribution is invalid. This is technically correct;

the normal assumption is usually an approximation and thus is never completely

valid, but it can often be practical. This is a similar problem as with the variance

diagnostics, where many implementations will take a point estimate for the variance,

and thus should also always technically be rejected. We solve the normality problem

in a similar way; by adding a tolerance to error to the normality assumption.

Adding a tolerance to error to the normality assumption is difficult, as there is

no general, parametrised, distribution of which the Gaussian is a subset. However,

there do exist extensions to the normal distribution which allow for skewness other

than 0, and (excess) kurtosis other than 0. We can then add a tolerance to error

using these extended distributions, and proceed as before.

For the skewness diagnostics, we can make use of the skew normal distribution

(O’Hagan and Leonard, 1976):

f(x) =
2

σ
√

2π
e−

(x−µ)2

2σ2

∫ α
(
x−µ
σ

)
−∞

1√
2π
e−

t2

2 dt.

This is the normal distribution with an additional parameter α, which affects the

skew. A skew normal distribution with an α value of 0 exactly equals the normal

distribution. The skew of the skew normal equals:

4− π
2

(δ
√

2/π)3

(1− 2δ2/π)3/2
; (2.13)

where

δ =
α√

1 + α2
.

We can then specify our tolerance to skewness error as U(−0.5, 0.5), say, draw samples

from this distribution, numerically invert them using the above equation, and then

use the resulting α values to draw samples from the skew normal distribution (along

with the emulator predictions for the mean and variance) to use in our calculation of
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the reference distribution for the sample skewness. This is then the equivalent of

saying that we are ambivalent to true skewness values that are between -0.5 and 0.5,

and so this is our tolerance to skewness error in the underlying intrinsic simulator

variability.2

We can similarly do the same for the kurtosis unexpectedness, using the generalised

normal distribution (Nadarajah, 2005):

f(x) =
β

2σΓ(1/β)
e−
(
|x−µ|
σ

)β
,

where Γ represents the gamma function. The generalised normal distribution is

similar to the skew normal distribution, in that it contains an additional parameter

β, which controls the kurtosis. A generalised normal distribution with a β value of

2 exactly equals the normal distribution. The (excess) kurtosis of the generalised

normal equals:
Γ(5/β)Γ(1/β)

Γ(3/β)2
− 3. (2.14)

We can then follow the same procedure as for the skewness unexpectedness: specify

our tolerance to kurtosis error (e.g. U(−0.5, 0.5)), draw samples from this distribution,

numerically invert them using the above equation, and then use the resulting β values

to draw samples from the generalised normal distribution. This sampling procedure

can then be used to obtain a reference distribution for the sample kurtosis, and thus

can be used to obtain a kurtosis unexpectedness value.

To show the utility of this tolerance to error, consider the toy simulator in

Equation (2.15):

y(x) = sin(16x) + cos(24x) + 8x+ ε;

ε ∼ Gamma
(
50, 10

)
.

(2.15)

This is the same toy simulator as before in Equation (2.1) but now with a gamma

distributed noise term. However, this noise term is also reasonably normal, as we

can see from Figure 2.14, which shows 1000 runs for a single location.

We can see here, that although this simulator is not normally distributed, and

does exhibit some degree of skew (in fact, the true skewness is 0.25, and the true

excess kurtosis is 0.09375), it is at least visually, quite normally distributed. So,

2U(−0.5, 0.5) is subjective and depends on the specific application. In this case the values were

chosen as values where the resulting theoretical distributions still (subjectively) appeared normal in

histograms.
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Figure 2.14: Histogram of Gamma(64, 10) toy simulations from Equation (2.15).

depending on our tolerance to error, we may or may not wish to allow for a normal

assumption to be used. Assuming that we do believe that a normal assumption is

acceptable, we would not want diagnostics to reveal major issues.

Fitting an emulator to 20 unique locations, each replicated 20 times, we can then

perform the normality diagnostics. Figure 2.15 presents the skewness diagnostics

with and without tolerance to error, for two sets of validation data; one set of 10

unique locations each run 5 times, and another replicated 100 times. Figure 2.16

presents these same diagnostics but for the kurtosis.

These plots (and this modification more generally) mirror those for the variance

in Figure 2.10. We can see that, for only 5 replicates, including tolerance to error

makes essentially no difference. However, when there are many (100) replicates, not

including tolerance to error reveals very striking issues (4 skewness unexpectedness

values are less than -0.95, and 2 kurtosis unexpectedness values are less than -

0.95), even though this simulator is reasonably normal. Including tolerance to error

mitigates this problem, and only 1 skewness unexpectedness value is less than -0.95,

and one kurtosis unexpectedness value. This suggests that including tolerance to

error can be a useful idea.
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(a) 5 replicates, no tolerance to error
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(b) 5 replicates, tolerance to error
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(c) 100 replicates, no tolerance to error
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(d) 5 replicates, tolerance to error

Figure 2.15: Sample skewness unexpectedness against x for the Gamma(50, 10)

emulator. Top left is for 5 replicates per point and without any tolerance to error;

top right is for 5 replicates per point and with tolerance to error; bottom left is for

100 replicates per point and without any tolerance to error; bottom right is for 100

replicates per point and with tolerance to error.

Importantly, however, tolerance to error does not affect the proportion of points

that have positive or negative unexpectedness. So in these examples, even with

tolerance to error, we can still see that, on average, the sample skewness is positive

(9 out of 10 of the skewness unexpectedness value are less than 0). This is an

important point, and will be common with the variance diagnostics and even the

mean diagnostics. For example, an exceptional emulator, where the sample mean is

essentially perfect but always slightly too large, will be revealed in the diagnostics

as having a generally overly large mean (but shouldn’t have many unexpectedness

values larger than 0.95 (or smaller than -0.95) This makes extreme values, and the

proportion of extreme values, more useful than the proportion of positive or negative

values. In this way, tolerance to error (or epistemic uncertainty when available)
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(a) 5 replicates, no tolerance to error
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(b) 5 replicates, tolerance to error
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(c) 100 replicates, no tolerance to error
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(d) 100 replicates, tolerance to error

Figure 2.16: Sample kurtosis unexpectedness against x for the Gamma(50, 10)

emulator. Top left is for 5 replicates per point and without any tolerance to error;

top right is for 5 replicates per point and with tolerance to error; bottom left is for

100 replicates per point and without any tolerance to error; bottom right is for 100

replicates per point and with tolerance to error.

provides a degree of robustness to spurious extreme unexpectedness results.

Interpreting Normality Diagnostics

We discussed previously how the developed normality diagnostics can provide an

analogue to the mean and variance diagnostics but for the normality assumption

- providing information about how the normality assumption might be broken,

and information about where the assumption is broken. Their limited capability

regarding the latter attribute (where the normality assumption is broken) was already

discussed, as without a large validation budget it can be difficult to determine whether

a perceived local misspecification is real or an artefact of the random nature of the

diagnostics. Here we will also discuss their limited capability regarding the former
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(how the normality assumption is broken).

Whilst these diagnostics aim to check whether the skewness and the kurtosis are

correct, the way they do so uses the normality assumption. Because the reference

distribution for the skewness (and the kurtosis) is constructed by assuming the

underlying distribution is normal, it is possible to obtain unexpected skewness (or

kurtosis) values for a distribution which is not skewed (or has an excess kurtosis of 0)

if it is sufficiently non-normal in other ways. We say this previously with the bimodal

example, as there the simulator was symmetric, but the low amount of validation

data and the bimodality tricked the skewness diagnostic into believing it was also

skewed at one location.

For a more extreme example, consider the simulator in Equation (2.16)

y(x) = sin(16x) + cos(24x) + 8x+ ε;

ε ∼ Beta
(
0.1, 0.1

)
.

(2.16)

This is a very non-normal simulator, which we can see from Figure 2.17, which shows

1000 runs for a single location.

0
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6.0 6.3 6.6
x
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t

Figure 2.17: Histogram of Beta(0.1, 0.1) toy simulations from Equation (2.16).

Here the distribution is symmetric, but it is incredibly non-normal, bounded

above and below, with most of the distribution at each of these bounds.
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The skewness diagnostics should not flag a problem (and the kurtosis diagnostics

should), but this is not what happens here. Figure 2.18 shows the normality

diagnostics for this example, after fitting an emulator to 20 unique locations each

replicated 20 times, with one set of 10 unique validation locations each run 5 times.
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Figure 2.18: Skewness unexpectedness and kurtosis unexpectedness for the emulator

of the Beta distributed toy simulator in Equation (2.16).

Here, the skewness diagnostics reports three unexpectedness values with absolute

value larger than 0.95, and one larger than 0.999. This suggests that the simulator

is skewed, which it is not. This is because, like with the bimodal simulator, multiple

validation locations have, by chance, a majority of points in one of the peaks. This

makes it seem as if the simulator is skewed, even if it is not. This is ultimately a

flaw with the normality diagnostics, as while they aim to reveal specific information

about the non-normality of the simulator, they can be report the incorrect type of

non-normality (because they themselves also rely on the normality assumption).

For this specific example, increasing the number of validation replicates (up to

50) rectifies this issue, with no skewness unexpectedness with absolute value larger

than 0.95 (and all 10 kurtosis unexpectedness values with absolute value larger than

0.95). But this degree of validation replication is unlikely to be practical, and may

not always help with other types of non-normality.

The developed normality diagnostics are still able to flag issues when issues are

present, but their ability to specifically diagnose the type of non-normality can be

weak in some circumstances. Rather than assessing whether the skewness is 0, the

skewness diagnostics instead check whether the sample skewness could be a sample

skewness from normally distributed samples (which has a skewness of 0). A similar

difference exists for the kurtosis diagnostic. The two statements are similar, but they
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are not equivalent, which can lead to surprising results in extreme cases.

2.3 Building Example

We now return to EnergyPlus, using it as an example to apply these diagnostics to.

The specific building we use is a reference hospital design provided by the U.S.

Department of Energy (Field et al., 2010). We use an ‘ideal loads’ heating and

cooling system, where the building will always be perfectly heated (or cooled) to

the correct temperature with a subsequent increase in the building’s energy usage.

For the weather generator we use a very simplistic mechanism: we randomly stitch

together weeks of historical observed weather, stratified according to season. The

specific historical record we use is for Plymouth, using data from 1961 to 2016, and

interpolating missing data. We then also consider as inputs to be adjusted: the

thickness of the wall concrete (varying from 0.05m to 0.75m), the thickness of wall

insulation (varying from 0m to 0.4m), the roof insulation thickness (varying from 0m

to 0.5m), the thickness of the ground concrete (0.05m to 0.75m) and the percentage

size of the windows compared to the walls (25% to 75%). This is a simplified building

model, and the choices made are not entirely realistic, but it can serve sufficiently

well as an example. A more realistic example is used in Chapter 4.

The shape of this building is provided in Figure 2.19.

To begin with, we perform 250 simulations; each with a unique input setting,

with inputs chosen via a maximin Latin hypercube (McKay et al., 2000). Our

output of interest is the average energy usage of this building, which we model

with a heteroscedastic GP using the hetGP package, with a zero mean function

and a squared exponential covariance function. To then check the performance of

this emulator, we apply the stochastic diagnostics outlined previously. Validation

points are chosen using another maximin Latin hypercube of size 50, with each point

replicated 3 times.

Figure 2.20 shows the sample mean unexpectedness for this building and 2.21

shows the variance unexpectedness.

The mean diagnostics have only one unexpectedness value with absolute value

larger than 0.95. With 50 total points, this is reasonable, suggesting that the mean

is captured adequately. For the variance however, 8 are less than -0.95, 5 of which

are less than -0.995. This suggests that, despite the reasonable mean predictions,
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Figure 2.19: The geometry of the modelled reference hospital building.
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Figure 2.20: Sample mean unexpectedness for the emulator of the building simulator

using 250 training points.
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Figure 2.21: Sample variance unexpectedness for the emulator of the building

simulator using 250 training points.

the variance is underestimated. The plots don’t seem to reveal any obvious patterns

to this underestimation, suggesting it is a global issue.

Whether these flaws are a problem in practice will depend on the specific problem

and objectives at hand. For example, the expectation of the stochastic ocean

simulator in Baker et al. (2020b) corresponds with the underlying truth, and so in

that case a good mean prediction but a poor variance prediction would be acceptable.

Similarly, in Chapter 4, the mean is the quantity of interest and so an underestimated

variance would not be a problem. For this example however, we assume this flaw is

a problem.

To fix this emulator, a straightforward option would be to simulate further.

Additional simulations should improve the emulator, and could provide improved

variance predictions. This may not be realised, however, if the underlying simulator

variation is not normal. Non-normality could be the reason that the emulator is

flawed, and it can also invalidate the diagnostics (potentially causing spurious results).

We can use the normality diagnostics to check this, and therefore check whether the

emulator variance flaw is real and whether the issue could be fixed with additional
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simulation. Figure 2.22 and 2.23 show the skewness and kurtosis unexpectedness.
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Figure 2.22: Sample skewness unexpectedness for the emulator of the building

simulator using 250 training points.

We can see from these plots, that the skewness unexpectedness does not reveal

any glaring issues, with 4 skewness unexpectedness values with absolute value larger

than 0.95, and 2 kurtosis unexpectedness values with absolute value larger than

0.95. This suggests (but does not guarantee) that the simulator is still normally

distributed, and the emulator simply did not capture the variance process correctly.

To improve this emulator, we combine the validation data with the training

data, and simulate an additional 300 points to make up the training data for a

new emulator. Because our goal is to specifically improve the variance, replication

may be beneficial here. We have some prior belief that the variance process will be

simpler than the mean process (requiring fewer space-filling runs), and replicated

simulations provide some insight into the variance at those specific locations. The

merged validation data is already replicated 3 times, and we use 50 of our additional

simulations to make this 4 times. Our remaining 250 additional runs are chosen to

be the same as the initial 250 runs used to train the initial emulator. Together, this

should provide enough information to capture the underlying mean and variance
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Figure 2.23: Sample kurtosis unexpectedness for the emulator of the building simula-

tor using 250 training points.

processes accurately.

To then check this new emulator, we obtain another 200 validation points, again

by a Latin hypercube of size 50, each replicated 3 times. Figures 2.24 and 2.25 show

the same diagnostic plots as before.

These plots show a much improved emulator. Two mean unexpectedness values

have absolute value greater than 0.95, and only one variance unexpectedness value

has absolute value greater than 0.95, which is much more reasonable. There is

however one mean unexpectedness value with a value of -0.9986, which is somewhat

extreme, and would correspond to a standardised error of 3.19. It is not impossible

for such a value to appear by chance, but it is less than ideal. Because the unexpected

point is for a very small value of x2 (0.000155), there could be a very local issue

with the emulator’s mean. In Chapter 3, we find that this parameter (x2: wall

insulation thickness) exhibits a steep change at low values, which may explain this

local emulator flaw. Additionally, for this example none of the 750 training data

points were for an x2 value as low as 0.000155, and so it is not particularly surprising

that the emulator may struggle here. We could improve this emulator (for example,
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Figure 2.24: Sample mean unexpectedness for the emulator of the building simulator

using the combined 750 training data points.

by simulating more for low values of x2), however, we decide that this emulator is

acceptable, and would simply recommend some caution when dealing with small

values of x2.

Normality diagnostics are not essential now, as we already concluded that the

simulator is normally distributed. Regardless, one of the skewness unexpectedness

values has absolute value larger than 0.95, and none of the kurtosis unexpectedness

values, both of which are reasonable.

Overall, this example has shown how the developed diagnostics can aide in the

construction of a capable statistical model, and provide insights into the strengths

and weaknesses of a given emulator.

2.4 Validation Design

With the developed diagnostics, validation points are replicated to obtain sample

statistics (such as the mean and variance). How many replicates are needed in

the validation data remains an unresolved question. Tackling this problem in the

contexts of fitting a stochastic emulator has already received research attention; for
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Figure 2.25: Sample variance unexpectedness for the emulator of the building

simulator using the combined 750 training data points.

example, Binois et al. (2019) choose to replicate or ‘explore’ based on the integrated

mean squared prediction error.

For validation, given that we want to check many different regions of the emulator,

it is sensible to make sure that validation points are, to some degree, space-filling.

Additionally, simulations could be replicated more in regions where the intrinsic

variance is larger, as the resulting sample statistics are prone to greater error in these

regions. There are many ways to do this, and what follows are two possible solutions.

2.4.1 Targeting the Mean

One mechanism for choosing validation points is as follows: Construct a Sobol

sequence (Bratley and Fox, 1988), taking the first nv points in the sequence as the

unique validation points (where nv is specified beforehand). The number of validation

replicates for each is then chosen as the minimum number required to ensure the

epistemic uncertainty around the mean will be smaller than the aleatoric sampling

variation around the sample mean. That is, we select the number of validation runs

r∗i at a unique point x∗i such that the inequality σ2(x∗i )/r
∗
i < σµ(x∗i ) will hold, where
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σµ(x∗i ) is the noiseless uncertainty around the mean.

This criteria targets the mean, but improvements should also be felt for the

sample variance as well. Overall, any design scheme which fills space and replicates

more in regions of high intrinsic variability could have value. This criteria ensures

that the epistemic uncertainty around the mean is not overwhelmed by the intrinsic

noise; forcing a majority of the uncertainty to be the uncertainty that we are actually

interested in validating.

If the outlined process above does not exhaust the validation budget, then

additional space-filling points can be taken from the Sobol sequence and allocated the

required minimum number of replicates. This can be repeated until the validation

budget is eventually exhausted. If at any stage an additional point cannot be allocated

its required number of replicates, the process is stopped. A practitioner may instead

wish to use slightly more than the validation budget to allow the inclusion of this

final point, depending on how flexible the validation budget is. Alternatively, the

extra point could be included with only the remainder of the simulation budget.

On the other hand, if the initial process exhausts the simulation budget without

being able to allocate the correct number of replicates, then we scale down the

number of replicates at each point until the validation budget constraint is fulfilled.

This results in the aleatoric uncertainty being larger than the epistemic uncertainty.

The alternatives are to exceed the validation budget (which is not always possible),

or reduce the minimum number of space-filling points (which can reduce the chances

local emulator flaws are discovered).

This scheme would allow for only one run at a point, which would prevent the

sample variance and normality diagnostics from being applied. Forcing the scheme

to replicate at least 3 times per point will allow all the developed diagnostics to be

applied. Forcing the scheme to replicate at least once will allow the sample mean

and sample variance diagnostics to be applied.

Applying this validation design scheme to the ‘bad’ emulator (with a minimum

of 5 unique validation points, and forcing at least one replicate) yields Table 2.1.

Here, the validation design required 48 validation runs. This is two less than

before in Sections 2.2.1 and 2.2.2, but essentially the same amount. The general

trend is that more central x require more replicates. Figure 2.26 plots the prediction

intervals for the mean and the overall prediction intervals for the ‘bad’ emulator.

From this figure, it is clear the emulator believes the intrinsic variance is increasing
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x 0.1250 0.1875 0.2500 0.3750 0.5000 0.6250 0.6875 0.7500 0.8750 0.9375

r∗ 3 4 4 6 6 6 6 5 5 3

Table 2.1: A table showing the results of the validation design scheme for the ‘bad’

emulator.
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Figure 2.26: Two standard deviation intervals for the mean process and the overall

process for the ‘bad’ emulator. Dark blue represents the mean process uncertainty

and light blue represents the overall uncertainty.

as x increases. However, the epistemic uncertainty around the mean also increases

(in general) as x increases. The difference between the two is thus largest when x is

close to 0.5, hence the pattern seen in the validation design.

Note that for this example, requiring at least 3 replicates (so that both normality

diagnostics could be used) would simply use the 2 remaining points in the validation

budget to augment the existing design, no further changes would be needed. For this

example, because we know the simulator is normal, not including such a requirement

provides a more insightful example.

Figure 2.27 then plots the sample mean unexpectedness and the sample variance

unexpectedness using this validation data set (for the ‘bad’ emulator).

These plots don’t look too dissimilar to the previous stochastic diagnostic plots,

providing the same conclusions. This is mostly because the number of replicates

chosen by the validation design scheme do not differ wildly from the fixed five
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Figure 2.27: The sample mean unexpectedness plot (left) and the sample variance

unexpectedness plot (right) for the ‘bad’ emulator using the validation design scheme.

used before. The advantages of this design scheme are that it reveals what the

‘correct’ number of replicates is (regardless of whether the ‘correct’ number can

be obtained, and with ‘correct’ semi-arbitrarily defined), and that the use of a

Sobol sequence allows easy augmenting of the initial unique validation point design.

The disadvantages stem from its targeting of the mean - if the mean is of primary

interest, this validation design scheme becomes less sensible. Additionally, using an

emulator to such an extent to make judgements about how to independently assess

the emulator seems tenuous.

This design targets the mean process because the mean is often of greater interest

and thus scrutiny, but also because it is the only component with epistemic uncertainty

(at least for the investigated emulator formulation). A similar validation scheme that

targeted the sample variance would still be possible using a similar strategy, but

would ultimately rely heavily on the subjective tolerance to error.

2.4.2 Simple Weighting

An alternative strategy is to simply weight the number of replications according to the

predicted intrinsic variance. Both the sample mean and sample variance distributions

depend on the intrinsic variance, and so this should improve both. Again, as with

the previous design, we can also force the number of replicates to be at least 3 (as

required for the kurtosis diagnostics), or 1 (as required by the variance diagnostics).

When weighting the total number of replicates according to the intrinsic variance

predictions, the number of desired replicates can be non-integers. This requires some

degree of rounding, which can cause the target number of simulations to be missed.
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We round-down the non-integers, and then re-add simulations according to which

points were rounded-down the most.

Applying this scheme to the previous example, only requiring at least 2 runs per

point, yields the validation design in Table 2.2.

x 0.07049055 0.13430022 0.27957167 0.35934015 0.41474998 0.51646108 0.69976717 0.77253228 0.88159390 0.99572530

r∗ 2 2 3 5 5 6 6 6 7 8

Table 2.2: A table showing the results of the validation design scheme for the ‘bad’

emulator.

This design is then more straightforward than the previous - more replicates for

larger x (which have larger intrinsic variance estimates).

Figure 2.27 then plots the sample mean unexpectedness and the sample variance

unexpectedness using this validation data set (for the ‘bad’ emulator).
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Figure 2.28: The sample mean unexpectedness plot (left) and the sample variance

unexpectedness plot (right) for the ‘bad’ emulator using the variance weighted design

scheme.

These results are not particularly different. One noticeable difference is that

the variance diagnostics no longer show any extreme values (absolute value greater

than 0.95), whereas the previous two validation data sets had one. This is likely

due to sampling variability and not as a result of the validation design itself, as the

validation design does check this region and replicates equally as much here as before.

Additionally, one extreme value out of ten was not sufficient evidence for a serious

problem, and therefore the conclusions do not change much regardless.

These designs do not substantially change the analysis for this toy example by

much, but that does not mean they do not have the ability to impact other examples.
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With examples where the validation budget is much larger, and examples where the

intrinsic noise is much larger, these choices on where to replicate the validation runs

is likely to have a greater impact. In general, the second design is perhaps preferable,

because it is simpler and does not prioritise one of the diagnostics over the others.

Additionally, without additional simulation in areas of high intrinsic variance, poorly

estimated intrinsic variances in regions where the intrinsic variance is believed to be

large would be more difficult to identify than in other regions. Targeted simulation

where the intrinsic variance is believed to be large mitigates this issue.

In Chapter 4, where these diagnostics are again employed, neither validation

design scheme is used. This is for two reasons, both of which can be relevant in

other scenarios. The first is that the validation data is used to assess two different

emulators; as such, using either validation design would prioritise validating one

emulator over the other (or a new validation design would have to be developed to

target both simultaneously). The second, is that both validation design schemes

ignore the normality diagnostics. The skewness and the kurtosis do not depend on

the intrinsic variance, and so do not benefit especially from targeted replication.

Nonetheless, validation design for stochastic emulators is an interesting topic for

future research. There are multiple avenues for this future research (for example;

using the lengthscales of both the mean and variance Gaussian processes to determine

where unique points should be placed), but this is not pursued further here.

2.5 Leave-One-Out

In this chapter we assumed that an additional set of validation data could be obtained.

This can be valuable, and the resulting data need not be wasted, as a final emulator

can be constructed using the merged training and validation data.

However, in some circumstances it may not be possible to obtain a separate

validation data set. In these cases, the training data could instead be used to

directly validate the emulator. However, the emulator’s ability to interpolate (and

extrapolate) is not tested with such a strategy. This doesn’t particularly matter

for problems where the data points fill space sufficiently well, as the interpolative

capability of the emulator is less important. However, in higher dimensions it

can become difficult to sufficiently fill space, and so the ability of the emulator to

interpolate (and extrapolate) becomes more important.
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An alternative strategy, again using the training data, is to leave out one data

point (or with the diagnostics that leverage replicated simulations; leave out all the

simulations for one training location), refit the emulator, and use the new emulator to

predict that location. Repeating this for every training data point (or every training

location) can then yield many of the same diagnostics as with dedicated validation

data. This strategy can be used to assess how well the emulator performs, including

testing its interpolation ability, without a dedicated validation dataset.

The leave-one-out procedure can be a useful tool, and it has been used to assess

the quality of emulators in practice (Williamson et al., 2017; Mohammadi et al.,

2019). However, when possible, a distinct validation data set is preferable. Consider

the example emulator in the left of Figure 2.29.
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Figure 2.29: On the left is a heteroscedastic Gaussian process emulator (blue) and

the truth(black). On the right is the same emulator after removing one unique

training location (shown in red).

This emulator is a reasonably good surrogate for the simulator, and as such

diagnostics should reflect that. However, if performing leave-one-out validation, we

obtain the sample mean unexpectedness values in Figure 2.30.

Here there is one very extreme unexpectedness value (0.99998, which corresponds

to a standardised error of -4.26), suggesting a serious local problem. However, this

local problem is not present in reality. The reason for this is obvious in the plot

in the right of Figure 2.29. Each time a training location is removed, the resulting

emulator is actually different than the one we want to validate. In this case, the

removal of one specific location results in the emulator entirely missing an important

local pattern. In the original emulator, this local pattern was captured well by the

exact training location which is now removed. This results in diagnostics which
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Figure 2.30: Leave-one-out sample mean unexpectedness against x for the emulator

in the left of Figure 2.29.

are far more negative than they should really be, because the emulator we want to

validate and the emulators we actually validate are not the same.

This issue is reduced when the number of unique training locations is high, as

the removal of any individual one should not greatly affect the emulator. In high

dimensions, however, it can be difficult to fill the input space enough to avoid this

problem. Similarly, because leave-one-out diagnostics do not check any new regions

of input space; if a local pattern is not captured by the original emulator (because

no training points are nearby this local pattern), leave-one-out will not detect this

(because none of the leave-one-out points will be nearby this region). A distinct

validation set has a slightly greater ability to detect these problems (although its

ability to identify highly local issues would still be weak).

As an important note, the normality diagnostics from the previous section (Section

2.2.3) could use the training data, rather than (or as well as) a dedicated validation

data set, or leave-one-out validation. This is because the property being assessed

(normality) is not dependent on the parameter estimates or interpolative capabilities

of the emulator, and is instead an intrinsic assumption.

Overall, leave-one-out validation will often be a suitable alternative to a completely

new validation data set, and is certainly an efficient use of data if the simulation

budget is small, and the emulators are also (relatively) quick to fit. However, a
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distinct validation data set remains a preferable option when practical.

2.6 Discussion

In this chapter we have discussed how stochastic emulators can be difficult to

validate. Standard techniques are unable to identify key problems (at least without

an abundance of data) and are unable to diagnose the reasons for a poorly fitting

stochastic emulator. Our proposed solution involves using replicated validation

simulator runs to individually assess the component assumptions and estimates of a

stochastic emulator, providing greater insights into the performance of an emulator.

Previously developed emulator diagnostics can be adapted to apply to sample

means; providing information regarding the emulator’s mean predictions. We also

developed additional diagnostics for the sample variance and the normality assump-

tion. The developed validation framework could also be applied to other quantities

of interest, which could be useful for other, non-normal, emulators.

It remains future work to develop more complex diagnostics that take the cor-

relation structures into consideration, as with the Cholesky errors or Mahalanobis

distance from the Bastos and O‘Hagan (2009) deterministic diagnostics. Overall,

the presence of independent noise reduces the importance and practicality of the

correlation structures more generally; with the developed diagnostics proving to be

reasonably sufficient.

A benefit of separately checking the mean and variance functions is that, if we are

more interested in the mean than the variance, then we can prioritise the importance

of the mean diagnostics (see Chapter 4). Similarly for the variance. On the other

hand, one has to be very careful when checking components independently if one

is only interested in overall emulator performance. If an emulator poorly predicts

the mean at a certain point and poorly estimates the variance at the same point,

then these issues can exacerbate each other. In Section 2.1 these issues masked each

other, leading to reasonable overall predictions. It is, however, entirely possible that

these issues could instead cause the overall predictions to be worse than what is seen

in the independent diagnostics. In general, overestimated intrinsic variances will

mask problems in the mean, and underestimated intrinsic variances will exacerbate

problems in the mean. As such, additional care should be taken with underestimated

intrinsic variance estimates, and these stochastic diagnostics should be used with,
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rather than instead of, standard emulator diagnostics. In a similar vein, if one is

less interested in individual component assumptions and estimates of an emulator

and only cares about overall predictions, then the value in these new diagnostics is

diminished.

It is also important to note that whilst the mean and variance diagnostics can be

checked independently of each other, and the normality assumption can be checked

independently of the mean and variance performance, it is not true that the mean

and variance can be checked independently of the normality assumption. The mean

and variance diagnostics both rely on the normality assumption in generating their

reference distributions, and are therefore not valid if the normality assumption does

not hold. For example, if the simulator is not normal and is instead very skewed,

it would be possible to observe a very unexpected sample mean value even if the

emulator’s mean is actually reasonable. This means that it is important to check

the normality assumption first (either via the independent normality checks, or via

a conditional normality check such as a QQ plot) before making any conclusions

about the mean and variance. Additionally, it can be useful to consider that the

diagnostics check only the emulator’s predictions, not the assumptions made for that

emulator (with the normality diagnostics being an exception). A mean diagnostic

which suggests the mean predictions are acceptable, does not necessarily imply

anything about the assumptions used to obtain those predictions. For example, even

if the ‘correct’ model structure was chosen for the variance process (and enough

simulations were obtained), it could be possible to obtain overestimated intrinsic

variances if a sufficiently poor model structure for the mean process was chosen.

In this case, the variance diagnostics might discover an issue (because there is an

issue), but increased modelling attention should be given to the mean process model,

not the variance process model. As such, the diagnostics only point out issues with

the component predictions, not whether poor modelling choices were made for that

component.

An issue with these diagnostics (and any practical diagnostic method) is that it

can still be possible to validate an invalid emulator, or invalidate a valid emulator.

For example; validation coordinates can, by chance, be chosen in areas where the

emulator is indeed valid, but problems may exist in other areas of the input space.

Similarly, although a validation coordinate may be correctly chosen in an area where

the emulator has poor fit, the validation simulator runs for this coordinate may,
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simply by chance, provide sample means and sample variances that agree with the

emulator’s predictions. This is always a risk when dealing with random processes.

With these (and many diagnostics tools), we only ever obtain evidence for (or against)

the suitability of a model, we rarely ever know for certain whether a model is in

fact accurate. We recommend 10 validation input locations per input dimension

to fill space to some degree, hopefully avoiding this problem (following the same

recommendation for fitting emulators in (Loeppky et al., 2009)), but this may not

always be possible and in higher dimensions even more may be desirable. We also

recommend 4 simulations per input location, enabling the use of all the diagnostics

discussed here (but only 2 could be used if the simulation budget is especially

low, facilitating only the mean and variance diagnostics, or leave-one-out could be

performed instead if the training data includes replications). More investigation is

required for determining how many unique locations is optimal for diagnostics more

generally.

Additionally, it is important to note that no emulator will ever perfectly recreate

a simulator. This raises frustrating questions about what the purpose of an emulator

is, if all emulators are flawed. Ultimately the point of an emulator is for it to be fit

for purpose, and as such, whether an emulator is valid depends on the experimental

objectives. As such, hard rules have been (and should be) avoided. Instead, it is

recommended to treat these, and other diagnostics, simply as information to advise

on the decision to ‘validate’ or ‘invalidate’ an emulator; and to provide specific details

about how an emulator misrepresents the simulator.

Overall, it is difficult to effectively validate a stochastic emulator, at least without

an abundance of data (where proper validation is most important). Nonetheless, the

ideas presented here appear to be capable and economical, providing a descriptive

set of tools for assessing the fit of a stochastic emulator.
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Chapter 3

Making use of Deterministic

Approximations
1

3.1 Introduction

A flaw with stochastic emulators, especially those which impose few assumptions

(e.g. those that do not assume constant variance) is that far more data is required

to properly estimate the shape of the mean (and the variance). A rule of thumb

for deterministic emulators is that at least 10 data points per input dimensions are

required to fit an emulator (Loeppky et al., 2009). For stochastic problems, many

more than this are needed (Binois et al. (2019) use 500 data points when comparing

different methods of choosing data point locations for a 1D toy stochastic simulator).

A need for more data is to be expected for more complex simulators, and stochastic

simulators are certainty a more complex class of simulator, but such a high number of

required runs can be prohibitive in practice. For example, consider the toy stochastic

simulator given in Equation (3.1). This is similar (but not identical) to the toy

simulator in Chapter 2.

y(x) = (1− x) sin(π + 6πx) + log(0.2 + x) + (1.2− x)ε;

ε ∼ N
(
0, 1
)
.

(3.1)

We obtain the plot in the left of Figure 3.1 after evaluating this toy simulator on 50

points sampled from [0, 1] using a maximin Latin hypercube (McKay et al., 2000).

The plot on the right of Figure 3.1 shows predictions for the mean and the 95%

1Much of this chapter’s contents have been published in Baker et al. (2020a)

65



predictive intervals for the simulator output using a heteroscedastic Gaussian process

emulator, as well as the true mean and 95% predictive intervals.
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Figure 3.1: 50 Evaluations of the toy simulator from Equation (3.1) (left), and the

respective heteroscedastic emulator predictions (right). The true mean and 95%

interval are superimposed in black, and the emulator mean and 95% predictive

interval are in blue.

The problem with this emulator is similar to that in the previous chapter: the

mean is poorly estimated and the variance is overestimated. That this emulator fails

is not surprising; the truth is not clear even after visually inspecting the simulator

runs (which is only possible with low dimensional problems). Perceived trends can

be true, or they can also just be artefacts of the stochasticity. This specific problem,

which to some degree is present with any stochastic simulator, is similar to the

problem of choosing the degrees of freedom for smoothing splines (Cantoni and

Hastie, 2002).

To properly use the emulator as a surrogate for the simulator, this issue should

be resolved, but obtaining a sufficient number of data points can be computationally

expensive. In situations where additional prior knowledge of the simulator is available,

a more descriptive prior mean function m(x) could be used, providing information
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that can assist in the prediction of the true mean. However, in practice, sufficient

knowledge of the mean function can often be lacking, which is one reason why

computer experiments are conducted in the first place.

The solution investigated here is one that leverages deterministic approximations

of the stochastic simulator. Deterministic systems are much easier to emulate, and if

the deterministic system is informative in some way about the stochastic simulator,

then including this information can be worthwhile. This was initially motivated

because EnergyPlus is originally deterministic, and so such an approximation already

exists. However, the idea can be more generally applicable, as there are many

ways a deterministic approximation could exist. Sometimes a deterministic version

has intentionally been made; sometimes a different model of the same process

exists but is deterministic; sometimes the computer model was once deterministic

in its development history and stochasticity was added later on; and sometimes

the underlying simulator is actually deterministic but some inputs are taken as

random (as in our case). Ultimately, if both the deterministic approximation and the

stochastic simulator are supposed to be modelling the same real world process, there

should be reason to believe that the deterministic approximation contains relevant

information about the stochastic model.

3.2 Model

For our toy model, we obtain a hypothetical deterministic approximation by replacing

the random component ε with a fixed number (in this case ε is replaced with the

fixed number 1, 0 has intentionally not been chosen to avoid an overly perfect

approximation). The plot on the left of Figure 3.2 shows 12 runs of this toy

deterministic approximation simulator (chosen via a maximin Latin hypercube

design).

Because these runs are now samples from a deterministic simulator, a deterministic

Gaussian process emulator can be used, and the predictions in the right of Figure

3.2 are obtained from such an emulator.

The shape of the emulator produced from this appears visually similar in shape

to the true mean of the stochastic simulator from Figure 3.1. This is to be expected,

as the true mean of the deterministic emulator is the true mean of the stochastic sim-

ulator, offset by (1.2− x). Visually observing the predictions from this deterministic
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Figure 3.2: 10 Evaluations of the toy deterministic approximation simulator from

Equation (3.1), and the respective deterministic emulator predictions (right).

emulator would suggest, even without knowledge of the truth, that the stochastic

emulator’s mean should not be (approximately) linear as it is in Figure 3.1. And so,

we aim to formally incorporate this evidence.

We model the stochastic simulator as the deterministic simulator plus an inde-

pendent noisy (heteroscedastic) adjustment term. Equations are given by Equation

(3.2), with yD(x) representing the deterministic simulator, and yH(x) representing

the stochastic simulator.

yH(x) = yD(x) + δ(x); (3.2)

yD(x) ∼ GP
(
mD(x), KD(x,x′)

)
,

δ(x) ∼ GP
(
mH(x), KH(x,x′) + σ2(x)I

)
;

log(σ2(x)) ∼ GP
(
mσ(x), Kσ(x,x′)

)
,

where mH(x), mD(x) and mσ(x) are prior mean functions, KH(x,x′), KD(x,x′),

and Kσ(x,x′) are covariance functions, I is the identity matrix, and σ2(x) is the

heteroscedastic intrinsic simulator variance.

The yD component models the deterministic approximation and the δ component
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models the difference between the stochastic simulator and the deterministic approx-

imation. In this way, the deterministic approximation can inform about the overall

shape of the stochastic emulator, but the adjustment term δ allows for differences to

be captured. δ also incorporates the intrinsic variance modelled by σ2(x).

Using a sum of Gaussian processes to model a system is a common tool in

deterministic emulation for a variety of applications. For calibration purposes,

Kennedy and O‘Hagan (2001) and Brynjarsdóttir and O‘Hagan (2014) use one

Gaussian process to model a simulator and another to model the discrepancy between

the simulator and real life. To tackle non-stationarity, Ba et al. (2012) use one

Gaussian process to model global simulator trends and another to model local

deviations from this global pattern. Haaland et al. (2011) use the sum of Gaussian

processes to model (prohibitively) large datasets; they use one Gaussian process to

model a small subset of the data, and then additional Gaussian processes model

the residuals from former Gaussian processes. Kennedy and O‘Hagan (2000) then

also use one Gaussian process to model a fast simulator and another to model the

difference between the fast simulator and the slow simulator (they also allow for more

than just two levels of simulator speed). In a way, the sum of Gaussian processes

simply treats the prior mean function of one Gaussian process as another Gaussian

process.

In this chapter, fitting this model using observed deterministic simulations yD =

yD(XD), and observed stochastic simulations yH = yH(XH), proceeds as follows: we

note that

yD ∼ N
(
mD(XD), KD(XD, XD)

)
.

From here, we know (using the standard Gaussian process prediction equations) that

yD(XH)|yD ∼ N
(
MD(XH),VD(XH)

)
;

MD(XH) = mD(XH) +KD(XH , XD)KD(XD, XD)−1
(
yD −mD(XD)

)
,

VD(XH) = KD(XH , XH)−KD(XH , XD)KD(XD, XD)−1KD(XD, XH).

And so,

yH ∼ N
(
mH(XH) +MD(XH), KH(XH , XH) + σ2(XH)I + VD(XH)

)
(with log(σ2(XH)) given a GP prior: log(σ2(XH)) ∼ N

(
mσ(XH), Kσ(XH , XH)

)
).

These are then input into Stan (Stan Development Team, 2016) and the various
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parameters (including the values of log(σ2(XH))) are estimated at their posterior

modes via the optimizing function. A simpler fitting procedure, given in Section 3.6

using Equations (3.9) - (3.11), can also be used.

Although the method described is more general, the examples in this chapter

take the mean functions to be linear and the covariance functions as squared expo-

nentials (e.g. for the δ Gaussian process, mH(x) = βH0 + xTβH and KH(x,x′) =

α2
H

∏d
i=1 exp(− (xi−x′i)2

lHi
) , where d is the dimension of x, αH is a standard deviation

parameter, and lHi are length scale parameters). Specific choices for a Gaussian

process are often based on personal preference; some authors prefer more complicated

mean functions (Vernon et al., 2010), others choose a zero mean function (Binois

et al., 2018); and then there are many choices for the covariance function with various

justifications (Rasmussen and Williams, 2006). These choices, while important,

are outside the scope of this work. The linear mean function coefficients (βH0 and

βH for the δ Gaussian process, βσ0 and βσ for the log(σ2) Gaussian process, and

βD0 and βD for the yD Gaussian process) are given N(0, 10) priors; the standard

deviation parameters (αH , ασ and αD for the δ, log(σ2), and yD Gaussian processes

respectively) are given Inverse-Gamma(2, 1) priors; and the length scales (lHi , lσi

and lDi) are given Gamma(4, 4) priors. These choices can also change depending

on personal preference; in this case they were chosen to broadly cover the range of

reasonable values, while still allowing somewhat unexpected values to be possible.

For the standard heteroscedastic ‘HetGP’ model used previously, and those

used later, parameters were also taken fixed at their posterior modes using via the

optimizing function in Stan, using the same priors as used for the model which

includes deterministic runs (which we now refer to as DetHetGP).

For predictions, predictive samples can be obtained from the latent log variance

Gaussian process and the yD Gaussian process, before then sampling from the δ

Gaussian process (and thus the full model).

For the deterministic Gaussian process, predictions conditional on known deter-

ministic runs yD are standard (Rasmussen and Williams, 2006) and are given in
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Equation (3.3)

yD(X∗) | yD ∼ N
(
MD(X∗), VD(X∗)

)
; (3.3)

MD(X∗) =mD(X∗)+

KD(X∗, XD)KD(XD, XD)−1
(
yD −mD(XD)

)
,

VD(X∗) =KD(X∗, X∗)−

KD(X∗, XD)KD(XD, XD)−1KD(XD, X
∗).

Predictions for the intrinsic (log) variance, conditional on (estimated) values at the

input points σ2(XH) are also standard, and given by Equation (3.4)

log(σ2(X∗)) | log(σ2(XH)) ∼ N
(
Mσ(X∗), Vσ(X∗)

)
; (3.4)

Mσ(X∗) =mσ(X∗)+

Kσ(X∗, XH)Kσ(XH , XH)−1
(

log(σ2(XH))−mσ(XH)
)
,

Vσ(X∗) =Kσ(X∗, X∗)−

Kσ(X∗, XH)Kσ(XH , XH)−1Kσ(XH , X
∗).

Predictions for the δ(X∗) component are then the standard heteroscedastic predictions

(Chapter 1) conditioned on values for yH − yD(XH) rather than just yH . This leads

to predictions for the heteroscedastic Gaussian process yH(X∗) having the form in

Equation (3.5)

δ(X∗)| yH , σ2(X∗), σ2(XH), yD(XH) ∼ N
(
MH(X∗), VH(X∗)

)
; (3.5)

MH(X∗) =mH(X∗)+

KH(X∗, XH)
(
KH(XH , XH) + σ2(XH)I

)−1(
yH − yD(XH)−mH(XH)

)
,

VH(X∗) =KH(X∗, X∗) + σ2(X∗)I−

KH(X∗, XH)
(
KH(XH , XH) + σ2(XH)I

)−1
KH(XH , X

∗).

Using Equation (3.3) to obtain predictive samples for yD(XH). Predictions for the

stochastic simulator output can then be drawn from:

yH(X∗) | yH , σ2(XH),yD = yD(X∗) + δ(X∗). (3.6)

Using Equations (3.3) and (3.5) to obtain predictions for yD(X∗) and δ(X∗). Impor-

tantly, each sample of yD(X∗)| yD and yD(XH)|yD should be from the same draw

from the underlying Gaussian process (i.e. yD(X∗)| yD and yD(XH)|yD should not

be drawn independently).

To be clear, this means predictions follow the process as given below:

71



Algorithm 1: Algorithm for obtaining mn sample predictions from the

DetHetGP model.

for i = 1 to mn do

sample yD(
(
X∗
XH

)
)| yD once from Equation (3.3);

sample log(σ2(X∗))| log(σ2(XH)) once from Equation (3.4);

sample δ(X∗)| yH , σ2(X∗), σ2(XH), yD(XH) once from Equation (3.5);

Combine obtained samples of yD(X∗) and δ(X∗) using Equation (3.6) to

obtain one sample for yH(X∗) | yH , σ2(XH),yD, and save the result;

end

Alternatively, analytical predictions can be made by taking point estimates for the

variance GP predictions, and then using the formulation given in Section 3.6.

To showcase this method, we return to the toy simulator from before, using

the previously obtained stochastic and deterministic data points (and standardising

according to the stochastic data’s mean and standard deviation). Predictions from

this model are given in Figure 3.3.

The overall shape of this emulator is much closer to the truth, with the periodic

feature now represented in the emulator. This confirms that including deterministic

runs can be valuable in building a stochastic emulator. The standard heteroscedastic

GP used earlier (and later in this chapter) used the same priors, mean functions,

and covariance functions; and predictions were also made via sampling (including

the predictive uncertainty in the intrinsic variance predictions).

For this specific example, the deterministic approximation yields outputs that are

generally too large compared to the stochastic simulator’s mean (not surprising since

we set up the problem this way), and thus the same is true for the yD Gaussian process,

the mean predictions of which are represented by the orange, line. This not a problem

however, as it is adjusted by the δ component to ensure the emulator’s mean and

the stochastic simulator’s mean match. The complexity of this adjustment Gaussian

process δ is related to how good an approximation the deterministic simulator is,

and therefore the capability of the overall emulator depends on the accuracy of the

deterministic approximation. In this toy example, the deterministic approximation

linearly differs from the stochastic simulator’s mean, and thus the δ Gaussian process

needs to be approximately linear for the full emulator to have good fit.

This “DetHetGP” emulator is evidently a better surrogate for the simulator than
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Figure 3.3: Emulator predictions for the toy simulator, using both stochastic and

deterministic runs. The black interval and respective line are the true 95% interval

and mean, and the blue interval and line are the emulator 95% predictive interval

and mean. The stochastic data points are circles, and the deterministic data points

are plus symbols. The mean of the yD component is in orange and interpolates the

deterministic data points.

the previous heteroscedastic emulator. On the other hand, it has used an additional

twelve simulator runs to be so. To show that utilising deterministic runs was an

efficient use of a simulator budget, Figure 3.4 shows the base heteroscedastic emulator

fit to the original 50 stochastic data points, plus an additional twelve stochastic data

points generated from the same input values as the deterministic runs.

Here, the HetGP emulator remains substantially inferior to the emulator that uses

some of the simulator budget to incorporate deterministic runs, failing to capture

the periodic component, despite using the same total number of simulator runs.

3.3 Guidelines

The previous section showed that including information from a deterministic ap-

proximation can be useful, but this does not always mean that it is always so. This
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Figure 3.4: 62 Evaluations of the toy simulator from Equation (3.1) (left), and the

respective heteroscedastic emulator predictions (right). The more periodic true mean

and 95% interval are superimposed in black, and the more linear emulator mean and

95% predictive interval are in blue.

section provides three criteria that must be satisfied for the outlined method to

perform well, and advice on how to ensure they are satisfied. Also shown will be

examples of what outcomes can occur if a criterion is not met. This section is not

intended to downplay the outlined method, but it does serve to provide an intuitive

understanding and actionable advice to ensure the method will work in practice.

The three criteria that we identify, in descending order of perceived importance,

are:

1. The deterministic approximation must be informative in some way.

2. There must be a sufficient number of deterministic simulation runs.

3. There must be a sufficient number of stochastic simulation runs.
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3.3.1 Criteria 1 - Accurate Approximation

The first criterion is fairly straight forward: an assumption is made that the deter-

ministic approximation provides some information about the shape of the stochastic

simulator. This criteria demands some degree of expert prior knowledge. In general,

we would hope that if the deterministic approximation and the stochastic simulator

are both models of the same process, that common attributes should be present in

both. It would be concerning if two models of the same process had no similarities.

To show what can occur should this criteria fail, we return to the toy simulator

in Section 3.2, but this time use the following deterministic approximation:

y(x) = log(0.1 + 4x). (3.7)

This bears no resemblance to the stochastic simulator, and is ultimately just a

different simulator, and not an approximation.

Fitting the statistical model, using 50 stochastic points and 12 deterministic

points (and standardising the data according to the stochastic points), provides the

predictions in Figure 3.5

One can see from this plot that the deterministic points appear in an “r” shaped

curve, and so the yD component tracks this. The resulting emulator uses this as

a baseline for what the overall stochastic trend is; the outcome being that the

emulator incorrectly believes the mean of the stochastic simulator is also an “r”

shaped curve. It is in this way that a deterministic code which does not approximate

the stochastic simulator can misinform the emulator into believing something which

is untrue. This does not appear to be too problematic in Figure 3.5, but if the

standard heteroscedastic Gaussian process emulator was able to capture the correct

trend, a poor deterministic “approximation” might instead bias it into no longer

learning the correct trend.

Our advice here is to only use a deterministic approximation if there is a real

reason to expect some similarity between the deterministic approximation and the

stochastic simulator, such as with the four example situations suggested in Section

3.2.
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Figure 3.5: Emulator predictions for the toy simulator, using both stochastic and

deterministic runs. The deterministic simulator here bears no resemblance to the

stochastic simulator. The black interval and respective line are the true 95% interval

and mean, and the blue interval and line are the emulator 95% predictive interval

and mean. The stochastic data points are circles, and the deterministic data points

are plus symbols. The mean of the yD component is in orange and interpolates the

deterministic data points.

3.3.2 Criteria 2 - Enough Deterministic Runs

Failing the second criteria yields similar effects as failing the first criteria. Should

there be too few deterministic simulations, the yD component can fail to capture the

information contained within the deterministic approximation, and instead learn a

different relationship. This different relationship may not be particularly informative

about the shape of the stochastic simulator, but will nonetheless be used to inform

predictions of the stochastic simulator.

Fitting the statistical model, using the exact same toy stochastic simulator and

deterministic approximation from Section 3.2, but now with only 4 deterministic

points (and 58 stochastic points), provides the predictions in Figure 3.6

In this plot, the yD component obtains a relationship which is not particularly
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Figure 3.6: Emulator predictions for the toy simulator, using both stochastic and

deterministic runs. Only 4 deterministic runs were used. The black interval and

respective line are the true 95% interval and mean, and the blue interval and line

are the emulator 95% predictive interval and mean. The stochastic data points are

circles, and the deterministic data points are plus symbols. The mean of the yD

component is in orange and interpolates the deterministic data points.

similar to the overall mean of the stochastic simulator. The relationship that the

yD component obtains still acts as a baseline for the overall mean, and there is

not enough stochastic data to rectify this. This is effectively the same problem as

when Criteria 1 fails: there is little difference between having a bad deterministic

“approximation”, and having a good deterministic approximation but obtaining a bad

representation of it.

Our advice here is based on the rule-of-thumb from Loeppky et al. (2009). Because

satisfying Criteria 2 is essential, we recommend a more conservative 20 simulation

runs per dimension, if possible, to capture the relationship of the deterministic

approximation. We recommend this more conservative rule, as the potential missed

opportunity from failing to capture the deterministic approximation is large. This

rule is followed in Section 3.4. A more thorough practice, would be to fit a separate
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standard deterministic emulator to the deterministic simulator; and ensure that

enough deterministic data is obtained to pass certain validation checks (such as those

outlined in Bastos and O‘Hagan (2009), or simpler leave-one-out cross validation

checks (see Chapter 2 and Williamson et al. (2017) for examples)). After this, one

can feel confident that enough deterministic data has been obtained.

3.3.3 Criteria 3 - Enough Stochastic Runs

The final criteria deals with the opposite problem to Criteria 2. Stochastic runs are

essential to modify the deterministic approximation such that it agrees with the

stochastic simulator. Stochastic runs are also needed to estimate the variance of the

stochastic simulator.

Figure 3.7 presents the predictions obtained from fitting the emulator to the toy

simulator and deterministic approximation when only 6 runs were stochastic (and 56

were deterministic).

This plot shows the emulator failing to adjust the location and shape of the

deterministic approximation correctly - it has been decreased too little for small

values of x and too much for large values of x. Additionally, the variance is estimated

poorly - especially for large values of x where it is estimated far too small. This

serves as an extreme example, where such a huge percentage of the simulation budget

is assigned as deterministic points, but it clearly establishes that having a sufficiently

large number of stochastic runs is still important.

Our advice here is that, after the required number of deterministic runs for

Criteria 2 to be satisfied are obtained, the remainder of the simulation budget should

be assigned as stochastic points, and no more assigned as deterministic points.

3.3.4 Large Simulation Budgets

Including deterministic runs was motivated by low simulation budget scenarios; where

not enough data can be obtained to capture the true relationship. If the simulation

budget is large enough, it is not unreasonable to assume that including deterministic

runs will no longer be optimal.

Deterministic runs primarily provide information about the shape of the mean

(although better capturing the mean can often aid in capturing the variance). Since

Criteria 2 and 3 directly act against each other, it is not impossible for deterministic
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Figure 3.7: Emulator predictions for the toy simulator, using both stochastic and

deterministic runs. Only 6 stochastic runs were used. The black interval and

respective line are the true 95% interval and mean, and the blue interval and line

are the emulator 95% predictive interval and mean. The stochastic data points are

circles, and the deterministic data points are plus symbols. The mean of the yD

component is in orange and interpolates the deterministic data points.

runs to worsen the quality of a stochastic emulator, and as the simulation budget

increases, this possibility becomes more likely. Initially this can arise in the form of a

trade-off, where the deterministic approximation still contains additional information

about the mean and so including deterministic runs can improve the estimation of

the mean, but the resulting decrease in the number of stochastic runs can worsen

the estimation of the intrinsic variance. The examples in the next section provide

some illustration of this trade-off in practice. At what point this trade-off begins,

and how strong this trade-off is, will depend on the accuracy of the deterministic

approximation, the complexity of the mean, the complexity of the intrinsic variance,

and the magnitude of the intrinsic variance. These can all be difficult to know about

a-priori (although some intuition may be present), which makes the outlined method

best suited for situations where the simulation budget is presumed to be overly
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limited, or situations where the mean is of greater interest.

Should the simulation budget be very large (or conversely should the simulator

be overly simplistic), the information provided by the deterministic approximation

can become obsolete because the stochastic simulations alone are enough to learn

the various relationships. In these situations, running any deterministic points can

be wasteful, as improvements would be made by instead increasing the number of

stochastic simulations. For an example of this, see Section 3.4.2. This is not a

particularly surprising outcome, especially since the outlined method was largely

motivated by limited simulation budget settings. In large simulation budget settings,

whether or not to include deterministic simulations should not be too troubling,

as both choices should provide capable emulators; with a marginal improvement

distinguishing the two.

3.4 Examples

In this section, the method will be applied to two examples that are more realistic.

To compare the performance of the standard heteroscedastic Gaussian process

(HetGP) and the developed method (DetHetGP), we will use out-of-sample simulation

runs to assess the predictions of a statistical model. Two metrics will be used: the

root mean squared error (RMSE), which assesses the mean of the emulator; and

the “score” which assesses predictions according to both their mean and variance.

The RMSE is the square root of the mean squared difference between the observed

out-of-sample simulator runs and the predictive mean of the emulator; and the score

is from Equation (27) in Gneiting and Raftery (2007). Both of these were used

in Binois et al. (2018) to compare stochastic emulator predictions. Smaller values

for the RMSE indicate an improved mean function, and larger values for the score

indicate better overall predictions.

All simulation data sets are obtained with input points chosen by a maximin

Latin hypercube design, unless otherwise stated.

3.4.1 Susceptible-Infected-Recovered Simulator

The first simulator we investigate is a basic Susceptible-Infected-Recovered (SIR)

model using the Individual Contact Model (ICM) from the EpiModel package (Jenness
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et al., 2018). This stochastically models a population where individuals can be:

susceptible to some disease, currently infected with the disease, or recovered from

(and now immune to) the disease. This is a fast simulator, but it serves as a more

authentic example than the toy simulator in the previous sections. The output we

consider is the number of infected people after 300 time steps. The two parameters

we vary and use as our inputs for the emulators are: the probability of infection

which will be allowed to vary between 0.5 and 1, and the recovery rate which will

vary between 0 and 0.01 (for the emulators, both are scaled to be between 0 and

1). Other parameters exist in the model, such as the rate of interactions between

individuals, the initial number of infected, and the total population (taken fixed as

0.01, 5, 1000 respectively). The package also includes a Deterministic Compartmental

Model (DCM), which is a different simulator, but takes the same inputs and provides

the same outputs as the stochastic simulator, and this will be our deterministic

approximation. Note that this is the case where a deterministic approximation is

available because an alternative deterministic model of the same real world process

exists.

HetGP is fit using 120 stochastic simulations, and DetHetGP is fit using 80

stochastic simulations and 40 deterministic simulations (i.e. 20 deterministic points

per input dimension, with the rest of the budget assigned as stochastic runs). Both

data sets are standardised according to the stochastic data mean and standard

deviation. To compare the two emulators, we obtain 200 more simulation runs, and

then calculate the RMSE and score. Because this simulator is relatively cheap, we

can repeat this entire procedure 100 times; smoothing out the variation from different

Latin hypercube realisations and different simulation runs. We can then present

summary statistics of the RMSE and score.

Table 3.1 gives these values.

Here we can see that, numerically, the score is marginally improved for DetHetGP

and the RMSE is more substantially improved (in terms of proportional improve-

ments), with the upper quartile for the DetHetGP RMSE smaller than the median

for HetGP. Additionally, not only does DetHetGP appear to be the preferred emu-

lator here, but the deterministic approximation is much faster than the stochastic

version. The stochastic simulator takes approximately 0.18 seconds to run, whereas

the deterministic approximation takes approximately 0.05 seconds to run. It is not

uncommon for a deterministic approximation to be cheaper, such simulators are
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Lower Quartile Median Upper Quartile

RMSE
HetGP 10.65 11.76 12.90

DetHetGP 9.81 10.64 11.34

Score
HetGP -1034.3 -1012.2 -993.7

DetHetGP -1036.5 -1009.7 -986.7

Table 3.1: The summary statistics of the score for both HetGP and DetHetGP from

the simulation experiment conducted on the SIR simulator.

likely to be simpler, and thus faster. This implies that more simulation runs could be

afforded if more deterministic runs were chosen; in this case, one stochastic run costs

more than 3 deterministic runs. To provide more conservative results, we ignore

this advantage in these comparisons, despite the potential improvement it provides

DetHetGP.

Because the score is only marginally improved (and potentially within the margin

of natural variability from only repeating the comparison 100 times, -1009.7 for

DetHetGP and −1012.2 for HetGP are not particularly different when the interquar-

tile ranges for the scores were 49.8 and 40.6), but the root mean squared error is

substantially improved, this example is potentially a case where the trade-off between

improved mean and improved variance occurs.

To visually show the improvements DetHetGP yields, Figure 3.8 shows predictions

from both emulators (for one fit) with the infection rate x1 kept constant at 1, and

only the recovery rate is varied. Superimposed on this plot are 100 out of sample

simulator runs where the infection rate was also kept fixed at 1.

The mean predictions from HetGP are approximately linear, missing the sharper

increase for lower values of the recovery rate, and instead a larger variance is predicted

for these values - large observed simulator runs were probably interpreted by the

emulator as being because of a larger variance rather than because of a larger mean.

DetHetGP on the other hand, does estimate the sharp increase in the mean function,

and does not feature an overly large variance estimate for low values of the recovery

rate. Other cross-sections of the emulator’s prediction surface could have been

presented, and a similar pattern exists for when the recovery rate is fixed at 0 and

the infection rate is allowed to vary. These plots show how DetHetGP can provide a

significant advantage over HetGP.
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Figure 3.8: Emulator predictions for both HetGP (top) and DetHetGP (bottom).

The predictions are for simulator runs where the infection rate is constant at 1, and

only the recovery rate varies. Also superimposed are 100 additional simulator runs

where the infection rate is kept constant at 1.

To better present the differences between the HetGP predictions and the DetHetGP

predictions for this example, 2D colour plots are given in Figure 3.9. The top row

presents the mean predictions and the bottom row presents the predictive standard

deviations.

The HetGP plots show that the mean is relatively constant, but the standard

deviation spikes in the bottom right corner. For DetHetGP, this relationship is

flipped; the standard deviation is mostly constant, and the mean spikes in the

bottom right corner. Given the numerical and visual evidence from previously, we

can determine that DetHetGP is more accurate, and that HetGP has discovered the

wrong relationship. Whether this specific difference is important will depend on the

application of the emulator, but it seems clear that DetHetGP is better learning the

underlying processes here. Note that this is an example of non-stationarity - where

different regions of space have different correlation structures. In most of the space

very little occurs, but in the bottom right there is a large degree of change; perhaps
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Figure 3.9: Emulator predictions for both HetGP (left) and DetHetGP (right) for the

SIR model. Top are mean predictions and bottom are predictive standard deviations.

the reason for the failings of HetGP here. Non-stationarity is a well researched

problem (Gramacy and Lee, 2008; Ba et al., 2012; Volodina and Williamson, 2020),

and it would be interesting to see if properly accounting for non-stationarity would

provide improved results (in either the yD or δ component of DetHetGP). This

example (and many of the other examples in this thesis) shows more generally how

‘variability’ can be exchanged between the mean model and intrinsic variance model

in a stochastic emulator, which is something DetHetGP can protect against.

3.4.2 EnergyPlus

For the second example, we return to EnergyPlus. The specific building we model

here is the hospital as in Chapter 2, and the input variables considered are: wall

concrete thickness, wall insulation thickness, roof insulation thickness, floor concrete

thickness, and window size (as a percentage of the total wall height). These are

varied from 0m to 0.7m, 0m to 0.5m, 0 to 0.5m, 0.1 to 0.7m and 0.25 to 0.75% of

the wall size. Weather generation is the same as in Chapter 2.
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200 data points are used to fit the two emulators, with each run taking roughly

1 minute. For DetHetGP 100 of the data points will be deterministic runs (20 per

dimension), and 100 will be stochastic. For HetGP the same stochastic runs will be

used, as well as an additional 100 stochastic points with input values the same as

those for the deterministic points. The data sets are also standardised according to

the sample mean and standard deviation of the stochastic data points.

This simulator is more expensive than the SIR simulator, and so only one set of

500 out-of-sample simulation runs are generated. For these, DetHetGP receives a

score of -5894 and an RMSE of 212, whereas HetGP receives a score of -5968 and

an RMSE of 261. DetHetGP performs better than HetGP on the building model in

this case, although it is hard to assess the magnitude of this numerical improvement

without a scale or repeated experiments. Additionally, 500 out-of-sample simulation

runs is actually quite sparse in 5D, and so does not tell the complete story of the

two methods performances.

To further investigate this difference, Figure 3.10 shows the emulator predictive

distribution for wall insulation thickness, keeping all other inputs fixed (at 0.5). 100

additional out-of-sample simulator runs are also shown, where all other input points

are also fixed at 0.5.

The predictions from DetHetGP are characterised by a decrease in energy usage

for very low values of wall insulation, after which improvements in energy efficiency

seem to stabilise. This is consistent with our experience of the building model.

HetGP does not yield this characteristic, instead it is more defined by a decrease in

the variability of the energy usage as wall insulation thickness increases. If we were

to assume that the trend discovered by DetHetGP is more accurate, it is likely that

extremely large observed values of energy usage were instead assumed by HetGP to

be the result of an increased variance, rather than a sharp increase in the mean. This

is a similar result as found with the SIR example. The superimposed out-of-sample

data points agree more with the predictions from DetHetGP, suggesting that this

emulator is better. The data suggests the sharp increase for low values of wall

insulation thickness, predicted by DetHetGP but not by HetGP, is correct and

possibly even sharper than predicted by DetHetGP.

DetHetGP does not appear perfect from these plots however, as around x2 = 0.75

there is a small bump in the mean. This bump does not seem sensible from the

data, nor from prior understanding. Perhaps the deterministic approximation was
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Figure 3.10: Emulator predictions for the second input of the building model (wall

insulation thickness), when all other inputs are kept fixed at 0.5. HetGP predictions

are plotted above, and DetHetGP predictions are below. Also superimposed are 100

additional simulator runs where the remaining 4 inputs were kept constant at 0.5.

modelled poorly due to a lack of deterministic data, or perhaps a limited amount

of stochastic data caused this error (the following example suggests the former).

Although not definitive, the evidence in general suggests that DetHetGP performs

better than HetGP for this example. Including deterministic runs leads to a more

accurately shaped mean function, and because the two emulators disagree with the

mean function shape, it is probable that HetGP has estimated the mean function

poorly.

EnergyPlus with a larger simulation budget

In the previous example, DetHetGP appears better than HetGP because it is able

to capture (to some degree) a sharp increase in the mean for low values of x2. Aside

from this local feature however, EnergyPlus has a reasonably simple mean, which

limits the value of DetHetGP. With a slightly larger simulation budget, HetGP

can produce equivalent (or even improved) results to DetHetGP (as discussed more
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generally in Section 3.3.4).

To see this, consider the previous example, but this time with an added 200

stochastic simulations (chosen via a maximin Latin hypercube). This results in a

total simulation budget of 400; for HetGP this is 400 stochastic simulations, for

DetHetGP this is 300 stochastic and 100 deterministic simulations. With the same

scoring dataset as before, this results in a DetHetGP score of -5837, a DetHetGP

RMSE of 206, a HetGP score of -5812, and a HetGP RMSE of 203. Here HetGP

now seems to be better than DetHetGP overall, and also has a slightly better mean.

This difference is minimal, and less of an advantage compared to the disadvantage in

the smaller simulation budget example, but it is still present.

Figure 3.11 presents the same cross-section plots as before but with the larger

training data sets.
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Figure 3.11: Emulator predictions for the second input of the building model (wall

insulation thickness), when all other inputs are kept fixed at 0.5, using the larger

simulation budget. HetGP predictions are plotted above, and DetHetGP predictions

are below. Also superimposed are 100 additional simulator runs where the remaining

4 inputs were kept constant at 0.5.

Here we can see that the HetGP predictions are able to capture the uptick at
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small x2 values (at least as well as DetHetGP can), which was the main advantage

DetHetGP had in the previous example. Without this mean flaw, the HetGP

emulator now seems to be the preferred choice as the improved score values (and

similar RMSE values) suggest that the variance is better captured by only using

stochastic simulations, and the mean is no worse off. Additionally, the slight bump

in the mean around x2 = 0.75 for DetHetGP is still present (which is not present for

HetGP); the additional stochastic simulations have not been able to flatten it out.

This example reaffirms the idea that DetHetGP is mainly valuable in low simulation

budget examples. Because the building model’s mean is relatively simple, what

counts as a large simulation budget is actually quite reasonable, and EnergyPlus is

also quite a fast simulator, which makes DetHetGP less valuable here.

3.5 ρ Parameter

One can also include a parameter, ρ, in the DetHetGP model which allows the yD

component to be turned off if need be (or its importance de-weighted). In other

words: yH(x) = ρyD(x) + δ(x). The motivation for including such a parameter is

to mitigate the negative effects of a poor deterministic approximation (i.e. when

Criteria 1 fails). In this section, estimation for the ρ parameter is done via maximum

a posteriori estimation in Stan, along with all other parameters.

Using the same toy deterministic approximation as before (Section 3.2), but this

time with more (80) stochastic points, and a stochastic simulator with a simpler

mean (in Equation (3.8)) we obtain the predictions in Figure 3.12. On the left are

predictions without the ρ parameter, and on the right are predictions including the

ρ parameter. In these examples, ρ is given a U(0, 1) prior.

y(x) = (1− x) sin(π + 2πx) + log(0.2 + x) + (1.2− x)ε;

ε ∼ N
(
0, 1
)
.

(3.8)

With a simpler mean, and more stochastic points, a deterministic approximation

is not necessary to capture the overall structure of the simulator. However, because

this deterministic approximation is deeply flawed (it is overly complex), the resulting

DetHetGP predictions are also flawed (left in Figure 3.12); predicting a mean that is

far more complex than the truth. This is another example of what can occur when

Criteria 1 fails and there aren’t enough stochastic runs to mitigate this. Including the
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Figure 3.12: Emulator predictions for the simplified-mean toy simulator, using both

stochastic and deterministic runs. The left plot does not include a ρ parameter, and

the right plot does.

ρ parameter can de-weight the impact of the deterministic approximation, providing

predictions which are again valid (right in Figure 3.12). These predictions still

aren’t completely free from the influence of the poor deterministic approximation

(ρ = 0.249), but they are substantially better. In this way, including the ρ parameter

can be a useful modification if the accuracy of the deterministic approximation is in

doubt.

On the other hand, such a parameter can decrease the usefulness of a deterministic

approximation, even when it is reasonably accurate. Returning to the example used

to demonstrate Criteria 3 (where too few stochastic points were used, Section 3.3.3),

we can see this in practice (Figure 3.13)

In this example, neither emulator is particularly accurate, but the one without the

ρ parameter at least leverages the excessive number of deterministic runs, obtaining

a mean that is somewhat similar to the truth. The emulator which includes a ρ

parameter does not have enough confidence to make any use of the deterministic

approximation (ρ = 0.005), and so the resulting predictions are worse. It is therefore
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Figure 3.13: Emulator predictions for the toy simulator, using both stochastic and

deterministic runs, with too few stochastic runs. The left plot does not include a ρ

parameter, and the right plot does.

important that, if a ρ parameter is to be included, that a good prior is provided

for it. Even without this parameter, DetHetGP does have the ability to adjust

the overall mean predictions away from the deterministic approximation, and so

a ρ parameter will mostly be useful in low data scenarios where including the

deterministic approximation is a questionable strategy.

3.6 Analytical Formulation

The formulation in Section 3.2 requires sampling to enable prediction because the

final predictions are conditional on the predictions from the yD component. It also

requires a prediction step in the fitting stage, which can make fitting the model slow.

It is possible to re-write the model to enable analytical predictions (if predictions

for the log(σ2) process are also taken fixed at their expectation) and to provide a

simpler formulation for fitting. This formulation is outlined below.

Taking yfull = (yD,y)T , and using the generative model as in Equation (3.2),
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then:

yfull ∼ N
(
Mean(yfull), Cov(yfull)

)
; (3.9)

with

Mean(yfull) =

Mean(yD)

Mean(y)

 =

 mD(XD)

mD(XD) +mH(XH)

 , (3.10)

and

Cov(yfull) =

 Cov(yD) Cov(yD,y)

Cov(y,yD) Cov(y)

 (3.11)

=

KD(XD, XD) KD(XD, XH)

KD(XH , XD) KD(XH , XH) +KH(XH , XH) + σ2(XH)I

 .

These equations can be used to fit the model (whether by maximum a posteriori

estimates as done here, maximum likelihood estimation, MCMC, or otherwise).

Predictions, conditional on σ2, are then:

yH(X∗) | yfull, σ2(X∗), σ2(XH) ∼ N
(
M(X∗),V(X∗)

)
; (3.12)

M(X∗) = m(X∗) +K(X∗, XH)
(
Cov(yfull)

)−1(
yfull −m(XH)

)
,

V(X∗) = K(X∗, X∗)−K(X∗, XH)
(
Cov(yfull)

)−1
K(XH , X

∗),

where

m(X∗) = mD(X∗) +mH(X∗),

K(X∗, X∗) = KD(X∗, X∗) +KH(X∗, X∗) + σ2(X∗)I,

m(XH) =
(
mD(XD),mD(XH) +mH(XH)

)T
,

K(X∗, XH) =
(
KD(X∗, XD), KD(X∗, XH) +KH(X∗, XH)

)
,

K(XH , X
∗) = K(X∗, XH)T .

This is a similar formulation as used to link multiple models of varying fidelity

(Kennedy and O‘Hagan, 2000; Le Gratiet, 2013; Kennedy et al., 2020). Predictions

using the sampling formulation and the analytical formulation are provided below.

The analytical formulation can be much faster (no longer needing expensive Monte

Carlo sampling for every prediction point2, and also not needing a prediction step in

2By taking the log(σ2) predictions fixed at their expectation, these predictions are only an

approximation to the full predictions. Since point estimates are already used for log(σ2(XH)), a full

quantification of uncertainty for the log(σ2) process is lost regardless. To avoid this approximation

these equations could still be used, coupled with sampling from the log(σ2(X∗)) process, which

should still be faster because it avoids the intermediate yD sampling step required in Equation

(3.3).
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the fitting stage). This can be especially important for alternative objectives and

extensions, where a fast, analytical, result can sometimes be essential (for example,

closed form solutions facilitate Bayesian optimisation with a standard Gaussian

process (Frazier, 2018)).
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Figure 3.14: Emulator predictions for the toy simulator, using both stochastic and

deterministic runs. The black interval and respective line are the true 95% interval

and mean, and the blue interval and line are the emulator 95% predictive interval

and mean. The stochastic data points are circles, and the deterministic data points

are plus symbols. Left uses the analytical prediction formula, right uses sampling

(with only 1000 samples).

We can see from the plots in Figure 3.14 that both provide the nearly identical

results, but the one on the right provides noisier predictions due to residual sampling

variation caused by not using enough Monte Carlo samples. In situations where

enough samples can be drawn (for example, problems with small data sets), sampling

is less of an issue. In general, however, the analytical formulation is better, and the

analytical formulation should have been used throughout and in Baker et al. (2020a).
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3.7 Discussion

In this chapter we have presented a method for including deterministic runs in

the emulation of stochastic simulation experiments. By utilising a deterministic

approximation of the stochastic simulator, a less noisy view into the general shape

of the mean function can be learned. Including deterministic runs can produce

better emulators, especially when the mean function is complex and sufficient prior

knowledge of the mean function is lacking, and the simulation budget is insufficiently

large.

A heteroscedastic Gaussian process is not the only method for modelling a

stochastic simulator with a Gaussian process. The variance can instead be modelled

with a simple parametric form, or taken as constant fixed variance, as in basic

Gaussian process regression (Rasmussen and Williams, 2006). It might be interesting

to see how useful DetHetGP is in these alternative scenarios. Similarly, other

methods apart from standard Gaussian processes exist for flexibly modelling stochastic

systems, and so it would be interesting to see if deterministic approximations can be

incorporated into other such methods.

Phase-shifts and other more complex relationships between the deterministic

approximation and the stochastic simulator are also unlikely to be properly captured

by the described model formulation. Deep Gaussian processes have been investigated

for dealing with this problem for multiple levels of code (Cutajar et al., 2019), and

such a strategy could also be useful for incorporating deterministic approximations.

An interesting design question has been posed regarding how many deterministic

points should be included: too few and the deterministic approximation will not be

modelled well; too many and not enough stochastic data points will be generated,

yielding a poor estimate of the variance and potentially the overall mean. The advice

given in Section 3.3 provides a good starting point for this. Additionally, replicated

simulations also provide an insight into the mean at any given point (and the variance).

Deterministic simulations provide a perfect insight into an imperfect representation

of the stochastic simulator, whereas replications provide an imperfect insight into

the simulator itself. Which is more valuable likely depends on the degree of noisiness

of the simulator and the accuracy of any given deterministic approximation, among

other features. Using both deterministic simulations and replicated simulations

together may provide an overall better solution, with the deterministic simulations
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providing a good base emulator, and replications allowing improved adjustment

and variance estimation. A thorough investigation into replicates and deterministic

approximations remains future work.

In general however, whilst DetHetGP seems capable, interesting, and potentially

worthy of further study; it is not particularly valuable for EnergyPlus. EnergyPlus is

not particularly slow to run, which means that a relatively large simulation budget

is often feasible. Additionally, EnergyPlus does not seem to contain particularly

complex relationships (except the non-stationarity for very low values of wall insu-

lation). Together, this makes a DetHetGP unnecessary in many cases for building

simulation, and so the rest of this thesis returns to the building simulator and does

not leverage DetHetGP. However, in other applications (such as epidemiology) where

the computational cost of running a simulation is larger, we think that DetHetGP,

and the idea more generally, could be extremely valuable.
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Chapter 4

Finding Acceptable Building

Designs
1

4.1 Introduction

In previous chapters the building model served more as an illustrative example for

different stochastic emulation problems. In this chapter, the building model problem

takes centre stage, as we investigate a case study example where stochastic emulation

techniques can be practically applied. Whilst new methodology is developed, the

focus in this chapter is primarily on the application.

Our goal is to find modifications to an existing building design which will provide

satisfactory overheating risks and energy demands; even after the expected increase

in temperature by the end of the 21st century. Due to the non-trivial time required to

run EnergyPlus, and the stochastic nature of (our version of) EnergyPlus, emulators

are essential for comprehensive analysis.

In this chapter we aim particularly for this notion of ‘satisfactory’ rather than

‘optimal’. The main reasoning for this is that, in practice, there can often be

additional criteria beyond numerical summaries which can be important when it

comes to building design (for example, a building’s appearance). Additionally, it

would be far easier, and more sensible, for potential regulations to require specific

threshold standards rather than some relative notion of ‘most-improved’.

We refer to our goal as level set estimation. The ‘level set’ typically refers to

the set of inputs where the output is exactly at some threshold, but we use the

1Much of this chapter’s contents have been published in Baker et al. (2021)
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term more liberally to refer to when the output is less than (or greater than) some

threshold. Finding the former typically reveals the latter (and vice-versa), and so

this abuse of definition is reasonably innocent. A more accurate term for our goal

would be “sublevel” set estimation (or “superlevel” set estimation if we targeted

values larger than some threshold) or “excursion” set estimation.

To efficiently achieve our goal, we modify the history matching procedure (Craig

et al., 1997; Vernon et al., 2014; Andrianakis et al., 2015). In general, history matching

provides straightforward general implementation, easy utilisation even when the

input and output dimension is high, a robustness to low simulation budgets, and the

ability to identify when no such ‘real’ input exists. History matching techniques have

also already been extended to the problem of optimisation (Lawson et al., 2016), and

so it is a natural step to extend them to level set estimation as well.

4.2 Building Model

For this case study, we use the building outlined in Figure 4.1. However, even though

this chapter gives more attention to a specific building than previous examples, it is

still an illustrative example, and the outlined procedure should be useful for other

buildings in practice.

Figure 4.1: The geometry of the modelled building.
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Our building is fitted with an “ideal loads” heating system, and no air conditioning.

No air conditioning may seem like an odd setup, given the intended objective, but

this choice is more representative of the UK’s building stock, where it has been

reported that only 0.5% of residential buildings have air conditioning (BBC, 2013).

Air conditioning could have been included, with a user-input capacity, without any

major methodological modifications. A more realistic heating system could also have

been used.

For different building designs, different attributes can be adjusted. For this case

study we assume the following attributes are adjustable: the wall insulation thickness

(considering values from 0m to 0.5m), the roof insulation thickness (from 0m to

0.5m), the ground insulation (from 0m to 0.1m), the size of the windows (from 20%

to 100% of the wall size, ensuring at least a 0.1m windowless border), the length of

window overhangs (from 0% to 100% the height of the windows), the amount the

windows can be opened by occupants (from 0% to 100% of the windows size), the

emissivity of the roof (from 0.4 to 1), and whether or not the windows are double or

triple glazed. From now on, these are referred to as x1, . . . , x8 and their input ranges

are rescaled to be between 0 and 1. Other inputs could have been considered (for

example, the air conditioning capacity) - the specific choices in practice are down to

what construction options are available.

For this example we want to use a more realistic weather generator than in

Chapters 2 and 3. Additionally, our interest lies in ‘future-proofing’ the building,

i.e. making sure it performs well towards the end of the 21st century. With these

desires in mind, our choice of weather generator is the UKCP09 weather generator,

which can output possible samples of weather for the year 2080, which can then be

input into EnergyPlus (Eames et al., 2011). UKCP09 is relatively old, and therefore

its internal climate predictions are fairly out of date. The more recent UKCP18

projections have since been developed (Lowe et al., 2018), although at the time of

writing no weather generator has been produced for it. Other weather generators

can be used here, with the specific conclusions differing slightly depending on the

form of the chosen weather generator.

EnergyPlus directly outputs the yearly heating energy usage, which can then

be used to improve the building design. For the other objective (overheating),

EnergyPlus outputs the indoor temperature throughout the year. The indoor

temperature can then be used to classify whether or not the building overheated
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during the simulation. We follow the definition of overheating as provided by the

Chartered Institution of Building Services Engineers (CIBSE, TM52 (2013)). Other

classifications or metrics for overheating could have been considered instead.

For their definition, the weighted running mean Trm is first calculated for every

day as Trm = 0.2Tod−1 + 0.8Trm−1, where Tod−1 is the outdoor temperature from the

previous day and Trm−1 is the weighted running mean from the previous day. The

maximum acceptable indoor temperature Tmax is then defined as 0.33Trm + 21.8°C.

This maximum acceptable temperature is then used to assess the relative temperature

inside the building; ∆T is an hourly time series of the difference between the

“operative indoor temperature” Top and the maximum comfort temperature Tmax.

∆T then represents a value for how hot the building is at any one hour. ∆T can be

calculated from the outputs from EnergyPlus, as EnergyPlus outputs the operative

temperature and the outdoor temperature is a required input. Three criteria are

then constructed from ∆T to quantify the different ways a building can overheat.

Criteria 1 checks how often the building is too hot. This criteria is broken if more

than 3% of occupied hours between May and September have a ∆T value over 1

degree. Criteria 2 is a combination of the length of time a building is too hot, and

how hot it is. This criteria is broken if, for any given day, ∆T sums to be greater

than or equal to 6 (only counting occupied hours). Criteria 3 checks how hot a

building gets at its peak. This criteria is broken if, for any occupied hour, ∆T is

greater than 4. A building is then considered to overheat if 2 or more of the criteria

are broken.

Because our modified EnergyPlus is stochastic, a building may not overheat, or

have low heating costs, only because the weather was favourable in that simulation.

As such, we are interested in the probability of a given building design overheating

and the average heating energy usage of a given building design.

In this work, we decide to aim for a less than 1% probability of overheating. This

represents a ‘sufficiently small’ value, but a different value could have been chosen.

For the average heating energy usage, we aim for less than 15kWh/m2, which is the

requirement set by the Passivhaus standard (Schnieders and Hermelink, 2006), but a

different threshold could also have been chosen.

To summarise, our goal is to find the set L, such that:

L = {(x1, . . . , x8) : P
(
yoh(x1, . . . , x8)

)
< 0.01, E

(
yeu(x1, . . . , x8)

)
< 15}, (4.1)
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where (x1, . . . , x8) are the different design choices, yoh is the binary output that

classifies whether the building overheats and yeu is the building’s energy usage.

4.3 Emulators

Two emulators are needed for this problem, one for energy usage and one for

overheating. Energy usage is a continuous variable and thus can be modelled in a

similar fashion as in the previous chapters. Overheating is binary, and therefore

needs to be modelled differently.

Additionally, the existence of the binary input variable x8 is a mild complication.

This is non-standard in the emulation community, with a standard Gaussian process

formulation requiring all inputs be continuous. The window glazing variable was

selected partially to show that binary input variables can still be included, as binary

variables are likely to be common as potentially adjustable attributes in a building

design. In this work, we use the mechanism outlined in Qian et al. (2008) that allows

non-continuous variables to be included in the covariance structure of a Gaussian

process. A simpler (but less efficient) alternative would have been to fit independent

emulators for each of the different window glazing options.

We first model the overheating risk using a Gaussian process classifier (Rasmussen

and Williams, 2006). This models overheating as a Bernoulli variable with a latent

Gaussian process for the logit probability of overheating (logit(p)). Taking the

continuous inputs as xc = x1, . . . , x7, and the binary input(s) as xb = x8, we have

the following overheating risk emulator:

yoh(xc,xb) ∼ Bernoulli
(
p(xc,xb)

)
;

logit(p(xc,xb)) ∼ GP
(
moh(xc,xb), Koh(xc,xb,x

′
c,x
′
b)
)
.

(4.2)

We use a zero-mean function formoh(xc,xb), letting the covariance functionKoh(xc,xb,x
′
c,x
′
b)

do all of the work. The covariance function is taken as:

Koh(xc,xb,x
′
c,x
′
b) = α2

ohexp

(
−
∑
x∈xc

(xi − x′i)2

l2ohi
−
∑
x∈xb

φohi1(xi 6= x′i)

)
, (4.3)

where α2
oh is the overall variance of the process; the left sum controls the correlation

between two data points if only the continuous variables vary, with the lengthscales

lohi modelling the smoothness of the relationship in the ith continuous dimension

(this is the squared exponential correlation function); and the right sum controls
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the correlation between two data points if only the binary variables vary (1 is the

indicator function), with φohi modelling this correlation for the ith binary variable.

In our case, we only have one binary variable, so the right sum can be replaced with

a single term, but the full summation is provided here for generality.

For hyperparameter priors, the overall variance is given a Half-Normal(0, 1) prior,

the lengthscales are given Inverse-Gamma(5, 5) priors and the binary correlation

parameter is also given a Half-Normal(0, 1) prior. These priors were chosen to broadly

cover the range of reasonable values, with the overall variance and lengthscale priors

following those advised by the Stan user guide (Stan Development Team, 2016).

Fitting this model is done via variational inference using GPflow (Matthews et al.,

2017), providing uncertainty distributions for the latent probability estimates.

The second emulator is the one for energy usage. We model this with a het-

eroscedastic Gaussian process as in previous chapters. Here, point estimates are used

for the hyperparameters, and the predictive intrinsic variance is taken fixed at its

expectation. Using the same notation as Equation (4.2) we have the following energy

usage emulator:

yeu(xc,xb) ∼ GP
(
meu(xc,xb), Keu(xc,xb,x

′
c,x
′
b) + σ2(xc,xb)

)
;

log(σ2(xc,xb)) ∼ GP
(
mσ(xc,xb), Kσ(xc,xb,x

′
c,x
′
b)
)
,

(4.4)

where σ2 represents the intrinsic variability of the energy usage output. The mean

functions (meu(xc,xb) and mσ(xc,xb)) and covariance functions (Keu(xc,xb,x
′
c,x
′
b)

and Kσ(xc,xb,x
′
c,x
′
b)) are given the same structure and priors as the overheating

emulator. This model is fit via maximum a posteriori estimation using Stan (Stan

Development Team, 2016), but the Gaussian process structure ensures that a full

probability distribution is still obtained for the mean (which is our quantity of

interest)2. The hetGP R package could have been used here (Binois and Gramacy,

2017), as technically the non-standard covariance function used in Equation (4.3)

can be represented as a standard squared exponential correlation function, as the

1(xi 6= x′i) term in the binary component can be represented as (xi − x′i)2, which is

exactly the numerator of the squared exponential correlation function (and so the

binary correlation parameter φ would be equal to 1/l2).

2GPflow has a capable implementation of variational inference for GP classifiers, whilst Stan

does not. On the other hand, implementing hetGP in Stan was easier than in GPflow. This is the

reason why different inference methods were used for each emulator, but in both emulators a full

probability distribution is obtained for the quantity of interest.
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Together, these two emulators provide a way of predicting what the overheating

risk and the average energy usage are for any values of (xc,xb). These predictions

will have an uncertainty distribution around them, which can be easily obtained

from the Gaussian process predictive equations. The accuracy and precision of these

predictions will depend on the total number of simulations used to fit these models.

At this stage, we could use these emulators directly to estimate the level set.

However, if the level set makes up a relatively small part of the input space, the

precision of the emulator predictions in the region of interest will be low. This is

because the number of nearby simulations will be low, as the number of simulations

in the region of interest will be quite sparse. This is where a history matching

strategy can be useful.

The next section will outline the history matching inspired level set estimation

methodology - detailing how one can better estimate the level set of a simulator. The

section after that will then apply said methodology to the above emulators - finding

suitable buildings with regard to overheating risk and average energy usage. One key

benefit of the proposed methodology, and history matching more generally, is that it

is easily generalisable to many types of emulator - as long as a mean and variance of

a prediction can be obtained, then the proposed methodology can be directly used.

4.4 History Matching Level Set Estimation

We adapt the history matching procedure to apply to level set estimation, rather

than calibration. More information about standard history matching can be found

in Craig et al. (1997); Vernon et al. (2014); and Andrianakis et al. (2015). The

general idea here is to build initial emulators for our quantities of interest, and use

these to rule-out buildings which almost certainly do not meet the desired criteria.

The emulators can then be improved by obtaining more simulations for building

designs which have not been ruled-out, providing a better estimate for what the level

set is. This process can be repeated, each time improving the results. Each set of

simulations and analysis is typically referred to as a ‘wave’.

Taking y as the quantity of interest (overheating risk or average energy usage),

x a set of inputs ((x1, . . . , x8)) and T the threshold (0.01 or 15), we define the
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‘implausibility’ as follows:

I(x) =
E(y(x))− T√

V (y(x))
, (4.5)

where E(y(x)) is the expectation of the emulator, and V (y(x)) is its variance. In

standard history matching, the V (y(x)) term is usually supplemented with an added

Vobs term to represent the observational error (which is arguably not present around

the threshold T ) and an added VMD to represent the simulator error (which was not

included here, but discussed more in Section 4.8). This implausibility can be positive

or negative, which is a key difference to standard history matching. Large, positive,

values of I(x) suggest the input setting is not in the level set, as the expectation is

much larger than the threshold T . Large, negative, values suggest that it is in the

level set, as the expectation is much smaller than T .

A value of 3 or greater for I(x) is taken as the threshold for a value being

‘implausible’. Three is the value often used in standard history matching, based on

the Pukelsheim’s three sigma rule (Pukelsheim, 1994). Any value of x with I(x) > 3

is ruled-out, and no longer needs to be considered. The set of x values that are

not ruled-out yet is often referred to as the ‘NROY’ space (the Not Ruled-Out Yet

space). Similarly, we ‘rule-in’ any value of x where I(x) < −3; these are so likely

part of the level set that they are not worth wasting further simulations on, and

thus also no longer need to be considered (but should be remembered). The set of x

values which are not ruled-in yet will here on be referred to as the ‘NRIY’ space (the

Not Ruled-In Yet space), which is not present in standard history matching.

For clarification, consider the image in Figure 4.2.

This illustration demonstrates how 4 distinct regions of space emerge from using

the implausibility metric from Equation (4.5). The central line, going from the top

left corner to the bottom right corner, represents the set of inputs where the output

exactly equals T . The black, top right, region represents the set of inputs where

the output is much larger than T ; these are almost certainly not in the level set,

and thus are ruled-out. The red, bottom left, region represents the set of inputs

where the output is much smaller than T ; these are therefore almost certainly in the

level set, to the extent that they become less interesting, and thus are ruled-in. The

uncoloured middle regions are the regions of greater interest. The upper uncoloured

region, NROY, represents the set of inputs where the implausibility is greater than

0, and thus are not believed to be in the level set; but the implausibility is not large
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Figure 4.2: An illustration of the 4 regions that emerge from the history matching

level set estimation technique.

enough to know for certain. On the other hand, the lower uncoloured region, NRIY,

represents the set of inputs where the implausibility is smaller than 0, and thus are

believed to be in the level set; but the implausibility is not small enough to know

this for certain either. Note that buildings can move between NROY and NRIY

between waves.

With this, we then have a set of x values which are candidates for future

simulations (any values where −3 < I(x) < 3). Running simulations for some of

these buildings which are both NROY and NRIY (from here on referred to as the

NROY/NRIY space) and refitting the emulator will improve the emulator in this

space. This space is the region closest to the boundary, and additional simulations

here should help to distinguish which side of the boundary specific buildings are.

This process can then be repeated several times, until the space of NROY/NRIY is

acceptably small, it does not appear to change, or the simulation budget is exhausted.

If at any point, all choices of x are ruled-out (i.e. all values of I(x) are greater

than three), then this implies that no values of x are in the level set.

If more than one output is being emulated (as in our problem, where we have two
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quantities of interest), one can take the overall implausibility to be the maximum of

the individual implausibilities - if it is implausible that a specific building meets one

of the individual criteria, then that building is considered implausible overall.

In the final wave, when a final decision must be made (or a set of final candidate

values must be presented to a practitioner), it is not reasonable to allow the choice

of any ‘non-implausible’ values if they still have fairly large implausibility, but not

quite as large as three. Such buildings are still predicted by the emulators to fail

the criteria, but not with enough certainty to rule them out. Therefore, in the

final wave, we can impose stricter requirements, such as any input values where the

implausibility is less than 0 (which we call the ‘tenable’ set), or inputs where the

implausibility is less than -1. A more desirable choice would be to only consider

values with an implausibility less than - 3 (i.e. those ruled-in), with our simulation

budget however we find this to be too strong a requirement as almost none of our

candidate buildings end up ruled-in.

This methodology is easy to implement, and is conceptually understandable -

we rule-out buildings that are obviously not in the level set, rule-in those that are

obviously in the level set, and all others can be investigated further.

In the next section, we shall apply this methodology to the two building criteria

described previously.

4.5 Results

We start by considering (but not simulating) a set of 1000000 candidate buildings

(these are chosen by combining two random Latin hypercubes of size 500000 (McKay

et al., 2000), one for each value of the binary input variable). This reduces the

infinite number of possible buildings down to a finite (but very large) number to

consider. Our goal is to then reduce this huge number of candidate buildings to

a more manageable subset of ‘future-proofed’ buildings. For clarity, the different

inputs and their initial considered ranges are presented again in Table 4.1

Initially, in the first wave, we fit the two emulators using an initial set of 500

simulations: 250 unique x input points chosen by a sliced Latin hypercube design

(Ba et al., 2015), each replicated once. We then calculate Ioh(x) and Ieu(x) (that is,

the implausibilities for the overheating risk and the energy usage) for each of the

initialised candidate buildings.
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Variable Variable name Range

x1 Wall Insulation Thickness 0m - 0.5m

x2 Roof Insulation Thickness 0m - 0.5m

x3 Ground Insulation Thickness 0m - 0.1m

x4 Window Size 20% - 100%

x5 Window Overhang Length 0% - 100%

x6 Window Opening Amount 0% - 100%

x7 Roof Emissivity 0.4 - 1

x8 Glazing Type Double or Triple

Table 4.1: Table showing the inputs and their ranges considered for the building

model.

As a reminder, we are interested in the values of the overheating risk and the

average energy usage, not the raw outputs of the simulator. Therefore, in calculating

Ioh(x) via Equation (4.5), y(x) is replaced with the logit overheating risk and y(x) is

replaced with the mean energy usage in the calculation of Ieu(x). Because the logit

overheating risk is used, rather than the overheating risk itself, we also modify the

value of L, the target threshold, to be logit(0.01) rather than just 0.01. The logit

overheating risk is the original output of the latent Gaussian process emulator, and

is also unbounded. Using the overheating risk itself could also be done, although

such a quantity is bounded between 0 and 1.

With these two sets of implausibilities, Ioh(x) and Ieu(x), we take the overall

implausibility as I(x) = max(Ioh(x), Ieu(x)). Any candidate building x where the

overall implausibility is greater than 3 can then be ruled-out (and any less than −3

can be ruled-in).

4.5.1 Wave 1

In wave 1, 14.47% of the space was found with I(x) < 3 (i.e. 85.53% of all the

initial candidate buildings were immediately ruled-out / only 14.47% were left not

ruled-out) and 0.10% of the space was found with I(x) < 0 (i.e. a very small 0.10%

of the initial candidate buildings were found to be tenably future-proof). This means

that, without further simulation, almost no building designs are believed to satisfy

both criteria: 0.10% of all buildings are estimated to satisfy both criteria using the
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emulators’ mean predictions. This is a very small number, providing very little choice

for a practitioner (and as we will see later, the confidence in these designs satisfying

both criteria may be quite low).

To visualise the types of buildings which are currently most future-proof, we make

use of standard (in the history matching literature) minimum implausibility and

optical depth plots (Andrianakis et al., 2017). In these, for every combination of two

input variables, a 2D grid is made. Every candidate building is then sorted into the

relevant grid cell for the 2D combination of input variables. Minimum implausibility

plots present the minimum implausibility of any building within each grid cell, and

the optical depth plots plot the proportion of buildings that are not ruled-out within

each grid cell. Small minimum implausibilities or large optical depths represent good

building design choices. These plots then provide information about the shape of

the ruled-out space and the implausibility in this 2D projection. This can then be

repeated for all 2D input variable combinations. These plots provide insight into

what types of buildings are acceptable, and key relationships can be identified. We

also present the 1D histograms showing the proportion of buildings which are not

ruled-out for each input. These make it more clear what the individual impact of

each input is, but it is important to remember that the overall shape of NROY/NRIY

is a complicated 8D surface with potentially many complex interactions.

These plots are initially reasonably overwhelming, but they do contain a great

deal of useful information. Along the diagonals we can see the individual impact of

each input. We can observe that small values for x3 and large values of x4 typically

result in poor buildings. Large values for x1, small values for x2, small values for x5,

large values for x7, and x8 = 0 are also poor choices.

On the off diagonals we can see key 2D relationships. For example, the 2 plots

corresponding to the x4 : x5 interaction show how the negative effect of choosing a

larger value for x4 can be mitigated by choosing a larger value for x5. This is not

surprising given that x4 corresponds to the size of the windows, and x5 corresponds

to the size of the windows overhang (intuitively, larger windows are likely to increase

the chance of overheating, and larger overhangs will decrease this chance). Other

relationships are also visible. For example, it seems that small values of x3 and small

values x5 are particularly bad, but these don’t appear to interact with each other - a

large value for x5 does not appear to allow for a small value of x3.

Another key observation from these wave 1 plots, is that the minimum implausi-
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Figure 4.3: Minimum implausibility plots (below and left of diagonal) and optical

depth plots (above and right of diagonal) for Wave 1. For the minimum implausibility,

the scale is capped above by 3 (above this all buildings are ruled-out), and below by

-3 (below this all buildings are ruled-in). For the optical depth, the scale is on the log

scale, and goes from 0 (i.e. all buildings are non-implausible) down to -10 or lower

(i.e. less than 0.0045% of buildings are non-implausible). The diagonal histograms

show the relative proportion of buildings which are not ruled-out; also shown are

two horizontal lines indicating how much the histograms must be scaled down to

instead present the absolute proportion of buildings which are not ruled-out.

bility is never blue (i.e. the minimum implausibility is never much smaller than 0).

We already knew this, but later waves will show a stark contrast to this initial plot.

4.5.2 Wave 2

With a large degree of emulator uncertainty (14.47% of designs still NROY/NRIY),

it is reasonable to believe that, with more simulations, we could discover more viable

designs.

For the next wave’s simulation data, a random selection of 250 buildings are chosen

from the larger candidate set, only considering those which are still NROY/NRIY.
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Each of these chosen buildings is then simulated twice. This simulated data set, along

with any of the previously simulated data which is still not ruled-out, can be used to

re-fit the emulators. By homing in on more relevant building designs, we can greatly

improve the accuracy of the emulators in the regions of input space which are most

interesting. The newer emulators can then be used to further rule-out (or rule-in)

candidate buildings. A helpful computational attribute here is that once a building

is ruled-out (or ruled-in), it no longer needs to be checked - it has already been

ruled-out (or ruled-in), its final implausibility value is the last one it was assigned.

For Wave 2, the not ruled-out space was shrunk further down to 7.44% of the

total space and 1.49% of the space was tenable. Although not as large a shrinking of

input space as the first wave, wherein clearly terrible buildings could be ruled-out;

this wave still rules-out a large number of buildings.

Visual results for this wave are shown in Figure 4.4

As mentioned earlier, the most striking difference here is that a large part of the

input space is now light blue for the minimum implausibility plots. This shows how,

at this stage, many buildings are now best estimated as being tenably future-proofed.

With additional simulation in the region of interest, we begin to discover viable

building designs. The second most obvious observation is that the ruled-out space

has grown - with the red regions in the minimum implausibility plots having spread,

and the grey regions in the optical depth plots also having grown.

4.5.3 Wave 3

Repeating again for a third wave, exactly as before: 6.32% is not ruled-out and

1.99% of all buildings are tenably future-proof. This is a minor change compared

to the previous improvement, and so we stop here. Eventually, the results would

converge to the point where all buildings are either ruled-out or ruled-in. However,

because every simulation is costly, this is not practical. At this point, it appears

that additional simulations are providing diminishing returns, and so additional

simulation is more difficult to defend.

Figure 4.5 presents the visual results for wave 3.

Whilst the differences here are smaller, there are observable differences between

the wave 3 and wave 2 results - the blue regions are larger and darker, the red regions

are larger, and the boundary between them is more stark. With additional waves,

108



Figure 4.4: Minimum implausibility plots (below and left of diagonal) and optical

depth plots (above and right of diagonal) for Wave 2. For the minimum implausibility,

the scale is capped above by 3 (above this all buildings are ruled-out), and below by

-3 (below this all buildings are ruled-in). For the optical depth, the scale is on the log

scale, and goes from 0 (i.e. all buildings are non-implausible) down to -10 or lower

(i.e. less than 0.0045% of buildings are non-implausible). The diagonal histograms

show the relative proportion of buildings which are not ruled-out; also shown are

two horizontal lines indicating how much the histograms must be scaled down to

instead present the absolute proportion of buildings which are not ruled-out.

we could expect this pattern to continue.

From this point, we leave a final choice of building design down to a practitioner

because secondary (or in this case, tertiary) criteria often exist. Preferably, the

practitioner would choose only from ruled-in designs, but this can be an overly strict

criteria and barely any ruled-in buildings have been found (0.0019% of buildings have

I(x) < −3) by the end of the third wave). Additional waves with further simulation

would rectify this, but such a strict requirement is not always necessary, nor would

it always be feasible.

A bare-minimum requirement for selecting a final building might involve consid-
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Figure 4.5: Minimum implausibility plots (below and left of diagonal) and optical

depth plots (above and right of diagonal) for Wave 3. For the minimum implausibility,

the scale is capped above by 3 (above this all buildings are ruled-out), and below by

-3 (below this all buildings are ruled-in). For the optical depth, the scale is on the log

scale, and goes from 0 (i.e. all buildings are non-implausible) down to -10 or lower

(i.e. less than 0.0045% of buildings are non-implausible). The diagonal histograms

show the relative proportion of buildings which are not ruled-out. Also shown are

two horizontal lines indicating how much the histograms should be scaled down to

instead present the absolute proportion of buildings which are not ruled-out.

ering any buildings with I(x) < 0. These are all the candidate buildings where the

emulator mean predictions (i.e. the best guesses) suggest each requirement is satisfied.

Using this criteria, and selecting the allowed design with the largest windows, leads

to a final building which could be built. For this building, the wall insulation is

0.375m thick, the roof insulation is 0.458m thick, the ground insulation is 0.099m

thick, the windows take up 94.2% of their allowed maximum space, the overhangs are

98.1% as long as the window heights, 12.4% of the window area can be opened, the

roof has an emissivity value of 0.672, and the windows are triple-glazed. However,

on reflection, this building only has an implausibility value of −0.057 which is not
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very negative, indicating a lack of confidence that the building is in fact satisfactory.

With the emulators, we can also calculate that this building has a 54.8% chance of

meeting the overheating criteria and a 56.4% chance of meeting the energy usage

criteria. Neither are particularly large. Additionally, since we have 2 criteria (treated

independently), the joint probability of meeting both criteria is thus only 30.9%.

A stricter constraint, but not so strict as I(x) < −3, is therefore a more sensible

final requirement. Only considering buildings where I(x) < −2 still provides 1383

buildings to choose from (0.14% of the original candidate buildings). Choosing the

building with the largest windows from this subset then leads to a building design with

an implausibility of −2.06, a 99.2% probability of meeting the overheating criteria,

a 98.0% probability of meeting the energy usage criteria, and an acceptable 97.2%

probability of meeting both criteria. This building has 0.195m of wall insulation,

0.379m of roof insulation, 0.092m of ground insulation, the windows take up 52.3% of

their allowed maximum area, the overhangs are 86.72% of the window height, 21.9%

of the window areas are openable, the roof emissivity is 0.674, and the windows are

triple-glazed.3

Emulators can be flawed, and so we can also use EnergyPlus to check that this

building does indeed meet the criteria. Simulating this building 100 times yields 1

simulation where the building overheats, and an average energy usage of 13.0kWh/m2,

suggesting this building is indeed acceptable.

Several possible criteria for deciding the final building design can be imagined.

In practice, the decision depends on the priorities and desires of the practitioners

involved, but the illustration above serves as a good example. The emulators built

(and improved with the level set methodology) provide the information needed to

make such decisions, and provide insight into the various trade-offs a practitioner

will have to balance.

To summarise the overall process, wave 1 was essentially unable to find any viable

building designs, but it was able to clearly rule-out many designs. Later waves were

able to leverage this information by simulating more densely in the NROY/NRIY

space, allowing many viable building designs to be discovered.

3This building is only the acceptable building with the largest windows out of the initial candidate

set of buildings. Further initialisation of candidate buildings and subsequent implausibility checks

(using the already obtained emulators) could provide an acceptable building with even larger

windows.
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4.6 Validation

History matching is based on the notion that regions of simulator space which

obviously do not contain the answer need not receive attention. This is what

motivates the conservative threshold used to rule-out (and in our case rule-in) input

settings, providing some degree of robustness to emulator error. Nonetheless, it is

important that the emulators used still represent the simulator reasonably well.

Here, we will validate the emulators used using more standard techniques along

with some of the developed diagnostics from Chapter 2. For the more standard

diagnostics, we obtain 400 new out-of-sample validation simulations, with points

randomly chosen. For the stochastic emulator diagnostics, 80 new out-of-sample

locations are chosen, each run 5 times.

4.6.1 Wave 1

To begin with, we validate the wave 1 emulators. For the energy usage emulator,

Figure 4.6 presents the standardised error plots.
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Figure 4.6: 400 individual standardised errors for the wave 1 energy usage emulator.

Here, 33 points lie outside the 2 standard deviation intervals, which implies the

wave 1 emulator is overconfident. 4 of the points also have a standardised error
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greater than 4. This would usually be cause for concern, providing some degree of

doubt into the analysis. However, Figure 4.7 alleviates these worries.
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Figure 4.7: 400 individual standardised errors for the wave 1 energy usage emu-

lator plotted against the energy usage implausibility. Also superimposed is the

implausibility threshold for ruling-out points.

From this plot, we can see that all of the standardised errors with value greater

than 4 are being ruled-out as implausible. Additionally, only considering the not

ruled-out space after wave 1, the standardised errors are much nicer, with only 4

out of 130 points outside the 2 standard deviation intervals. Also, with the level

set procedure, a standardised error of 4 simply implies that we should be ruling out

this point more strongly than we are, which is not a particularly worrying problem.

This is one of the strengths of history matching - regions of space which are hard

to emulate can be ignored if that region of space is not of interest regarding our

objective.

Similarly, we can obtain the sample mean unexpectedness plots (from Chapter

2).

From Figure 4.8 we can see that the mean is, in general, acceptable. There are 4

mean unexpectedness values with absolute value greater than 0.95, which is as we

would expect. The extreme unexpectedness values do appear concentrated around

small values of x2 and large values of x6 (a pattern seen in the standardised errors),

but not particularly severely. So, despite the slightly worrying standardised errors,

the mean (which is our quantity of interest) appears acceptable.
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Figure 4.8: 80 sample mean unexpectedness for the wave 1 energy usage emulator.

Validating the overheating emulator is more difficult because the output is only

a binary variable (and the quantity of interest is a latent probability). We use the

ranked probability scores (Epstein, 1969; Hersbach, 2000), which are metrics for

scoring the accuracy of probabilistic forecasts. After obtaining the observed ranked

probability score for the overheating emulator, we obtain a reference distribution

by sampling multiple hypothetical data sets from the emulator and using each to

re-score the emulator. Then we can compare this reference distribution for the ranked

probability score with our observed score - if the observed ranked probability score

does not seem out of place compared to the reference distribution, confidence is

gained in the overheating emulators. Using the 400 individual simulations, we obtain

a ranked probability score of 0.159. This is less than the 95% sample quantile from

the reference distribution (0.174), and so we conclude that the overheating emulator

is, in general, acceptable.

As far as we know, obtaining local validation results, wherein the quality of the

overheating emulator can be assessed at each input location, is not possible with

existing methods; at least not without an abundance of validation data.

We can however, apply the unexpectedness diagnostic developed in Chapter 2.
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With 5 simulations per validation point in the replicated validation dataset, we can

obtain the proportions of simulations which have the building overheating. These can

be 0, 0.2, 0.4, 0.6, 0.8,or 1. We can then also use the overheating classifier to simulate

pseudo observed proportions, obtain a distribution for the sample proportions, and

then use this to obtain the unexpectedness values for the observed proportions.

With this, we can see whether the classifier, in general, overestimates the underlying

probability or underestimates it, and whether there are any local problems or clear

patterns. Figure 4.9 plots these unexpectedness values for the wave 1 overheating

emulator.
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Figure 4.9: 80 uncorrected sample proportion unexpectedness for the wave 1 over-

heating emulator.

We can see here, that these diagnostics suggests the overheating emulator is poor,

with 8 unexpectedness values less than -0.95, and 2 less than -0.995. However, this

is primarily because of an issue with the diagnostics, rather than with the emulator.

The proportion of simulations which overheat is not continuous, at least not with

a finite number of simulations. With only 5 simulations each, the statistic being

investigated is discrete, with 6 possible values. This is an issue. The unexpectedness

is based around P (Z ≤ Ẑ), where Z is the statistic of interest, and Ẑ is an observed
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value for it. With only 6 possible values, there can be a stark difference between

P (Z ≤ Ẑ) and P (Z < Ẑ). For example, if the true sample distribution has 70% of

statistics equalling 0 and 30% equalling 0.2, an observed statistic of 0.2 should be

acceptable, as this is a likely value. However, P (Z ≤ Ẑ) would yield a value of 1

(which is an extreme value) and P (Z < Ẑ) would yield 0.7, which is very different

(and not an extreme value). With continuous distributions, this is not an issue, as

the two converge, but for discrete distributions the choice of P (Z ≤ Ẑ) or P (Z < Ẑ)

has a big impact. In the above example, P (Z < Ẑ) seems to be the better choice,

but this is not guaranteed (it is easy to construct an example where the alternative is

true). Additionally, it is possible to construct an example where both are (wrongly)

extreme. For example, if the true sample distribution has 100% of statistics equalling

0, then P (Z ≤ Ẑ) would equal 1 and P (Z < Ẑ) would equal 0; both extreme but

indicating the exact opposite problem (the former suggesting an underestimated

probability and the latter suggesting an overestimated probability).

Our solution, which is mostly heuristic, is to use the average of P (Z ≤ Ẑ) and

P (Z < Ẑ) in the calculation of the unexpectedness for the overheating proportion.

This safeguards against the worst results of having a discrete distribution, although

strange patterns can still arise.

Figure 4.10 plots these (corrected) unexpectedness values for the wave 1 over-

heating emulator.

Here, the results are now much better, with only 1 unexpectedness value with

absolute value larger than 0.95. This is perhaps an indication of underconfidence,

but this is not particularly worrying.

4.6.2 Wave 2

To check the second wave emulators, we obtain another 400 simulations, with points

chosen randomly from NROY/NRIY from the previous wave. For the stochastic

emulator diagnostics, we also obtain 80 simulations repeated 4 times in the same

way.

Figure 4.12 shows the individual standardised errors for the 400 simulations.

Here the standardised errors are better than in wave 1, with no standardised

errors exceeding 4 (although one gets close), and only 26 points outside the 2 standard

deviation interval. There does seem to be a local problem for small values of x2.
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Figure 4.10: 80 corrected sample proportion unexpectedness for the wave 1 overheat-

ing emulator.
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Figure 4.11: 400 individual standardised errors for the wave 2 energy usage emulator.
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Again, plotting these standardised errors against the implausibility values, we see

that the worst standardised errors are not in the region of primary interest (i.e. they

are ruled-out); although for this wave, the standardised errors more generally seem

acceptable.
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Figure 4.12: 400 individual standardised errors for the wave 2 energy usage em-

ulator plotted against the energy usage implausibility. Also superimposed is the

implausibility threshold for ruling-out points.

Figure 4.13 plots the sample mean unexpectedness.

From these we can see that, again, no major problems seem to arise for the wave

2 emulator. There is again a local problem for low values of x2, which is slightly

worrying. However, Figure 4.14 plots the sample mean unexpectedness against the

implausibility, and this reveals that the problematic points are ruled-out, and the

potential emulator error simply means that they should have been ruled-out with

even more confidence.

What is interesting from the validation plots, is that we can begin to see the

growth of the ruled-out space in them. For example, we can see a general sparseness

of validation points for small x3, small x5, and large x4.

For the overheating emulator, the ranked probability score is 0.029, which is

much less than the 95% reference quantile (0.040).

Using the replicated validation data, Figure 4.15 plots the (corrected) proportion

unexpectedness for the wave 2 overheating emulator.

These proportion unexpectedness values now appear very strange, with a large
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Figure 4.13: 80 sample mean unexpectedness for the wave 2 energy usage emulator.
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Figure 4.14: 80 sample mean unexpectedness for the wave 2 energy usage emu-

lator plotted against the energy usage implausibility. Also superimposed is the

implausibility threshold for ruling-out points.

grouping of points near 0. This is a result of the discrete nature of the distribution,

which our correction can only mitigate (preventing spurious extreme values from

occurring). Nonetheless, only 2 values have absolute value larger than 0.95, suggesting
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Figure 4.15: 80 corrected sample proportion unexpectedness for the wave 2 overheat-

ing emulator.

the emulator is adequate.

Collectively, this evidence suggests the wave 2 emulators are acceptable.

4.6.3 Wave 3

We repeat the same procedure now, but for the wave 3 emulators. Figures 4.16 to

4.18 plot the standardised errors and the sample mean unexpectedness for the wave

3 energy usage emulator.

From these, we can see that, generally, the wave 3 energy usage emulator is also

acceptable. There is again potentially some minor local issue for small x2, with one

mean unexpectedness value of -0.992, although this the only problematic point this

time. It is likely that the non-stationarity for this input, as observed in Chapter 3, is

present for this building; with a large increase in the mean for small values of the

wall insulation thickness. Luckily large values are undesirable, and so this region of

space is cut-out more and more in each wave; although it does seem that, even by

wave 3, the beginning of this increase is still not completely ruled-out yet. This is not

a major issue, and by wave 3, the energy usage emulator seems generally acceptable.
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Figure 4.16: 400 individual standardised errors for the wave 3 energy usage emulator.
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Figure 4.17: 400 individual standardised errors for the wave 3 energy usage em-

ulator plotted against the energy usage implausibility. Also superimposed is the

implausibility threshold for ruling-out points.

Additionally, for the overheating emulator the ranked probability score is 0.020,

which is less than the 95% reference quantile (0.025).

Using the replicated validation data, Figure 4.19 plots the (corrected) proportion
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Figure 4.18: 80 sample mean unexpectedness for the wave 3 energy usage emulator.

unexpectedness for the wave 3 overheating emulator.

These again appear strange, with a concentrated grouping of points near 0.

Again, this is a result of the discrete nature of the sample distribution, and the

correction made to the unexpectedness. However, five of the unexpectedness values

have absolute value larger than 0.95, which does begin to raise issues as all are less

than -0.95. More worrying is that one of the unexpectedness values has a value of

-1. The true value is probably not actually -1, and instead is some value very close

to -1, but these unexpectedness values were calculated with 1000 samples from the

sample distribution, resulting in some Monte Carlo rounding error. Either way, this

indicates a serious underestimation of the overheating probability by the emulator at

this location. Upon further inspection, this validation point is for a building which

overheated five times out of five simulations. This building was also not ruled-out,

as the emulator incorrectly estimated the probability of overheating to be small.

This is unfortunate, and is a serious problem. However, in the wave 2 and wave 3

simulations, which were replicated once each, none of the training points overheated

twice (out of 2 simulations each). This suggests that we were unlucky to some degree,

as the training data in waves 2 and 3 never found any buildings which overheated
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Figure 4.19: 80 corrected sample proportion unexpectedness for the wave 3 overheat-

ing emulator.

regularly, but the validation data (which covers space much less) somehow did find

one. This extreme point is for a very low value (0.000028) of x6 (window opening

amount), suggesting that there may be some highly local pattern near this edge of

the input space, which was not picked up by the emulator.

This acts as an important warning - emulators have to interpolate space, and

increasingly in higher dimensions they have to extrapolate, which opens up the

possibility of missing local relationships. There is little that can be done about

this aside from simply simulating more and covering space more, and therefore the

possibility will always remain. More practically, for this example, the problematic

point does not have an implausibility of less than -2 (0.8825722 overall, -0.7141923

for just the overheating emulator), and so our decision strategy is not compromised.

To be safe, one should also avoid choosing any final building with near-0 values

for x6. Nonetheless, this outcome less than ideal, and with the developed classifier

unexpectedness diagnostic we have some evidence that the overheating emulator

in wave 3 is underestimating the overheating risk to some degree. From this point,

we could choose to simulate more from NROY/NRIY and attempt to obtain an
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improved emulator, and/or the validation data could be added to the emulator and

the combined data-set emulator could be used to make final judgements. For this

example, we leave the emulator as it is because, aside from the very extreme point,

the remaining 4 unexpectedness values smaller than -0.95 are at least all greater

than -0.99 (corresponding to standardised errors less than 2.58), suggesting these

overheating predictions may be flawed but not overwhelmingly so.

As such, we leave this finding as a reminder that emulators should only be used

as a decision support tool, and any final input choices should be properly simulated

and examined before being used in practice.

4.7 Implausibility vs. Probability

History matching descends from Bayes Linear ideas (Goldstein and Wooff, 2007),

where statistical modelling avoids the use of probability distributions in favour of

only expectations and (co)variances (i.e. first and second order expectations). This

is done for computational reasons, and also philosophical reasons (for example, some

would argue that expectations and variances are easier to specify than full probability

distributions). As a result, implausibility does not use probability in its definition,

and instead only expectations and variances are used.

However, history matching is often implemented using probabilistic statistical

models, usually full Gaussian process models (Boukouvalas et al., 2014b; Andri-

anakis et al., 2015; Salter and Williamson, 2016; Lawson et al., 2016). Since these

probabilistic predictions are often produced, it is possible to use these probabilistic

predictions to rule-out (and rule-in) input space, rather than only the predictive

means and variances.

For normally distributed predictions (as with Gaussian processes), in the absence

of model discrepancy, there is no computational difference between the two strategies

because the normal distribution is defined entirely by its mean and variance. The

implausibility threshold of 3 is often used to rule-out points with at least 95%

confidence using Pukelsheim’s rule. With normally distributed predictions, this is

then known to be a stronger statement, ruling out points with approximately 99.7%

confidence. With normally distributed predictions, no change in implementation

is required; the two are the same and only the interpretation changes. A similar

argument is made by those that frame standard history matching (for calibration)
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as a form of ABC (approximate Bayesian computation, Holden et al. (2018)). This

argument involves assuming a uniform prior distribution for the “true” calibration

input setting, and samples from this prior are accepted/rejected according to some

distance between the simulator output and observations. Opponents to this view

may argue that history matching is different because history matching does not

assume that there is one true input setting (which is desirable in part because, since

the model may be flawed, one input setting might be a better fit for one output but

worse for others).

Regardless, we could still choose to treat a history matching procedure as a

probabilistic inference where the decision process about which inputs to consider

involves a hard threshold. The wave based procedure of history matching could

then be viewed as a fairly standard sequential design scheme, where rather than

sequentially choosing individual points according to some optimality criteria (e.g. in

the case of Bayesian optimisation), a more conservative decision is taken to “sub-

optimally” simulate batches of many runs, constraining possible runs to only the

inputs with a sufficient probability of producing matching outputs (or a sufficient

probability of being on the boundary in level set estimation).

In this context, the advantages of a history matching design scheme are that it is

conservative (with less trust placed in the emulators at any one stage), and that the

ruling-out philosophy, where regions of space are iteratively rejected and subsequently

ignored, helps to simplify a problem over many waves (which is particularly useful

if the output is complex, whether due to multiple outputs, the presence of non-

stationarity, or otherwise). Computationally, the two strategies can be the same, but

the justification of each is different.

Greater differences between the two strategies appear when model discrepancy is

considered. The Bayes linear interpretation becomes more attractive, as it avoids

placing a specific distribution on the discrepancy. A probabilistic equivalent to

the history matching procedure can still be formulated if one assumes the model

discrepancy is normally distributed. In history matching, the data is not used to

learn about the discrepancy, and instead the prior beliefs about the discrepancy are

maintained (at least formally, in practice the discrepancy terms can be manually

changed). This strategy could be replicated in the probabilistic framework, using

constant values for a normally distributed discrepancy process and not updating it

with data. The computational details of both strategies would then be the same. In
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history matching the model discrepancy is sometimes treated as a ‘tolerance to error’

(Williamson et al., 2017), but the probabilistic interpretation would explicitly believe

in a structure for the discrepancy (while believing observed data is not informative

about this structure). In both cases, not using data to update the discrepancy is

a pragmatic implementation detail because of the issues with learning discrepancy

processes (Brynjarsdóttir and O‘Hagan, 2014).

Whilst the probabilistic interpretation difference may initially seem trivial, it

does have the potential to lead to divergences in results; especially with stochastic

simulators. If a stochastic simulator is not modelled with a normal distribution, then

whether or not we reject an input according to the implausibility definition as in

Section 4.4, or instead via the quantile of the predictive distribution, will lead to

differing results. For example, this divergence would have arisen in this chapter if the

overheating implausibility was calculated on the probability scale (rather than the

logit scale, which maintained normality). In that case, ruling-out points according to

whether the required threshold L lay outside 3 standard deviations (the Bayes Linear

inspired view) or whether it lay outside the central 99.7% interval (the probabilistic

view) would have lead to different results.

The discussion above only goes as far as replacing implausibility with probability

(with the ruling-out procedure maintained and the objective still to find ‘plausible’

inputs). A fully Bayesian procedure which does not update the discrepancy process

could also be imagined (with yet more interpretation differences), but this idea and

implementation remains future work.

Whilst the Bayes Linear inspired view was used in this chapter, I prefer the

probabilistic view, due to its greater interpretability, at least for level set estimation.

This can be seen in Section 4.5, where after the final wave, probabilities were

used in the discussion of how a final building could be chosen. In this example,

probabilities and implausibilities could be used fairly interchangeably, and there is a

direct relationship between the two, but this will not always be the case.

The probabilistic view can be additionally useful in the level set context. With

two outputs, we ruled-out inputs if the implausibility for either output was greater

than 3. With normally distributed predictions, the probabilistic interpretation is

then that we ruled-out inputs if the probability of meeting either criteria was less

than ∼ 0.13%. Treating them separately for ruling-out purposes is somewhat sensible,

as it doesn’t matter how well one criteria is met if the other criteria is not met.
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For ruling-in purposes, treating them separately was not as sensible (and we were

therefore, in some ways, lucky that we rarely ruled-in any inputs). Since the outputs

were modelled independently, a 99.87% chance of meeting each criteria individually

becomes jointly smaller the more outputs there are. With 2 outputs, the joint

probability would still be at least 99.73%, and thus this is not a problem, but with

many outputs this joint probability threshold could get quite small.

A workaround could involve adjusting the threshold of implausibility where we

rule-in points to maintain the same minimum probability of correct joint classification.

Using the normal assumption, this would be by using -3.205058 rather than -3

(Φ(
√

(1−φ(−3))), where Φ is the standard normal cumulative distribution function).

This would be a minor change, and would not have made much difference, as we barely

ruled-in any points using the threshold of -3, let alone -3.2. Alternatively, avoiding

using the normality assumption for ruling-in (useful say, if a model discrepancy

variance was included), the Vysochanskij–Petunin inequality (Vysochanskij and

Petunin, 1980) could be used to adjust the value of -3. The inequality states that,

for any unimodal distribution, at least 4/9k2 of the distribution will be contained

within k standard deviations. This could then be used to specify a value for the

minimum probability of being in the level set for each output (
√

0.95 would guarantee

a joint probability of 95% with two independent outputs), and thus the required

implausibility threshold. For our case, this would be −4.47 (or approximately -4.5).

This is even more difficult to obtain than -3.2, and so would have had minimal

effect on the analysis as well. Note that by not using the normality assumption,

the required implausibility to rule-in gets more negative. This implausibility can be

even more negative if one uses the Chebychev inequality, which does not assume the

distribution is unimodal either.

Alternatively, the joint implausibility measure as in (Vernon et al., 2010) for

calibration could be considered. This would account for any correlations between

the different outputs. However, this would need modifying to allow for negative

implausibilities. Additionally, it would not work as well for level set estimation

because it averages the implausibility of the different outputs. With calibration, one

output being matched very well and another very poorly is treated similarly to two

outputs that are matched moderately well. To see that this is the case, consider

a situation where there are two outputs, with observations y = (y1, y2), with two

independent corresponding emulator predictions (for a single, specific value for x),
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µ = (µ1, µ2), and two uncertainties, σ2 = (σ2
1, σ

2
2). The multivariate implausibility

measure, I would then equal
(
y1 − µ1, y2 − µ2

)1/σ2
1 0

0 1/σ2
2

y1 − µ1

y2 − µ2

 which

equals (y1−µ1)2

σ2
1

+ (y2−µ2)2

σ2
2

, which is exactly the sum of the squared individual implau-

sibilities for each output (which we will refer to as I2
1 and I2

2 ). As such, if the two

outputs were independent, the multivariate implausibility if I2
1 was 0.2 and I2

2 was

12 would be exactly the same as if I2
1 was 6.1 and I2

2 was also 6.1. For ruling-in

with level set estimation, this is not desirable - we (may) have a clear preference

for an input where both outputs are believed to be in the level set with reasonable

confidence, over an input setting where we strongly believe one output is in the level

set but we are very unsure whether the other is.

This would suggest that a new multivariate implausibility metric should be

defined, at least for ruling-in purposes. With the probabilistic view however, this

would not be necessary, and we could instead simply decide that any input is ruled-in

if it has a joint probability of being in the level set over 99.87% (or some other

threshold). This is probably the better decision for multivariate level set estimation,

but comparable choices in the implausibility framework remains an open question.

For the example in this chapter, because there were only 2 outputs and we barely

ruled-in any buildings, the issue is more academic rather than practical. However,

with hindsight, the probabilistic implementation was perhaps preferable.

4.8 Discussion

To conclude, we presented a case study - using ideas from the wider uncertainty

quantification community to improve upon a building design. After just three waves

of simulation, 92.56% of possible modifications were discarded as implausible. The

procedure in general is accessible and would allow an engineer to choose from a set

of acceptable building designs according to other more subjective (or less tangible)

requirements.

Throughout, we have ignored the notion of ‘model discrepancy’, where one

acknowledges the simulator is not perfect and is itself flawed. It is straightforward

and common to add an additive, constant, zero-mean measure of this discrepancy

in history matching (Vernon et al., 2014; Andrianakis et al., 2015), by simply

replacing the variance term in the implausibility equation, V (y(x)), with V (y(x)) +
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VMD, where VMD represents the subjective uncertainty around what the difference

between the simulated quantity and the real world quantity could be. If VMD is

not believed constant, or additive, or zero-mean (all possible within a level set

estimation procedure), then more must be done. Model discrepancy is an important

question when it comes to any form of simulator analysis (Goldstein and Rougier,

2009). How to include model discrepancy into building design requirements is a

question that requires discussion between statisticians, practitioners and policymakers.

Additionally, when it comes to level set estimation, there is an implicit relationship

between the required threshold and the model discrepancy. For example, there is

little difference between mandating that a building use no more than 15kWh/m2

while not accounting for model discrepancy, and mandating 10kWh/m2 but with a

belief that the model discrepancy could be up to 5kWh/m2.

Additionally, the level set methodology we use is certainly not the only one

available. For calibration, there are alternative methods to history matching; for

example, standard Bayesian inference (Kennedy and O‘Hagan, 2001) provides an

alternative methodology, although this is not without its flaws (Brynjarsdóttir and

O‘Hagan, 2014). The problem of efficient simulator level set estimation is also an open

research question, and other efforts exist (see Lyu et al., 2018, for a review of some

alternatives). A comprehensive comparison between history matching techniques

in general and alternatives is sorely missing from the literature, and remains an

important topic for future research. In practice, history matching techniques serve as

batch design schemes which are easily implemented and understood for a wide range

of problems, whilst also being fairly robust due to the ruling-out process and the

conservative nature. An initial comparison between history matching and sequential

strategies for level set estimation (in the next chapter) points mildly to the increased

value of the latter. As such, this case-study could perhaps have involved adapting

these sequential strategies to account for multiple outputs (with one being a classifier,

rather than a standard emulator) instead. In any case, for our problem the history

matching technique was sufficient and could provide value to practitioners. Although

we never reached it, the concept of ruling-in is interesting and also optional - if one

is interested in the specific performance of the buildings beyond simply whether or

not they meet the required criteria, buildings need not be ruled-in, and the level set

design scheme will then continue to improve all not ruled-out buildings.

For the two stochastic outputs we considered (energy usage and overheating
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classification), we were interested in improving specific summary statistics for each;

the mean energy usage and the overheating probability. For the binary overheating

classification output, the overheating probability fully summarises the output. For

the energy usage however, summaries other than the mean could have been used with

a different interpretation. In this case, because buildings are often used for many

years and the energy usage for any one individual year isn’t particularly important,

the mean average is a sensible quantity of interest. For many problems however,

other quantities of interest can be more important, such as the median or the 90%

quantile. The outlined level set procedure can still work in these situations, although

different emulators might be more suitable, such as a quantile Kriging emulator

(Plumlee and Tuo, 2014).

If a large number of additional waves were to be performed, it would also be

possible for the number of NROY/NRIY buildings to reach 0; with all candidate

buildings either ruled-out or ruled-in. This would imply that all possible buildings are

have been categorised as satisfying or not-satisfying the criteria. However, because we

only considered 1000000 possible designs, it is also possible that other hypothetical

building designs would still be both NROY and NRIY. In these scenarios, several

methods exist in the history matching literature for sampling new points from the not

ruled-out space (such as the method from Drovandi et al. (2017)), allowing the level

set boundary to be more precisely defined. We don’t believe this to be particularly

useful however, as there is a limit to how precisely a building can actually be built in

practice, and so there is a limit to how precisely we would want to design a building.

For this specific example, we also found some problems with the overheating

emulator in the final wave. It is possible that the strategy of throwing away data

between each wave (because the domain of the emulator is reduced in each wave to

exclude ruled-out simulations) has made it difficult for the emulator to learn the

latent probability process. By the third wave, very few of the training simulations

were 1s (i.e. very few of the simulated buildings ever overheated). In fact, only

7 of the 770 simulations used to train the wave 3 overheating emulator actually

resulted in an overheating building, a result of the ruled-out space having excluded

the worst buildings already. This is good news in the sense that it confirms that most

buildings with a high propensity to overheat have been ruled-out, but it is also bad

news because it can make it difficult for the emulator to learn the global patterns in

the overheating probability. For the overheating emulator, a better strategy here
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might have been to make use of all the training data (not excluding ruled-out data

from previous waves), allowing the global structures to be learnt. However, we also

found that the energy usage likely exhibits some degree of non-stationarity, and

the throwing away of data helped here (which may also be true for the overheating

emulator). Without a consensus here, for future examples a better strategy might

be to target easier overheating probability thresholds (say 5% rather than 1%) or to

include more simulations in each wave (which is possible because of the simulator’s

relative cheapness). We discuss the decision to shrink the domain of the emulator in

history matching more in the next chapter.

Furthermore, a more comprehensive study might have included a random oc-

cupancy profile as well as a random weather generation process. This would have

accounted for more of the uncertainty we have when modelling buildings without

requiring major methodological changes. Similarly, UKCP09 is out-of-date at this

point, and a different weather generator would have been preferable (even if this

required reducing the scale of the case-study to only modern day weather). An

additional extension to this work could involve increasing the number of inputs and

outputs. 8 inputs is not small for emulation, but it is possible that a practitioner

may want to adjust many more inputs in a building design (for example, say every

window were to be adjusted individually). With outputs, the building used was

reasonably simple, with only one “thermal zone”. In more complex buildings with

more thermal zones, each thermal zone would produce its own overheating outcome

and energy requirements, increasing the number of outputs.

Regardless, we believe that emulation, the described level set methodology, and

the ideas discussed more generally can be useful tools for the field of building

performance simulation. Practical improvements to existing or planned buildings

could easily be facilitated by utilising the tools outlined here, and accounting for the

uncertainty caused by weather (or indeed other ‘random’ variables) can be important.
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Chapter 5

Comments on History Matching

5.1 Introduction

The previous chapter showed how history matching techniques could be used to

aid building design decisions. This chapter will discuss, compare, and comment on

history matching in the context of level set estimation, and also more generally.

The first main question we discuss here is about whether the ruling-out procedure

of history matching, where the domain of the emulator is shrunk between waves,

is practical and efficient. This is explored in Section 5.2. We find that shrinking

the domain helps with extremely non-stationary problems, but maintaining a larger

domain helps when there are multiple distinct regions of space. An added benefit of

not shrinking the domain is that the NROY/NRIY space can then grow, as well as

shrink, between waves because the resulting emulators are valid beyond where the

current NROY/NRIY space is.

The second main question relates to how history matching compares with alter-

native design schemes. For level set estimation, Lyu et al. (2018) provide several

fully sequential design schemes for stochastic problems, adapted from the wider level

set estimation and optimisation literature. Section 5.3 compares history matching

level set estimation with these fully sequential alternatives. Our general conclusion is

that these optimal designs can sometimes be better than history matching, although

history matching is substantially easier to implement and faster to compute, making

it more suitable for relatively fast simulators.

All of the examples deal here with homoscedastic simulators and therefore ho-

moscedastic emulators. This was done as a compromise between investigating the full
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heteroscedastic case and the deterministic case. Extending the discussion explicitly

to the heteroscedastic case or the deterministic case remains future work.

5.2 The Ruling-Out Procedure

Our first set of experiments deal with the ruling-out procedure of history matching.

At each wave in history matching, a new NROY(/NRIY) space is calculated.

This NROY(/NRIY) space is a set of inputs which we believe could still lead to an

acceptable match (where ‘match’ means possible agreement with observed outputs

in calibration, or possibility of lying on the boundary in level set estimation). For

additional simulation, the NROY(/NRIY) space can be sampled from to provide

a new wave of more focussed simulations in the region of interest, improving the

emulator in this region (helping to further shrink the NROY(/NRIY) space). It is

also common to shrink the domain of the emulator (i.e. the region in which the

emulator is valid) to be equal to the current NROY(/NRIY) space (Vernon et al.,

2010; Lawson et al., 2016; Andrianakis et al., 2017). This means that simulations

from the previous wave(s) which were ruled-out (or potentially ruled-in) are not

used to fit the new wave’s emulator, because they are not within the domain of the

new emulator. This also means that the NROY(/NRIY) space will only ever shrink

(or at the very least, maintain its current volume), it can never grow because the

subsequent emulator(s) will not (and cannot) be used to make predictions in the

ruled-out (or ruled-in) space.

It can be argued that shrinking the domain of the emulator helps deal with

non-stationarity, as the underlying system is more likely to be stationary in the

smaller region of space and so a stationary Gaussian process assumption becomes

more valid (Salter and Williamson, 2016). For some models, a philosophical argument

could also be made that inputs outside of the NROY(/NRIY) space are not physically

possible, and thus should not be considered. However, for many models, ruled-out

inputs may still be physically possible but are not relevant for the given objective (for

example, a calibration objective in Baker et al. (2020b) is to determine the number

of fish in an area - all numbers of fish are physically possible, but only one is the

true value). Additionally, non-physical input settings can still be informative about

physical input settings, especially if the simulator response is relatively smooth.

The focus of this section is to explore the merits of this domain shrinkage in
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moderate contexts. Problems where the initial domain is incredibly large (for example,

the final NROY space in Andrianakis et al. (2015) was 1.3 × 10−9% of the initial

domain), will likely require some shrinking of the domain, unless the simulator is

incredibly simple. This section does not conclude that one is universally better than

the other, but it is interesting to compare the two different strategies, especially

given that shrinking the domain is common with history matching (Vernon et al.,

2014; McKinley et al., 2018; Andrianakis et al., 2015; Williamson et al., 2017; Salter

and Williamson, 2016; Lawson et al., 2016; Baker et al., 2021), but less common in

other objective-focussed design strategies in the wider statistics and machine learning

literature (including optimisation (Jones et al., 1998; Frazier, 2018), global emulator

design (Boukouvalas et al., 2014a; Binois et al., 2019), level set estimation (Picheny

et al., 2010; Lyu et al., 2018), and calibration (Damblin et al., 2018)).

Our examples focus on the level set history matching modification outlined in the

previous chapter. When the domain is shrunk, we shrink to only the NROY/NRIY

space (whereas in the previous chapter, we did not exclude the ruled-in space).

This can be sensible if the goal is only to find the boundary of the level set; if the

goal is instead to find and investigate those inputs which are ruled-in, then the

domain should include the ruled-in space as well. This set-up mirrors the calibration

procedure, and so any discussion should be broadly relevant for both objectives.

5.2.1 Should We Shrink the Domain?

Consider the 2 dimensional toy simulator in Equation (5.1).

y = 12x1x2 − 5(1− x1x2)12 sin(40πx1x2) + ε;

ε ∼ N
(
0, 0.5

)
.

(5.1)

This simulator is extremely non-stationary, with a very complex mean for low value

of x1 and x2, but a very simple mean for large values.

We fit an initial homoscedastic emulator (using the hetGP package). To ensure

the non-stationarity in the mean is picked up (and not smoothed over, as in examples

in Chapters 2 and 3), we fit the emulator to 200 initial simulations at 20 unique

locations, each replicated 10 times. We then perform level set estimation history

matching, with 3 additional waves of data each of 20 runs, assuming our goal is to

find the boundary where the output equals 5 (ruling-in for regions that are less than

5, ruling-out for those above).
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This is done twice, one time shrinking the domain at each wave to be equal to

the current NROY/NRIY space, and the other time maintaining the full domain.

In both cases, the current NROY/NRIY space is used to determine where new

simulations can be, and the NROY/NRIY space at each wave must be a subset of the

NROY/NRIY space of the previous wave. Figure 5.2 shows the predictive surfaces

of these final emulators for each procedure, along with the shapes of the ruled-out

and ruled-in spaces.

(a) Shrinking the domain
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(b) Maintaining the domain
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Figure 5.1: Predictive mean surfaces for the two emulators of the simulator in

Equation (5.1) after three waves of level set estimation history matching. The

emulator on the left shrank the domain between each wave and the emulator on the

right did not. Also superimposed is a transparent black overlay representing the

ruled-out space, and a transparent red overlay representing the ruled-in space.

With these plots, the ruled-out space is represented by a superimposed transparent

black overlay, and the ruled-in space is represented by a superimposed transparent

red overlay. In standard history matching for calibration, both the black and red

regions would be the ruled-out space, with the black space representing the region

where the output is too large, and the red region representing the region where the

output is too small.

We can see from these plots that the NROY/NRIY space for the strategy which

does shrink the domain is much smoother and smaller, even though fewer simulations

in total are used to fit the final wave emulator. This is because, by shrinking the

domain between each wave to only apply to the NROY/NRIY space, the emulator

only needs to be able to model a smaller, simpler, region of space. The strategy

which did not shrink the domain has to model the entire initial input space in each
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wave, which it struggles to do using a stationary Gaussian process (given the output

is not stationary over the initial input space).

With a toy simulator, we have access to the truth, and we therefore know

how accurate the emulators are with their final wave predictions. In this example,

shrinking the domain not only increases the degree of refocussing, but it also leads

to a more accurate final wave emulator. We can calculate the error of the final

classifications (for large a set of potential input combinations, what percentage of

predictions classify the output on the wrong side of the level set, taking any ruled-out

points as above the level set and ruled-in as below), and the bias (of those which are

classified wrongly, the percentage which are classified as too low minus the percentage

classified too high)1. For the strategy which shrinks the domain, the error is 0.966%

and the bias is −0.957%. The strategy that does not shrink the domain results in an

error of 2.21% and a bias of −1.28%, which is substantially worse.

By shrinking the domain, a stationary Gaussian process assumption becomes

more valid in the NROY/NRIY space, which leads to better results, as might be

expected.

This is not always the case, however. Consider the toy simulator in Equation

(5.2):

y = sin(3πx1) cos(3πx2) + ε;

ε ∼ N
(
0, 0.05

)
.

(5.2)

This simulator has many local minima and maxima and, assuming we are targeting

the regions of space where the mean equals -0.5 (ruling-in if the mean is less than

-0.5, and ruling-out if it is more than -0.5), the NROY/NRIY space will be in many

distinct locations. For this example, we fit an initial emulator using 20 runs, and

then perform level set estimation history matching, with 3 additional waves of data

each of 20 runs. This is again done twice, one time shrinking the domain, and the

other time maintaining the initial domain. Figure 5.2 shows the predictive surfaces

of these final emulators for each procedure, along with the shapes of the ruled-out

and ruled-in spaces superimposed.

1In standard calibration the notion of a “true NROY” set (Salter and Williamson, 2016) can

also be used to assess history matching performance. With level set estimation the accuracy of the

level set estimates can be more interesting, and this directly corresponds with the accuracy of the

ruled-out and ruled-in sets when simulation data is abundant.
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(a) Shrinking the domain
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(b) Maintaining the domain
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Figure 5.2: Predictive mean surfaces for the two emulators of the simulator in

Equation (5.2) after three waves of level set estimation history matching. The

emulator on the left shrank the domain between each wave and the emulator on the

right did not. Also superimposed is a transparent black overlay representing the

ruled-out space, and a transparent red overlay representing the ruled-in space.

Interestingly, these plots show that shrinking the domain leads to a greatly

reduced amount of refocussing, with much less of the space ruled-out or ruled-in.

Maintaining the initial domain leads to an NROY/NRIY space which is smaller, and

also more cohesive and smoother.

For the strategy which shrinks the domain, the error is 10.7% and the bias is

−8.46%. The strategy that maintains the larger domain results in an error of 2.57%

and a bias of −0.689%, which is substantially better (less than a third the value for

both metrics).

This points to how shrinking the domain can, at least in some circumstances

where there are multiple distinct regions of NROY/NRIY space, be a poor strategy.

Andrianakis et al. (2017) do argue that in an ideal situation such distinct regions of

space would be identified and emulated separately, but they also acknowledge that

such identification can be difficult. For this example, a stationary Gaussian process

for the initial domain was an acceptable assumption, and shrinking the domain

(and thus reducing the number of simulations used to fit the later-wave emulators)

is detrimental. If a stationary Gaussian process is a reasonable assumption, then

shrinking the domain can be a poor decision to make, because simulations which are

ruled-out (or ruled-in) can still be informative about the region of interest. In fact,

shrinking the domain implicitly claims that these ruled-out (or ruled-in) simulations
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are not informative about the region of interest, which may not always be accurate

(especially if the simulator response is particularity smooth or there are key global

structures).

With extreme non-stationarity seemingly favouring a strategy which iteratively

shrinks the domain, and stationarity seemingly favouring a strategy which maintains

the domain, it becomes interesting to see if either strategy is preferable in the presence

of weak stationarity.

Consider the toy simulator in Equation (5.3).

y = sin(1/((0.7x1 + 0.3)(0.7x2 + 0.3))) + ε;

ε ∼ N
(
0, 0.1

)
.

(5.3)

This is the non-stationary toy simulator explored in Ba et al. (2012) and Volodina

and Williamson (2020), with some additional white noise. Fitting an initial emulator

with 20 simulations, and then adding 3 waves for 20 simulations via history matching

(targeting the regions of space where the mean equals -0.25, ruling-in if the mean

is less than -0.25 and ruling-out if it is more than -0.25), we obtain the results in

Figure 5.3.

(a) Shrinking the domain
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(b) Maintaining the domain
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Figure 5.3: Predictive mean surfaces for the two emulators of the simulator in

Equation (5.3) after three waves of level set estimation history matching. The

emulator on the left threw shrank the domain between each wave and the emulator

on the right did not. Also superimposed is a transparent black overlay representing

the ruled-out space, and a transparent red overlay representing the ruled-in space.

These results are both very similar, and visually difficult to distinguish or decide

whether one is clearly better. Both seem to shrink the NROY/NRIY space relatively
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equally. Numerically, the error for the strategy that shrinks the domain is 4.16%, and

the bias is 0.311%; whilst the error for the strategy that does not shrink the domain

is 1.14%, and the bias is −0.408%. This suggests that of the two, the strategy that

maintains the domain has the edge. Even though the simulator is non-stationary,

the region(s) of interest is in the more complex part of the initial domain, and so

shrinking the domain is less useful here. Additionally, NROY/NRIY space again

appears to be made up of two distinct regions, which likely favours maintaining a

larger domain.

For another example, in higher dimensions, we look at the 10 dimensional wing

weight simulator from Forrester et al. (2008) in Equation (5.4), used by Davis et al.

(2020) to test non-stationary emulators. This simulator is modified to include some

intrinsic noise.

y = 0.036S0.758
w W 0.0035

fw

(
A

cos2(Λ)

)0.6

q0.006λ0.04

(
100tc

cos(Λ)

)−0.3

(NzWdg)
0.49 + SwWp + ε;

ε ∼ N
(
0, 5
)
,

(5.4)

where

Sw ∈ [150, 200], Wfw ∈ [220, 300], A ∈ [6, 10], Λ ∈ [−π/18, π/18],

q ∈ [16, 45], λ ∈ [0.5, 1], tc ∈ [0.08, 0.18], Nz ∈ [2.5, 6],

Wdg ∈ [1700, 2500], Wp ∈ [0.025, 0.08].

We perform three waves of level set estimation history matching for both strategies,

using an initial emulator built from 100 simulations. Each subsequent wave involves

an additional 100 simulations and we target the regions of space where the mean

equals 300 (ruling-in if the mean is less than 300, and ruling-out if it is more than

300). Shrinking the domain at each wave leads to an error of 1.42% and a bias

of −0.292%. Maintaining the larger domain leads to an error of 1.24% and a bias

of −0.283%. These results are approximately the same, with the strategy that

maintains the domain taking a slight edge. Here we find that, even for non-stationary

problems, even in reasonably high dimensions, maintaining a larger domain can be

an acceptable decision.

Collectively, these examples are frustrating. There does not seem to be a good one-

size-fits-all recommendation for whether one should shrink the domain or maintain

the initial domain. The common belief that non-stationarity favours shrinking the
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domain does seem to be true, but only when said non-stationarity is sufficiently strong.

On the other hand, maintaining the domain can help when there are important

global properties to capture and when a stationary Gaussian process assumption is

reasonable (if a stationary Gaussian process emulator is used).

5.2.2 Flexible NROY

There is another advantage to maintaining a larger domain. Consider another 2D

example, this time the one given by Equation (5.5), with history matching level set

estimation results given in Figure 5.4 (after an initial emulator using 20 simulations,

adding 3 waves of 20 extra simulations, and targeting regions where the mean equals

1).

y = −2exp

(
−(x1 − 0.8)2

0.3

)
exp

(
−(x2 − 0.2)2

0.3

)
+ ε;

ε ∼ N
(
0, 0.15

)
.

(5.5)

(a) Shrinking the domain
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(b) Maintaining the domain

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
x1

x2

−2.0

−1.5

−1.0

−0.5

0.0

Figure 5.4: Predictive mean surfaces for the two emulators of the simulator in

Equation (5.5) after three waves of history matching level set estimation. The

emulator on the left threw shrank the domain between each wave and the emulator

on the right did not. Also superimposed is a transparent black overlay representing

the ruled-out space, and a transparent red overlay representing the ruled-in space.

We can see from the plots, for both strategies, that there is a tall oval of ruled-in

space which seems to be erroneous. This is ruled-in in the initial wave, and history

matching does not allow for this mistake to be rectified in later waves. This is

because, at least when the domain is shrunk between waves, the emulator is only
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valid for the current NROY/NRIY space; as such, one cannot have confidence in

any emulator predictions in the ruled-out (or ruled-in) space. This issue is present

in all the examples previous to some extent, but it is particularly worrying for this

example because the ruled-in space appears to extend far into what should perhaps

instead be ruled-out.

For completeness, the error for the strategy which shrinks the domain is 8.75%,

the bias −8.26%, the error for the strategy which maintains the initial domain is

7.66% and the bias is −7.17%.

With the strategy where the initial domain is maintained, the ruled-out space

(and the ruled-in space for level set estimation) can be made flexible - recalculating it

each wave for the entire input space, allowing it to grow as well as shrink. This would

allow the emulator to correct previous misclassifications, something not previously

possible.

Doing so for this example, performing the same history matching as before but

this time allowing NROY and NRIY to be flexible between waves, we obtain the

results in Figure 5.5.
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(b) Maintaining the domain
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Figure 5.5: Predictive mean surfaces for the two emulators of the simulator in

Equation (5.5) after three waves of history matching level set estimation. The

emulator on the left shrank the domain between each wave and the emulator on the

right did not. Both strategies allowed NROY and NRIY to flexibly change between

waves. Also superimposed is a transparent black overlay representing the ruled-out

space, and a transparent red overlay representing the ruled-in space.

With NROY and NRIY now flexible, the error for the strategy which shrinks the

domain is 8.16%, the bias 8.16%, the error for the strategy which maintains a larger
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domain is 7.80% and the bias is −7.80%.

The strategy which shrank the domain here is not fundamentally sound, as

allowing NROY (and NRIY) to grow between waves should not be permitted,

because the emulator is not valid for the ruled-out (or ruled-in) space. Despite minor

numerical improvements, we can visually see that the results are also worse, as much

less space is ruled-out. Additionally, this procedure could never converge: a new wave

of data would rule-out much of the current NROY space, but the currently ruled-out

space would become NROY again (because the simulations currently responsible for

ruling-out this space would not be included in the emulator). This could continue

indefinitely, with large parts of space being ruled-out, only to be un-ruled-out in the

next wave because of data not being included in the emulator.

However, by maintaining a larger domain for the emulator, NROY (and NRIY)

can be made flexible, resulting in a much improved emulator for this example, with

the ruled-out space (and ruled-in space) very smoothly defined, with no obvious

misclassifications. This is then a strong advantage for maintaining a larger domain -

the emulators in later waves can rectify flaws in earlier wave emulator predictions.

For the other examples used in this section, numerical results are provided in

Table 5.1 for the equivalent experiments, taking NROY (and NRIY) to be flexible.

Error Bias

Multimodal 0.0204 (-0.0053) -0.00202 (-0.00487)

Wavy 0.0114 (0.0000) -0.00175 (-0.00233)

Wing weight 0.0113 (-0.0011) -0.00175 (-0.00108)

Non-stationary 0.0214 (-0.0007) 0.0175 (+0.0047)

Table 5.1: Error and bias values for the history matching level set strategy which

maintained a larger domain whilst allowing NROY and NRIY to be flexible. The

values in brackets indicate the changes vs the non-flexible counterpart (difference in

absolute values for the bias).

Numerically, allowing NROY/NRIY when a larger domain is maintained improves

the error for all examples except the wavy 2D simulator where it is unchanged, and

the bias is improved for all examples except the extreme non-stationary simulator

where it is marginally worsened.

In general, one needs to be especially careful when shrinking the domain that
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areas of input space are not wrongly excluded. The method of Xu et al. (2021) is

one technique for helping with this, although the possibility of wrongly excluding a

region will always remain.

Overall, it seems that shrinking the domain between waves is a beneficial strategy

when the simulator exhibits significant non-stationary. On the other hand, maintain-

ing a larger domain seems to be preferable when there are important global structures

(for example when there are multiple distinct modes) and when a stationary Gaussian

process assumption is reasonable (and does not appear to be particularly detrimental

in the presence of weak non-stationarity). Additionally, maintaining a larger domain

allows NROY/NRIY to be flexible, shrinking and growing between waves. This may

not always have much impact, but it does protect against emulator flaws in earlier

waves, and in some situations this could be essential.

With these results in mind, it may be better common practice to maintain a

larger emulator domain than the NROY(/NRIY) space, and allow NROY(/NRIY)

to be flexible within this larger domain. An open question remains as to how much

larger the emulator domain should be to the NROY(/NRIY) space. Too much and

a stationarity assumption across the input space can be untenable. Too little and

early-wave simulations which are informative to the region of interest might be

excluded, and regions of space which were wrongly ruled-out (or ruled-in) in earlier

waves won’t be corrected.

One strategy might involve using a different implausibility threshold to rule-out

(and rule-in) inputs to the threshold used to decide the domain of the emulator.

In other words, the threshold used to estimate the current NROY(/NRIY) space

and choose new simulation runs could be different to the threshold used to decide

which previously obtained simulation runs should be included in the next wave’s

emulator and for what regions NROY(/NRIY) will be recalculated in the next wave.

For example, one might use 3 as the threshold for ruling-out (and −3 for ruling-in

inputs), but 5 for determining where the next wave’s emulator is valid2.

2Note that, with a unimodal univariate output, 3 would imply at least 95% confidence that

any ruled-out input should be ruled-out using Pukelsheim’s rule (Pukelsheim, 1994), and 99.7%

confidence assuming the output is normally distributed. 5 would imply at least 98% confidence

that any ruled-out input should be ruled-out using the related Vysochanskij–Petunin inequality

(Vysochanskij and Petunin, 1980), and more than 99.99% confidence assuming the output is normally

distributed.
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The problem with this heuristic strategy, is that while it could protect against

the worst of the two competing strategies (fully shrinking the domain and fully

maintaining the domain), it is unlikely to ever be the best strategy. Simulations

with very high implausibility (say, above 5) can still be informative about the region

of interest if the response is sufficiently stationary. Similarly, inputs with moderate

implausibility (say, above 3 but below 5) can still belong to a non-physical regime

that bears no resemblance to the region of interest. Preliminary investigation seems

to confirm this, with this heuristic strategy never providing the best error rate on the

examples used previously (and in fact, providing similar error rates for each example

to whichever was the worse of the two competing strategies).

A different solution might involve using an emulator which can deal with non-

stationarity (Gramacy and Lee (2008), Ba et al. (2012), Damianou and Lawrence

(2013), Volodina and Williamson (2020)) and avoiding domain shrinkage altogether.

However, precisely and accurately modelling extremely non-stationary processes can

be time-consuming, difficult, and can be a wasteful use of a simulation budget.

Alternatively, if expert knowledge is available about the validity of the stationarity

assumption, then this knowledge could be used to choose whether or not to shrink

the domain (and by how much). Additionally, diagnostics for a given wave could be

used to check for non-stationarity (as is done in Volodina and Williamson (2020)),

which could help decide whether to shrink the domain at a given wave.

To conclude, whether or not the domain should be shrunk with history matching

is not an easy decision, and there are potential negatives to choosing to shrink the

domain by default. The nature of a specific problem and the extent of prior knowledge

should play an important role in making this decision. In the previous chapter, the

domain was shrunk at each wave and diagnostics revealed this strategy to have merit,

because there was a substantially different simulator behaviour for small values of

x2 which were not in the region of interest. Regardless, it can be important to note

that each strategy has its own flaws, and that the degree of additional simulation

refocussing does not need to be tied to the degree of emulator domain shrinkage.

5.3 Comparison with Alternatives

History matching is not without competitors. For calibration, Bayesian calibration

provides a holistic alternative (Kennedy and O‘Hagan, 2001), although this can be
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computationally taxing and can struggle with identifiability (Brynjarsdóttir and

O‘Hagan, 2014). Least-squares can also be used to estimate calibration parameters

(Tuo et al., 2015), although this only provides a single final value (i.e. no probability

distribution, or substitute like NROY space). For optimisation, Bayesian optimisation

has proved to be widely popular, especially in the wider machine learning literature

(Frazier, 2018). With Bayesian optimisation, a Gaussian process (or other emulator)

is used to sequentially, one-at-a-time, select additional simulations according to

some acquisition function, α(x), refitting the emulator each time, homing in on

the optimum (Jones et al., 1998; Jalali et al., 2017). These sequential optimisation

strategies can also be adapted to level set estimation problems (Picheny et al., 2010;

Gotovos et al., 2013). The existence of alternatives thus prompts comparison with

history matching.

Lyu et al. (2018) provides some sequential level set estimation techniques, devel-

oped for stochastic problems. These are implemented in the hetGP package, and thus

are readily available for comparison3. For level set estimation, acquisition functions

typically aim to simulate near where the boundary of the region of interest is believed

to be, accounting for uncertainty. This is quite similar to history matching, where the

former favours “optimal” choices for simulations, and the latter favours “plausible”

choices for simulations.

In all comparisons that follow, we use toy simulators with normally distributed

intrinsic noise, and we fit homoscedastic Gaussian process emulators (much like in the

previous section). Level set estimation is not constrained to stochastic problems, but

the deterministic setting can be considered as a special case of the noisy setting, and so

a lot of the comparison could therefore be considered broadly relevant. Additionally,

non-normal noise is also possible in practice (and for many examples, expected),

but this setting is not the focus of this thesis, and non-normal stochastic emulation

mostly remains an open research question (Fadikar et al., 2018; Baker et al., 2020b).

However, the more general conclusions are likely to be generally applicable.

Note that the alternative schemes considered all assume the objective is to find

the level set where the mean equals 0. Other targets are easily obtained by simply

adding a constant to the simulations.

3These do not make up an exhaustive list of all sequential level set schemes (for example,

Azzimonti et al. (2021)).
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5.3.1 The (Considered) Alternatives

Perhaps the simplest sequential level set scheme from Lyu et al. (2018) is the

Minimum Contour Uncertainty (MCU) method. This bears resemblance to the

popular GP-UCB optimisation method (Srinivas et al., 2012), sequentially selecting

a new simulation run according to which maximises the acquisition function in

Equation (5.6):

αMCU(x) = −|f̂(x)|+ γs(x), (5.6)

where f̂ is the predicted mean of the emulator, s(x) is the epistemic emulator

standard deviation (i.e. the standard deviation for the mean), and γ is a parameter

(which can change throughout the sequential process). The −|f̂(x)| term favours

points which are currently believed to be close to the boundary, the s(x) term

favours points which have a high degree of uncertainty, and the γ term weights the

importance of each. By default, the hetGP package sets γ = 2, but Lyu et al. (2018)

recommend using a value equal to the interquartile range of the mean divided by

three times the average epistemic standard deviation, and so we use this value in

subsequent examples.

Another criteria, cSUR, aims to reduce the local empirical error Ê(x), which

is the probability of wrongly classifying x (which, for the normal case, equals

Φ(−|f̂(x)|/s(x)) where Φ is the cumulative distribution function of the standard

normal). It does so by comparing the current value of Ê(x) to the (approximate)

expected value if the considered point is run. As such, it aims to maximise the

(expected) improvement in the local empirical error. Specifically, the acquisition

function is:

αcSUR(x) = Φ

(
−|f̂(x)|
s(x)

)
− Φ

(
− |f̂(x)|
ŝn+1(x)|x

)
; (5.7)

where ŝn+1(x) is the one-step-ahead standard deviation, derived in Lyu et al. (2018)

as:

ŝn+1(x∗)|x =

√
s2(x∗)− ν((x∗,x))2

σ2(x) + s2(x)
, (5.8)

where ν is the predicted epistemic covariance (V − σ2) and x is the considered point

to be run (note that for αcSUR, x∗ and x are the same).

Another alternative, Integrated Contour Uncertainty (ICU), uses similar ideas

but targets global improvements in the empirical error. Its acquisition function is
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given by:

αICU(x) = −
∑

xm∈Xm

Φ

(
− |f̂(xm)|
ŝn+1(xm)|x

)
, (5.9)

where Xm is a finite subset of the total input space.

And then as a final alternative, targeted mean squared error (tMSE), is a modified

version of a criterion originally from Picheny et al. (2010):

αtMSE(x) =
s(x)2√

2π(s(x)2 + σ2
ε )
exp

−1

2

(
f̂(x)√

(s(x)2 + σ2
ε

)2
 . (5.10)

A larger σ2
ε decreases the weighting towards simulating near the boundary (and

therefore increases the relative weighting towards uncertain regions), and therefore

acts in a similar way to γ in MCU. For deterministic experiments, Picheny et al.

(2010) recommend a value for σε of 5% of the range of the mean, which we follow

here, however Lyu et al. (2018) find that the value has little impact in stochastic

settings.

In the following sections we will the compare history matching level set estimation

to these sequential alternatives. For the sequential alternatives, we use the fast

updating of the model fits (from hetGP) each time a new data point is simulated,

refitting the model from scratch every 25 simulations (if the re-fit provides an

improved likelihood over the fast update). When appropriate, the values of γ and

σε are also recalculated every 25 simulations, using the predicted values for 10000

new input points (chosen via a Latin hypercube). With ICU, Xm is taken as 1000

points chosen via a Latin hypercube. For history matching, we use three waves of

data, do maintain the entire domain between waves, and allow NROY (and NRIY)

to be flexible.

5.3.2 1D Example

As an initial example, consider the toy simulator in Equation (5.11), and assume we

are aiming for values less than 0.4.

y = sin(0.5πx) + ε;

ε ∼ N
(
0, 0.1

)
.

(5.11)

Fitting an initial emulator to 10 simulations, and then adding 30 extra simulations

(either via MCU or via 3 waves of history matching level set estimation (HMLSE))

we obtain the results in Figure 5.6:
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Figure 5.6: Mean predictions for the simulator in Equation (5.11). The uncertainty

intervals are only for the epistemic uncertainty around the mean, and do not include

the intrinsic noise estimates. The left plot shows results after obtaining 30 additional

simulations via the MCU criteria, and the right plot shows results after 3 waves of

history matching (each with 10 simulations).

From these plots, it’s not clear if either method is preferable. MCU does seem to

simulate more concentratedly around 0.4, although the history matching simulations

are still fairly concentrated around 0.4. Numerically, MCU yields an error of 0.0155

(and bias of 0.0155), whereas HMLSE yields an error of 0.0103 (and a bias of -0.0103).

This seems to give a small edge to HMLSE, although the overall evidence points to

parity between the two methods (at least for as simple example as this one). We

can also provide a baseline example to compare these results to. By adding the

additional simulations via a simple maximin Latin hypercube (instead of via HMLSE

or MCU), we get an error of 0.0137 and a bias of -0.0137. That this specific result is

actually better than MCU implies that the differences between MCU and HMLSE

are trivial, and that the used example is probably overly simplistic.

For completeness, repeating the experiment but for the other alternative methods:

the cSUR error is 0.0100 (with a bias of -0.0100), the ICU error is 0.0002 (with a

bias of -0.0002) and the tMSE error is 0.0187 (and a bias of 0.0187). With these, the

results are all similar, except ICU which yields an improved result.

For a slightly more complex example, consider again the wavy simulator from

Equation (5.3). Again assume we target values less than -0.25, using 20 initial

simulations and 60 additional simulations (in 3 waves for HMLSE). Figure 5.7

presents these results.

The MCU error is 0.0134 (with a bias of -0.00984) and the HMLSE error is 0.0114

148



(a) MCU
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Figure 5.7: Mean predictions for the simulator in Equation (5.3). The left plot shows

results after obtaining 60 additional simulations via the MCU criteria, and the right

plot shows results after 3 waves of history matching (each with 20 simulations).

(with a bias of -0.00175). Even for this non-stationary problem, the two results

are very similar. MCU again seems to simulate more orderly along the boundary,

whereas HMLSE is more diffuse. Again for completeness, the cSUR error is 0.01225

(with a bias of -0.000936), the ICU error is 0.0141 (with a bias of -0.00755), the

tMSE error is 0.0140 (with a bias of -0.00519). For a baseline, adding 60 additional

simulations using a maximin Latin hypercube yields an error of 0.0194 and a bias

of -0.00957. In this case, all the methods provide better results than the baseline.

HMLSE is the best here, but by a small margin, suggesting HMLSE can compete

with the alternatives.

5.3.3 6D Example

And then for a higher dimensional, more complex example, consider the toy simulator

in Equation (5.12), which is a modified version of a toy simulator used in Lyu et al.
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(2018):

y = −10

(
4∑
i=1

Ciexp
(
−

6∑
j=1

aji(xj − pji)2
)
− 0.1

)
+ ε

ε ∼ N
(
0, 0.25

)
;

where C = (0.2, 0.22, 0.28, 0.3),

a =



8.0 0.5 3.0 10.0

3.0 8.0 3.5 6.0

10.0 10.0 1.7 0.5

3.5 1.0 8.0 8.0

1.7 6.0 10.0 1.0

6.0 9.0 6.0 9.0


, and p =

1

104



1312 2329 2348 4047

1696 4.135 1451 8828

5569 8307 3522 8732

124 3736 2883 5743

8283 1004 3047 1091

5886 9991 6650 381


.

(5.12)

With an initial homoscedastic emulator fit to 60 simulations, adding 180 more via

MCU (targeting the level set of 0) yields an error of 0.039708 (and a bias of -0.0159).

Adding 180 simulations via 3 waves of history matching yields an error of 0.0508

(and a bias of -0.0101). The cSUR error is 0.0431 (with a bias of -0.0173), the ICU

error is 0.0365 (with a bias of -0.00791), and the tMSE error is 0.0412 (with a bias

of -0.00281). As a baseline, adding an additional 180 simulations as chosen via a

maximin Latin hypercube yields an error of 0.0574 and a bias of -0.00600.

These results suggest that, for some examples, HMLSE can perform worse than

the alternatives, at least for some more complex, noisier, problems. This difference is

perhaps small, but it is measurably present. This provides some evidence that HMLSE

can be less ‘optimal’ than the alternatives, which is perhaps to be expected, given

that it does not fully optimise the criteria it uses to select simulations (implausibility).

Additionally, in this case, the advantage provided by HMLSE over a standard design

scheme is quite small, which could be due to the larger intrinsic noise in this example.

5.3.4 Low Signal-to-Noise Ratio Example

As further evidence that HMLSE can sometimes be worse than the fully sequential

alternatives, consider the 1D toy simulator again from Equation (5.11) and compared

previously. This time the intrinsic noise standard deviation is increased from 0.1 to

0.4. With this higher degree of intrinsic noise, the MCU error is 0.0556 (with a bias

of -0.0556) and the HMLSE error is 0.116 (with a bias of -0.116). Additionally, the

150



cSUR error is 0.0432 (with a bias of 0.0432), the ICU error is 0.0128 (with a bias of

0.0128), and the tMSE error is 0.0475 (with a bias of 0.0475). The baseline error

(using the design which adds 30 simulations via maximin Latin hypercube) is 0.111,

and the baseline bias is -0.0882.

We can see here that, whilst they all do worse than before, HMLSE really struggles

to compete with the alternatives, and does marginally worse than the baseline. This

is because, with a large degree of intrinsic noise, there is a large degree of uncertainty,

and so much of the input space remains NROY (and NRIY). This means that HMLSE

cannot effectively refocus towards the solution, and as such it proposes essentially

random designs. Optimal designs do not suffer from this as much, as even when the

overall degree of uncertainty is large, and therefore the confidence that any specific

simulation will be particularity valuable is low, some simulations will still be believed

more valuable than others, and so some degree of refocussing can still occur.

This is likely to be an effect in calibration as well - problems with a high degree

of noise will likely mitigate the refocussing capability of history matching, due to

its reliance on completely ruling-out regions of space. Workarounds to this could

be envisioned (for example, by weighting simulations based on their implausibility,

or using different thresholds to rule-out points), but by default history matching

seems worse than the alternatives in high noise scenarios, or other high uncertainty

scenario.

In these situations, one can at least be aware that this issue may be present, as

the degree of ruling-out can be reported a-priori to any additional simulations. If the

amount of ruling-out is considered insufficiently large, one could consider alternatives

or modifications. For example, with the 6D toy simulator above, the NROY/NRIY

space after one wave was 65.59% and still 52.98% after 3 waves. With the noisier 1D

simulator, NROY/NRIY was still 100% after 1 wave (and 25.45% after 3 waves). As

such, were these to be practical examples, a practitioner could be made aware that a

harsher design criteria might be useful, as the degree of refocusing is small.

This points to an open question in general, which is how to adapt history matching

in general to particularly noisy simulators. One may wish to use a stricter ruling-out

procedure (for example, ruling-out points where the implausibility is larger than 2,

rather than 3) to obtain a greater degree of refocussing. The counterargument to

this could be that history matching does not refocus much in noisy settings because

it acknowledges the degree of uncertainty, and so a lesser degree of refocussing is the
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sensible, conservative, strategy. Regardless, this problem was not an issue with the

building model in Chapter 4, as the noise was sufficiently low, and a large amount of

input space was ruled-out.

5.3.5 History Matching is Fast

The above examples suggest that history matching can sometimes make less optimal

design choices than alternative strategies. The degree of this sub-optimality appears to

be problem specific: with some problems history matching is competitive, and others

it can be measurably worse (the latter due to insufficient reduction of NROY/NRIY

space, which is at least known before additional simulation).

However, history matching does have advantages outside of pure simulation

efficiency. Notably, history matching is a simple design scheme, which leads to it

also being computationally cheap. Fully-sequential, optimal design strategies on the

other hand involve optimisation over the input space and re-fitting or updating of

the emulator for every new simulation; which can be more expensive. When the

simulator itself is incredibly expensive to run, this difference can be trivial, but if

the simulator is cheaper, this difference can be critical.

To provide some understanding of the difference in speeds, we return to the

examples used above. For the 1D example, which is a low dimensional problem

with few simulations, MCU took 2.2 seconds, cSUR took 1.55 seconds, ICU took

29.95 seconds and tMSE took 1.28 seconds (note how ICU takes much longer than

the other alternatives). HMLSE took only 0.47 seconds, which is less than half the

time of the fastest alternative. For this example, the difference is clearly trivial; the

computational savings of history matching would not be important for such a simple

example, but it is evidence that there is a computational difference.

For the 2D example, we have a similar story. The MCU time is 12.25 seconds,

cSUR 16.82, ICU 320.51, tMSE 14.45 and HMLSE 4.11. Again HMLSE is the fastest

by a wide margin, but again the times are all sufficiently small that this difference is

not important. Were the simulator fast enough that these differences were important,

one might question the value of an emulator at all.

However, the total time required for these design schemes, and the advantage

history matching provides, increases as the dimension of the problem increases and

the number of simulations increases.
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Repeating the 2D experiment, but this time with 180 additional simulations rather

than 60 (and an initial 60 simulations to fit the emulator, so 240 total simulations

rather than 80), we get an MCU time of 87.64 seconds, a cSUR time of 56.64 seconds,

an ICU time of 3039.47 seconds, a tMSE time of 69.05 seconds, and a HMLSE time

of 18.76 seconds. Which is noticeably slower than previously. It is also noticeably

slower, even when one considers the time spent per simulation. This is because

Gaussian processes scale with O(n3) where n is the number of data points (or can

be the number of unique data point locations in stochastic settings (Binois et al.,

2018) and is the case in the hetGP package).

For the 6D experiment, the MCU time was 422.93 seconds, the cSUR time was

666.00 seconds, the ICU time was 12131 seconds, the tMSE time was 422.19 seconds,

and the HMLSE time was 74.58 seconds. This experiment had the same number of

data points as the repeated 2D experiment above, but in a higher dimension, and

is again noticeably slower. We can see from these examples, that as the number

of simulations increase and the number of dimensions increase, the computational

cost of the sequential methods becomes increasingly more prohibitive. ICU is also

revealed to scale especially poorly into more taxing problems, a result found before

by Lyu et al. (2018).

Taking this further, and redoing the 6D experiment with 5 times the number of

simulations (60 unique locations each replicated 5 times for the initial emulator, and

then adding 900 simulations afterwards) we get an MCU time of 16436.47 seconds, a

cSUR time of 30212.55 seconds, an ICU time of 547498.76 seconds, a tMSE time of

23546.55 seconds and a HMLSE time of 859.25 seconds.

For examples like this, if the simulations are sufficiently expensive (hours say),

this difference still would not matter (except ICU, which is incredibly slow). However,

for simulations which take a few minutes say, this difference can be the equivalent of

several hundreds of additional simulations, and so the fully sequential methods become

much less practical. As such, for reasonably cheap simulators, the computational

simplicity of history matching can be a great advantage.

With the building model problem in Chapter 4 each simulation took roughly

a minute. Additionally, although fewer unique simulations were used than the

above example; more simulations were used in total, and the problem had a higher

dimensionality. This suggests that HMLSE is indeed a practical methodology to use

for the building model problem, despite potentially sub-optimal individual simulation
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runs being used.

As an important note, although we found in Section 5.2 that shrinking the domain

in history matching can sometimes be worse, especially since it prevents NROY (and

NRIY) from being flexible, it does provide even faster analysis because it reduces

the number of valid unique training points (and so O(n3) can be much less). For

the example above, the HMLSE time was only 146.20 seconds when shrinking the

domain, yet the error was not massively increased (0.0280 vs 0.0208, with a bias

of 0.00533 vs 0.000862). As such, shrinking the domain may can be additionally

valuable in high data scenarios, when a simulation budget is particularly large.

History matching also provides another benefit over fully sequential methods

in that it is well suited to high performance computing, as the history matching

procedure provides batches of recommended simulations. Batches can easily make

use of parallelisation - allowing multiple simulations to be run at once, whereas fully

sequential designs do not. So for especially slow simulations, the ability to leverage

parallelised simulations can provide a potentially massive advantage, despite the

individual simulation sub-optimality. However, as the uncertainty predictions in a

Gaussian process depends only on the location of the training points, ‘optimal’ level

set schemes could be modified to allow for batches of simulations. This adjustment

has already been done for global emulator improvement designs (with the sequential

procedure of Binois et al. (2019) extended to allow for batches by Zhang et al. (2020)).

5.4 Conclusion

In this chapter a discussion of some implementation choices regarding history match-

ing and history matching level set estimation has been provided.

To begin with, we questioned the common strategy of shrinking the domain of

the emulator in successive waves. Established practice recommends shrinking the

domain to protect against non-stationarity. We find this can indeed be an advantage

(and this advantage is likely larger than it seems in this discussion, especially in

deterministic problems where non-stationarity can be more of a problem, or when the

number of waves and degree of refocussing is higher). However, we also find it to be

detrimental when there are important global structures which can be captured by an

emulator. This disadvantage should not be too surprising, as aggressively shrinking

the domain of the emulator is similar to throwing away data. Sadly, whether this

154



data improves an emulator or worsens an emulator is likely to be problem dependent,

and so any decision here should require expert knowledge.

We also questioned the common strategy of permanently ruling-out (or ruling-in)

regions of input space (which is essential when the domain of the emulator is shrunk

to equal the NROY(/NRIY) space). Emulators can be incredibly flawed, and a flaw

in an early wave emulator can still have large repercussions in later waves if ruling-out

is permanent. This could be especially problematic if we eventually rule-out all

parameter settings (the terminal case (Salter et al., 2019)), as we would not know if

this was because of a simulator flaw, or an (early wave) emulator flaw.

Finally, we also compared history matching level set estimation to alternative

sequential schemes. Here we found that, in some situations, the sequential, ‘optimal’,

methods can perform better. On the other hand, in many situations history matching

level set estimation performs competitively, and it is also substantially simpler

and faster. This suggests that the choice of design scheme may also be problem

dependent.
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Chapter 6

Conclusion

If I have any overarching conclusion from the work done for this thesis, it is that

emulators are fickle tools. Emulators can be powerful aids in extracting value

from simulators, especially to ensure uncertainty is properly accounted for (whether

this uncertainty is aleatoric or epistemic). The usually stated trade-off for this,

is that the level of epistemic uncertainty increases, due to the emulator’s added

uncertainty. I would add to this that error is also increased, as a distinct separate

entity to uncertainty. Whilst an emulator does provide uncertainty bounds for any

prediction, these uncertainty bounds are not always sensible. In the deterministic

setting, smoothness and stationarity are both reasonably strong assumptions which

can lead to incorrect uncertainty estimates (but this can be dealt with if one is

careful). Additionally, important regions of input space can be missed by training

data, leading to poor parameter estimates and poor uncertainty estimates. In the

stochastic setting, separating the signal from the noise can also be difficult, both

conceptually and practically, leading to yet more risk of poor uncertainty estimates.

This is not a particularly novel conclusion, and the understanding that any model

will ultimately be flawed despite its potential usefulness is already responsible for a

widely overused quote1. Despite this, I believe it is a point worth underlining, and

the use of any method should try to account for this.

Chapter 2 perhaps most directly tackles this idea, as we develop and investigate

tools for checking the validity of a stochastic emulator. The general idea proposed

is that component predictions (i.e. the mean and the variance) and assumptions

(i.e. normality) of an emulator should be checked independently. This allows us

1“All models are wrong, but some are useful”, often attributed to George Box. With this

quotation, its overuse is added to further still.
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to assess the epistemic (mean) uncertainty in a stochastic emulator independently

from the aleatoric uncertainty estimates. This idea is perhaps less useful if only very

basic predictions are required from the emulator, and in that case general diagnostic

methods are likely to suffice. However, if a more extensive analysis is desired, then a

more extensive set of diagnostics should be performed, using diagnostics specifically

designed for stochastic emulators.

With chapter 3, we developed the technique of using deterministic runs to better

inform about stochastic simulator analysis. We find deterministic simulations to

be incredibly informative, even for stochastic simulators, especially if the total

simulation budget is low. This idea is quite natural, as deterministic simulators

exhibit a certain degree of sophistication that stochastic simulators lack. Having

access to the entire truth at any given point is extremely powerful and informative.

With stochastic simulators, the noisiness introduces a certain level of doubt, and an

increased reliance on the emulator assumptions (smoothness, stationarity, normality,

correlation structures), unless the simulation budget is exhaustive. Being able

to use a deterministic simulator as a baseline for any conclusion can be a much

stronger, and safer position than relying entirely on noisy simulations and incredibly

flexible stochastic emulators. Of course, this relies on believing the deterministic

simulator itself is informative, which may not always be true. This links quite

closely to the fundamental assumption of the field of uncertainty quantification more

generally - simulators need to be useful. If a simulator is not informative, then it is

likely to be a better use of time and resources to obtain physical data and perform

standard statistical analyses. Assuming simulators are useful (to some extent), then

the coupling and averaging of multiple simulators is likely to (continue to) be an

important avenue for future research.

In Chapter 4 we dealt with a more practical example: attempting to future-proof

a building using stochastic simulations. This example is useful for emphasising

a couple of important points. The first, which is hopefully reasonably obvious,

is that simulators need not be incredibly computationally expensive to warrant

sophisticated statistical approaches. Many simulators take what we might call ‘non-

trivial’ amounts of time to run, but are not exactly slow either. This is almost a

necessity with stochastic simulators, as our ability to draw any inference is seriously

impacted by stochasticity, especially if we are unwilling to make key assumptions

(for example, a linear trend and constant variance). Being able to extract similarly
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precise and accurate inferences in a stochastic setting as we would in a deterministic

setting can require a tenfold increase in the number of simulations. This exact

ratio is yet unknown (and clearly dependent on the amount of noise), but it affects

both training and validation. This increase in required simulations opens up many

‘fast’ simulators to the field of emulation, whilst also closing off more expensive

simulators. This changing of acceptable simulator speed is likely to have many

influences on which statistical methods are practical2. The second important point

emphasised by Chapter 4 is that the history matching technique can be adapted to

other experimental objectives. Of course, a question arises as to whether this is still

history matching, but many of the important traits are maintained. For one, history

matching is simple, which makes it easily applied to new situations, as shown by

using it on both a stochastic GP emulator and a logistic GP classifier simultaneously.

This simplicity also makes it fast (which we explored more in Chapter 5), which

naturally makes it well suited to fast simulators. This simplicity also makes it easily

understood, which is an under-appreciated attribute when dealing with simulators.

Preferably, when working with complex systems that are simulated, the inclusion

of practitioners (who are typically not statisticians) in the statistical analysis is

preferable, and the simple ‘ruling-out’ procedure is quite intuitive (even if other

implementation details may be more complex). Additionally, history matching is also

(typically) quite conservative. This conservative nature may not always be optimal,

as found in Chapter 5. However, I believe that being conservative can be a desirable

trait once we acknowledge that an emulator (and indeed a simulator) can be flawed.

With all this in mind, there are still numerous open questions and issues. For one,

we mostly deal with, and presume the existence of, a reasonably high signal-to-noise

ratio. It should come as no surprise to find that higher noise ratios will make analysis

in stochastic regimes even more difficult. How this affects the methods and ideas

discussed in this thesis, and what other methods could be developed for high noise

scenarios, remains an open issue. For example, we discuss individually assessing

the mean of an emulator in Chapter 2, but in high noise ratios, the notion of an

“accurate” mean perhaps becomes less important, less interesting, and less clear.

We also assume throughout that the simulator variability is normally distributed.

For non-normal settings, there are several strategies to take. The first, is to assume

2It should also influence the complexity of simulators when stochasticity is used, but I have

doubts as to whether modellers can accept this constraint.
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a different distribution. For example, Xie and Chen (2017) and Lyu et al. (2018)

deal with t-processes rather than a Gaussian process, and in Chapter 4 we used a

Bernoulli distribution, with a GP modelling the latent probability. However, this

requires knowledge of which distribution to use, and the implementation details

can be more complex. Transforming the data to enforce some normality is also a

potential route. For example, Henderson et al. (2009) use the logit transformation to

deal with proportion data. However, this strategy requires knowledge of a suitable

transformation. A third strategy is to avoid making any distributional assumption.

For example, quantile Kriging interpolates over key sample quantiles (Fadikar et al.,

2018; Plumlee and Tuo, 2014). Whilst this is a simple method, it requires more

simulations than other methods. At the end of the day, this is the main trade-off

that needs to be made in emulation (and statistical modelling more generally): The

fewer assumptions one is willing to make; the more data one needs. Whether one is

willing to make assumptions as strong as the normal assumption will be application

dependent, and finding alternative strategies for when one is not willing to make

that assumption remains an ongoing research problem. As an example, diagnostic

tools for assessing whether a quantile Kriging emulator captures the underlying

distribution and the various trends are captured well remains future work.

Other research directions also remain future work. For example, a rule-of-thumb

for how many unique simulations and how many replicated simulations is currently

lacking for stochastic emulators. Rules-of-thumb are exactly that, and they are not

gospel, but having some preliminary estimate for new problems would be quite useful.

In a similar way, the methodology outlined in Chapter 3 could also receive attention

regarding experimental design. After a preliminary emulator has been built, whether

to subsequently add more deterministic runs or more stochastic runs, and how to

choose the relevant ratios and locations for them, is not yet known. Developing

a technique for this could be interesting, but would likely require a more complex

simulator than EnergyPlus.

For EnergyPlus, and the work done here with it, several potential extensions

also exist. For one, the outlined strategy in Chapter 4 only acknowledged one type

of ‘aleatoric’ uncertainty: weather uncertainty. Including occupancy uncertainty in

the same way (by using another simulator to randomly sample potential occupancy

profiles, as in Wate et al. (2020)) along with the weather, and any other poten-

tial ‘aleatoric’ uncertain properties, would be necessary for a complete uncertainty
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quantification. Similarly, accounting for model discrepancy, and importantly, the

construction gap (where a building is not built to the exact specifications designed) is

important. The construction gap could be included in a history matching procedure

in much the same way as model discrepancy, or alternatively it could be included as

a kind of input uncertainty (whether done ‘stochastically’, by perturbing slightly any

input to a simulator whenever ran, or by propagating input uncertainty through an

emulator after its construction). Furthermore, the weather generator used in Chapter

4, UKCP09, is quite outdated. With the more recent climate predictions, UKCP18,

no stochastic weather generator has been provided (it is not clear to me why this

decision was made). As such, a different weather generator should be used, whether

this is a standard, common, weather generator, or modified weather generator to

again allow future climate weather generation.

Additionally, a more comprehensive building design procedure, whilst still follow-

ing the strategy (or similar) outlined in Chapter 4, might wish to target more (or

different) criteria. In Chapter 4 we required the overheating risk and heating energy

usage to meet certain criteria, but other criteria can also be imagined (cooling energy

usage, underheating, dampness, etc.), and may also want to be improved. Also, one

might want to initially threshold some criteria (as done in Chapter 4), and then

conditional on these criteria, optimise some other outputs. Doing so (and potentially

developing additional methodology to do so) remains future work.

Overall, I think that stochastic emulation requires additional attention from

statisticians, and building performance simulation could similarly adopt increased

statistical expertise. There are many open questions and many gains that can be

(reasonably) easily achieved. Additionally, I add my voice to the choir warning of

overly-confident trust in complex statistical methods, and recommending increased

checking and validation of such tools when used.
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Appendix A

Further Details

A.1 Justification of Equation (2.5)

In Chapter 2, an equation was used for the predictions for the sample mean. What

follows is a short justification for this equation.

Suppose we are predicting what the sample means would be if we simulated n

times each for new points X∗ (ȳ(X∗) = 1
n

∑n
i=1 yi(X

∗)).

The standard noisy predictions for
∑n

i=1 yi(X
∗)|y (dropping the dependence on

σ2(X∗), σ2(X) for notational simplicity) given in Equation (1.3) can be rewritten as

follows:

yi(X
∗) | y = µ(X∗) + εi(X

∗); (A.1)

where

µ(X∗) ∼ N
(
M(X∗),Vµ(X∗)

)
,

with

M(X∗) = m(X∗) +K(X∗, X)
(
K(X,X) + σ2(X)I

)−1(
y−m(X)

)
,

Vµ(X∗) = K(X∗, X∗)−K(X∗, X)
(
K(X,X) + σ2(X)I

)−1
K(X,X∗),

and

εi(X
∗) ∼ N

(
0, σ2(X∗)I

)
.

Here, M(X∗) is as it is in Equation (1.3) and Vµ(X∗) is simply the V(X∗) from

Equation (1.3) minus σ2(X∗). This makes it clear how noisy Gaussian process

predictions are made up of two independent processes: the (uncertain) simulator

mean µ(X∗) and the intrinsic stochasticity εi(X
∗), both of which are normally

distributed.
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As such, predicted values for the sample mean ȳ(X∗)|y are equal to 1
n

∑n
i=1 µ(X∗)+

1
n

∑n
i=1 εi(X

∗). The variance for the first term does not decrease as n increases, as

no amount of additional predictive simulations will change the amount of epistemic

uncertainty around the simulator’s mean (remember that here, n is the number of

prospective samples for a sample mean we want to predict for, it does not represent

the number of simulations used to fit the emulator). The variance for the second

term does decrease as n increases, as additional predictive simulations will decrease

how noisy we expect a sample mean to be.

More formally, we know that
∑n

i=1 µ(X∗) is normal, with a mean Mµ̄(X∗) and

a variance Vµ̄(X∗). We know that Mµ̄ = nM(X∗) as a standard result from the

sum of normal distributions. To obtain Vµ̄(X∗), we use the standard result for

normally distributed variables Zi: var(
∑n

i=1 Zi) =
∑n

i=1

∑n
j=1 Cov(Zi, Zj). With

this, we have:

Vµ̄(X∗) =
n∑
i=1

n∑
j=1

Cov(µ(X∗), µ(X∗)) =
n∑
i=1

n∑
j=1

Vµ(X∗) = n2Vµ(X∗).

This means
∑n

i=1 µ(X∗) ∼ N
(
nM(X∗), n2Vµ(X∗)

)
, and therefore 1

n

∑n
i=1 µ(X∗) ∼

N
(
M(X∗),Vµ(X∗)

)
. Which is exactly the same as µ(X∗) itself, because the mean

process prediction and uncertainty has no relation to the number of hypothetical

simulations made at prediction points. The uncertainty around what the true mean

is will not decrease even if we imagine predicting for a sample mean obtained with a

million simulations.

What will change with additional simulation, is our belief on how noisy said sample

mean will be.
∑n

i=1 εi(X
∗) ∼ N

(
0, nσ2(X∗)I

)
as a standard result for the sum of

independent normal distributions. And so 1
n

∑n
i=1 εi(X

∗) ∼ N
(
0, 1

n
σ2(X∗)I

)
, which

does decrease as the number of hypothetical prediction point simulation replicates n

increases. And so for this example, with ȳ(X∗)|y ∼ N
(
M(X∗),Vµ(X∗)+ 1

n
σ2(X∗)I

)
,

as a standard result of the sum of normal distributions.

If the number of hypothetical replicates at each prediction point were to be

different at each prediction point (with allocation ri at each), then ȳ(X∗)|y ∼

N
(
M(X∗),Vµ(X∗) + R∗σ2(X∗)I

)
, where R∗ is a diagonal matrix with entries ri,

with a similar argument. This then leads to the equation given in Equation (1.3),

where V(X∗) there equals Vµ(X∗) +R∗σ2(X∗)I.
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A.2 Other Normality Tests

Many methods for testing for normality exist in the literature, and using the skewness

and kurtosis to assess normality in Chapter 2 is not a new idea (for example, the

Jarque-Bera test uses both to test for normality (Jarque and Bera, 1980)). For

emulator diagnostics, the skewness and kurtosis diagnostics used in this thesis check

across the input space (with several unique locations each with a few replicates),

making use of the same data that can be used to assess the mean and variance (and

in some cases, could be used to train the emulator). This trait can be combined with

more standard normal tests; the skewness and kurtosis unexpectedness are not the

only options. To show this, Figures A.1 and A.2 present two common normality test

results applied to the gamma toy simulator and bimodal toy simulator using the

same validation data as in Section 2.2.3. These tests are the Lilliefors test (Lilliefors,

1967), which is a modified version of the Kolmogorov–Smirnov test (Daniel et al.

(1990); itself a check for the distance between the empirical distribution function and

a known reference distribution function) for the normal case where the mean and

variance are not known; and the Shapiro-Wilk test (Shapiro and Wilk, 1965).

We can see from Figure A.1 that both normality tests are able to identify non-

normality with the gamma simulator: both have two p-values less than 0.05 (which

is unlikely to happen by chance). Note that this shows more clearly the similarity

between unexpectedness and p-values. The two are essentially the same (although

unexpectedness is scaled differently), with the variable being checked determining

the interpretation of extreme results. “Unexpectedness” rather than p-values were

used in this thesis as a means of encouraging different practice. For example, with

unexpectedness, the distribution of the unexpectedness values is important, and

one must acknowledge that a degree of randomness is present. Using multiple

unexpectedness values across input space to spot trends or repeating extreme values

is valuable. For example, a unexpectedness value larger than 0.99 (or 0.95) does not

guarantee that the emulator is flawed, as it could be present by chance. As such,

multiple extreme values, and unlikely trends, should be used to learn about possible

flaws. This same practice can be used with p-values, and is what we do with the

tests in this appendix.

We can see from Figure A.2 that the Shapiro-Wilk test is clearly able to identify

non-normality with the bimodal simulator, with 4 p-values less than 0.95. The
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Figure A.1: Lilliefors test p-values and Shapiro-Wilk test p-values for the gamma

distributed toy simulator. 0.05 is superimposed as a red horizontal line, as is 0.1 (as

a light grey horizontal line).

Lilliefors test is less capable here, with only 2 less than 0.95, and one of those only

just less than 0.05 (0.048). Additionally, these examples show how interpretability

can be important, as these tests do not reveal anything about the distribution of

the simulators, aside from that they are (probably) not normal. The skewness

and kurtosis unexpectedness do better here, but not massively. For stochastic

simulators, a useful diagnostic would be one which more robustly determines the

type of non-normality, including bimodality, but this remains future work.
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Figure A.2: Lilliefors test p-values and Shapiro-Wilk test p-values for the bimodal

toy simulator. 0.05 is superimposed as a red horizontal line, as is 0.1 (as a light grey

horizontal line).
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A.3 Improving the Building Model Emulator

In Chapter 2 we emulated a hospital simulator, found issues using the developed

diagnostics, and improved said emulator. Even after improving the emulator once,

we did find some evidence of poor mean estimation for very small x2. In this section,

we will rectify this issue.

To do so, we simulate an additional 150 times, for building designs chosen via a

maximin Latin hypercube, but constraining the x2 values to be between 0 and 0.1.

This should help capture any local pattern for small values of x2. We also merge the

validation data with the training data, and obtain a new validation data set in the

same way as before (50 unique locations, chosen by a maximin Latin hyper cube,

each run 4 times).

This results in the diagnostics given in Figures A.3 and A.4.
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Figure A.3: Sample mean unexpectedness for the emulator of the building simulator

using the combined 1100 training data points.

From these, we can see that there are no obvious problems with the emulator, and

so we can conclude that this emulator is acceptable. There are 4 mean unexpectedness

values with absolute value larger than 0.95, and no variance unexpectedness values

with absolute value larger than 0.95. Four mean unexpectedness values is perhaps
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Figure A.4: Sample variance unexpectedness for the emulator of the building simulator

using the combined 1100 training data points.

slightly higher than perfect, and one of these mean unexpectedness values is as small

as -0.9918 (a different location than the previous extreme value, and this one is not

as extreme), but overall this emulator is pretty much ideal now. However, 1100

simulations have been used to train this 5-dimensional emulator, which is a lot, and

the cheaper 750 simulation emulator was likely sufficient for most practical purposes.
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A.4 DetHetGP Lengthscale Priors

All the emulators fit in chapter 3 had an additional ‘nugget variance’ added for

computational reasons (Neal, 1997), including the deterministic Gaussian processes.

A value of 1e-4 was used.

For DetHetGP , the lDi prior was modified slightly. In practice lDi = 0.01 + l∗Di ,

and l∗Di had a Gamma(4, 4) prior. This constrains lDi to be greater than 0.01. Figure

A.5 gives an example of what can happen in practice if lDi is not explicitly constrained

to be reasonably larger than zero.
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Figure A.5: Emulator predictions for the toy simulator from Binois et al. (2019),

using the newly developed model that incorporates both stochastic and deterministic

runs. The true mean and 95% interval are superimposed in black, and the emulator

mean and 95% interval are in blue. The stochastic data points are circles, and the

deterministic data points are plus symbols. The mean of the yD component is in

orange.

lDi has an estimated value of 0.000815 here, which is very small. This results

in the deterministic Gaussian process (plotted in orange) being approximately a

straight line, with steep jumps towards the observed deterministic points (which is

an established problem discussed by Andrianakis and Challenor (2012), caused by
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the inclusion of a nugget variance). This leads to the final stochastic emulator also

having steep unnecessary jumps, and a poor overall fit, because there is not enough

stochastic data for the δ component to smooth out the issues.

This issue could be prevented by decreasing the value of the nugget variance for

the deterministic Gaussian process, but that can lead to computational errors. An

alternative solution is the one implemented, fixing lDi to be sufficiently larger than

zero, which seems to mostly avoid the problem.
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A.5 Additional Building Model Diagnostics

In Chapter 4 validation was concerned mostly with checking the mean predictions

of the energy usage (and the overheating probability), as this was the quantity of

interest. It can still be informative to check the variances, as well as the normality

assumption.

Figures A.6 to A.8 present the variance unexpectedness values (using the replicated

validation data set).
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Figure A.6: 80 sample variance unexpectedness values for the wave 1 energy usage

emulator.

The wave 2 results do not reveal any issues with the intrinsic variance. Wave 1

likely has issues with underestimated intrinsic variance, with 5 unexpectedness values

less than -0.95, 2 of which are less than -0.995. Wave 3 also has some issue with

overestimated intrinsic variance, with 59 out of 80 unexpectedness values above 0, 6

with value greater than 0.95, and 2 larger than 0.995. Since we are only interested

in the mean in this example, these are not particularly problematic, although a well

captured intrinsic variance process is obviously preferable.

For normality, we can use QQ plots to check the conditional normality assumption.

Figures A.9 presents the QQ plots for each wave using the regular standardised errors
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Figure A.7: 80 sample variance unexpectedness values for the wave 2 energy usage

emulator.

using the non replicated validation data.

The wave 1 QQ plot reveals issues, but these issues were known before and are

due to the poor emulator predictions for certain implausible points, rather than

non-normality. The other QQ plots are fine. To check for normality in isolation,

Figure A.10 plots the skewness unexpectedness values for wave 1 and Figure A.11

plots the kurtosis unexpectedness (both using the replicated validation data set, and

including tolerance to error as outlined in Section 2.2.3).

These suggest that there are no non-normality issues, with 7 skewness unexpect-

edness values with absolute value more than 0.95 (which is more than ideal, but not

excessively so), and 7 kurtosis unexpectedness values with absolute value more than

0.95. For wave 2, there are 3 skewness unexpectedness values and 4 kurtosis values

with absolute value larger than 0.95. For wave 3, this is 3 and 0 respectively.
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Figure A.8: 80 sample variance unexpectedness values for the wave 3 energy usage

emulator.

−2

0

2

4

−2 0 2
theoretical

sa
m

pl
e

−2

0

2

−2 0 2
theoretical

sa
m

pl
e

−2

−1

0

1

2

−2 0 2
theoretical

sa
m

pl
e

Figure A.9: The QQ plots for the emulators of the building model. Left is for the

emulator at wave 1, middle for wave 2, and right for wave 3. All use the non-replicated

validation data.
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Figure A.10: 80 skewness unexpectedness values for the wave 1 energy usage emulator.
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Figure A.11: 80 kurtosis unexpectedness values for the wave 1 energy usage emulator.
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A.6 Maintaining the Domain for the Ruled-out

Space

In Section 5.2.1 we discussed the advantages and disadvantages of shrinking the

emulator domain between waves. We found, in general, that maintain a larger

domain can be beneficial, except in the presence of extreme non-stationarity. For

level set estimation, there is also the option of only shrinking the domain to exclude

the ruled-out space, but maintaining the ruled-in space. This might be done to

protect against non-stationarity while ensuring the emulator predictions remain valid

in the interesting ruled-in space. We will see in the revisited examples here, that

this strategy mostly acts as a compromise between the two other strategies. All

examples here follow the exact same simulator and data setups as those in Section

5.2.1. The strategy which maintains the entire domain will be referred to as the

‘maintain-domain’ strategy, the strategy which shrinks the domain will be referred

to as the ‘shrink-domain’ strategy, and the strategy which only shrinks the domain

for the ruled-out space but maintains the ruled-in space will be referred to as the

‘maintain-RI’ strategy.

Revisiting the ‘extremely’ non-stationary simulator from Equation (5.1), we

obtain the results in Figure A.12
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Figure A.12: Predictive mean surfaces for the emulator of the simulator in Equation

(5.1) after three waves of level set estimation history matching. The domain was

shrunk to exclude the ruled-out space in each wave. Also superimposed is a trans-

parent black overlay representing the ruled-out space, and a transparent red overlay

representing the ruled-in space.
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These results look very similar to those from the maintain-domain strategy (right

plot in Figure 5.1). This is likely because the ruled-out space is quite small, and

the complex part of the simulator is in the ruled-in space. As such, the simulator

surface is not much easier to emulate in the smaller domain (if at all). Numerically,

the maintain-RI strategy error is 2.54% (worse than both the shrink-domain strategy

and the maintain-domain strategy) and the bias is 0.116% (better than both).

However, correct classification of each region is unlikely to be the main motivation

for following the maintain-RI strategy. This strategy will likely be taken if accurate

predictions in ruled-in space are of primary interest. As such, a better metric for

comparison here might be the root mean squared error (RMSE). With access to

the truth, what we mean by this is the square root of the mean squared difference

between the emulator’s mean and the true mean (rather than the difference between

some set of simulations and the emulator’s mean). We also constrain this RMSE to

only the locations where the true simulator mean is in the level set of interest (which

we shall call the LS-RMSE from now on). For this example, the LS-RMSE is 1.87,

which is substantially better than the shrink-domain strategy’s LS-RMSE of 2.93 (as

we would expect, because the shrink-domain emulator is not valid in the ruled-out

space) and slightly better than the maintain-domain strategy’s LS-RMSE of 1.95.

So overall, for this simulator (and this setup) it seems that shrinking the domain to

exclude the ruled-out space, but maintaining the domain over the ruled-in space can

be beneficial (if one is primarily interested in the ruled-in space.

Revisiting the multimodal simulator from Equation (5.2), we obtain the results

in Figure A.13

These results are similar to the results obtained by the shrink-domain strategy

(left plot in Figure 5.2). Here, the important global structures (the multimodality)

are still not captured as the relevant information was contained in the simulations

no longer in the emulator’s domain. The ruled-in space is reasonably small, and

so the extra information contained within does not help significantly. We can see

this in the numerical results, where the classification error is 9.11% (slightly less

than the shrink-domain strategy, but much more than the maintain-domain strategy)

and the bias is −3.36% (better than the shrink-domain strategy, but worse than the

maintain-domain strategy). For this example, the LS-RMSE is 0.318 (better than

the shrink-domain strategy’s LS-RMSE of 0.436 but worse than the maintain-domain

strategy’s LS-RMSE of 0.083). For this simulator it seems that maintaining the
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Figure A.13: Predictive mean surfaces for the emulator of the simulator in Equation

(5.2) after three waves of level set estimation history matching. The domain was

shrunk to exclude the ruled-out space in each wave. Also superimposed is a trans-

parent black overlay representing the ruled-out space, and a transparent red overlay

representing the ruled-in space.

entire domain is important, as there are important global structures which need to

be captured and a stationary Gaussian process assumption is reasonable. If one does

shrink the domain here, maintaining at least the ruled-in space is beneficial.

Revisiting the ‘wavy’ simulator from Equation (5.3), we obtain the results in

Figure A.14
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Figure A.14: Predictive mean surfaces for the emulator of the simulator in Equation

(5.3) after three waves of level set estimation history matching. The domain was

shrunk to exclude the ruled-out space in each wave. Also superimposed is a trans-

parent black overlay representing the ruled-out space, and a transparent red overlay

representing the ruled-in space.
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These results look similar to both of those from before, and so numerical results

are essential here. The error is 2.49% (which is better than the shrink-domain strategy

but worse than the maintain-domain strategy) and the bias is 1.05% (which is worse

than both). The LS-RMSE is 0.112, compared to the shrink-domain strategy’s

LS-RMSE of 0.535 and the maintain-domain strategy’s LS-RMSE of 0.183. The

maintain-RI strategy here has the best mean predictive performance in the region

of interest, which is somewhat surprising. It is likely that shrinking the domain to

exclude the ruled-out space but maintaining the ruled-in space helps to mitigate

some problems from non-stationarity whilst still providing a valid emulator for the

region of primary interest. That the classification error is worse does suggest that the

loss of some global structures is detrimental in some ways, but if the main objective

is to obtain good predictions in the region of interest (rather than say, correctly

classifying points as in or out of this region), then the maintain-RI strategy here is a

good compromise.

For the 10D wing weight simulator, we obtain an error for the maintain-RI

strategy of 1.28% (better than the shrink-domain strategy but marginally worse than

the maintain-domain strategy), a bias of 0.423% (worse than both). We also obtain

an LS-RMSE of 3.80, which is better than the LS-RMSE for the shrink-domain

strategy (19.64) and marginally worse than the LS-RMSE for the maintain-domain

strategy (3.78). For this example, there does not seem to be much difference between

maintaining the entire domain and only shrinking the domain to exclude the ruled-out

space. This is probably because the ruled-out space is quite small, taking up only

15.0% of the total space for the maintain-RI strategy in the first wave, and only

19.0% after the final wave.

Overall, there are not really many general takeaways for the maintain-RI strategy.

Whether this strategy is better or worse than the shrink-domain strategy or the

maintain-domain strategy seems to also depend on the specific simulator, and also

the size of the (true) ruled-in region compared to the (true) ruled-out region. The

strategy does seem to sit, broadly, somewhere between the other two strategies, as

one might expect. For the examples above, the results appear to be closer to the

worse of the two, regardless of which one that is. With the ‘extremely’ non-stationary

(where shrinking the domain was better), the maintain-RI strategy was more similar

to the maintain-domain strategy. With the multimodal simulator (where maintaining

the entire domain was better), the maintain-RI strategy was more similar to the
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shrink-domain strategy. This could be because, the maintain-RI is more similar

to the shrink-domain strategy if the ruled-out space is large, and more similar to

the maintain-domain strategy if the ruled-out space is small. With the other two

examples, differences between the strategies were less extreme, which reflects the

smaller differences between the shrink-domain and maintain-domain strategies.

Regardless, if one wants to shrink the domain because of potential non-stationarity,

but also still wants to obtain valid predictions in the ruled-in space, the maintain-RI

is the only option out of the three. If this setup is then chosen, and a flexible

NROY/NRIY is desired, it is important to note that only the ruled-in space can be

flexible, not the ruled-out space (for the same reasons why a flexible ruled-out space

doesn’t work for the shrink-domain strategy).
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A.7 Shrinking the Domain and Stochasticity

In Section 5.3.1, history matching level set estimation was compared to other sequen-

tial level set schemes. The example for the simulator in Equation (5.11) can also be

used to demonstrate an important problem that can arise with history matching in

stochastic problems if the domain is shrunk between waves.

Figure A.15 presents the resulting emulator after performing 3 waves of history

matching as was done for Figure 5.6, but this time shrinking the domain to exclude

the ruled-out and ruled-in space between each wave.
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Figure A.15: Mean predictions for the simulator in Equation (5.11). The uncertainty

intervals are only for the epistemic uncertainty around the mean, and do not include

the intrinsic noise estimates. These are the results after 3 waves of history matching

(each with 10 simulations), shrinking the emulator’s domain each wave.

The result here is a very poor emulator, which does not pick up the simulator’s

mean. It instead assumes all variation in the simulations are due entirely to intrinsic

noise. This is a similar (albeit worse) example to the introductory toy examples used

in Chapters 2 and 3.

By shrinking the domain, important information contained in the ruled-out

and ruled-in simulations, needed to separate the signal from the noise, is lost

and the resulting emulator is worse for it. With this result, maintaining a larger

domain becomes increasingly preferable for history matching of stochastic problems.
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Continuing to shrink the domain is not completely discouraged, and as we found in

Section 5.2, it can still be useful in stochastic problems if extreme non-stationarity

is believed to be a problem; but additional care is needed to ensure the resulting

emulators are still able to identify a (correct) signal from the noisy simulations in a

constrained space.
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Appendix B

Code

In this appendix, we provide some code which can be used to implement some of the

techniques described in this thesis.

B.1 Diagnostics Code

Below is an R script which implements the stochastic diagnostics developed in

Chapter 2. The script is a fully self-contained example: providing a toy simulator

(the same as in Section 2.1, obtaining training simulations, fitting an emulator (using

the hetGP package), obtaining validation data, and then applying the diagnostic

methods.

l ibrary (hetGP)

l ibrary ( ggp lot2 )

l ibrary ( l h s )

l ibrary ( dplyr )

l ibrary (MASS)

l ibrary ( e1071 )

l ibrary ( sn )

l ibrary ( gnorm )

set . seed (11111)

#Create a fake s t o c h a s t i c s imu la tor

ToySim <= function ( x ){

y <= sin (16*x [ , 1 ] ) + cos (24*x [ , 1 ] ) + 8*x [ , 1 ] +

rnorm( length ( x [ , 1 ] ) , 0 , 0 . 1 + 0 . 9*x [ , 1 ] )

}

#and we know what the t ru t h i s :

TrueMean <= function ( x ){

y <= sin (16*x [ , 1 ] ) + cos (24*x [ , 1 ] ) + 8*x [ , 1 ]

}

TrueVar <= function ( x ){
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y <= ( 0 . 1 + 0 .9*x [ , 1 ] ) ˆ 2

}

#ge t t r a i n in g data s e t

X unique <= maximinLHS (20 , 1) #unique po in t s

#func t ion to r e p l i c a t e x :

rep .row<=function (x , n){ matrix ( rep (x , each=n ) , ncol=ncol ( x ) )}

X <= rep .row(X unique , 2 0 ) #r e p l i c a t e : 20 rep f o r good emul , 1 f o r bad

y <= ToySim(X)

#f i t hetgp

hetgpmod <= mleHetGP(X=X, Z=y )

#ge t p r e d i c t i on s

X pred <= as . matrix ( seq (0 , 1 , l en = 100))

pred <= predict ( hetgpmod , X pred )

predmu <= pred$mean

predvar <= pred$sd2 + pred$nugs

#p l o t

ggp lot ()+

geom point ( aes ( x=X, y=y))+

geom l i n e ( aes ( x=X pred , y=pred$mean) , c o l o r = ”#0072B2”)+

geom ribbon ( aes ( x=X pred , ymin =pred$mean= 2*sqrt ( predvar ) ,

ymax = pred$mean + 2*sqrt ( predvar ) ) ,

alpha = 0 .15 , f i l l = ”#0072B2”)+

geom l i n e ( aes ( x=X pred , y=TrueMean(X pred ) ) , c o l o r = ” black ”)+

geom ribbon ( aes ( x=X pred , ymin =TrueMean(X pred ) = 2*sqrt ( TrueVar (X pred ) ) ,

ymax = TrueMean(X pred ) + 2*sqrt ( TrueVar (X pred ) ) ) ,

alpha = 0.15)+

theme minimal ( base s i z e = 16) +

xlab ( ”x”)+

ylab ( ”y” )

#############################################################################

#Stocha s t i c Va l ida t ion

#############################################################################

set . seed (22222)

#now ge t some va l i d a t i o n data

X v a l i d unique <= maximinLHS (10 , 1) #unique po in t s

X v a l i d <= rep .row(X v a l i d unique , 5 ) #r e p l i c a t e them

y v a l i d <= ToySim(X v a l i d ) #simula te

#use emulator to p r ed i c t f o r v a l i d a t i o n po in t s

pred v a l i d <= predict ( hetgpmod , X va l id , xprime = X val id , no i s e . var = TRUE)

#conver t to dataframe

v a l i d df <= data . frame (X va l id , y va l id , GPmu = pred v a l i d$mean,
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GPvar =pred v a l i d$nugs , GPuncert = pred v a l i d$sd2 )

#make f i r s t name X1

names( v a l i d df ) [ 1 ] = ”X1”

#ge t sample means and sample variances , sample skewness and sample kur t o s i s ,

#and save the emulator mean and var iance p r ed i c t i on s f o r each unique po in t :

v a l i d df = v a l i d df %>%

group by at ( vars (names( v a l i d df ) [ 1 : length (X v a l i d [ 1 , ] ) ] ) ) %>%

summarise (mean = mean( y v a l i d ) , var = var ( y v a l i d ) , rep = n ( ) ,

GPmu = mean(GPmu) , GPvar = mean(GPvar ) , GPuncert = mean( GPuncert ) ,

skew = skewness ( y v a l i d ) , kurt = k u r t o s i s ( y v a l i d ) )

##############################################################################

#Mean

##############################################################################

#for the means , g e t the unexpectedness :

MeantUs <= rep (999999 , l en = nrow(X v a l i d unique ) )

for ( i in 1 :nrow(X v a l i d unique ) ){

#ge t the s imula ted d i s t r i b u t i o n fo r the sample mean

GP samplemean d i s t = c ( )

for (m in 1 :10000){ #(10000 i s number used fo r monte car l o U es t imat ion )

#ge t sample o f sample mean :

GP samplemean = rt (1 , v a l i d df$rep [ i ]=1)*

sqrt ( v a l i d df$var [ i ] ) /sqrt ( v a l i d df$rep [ i ] ) +

rnorm(1 , v a l i d df$GPmu[ i ] , sqrt ( v a l i d df$GPuncert [ i ] ) )

GP samplemean d i s t = append(GP samplemean d i s t , GP samplemean ) #save sample

}

#ge t unexpectedness :

MeantU <= 2* (0.5= ecd f (GP samplemean d i s t ) ( v a l i d df$mean [ i ] ) )

MeantUs [ i ] <= MeantU

}

#p l o t mean t unexpectedness

for ( i in 1 : length (X v a l i d [ 1 , ] ) ) {

print ( ggp lot ()+

geom point ( aes ( x= p u l l ( v a l i d df , i ) , y=MeantUs))+

geom h l i n e ( y i n t e r c e p t = 0 .95 , c o l o r = ” red ”)+

geom h l i n e ( y i n t e r c e p t = =0.95 , c o l o r = ” red ”)+

geom h l i n e ( y i n t e r c e p t = 0 , c o l o r = ” black ”)+

geom h l i n e ( y i n t e r c e p t = =0.5 , c o l o r = ” grey ”)+

geom h l i n e ( y i n t e r c e p t = 0 . 5 , c o l o r = ” grey ”)+

theme minimal ( base s i z e = 16) +

ylim (=1 ,1)+

xlim (0 ,1)+

ylab ( ”Mean Unexpectedness ”)+

xlab ( ”x” ) )

}

##############################################################################
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#Variance

##############################################################################

#for the variances , g e t the unexpectedness :

VarUs <= rep (999999 , l en = nrow(X v a l i d unique ) )

for ( i in 1 :nrow(X v a l i d unique ) ){

#ge t the s imula ted d i s t r i b u t i o n fo r the sample var iance

GP samplevar d i s t = c ( )

for (m in 1 :10000){

#ge t a sample f o r the p r ed i c t ed sd ( inc l ud ing t o l e rance to error ) :

GPvar = ( sqrt ( v a l i d df$GPvar [ i ] ) * ( runif (1 , 0 . 8 , 1 . 2 ) ) ) ˆ 2

#ge t sample o f sample var iance :

GP samplevar = rchisq (1 , v a l i d df$rep [ i ]=1)*GPvar/ ( v a l i d df$rep [ i ]=1)

GP samplevar d i s t = append(GP samplevar d i s t , GP samplevar ) #save sample

}

#ge t unexpectedness :

VarU <= 2* (0.5= ecd f (GP samplevar d i s t ) ( v a l i d df$var [ i ] ) )

VarUs [ i ] <= VarU

}

for ( i in 1 : length (X v a l i d [ 1 , ] ) ) {

print ( ggp lot ()+

geom point ( aes ( x= p u l l ( v a l i d df , i ) , y=VarUs))+

geom h l i n e ( y i n t e r c e p t = 0 .95 , c o l o r = ” red ”)+

geom h l i n e ( y i n t e r c e p t = =0.95 , c o l o r = ” red ”)+

geom h l i n e ( y i n t e r c e p t = 0 , c o l o r = ” black ”)+

geom h l i n e ( y i n t e r c e p t = =0.5 , c o l o r = ” grey ”)+

geom h l i n e ( y i n t e r c e p t = 0 . 5 , c o l o r = ” grey ”)+

theme minimal ( base s i z e = 16) +

ylim (=1 ,1)+

xlim (0 ,1)+

ylab ( ” Variance Unexpectedness ”)+

xlab ( ”x” ) )

}

#############################################################################

#Normality

############################################################################

#ge t QQ p l o t

#ge t standard s tandard i sed er ror s :

raw std e r r s <= ( y v a l i d = pred v a l i d$mean) /

sqrt ( ( pred v a l i d$sd2 + pred v a l i d$nugs ) )

#p l o t qq p l o t

ggp lot ()+

geom qq ( aes (sample = raw std e r r s ) ) +

geom abline ( i n t e r c e p t = 0) +

theme minimal ( base s i z e = 16) +

g g t i t l e ( ”Model QQ p lo t ” )
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###

#skewness d i a gno s t i c s

###

#ge t numerical inve r s i on fo r skewness parameter

inverse = function ( fn , i n t e r v a l = NULL, lower = min( i n t e r v a l ) ,

upper = max( i n t e r v a l ) , . . . ) {

Vecto r i z e ( function ( y ){

uniroot ( f=function ( x ){ fn ( x)=y} , lower=lower , upper=upper , . . . ) $ root

})

}

skew c a l c <= function ( param ){

d e l t a <= param / ( sqrt(1+param ˆ2))

term1 <= sqrt (2/pi )*d e l t a

term2 <= 1 = 2* ( d e l t a ˆ2)/pi

skew <= ( (4=pi )/2) * ( ( term1 ˆ3) / ( term2 ˆ(3/ 2 ) ) )

return ( skew )

}

skew inv <= inverse ( skew ca lc , lower==10000000, upper=10000000)

#now we want the p r e d i c t i v e d i s t r i b u t i o n s f o r the sample skewness :

set . seed (1234)

#unexpectedness :

SkewUs <= rep (999999 , l en = nrow(X v a l i d unique ) )

for ( i in 1 :nrow(X v a l i d unique ) ){

#ge t the s imula ted d i s t r i b u t i o n fo r the skewness

GP skew d i s t = c ( )

for (m in 1 :10000){

skew t o l <= runif (1 , =0.5 , 0 . 5 ) #skewness t o l e rance

skew param <= skew inv ( skew t o l ) #conver t to parameter va lue

#ge t samples f o r th s po in t us ing the skew norm d i s t :

GPsample <= rsn ( v a l i d df$rep [ i ] , v a l i d df$GPmu[ i ] ,

sqrt ( v a l i d df$GPvar [ i ]+ v a l i d df$GPuncert [ i ] ) ,

skew param )

Gpskew = skewness ( GPsample ) #ge t sample skewness

GP skew d i s t = append(GP skew d i s t , Gpskew) #save sample

}

SkewU <= 2* (0.5= ecd f (GP skew d i s t ) ( v a l i d df$skew [ i ] ) )

SkewUs [ i ] <= SkewU

}

ggp lot ()+

geom point ( aes ( x= p u l l ( v a l i d df , 1 ) , y=SkewUs))+

geom h l i n e ( y i n t e r c e p t = 0 .95 , c o l o r = ” red ”)+

geom h l i n e ( y i n t e r c e p t = =0.95 , c o l o r = ” red ”)+

geom h l i n e ( y i n t e r c e p t = 0 , c o l o r = ” black ”)+

geom h l i n e ( y i n t e r c e p t = =0.5 , c o l o r = ” grey ”)+

geom h l i n e ( y i n t e r c e p t = 0 . 5 , c o l o r = ” grey ”)+
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theme minimal ( base s i z e = 16) +

ylim (=1 ,1)+

xlim (0 ,1)+

ylab ( ”Skewness Unexpectedness ”)+

xlab ( ”x” )

###

#ku r t o s i s d i a gno s t i c s

###

#ge t numerical inve r s i on fo r k u r t o s i s parameter

kurt c a l c <= function ( param ){

( (gamma(5/param ) * gamma(1/param ) ) / (gamma(3/param )ˆ2) ) = 3

}

kurt inv <= inverse ( kurt ca lc , lower=5e=2, upper=10000000)

#now we want the p r e d i c t i v e d i s t r i b u t i o n s f o r the sample k u r t o s i s :

set . seed (1234)

#unexpectedness

KurtUs <= rep (999999 , l en = nrow(X v a l i d unique ) )

for ( i in 1 :nrow(X v a l i d unique ) ){

#ge t the s imula ted d i s t r i b u t i o n fo r the k u r t o s i s

GP kurt d i s t = c ( )

for (m in 1 :10000){

kurt t o l <= runif (1 , =0.5 , 0 . 5 ) #ku r t o s i s t o l e rance

kurt param <= kurt inv ( kurt t o l ) #conver t to parameter va lue

#ge t samples f o r th s po in t us ing the g ene ra l i s e d norm d i s t :

GPsample <= rgnorm ( v a l i d df$rep [ i ] , v a l i d df$GPmu[ i ] ,

sqrt ( v a l i d df$GPvar [ i ]+ v a l i d df$GPuncert [ i ] ) ,

kurt param )

Gpkurt = k u r t o s i s ( GPsample ) #ge t sample k u r t o s i s

GP kurt d i s t = append(GP kurt d i s t , Gpkurt ) #save sample

}

KurtU <= 2* (0.5= ecd f (GP kurt d i s t ) ( v a l i d df$kurt [ i ] ) )

KurtUs [ i ] <= KurtU

}

ggp lot ()+

geom point ( aes ( x= p u l l ( v a l i d df , 1 ) , y=KurtUs))+

geom h l i n e ( y i n t e r c e p t = 0 .95 , c o l o r = ” red ”)+

geom h l i n e ( y i n t e r c e p t = =0.95 , c o l o r = ” red ”)+

geom h l i n e ( y i n t e r c e p t = 0 , c o l o r = ” black ”)+

geom h l i n e ( y i n t e r c e p t = =0.5 , c o l o r = ” grey ”)+

geom h l i n e ( y i n t e r c e p t = 0 . 5 , c o l o r = ” grey ”)+

theme minimal ( base s i z e = 16) +

ylim (=1 ,1)+

xlim (0 ,1)+

ylab ( ” Kurtos i s Unexpectedness ”)+

xlab ( ”x” )
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B.2 DetHetGP Code

Here we provide code to implement the DetHetGP model outlined in Chapter 3,

using the formulation detailed in Section 3.6.

B.2.1 DetHetGP Stan code

Below is the Stan code implementation of the model, which can be used to fit the

parameters of the model. This uses the equations given in Equations (3.9) - (3.11).

// f i r s t we have to dec l a r e our data

data {

// S to cha s t i c Data :

int<lower=1> d ; //number o f input dimensions

int<lower=1> N sto ; //number o f s t o c h a s t i c s imu la t i ons

vector [ N sto ] y s t o ; // s t o c h a s t i c s imu la t ion outputs

row vector [ d ] X sto [ N sto ] ; // s t o c h a s t i c s imu la t ion inpu t s

real<lower = 0> nugget ; // computat ional nugget

int<lower=1> dH sto ; // s i z e o f GP 'H' matrix

matrix [ N sto , dH sto ] H sto ; //GP 'H' matrix

int<lower=1> dH var ; // s i z e o f var iance GP 'H' matrix

matrix [ N sto , dH var ] H var ; // var iance GP 'H' matrix

//Determin i s t i c Data :

int<lower=1> N det ; //number o f d e t e rm in i s t i c s imu la t i ons

vector [ N det ] y det ; // de t e rm in i s t i c s imu la t ion outputs

row vector [ d ] X det [ N det ] ; // de t e rm in i s t i c inpu t s

int<lower=1> dH det ; // s i z e o f d e t e rm in i s t i c GP 'H' matrix

matrix [ N det , dH det ] H det ; // det GP 'H' matrix

matrix [ N sto , dH sto ] H det s to ; // det GP 'H' at s t o c h a s t i c po in t s

}

//We use a t r i c k to a l l ow non=i s o s t r o p i c covar iance matr ices

// us ing the i s o t r o p i c cov exp quad squared=exp func t i on .

//we r e s c a l e the data in s t ead

//and input an ' i d en t i t y ' ' l e n g t h s c a l e in to cov exp quad .

// the se l i n e s cons t ruc t sa id ' i d en t i t y ' ' l e n g t h s c a l e s :

transformed data{

real f a k e l e n g t h s c a l e s t o ; // fo r the s to GP

real f a k e l e n g t h s c a l e v a r ; // fo r the var iance GP

real f a k e l e n g t h s c a l e d e t ; // fo r the det GP

f a k e l e n g t h s c a l e s t o = pow( sqrt ( 2 ) , =1 ) ;

f a k e l e n g t h s c a l e v a r = pow( sqrt ( 2 ) , =1 ) ;

f a k e l e n g t h s c a l e d e t = pow( sqrt ( 2 ) , =1 ) ;

}

// then we have to dec l a r e the parameters

// ( which we want to es t imate ) :

186



parameters {

// s t o c h a s t i c GP:

row vector<lower=0>[d ] l e n g t h s c a l e s t o ; // l eng t h s c a l e s

real<lower=0> a lpha s to ; // ep i s t emic var iance term

vector [ dH sto ] b e t a s t o ; //mean func t ion c o e f f i c i e n t s

// fo r var iance GP:

row vector<lower=0>[d ] l e n g t h s c a l e v a r ;

real<lower=0> a lpha var ;

vector [ dH var ] beta var ;

real<lower=0> g ; // nugget f o r var iance GP

vector [ N sto ] l o g i n t v a r ; // l o g i n t r i n s i c var at s t o inpu t s

// fo r d e t e rm in i s t i c GP:

row vector<lower=0>[d ] l e n g t h s c a l e d e t r a w ;

real<lower=0> a lpha det ;

vector [ dH det ] be ta det ;

}

//Then we can ' transform ' t h e s e parameters .

//For GPs, we use t h i s b u i l d the mean and cov func t i ons

transformed parameters {

// again we have to dec l a r e the se transformed parameters :

// f o r s t o c h a s t i c GP

row vector [ d ] X l s to [ N sto ] ; // transformed s to inpu t s

matrix [ N sto , N sto ] K sto ; //The s t o c h a s t i c GP covar iance matrix

vector [ N sto ] mu sto ; //The s t o c h a s t i c GP mean at the inpu t s

// fo r var iance GP

row vector [ d ] Xl var [ N sto ] ;

matrix [ N sto , N sto ] K var ;

matrix [ N sto , N sto ] cholK var ; // var iance GP cho l e s ky decomposit ion

vector [ N sto ] mu var ;

vector<lower=0>[N sto ] i n tva r ; // i n t r i n s i c var at the inpu t s

// fo r det GP model

row vector<lower=0>[d ] l e n g t h s c a l e d e t ;

row vector [ d ] Xl det [ N det ] ;

row vector [ d ] X l d e t s t o [ N sto ] ; // transformed s to inpu t s ( f o r detGP)

matrix [ N det , N det ] K det ;

vector [ N det ] mu det ;

vector [ N sto ] mu det sto ; // det GP mean func at s t o c h a s t i c inpu t s

matrix [ N det , N sto ] K det det s to ; // det GP cov between det and s to

matrix [ N sto , N det ] K det s todet ; // det GP cov between s to and det

matrix [ N sto , N sto ] K de t s to s to ; //detGP cov fo r s to inpu t s

// the b i g o v e r a l l process

vector [ N sto+N det ] y f u l l ; // outputs f o r both s imu la tor s

// f i n a l mean and covar iances :
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vector [ N sto+N det ] ymu ; //mean func at a l l inpu t s

matrix [ N sto+N det , N sto+N det ] ycov ; //cov fo r a l l inpu t s

//now we g i v e the equa t ions f o r the terms de f ined above :

y f u l l = append row( y det , y s t o ) ;

//////////

// var iance GP:

/////////

i n tva r = exp( l o g i n t v a r ) ; //undo the var iance l o g transform

//do t r i c k to a l l ow non=i s o t r opy

for ( i in 1 : N sto )

Xl var [ i ] = X sto [ i ] . / l e n g t h s c a l e v a r ; // transform the data

// c a l c u l a t e mean func

mu var = H var * beta var ;

// bu i l d covar iance func t i on

K var = cov exp quad ( Xl var , a lpha var , f a k e l e n g t h s c a l e v a r ) ;

for (n in 1 : N sto )

K var [ n , n ] = K var [ n , n ] + nugget + g ; //add nugget

cholK var = cholesky decompose ( K var ) ;

//////////

// S to cha s t i c GP:

/////////

//do t r i c k to a l l ow non=i s o t r opy

for ( i in 1 : N sto )

X l s to [ i ] = X sto [ i ] . / ( l e n g t h s c a l e s t o ) ; // transform the data

// c a l c u l a t e mean func

mu sto = H sto * b e t a s t o ;

// bu i l d covar iance func t i on

K sto = cov exp quad ( Xl sto , a lpha sto , f a k e l e n g t h s c a l e s t o ) ;

// d iagona l e lements

for (n in 1 : N sto )

K sto [ n , n ] = K sto [ n , n ] + nugget + in tva r [ n ] ; // add var

//////////

//Det GP:

/////////

//add smal l number to det l e n g t h s c a l e s

// ( see appendix o f t h e s i s ) :

l e n g t h s c a l e d e t = l e n g t h s c a l e d e t r a w + 0 . 0 1 ;
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//do t r i c k to a l l ow non=i s o t r opy

for ( i in 1 : N det )

Xl det [ i ] = X det [ i ] . / l e n g t h s c a l e d e t ; // transform data

// c a l c u l a t e mean func

mu det = H det * beta det ;

// bu i l d covar iance func t i on

K det = cov exp quad ( Xl det , a lpha det , f a k e l e n g t h s c a l e d e t ) ;

// d iagona l e lements

for (n in 1 : N det )

K det [ n , n ] = K det [ n , n ] + nugget ; // add nugget

// c a l c u l a t e det mean func at the s t o c h a s t i c inpu t s :

mu det sto = H det s to * beta det ;

//do non=i s o t r opy t r i c k ( f o r det cov at s t o inpu t s ) :

for ( i in 1 : N sto )

X l d e t s t o [ i ] = X sto [ i ] . / l e n g t h s c a l e d e t ; // transform data

/////////

// bu i l d b i g o v e r a l l process terms :

/////////

K det det s to = cov exp quad ( Xl det , X l de t s to , a lpha det ,

f a k e l e n g t h s c a l e d e t ) ;

K det s todet = cov exp quad ( X l de t s to , Xl det , a lpha det ,

f a k e l e n g t h s c a l e d e t ) ;

// bu i l d det covar iance at s to inpu t s

K det s to s to = cov exp quad ( X l de t s to , a lpha det , f a k e l e n g t h s c a l e d e t ) ;

for (n in 1 : N sto )

K det s to s to [ n , n ] = K det s to s to [ n , n ] + nugget ;

// f i n a l mean and f i n a l cov :

ymu = append row( mu det , mu det sto + mu sto ) ;

ycov = append row(append col ( K det , K det det s to ) ,

append col ( K det stodet , K sto+K det s to s to ) ) ;

}

//now we s p e c i f i y the p r i o r s

// ( f o r the hyperparameters , and the GP ' pr iors ' )

model {

// p r i o r s f o r s t o GP

a lpha s to ˜ inv gamma ( 2 , 1 ) ;

l e n g t h s c a l e s t o ˜ gamma(4 , 4 ) ;

b e t a s t o ˜ normal (0 , 1 0 ) ;

// p r i o r s f o r var GP
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a lpha var ˜ inv gamma ( 2 , 1 ) ;

l e n g t h s c a l e v a r ˜ gamma(4 , 4 ) ;

be ta var ˜ normal (0 , 1 0 ) ;

g ˜ normal ( 0 , 1 ) ;

// p r i o r s f o r det GP

a lpha det ˜ inv gamma ( 2 , 1 ) ;

be ta det ˜ normal (0 , 1 0 ) ;

l e n g t h s c a l e d e t r a w ˜ gamma(4 , 4 ) ;

//And now , the GP ' pr iors ' :

// ( l o g ) var iance GP

l o g i n t v a r ˜ multi normal cholesky ( mu var , cholK var ) ;

//DetHetGP

y f u l l ˜ multi normal (ymu, ycov ) ;

}

B.2.2 DetHetGP Prediction Code

Below is a set of R functions which will enable predictions from a DetHetGP,

assuming parameters estimates have been obtained. This is an R implementation of

Equation (3.12).

#we want p r e d i c t i on s f o r new po in t s

#but to do t h i s we need a few func t i ons

#we need the squared exponen t i a l covar iance func t i on

#( as parametr ised in the Stan code )

K12 <= function (X1 , X2 , l ) {

#Ca lcu l a t e s squared exponen t i a l covar iance matrix f o r X1,X2

n1 = length (X1 [ , 1 ] ) #number o f input po in t s

n2 = length (X2 [ , 1 ] ) #number o f v a l i d a t i o n po in t s

d = length (X1 [ 1 , ] ) #number o f v a r i a b l e s

D = as . matrix ( c d i s t ( scale (X1 , c en te r=FALSE, scale=l ) ,

scale (X2 , c en te r=FALSE, scale=l ) ) )

return (exp(=(Dˆ2 ) ) )

}

#We need the mean func t ion as parametr ised in the Stan code

meanfunc <= function (H, beta ) {

#Given a 'H' matrix and the be ta c o e f f i c i e n t s ,

#ob ta in the mean func t ion va lue s

H%*%as . vector (beta )

}

#And the func t i on to p r ed i c t from DetHetGP

DetHetGPPredict <= function (X sto , y sto , X det , y det , parameterest imates ,

190



X pred ) {

#compute H matr ices ( f o r mean func t i ons )

H sto <= Hmatrix func (X sto ) #ge t H matrix f o r adjustment GP

dimenH sto <= length (H sto [ 1 , ] ) #How many dimensions i s i t ?

H var <= Hmatrix func (X sto ) #ge t H matrix f o r var iance GP

dimenH var <= length (H var [ 1 , ] )

##DetGP

H det <= Hmatrix func (X det ) #ge t detGP H at det po in t s

H det s to <= Hmatrix func (X det ) #ge t detGP H at s to po in t s

dimenH det <= length (H det [ 1 , ] )

#######

#Variance Pred ic t ion

#######

#ge t p r e d i c t i on s ( us ing standard GP pred i c t i on equat ions )

K var <= ( parameteres t imates$alpha varˆ2) *

K12(X sto , X sto , parameteres t imates$length scale var ) +

diag ( rep ( nugget , length (X sto [ , 1 ] ) ) , nrow = length (X sto [ , 1 ] ) ) +

diag ( rep ( parameteres t imates$g , length (X sto [ , 1 ] ) ) , nrow = length (X sto [ , 1 ] ) )

K var inv <= chol2inv ( chol (K var ) ) #ge t inve r s e

Kyx var <= ( parameteres t imates$alpha varˆ2) *

K12(X pred , X sto , parameteres t imates$length scale var )

Kxy var <= t (Kyx var )

Kyy <= ( parameteres t imates$alpha varˆ2) *

K12(X pred , X pred , parameteres t imates$length scale var ) +

diag ( rep ( nugget , length (X pred [ , 1 ] ) ) , nrow = length (X pred [ , 1 ] ) ) +

diag ( parameteres t imates$g , nrow = length (X pred [ , 1 ] ) )

#obta in H matrix at pred po in t s

H pred <= Hmatrix func (X pred )

#ge t po s t e r i o r GP mean and var iance

postmean var <= meanfunc (H pred , parameterest imates$beta var ) +

Kyx var%*%K var inv%*%( t ( t ( parameteres t imates$ l o g i n t v a r ) ) =

meanfunc (H var , parameteres t imates$beta var ) )

postcov var <= Kyy = Kyx var%*%K var inv%*%t (Kyx var )

#undo l o g trans format ion :

pred in tva r <= exp( postmean var + diag ( postcov var )/2)

#######

#DetHetGP Pred ic t ion

#######

#Obtain the matr ices ou t l i n ed in Equation 3.12
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#ge t Cov( y f u l l ) :

A11 <= ( parameteres t imates$alpha det ˆ2) *

K12(X det , X det , parameteres t imates$length scale det ) +

diag ( rep ( nugget , length (X det [ , 1 ] ) ) , nrow = length (X det [ , 1 ] ) )

A12 <= ( parameteres t imates$alpha det ˆ2) *

K12(X det , X sto , parameteres t imates$length scale det )

A21 <= ( parameteres t imates$alpha det ˆ2) *

K12(X sto , X det , parameteres t imates$length scale det )

A22 <= ( parameteres t imates$alpha det ˆ2) *

K12(X sto , X sto , parameteres t imates$length scale det ) +

( parameteres t imates$alpha s to ˆ2) *

K12(X sto , X sto , parameteres t imates$length scale s to ) +

diag ( rep (2*nugget , length (X sto [ , 1 ] ) ) , nrow = length (X sto [ , 1 ] ) ) +

diag ( parameteres t imates$ intvar , nrow = length (X sto [ , 1 ] ) )

A1 <= cbind (A11 , A12)

A2 <= cbind (A21 , A22)

A <= rbind (A1 , A2)

Ainv <= chol2inv ( chol (A) )

#ge t o ther covar iance matr ices :

Kyx det <= ( parameteres t imates$alpha det ˆ2) *

K12(X pred , X det , parameteres t imates$length scale det )

Kyx s to <= ( parameteres t imates$alpha det ˆ2) *

K12(X pred , X sto , parameteres t imates$length scale det ) +

( parameteres t imates$alpha s to ˆ2) *

K12(X pred , X sto , parameteres t imates$length scale s to )

Kyx <= cbind (Kyx det , Kyx s to )

Kyy <= ( parameteres t imates$alpha det ˆ2) *

K12(X pred , X pred , parameteres t imates$length scale det ) +

( parameteres t imates$alpha s to ˆ2) *

K12(X pred , X pred , parameteres t imates$length scale s to ) +

diag ( rep (2*nugget , length (X pred [ , 1 ] ) ) , nrow = length (X pred [ , 1 ] ) ) +

diag (as .numeric ( pred in tva r ) )

#ge t Mean( y f u l l ) :

H input mat <= rbind (cbind (H det , 0*H det ) , cbind (H sto , H sto ) )

Hpred <= cbind ( Hmatrix func (X pred ) , Hmatrix func (X pred ) )

Beta <= c ( parameteres t imates$beta det , parameteres t imates$beta s to )

#ge t po s t e r i o r mean and var iance ( us ing Equation 3.12)

postmean <= meanfunc ( Hpred , Beta ) +

Kyx%*%Ainv%*%(c ( y det , y s to ) = meanfunc (H input mat , Beta ) )

postcov <= Kyy = Kyx%*%Ainv%*%t (Kyx)

return ( l i s t (mean = postmean , var = diag ( postcov ) , i n tva r <= pred in tva r ) )

}
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B.2.3 DetHetGP Example

Below is an R script which implements a DetHetGP model. The script is a fully

self-contained example: providing a toy simulator (the same as in Section 3.1,

obtaining training simulations, fitting the emulator, and making predictions. This

script assumes the existence of a “DetHetGP.stan” Stan file (provided above in

Section B.2.1) and a “DetHetGP Prediction Equations.R” R script (provided above

in Section B.2.2).

l ibrary ( l h s )

l ibrary ( gr idExtra )

l ibrary ( ggp lot2 )

l ibrary ( r d i s t )

l ibrary ( r s tan )

source ( 'DetHetGP Pred i c t i on Equations .R ' ) #load pred equat ions

StanLoc <= 'DetHetGP . stan ' #loca t i on o f Stan f i l e used f o r parameter es t imat ion

#toy s imu la tor

dimen <= 1 #dimension o f problem

s imu la to r <= function ( x ){

sin ( p i+6*pi*x [ , 1 ] ) *(1=x [ , 1 ] ) + log (0.2+x [ , 1 ] ) +

rnorm( length ( x [ , 1 ] ) , 0 , 1 ) *(1.2=x [ , 1 ] )

}

#de t e rm in i s t i c approximation

det s imu la to r <= function ( x ){

sin ( p i+6*pi*x [ , 1 ] ) *(1=x [ , 1 ] ) + log (0.2+x [ , 1 ] ) + 1*(1.2=x [ , 1 ] )

}

#ge t s t o c h a s t i c data :

set . seed (99999)

N sto <= 50 #number o f s t o c h a s t i c t r a i n in g po in t s

X sto <= maximinLHS(N sto , dimen ) #x va lue s

y s to c l ean <= s imu la to r (X sto ) #run s imula tor

#ge t d e t e rm in i s t i c data :

set . seed (12345)

N det <= 12 #number o f d e t e rm in i s t i c t r a i n i n g po in t s

X det <= maximinLHS(N det , dimen ) #x va lue s

y det c l ean <= det s imu la to r (X det ) #run de t e rm in i s t i c approximation

#s tandard i s e data :

meany <= mean(c ( y s to c l ean ) ) #mean of data sample

sdy <= sd (c ( y s to c l ean ) ) #standard dev i a t i on

y s to <= ( y s to c lean=meany)/sdy #standard i sed output

y det <= ( y det c lean=meany)/sdy
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###############################################################

#Fit DetHetGP

nugget <= 0 .0001 #computat ional nugget

#ge t func t ion which produces 'H' matrices

#(matrix o f r e g r e s s i on terms fo r mean func t ion ) :

Hmatrix func <= function ( x ){

cbind (1 , x ) #l i n e a r mean = can change t h i s

}

#compute H matr ices ( f o r mean func t i ons at inpu t s ) :

H sto <= Hmatrix func (X sto ) #ge t H matrix f o r adjustment GP

dimenH sto <= length (H sto [ 1 , ] ) #How many dimensions i s i t ?

H var <= Hmatrix func (X sto ) #ge t H matrix f o r var iance GP

dimenH var <= length (H var [ 1 , ] )

H det <= Hmatrix func (X det ) #ge t H matrix f o r det GP at d e t e rm in i s t i c po in t s

H det s to <= Hmatrix func (X sto ) #ge t H matrix f o r det GP at s t o c h a s t i c po in t s

dimenH det <= length (H det [ 1 , ] )

#Prepare eve ry th ing f o r Stan

#i n i t i a l i s e data

data <= l i s t (d = dimen , N sto = N sto , y s to = array ( y sto , dim = N sto ) ,

X sto = X sto , nugget = nugget , dH sto = dimenH sto , H sto = H sto ,

dH var = dimenH var , H var = H var , N det = N det , X det = X det ,

y det = array ( y det , dim = N det ) , dH det = dimenH det ,

H det = H det , H det s to = H det s to )

#i n i t i a l i s e Stan model

DetHetmodel <= stan model( f i l e=StanLoc )

#Run opt imiser

opt <= opt imiz ing ( DetHetmodel , data = data , as vector = FALSE,

i t e r = 10000 , verbose = TRUE)

#Extract MAP es t imate s

parameteres t imates <= opt$par

###############################################################

#make p r ed i c t i on s

X pred <=as . matrix ( seq (0 , 1 , l en = 100)) #x l o c a t i on s

pred <= DetHetGPPredict (X sto , y sto , X det , y det , parameterest imates , X pred )

#unstandardise p r e d i c t i on s

pred$var <= pred$var*sdy ˆ2

pred$mean <= pred$mean*sdy + meany

#p l o t the p r ed i c t i on s :

ggp lot ( ) +

geom ribbon ( aes ( x=X pred , ymin = ( pred$mean =2*sqrt ( pred$var ) ) ,

ymax = pred$mean + 2*sqrt ( pred$var ) , f i l l = 'DetHet ' ) ,

alpha = 0 . 15 ) +
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geom l i n e ( aes ( x=X pred , y=pred$mean, c o l ou r = 'DetHet ' ) ) +

geom point ( aes ( x=X sto , y=y sto c lean , co l ou r = 'True ' ) ) +

geom point ( aes ( x=X det , y=y det c lean , co l ou r = 'True ' ) , shape = 3) +

theme minimal ( base s i z e = 16) +

ylab ( 'y ' ) +

xlab ( 'x ' )+

xlim (0 ,1)+

coord c a r t e s i a n ( ylim=c (=5.5 , 3))+

scale f i l l manual ( va lue s = c ( 'True ' = '#000000 ' , 'DetHet ' = '#0072B2 ' ) ,

guide=FALSE) +

scale co l ou r manual ( va lue s = c ( 'True ' = '#000000 ' , 'DetHet ' = '#0072B2 ' ) ,

guide=FALSE)
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