
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 1

Energy-Efficient Offloading for DNN-based
Smart IoT Systems in Cloud-Edge

Environments
Xing Chen, Member, IEEE , Jianshan Zhang, Bing Lin, Zheyi Chen, Katinka Wolter, Senior Member, IEEE ,

and Geyong Min, Member, IEEE

Abstract—Deep Neural Networks (DNNs) have become an essential and important supporting technology for smart Internet-of-Things
(IoT) systems. Due to the high computational costs of large-scale DNNs, it might be infeasible to directly deploy them in
energy-constrained IoT devices. Through offloading computation-intensive tasks to the cloud or edges, the computation offloading
technology offers a feasible solution to execute DNNs. However, energy-efficient offloading for DNN based smart IoT systems with
deadline constraints in the cloud-edge environments is still an open challenge. To address this challenge, we first design a new system
energy consumption model, which takes into account the runtime, switching, and computing energy consumption of all participating
servers (from both the cloud and edge) and IoT devices. Next, a novel energy-efficient offloading strategy based on a Self-adaptive
Particle Swarm Optimization algorithm using the Genetic Algorithm operators (SPSO-GA) is proposed. This new strategy can
efficiently make offloading decisions for DNN layers with layer partition operations, which can lessen the encoding dimension and
improve the execution time of SPSO-GA. Simulation results demonstrate that the proposed strategy can significantly reduce energy
consumption compared to other classic methods.

Index Terms—Cloud-edge computing, IoT systems, energy-efficient offloading, deep neural networks, particle swarm optimization

F

1 INTRODUCTION

A S the core technology for supporting modern Artifi-
cial Intelligence (AI) systems, Deep Neural Networks

(DNNs) have made great achievements in smart systems.
Due to the powerful analysis capabilities for large-scale
data, DNNs are regarded as a promising approach for
effectively mining valuable information in the complex
environment of Internet-of-Things (IoT) [1]. It has been
pointed out that DNNs with more complex and deeper
network structures can commonly provide more accurate
analysis results [2]. However, more computational resources
are consumed when using deeper network structures, which
seriously limits the application of large-scale DNNs on
energy-constrained IoT devices. One feasible solution is to
offload some DNN layers to the remote cloud with sufficient
resources [3]. Specifically, DNNs can be divided according

• Xing Chen and Jianshan Zhang are with the College of Mathematics
and Computer Science, Fuzhou University, Fuzhou, 350118, China,
and with Fujian Provincial Key Laboratory of Network Computing
and Intelligent Information Processing, Fuzhou, 350118, China. E-mail:
chenxing@fzu.edu.cn, zhangjs0512@163.com.

• Bing Lin is with College of Physics and Energy, Fujian Normal Univer-
sity, Fujian Provincial Key Laboratory of Quantum Manipulation and
New Energy Materials, Fuzhou, 350117, China.Fujian Provincial Col-
laborative Innovation Center for Advanced High-Field Superconducting
Materials and Engineering, Fuzhou, 350117, China. Fujian Provincial
Collaborative Innovation Center for Optoelectronic Semiconductors and
Efficient Devices, Xiamen, 361005, China. E-mail: WheelLX@163.com.

• Zheyi Chen and Geyong Min are with the Department of Computer
Science, College of Engineering, Mathematics and Physical Sciences,
University of Exeter, Exeter, EX4 4QF, United Kingdom. E-mail: {zc300,
g.min}@exeter.ac.uk.

• Katinka Wolter is with the Institut für Informatik, Freie Universität Berlin
14195, Germany. E-mail: katinka.wolter@fu-berlin.de.

(Corresponding authors: Bing Lin and Zheyi Chen)

to the granularity of DNN layers [4]. For example, complex
DNN layers can be offloaded to the cloud for execution,
while simple ones are processed locally. However, it might
increase the traffic load of core networks and cause high la-
tency due to massive data transmission between IoT devices
and the cloud.

Mobile Edge Computing (MEC) would be a promising
technology for smart IoT services in response to the above
problems. Through offloading computations from the re-
mote cloud to the network edge in proximity to IoT devices,
MEC can significantly reduce the data transmission dur-
ing the preprocessing stage [5]. Moreover, MEC intensifies
the processing capacities of mobile networks by deploying
computational and storage resources at the network edge.
Therefore, it would be an efficient way to alleviate the traffic
load of core networks by partitioning DNNs and offloading
DNN layers over the cloud, edge, and IoT devices [6].

However, it is still challenging to offload DNN layers
while considering energy consumption in the cloud-edge
environments. Due to the short battery lifetime of IoT de-
vices, offloading decisions should consider both the dead-
line constraints of DNN-based smart IoT systems as well
as the energy consumption on servers (from the cloud and
edge) and IoT devices. When the cloud-edge environments
change, the offloading decisions should be adapted. For
example, vehicle identification (i.e., an road traffic applica-
tion) relies on computer vision whose core technology is
DNNs. Traffic cameras periodically record the images of on-
road vehicles, and these images are processed by the DNN-
based applications deployed on the traffic cameras. But
these energy-constrained cameras with limited processing
capabilities may not complete these computation-intensive

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 2

applications within their deadlines. Therefore, when dealing
with the offloading problem of DNN layers, the offloading
decisions should be made subject to the consideration of
both deadline constraints and energy consumption and
adapt to the changes of cloud-edge environments.

In response to these challenges, two research questions
are considered: (1) How to design a system model to eval-
uate the energy consumption of participating equipment
including servers and IoT devices? (2) How to develop an
energy-efficient offloading strategy to handle the NP-hard
offloading problem for DNN-based Smart IoT systems in the
cloud-edge environments? To address the above questions,
we develop an energy-efficient offloading strategy based on
a Self-adaptive Particle Swarm Optimization Algorithm us-
ing the Genetic Algorithm operators (SPSO-GA). The major
contributions of this work are summarized below:

1) A new system energy consumption model is designed
for DNN-based smart IoT systems, which takes into account
the runtime, switching, and computing energy consumption
of all participating servers (from both the cloud and edge)
and IoT devices.

2) An energy-efficient offloading strategy based on
SPSO-GA is proposed to reduce the system energy con-
sumption. The proposed strategy can make efficient offload-
ing decisions for DNN layers with layer partition opera-
tions, which lessens the encoding dimension and improves
the execution time of SPSO-GA.

3) The extensive simulation experiments are conducted.
The performance results demonstrate that the proposed
strategy can make quick offloading decisions and achieve
the superior performance than other classic methods while
satisfying deadline constraints.

The remainder of this paper is organized as follows. We
review the related work in Section 2. Section 3 introduces
the proposed energy-efficient offloading model for DNN-
based smart IoT systems in the cloud-edge environments.
In Section 4, the proposed SPSO-GA strategy with layer
partition is described in detail. Section 5 presents exten-
sive simulation experiments and results to evaluate the
performance of our proposed strategy. Section 6 discusses
the issues of applicability of SPSO-GA. Finally, Section 7
concludes this paper.

2 RELATED WORK

With the increasing complexity of DNN-based smart IoT
systems, computation offloading has become an attractive
solution for extending the battery lifetime of IoT devices
and satisfying the latency requirements of mobile systems
[7].

Many research efforts have been devoted to the offload-
ing problems in cloud computing. For example, Altamimi et
al. [8] pointed out that it would be feasible to extend the bat-
tery lifetime and capabilities of smartphones by offloading
tasks directly to the cloud. They designed a mathematical
model to estimate the energy consumption during the task
offloading process. Elgazzar et al. [9] proposed a framework
of cloud-assisted mobile service provisioning for reliable
deliveries. This framework can support online offloading
based on the current network and resource status of mobile
systems, while meeting user-defined energy constraints.

Fang et al. [10] focused on QoS-aware scheduling of het-
erogeneous servers for DNN inference workloads in cloud
computing. They designed a deep reinforcement learning
(DRL) based scheduler to maximize the Quality-of-Service
(QoS) including the inference accuracy and response delay.
Kumar and Lu [11] argued that IoT systems may not be
time-saving or energy-efficient if their computation tasks are
offloaded to the cloud directly. Since it would increase the
traffic load of core network and cause high latency due to
the massive data transmission between IoT devices and the
cloud.

MEC is a promising technology to solve the above prob-
lem, where the data transmission time in mobile systems
can be tremendously reduced by offloading computation
from the remote cloud to the edge that is close to IoT
devices [12]. Chen et al. [13] used the idea of software-
defined network (SDN) to study the offloading problem
in the ultra-dense networks, aiming to minimize the delay
and save the battery life of users’ equipments. Chen et al.
[14] studied the multi-user offloading problem in a multi-
channel wireless interference environment and proposed a
distributed offloading algorithm based on the game theory,
which realized the Nash equilibrium. Ali et al. [15] adopted
a deep learning approach and comprehensive mathematical
modeling to offload application components to cloudlets,
which can achieve high model accuracy and reduce the
energy consumption of users’ devices.

The aforementioned work focused on the offloading
problem without data dependency. However, the data de-
pendency is of important for the offloading problem in
MEC [22]. This is because the data dependency exists be-
tween each pair of DNN layers. Lo et al. [16] presented
a dynamic DNN design technique to manage the work-
load transmission under the same accuracy requirement
in edge computing. They utilized the dynamic network
structure and authentic operation (AO) unit to enhance
DNNs, which had a better performance in terms of reducing
the amount of workload transmission while achieving the
required accuracy. Jeong et al. [17] designed a snapshot-
based offloading method for machine learning web systems
in edge environments, which was suitable for real DNN-
based web systems. Yang et al. [18] designed a framework
for runtime system repartitioning in dynamic mobile cloud
environments, which can solve the performance degrada-
tion problem caused by fluctuant device status and dynamic
network. Hu et al. [23] designed a dynamic DNN surgery
strategy to partition DNN inference between the cloud and
edge at the granularity of the DNN layers. This strategy
reduced the system latency and improved throughput by
limiting data transmission, but it paid less attention to
the offloading problem for DNN layers. Mohammed et al.
[19] proposed an adaptive DNN partition scheme and a
distributed algorithm based on the matching game method,
where the DNN layers were offloaded to fog nodes. Neu-
rosurgeon [4] claimed that excessive latency and energy
consumption were generated when uploading massive data
of DNNs to the cloud via the wireless network. To cope
with this problem, a lightweight scheduler was designed
to partition DNN-based applications automatically between
end devices and the cloud at the granularity of DNN layers.

Most of the aforementioned work tried to reduce the sys-

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 3

TABLE 1
The comparative analysis of different work ("+": involved; "-": not involved)

Reference Infrastructure Fluctuation Application type Constraint Object

Io
T

D
ev

ic
e

Ed
ge

C
lo

ud

St
at

ic

D
yn

am
ic

Jo
bs

W
or

kfl
ow

En
er

gy

D
ea

dl
in

e

Ti
m

e

En
er

gy

C
os

t

W
or

kl
oa

d
ba

la
nc

e

Th
ro

ug
hp

ut

Our work + + + + - - + - + - + - - -
Hu et al. ’ [3] - + + - + - + - - + - - - +

Kang et al. ’ [4] + - + + - - + - - + + - - +
Lin et al. ’ [6] + + + + - - + - + - - + - -

Altamimi et al. ’ [8] + - + + - + - - - - + - - -
Elgazzar et al. ’ [9] + - + + - + - + - + - - - -

Fang et al. ’ [10] + - + + - - + + - + + - - -
Chen et al. ’ [13] + + - + - + - - - + + - - -
Chen et al. ’ [14] + + - + - + - + - - - - + +
Ali et al. ’ [15] + + - + - + - + - - - + - -
Lo et al. ’ [16] + + - + - - + - - + + - - -

Jeong et al. ’ [17] + + - + - - + - - + - - - -
Yang et al. ’ [18] + + + - + - + - - + + - - -

Mohamed et al. ’ [19] - + - - + - + - - + - - + -
Wu et al. ’ [20] - + + - + - + - - + + - - -

Teerapittayanon et al. ’ [21] + + + + - - + - - - + - - -

tem latency in cloud/edge environments [16], [18], [23], but
they did not consider reducing the system energy consump-
tion of offloading DNN layers with deadline constraints.
An application partitioning algorithm was presented in
[20] for pursuing a trade-off between energy consumption
and data transmission in dynamic mobile environments.
Teerapittayanon et al. [21] proposed distributed DNNs over
the cloud, edge, and IoT devices. They considered the data
transmission cost but not the layer execution consumption,
while deploying distributed DNNs in the cloud-edge envi-
ronments. In the previous work [6], a cost-driven offloading
scheme was designed for DNN-based smart IoT systems
with deadline constraints over the cloud, edge, and IoT
devices, where a discrete PSO algorithm was developed to
reduce the system cost of executing DNN layers and trans-
ferring data. Different from this work, we further consider
the energy consumption of each participating server and IoT
device, and introduce the layer partition operations into the
offloading decision-making process for DNN layers.

The comparative analysis of the previous work has been
illustrated in Table 1. In general, most of these work focused
on the offloading problem in MEC. However, it is still an
open issue to optimize the system energy consumption
when offloading DNN layers with deadline constraints in
the cloud-edge environments.

3 PROBLEM DEFINITION AND ANALYSIS

In the cloud-edge environments, DNNs can be deployed in
the cloud, edge, and IoT devices. The energy-constrained
IoT devices periodically receive terminal information. Some
DNN layers are performed on IoT devices while the others
are performed in the edge or cloud. Offloading decisions
should be made based on the current environment situation,
including the server status, network status, and existing
tasks, to reduce the system energy consumption by of-
floading DNN layers while satisfying deadline constraints.

TABLE 2
List of abbreviations

Abbreviation Description
AI Artificial Intelligence
DNN Deep Neural Network
IoT Internet-of-Thing
MEC Mobile Edge Computing
PSO Particle Swarm Optimization
GA Genetic Algorithm
DRL Deep Reinforcement Learning
QoS Quality-of-Service
AO Authentic Operation

Particularly, when the environment remains unchanged, the
offloading decisions will keep the same; and when the
environment changes, the offloading decisions need to be
adapted for better performance. In this work, we assume
that the cloud-edge environments remain constant during a
period of time. The major abbreviations and symbols used
in this paper are defined in Table 2 and 3, respectively.

3.1 Problem Definition

The cloud-edge environments, denoted by C={Cc,Ce,Cd},
consist of the cloud, edge, and IoT devices. Each platform
is equipped with some computing nodes (i.e. servers or
virtual machines) with different computational capacities.
For the clarity of presentation, we use ’server’ to represent
the computing nodes in different platforms. Thus, there
are n servers in the cloud-edge environments, denoted by
C = {s1, s2, ..., sn}, and a server si is defined as

si =< pi, ti, ci,Ri, γi >, (1)

where pi is the computational capacity of si that is expressed
by the CPUs and assumed to be known and static. As this

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 4

study focuses on offloading DNN layers, we assume that the
storage capacity of each server can meet the corresponding
needs. ti ∈ {0, 1, 2} represents the type of si, which belongs
to IoT devices, edge, and cloud, respectively. ci represents
the maximum number of concurrent tasks on si, whose
value is equal to the number of cores in si [13]. When
the server si is fixed, the value of ci will be constant.
Ri = {< ζ1

i , τ
1
i >,< ζ2

i , τ
2
i >, ..., < ζmi , τ

m
i >} is the

execution status set of si, which expresses the switching
frequency of si. Each tuple < ζji , τ

j
i > represents the j-th

running interval of si with the start time ζji and end time
τ ji . γi represents the energy consumption of si, which is
described as

γi = ∂i + `i + ηi, (2)

∂i =

|Ri|∑
j=1

eri · (τ
j
i − ζ

j
i), (3)

`i =

|Ri|∑
j=1

esi , (4)

ηi =

|Ri|∑
j=1

∑
k=1

eci · wk
i · (τ

j
i − ζ

j
i), (5)

where ∂i represents the energy consumption of si running
an empty loop, and eri is the runtime energy consumption
of si per time unit (e.g. second) when it is idle. eri is assumed
to be constant [15]. `i represents the switching energy con-
sumption of si, and esi is the switching energy consumption
of si from power on to power off each time. ηi represents
the computing energy consumption of si, which is related
to its workload. eci is the computing energy consumption of
si per second. wk

i is the current workload on si, which may
change during the offloading process.

The bandwidth between two servers is defined as

B =


b1,1 b1,2 · · · b1,|C|
b2,1 b2,2 · · · b2,|C|

...
... · · ·

...
b|C|,1 b|C|,2 · · · b|C|,|C|

 , (6)

where bi,j(∀i, j = 1, 2, ..., |C|; i 6= j) is the bandwidth
between si and sj . We assume that there is no ad hoc
network, and it is directly unreachable between any two
IoT devices [24]. In addition, WiFi has a certain connection
range, and thus IoT devices can only connect to the edge
servers within its radiation range. Besides, we assume that
the bandwidth is not fluctuant.

Each IoT device obtains terminal data periodically,
and there are many types of DNNs, denoted by N =
{N1,N2, ...,Nq}. A DNN, denoted by Ni = (Li,Hi,Di),
is regarded as a workflow, where Li = {l1i , l2i , ..., l

q
i } is the

set of layers of Ni, Hi = {h1,2
i , h1,3

i , ..., hj,ki } is the set of
data dependencies between layers, and Di = {d1

i , d
2
i , ..., d

r
i }

is the set of data transmissions between layers in Ni. More-
over, the deadline of Ni is denoted as D(Ni).

More specifically, a layer lji in Ni is defined as

TABLE 3
Symbol definitions

Symbol Definition

C = {Cc,Ce,Cd}
Cloud-edge environments consisting of the
cloud Cc, edge Ce, and IoT devices Cd

si Server i
pi Computing capacity of si
ti Type of si

ci
Maximum number of concurrent tasks on
server si

Ri Execution status set of si
ζji Start time of the jth running interval of si
τ ji End time of the jth running interval of si
γji Energy consumption of si
∂i Runtime energy consumption of si

eri
Runtime energy consumption per second
of si

`i Switching energy consumption of si

esi
Switching energy consumption per second
of si each time

ηi Computing energy consumption of si

eci
Computing energy consumption per sec-
ond of si per second

wk
i Current workload on si

bi,j Bandwidth between si and sj

Ni = (Li,Hi,Di)
DNN i with layer set Li,data dependency
set Hi and data transmission set Di

lji Layer j in Ni

hj,ki Data dependency between lji and lki
aji Calculation amount of lji
iji Input data of lji
oji Output data of lji
dji A data transmission j in Ni

Ωj
i Amount of dji

tt(d
j
i , sk, sr) Time for transferring dji from sk to sr

tci Completion time of Ni

et
Total energy consumption for executing all
DNN layers

lji =< iji , o
j
i , a

j
i >, (7)

te(l
j
i , sk) =

aji
pk
, (8)

where iji and oji are the input and output data of lji , re-
spectively. aji is the calculation amount of lji . Therefore, the
execution time of lji on sk is defined as te(l

j
i , sk)).

In the data dependency hj,ki = (lji , l
k
i), lji is the direct

precursor of lki , and lki is the direct successor of lji . A layer
can be executed only after all its direct precursors have been
completed.

In the data transmission dji =< Ωj
i , sk, sr >, Ωj

i repre-
sents the amount of data transmission, and sk and sr rep-
resent the original and final servers storing dji , respectively.
Therefore, the data transmission time of dji from sk to sr is
defined as

tt

(
dji , sk, sr

)
=

Ωj
i

bk,r
. (9)

Moreover, the proposed offloading strategy is defined as
S = (C,Li,M , tci , et), where M = {(lji , sk)|lji ∈ Li, sk ∈
C} ∪ {Φk} represents the mapping set from DNN layers to
servers, (lji , sk) represents that layer lji is executed on sk,
and Φk is the execution order of the concurrent layers on sk.
When the mapping set M is determined, all the datasets

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 5

TABLE 4
Bandwidth between servers

ti tj bi,j(MB·s−1)
0 ↔ 1 10
0 ↔ 2 0.5
1 ↔ 1 10
1 ↔ 2 0.5

from one server to another is determined accordingly, tci
represents the completion time of Ni, and et represents
the total energy consumption of all participating servers for
executing DNN layers.

tci = max
lji∈Li

{tc(lji)}, (10)

et =

|C|∑
i=1

µ · (∂i + `i + ηi), (11)

where tc(lji) represents the completion time of lji , and µ
is the adjustment factor for energy consumption. If the
running server belongs to IoT devices, µ = 1.2. Otherwise,
µ = 1.0 [25]. This adjustment design tends to offload more
layers to the cloud or edge within their deadlines. Therefore,
the objective of the proposed energy-efficient offloading
strategy for DNN-based smart IoT systems in the cloud-
edge environments is formalized as

Minimize et,

subject to ∀i, tci ≤ D(Ni).
(12)

3.2 Problem Analysis

Edge 1 Cloud 1

Device1

DNN

s1

s2 s5

Edge 3
s4

Edge 2
s30

1

2

3

0.5MB

0.5MB

1MB

1MB Edge 2

(a) A DNN and the cloud-edge environment.

s4

1

2
0

3

s2

s3

s5s1

(b) Offloading result by using
Greedy.

3

1

2
0

s1

s2

s3

s4

s5

(c) Offloading result by using
the optimal strategy.

Fig. 1. An example of energy-efficient offloading for a DNN.

Fig. 1 illustrates an example of energy-efficient offload-
ing for a DNN Ni in a cloud-edge environment consisting
of six servers, denoted by {s1, s2, s3, s4, s5, s6}. Ni con-
tains four layers

{
l0i , l

1
i , l

2
i , l

3
i

}
and four data transmissions{

d1
i , d

2
i , d

3
i , d

4
i

}
with different data sizes {0.5 MB, 0.5 MB,

1 MB, 1 MB}. The left subgraph in Fig. 1(a) shows the data
transmissions between each pair of DNN layers. It should

TABLE 5
Parameter settings about energy consumption for servers

Servers eri (µW·ms−1) eci (µW·ms−1·byte−1) esi (µW)
s1 0.1 0.1 0.3
s2 0.2 0.2 0.95
s3 0.18 0.18 0.45
s4 0.22 0.22 0.65
s5 0.3 0.3 0.1

TABLE 6
Calculation amount and execution time of different layers on feasible

servers

aji s1 s2 s3 s4 s5
l0i 1 byte 1.41 ms - - - -
l1i 2 byte 1.87 ms 0.76 ms 0.82 ms 0.97 ms 0.24 ms
l2i 2.5 byte 2.78 ms 1.51 ms 1.42 ms 1.67 ms 0.82 ms
l3i 0.5 byte 3.32 ms 2.08 ms 1.23 ms 2.53 ms 0.32 ms

be noted that the input layer l0i must be executed on the IoT
device s1. The deadline D(Ni) is 5.25 ms. Table 4 shows the
bandwidth between servers with different types [6]. Table 5
shows the parameter settings about the energy consumption
for different servers. Table 6 shows the calculation amount
and execution time of different layers on feasible servers.

Fig. 1(b) depicts the offloading results by using the
greedy algorithm [26] without considering the servers in the
cloud. This algorithm tends to offload each layer to the cor-
responding most energy-efficient edge server or IoT device,
and thus each layer is offloaded to the server with the lowest
computing energy consumption within their deadlines. The
completion time tci of Ni is 5.06 ms, and the system energy
consumption et is 5.067 µW. Fig. 1(c) depicts the optimal
offloading results where the completion time tci is 5.21 ms
and system energy consumption et is 4.459 µW that is less
than (about 12.01%) the results shown in Fig. 1(b).

4 OFFLOADING STRATEGY BASED ON SPSO-GA
The proposed offloading strategy, denoted by S =
(C,Li,M , tci , et), is to explore an optimal mapping M
from the DNN layers Li to different types of servers C,
which aims to reduce the system energy consumption from
the perspectives of runtime, switching, and computing,
while satisfying the deadline constraints of each DNN.
Specifically, a DNN layer can be offloaded to different
servers, and an available server can execute many layers
from different DNNs. Therefore, it has been proved to be
an NP-hard problem to explore the optimal mapping from
the layers to servers [27]. The PSO algorithm is be a feasible
solution for this problem [6], [28], but it may fall into the
local optimum. As for the GA, its local search ability is poor,
which results in the low search efficiency in the later stage of
evolution [29]. Therefore, these two algorithms cannot well
handle the complex offloading problem of DNN layers. In
light of the PSO and GA, we propose a new SPSO-GA to
explore an optimal offloading strategy for DNN layers in
the cloud-edge environments.

4.1 Layer Partition for DNNs
The operations of layer partition are to partition consecutive
DNN layers into different deployment units. For example,

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 6

DepthConcat

Conv

1x1+1(S)

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

DepthConcat

Conv

1x1+1(S)

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+2(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

Conv

3x3+1(S)

Conv

1x1+1(S)

Conv

7x7+2(S)

MaxPool

3x3+2(S)

input

...

DepthConcat

Conv

1x1+1(S)

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

DepthConcat

Conv

1x1+1(S)

Conv

3x3+1(S)

Conv

5x5+1(S)

Conv

1x1+1(S)

Conv

1x1+1(S)

MaxPool

3x3+2(S)

Conv

1x1+1(S)

MaxPool

3x3+1(S)

Conv

3x3+1(S)

Conv

1x1+1(S)

Conv

7x7+2(S)

MaxPool

3x3+2(S)

input

...

partition point deployment unit

Fig. 2. Layer partition for GoogleNet.

as shown in Fig. 2, two DNN layers such as Conv 3x3+1(S)
and Conv 1x1+1(S) are partitioned into a deployment unit,
and the DNN layers in this deployment unit would be fitted
to be deployed on the same server or IoT device. Algorithm
1 shows the process of layer partition for a DNN, where the
input is the original DNN and the output is the DNN with
deployment units. It should be noted that the subsequent
offloading decisions would be made based on the output
DNN. Specifically, different branches in a DNN are first
divided into isolated modules (Line 2). For each module, the
current layer is initialized as the start layer (Lines 6-8). From
the current layer, every two adjacent layers will be checked
orderly according to the fitness function defined in Eq. (16)
(Lines 10-13). Once a partition point is found, the current
layer will be updated to the next layer after this partition
point (Lines 14-21). The above process will be repeated until
the last two adjacent layers in a DNN are checked. Finally,
the layers between every two adjacent partition points are
combined into a deployment unit (Lines 23-24).

Under the cloud-edge environments with various com-
putational resources and network connections, there might
be different numbers of consecutive DNN layers that are
fitted to be deployed together. Basically, with the higher
performance ratio (λ) between servers and IoT devices and
faster data transmission rate (vp), the offloading tends to
happen while the deployment units are constructed by
fewer consecutive DNN layers. With the consideration of
these factors, the layer partition can be used to find the
consecutive DNN layers that are fitted to be deployed on the
same server or IoT device and partition them into different
deployment units according to the fitness function.

Property 1: Layer partition is able to improve the ex-
ecution time of the proposed SPSO-GA by partitioning
consecutive DNN layers into different deployment units.

In SPSO-GA, the encoding dimension is linearly positive
to the number of deployment units in a DNN, and it deter-
mines the execution time of the algorithm. Compared to the
total number of layers in a DNN, there are fewer deploy-
ment units after taking layer partition. Therefore, the layer

ALGORITHM 1: Layer partition for a DNN
Input: The original DNN Ni.
Output: The DNN Nj with deployment units.

1 begin
2 Divide different branches in Ni into isolated

modules;
3 foreach module M i

k ∈Ni do
4 //Initialize the set of partition points.
5 Pk = ∅;
6 //Initialize the current layer and the index to

the first and second layers of M i
k,

respectively.
7 cur = 1;
8 ind = 2;
9 while ind ≤ |M i

k| do
10 lleft = {lcur, ..., lind−1};
11 lright = {lind, ..., l|Mi

k|};
12 //U(x, y) decides whether x and y are

suitable to be partitioned according to the
fitness function defined in Eq. (16).

13 pkind = U(lleft, lright);
14 if pkind 6= ∅ then
15 Pk = Pk ∪ pkind;
16 cur = ind;
17 ind = cur + 1;
18 end
19 else
20 ind += 1;
21 end
22 end
23 //Based on the original module and the set of

partition points, D(x, y) combines the layers
between every two adjacent partition points
into a deployment unit, and generates a new
module.

24 M j
k = D(M i

k,Pk);
25 end
26 Nj =

⋃
k

{M j
k}; //Generate a new DNN.

27 return Nj ;
28 end

partition can effectively reduce the encoding dimension and
improve the execution time of SPSO-GA when considering
an offloading problem.

4.2 Design of SPSO-GA

In the traditional PSO algorithm, the population commonly
contains np particles, and a particle Qt

i = (Xt
i , V

t
i) has

its own position, denoted by Xt
i = (xti1, x

t
i2, . . . , x

t
iy), and

velocity, denoted by V t
i = (vti1, v

t
i2, . . . , v

t
iz), in a contin-

uous space at the t-th iteration. The position represents a
candidate solution, and the velocity helps each particle to
search for better positions. The global best particle in the
population at the t-th iteration is defined as Gt, and the
personal best particle in its own history at the t-th iteration
is defined as P t

i . Thus, the update process for the position
and velocity of each particle can be described as

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 7

V t+1
i = w × V t

i + c1r1(P t
i
−Xt

i) + c2r2(Gt −Xt
i), (13)

Xt+1
i = Xt

i + V t+1
i , (14)

where w is the inertia weight that impacts the convergence
of PSO. c1 and c2 are the acceleration coefficients that rep-
resent the cognitive ability of a particle for its personal and
global best values, respectively. r1 and r2 are the random
numbers on the interval [0,1) that are used to enhance the
random search for an optimal result.

Commonly, the traditional PSO algorithm is used to
solve continuous optimization problems. However, the
energy-efficient offloading strategy for DNN layers is to
explore an optimal mapping from deployment units to
different servers, which is a discrete optimization problem.
Therefore, the ’problem encoding’ and ’population update’
parts in SPSO-GA should be further adjusted. In addition,
the expression of ’DNN layers’ replaces that of ’deployment
units’ for ease of understanding in this Subsection.

4.2.1 Problem Encoding

Problem encoding affects the searchability of the PSO algo-
rithm, which is expected to meet three basic criteria [30] as
follows.

Definition 1 (Completeness). Each candidate solution
must have at least one corresponding encoded particle.

Definition 2 (Non-redundancy). Each candidate solu-
tion has only one corresponding particle.

Definition 3 (Viability). Each candidate solution, corre-
sponding to the encoded particles, is feasible.

The encoding of a constrained optimization problem
usually fails to satisfy all three criteria described above.
The position of a particle at the t-th iteration, denoted by
Xt

i = (xti1, x
t
i2, . . . , x

t
iy), represents a candidate solution for

the optimization problem. Inspired by the work in [31],
we use a server-order combination, to encode the energy-
efficient offloading problem. Fig. 3 illustrates an example of
the encoded particle for the offloading results in Fig. 1(c).
Each dimension in a particle is defined as

<1,3> <2,0> <3,1> <5,2>

0 1 2 3layers

offloading
location

Fig. 3. An example of the encoded particle for the offloading in Fig. 1(c).

xtij =< sk, ϕk >
t
ij , (15)

where xtij(j = 1, 2, . . . , y) is the j-th dimension of Xt
i ,

which represents the offloading decision of the j-th layer.
The total number of DNN layers is y. sk indicates the
execution server for the j-th layer, and ϕk is the execution
order of the j-th layer on sk. (sk, ϕk)tij indicates that the
j-th layer is executed on sk with the order ϕk in at the t-th
iteration. ϕk is a unique integer on the interval [0, y). When
more than two concurrent layers (without data dependency)
are offloaded to the same server, the layers with smaller
values of orders are executed first.

Property 2: Problem encoding meets the criteria of com-
pleteness and non-redundancy, but may fail to meet the
viability criterion.

Each offloading solution represents the mappings from
layers to servers with a specified order. After making of-
floading decisions, each DNN layer is allocated to an execu-
tion server with the corresponding execution order, which
is depicted in the dimension of a particle. Therefore, our
encoding method meets the completeness criterion. More-
over, a 2y-dimensional particle corresponds to an offloading
solution. The j-th dimension of a particle represents the
execution server sk for the j-th layer with the order ϕk.
Therefore, an offloading solution only maps to an encoding
method, which meets the non-redundancy criterion. How-
ever, some particles may be infeasible, which means that
the offloading solutions fail to satisfy deadline constraints.
For example, a particle of the offloading results in Fig. 1 is
(<1,3>, <2,0>, <3,1>, <4,2>), and thus the layers (l0i , l

1
i , l

2
i , l

3
i)

are offloaded to the servers (s1, s2, s3, s4), respectively. The
completion time tci of Ni is 5.51 ms, which exceeds the
deadline (i.e. 5.25 ms). In this situation the encoding method
may fail to meet the viability criterion. Therefore, there are
two categories of particles in the problem space as follows.

Definition 4 (Feasible particle). A particle correspond-
ing to a candidate solution meets the deadline constraints of
all DNN-based smart IoT systems.

Definition 5 (Infeasible particle). A particle correspond-
ing to a candidate solution fails to meet the deadline con-
straints of at least one DNN-based smart IoT system.

4.2.2 Fitness Function

Fitness function is used to evaluate the performance of
particles and to select the global and personal best particles
Gt and P t

i , respectively. A particle with a smaller value of
the fitness function indicates a better candidate offloading
solution. According to our optimization objective, we regard
the total system energy consumption as the fitness value of
a particle. Since some solutions may exceed the deadlines
of DNN-based smart IoT systems, we define the fitness
function under three different cases as follows.

Case 1: Both particles are feasible. The one with less
total energy consumption would be selected. Therefore, the
fitness function is defined as

f(Xi) = et(Xi). (16)

Case 2: One particle is feasible but another is infeasible.
The feasible one would be selected. Therefore, the fitness
function is defined as

f(Xi) =

{
0, if ∀i, tci (Xi) ≤ D(Ni)
1, else

. (17)

Case 3: Both particles are infeasible. The one with less
completion time would be selected because it has a greater
chance to become feasible after population update. There-
fore, the fitness function is defined as

f(Xi) = max{tci (Xi)}. (18)

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 8

4.2.3 Population Update
Eqs. (13) and (14) indicate the particle update for continuous
optimization problems, which are affected by three factors:
inertia, individual cognition, and social cognition [32]. When it
comes to the DNN offloading, the particle update is defined
as

Xt+1
i = F3(F2(F1(Xt

i , w, r1), P t−1
i , c1, r2), Gt, c2, r3),

(19)

where F1() denotes the mutation operation. F2() and F3()
denote the crossover operations. w is the inertia weight. c1
and c2 are acceleration coefficients. r1, r2, and r3 are the
random numbers on the interval [0,1).

For the inertia part, the velocity of particles is defined as

V t
i = F1(Xt−1

i , w, r1) =

{
Mu(Xt−1

i) r1 < w
Xt−1

i else
, (20)

where Mu() denotes the mutation operator, and w denotes
the mutation probability. Mutation operator randomly se-
lects a location ind in a particle, and changes the corre-
sponding value of the server-order tuple. The new value of
server sk is a random integer between 1 and |C|, and the
corresponding order value is also a random integer between
0 and y − 1. Since the order value in a particle is unique,
the other location with the same order is selected and its
order value is changed to the original value of location ind.
Fig. 4 depicts the mutation operator, which randomly selects
a location ind1 and changes the value of the server-order
tuple from <5,2> to <4,3>. Next, the order value of the first
location is changed to 2.

old
particle

ind1

new
particle

ind1

mutation

<1,3> <2,0> <3,1> <5,2>

<1,2> <2,0> <3,1> <4,3>

Fig. 4. Mutation operator.

Property 3: The mutation operator may change a particle
from feasible to infeasible, and vice versa.

For example, the completion time of the old particle in
Fig. 4 is 5.21 ms, and thus the old particle is feasible. After
mutation operator, the completion time of the new particle is
5.51 ms, which exceeds its deadline (i.e. 5.25 ms). Therefore,
the mutation operator may change the old particle from
feasible to infeasible. If the positions of the old and new
particles are reversed, the mutation operator will change the
old particle from infeasible to feasible.

The individual cognition and social cognition in the particle
update are formulated as

Ct
i = F2(V t

i , P
t−1
i , c1, r2) =

{
Cp(V t

i , P
t−1
i) r2 < c1

V t
i else

,

(21)

Xt+1
i = F3(Ct

i , G
t, c2, r3) =

{
Cp(Ct

i , G
t) r3 < c2

Ct
i else

,

(22)

where c1 and c2 denote the crossover probability of a par-
ticle with its personal best solution P t

i and global optimal
solution Gt, respectively. Cp() denotes the crossover opera-
tor. For example, Cp(A,B) randomly selects two locations
in the particle A and then replaces the server-order segment
between these two locations with the same interval in the
particle B. The order of the generated particle needs to
be adjusted. Fig. 5 depicts the crossover operator, which
randomly selects the locations ind1 and ind2 in an old
particle and replaces the server-order segment between ind1

and ind2 with the same interval in P t
i (or Gt). Next, the

order value of the 4th location in the old particle is changed
to 2.

old
particle

Pi
t(Gt)

crossover

ind1

ind1 ind2

ind2

new
particle

<1,3> <2,0> <3,1> <5,2>

<1,3> <5,2> <5,1> <2,0>

<1,3> <2,0> <3,1> <2,2>

ind1 ind2

Fig. 5. Crossover operator.

Property 4: The crossover operator may change a particle
from infeasible to feasible, and vice versa.

For example, the completion time of the old particle
in Fig. 5 is 7.31 ms, which exceeds the deadline (i.e. 5.25
ms). Therefore, the old particle is infeasible. After crossover
operator, the completion time of the new particle is 5.06 ms.
Therefore, the crossover operator changes the old particle
from infeasible to feasible. If the positions of the old and
new particles are reversed, and the global optimal particle
is (<1,3>, <4,0>, <2,1>, <5,2>), the crossover operator will
change the old particle from feasible to infeasible.

4.2.4 Offloading corresponding a particle

Algorithm 2 shows the offloading corresponding to a par-
ticle. The inputs contain DNNs N , all feasible servers C,
and an encoded particle Xt

i . According to the encoded
particle Xt

i , the algorithm first assumes that each layer lji
is offloaded to the server sx(j) with the order ϕx(j). For lji ,
its start time tstart(l

j
i) is equal to the ready time tready(sx(j))

of sx(j) if it has no parents. Otherwise, the layer cannot start
until the data transmission between sx(j) and its parents
is completed (Lines 4-13). Next, the end time tend(lji) of
lji is equal to the sum of its execution time te(l

j
i , sx(j))

on sx(j) and start time (Line 14). If tend(lji) exceeds the
deadline, the algorithm stops immediately and return Null,
which means that this particle is infeasible (Lines 15-17). The
next ready time of sx(j) should be calculated until the data
transmission between lji and its children is completed (Lines
18-22). Moreover, the algorithm checks each free interval for
all participating servers and shuts down the servers during
the free intervals if their runtime energy consumption ∂i is
greater than their switching energy consumption `i (Lines
24-28). Finally, the system energy consumption et is calcu-
lated based on Eq. (11).

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 9

ALGORITHM 2: The offloading corresponding to a
particle

Input: N ,C, Xt
i .

Output: et or Null. // If Xt
i is infeasible, return Null.

1 begin
2 //lji is offloaded to sx(j) with ϕx(j).
3 foreach lji in N do
4 if lji has no parent then
5 tstart(l

j
i) = tready(sx(j));

6 end
7 else
8 ttrans=0;
9 foreach parent lpi of lji do

10 ttrans = max(ttrans,
Ωp

i

bx(p),x(j)
);

11 end
12 tstart(l

j
i) = tready(sx(j)) + ttrans;

13 end
14 tend(lji) = tstart(l

j
i) + te(l

j
i , sx(j));

15 if tend(lji) > D(Ni) then
16 return Null; // Infeasible particle.
17 end
18 ttrans = 0;
19 foreach child lci of lji do

20 ttrans += Ωj
i

bx(j),x(c)
;

21 end
22 tready(sx(j)) += te(l

j
i , sx(j)) + ttrans;

23 end
24 foreach free interval in si do
25 if ∂i > `i then
26 Shut down si in this interval;
27 end
28 end
29 return et according to Eq. (11);
30 end

4.2.5 Parameter Settings
The inertia weight w may greatly influence the search ability
and convergence of the PSO algorithm [33]. The larger value
of w corresponds to a stronger global search ability, while
the smaller one reflects a better local search ability. To fit in
the nonlinear characteristics of energy-efficient offloading
for DNN-based smart IoT systems, we design a discrete
adjustment method for updating w as

w = wu − (wu − wd)× exp(
Ψ

Ψ− 1.01
), (23)

Ψ = div(Gt−1, Xt−1) =

y∑
i=1

zi

y
, (24)

where wu and wd denote the maximum and minimum of w
during initialization, respectively. Ψ represents the degree
of difference between the global optimal solution Gt−1 and
the current candidate solution Xt−1. zi denotes a statistical
factor. zi = 1 indicates that the server sk of Gt−1 and
Xt−1 in the same location is different otherwise is zi = 0.
Therefore, the search ability of the proposed algorithm can

be adaptively adjusted based on the difference between
the current and the global optimal particles. When the
gap between Gt−1 and Xt−1 is large, the algorithm has a
strong global search ability. On the contrary, the algorithm
would enhance its local search ability to explore an optimal
solution.

Moreover, the acceleration coefficients c1 and c2 are used
for communications in the population whose settings are
referred to the work in [34]. More specifically, cs1, and cs2 are
the start value of c1 and c2, while ce1 and ce2 are the end value
of c1 and c2.

4.2.6 Algorithm Flowchart

Initialize the relevant parameters

Generate the initial population

Calculate each particle's fitness, select personal
optimal particle Pi

t, and global optimal particle Gt

Update particles based on particle update strategy

Recalculate the fitness of each updated particle

Satisfy stop condition?

End

Start

Update personal optimal particles Pi
t and global

optimal particle Gt

N

Y

Fig. 6. Algorithm flowchart for SPSO-GA.

Fig. 6 depicts the flowchart of the proposed SPSO-GA,
where the detailed process is described as follows.

Step 1: The relevant parameters of SPSO-GA are ini-
tialized, including the initial population size Γ, maximum
number of iterations Θ, the maximum inertia weight wu,
the minimum inertia weight wd, the start and end value of
acceleration coefficients cs1, c

s
2, c

e
1, c

e
2. Next, the initial popu-

lation is generated randomly.
Step 2: The fitness of each particle is calculated according

to Eqs. (16) to (18). Each particle is selected as its own
personal optimal solution, and the particle with the best
fitness is selected as the global optimal solution in the
current generation.

Step 3: Each particle is updated according to Eq. (19),
and the fitness of each new particle is recalculated.

Step 4: The personal optimal particle for each particle is
updated. The global optimal particle will be updated if there
is a better solution than the original one.

Step 5: If the stop condition will be met, the algorithm is
determined. Otherwise, the algorithm goes to Step 3.

5 PERFORMANCE EVALUATION

To investigate and validate the effectiveness of the proposed
SPSO-GA, extensive simulation experiments have been con-
ducted in response to the research questions (RQs) as
follows.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 10

TABLE 7
The related configurations and energy consumption of 15 servers

Servers pi ci ti eri esi eci
{s1, s2, ..., s10} 0.5 1 0 0.1 30 0.1

s11 1 4 1 0.2 45 0.2
s12 0.8 4 1 0.18 45 0.18
s13 1.2 4 1 0.22 45 0.22
s14 1.5 4 1 0.27 45 0.27
s15 2 8 2 0.3 60 0.3

The unit of pi, eri , esi , eci is Hz, µW·ms−1, µW, µW·ms−1·byte−1,
respectively.

• RQ1: Compared with other classic methods, is
SPSO-GA able to optimize the system energy con-
sumption more effectively with different deadline
constraints? (Section 5.3)

• RQ2: For the same optimization objective, is SPSO-
GA superior to other classic methods with different
workloads? (Section 5.4)

• RQ3: What impact do varying supplies of MEC
resources have on the performance of SPSO-GA and
other classic methods? (Section 5.5)

• RQ4: Whether the layer partition operations are able
to effectively reduce the execution time of SPSO-GA?
(Section 5.6)

5.1 Experimental Settings

There are four types of DNNs used in the experiments
including AlexNet, VGG19, GoogleNet, and ResNet101 [35].
The detailed information about each type of DNN, includ-
ing the structure, calculation amount of each layer, and
data transmissions between layers, which are obtained from
actual execution and simulation modeling [36], can be found
in our GitHub project1. Besides, the deadline constraints for
each DNN are needed to check whether an energy-efficient
offloading strategy for DNN-based smart IoT systems is
feasible or not. Therefore, five different deadline constraints
for each DNN are set as

Dj(Ni) = εj ·H(Ni), εj = {1.5, 2, 3, 5, 8}, (25)

whereH(Ni) is the execution time of Ni by using the HEFT
algorithm [37], and the values in εj are set according to [6].

Furthermore, the cloud-edge environments consist of
15 servers {s1, s2, ..., s15}, which are divided into 3 types
including the cloud, edge and IoT devices. More specifically,
the first 10 servers, the last server, and the other 4 servers
belong to IoT devices, the cloud, and the edge, respectively.
Table 7 shows the detailed configurations and energy con-
sumption of the servers [25]. The number of DNNs executed
by an IoT device is regarded as the workload, is set to one
in RQ1, RQ3 and RQ4, and ranges from 1 to 5 in RQ2.
Besides, we assume that each IoT device can only connect
to two nearby edge servers, and the bandwidths between
different servers are shown in Table 4. During a period of
time, the cloud-edge environment and the workload remain
static, based on which the offloading decision is made.

1. https://github.com/SPSO-GA/dataset

To find all possible deployment units during the layer
partition process, the most ideal offloading environment in
our experimental environments (i.e. from an IoT device to
the edge server s14) is selected with the consideration of
server performance and data transmission rate to conduct
the simulation offloading experiment of Algorithm 1. λ and
vp are set to 3 and 10 MB·s−1, respectively.

In addition, the parameters of SPSO-GA were initialized
by following [38], where Γ = 50, Θ = 300, wu = 0.8, wd = 0.2,
cs1 = 0.9, ce1 = 0.2, cs2 = 0.4, and ce2 = 0.9. Simulation experi-
ments were conducted on the Win10 64-bit operating system
with an i7-4790 3.60 GHz Intel(R) Core(TM) processor and
32GB RAM.

5.2 Classic Methods
GA [29] and Greedy [26] are introduced to make compar-
isons and evaluate the performance of the proposed SPSO-
GA for DNN-based smart IoT systems in the cloud-edge
environments.

Greedy only considers edge servers and IoT devices but
ignores the servers in the cloud. The algorithm offloads
each layer to the servers with the lowest computing energy
consumption within their deadlines. If a layer fails to satisfy
the deadline constraint, it will be offloaded to the next
cheapest server.

GA uses a binary problem encoding method, whose
dimension is equal to the number of servers. Meanwhile,
its fitness function is defined based on Eqs. (16)-(18). Thus,
the offloading corresponding to an encoded chromosome
also considers the runtime energy consumption, switching,
and computing energy consumption of each server.

To verify the efficiency of layer partition, SPSO-GA
without layer partition (i.e. PSO-GA) is also used as the
comparison. GA, PSO-GA, and SPSO-GA belong to the evo-
lutionary algorithms. In the experiments, these algorithms
are considered convergent if they maintain the same global
best particle in 50 continuous iterations. The offloading
results may be different with the same configurations in an
experiment. Therefore, the system energy consumption is
measured by the average of 50 repeated experiments.

5.3 RQ1. SPSO-GA with different deadline constraints
Fig. 7 depicts the system energy consumption of different
offloading strategies for one execution of DNN per IoT
device with different deadline constraints. In general, the
system energy consumption decreases as the deadline be-
comes looser by using SPSO-GA, PSO-GA, and GA. This is
because the strategies based on meta-heuristic algorithms
tend to allocate more layers to the energy-efficient servers
when the deadline is not strict. Moreover, SPSO-GA and
PSO-GA can achieve the same performance with different
deadline constraints. The results also show that the system
energy consumption for each type of DNNs is different. This
is because they consist of different DNN layers with various
data transmissions between layers. For example, the number
of layers in AlexNet is more than the others, and thus more
computing energy consumption is consumed by AlexNet.
For GoogleNet, the computing energy consumption is less
than that of other DNNs. This is because there are more
layers that can be executed in parallel, and thus more layers

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 11

D1 D2 D3 D4 D5

0

1400

2800

4200

5600

7000

S
y
st
em
en
er
g
y
co
n
su
m
p
ti
o
n
(u
W
)

Deadlines (ms)

PSO-GA SPSO-GA GA Greedy

(a) AlexNet.

D1 D2 D3 D4 D5
0

900

1800

2700

3600

4500

S
y
st
em
en
er
g
y
co
n
su
m
p
ti
o
n
(u
W
)

Deadlines (ms)

PSO-GA SPSO-GA GA Greedy

(b) VGG19.

D1 D2 D3 D4 D5
0

180

360

540

720

900

S
y
st
em
en
er
g
y
co
n
su
m
p
ti
o
n
(u
W
)

Deadlines (ms)

PSO-GA SPSO-GA GA Greedy

(c) GoogleNet.

D1 D2 D3 D4 D5
0

370

740

1110

1480

1850

S
y
st
em
en
er
g
y
co
n
su
m
p
ti
o
n
(u
W
)

Deadlines (ms)

PSO-GA SPSO-GA GA Greedy

(d) ResNet101.

Fig. 7. System energy consumption of different offloading strategies for one execution of DNN per IoT device with different deadline constraints.

can be executed on servers with less energy consumption
within the same deadline.

SPSO-GA and PSO-GA can adaptively adjust the search
ability according to the current situation and evolve it-
eratively from a global perspective, which both perform
best for all types of DNNs. Greedy only considers IoT
devices and edge servers when offloading layers. It is a
fixed strategy and only goes one way until it fails to meet
deadline constraints. Therefore, the Greedy can obtain a
feasible solution for all types of DNNs and consume the
same system energy consumption with different deadline
constraints. By contrast, the performance of GA is greatly
influenced by deadline constraints. This is because its search
scope is local at each iteration. As for the proposed SPSO-
GA and PSO-GA, they can save around 12.91%~20.97%
and 31.55%~47.98% compared with GA and Greedy, respec-
tively.

Fig. 7(d) depicts the system energy consumption of
different strategies for one execution of ResNet101 per IoT
device, which is less than that in Figs. 7(a) and 7(b). This
is because the calculation amount of layers in ResNet101
is less than that of AlexNet and VGG19 and thus leads
to less computing energy consumption. In Fig. 7(c), the
performance of SPSO-GA is a little better than GA with D1.
By using SPSO-GA, the layers can be offloaded to suitable
servers from a global perspective even with strict deadline
constraints.

5.4 RQ2. SPSO-GA with different workloads

Fig. 8 depicts the system energy consumption of different
offloading strategies for different numbers of executing
DNN per IoT device with a fixed deadline constraint (i.e.
D3). The bars depict the system energy consumption of dif-
ferent offloading strategies with various workloads, while
the curves depict the energy saving rate Re(Gi). Re(Gi) =
−(et(Sp) − et(Gi))/et(Gi),Gi = {Ga,Gr}, where Sp, Ga,
and Gr are the offloading strategies based on PSO-GA,
GA, and Greedy, respectively. et(A) is the system energy
consumption by using the algorithm A. Generally, SPSO-GA
and PSO-GA achieve better offloading performance than
the other two strategies. The system energy consumption
of different offloading strategies increases as the workloads
become heavier. This is because more servers are needed to
execute the increasing DNN layers, which results in more
system energy consumption.

As shown in Fig. 8, the system energy consumption
of different offloading strategies grows as the number of
executing DNN per IoT device increases. This is because the
offloading strategies need to handle more layers with more
servers, which results in more system energy consumption.
In general, the results of the system energy consumption
in Fig. 8 are similar to that in Fig. 7. Moreover, DNN type
significantly affects the system energy consumption of the
offloading strategies. Specifically, as the number of execut-
ing DNN per IoT device increases, the energy saving rate
by using GA and Greedy grows significantly for AlexNet,
VGG19, and ResNet101 but not obviously for GoogleNet.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 12

10

20

30

40

50

60

70

1 2 3 4 5
0

9600

19200

28800

38400

48000

S
y
st
em
en
er
g
y
co
n
su
m
p
ti
o
n
(u
W
)

Number of DNNs

PSO-GA SPSO-GA GA Greedy

(
)

e
i

R
G

E
n
er
g
y
sa
v
in
g
ra
te

(%
)GA Greedy

(a) AlexNet.

10

20

30

40

50

60

70

1 2 3 4 5
0

5800

11600

17400

23200

29000

S
y
st
em
en
er
g
y
co
n
su
m
p
ti
o
n
(u
W
)

Number of DNNs

PSO-GA SPSO-GA GA Greedy

(
)

e
i

R
G

E
n
er
g
y
sa
v
in
g
ra
te

(%
)GA Greedy

(b) VGG19.

10

20

30

40

50

60

70

1 2 3 4 5
0

960

1920

2880

3840

4800

S
y
st
em
en
er
g
y
co
n
su
m
p
ti
o
n
(u
W
)

Number of DNNs

PSO-GA SPSO-GA GA Greedy

(
)

e
i

R
G

E
n
er
g
y
sa
v
in
g
ra
te

(%
)GA Greedy

(c) GoogleNet.

10

20

30

40

50

60

70

1 2 3 4 5
0

2600

5200

7800

10400

13000

S
y
st
em
en
er
g
y
co
n
su
m
p
ti
o
n
(u
W
)

Number of DNNs

PSO-GA SPSO-GA GA Greedy

(
)

e
i

R
G

E
n
er
g
y
sa
v
in
g
ra
te

(%
)GA Greedy

(d) ResNet101.

Fig. 8. System energy consumption of different offloading strategies for different numbers of executing DNN per IoT device with a fixed deadline
constraint.

In addition, the parallel structure of GoogleNet causes the
growth rate of the system energy consumption by using
PSO-GA and SPSO-GA to be almost the same as that by
using GA and Greedy. By contrast, the serial structures of
AlexNet, VGG19, and ResNet101 make the performance
advantages more obvious by using PSO-GA and SPSO-
GA. As for the proposed SPSO-GA, they can save around
21.17%~36.52% and 40.92%~57.04% compared with GA and
Greedy, respectively.

5.5 RQ3. Impact of varying the MEC resource supply
Fig. 9 depicts the system energy consumption of different
offloading strategies for one execution of AlexNet per IoT
device at D3 with varying MEC resources. The impact of
varying supplies of MEC resources on offloading results is
analyzed from two aspects: the computational capacities of
edge servers and the number of edge servers.

Fig. 9(a) shows the system energy consumption of dif-
ferent offloading strategies for one execution of AlexNet per
IoT device at D3 with varying computational capacities of
edge servers. The scaling ratios of computational capacities
for 4 edge servers are set to {0.6, 0.8, 1, 1.2, 1.4}. When the
scaling ratio is set to 1, the offloading results are the same
as that at D3 in Fig. 7(a). In general, the system energy
consumption decreases as the computational capacities of
edge servers become stronger. This is because the offloading
strategies tend to allocate more DNN layers to the edge
rather than the cloud when edge servers are equipped with
more computational resources, which leads to the reduction
of energy consumption in cloud servers. Both SPSO-GA and
PSO-GA perform best for all kinds of edge servers with

different computational capacities. Specifically, they can re-
duce the system energy consumption by 15.43%~17.88%
compared with the GA. Similarly, SPSO-GA and PSO-GA
can reduce the system energy consumption by about 28%
compared with the Greedy.

Fig. 9(b) shows the system energy consumption of dif-
ferent offloading strategies for one execution of AlexNet per
IoT device at D3 with varying numbers of edge servers,
which are set to {2, 4, 6, 8, 10}. The other configurations are
kept the same as in Subsection 5.1. The detailed information
about the configurations of edge servers can be found in our
GitHub project. In general, the system energy consumption
decreases as the number of edge servers increases. When the
number of edge servers is small, the offloading strategies
tend to deploy more DNN layers in the cloud for satisfying
deadline constraints. This results in more system energy
consumption. Otherwise, the offloading strategies tend to
deploy more DNN layers in the edge rather than the cloud,
which leads to less system energy consumption. Specially,
both SPSO-GA and PSO-GA perform best for different num-
bers of edge servers. The performance of the GA is better
than that of the Greedy.

5.6 RQ4. Execution time of SPSO-GA and PSO-GA
The results of Sections 5.3 and 5.4 indicate that the layer
partition operations have seldom negative impact on the
proposed SPSO-GA for optimizing the system energy con-
sumption. The layer partition is able to lessen the number of
deployment units in a DNN and thus improve the execution
time of the proposed algorithm. Fig. 10 depicts the execution
time of SPSO-GA and PSO-GA with different workloads.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 13

0.6 0.8 1 1.2 1.4
0

2300

4600

6900

9200

11500

S
y
st
em
en
er
g
y
co
n
su
m
p
ti
o
n
(u
W
)

Scaling of the computational capacity for edge servers

PSO-GA SPSO-GA GA Greedy

(a) Varying the computational capacity of edge servers.

2 4 6 8 10
0

2800

5600

8400

11200

14000

S
y
st
em
en
er
g
y
co
n
su
m
p
ti
o
n
(u
W
)

Number of edge servers

PSO-GA SPSO-GA GA Greedy

(b) Varying the number of edge servers.

Fig. 9. System energy consumption of different offloading strategies for one execution of AlexNet per IoT device at D3 with varying MEC resource.

1 2 3 4 5
0

100

200

300

400

ex
ec
u
ti
o
n
ti
m
e
(s
)

Number of DNNs

PSO-GA SPSO-GA

(a) AlexNet.

1 2 3 4 5
0

150

300

450

600

ex
ec
u
ti
o
n
ti
m
e
(s
)

Number of DNNs

PSO-GA SPSO-GA

(b) VGG19.

1 2 3 4 5
0

25

50

75

100

ex
ec
u
ti
o
n
ti
m
e
(s
)

Number of DNNs

PSO-GA SPSO-GA

(c) GoogleNet.

1 2 3 4 5
0

45

90

135

180

ex
ec
u
ti
o
n
ti
m
e
(s
)

Number of DNNs

PSO-GA SPSO-GA

(d) ResNet101.

Fig. 10. Execution time of SPSO-GA and PSO-GA with different workloads.

There are different numbers of executing DNN per IoT de-
vice during a period of time, whose value is between 1 to 5.
In general, the execution time of SPSO-GA is much less than
the PSO-GA on AlexNet, VGG19, and ResNet101, whose
structures are serial. This is because DNNs with serial struc-
tures have more dimensionality reductions, which results in
less deployment units after layer partition. The number of
deployment units determines the problem encoding space
and the execution time of the algorithms. Therefore, the
execution time of SPSO-GA is much less than PSO-GA on
AlexNet, VGG19, and ResNet101.

Fig. 10(a) depicts the execution time of SPSO-GA and
PSO-GA with different workloads for AlexNet. Specifically,
the execution time of SPSO-GA is around 36.01% less than
PSO-GA on average. As shown in Figs. 10(b) to 10(d),
the execution time of SPSO-GA is around 30.48%, 21.05%,
and 35.96% less than PSO-GA on average for VGG19,
GoogleNet, and ResNet101, respectively. After layer parti-
tion, GoogleNet still remains many deployment units, and
thus the execution time of SPSO-GA cannot be well reduced.

6 DISCUSSION

Some issues about applicability are discussed as follows.
Impact of transmission speed on the performance. Data

transmission speed is positively-correlated with bandwidth.
When the bandwidth between IoT devices and the cloud
increases, IoT devices tend to offload more DNN layers to
the cloud. Due to the increase of data transmission speed,
the latency of data transmission between IoT devices and
the cloud decreases, which would better satisfy the deadline

constraints for the DNN-based Smart IoT systems. Similarly,
the increase of bandwidth between IoT devices and the edge
has positive impact on the offloading results for the DNN-
based Smart IoT systems.

Time complexity. In each iteration of the proposed
SPSO-GA algorithm, all particles are updated and their
fitness is calculated. The number of calculations required
to update the state of particles is determined by the initial
population size Γ and the particle dimension D. The total
number of deployment units in DNNs y determines the
complexity of the fitness function based on Algorithm 2.
Since D = y in the proposed offloading strategy, the time
complexity of SPSO-GA isO(Γ·y2) per iteration. In addition,
the convergence time is influenced by the total number of
deployment units in DNNs y and the number of servers |C|.
The overall framework of the PSO-GA and GA is the same
as SPSO-GA, and thus the time complexity of the PSO-GA
and GA should beO(Γ·y2) per iteration. Note that y in PSO-
GA and GA is equal to the number of DNN layers before
layer partition operations. Obviously, the time complexity
of the Greedy is O(y · |C|).

7 CONCLUSION

In this paper, we have proposed an energy-efficient offload-
ing strategy based on SPSO-GA for DNN-based smart IoT
systems in the cloud-edge environments, which aims to
reduce the system energy consumption while satisfying the
deadline constraints. The extensive simulation experiments
show that the proposed strategy can achieve the superior
performance than other classic methods. The system energy

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 14

consumption is reduced as the deadline becomes looser by
using SPSO-GA, PSO-GA, and GA. With the looser deadline
constraints, more layers tend to be allocated to the more
energy-efficient servers in the same situation. However, the
performance of GA is greatly influenced by the deadline
constraints due to its local search scope at each iteration.

In our future work, we will consider more complicated
scenarios with the environmental fluctuation including net-
work delay, bandwidth fluctuation, and server failure, and
investigate the adaptiveness of the proposed offloading
strategy. Moreover, we plan to apply deep reinforcement
learning algorithm to offloading decision on DNN-based
smart IoT systems.

ACKNOWLEDGMENTS

This work is partly supported by the Natural Science Foun-
dation of China under Grant No. 62072108, the Natural Sci-
ence Foundation of Fujian Province for Distinguished Young
Scholar No. 2020J06014, the Natural Science Foundation of
Fujian Province under Grant No. 2019J01286, and the Young
and Middle-aged Teacher Education Foundation of Fujian
Province under Grant No. JT180098.

REFERENCES

[1] H. Li, K. Ota, and M. Dong, “Learning IoT in edge: Deep learning
for the internet of things with edge computing,” IEEE Network,
vol. 32, no. 1, pp. 96–101, 2018.

[2] Y. You, Z. Zhang, C. Hsieh, J. Demmel, and K. Keutzer, “Fast deep
neural network training on distributed systems and cloud TPUs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 30, no. 11,
pp. 2449–2462, 2019.

[3] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN
surgery for inference acceleration on the edge,” in IEEE Interna-
tional Conference on Computer Communications (INFOCOM), 2019.

[4] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars,
and L. Tang, “Neurosurgeon: Collaborative intelligence between
the cloud and mobile edge,” in the 22nd International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2017.

[5] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “Energy-aware
application placement in mobile edge computing: A stochastic op-
timization approach,” IEEE Transactions on Parallel and Distributed
Systems, vol. 31, no. 4, pp. 909–922, 2020.

[6] B. Lin, Y. Huang, J. Zhang, J. Hu, X. Chen, and J. Li, “Cost-driven
off-loading for DNN-based applications over cloud, edge, and end
devices,” IEEE Transactions on Industrial Informatics, vol. 16, no. 8,
pp. 5456–5466, 2020.

[7] M. Chen, S. Guo, K. Liu, X. Liao, and B. Xiao, “Robust computation
offloading and resource scheduling in cloudlet-based mobile cloud
computing,” IEEE Transactions on Mobile Computing, vol. 20, no. 5,
pp. 2025–2040, 2021.

[8] M. Altamimi, A. Abdrabou, K. Naik, and A. Nayak, “Energy cost
models of smartphones for task offloading to the cloud,” IEEE
Transactions on Emerging Topics in Computing, vol. 3, no. 3, pp. 384–
398, 2015.

[9] K. Elgazzar, P. Martin, and H. S. Hassanein, “Cloud-assisted com-
putation offloading to support mobile services,” IEEE Transactions
on Cloud Computing, vol. 4, no. 3, pp. 279–292, 2016.

[10] Z. Fang, T. Yu, O. J. Mengshoel, and R. K. Gupta, “Qos-aware
scheduling of heterogeneous servers for inference in deep neural
networks,” in International Conference on Information and Knowledge
Management (ICIKM), 2017.

[11] K. Kumar and Y. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp.
51–56, 2010.

[12] H. J. Jeong, “Lightweight offloading system for mobile edge com-
puting,” in IEEE International Conference on Pervasive Computing and
Communications Workshops (ICPCCW), 2019.

[13] M. Chen and Y. Hao, “Task offloading for mobile edge computing
in software defined ultra-dense network,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[14] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, 2016.

[15] Z. Ali, L. Jiao, T. Baker, G. Abbas, Z. H. Abbas, and S. Khaf,
“A deep learning approach for energy efficient computational
offloading in mobile edge computing,” IEEE Access, vol. 7, pp.
149 623–149 633, 2019.

[16] C. Lo, Y. Y. Su, C. Y. Lee, and S. C. Chang, “A dynamic deep
neural network design for efficient workload allocation in edge
computing,” in IEEE International Conference on Computer Design
(ICCD), 2017.

[17] H. J. Jeong, I. Jeong, H. J. Lee, and S. M. Moon, “Computation
offloading for machine learning web apps in the edge server
environment,” in International Conference on Distributed Computing
Systems (ICDCS), 2018.

[18] L. Yang, J. Cao, S. Tang, D. Han, and N. Suri, “Run time applica-
tion repartitioning in dynamic mobile cloud environments,” IEEE
Transactions on Cloud Computing, vol. 4, no. 3, pp. 336–348, 2016.

[19] T. Mohammed, C. Joe-Wong, R. Babbar, and M. D. Francesco,
“Distributed inference acceleration with adaptive DNN partition-
ing and offloading,” in IEEE International Conference on Computer
Communications (INFOCOM), 2020.

[20] H. Wu, W. J. Knottenbelt, and K. Wolter, “An efficient application
partitioning algorithm in mobile environments,” IEEE Transactions
on Parallel and Distributed Systems, vol. 30, no. 7, pp. 1464–1480,
2019.

[21] S. Teerapittayanon, B. McDanel, and H. Kung, “Distributed deep
neural networks over the cloud, the edge and end devices,” in
International Conference on Distributed Computing Systems (ICDCS),
2017.

[22] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang, “A survey
on computation offloading modeling for edge computing,” Journal
of Network and Computer Applications, vol. 169, pp. 1–25, 2020.

[23] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive DNN
surgery for inference acceleration on the edge,” in IEEE Interna-
tional Conference on Computer Communications (INFOCOM), 2019.

[24] N. Zhao, X. Liu, F. R. Yu, M. Li, and V. C. M. Leung, “Communica-
tions, caching, and computing oriented small cell networks with
interference alignment,” IEEE Communications Magazine, vol. 54,
pp. 29–35, 2016.

[25] G. Xie, G. Zeng, X. Xiao, R. Li, and K. Li, “Energy-efficient
scheduling algorithms for real-time parallel applications on het-
erogeneous distributed embedded systems,” IEEE Transactions on
Parallel and Distributed Systems, vol. 28, no. 12, pp. 3426–3442, 2017.

[26] C. Jiang, Z. Chen, R. Su, and Y. C. Soh, “Group greedy method for
sensor placement,” IEEE Transactions on Signal Processing, vol. 67,
no. 9, pp. 2249–2262, 2019.

[27] D. S. Hochba, “Approximation algorithms for NP-hard problems,”
SIGACT News, vol. 28, pp. 40–52, 1997.

[28] B. Lin, F. Zhu, J. Zhang, J. Chen, X. Chen, N. N. Xiong, and J. Lloret
Mauri, “A time-driven data placement strategy for a scientific
workflow combining edge computing and cloud computing,”
IEEE Transactions on Industrial Informatics, vol. 15, no. 7, pp. 4254–
4265, 2019.

[29] L. Cui, J. Zhang, L. Yue, Y. Shi, H. Li, and D. Yuan, “A genetic
algorithm based data replica placement strategy for scientific
applications in clouds,” IEEE Transactions on Services Computing,
vol. 11, no. 4, pp. 727–739, 2018.

[30] J. S. Su, W. Z. Guo, C. L. Yu, and G. L. Chen, “Fault-tolerance
clustering algorithm with load-balance aware in wireless sensor
network,” Jisuanji Xuebao/Chinese Journal of Computers, vol. 37, pp.
445–456, 2014.

[31] M. A. Rodriguez and R. Buyya, “Deadline based resource pro-
visioningand scheduling algorithm for scientific workflows on
clouds,” IEEE Transactions on Cloud Computing, vol. 2, no. 2, pp.
222–235, 2014.

[32] H. Li, D. Yang, W. Su, J. LÃij, and X. Yu, “An overall distribution
particle swarm optimization MPPT algorithm for photovoltaic
system under partial shading,” IEEE Transactions on Industrial
Electronics, vol. 66, no. 1, pp. 265–275, 2019.

[33] D. O’Neill, A. Lensen, B. Xue, and M. Zhang, “Particle swarm op-
timisation for feature selection and weighting in high-dimensional
clustering,” in IEEE Congress on Evolutionary Computation (ICEC),
2018.

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. XX, NO. XX, XX 2021 15

[34] M. Masdari, F. Salehi, M. Jalali, and M. Bidaki, “A survey of
PSO-based scheduling algorithms in cloud computing,” Journal of
Network and Systems Management, vol. 25, pp. 122–158, 2017.

[35] T. R. Chavan and A. V. Nandedkar, “A hybrid deep neural
network for online learning,” in the 9th International Conference on
Advances in Pattern Recognition (ICAPR), 2017.

[36] X. Chen, M. Li, H. Zhong, Y. Ma, and C.-H. Hsu, “DNNOff:
Offloading dnn-based intelligent iot applications in mobile edge
computing,” IEEE Transactions on Industrial Informatics, pp. 1–1,
2021.

[37] H. Topcuoglu, S. Hariri, and Min-You Wu, “Performance-effective
and low-complexity task scheduling for heterogeneous comput-
ing,” IEEE Transactions on Parallel and Distributed Systems, vol. 13,
no. 3, pp. 260–274, 2002.

[38] Y. Shi and R. Eberhart, “A modified particle swarm optimizer,” in
IEEE International Conference on Evolutionary Computation Proceed-
ings (ICECP), 1998.

Xing Chen received the B.S. degree and the
Ph.D. degree from Peking University, in 2008
and 2013, respectively. Upon completion of the
Ph.D. degree, he joined Fuzhou University and
has held the rank of Professor since 2020. Now
he is the deputy director of Fujian Provincial Key
Laboratory of Network Computing and Intelligent
Information Processing (Fuzhou University), and
leads the Systems research group. Dr. Chen’s
research focuses on the software systems and
engineering approaches for cloud and mobility.

His current projects cover the topics from self-adaptive software, com-
putation offloading, model driven approach and so on. He has published
over fifty journal and conference articles, and was awarded two First
Class Prizes for Provincial Scientific and Technological Progress, sepa-
rately in 2018 and 2020.

Jianshan Zhang received his M.S. degree in
Materials Engineering from Fujian Normal Uni-
versity, China, in 2018. He is currently working
toward the PhD degree at the College of Math-
ematics and Computer Science, Fuzhou Univer-
sity. He has also been a part of the Fujian Key
Laboratory of Network Computing and Intelli-
gent Information Processing at Fuzhou Univer-
sity since September 2019. His current research
interests include edge computing, computational
intelligence and cloud computing.

Bing Lin received the B.S. and M.S degrees
in Computer Science from Fuzhou University,
Fuzhou, China, in 2010 and 2013, respectively,
and the Ph.D. degree in Communication and
Information System from Fuzhou University in
2016. He is currently an associate professor with
the College of Physics and Energy at Fujian
Normal University. Now he is the deputy director
of the Department of Energy and Materials, and
leads the Intelligent Computing research group.
His research interest mainly includes parallel

and distributed computing, computational intelligence, and data center
resource management. He has published over twenty journals and
conference articles, such as IEEE Transactions on Industrial Informatics,
and IEEE Transactions on Network and Service Management.

Zheyi Chen is currently a Ph.D. candidate in
computer science at the University of Exeter. He
received his M.Sc. degree in Computer Science
from Tsinghua University, China, in 2017, and
B.Sc. degree in Computer Science from Shanxi
University, China, in 2014. His research interests
include cloud computing, mobile edge comput-
ing, deep learning, and resource optimization.

Katinka Wolter received her Ph.D degree from
Technische Universität Berlin in 1999. She has
been Assistant professor at Humboldt-University
Berlin and lecturer at Newcastle University be-
fore joining Freie Universität Berlin as a profes-
sor for dependable systems in 2012. Her re-
search interests are model-based evaluation and
improvement of dependability, security and per-
formance of distributed systems and networks.
Special systems of interest to her are cryptocur-
rencies, data streaming systems and car traffic

networks.

Geyong Min is a Professor of High Performance
Computing and Networking in the Department
of Computer Science within the College of En-
gineering, Mathematics and Physical Sciences
at the University of Exeter, United Kingdom. He
received the Ph.D. degree in Computing Science
from the University of Glasgow, United King-
dom, in 2003, and the B.Sc. degree in Computer
Science from Huazhong University of Science
and Technology, China, in 1995. His research
interests include Computer Networks, Wireless

Communications, Parallel and Distributed Computing, Ubiquitous Com-
puting, Multimedia Systems, Modelling and Performance Engineering.

