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Abstract

We introduce an online variational Bayesian model for tracking changes in a
non-stationary, multivariate, temporal signal, using as an example the changing
frequency and amplitude of a noisy sinusoidal signal over time. The model incor-
porates each observation as it arrives and then discards it, and places priors over
precision hyperparameters to ensure that (i) the posterior probability distribu-
tions do not become overly tight, which would impede its ability to recognise and
track changes, and (ii) no values in the system are able to continuously increase
and hence exceed the numerical representation of the programming language.
It is thus able to perform truly online processing for an infinitely long set of ob-
servations. Only a single round of updates in the variational Bayesian scheme
per observation is used, and the complexity of the algorithm is constant in time.
The proposed method is demonstrated on a large number of synthetic datasets,
comparing the results from the full model (with precision hyperparameters as
variables with priors) with those from the base model where the precision hy-
perparameters are fixed values. The full model is also demonstrated on a set of
real climate data.

Keywords: online learning/processing, variational methods, Bayes procedures.

1. Introduction

When noisy time series data are generated, perhaps by a sensor of some
sort, there is a choice to be made between storing the original, raw data for
later analysis, or processing them on the fly and recording some more useful or
convenient summary information in place of the raw data. Choosing the latter,
an obvious candidate for maintaining summary information is online Bayesian
sequential learning, where the current state of a Bayesian model summarises the
raw data, each observation is incorporated into the model as it arrives, and the
posterior probability distributions after one observation become the priors for
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the next one. Often though, the integrals required for exact Bayesian inference
are intractable, so some sort of approximation is required.

We present a simple such system to which we choose to apply the varia-
tional Bayesian (VB) approximation method, and in the process of developing
the model, overcome a number of obstacles and challenges that this method in-
troduces. To facilitate the description of these challenges, and how we overcome
them, we start by describing an illustrative system and our chosen mathemat-
ical representation of it. In this example we assume the noise to be Gaussian
distributed, but in a real-world problem we might choose to assume it to be, for
example, Student-t distributed to make it robust to outliers [1].

In our example system, a sensor buoy is floating at the surface of the sea,
continuously measuring the vertical component of the motion of the waves at
a fixed sampling rate, fs, for an indefinite period of time. For the purposes of
this paper, assume that the water’s surface is perturbed by a single sinusoidal
wave of unknown amplitude, A, and angular frequency, ω, onto which the sensor
superimposes white noise of precision (inverse variance) λ. The sea is not sta-
tistically stationary, so over time the amplitude, frequency and noise precision
may change slowly and smoothly, and we wish to track those changes. If the
buoy’s nth observation, yn, is recorded at time tn, then our selected model is as
follows:

yn = A cos(φ+ ωtn) + εn (1)

where φ is the phase offset at time t0, and εn the noise. The φ variable allows
us to state without loss of generality that t0 = 0, and hence tn = nδt, where
δt = 1/fs is the fixed time interval between observations. In this context the
challenges for VB, and our responses to them, are as follows.

Challenge 1: sufficient processing speed for online learning. In
order to maintain the online model, each observation must be incorporated into
the model within the sampling interval, δt. While faster than Markov chain
Monte Carlo (MCMC), VB is an interative process where the hyperparameters of
each posterior are updated in turn until convergence. The number of iterations
may be fixed, which at least makes the computation time predictable, or the
system may be iterative until some convergence threshold is reached; either case
raises an additional challenge of determining either what is the best number of
iterations, or what the convergence threshold should be. We avoid the problem
simply by not iterating the VB update process; we perform a single “iteration”
to incorporate each observation.

Challenge 2: unknown number of observations. In a traditional VB
framework, the complete set of observations is available to train the model,
and it is assumed to be small enough to fit in the computer’s memory during
that training process. The model may be trained by sweeping backwards and
forwards through the observations multiple times until convergence. In our case
the total number of observations is unknown, and may be considered to be
infinite, and we wish to retain in memory only the single current observation.
In our system, all past observations are represented in the current state of the
model, and all future observations have not yet been made.
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Figure 1: An example of the type of non-stationary sinusoidal signal modelled by the proposed
method. The true signal is shown in black, with variations in both angular frequency and
amplitude over time. The noisy observations are shown as grey dots, with the noise variance
also changing over time.

Challenge 3: a non-stationary target. Our system is statistically non-
stationary; the key variables change over time and we want to track the changes,
as illustrated in figure 1. If a standard VB model is to capture these changes, and
is trained on a complete set of observations, then the model itself must contain
extra variables to track that variation. We do not include extra variables, but
enable the posterior distributions to change over time so that at any given
instant they represent the current state of the system.

Challenge 4: over-tight posteriors. The VB method is known to result
in over-tight posterior distributions, i.e. posteriors whose precisions are unreal-
istically high. During the VB update procedure for a given variable, all other
variables (we will assume a full factorisation of the approximate posteriors) are
represented by their expectations rather than their full posterior probability
distribution, leading to a loss of variance. Once the posteriors have become
too tight, the model becomes unable to evolve as the underlying statistics of
the system change. We prevent this from happening by placing priors over key
precision hyperparameters.

Challenge 5: infinitely increasing values. When a system is running
for, effectively, an infinite period of time, any values that are constantly in-
creasing will eventually cause the program to fail when those values exceed the
computer’s ability to represent them. An obvious example in our system is
the parameter tn, a constantly increasing timestamp. In this instance we can
replace tn with a function of δt (though obviously not with nδt), but the VB
updates for the precision posteriors all exhibit the same problem. We apply the
same solution as for challenge 4, i.e. we place priors on the precision variables
to limit their growth.

Challenge 6: circular variables. Using [2]’s VB approach requires us to
replace the full distribution of a variable with its expected value when reeval-
uating the posteriors for other variables. Our model includes circular variables
whose posteriors turn out to be Generalised von Mises distributions of order 2,
which may be bimodal and hence present a problem in representing them with
single expectations. We approximate them with unimodal ones, and provide a
new approximation for the inverse of the modified Bessel function of the first
kind.
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In section 2 we start by surveying some of the relevant literature. We follow
this, in section 3, with an overview of the circular distributions used in this
paper: the von Mises, the use of the wrapped Normal distribution to approxi-
mate the sum of two von Mises distributed variables, and the Generalised von
Mises distribution of order 2. The model based on (1) is introduced in two parts.
Firstly (section 4), we describe the base model, providing an alternative arrange-
ment of (1) that better suits the online VB method, specifying the priors, and
deriving the VB update scheme. At this point we do not limit the precisions (see
challenges 4 and 5 above), but, in section 5, provide some experimental results
to show how the base model operates and how the ever-increasing precisions
affect the learning process. Secondly (section 6), we describe the methods for
limiting these ever-increasing precisions (the full model) and, in section 7 show
how the updated model operates and how its performance differs from the base
model. Conclusions are drawn in section 9.

2. Background

To avoid the computational expense of Markov chain Monte Carlo (MCMC)
methods, here we use the variational Bayesian technique for finding approxi-
mations to the posterior distribution [3, 4, 5, 2]. This method minimises the
Kullback-Leibler divergence between the approximate and actual posterior dis-
tributions to determine the optimal hyperparameter values for the approxima-
tions; for tutorials see [6], and [7, chapter 10]. Attias [2] (see also [8, 9]) exploits
the factorisation of the posterior (in this paper we assume a full factorisation) to
find a general expression for the minimisation in a mean-field sense. If conjugate
priors are chosen for each variable, the approximate posteriors turn out to have
the same functional form as the priors [2, 10], and the variational approxima-
tions may thus be found by evaluating each approximate posterior in turn. The
hyperparameters of the posterior distribution for one variable will generally de-
pend upon the hyperparameters for other variables, so the parameters for each
variable are evaluated iteratively until convergence. [10] show that this scheme
converges to a local minimum of the Kullback-Leibler divergence.

Generally the VB algorithms operate in batch mode, that is, they are trained
by traversing the complete set of observations, often multiple times, to give
the sought-after posterior distributions for each variable (e.g. [1, 11]). This
approach is fine for the retrospective processing of datasets that are small enough
to fit into the computer’s memory, but is not suitable for online processing, or
for very large (possible infinite) datasets, or for datasets whose final size is
unknown.

The Bayesian approach of combining priors with an observation to form
posteriors, which in turn become the priors for the next observation, naturally
lends itself to an online system, particularly when, as mentioned above, con-
jugate priors lead to the posteriors having the same functional form as those
priors [2, 10]. Now we may maintain a model of the current state and update it
with each observation in turn, keeping only the current observation in memory.
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[12] consider that VB applied in this way may well get stuck in a local op-
timum from which it cannot escape. They split the variables in a time series
model into local (those that are time dependent) and global (not time depen-
dent), updating the global variables once per observation, and iterating over
the local ones multiple times until convergence. They control the period of the
model’s memory by including an explicit, tunable forgetting method, that de-
motes the terms of the likelihood that correspond to the oldest observations.
They suggest that incorporating observations one at a time might be extreme
and that processing the data in small batches might be an effective compromise.

A form of batching is used by [13], who constrain the overall problem by
assuming that the time series is piecewise stationary, and use Monte Carlo
techniques to model the unknown size and number of segments. [14] also use
batching, and explicitly model temporal changes in the system parameters using
adaptive forgetting rates.

The iterative coordinate ascent process whereby each approximate posterior
is updated in turn while all other posteriors are held fixed, can make VB slow
to converge to its final solution. [15, 16] replace it with a stochastic gradient-
based algorithm for updating the hyperparameters; the latter paper names this
method Stochastic Variational Inference (SVI). They still iterate the updates
until convergence, but the gradient ascent means that convergence is achieved in
fewer iterations. They also make use of a forgetting function for their key global
variable, and update the model using observation minibatches. Their model
is not dependent on the ordering of the data, so their minibatches are made
up of uniformly randomly selected observations. Although each minibatch is
incorporated into the model as it is “received”, and then released from memory,
the algorithm depends on knowing the total number of observations. [17] extend
SVI to time series data, but still depend on sampling a sequence of observations
to update the model.

Streaming, Distributed, Asynchronous Bayes (SDA-Bayes) [18] moves away
from the requirement of knowing the total number of observations, but the
distributed, asynchronous nature makes it unsuitable for time series data, es-
pecially when the system is not statistically stationary. In addition to sensors,
process control is another area where streamed observations need to be mod-
elled, and where the underlying system may not be statistically stationary. In
this context, [19] propose an adaptive method based on minibatches, where each
new batch is assessed to determine whether it conforms to the statistics of pre-
vious data; if it does not, then the model priors are re-initialised. Thus they
support non-stationarity, but they also propose a parallel processes strategy
which is unsuitable for time series data.

[20] describe an online VB model for time series regression that aims to
conform much more closely to the classical Bayesian updating approach, with
no requirement to know how many obervations there are. However, while their
model is incorporating each single observation in turn, it includes parameters
whose values continuously increase (for example, the counter n, which feeds into
both µq(1/σ2) and q∗(σ2), and the precision Σ−1

q(β) in algorithm 2).
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Priors over the precisions (inverse standard deviations) are most often used
in the context of automatic relevance determination (ARD) (Mackay 1994, Neal
1995) to “switch off” coefficients for which there is no evidence in the data.
Rather than fixing the prior for a precision variable, the parameters of that
prior become variables with their own priors. This provides the flexibility for
the precision to become very large, constraining a zero-mean Gaussian variable
to have a value very close to zero. This result may be used to explicitly estimate
model order (e.g. [1]), or, more generally, to promote sparsity in latent variables
(e.g. [21]). Other, related methods incorporate this approach, but also apply a
penalty function to achieve sparsity (e.g. [22]). However, in each of these cases
the underlying system is considered to be statistically stationary and with finite
(and relatively small) sets of observations, and thus the ability of the precision
variables to become very large (meaning that the model becomes very certain in
its estimations) might be considered to be desirable. In a non-stationary system,
this over-precision means that the model is unable to react to changes. In this
paper, in the “full model”, we are trying to achieve the opposite: we want to
relax the precision so that nonstationarity in the underlying latent variables can
be tracked and not locked out by over-precision.

In this paper we stay with the classical Bayesian update approach, and apply
it to time series data where the ordering of the observations is critical. Each
observation is incorporated into the model one at a time, in time order, and
the hyperparameters of the approximate posteriors are updated once for each
observation. We ensure that the algorithm does not contain any values that
continuously increase over time.

In order to maintain clarity, we use mean-field approximation with a full
posterior factorisation and a coordinate ascent update approach.

2.1. Sinusoid frequency estimation

While the system used in this paper has been selected for illustrative pur-
poses only, it is worth very briefly reviewing Bayesian approaches to it.

The selected model, described by equation (1), has been investigated using
various Bayesian approaches since [23]. While many of the papers are con-
cerned with spectra and not just single sinusoids (e.g. [24], and [25, 26], who
also investigate the optimal number of frequencies to be modelled), there is an
evolution of Bayesian approaches to this specific problem: Gibbs sampling [27],
RJ-MCMC [28], MAP/ML [29], and a form of expectation propagation [30].

[31, 32] employ a state space model, with Gibbs sampling, to learn the pa-
rameters of temporally nonstationary sinusoidal signals, which is closely related
to our work, but we avoid using computationally expensive procedures such as
Markov chain Monte Carlo.

The circular nature of the angular frequency leads to several methods for in-
corporating the von Mises (see section 3.1) distribution into a Bayesian context.
[30] introduce an auto-regressive generalisation of the von Mises distribution,
using expectation propagation to iteratively refine localised Gaussian approxi-
mations. While [33] are learning phase rather than frequency, and assume that
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the frequency is known, they establish a tractable conjugate system based on
a von Mises distribution, as do [34]. Working with frequencies, [26] approxi-
mate von Mises distributions with mixtures of von Mises. The main problem
for Bayesian inference is the intractability of the Bessel function terms. [35]
approximate the Bessel functions with Taylor series expansions.

3. Circular probability distributions

A continuous random variable that describes an angle, i.e. one whose values
are constrained to be within a 2π interval, is best represented by a circular prob-
ability distribution. There are three such distributions used in this paper: the
unimodal von Mises, which is summarised in section 3.1, the wrapped Normal,
which is used in the approximation of the sum of two von Mises distributions,
covered in section 3.2, and the Generalised von Mises of order 2, which is a
generalisation of the von Mises to allow bimodal circular distributions, covered
in section 3.3.

3.1. von Mises

The von Mises distribution [36] is a symmetrical, unimodal distribution for
a circular variable and is defined as:

M(θ |µ, κ) =
1

2πI0(κ)
exp
(
κ cos(θ − µ)

)
(2)

where Ix(·) is the modified Bessel function of the first kind, of order x, µ is the
mean, and the concentration parameter, κ>0, acts like a precision; as κ→0
the distribution tends to a Uniform distribution across the 2π range, while as κ
increases the distribution tends to a Gaussian distribution. Useful expectations
(denoted by 〈·〉) for this distribution are as follows:

〈cos(nθ)〉 = cos(nµ)
In(κ)

I0(κ)
(3)

〈sin(nθ)〉 = sin(nµ)
In(κ)

I0(κ)
(4)

〈cos2(nθ)〉 =
1

2

(
1 + 〈cos(2nθ)〉

)
(5)

〈sin2(nθ)〉 =
1

2

(
1− 〈cos(2nθ)〉

)
(6)

An alternative expression for the same distribution is

M(θ |α, β) =
1

2πI0(κ)
exp

(
α cos(θ) + β sin(θ)

)
(7)

where

α = κ cos(µ) β = κ sin(µ) (8)
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and, alternatively,

µ = atan

(
β

α

)
κ =

α+ β

cos(µ) + sin(µ)
(9)

3.2. The sum of two von Mises

The sum of two von Mises distributed variables is achieved by first approxi-
mating each of them by a wrapped Normal distribution, summing the wrapped
Normals to give another wrapped Normal, and then returning the latter to a
von Mises [36]. Denoting the wrapped Normal distribution as wN (·):

M
(
θ |µ, κ

)
≈ wN

(
θ |µ,B(κ)

)
(10)

where

B(κ) =
I1(κ)

I0(κ)
(11)

If we have two von Mises variables, θ1 and θ2, with distributionsM
(
θ1 |κ1, µ1

)
and M

(
θ2 |κ2, µ2

)
, then their sum is given by

p(θ1 + θ2) ≈ wN
(
µ1 + µ2,B(κ1)B(κ2)

)
(12)

≈M
(
µ1 + µ2,B

−1
(
B(κ1)B(κ2)

))
(13)

While calculating B(·) is straightforward, there does not appear to be a solution
for its inverse, B−1(·). A numerical solution is possible, but with a computa-
tional expense we cannot afford. Instead we approximate it using the following
definition, which was discovered using a genetic program:

B−1(x) ≈
(

1

acos(x)

)2

(14)

3.3. Generalised von Mises of order 2 (GvM2)

The Generalised von Mises distribution of order 2 (GvM2) [37, 38, 39] is a
potentially asymmetrical, potentially bimodal distribution for a circular variable
and is defined as:

GvM2(θ |µ,κ)

=
1

2πG0(δµ,κ)
exp

(
2∑

m=1

κm cos
(
m(θ − µm)

))
(15)

where G0(·) is an analytically intractable integral, δµ = mod(µ1 − µ2, π) and
κm > 0. Note that the Generalised von Mises of order 1 is identical to the von
Mises. The definition in (15) can equivalently be expressed as

GvM2(θ |α,β)

=
1

2πG0(·)
exp

(
2∑

m=1

αm cos(mθ) + βm sin(mθ)

)
(16)
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where

α1 = κ1 cos(µ1) β1 = κ1 sin(µ1) (17)

α2 = κ2 cos(2µ2) β2 = κ2 sin(2µ2) (18)

and, alternatively,

µ1 = atan

(
β1
α1

)
κ1 =

α1 + β1
cos(µ1) + sin(µ1)

(19)

µ2 =
1

2
atan

(
β2
α2

)
κ2 =

α2 + β2
cos(2µ2) + sin(2µ2)

(20)

We can see that µ1 is within a 2π interval, while µ2 is in a π interval.

4. The Base Model

In this paper we follow standard notation whereby p(·) denotes an exact
probability density function, while q(·) denotes the Variational Bayes (VB) ap-
proximation of a posterior distribution. The superscript “(n)”, e.g. q(n)(·), de-
notes the state after the nth observation has been incorporated into the model.
For brevity, in the VB updates the expectation 〈·〉 represents the expected value
of the stated variable after the previous observation has been incorporated.

The original model in (1) is inconvenient for two reasons. The first is that
tn is a continuously incrementing value, which we need to avoid in our infinitely
running system. The other is that the angular frequency in our model, ω, is
a circular variable, but rather than having the range −π to π, has the range
from minus to plus the Nyquist frequency, which means we cannot give it a
convenient conjugate von Mises prior. We solve the latter problem by defining
a new variable, ν = ωδt, whose range is −π to π, and redefine the model in
terms of ν instead of ω. Since 〈ν〉 = 〈ωδt〉 is just 〈ω〉δt, we can easily calculate
〈ω〉. The updated model now looks like this, where n ≥ 0:

yn = A cos(φ+ nν) + εn (21)

Although the inconvenient tn term has disappeared, it has been replaced by
the similarly inconvenient n. To get around this we introduce a new variable,
defined as follows:

τn = φ+

n∑
i=1

ν(i) (22)

Rather than τn being an independently evaluated variable, we use the method
described in section 3.2 to keep a running total of the sum defined in (22).
Since this is a circular variable, although the summation might be infinite, the
expectation is limited to the range −π to π.
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With this change, the final model to be evaluated using VB approximation
looks like this:

y0 = A cos(τ0) + εn (23)

yn>0 = A cos(τn−1 + ν) + εn (24)

Before any observations have been made, we only have prior distributions for
each of the four variables, the amplitude A, the phase φ, the angular frequency
substitute ν, and the noise precision λ. When the first observation is incorpo-
rated, we obtain a first set of posterior distributions for A, φ and λ, and we set
τ0 = φ. The posteriors for A and λ become the priors for the next observation,
y1, and we now obtain posteriors for A, ν and λ. We set τ1 = τ0 + ν (using
the method described in 3.2), and the posteriors become the priors for the next
observation. Each subsequent observation is incorporated in the same way.

Note that for each observation, only a single round of updates is performed;
there is no iterative series of updates as is more usual with VB. The update
scheme is summarised in algorithm 1.

There are two ambiguities in this system. The first is that a signal with
amplitude A and phase φ is exactly equivalent to one with amplitude −A and
phase π + φ. We avoid this by ensuring that A is always greater than or equal
to zero. The second is that a signal with phase φ and angular frequency ω gives
exactly the same set of observations as a signal with phase 2π−φ and frequency
−ω, the difference being the direction of travel of the wave.

With the base model defined, i.e. the one with no limitations on the posterior
precisions, we now consider the priors for each variable, the initialisation of the
variables, and then the VB update scheme.

4.1. Priors

In this paper we will assume the simplest noise model, i.e. a zero mean Gaus-
sian distribution, so that the proposed method can be more clearly described.
To make it more robust to outliers, we might choose in future to assume a
Student-t distribution [1], which is effectively an infinite mixture of Gaussians;
this could easily be incorporated into this model.

Since the noise in the system is assumed to be Gaussian, the likelihood,
derived from (23) and (24), is

p(y0 |A, φ, λ) = N
(
y0 |A cos(φ), λ−1

)
(25)

p(yn |A, τn−1, ν, λ) = N
(
yn |A cos(τn−1 + ν), λ−1

)
(26)

and we define the prior for the noise precision, λ, as a conjugate Gamma distri-
bution1

p(λ) = G
(
λ | aλ, bλ

)
(27)

1defined as: G(x | a, b) = 1
Γ(a)

bax1−a exp(−bx)
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For the amplitude, A, we would like to use a prior that enforces the condition
that A ≥ 0, such as a Rayleigh or Gamma distribution, but they are not con-
jugates in this case. A half-Gaussian always has its maximum value at zero,
and both the mean and the spread are expressed in terms of a single scale pa-
rameter. From this it is impossible to obtain a meaningful measure of certainty
from the posterior distribution, as a high mean value must also have a high
spread. Quantifying the uncertainty in a meaningful way is very important for
the intended applications of this work, so instead we define a Gaussian prior
with mean µA and precision ρA, as follows:

p(A) = N
(
A |µA, ρ−1

A

)
(28)

and discuss the potential negative values of the expectation in section 4.3.3.
With no other information available, our priors for φ and ν are Uniform distri-
butions over the interval −π to π. For the initial phase offset, φ, this is sufficient,
so we define:

p(φ) = U
(
φ | −π, π) (29)

However, for the angular frequency substitute, ν, the posterior will turn out to
be a GvM2, so, for conjugacy later, we specify the prior in those terms instead:

p(ν) = GvM2

(
ν |κ,µ) (30)

where the two concentration values in κ are set to zero to give the equivalent
of the Uniform distribution U(ν | − π, π).

4.2. Initialisation

One method for initialising the system would be to perform a Fourier Trans-
form on the first set of observations, identify the peak frequency, set the prior
expectations 〈A〉, 〈φ〉, 〈ν〉 and 〈λ〉 appropriately, and define the prior precisions
to be, perhaps, relatively large.

However, we have chosen to define uninformative priors to demonstrate that
the system still converges to good solutions. The hyperparameters are set as
follows:

λ : aλ = 1, bλ = 1 (31)

A : µA = 1, ρA = 1 (32)

ν : κ = 0, µ = 0 (33)

and the initial value of each variable’s expectation is set to that of its prior.
Note that these priors are only explicitly assimilated into the model when the
first observation is incorporated, which explains why the model is insensitive to
the values.
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4.3. Variational approximations

Following [2], with a fully factorised posterior, we now derive VB updates
for the four variables in the base model, φ, ν, A and λ, and then describe
the method for updating the probability distribution for τ and calculating its
various expectations.

In the following derivations we make use of the standard trigonometrical
identity

cos2(θ) =
1 + cos(2θ)

2
(34)

4.3.1. Phase offset, φ

This variable is only estimated once, when the first observation, y0, is in-
corporated into the model based on the likelihood in (23). In fact, φ is just τ0.
Following the VB process:

log
(
q(φ)

)
= log

(
p(y0 |A, φ, λ) p(A) p(φ) p(λ)

)
(35)

= log
(
N (y0 |A cos(φ), λ−1)U(φ | − π, π)

)
+ constant (36)

At each stage of the calculation, all terms not dependent on φ are absorbed into
the constant term. For clarity, this term is omitted from now on. Since the
prior for φ is Uniform, it contains no terms in φ, so we are left with:

log
(
q(φ)

)
= −λ

2

(
y0 −A cos(φ)

)2

(37)

= −λA
2

4
cos(2φ) + λy0A cos(φ) (38)

which has the form of a GvM2, so the approximate posterior is GvM2(α,β),
where, replacing all other variables with their current expectations:

α1 = 〈λ〉y0〈A〉 β1 = 0 (39)

α2 = −1

4
〈λ〉〈A2〉 β2 = 0 (40)

Since both 〈λ〉 and 〈A〉 (and hence 〈A2〉) are positive values, α1 is positive and
α2 negative.

The fact that the two posterior β values are zero means that the value for
µ1 is always either 0 or π, and that for µ2 is always π/2. This tends to result
in unimodal distributions with a mean of either 0 or π, but not necessarily.

4.3.2. Angular frequency substitute, ν

This variable is only evaluated when the second and subsequent observations
(i.e. n > 0) are incorporated into the model, based on the likelihood in (24). If
this is the first evaluation of ν (n = 1), then we must set q(0)(ν) = p(ν).
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Following a similar VB process as that described above, in section 4.3.1, we
arrive at an approximate posterior of q(n)(ν) = GvM2(α(n),β(n)), where

α
(n)
1 = 〈λ〉yn〈A〉〈cos(τ)〉+ κ

(n−1)
1 cos(µ

(n−1)
1 ) (41)

α
(n)
2 = −〈λ〉〈A

2〉
4

〈cos(2τ)〉+ κ
(n−1)
2 cos(2µ

(n−1)
2 ) (42)

β
(n)
1 = −〈λ〉yn〈A〉〈sin(τ)〉+ κ

(n−1)
1 sin(µ

(n−1)
1 ) (43)

β
(n)
2 =

〈λ〉〈A2〉
4

〈sin(2τ)〉+ κ
(n−1)
2 sin(2µ

(n−1)
2 ) (44)

from which, using (17–20), we may calculate κ(n) and µ(n).

4.3.3. Amplitude, A

If this is the first evaluation of A (n = 0), then we must set q(−1)(A) = p(A).
Following the VB procedure, the approximate posterior for A is the Gaussian

q(n)(A) = N (µ
(n)
A , ρ

(n)
A ), with

ρ
(n)
A = 〈λ(n−1)〉〈cos2(τ (n−1))〉+ ρ

(n−1)
A (45)

µ
(n)
A =

(
ρ
(n)
A

)−1
(
〈λ(n−1)〉yn〈cos(τ (n−1))〉+ ρ

(n−1)
A µ

(n−1)
A

)
(46)

This Gaussian distribution admits the possibility of negative values for 〈A〉.
This is not in itself a problem as a sinusoid with amplitude −A and phase φ is
equivalent to one with amplitude A and phase φ+π. However, amplitudes with
small magnitudes may oscillate between negative and positive values during
the update process, causing big jumps in other variables and the model to not
converge properly. To prevent this we use the absolute value of 〈A〉 in place of
〈A〉 in each of the other posterior expressions, as in [40].

4.3.4. Noise precision, λ

If this is the first evaluation of λ (n = 0), then we must set q(−1)(λ) = p(λ).
Following the VB procedure, the approximate posterior for λ is the Gamma

q(n)(λ) = G(a
(n)
λ , b

(n)
λ ), with

a
(n)
λ = a

(n−1)
λ + 1 (47)

b
(n)
λ = b

(n−1)
λ +

1

2

[
y2n + 〈A2〉〈cos2(τ)〉 − 2yn〈A〉〈cos(τ)〉

]
(48)

4.3.5. Running phase, τn
The running phase, τn, is not a variable whose posterior is updated in the

VB scheme, but the sum of a number of GvM2 distributed variables:

τ (0) = φ (49)

τ (n) = τ (n−1) + ν(n) for n > 0 (50)
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With no known method for calculating the sum of two GvM2 distributions, and
with the necessity for us to define expectations for this variable to be used in
the VB updates for the other variables, we want to maintain the posterior of τ
as a (unimodal) von Mises distribution, with the posterior GvM2 distributions
for φ and ν(n) approximated by von Mises distributions before the summation.

A bimodal GvM2 distribution has two mean values: µ1, which has a 2π
range, and µ2, which only has a range of π. We approximate the distribution
as follows:

GvM2

([
µ1

µ2

]
,

[
κ1
κ2

])
≈M(µ1, κ1) (51)

Note that while we use this approximation in the calculation of τ , we maintain
the full GvM2 in future calculations of ν. Note that there is a real and unavoid-
able ambiguity in the angular frequency ν, where a sinusoidal wave travelling
in one direction, and one of the same absolute frequency travelling in the op-
posite direction will provide identical observations and differ only in the sign of
the frequency. By selecting one of the means for updating τ we are effectively
choosing one direction; which one is seeded by the very earliest observations
and repeated selection reinforces it, resulting in the GvM2 becoming unimodal.

For φ, the posterior distribution is somewhat meaningless, because it is cal-
culated on the basis of a single observation. We therefore choose to fix the
“posterior” of φ as a von Mises distribution with mean zero, and do not calcu-
late the posterior. So now we may rewrite (49)–(50) as

τ (0) ∼M(0, 10−3) (52)

τ (n) ∼M
(
µ(n−1)
τ + µ(n)

ν ,B−1
(
B(κ(n−1)

τ )B(κ(n)ν )
))

(53)

where theM(0, 10−3) is an uninformative prior with low concentration (in fact,
the value of the concentration seems to make no material difference to the model
learning, certainly in the range 10−3 to 103). For the VB updates of the other
variables in the model, we need to calculate 〈cos(τ)〉, 〈cos(2τ)〉, 〈sin(τ)〉 and
〈sin(2τ)〉, which we can do using (3) and (4). Note that as the concentration
parameter κ tends towards zero, the Bessel fraction B(κ)=In(κ)/I0(κ) tends to
zero, and so all of these expectations also tend to zero. While the model does
converge on a concentration value for τ , the value is low, typically 0.6, and the
value of A is consistently underestimated. Fixing this concentration at a high
value, in other words saying that we are very certain about the current estimate
for 〈τ〉, fixes this problem by forcing the uncertainty to be absorbed into the
posterior of ν. The final resulting definition for τ is, therefore:

τ (0) ∼M(0, 100) (54)

τ (n) ∼M
(
µ(n−1)
τ + µ(n)

ν , 1000
)

(55)

which has the additional benefit of avoiding the computational expense of cal-
culating the Bessel fraction, B(·), and its inverse.
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Figure 2: An example of (left) frequency subtitute ν and (right) amplitude A converging over
time for a statistically stationary system.
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Figure 3: The base model converging on the true values for (left) frequency substitute ν and
(right) amplitude A, before failing to adapt a change in the underlying system.

5. Base Model: experimental results

Figure 2 shows 〈ν〉 and 〈A〉 converging for a statistically stationary signal.
The value of 〈ν〉 continues to oscillate, with a decreasing size of variation, and
this oscillation is probably the cause of 〈A〉 converging to a value slightly lower
than the truth. Also shown is the standard deviation in each case, which drops
off very quickly, resulting in tight posterior distributions.

So, the base model learns in a stationary system, but as we can see from
figure 3 where the signals undergo abrupt changes in amplitude and frequency,
if the underlying system changes, it has becomes so certain that it is unable to
track those changes.

6. The Full Model

It is clear from equations (47) and (48) that the values of aλ and bλ carry
on increasing as new observations are incorporated. Not so obvious is that the
values of ρA in (45) and κ in section 4.3.2 also continuously increase over time.
Eventually the values of these variables will exceed the maximum value able to
be represented by the software and the system will fail.

If we consider the precision λ and the variational updates shown in equations

(47)–(48) we note that the values of parameters a
(n)
λ and b

(n)
λ are incremented

with positive values at each time step. If we were to include a Gamma prior into
these equations, this will only increment the values further (by fixed values),
unless we were to use an improper prior with negative parameters. So with a
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proper prior we cannot limit the continuous increase of the posterior parameters.
Instead, we achieve the desired effect by applying priors to the parameters of
these precision variables to limit their growth. Since the maximum values are
constrained to some upper bound, the precisions themselves are also constrained.

Selecting suitable hyperparameter values for the priors has the added ben-
efit of limiting the tightness of the precisions’ posterior distributions and thus
enabling the model to respond to nonstationarity. This is a trade-off situation:
if the limit on precision variables is too tight, then we have the same situation
as that of the base model; if the limit is too loose, then the system allows too
much variability in the model, which can lead to, for example, a wrong value
for ν being compensated for by variability in A. The values detailed in the
following sections have been found by experimentation to provide the right level
of trade-off for all the datasets the model has been tested on so far, but further
work is required to establish a specific method for choosing them.

6.1. Variational approximations: online adjustments

We start by considering the noise hyperparameters, aλ and bλ, and the
amplitude precision ρA, for which the approximate posterior distributions may
be calculated in relatively formal ways. The form of the GvM2 distribution
means that there is no conjugate prior for the concentration variables, κ, so
these are treated using a more empirical method.

6.1.1. Noise precision hyperparameters, aλ and bλ
The two posterior hyperparameters for the noise precision, λ, must both be

positive values, so we assign them Gamma priors: G(aλ | ca, da) and G(bλ | cb, db)
respectively. Combining these priors with the results in (47)–(48), we may now
apply the VB process to obtain posterior distributions. Starting with the easier
bλ, and dropping the observation number superscript, for clarity:

log(q(bλ)) = log
(
E[q(λ | aλ, bλ)]E[p(bλ | cb, db)]

)
(56)

= (cb + 〈aλ〉 − 1) log(bλ)− bλ(db + 〈λ〉) (57)

which is the Gamma distribution

G
(
bλ | cb + 〈aλ〉, db + 〈λ〉

)
(58)

Following the same process for aλ:

log(q(aλ)) = log
(
E[q(λ | aλ, bλ)]E[p(aλ | ca, da)]

)
(59)

= aλ〈log(bλ)〉 − log(Γ(aλ)) + aλ〈log(λ)〉
+ (ca − 1) log(aλ)− daaλ (60)

Following [1] we use Stirling’s first order approximation for the log(Γ(aλ)) term:

log(Γ(aλ)) ≈
(
aλ −

1

2

)
log(aλ)− aλ (61)
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giving us, for (60):

log(q(aλ)) =

(
ca − aλ +

1

2
− 1

)
log(aλ)

−
(
da − 〈log(bλ)〉 − 1− 〈log(λ)〉

)
aλ (62)

This is a Gamma distribution, apart from the aλ log(aλ) term. We avoid this
complication by replacing this with 〈aλ〉 log(aλ), where 〈aλ〉 is the expected
value from the previous estimate of the posterior. So now have the Gamma
posterior

q(aλ) = (63)

G
(
aλ | ca − 〈aλ〉+

1

2
, da − 〈log(bλ)〉 − 1− 〈log(λ)〉

)
Where, for example, 〈log(λ)〉 = ψ(aλ)− log(bλ), and ψ(·) is the digamma func-
tion.

For the results shown in this paper, the following values were used:

ca = da = cb = db = 1 (64)

6.1.2. Amplitude precision hyperparameters, cρ and dρ
We assign the amplitude precision, ρA, the Gamma prior G(ρA | cρ, dρ). Com-

bining this with the results from (45–46), we apply the usual VB process to
obtain a posterior:

log(q(ρA))

= log(ρA)− ρA
(A− µA)2

2
+ (cρ − 1) log(ρA)− dρρA (65)

= (cρ + 1− 1) log(ρA)− ρA
(
dρ +

1

2
(A− µA)2

)
(66)

Given that 〈A2〉 = ρ−1
A + µ2

A and 〈A〉 = µA, we obtain the Gamma distribution

G(ρA | cρ + 1, dρ +
1

2〈ρA〉
) (67)

where 〈ρA〉 is the expectation of that variable from the previous iteration.
For the results shown in this paper, the following values were used:

cρ = 10−3 (68)

dρ = 10−2 (69)
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6.1.3. Frequency precision hyperparameters, κ

Since we are approximating the posterior GvM2 distribution for ν as a uni-
modal von Mises, but maintaining the GvM2 for the updates, the first con-
centration, κ1, dominates the second, κ2. We cannot apply the same limiting
process to both concentrations as this causes κ2 to “catch up” with κ1, resulting
in significant changes to the shape of the distribution. We could apply different
priors for the two variables, but instead we choose to apply the prior to κ1 only,
and update κ2 proportionally.

We would choose to assign κ1 a Gamma prior and combine it with the GvM2

posterior for ν, but the normalising factor in the GvM2 (theG0(·) term in (15)) is
a complicated function of κ1 that does not lend itself to the VB process. Another
thought is to take the route through the von Mises to the wrapped Normal, as
described in section 3.2, but this gives us a Bessel function of κ1, which again is
not amenable to the VB process. Instead we resort to a more empirical method,
related to the precision of the sum of two Gaussian distributions, one having
precision κ1 and the other, the “prior”, having precision r:

κnew1 =

(
1

r
+

1

κold1

)
(70)

The update for κ2 then becomes

κnew2 = κold2

κnew1

κold1

(71)

For the results shown in this paper, a value of r = 105 has been used.

6.2. Full algorithm

The algorithm for the full model is shown in algorithm 1. Note that the
complexity of the algorithm is constant in time, i.e. O(1) (as, in fact, is the
base model), so provided that each “iteration” can be completed within the
observation time interval, δt, the model is able to run in real-time indefinitely.

7. Full Model: experimental results

With limits on the model’s precision variables, it is clear that it is likely to
converge more loosely on the true values, depending, of course, on the selected
priors for those variables. Figure 4 shows this effect, with the model estimates
not fully converging on the truth. But note how the system is now able to
track abrupt changes in these underlying values, where before (see figure 3)
the tightness of the precisions caused the model to fail to adapt to these same
changes.

Figure 5 shows the model tracking continuous changes to both frequency and
amplitude. For the first 10,000 observations, and observations 15,000 to 20,000
the system is stationary, with, in the two cases, different random selections
of the true variables: A ∼ U(0, 10), ω ∼ U(−π, π) and φ ∼ U(−π, π). The
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Algorithm 1 The VB update scheme for both models; the base model does
not include the final if statement.

define the prior hyperparameters using (31–33)
initialise the value of each variable from its prior
for n=0 to ∞ do

if n==0 then
calculate τ (0) using (54)

else
calculate/update the posterior for ν using (41–44)
calculate τ (n) using (55)

end if
calculate the expectations for τ (n) using (3–4)
calculate/update the posterior for A using (45–46)
calculate/update the posterior for λ using (47–48)
if full model then

update the λ precision using (58–63)
update the ρ precision using (67)
update the κ precision using (70–71)

end if
end for
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Figure 4: An example of (left) frequency substitute ν and (right) amplitude A converging
with abrupt changes in the underlying system.

standard deviation of the noise is a Uniformly random value between 0 and
the minimum of the two randomly-selected amplitudes. Between observations
10,000 and 15,000 the values of A and ω transition linearly between their two
values. Apart from a short initial stabilisation period, both A and ω are tracked
rather closely, apart from when the true value of ω transitions through zero. In
this particular example the model’s estimate of ω has the same sign as the true
value; the probability of the estimated sign being correct is 0.5 as the model
cannot distinguish the direction of travel of the wave.

For this example set of observations, the model was trained 1,000 times with
the values in expressions (31)–(33) set to random values between 0 and 10, or
0 and 2π for the mean of ν. Given these priors are only explicitly assimilated
into the model when the first observation is incorporated, we would expect the
model to be insensitive to the values, which turns out to be the case. However,
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Figure 5: An example of (left) frequency substitute ν and (right) amplitude A constantly
changing to track underlying changes in both the frequency and amplitude of the true signal.
At approximately observation number 14,000 the frequency passes through zero, causing a
wobble in the estimations.

in 3% of the tests the model completely failed to track the signal, but this does
not seem to be related to any specific pattern in the setting of these values.

In order to compare the functionality of the base and full models, 1,200
datasets of the form described above (figure 5) were generated and both models
trained against each of them. In other words, each test dataset contained 20,000
observations, the first 10,000 observations from one set of randomly assigned
values for A and ω, the last 5,000 observations from a different set of randomly
assigned values for A and ω, and linear transition between the two sets of values
for the 5,000 observations inbetween. Single values for φ and λ were randomly
selected separately for each dataset.

Clearly the ability of the models to estimate the true values of the system
variables is affected by the signal-to-noise ratio (SNR) in each case. The boxplots
in figure 6 summarise the results by SNR. Each box represents the extent of the
25th to 75th percentile, with the median marked within the box, and whiskers
extending to cover approximately 99% of the values. There is a pair of boxes
for each SNR value; the left, white box is from the base model, while the right,
grey box is the full model. For amplitude the value summarised is Atrue − 〈A〉;
for frequency, in order to ignore the inability of the model to determine the sign,
the value is |ωtrue| − |〈ν〉|.

The effect of SNR is clearly seen in figure 6a which compares amplitude at
changepoint 1, where both models show decreasing errors for increasing SNR.
The errors for the full model tend to be smaller, but while the base model always
underestimates the true value, the full model does not. At changepoint 2 (6b)
the full model displays the same characteristics as before, but the base model
is clearly unable to track the change, even at high SNR. For the frequency the
same two plots are shown (figures 6c and 6d), though note the very different
scales on the y axes in these two plots.

At changepoint 1 the full model is slightly worse than the base model, but
it is considerably better at changepoint 2. Not shown here, but giving the same
results as for changepoint 2, are the errors at the final observation. In the
base model, because there is no constraint on how big the precision can be, in
a stationary system, like that up to changepoint 1, the precision continues to
increase over time, causing the posteriors to become tightly distributed around

20



(a) amplitude error at change point 1 (b) amplitude error at change point 2

(c) frequency error at change point 1 (d) frequency error at change point 2

Figure 6: Summary boxplots of the results of running the base and full models against the
same set of 1,200 randomly-generated sets of observations of the form shown in figure 4. At
each SNR value there are two boxes: the left, white box is from the base model, while the
right, grey box is from the full model.

the true value. The full model limits this increase in precision, so the posteriors
never become very tight, leading to wobbles around the true value and hence
worse accuracy at this point than the base model. However, this limiting of the
precision means that when the underlying system changes, as it does between
the two changepoints, the full model is able to respond and track those changes,
whereas the base model has become so sure that it is unable to react to the
changes (as shown in figure 3). Hence the full model is considerably better at
changepoint 2.

As stated in section 4.2, the model is insensitive to the hyperparameters for
A, λ and ν, as these contribute to the model only when the first observation
is incorporated. There is sensitivity to the precision hyperparameters, because
these control the upper limit placed on the precisions. If these limits are too
high, then the full model converges onto the base model, which is good at
learning the underlying system when it is statistically stationary, but, as shown
in figure 3, when the underlying system then changes, it is unable to track those
changes. Equally, if these limits are too low, then the model never converges
on anything. The “Goldilocks” solution makes the limits high enough that the
model can learn, and loose enough that it continues to be able to respond to
changes. This loosening has the effect seen in figure 4, where the model is
tracking even through an abrupt change, but the cost is that it does not full
converge onto the truth (the black line is noisy around the gray truth in each
case).
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(a) amplitude precision hyperparameters (b) frequency precision hyperparameter

Figure 7: Plots showing how the model convergence varies when (a) the amplitude precision
hyperparameters, cρ and dρ, and (b) the frequency precision hyperparameter, r, are varied.

Experimentally, the model seems to be sensitive only to the values of the
amplitude precision hyperparameters, cρ and dρ (section 6.1.2), and to the value
of r in the frequency precision (section 6.1.3). Figure 7a shows how changing
the amplitude hyperparameters impacts the model’s convergence on the true
amplitude. In this case the true amplitude is 8.047 up to changepoint 1 and
0.980 after changepoint 2 (the true frequency is 1.296 and 2.529 respectively).
In each of four examples, cρ = dρ, so the mean of the Gamma distribution is
always 1, but the values shown are 10−1, 10−2, 10−3 and 10−4, equating to
different variances. The cases of 10−3 and 10−4 are not sufficiently constrained,
as the model is lagging significantly behind changes to the truth because it is
too certain of its estimates. The case of 10−1 is too constrained; the truth is
well tracked, but there is a lot of variation in the estimate over time. The best
of these options is 10−3, as it follows the signal with low variation over time,
and tracks closely when it changes. It should be noted that all four examples
provide the same close estimates of the true frequency.

Figure 7b shows how changing the frequency precision hyperparameter r in
equation (70) impacts the model’s convergence on the true frequency, using the
same signal as in the previous example. The case of 10−8 is not sufficiently
constrained, as the model is lagging significantly behind changes to the truth
because it is too certain of its estimates. The cases of 10−3 and 10−4 are too
constrained; the truth is well tracked, but there is a lot of variation in the
estimate over time. The best of these options is 10−7, as it follows the signal
with low variation over time, and tracks closely when it changes.

An initial attempt to track amplitude and frequency might be to repeatedly
use the Fast discrete Fourier Transform (FFT) [41, 42] on the most recent set of
observations. The size of this observation window would need to be optimised to
trade off the competing requirements of a long window to get the best estimate
of frequency and a short window to track changes to it over time. Since the
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Figure 8: For a system where the frequency of the underlying signal is constantly changing
(the grey line), these plots compare how (a) the model tracks the frequency changes, with
(b) how FFT with two different window sizes (50 and 1000 observations respectively) track
those changes. For the FFT, the window size of 50 is clearly too small, with too few Fourier
frequencies to capture the truth, while a window size of 1000 is too large, leading to a significant
lag in the tracking.

Fourier Transform assumes that the signal is periodic, we would also need to
mitigate the effects that windowing has on the resulting spectrum (see, for
example, [43]). With no prior knowledge of the variability of the true signal, it
would be impossible to optimise the FFT window size and windowing function.
Figure 8 compares the frequency estimated by FFT for two different window
sizes (50 and 1000), and that estimated by the model, against the true frequency
for a system where the true frequency is slowly evolving over time. Note that
an FFT window size of 50 is clearly too small, with too few Fourier frequencies
to capture the truth, while a window size of 1000 is too large, leading to a
significant lag in the tracking. The model, in contrast, is tracking these changes
rather closely.

8. Results on real data

The full model was trained on the 2,951 obervations of the monthly average
of maximum daily temperature recorded in Milan between January 1763 and
November 2008 [44]. Since the model assumes the observations to be sinusoidal
about zero, the trend away from zero has been removed by subtracting the 20
year moving average.

The observations are shown as the grey line in figure 9a. This has been
overlaid with two solid black lines showing plus and minus the model’s expected
amplitude over time, i.e. ±〈A〉. On either side of these solid black lines are
two dashed black lines, indicating the amplitude plus and minus two times
the model’s expected noise standard deviation, i.e. ±2/

√
〈λ〉. The expected

amplitude and noise precision over time are also shown separately in figures 9b
and 9d. We can see that the model quickly learns the amplitude, which varies
over time and there is a “bounce” in the noise precision which is adjusted once
the amplitude has settled down.

Figure 9c shows the expected angular frequency over time, i.e. 〈ω〉. The
true angular frequency for these monthly data is 2π/12 = 0.5236 radians per
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(a) observations, annotated (b) amplitude, A

(c) angular frequency, ω (d) noise precision, λ

Figure 9: Results from running the full model on real data, showing: (a) the observations
in grey, overlaid with ± the model amplitude as solid black lines and each of these with ±
two standard deviations of the noise (2/

√
λ) as dashed black lines; (b) the amplitude, A, over

time; (c) the angular frequency, w, over time in black, with ± the true monthly frequency in
grey; (d) the noise precision, λ, over time.

month. Here the model has settled on the negative value. The sinusoids could
be “travelling” in either direction and this is an ambiguity in the system that
the model is unable to resolve. However, as expected given the data, the angular
frequency does not vary significantly over time. The small deviations are caused
by the limitation placed on the concentration variable by the full model (section
6.1.3), allowing a small amount of exploration.

9. Conclusions

Despite the many and various approximations applied to this model, from
the variational Bayesian approximation, to the use of unimodal von Mises dis-
tributions in place of the potentially bimodal GvM2, it is still clearly able to
learn the underlying system parameters and to keep track of changes to them.
Each observation is incorporated as it arrives and then discarded, and none of
the values involved in the processing continuously increase, so the program can
run for ever without running out of memory or exceeding the numerical limits of
the programming language. Since the complexity is constant in time, provided
each observation is incorporated with the time interval, δt, then the model can
run for an indefinite period of time.

For statistically stationary data, the VB algorithm is guaranteed to con-
verge to a local optimum [10]. However, where the underlying true system is
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not statistically stationary, proving convergence is challenged by the fact that
divergence might be caused by a failure of the model or as a result of the non-
stationarity of the true system. In section 7 it was observed that in only 3%
of the 1,000 synthetic tests, the model failed to track the signal. This is most
likely to happen when the angular frequency is at or very close to zero, and in
these cases the whole signal has been captured by the noise variables.

Future work is focussing on how the parameters of the priors introduced in
the full model (i.e. those in (64) and (68)–(69)) should be selected and the
precise effect of the values. This is essentially a multi-objective optimisation
problem, trading off certainty vs flexibility for each variable, and certainty be-
tween the different variables.

The methods introduced in this paper are demonstrated on the simplest pos-
sible model, of a noisy sinusoidal signal. However, they are much more widely
applicable. For example, a continuous wave lidar measures a three-dimensional
wind vector at a single point in space by rotating a lidar beam in a cone around
the point and recording one-dimensional measurements around the disk cen-
tred on that point. At present the devices take perhaps 100 measurements per
rotation and then fit the parameters of the known mathematical model, from
which the wind vector is then extracted. The devices are run continously for
long periods of time (possibly years). With the method introduced in this pa-
per, each individual measurement is incorporated in real time, giving a higher
temporal resolution, and the model allows for outliers in the data by assuming
a Student-t distribution of the noise (paper in preparation).

Though not particularly tuned, the Matlab program running on a standard
Microsoft Windows laptop processes 100,000 observations in approximately 9 s,
which is a rate of more than 11 kHz. In other words, as long as the observation
time interval, δt, is greater than 0.000 09 s, the model will run for an indefinitely
long period of time, incorporating each observation as it arrives.
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