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Abstract

This paper investigates the stability properties and performance of super-twisting sliding-mode control loops subject to periodic
perturbations. Although there exist conditions on the control gains that guarantee finite-time stability of the closed-loop
system, such conditions are often too restrictive from a practical standpoint, especially in relation to actuator limitations and
induced chatter. Using regularisation and averaging theory, it is proven that under milder conditions for the control gains, the
trajectories of the periodically perturbed closed-loop system converge to a stable limit cycle of the same period containing
the origin. Additionally, guidelines for selecting the controller gains are provided based on bounds of the closed-loop system
states. Finally, the theoretical findings are validated through simulations.
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1 Introduction

Over the last decades Variable-Structure Control (VSC)
[9] and, specifically, Sliding Mode Control (SMC) algo-
rithms [24] have become very popular in a large area
of applications, ranging from flight control and aviation
systems to machine tools and robots. Their key features,
i.e. robust rejection of bounded unknown disturbances
and finite-time convergence of the control error to the
origin, make sliding mode principles very attractive for
control and estimation, as well as for fault-diagnosis [8]
and fault-tolerant control [2]. Higher-order SMC meth-
ods have also been researched in connection to allevia-
tion of chattering effects [4], which are present in con-
ventional sliding modes. More specifically, the Super-
twisting Sliding Mode controller (STSMC) introduced
in [13] and further detailed in [14] and generalised in [12],
has been shown to guarantee robust finite-time stabili-
sation and reduced chattering for appropriate selection
of gains [15,18].

Systematic tuning of the STSMC based on performance
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specifications is highly desirable, especially in industrial
applications since it facilitates easy commissioning of
control systems and guarantees that certain levels of ac-
curacy are achieved. Although the design complexity of
the STSMC is relatively low, the selection of the con-
trol gains has received significant attention. Strict Lya-
punov functions were designed in [18] for ascertaining
finite-time convergence of the STSMC closed loop to the
origin. Explicit expressions for the controller gains were
provided, based on which, an estimation of the reaching
time was obtained. Geometric arguments proving finite-
time stability of the STSMC were provided in [5], where
the controller gains needed to satisfy certain bounding
conditions. A similar approach was followed in [21], in
which the authors provided necessary and sufficient con-
ditions for finite-time convergence to the origin. The
STSMC loop was tuned based on the requirement that
the majorant curve had to contract towards the origin.
Describing functions were used in [20] for the selection
of the STSMC gains and the tuning rules were based on
specifications for the properties of limit cycles that ap-
pear in linear systems with unmodelled actuator dynam-
ics. Additional studies that addressed the issue of con-
servative controller gains focused on variable-gain varia-
tions of the STSMC algorithm. The application of such
an adaptive STSMC design to an electropneumatic actu-
ator was presented in [23]. Finite-time convergence was
proven and the reaching time was calculated. A more re-
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cent approach to estimate the reaching time was given
in [22]. The combination of a certainty equivalence con-
troller with an adaptive gain STSMC was pursued in [3],
where the scheme was used to avoid unnecessary large
controller gains. A dual-layer adaptive STSMC was pre-
sented in [7] and [6]. Adaptation laws that guarantee
finite-time convergence to the origin were provided for
both known and unknown perturbation bounds.

Most of the aforementioned studies provide tuning rules
for the STSMC that guarantee finite-time convergence.
However they end up proposing gains that can be signif-
icantly large. A requirement that is common to all these
works pertains to the integral gain of the STSMC being
larger than the perturbation rate bound. This can be very
limiting in terms of actuator operation ranges and chat-
tering levels, especially in electromechanical systems. To
understand this, consider a simplified model of the angu-
lar velocity dynamics of a drive Permanent Magnet Syn-
chronous Motor (PMSM) in a linear axis system given
by

ω̇ =
1

J

⎡
⎢⎢⎣u− TC

2

π
arctan(αω)− βω︸ ︷︷ ︸

TF (ω)

−TL

⎤
⎥⎥⎦ , α > 100

where TF is the uncertain Coulomb and viscous friction
torque and TL is the known load torque [19]. The closed-

loop dynamics of the tracking error e(t) � ω(t) − r(t),
where r(t) is a sufficiently smooth demand signal using

the STSMC law u(t) = TL+Jṙ(t)−k1|e(t)| 12 sgn(e(t))−
k2
∫ t
0
sgn(e(τ))dτ , is given by

ė =
1

J

[
−k1|e| 12 sgn(e)− k2

∫ t

0

sgn(e(τ))dτ − TF

]
(1)

Ensuring finite-time convergence of the tracking error to

the origin requires that k2 >
∣∣∣ṪF

∣∣∣ [18,21], with
ṪF =

∂TF

∂ω
ω̇ =

[
β +

2αTC

π (1 + α2ω2)

]
u− TF (ω)− TL

J
(2)

Equation (2) shows that apart from then inherent diffi-
culty in calculating a not overly conservative bound for
ṪF due to the algebraic loop (the gains for the STSMC
in u depend on u itself), k2 must assume (unrealisti-

cally) large values since ṪF becomes very big for veloc-
ities close to zero (because of the steepness factor α).
However, despite these limitations it has been experi-
mentally shown [19] that under an appropriate selection
of the gains, the STSMC can outperform conventional
and several advanced control schemes in industrial ap-

plications, even if k2 <
∣∣∣ṪF

∣∣∣.

The tuning challenge is related to the fact that the the-
oretical condition for the selection of k2 stems from the
requirement of finite-time convergence of the controlled
variable to the origin, which is very demanding for real
physical systems. In fact, ensuring boundedness with pre-
scribed accuracy bounds can be sufficient for practical
applications that relate to tracking and positioning. Of
particular interest are the cases where the system dy-
namics is affected by periodic perturbations. Such is the
case of friction forces and cogging torques during motion
reversals of mechanical components in industrial appli-
cations that include repeated closed-curve tracking [1].
For instance, the motion profile of a machine tool drive
axis during a contouring task consists of periodic seg-
ments that include axis reversals. The effect of Coulomb
friction and stiction on the drive motor and axis dynam-
ics can be described as a periodic torque or force pertur-
bation that cause contouring deformations [10]. This is
the engineering motivation for the work in this paper.

The main contribution of this paper is that investigates
the stability properties of Single-Input Single-Output
(SISO) STSMC closed-loop systems with bounded-rate
periodic perturbations, where the conditions that guar-
antee finite-time convergence no longer hold. Specifi-
cally:

• It is shown that under milder (smaller) gain condi-
tions, the solutions of the closed-loop system converge
to a stable limit cycle around the origin, which has the
same period as the perturbation.

• Bounds for the control error are derived as functions
of the controller gains and the perturbation charac-
teristics.

• Guidelines for the tuning of the STSMC are provided
and validated in simulations.

The remainder of the paper is structured as follows: Sec-
tion 2 introduces the class of perturbed systems that
are examined in this study and states the underlying
assumptions. The analysis of the closed-loop system is
carried out in Section 3, where the stability properties
of the system are described and proven. Section 4 pro-
vides tuning guidelines on the selection of the STSMC
gains based on derived bounds on the controlled vari-
able. Simulation results that verify the theoretical find-
ings are presented in Section 5 and finally, concluding
remarks are given in Section 6.

2 Preliminaries

This study considers the scalar nonlinear systems de-
scribed by the differential equation

ẏ = h(t, y) + g(t, y)u0 + d(t) (3)

where y ∈ R is available from measurements, the scalar
functions h(t, y), g(t, y) ∈ C1 are bounded for bounded
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y, g(t, y) �= 0, ∀(t, y) ∈ [0,∞) × R and d(t) ∈ C2 is a
T -periodic perturbation. Selecting a control law

u0 = g−1(t, y) [−h(t, y) + u] (4)

u = −k1|y| 12 sgn(y)− k2

∫ t

0

sgn(y(τ))dτ (5)

where sgn(·) represents the signum function, results in
the following closed-loop dynamics

ẋ = f(t,x) ,with (6)

f(x) �
[
−k1|x1| 12 sgn(x1) + x2

−k2sgn(x1) + q(t)

]
, (7)

x =

[
x1

x2

]
�
[

y

−k2
∫ t
0
sgn(y(τ))dτ + d(t)

]

and q(t) � ḋ(t). Since d(t) ∈ C2 and is T -periodic, it
follows that its derivative is a continuous bounded T -
periodic function. Let |q(t)| ≤ L, where L > 0. It has
been shown [21] that if

k2 > L (8)

k1 ≥ 1.8
√
k2 + L, (9)

then the system in (6) has a unique finite-time stable
equilibrium point at the origin, irrespectively of the per-
turbation type. The same holds for any k1, k2 > 0 in the
case where q(t) ≡ 0 [18]. When k2 < L, not only can
finite-time stability not be guaranteed, but also the so-
lutions of the closed-loop system may grow unbounded.
Take for example the case where q(t) = L > k2. Then the
dynamics of x2 reads: ẋ2 = L−k2sgn(x2) ≥ L−k2 > 0,
which implies that lim

t→∞x2(t) = ∞. However, there can

be cases where the solutions of the closed-loop system
(6) are bounded even though k2 < L. This is very im-
portant in practical applications of the STSMC since it
means that acceptable performance may be achievable
under less demanding gain requirements. As it will be
shown in the next section, such cases include systems
where the perturbation (and its derivative) are contin-
uous T -periodic functions. Specifically, the conditions
for the controller gains under which the solutions of a
periodically perturbed STSMC closed-loop system re-
main bounded will be studied along with the stability
properties of such a system. The following assumption
is adopted for the rest of the study:

Assumption 1 The STSMC gains k1, k2 satisfy k1 > 0
and 0 < k2 < L.

3 Closed-loop system analysis

The stability properties of the periodically perturbed
closed-loop system will be analysed in this section. The
main idea is to employ tools from averaging theory. Con-
trary to existing developments in the field of averaging
for systems with discontinuous vector fields [16,17] that
rely on geometrical arguments, the approach used in this
paper pertains to working with a continuous version of
the original vector field, i.e. a regularisation of it [24].
This allows the use of more straightforward tools from
averaging theory for continuous vector fields. The im-
plication of this choice is that the regularised system
constitutes an approximation of the original system dy-
namics given in Equation (6). Showing that the regu-
larisation provides a uniform approximation of all pos-
sible behaviours of the original system is not a trivial
task and it is outside the scope of the paper. However,
it does capture all possible behaviours of the STSMC
closed loops that emerge in real applications, where at
best the signum function is approximated by a continu-
ous function. The next Proposition shows that such an
approximation can made with arbitrarily high accuracy.

Proposition 1 Consider the system defined in Equa-
tion (6), where the gains k1, k2 are selected according to
(8),(9). There exists a regularisation fδ(t,x) of the dis-
continuous vector field f(t,x) defined in (7) such that
for any finite δ > 0 any solution xδ(t; t0,xδ,0) of ẋδ =
fδ(t,xδ) starting atxδ,0 = xδ(t0) converges in finite time
tf to a rectangle containing the origin with area depending
on δ. The solution is contained in this rectangle ∀t > tf
and lim

δ→0
xδ(t; t0,xδ,0) = x(t; t0,x0) = 0 with x(t; t0,x0)

being the solution to (6) starting at x0 = x(t0).

PROOF. Let fδ(t,x) be a regularisation of f(t,x) de-
fined as

fδ(t,x) �
[
−k1|x1| 12φδ(x1, δ) + x2

−k2φδ(x1, δ) + q(t)

]
(10)

where δ > 0 and the continuous function φδ : R ×
(0,+∞) → [−1, 1] is defined as [17]

φδ(q, δ) �

⎧⎪⎨
⎪⎩
1 if q ≥ δ
q

δ
if − δ < q < δ

−1 if q ≤ −δ

. (11)

The regularised system can be written as

ẋ1 = −k1|x1| 12 sgn(x1) + x2 + k1|x1| 12 ρ(x1, δ) (12)

ẋ2 = −k2sgn(x1) + q(t) + k2ρ(x1, δ) (13)

where ρ(x1, δ) � sgn(x1) − φδ(x1, δ). It is easy to show
that the following properties for ρ hold:
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(1) |ρ(x1, δ)| ≤ 1, ∀x1 ∈ R, ∀δ > 0
(2) ρ(x1, δ) = 0, ∀x1 ∈ (−∞,−δ] ∪ [δ,+∞)
(3) lim

δ→0
ρ(x1, δ) = 0, ∀x1 ∈ R− {0}

As in [18], introducing the transformation

z =

[
z1

z2

]
�
[
|x1| 12 sgn(x1)

x2

]

allows for re-writing the regularised system as

ż = |x1|− 1
2Aw + q(t) + ξ(x1, δ) (14)

when x1 �= 0 with

A =

[
− 1

2k1
1
2

−k2 0

]
, q(t) =

[
0

q(t)

]
, ξ(x1, δ) =

[
1
2k1

k2

]
ρ(x1, δ)

When ρ(x1, δ) ≡ 0, i.e. δ = 0, it has been shown [18]
that provided that q(t) is globally bounded, there exists
selection of the gains k1, k2, that ensure the existence of
positive definite matrices

P �
[
p1 p2

p2 p3

]
, Q �

[
q1 q2

q2 q3

]

with p1, p3, q1, q3 > 0 and an absolutely contin-
uous Lyapunov function V0 = zTPz, such that
V̇0 ≤ −|z1|−1zTQz ≤ −c

√
V0, c > 0. Consider

V = zTPz as a Lyapunov function candidate for the
regularised system in Equation (14). Its time derivative
along the trajectories of (14) is given by:

V̇ = żTPz + zTP ż = V̇0 + 2zTPξ

≤ −|z1|−1zTQz + 2zTPξ , for z1 �= 0 .

If |x1| ≥ δ, then ξ(x1, δ) = 0 and V̇ ≤ −c
√
V < 0

[18], which implies convergence of x(t) to either x(tf ) =[
δ x2(tf )

]T
or x(tf ) =

[
−δ x2(tf )

]T
in some finite time

tf . For |x1| < δ or equivalently |z1| <
√
δ then

V̇ ≤ − 1√
δ
zTQz + 2zTPξ . (15)

In order to find conditions for V̇ < 0, it suffices to inves-
tigate where the inequality

−zTQz + 2
√
δzTPξ < 0 (16)

holds. Notice that although ξ is a function of the state
vector, it is globally bounded since

‖ξ(x1, δ)‖ =

√
1

4
k21 + k22|ρ(x1, δ)| ≤

√
1

4
k21 + k22 � κ̄

x1

x2

V̇ ≤ −c
√
V

V̇ < 0

−δ δ

−ε0

ε0

(δ, x2(tf ))

x0W

Fig. 1. The trajectories are confined in a rectangle W with
area equal to A(δ) = 4δε0(δ) that tends to 0 as δ → 0.

for a given δ > 0 and ∀x1 ∈ R.With
√|x1| <

√
δ, the left

hand side of (16) can be expanded like in the following:

− q1|x1| − 2
√

|x1|sgn(x1)x2q2 − q3x
2
2

+ 2
√
δ
√

|x1|sgn(x1) (p1ξ1 + p2ξ2) + 2
√
δx2 (p2ξ1 + p3ξ2)

≤ −q3|x2|2 − q1|x1|+ 2
√

|x1||q2||x2|
+ 2

√
δ
√

|x1|
√

p21 + p22‖ξ‖+ 2
√
δ|x2|
√

p22 + p23‖ξ‖
≤ −q3|x2|2 + μ|x2|+ ν � Λ (|x2|)

with the coefficients of the polynomial Λ (|x2|) defined as

μ � 2
√
δ

(
|q2|+ κ̄

√
p22 + p23

)
, ν � 2δκ̄

√
p21 + p22 .

Since the discriminant of Λ (|x2|) is positive for δ > 0,
there exist two distinct real roots �1(δ), �2(δ) with

max(|�1|, |�2|) =
√
δ

q3

∣∣∣∣|q2|+ κ̄
√

p22 + p23

+

√(
|q2|+ κ̄

√
p22 + p23

)2

+ 2q3κ̄
√

p21 + p22

∣∣∣∣∣∣ � ρ̄
√
δ

such that Λ (|x2|) < 0, ∀|x2| > max(|�1|, |�2|). This,
in turn, implies that for every δ > 0 there exists 0 <
ε0(δ) ≤ max(|�1|, |�2|), such that for every |x2| > ε0,

Λ(|x2|) < 0 and hence, V̇ < 0. It follows that outside
the rectangle W = {(x1, x2) ∈ R

2
∣∣|x1| ≤ δ, |x2| ≤ ε0}

(see Figure 1) V̇ <0 holds. Furthermore, the area A of

the rectangle satisfiesA ≤ 4δ
√
δρ̄, which is a continuous,

strictly increasing function of δ and vanishes as δ → 0.�

The main result of this paper pertains to showing the
existence of a unique limit cycle in the dynamics of the
approximated system and it is stated in the following
proposition.

Proposition 2 Consider the closed-loop system (6) and
its approximation associated with the regularisation (10),
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where q(t) is Lipschitz, T -periodic of sufficiently small
period T and |q(t)| ≤ L. Then, ∃ε1 > 0 with 0 < T < ε1
such that under the conditions

k2 >

∣∣∣∣∣ 1T
∫ T

0

q(t)dt

∣∣∣∣∣ (17)

k1 ≥ 1.8

√√√√k2 +

∣∣∣∣∣ 1T
∫ T

0

q(t)dt

∣∣∣∣∣ (18)

the trajectories of the regularised system ẋ = fδ(t,x)
converge to a limit cycle with period T .

PROOF. The regularised system can be written as

ẋ = ε
1

T
fδ(t,x) � εg(t,x) , ε = T , (19)

where g(t,x) is obviously Lipschitz continuous and T -
periodic. The associated averaged system is written as

χ̇ = εḡ(χ), χ =
[
χ1 χ2

]T
∈ R

2 (20)

with εḡ(χ) = 1
T

∫ T
0
fδ(t,x)dt and finally

χ̇ =

[
−k1|χ1| 12φδ(χ1, δ) + χ2

−k2φδ(χ1, δ) +
1
T

∫ T
0
q(t)dt

]
. (21)

Comparing (21) to (10) and taking Proposition 1 into
consideration, reveals that if conditions (17) and (18) are
satisfied, then for sufficiently small δ (δ → 0) the origin
is a finite-time stable equilibrium point of the averaged
system. Then, by Theorem 4.1.1 in [11], there exists ε1 >
0, such that ∀ε ∈ (0, ε1), the solutions of (19) converge
to a unique isolated T -periodic orbit γε(t) = O(ε). �

Remark 1 The constant ε1 can be associated with the
largest time scale 1

ε1
, on which approximating the regu-

larised system, by averaging, is of practical validity. The
size of the limit cycle along x1 = 0 relates to the closed-
loop system accuracy. The next Proposition shows that
this size depends on the perturbation characteristics.

Proposition 3 After the trajectories of the closed-loop
system converge to the limit cycle, the bound on the state
x1 varies proportionally to the perturbation bound L and
to the square of the perturbation period T .

PROOF. Denote the four quadrants of the phase space
with Qj , j = 1, . . . , 4. Introducing the new coordinates

−2 · 10−4−1 · 10−4 0 1 · 10−42 · 10−4

−0.01

0

0.01

w1(t2r+1)

w1(t2i−1) w1(t2i)

wmax
1

wmin
1

Q1Q2

Q3 Q4

w1

w
2

Fig. 2. One full period of the limit cycle to which the trajec-
tories of the closed-loop system in (6) converge.

w1 � x1 and w2 � ẋ1 allows for re-writing (6) as:

ẇ1 = w2 (22)

ẇ2 = −1

2
k1|w1|− 1

2w2 − k2sgn(w1) + q(t) (23)

Consider one period of the limit cycle as shown in Figure
2 restricted in Q1, Q4. For t ≥ t0 assume that the tra-
jectories w(t) intersect with semi-axis w1 ≥ 0 at 2r + 1

points, r ∈ N starting from wmax
1 � w1(t0), which is the

maximum value of w1(t). Since the trajectories cannot
cross from Q1 to Q2 (due to increasing w1), each trajec-
tory segment that lies in Q4 starting at an intersection
point will have to either cross the semi-axis w1 ≥ 0 twice
(one while crossing toQ1 and one right after while cross-
ing toQ4) or cross the vertical axis towardsQ3. In either
cases, there will always be an odd number of intersec-
tions with the semi-axis w1 ≥ 0. Let these intersections
occur at time instances t2i (from Q1 to Q4) and t2i+1

(from Q4 to Q1), i ∈ I � {0, . . . , r} with w(t) cross-
ing from Q4 to Q3 at t = t2r+1. In each time interval
[t2i, t2i+1], where w1(t) > 0, w2(t) ≤ 0 holds (red lines):

ẇ2(t) = − 1

2
√
w1(t)

k1w2(t)− k2 + q(t) ≥ −(k2 + L) ⇒

w2(t) ≥ −(k2 + L)(t− t2i), ∀t ∈ (t2i, t2i+1] (24)

since w2(t2i) = 0. The previous inequality leads to∫ t2i+1

t2i

w2(t)dt > −1

2
(k2 + L)(t2i+1 − t2i)

2, i ∈ I.

Hence, since w1(t2r+1) = 0 and w2(t) ≥ 0, ∀t ∈
[t2i−1, t2i], i ∈ I − {0}, it follows that

− wmax
1 =

∫ t2r+1

t0

w2(t)dt =
r∑

i=0

∫ t2i+1

t2i

w2(t)dt

+

r∑
i=1

∫ t2i

t2i−1

w2(t)dt ≥ −1

2
(k2 + L)

r∑
i=0

(t2i+1 − t2i)
2

> −1

2
(k2 + L)

(
r∑

i=0

(t2i+1 − t2i)

)2

> −1

8
(k2 + L)T 2
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−0.0001 0 0.0001

−0.01

0

0.01
(w1(t0), w2(t0)) (w1(t

∗), w2(t
∗)

(w1(tm), w2(tm))

w1

w
2

Fig. 3. One full period of the limit cycle to which the trajec-
tories of the closed-loop system in (6) converge.

given that t2i+1 > t2i, ∀i ∈ I and
r∑

i=0

(t2i+1 − t2i) <

t2r+1− t0 < T
2 . This leads to wmax

1 < 1
8 (k2+L)T 2. Due

to the homogeneity of the STSMC closed-loop system
[21], by following the same reasoning in Q2 one obtains
−wmin

1 < 1
8 (k2 + L)T 2, where wmin

1 < 0 is the mini-
mum value that x1 assumes. Finally, combining the two
inequalities leads to

max
x(t)∈γε(t)

|x1(t)| = max
(
wmax

1 ,−wmin
1

)
<

1

8
(k2+L)T 2 ,

(25)
which completes the proof. �

Remark 2 Proposition 3 implies that the perturbation
effect on the system vanishes as T → 0. This can be in-
terpreted as the perturbation not having “enough time”
to affect the system compared to the system’s dynamics
time scale.

4 Tuning guidelines

A geometric approach is followed in this section to de-
rive bounds for x1 = w1. These bounds are expressed
as functions of the controller gains k1, k2, the pertur-
bation bound L and its period T . The importance of
this derivation is twofold: The dependence of the bound
on the gains provides some guidelines for the tuning of
the STSMC. Conversely, the perturbation parameters
can be used for predicting the closed-loop system per-
formance given a specific set of controller gains.

Consider the limit cycle γε(t) to which the trajectories
of the closed loop system (22)-(23) converge, restricted
to the time interval [t0, tm] as shown in Figure 3, where
t0 = 0 is the instant when the trajectories cross from
Q4 to Q1 and w1(tm) = wmax

1 . Let t∗ ∈ [t0, tm) be the
time instant where w2 assumes its maximum value, i.e.
w2(t

∗) ≥ w2(t), ∀t ∈ [t0, tm]. Integrating Equation (23)
over the interval [t0, tm], where w1(0) = 0, w2(0) > 0,
w1(tm) = wmax

1 , w2(tm) = 0 and ẇ2(t
∗) = 0 leads to

∫ tm

0

ẇ2(t)dt =

∫ tm

0

(q(t)− k2)dt−
∫ tm

0

k1
ẇ1(t)

2
√

w1(t)
dt

⇒ −w2(0) ≤ −k1
√

wmax
1 + (L− k2)tm ⇒√

wmax
1 ≤ w2(0) + (L− k2)tm

k1
. (26)

Moreover, evaluating Equation (23) at t = t∗ gives

k1w2(t
∗)

2
√
w1(t∗)

= q(t∗)− k2 ⇔ w2(t
∗) = 2

q(t∗)− k2
k1

√
w1(t∗) .

(27)

Since w2(t
∗) ≥ w2(t), ∀t ∈ [t0, tm], Equation (27) yields

w2(0) ≤ w2(t
∗) ≤ 2(L− k2)

k1

√
w1(t∗) ≤ 2(L− k2)

k1

√
wmax

1

which combined with (26) leads to

√
wmax

1 ≤
2(L−k2)

k1

√
wmax

1 + (L− k2)tm

k1
⇒[

k1 − 2(L− k2)

k1

]√
wmax

1 ≤ k1(L− k2)nT, 0 < n ≤ 1

2
,

(28)

since 0 < tm ≤ T
2 . Finally, selecting

k1 >
√
2(L− k2) (29)

facilitates estimating a bound for the width wmax
1 of the

limit cycle along the x1-axis through (28). Specifically,

wmax
1 ≤ (L− k2)

2n2T 2[
k1 − 2(L−k2)

k1

]2 � W1(k1, k2) . (30)

Carrying out the same calculations but inQ3 leads to the
same inequality. The bound obtained in (30) is a function
of the STSMC gains k1, k2 as well as of the perturbation
boundL, its period T and the parameter n that expresses
the time tm as a fraction of T . Although this bound is
conservative, especially if n = 1

2 , it can provide a useful
insight regarding the tuning of the closed loop. It can be
easily seen from (30) that lim

k1→∞
W (k1, k2) = 0, which

means that provided that k1, k2 satisfy conditions (17),
(18) and (29), the gains can be gradually increased in
order to achieve accuracy better than W1(k1, k2). Given
a specific error bound η > 0, it is possible to employ
numerical optimisation methods for obtaining k∗1 , k∗2
such that |W (k∗1 , k

∗
2) − η| ≤ ε, where ε > 0 is some

numerical tolerance.

Remark 3 The level of chatter in the controlled vari-
able w1 and, by extension, in the control signal relates

6



to the maximum rate of change of w1, i.e. the bound on
w2. By following a similar argument as in inequality (24)
but for the first quadrant in Figure 3, it can be shown
that |w2(t)| ≤ |w2(t

∗)| ≤ (k2+L)T2 . This implies that if
k2 cannot be selected larger than L, increasing its value
introduces a trade-off between smaller error and larger
amount of chatter.

Remark 4 It is important to note that the approxima-
tion of the bound holds only if k1 >

√
2(L− k2), which

is another tuning decision. If this condition on k1 is disre-
garded, k1 can be selected to satisfy (18) and still achieve
acceptable bounds on x1. However, inequality (30) can
no longer be used to estimate these bounds.

5 Simulation results

The tracking problem for the angular velocity ω of a mo-
tor that is perturbed by torque ripples is considered for
illustrating the theoretical findings in simulation. Con-
sidering a constant angular velocity set point ωr, then
the dynamics of the tracking error e � ω−ωr is given by

ė =
1

J
[u− TF (ω) + d(t)]

d(t) = L1 cos(ωrt) + L2 cos(ωr3t), L1 = 3L2 = − LJ

2ωr
,

where L > 0, TF is the known friction torque and d(t)
is the periodic perturbation due to torque ripples (e.g.
cogging and parasitic torques). Applying the control law

u = J

[
−k′1|e|

1
2φδ(e, δ)− k′2

∫ t

0

φδ(e(τ), δ)dτ + TF (ω)

]

brings the closed-loop vector field in the form (10), with

x1 � e, k1 � k′
1

J , k2 � k′
2

J , k′1, k
′
2 > 0 and q(t) � ḋ

J =
L
2 [sin(ωrt) + sin(ωr3t)], which is T -periodic with T =
2π
ωr

and |q(t)| ≤ L.

Figure 4 shows the trajectories of the system’s solutions
with L = 2.5 and T = 0.25s for different initial condi-
tions. The gains were selected as k1 = 1 and k2 = 2,
which satisfy conditions (17) and (18). Proposition 3 was
also validated in simulation. The system was tested for
different values of L and T . As it can be seen in Figure 5,
the width of the limit cyclewmax

1 along the x1-axis in the
phase plot grows linearly with the bound L of the per-
turbation and quadratically with the period T . Finally,
the system was simulated under sinusoidal perturbation
for two different values of magnitude L ∈ {2.5, 25} and
two different periods T ∈ {2, 0.25}. The objective of
these tests was to compare the gains obtained by (30)
for a given accuracy specification η = 0.01 with the ones
required for finite-time stability. Moreover, the actual
maximum deviation of x1 from the origin was compared
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x1(t)

x
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0
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x
1
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1.5 2 2.5 3 3.5
−5

0

5
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Fig. 4. (Top) Starting from different initial conditions,
the trajectories converge to a stable limit cycle of period
T = 0.25s. (Middle) Time response of x1(t) for two different
initial conditions. (Bottom) Periodic perturbation rate q(t).
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Fig. 5. Bound on x1(t) as a function of the perturbation
bound L (top), and the perturbation period T (bottom).

to the expected bound W1. In all the tests, the gains
k1, k2 were obtained by trying to solve the optimisation
problem stated in Section 4. Apart from the conditions
(17), (18) and (29), additional saturation constraints
were considered for the gains of the STSMC. This was
done to ensure that Assumption 1 will not be violated.
Table 1 shows the results of the simulations where k̄1, k̄2
denote the gains required for finite-time stability. The
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Table 1
Actual and estimated bound for the controlled variable x1.

T L k̄1 k̄2 k1 k2 |x1| W1

2 2.5 4.12 2.75 4.12 0.43 0.0099 0.01

2 25 13.04 27.5 12.54 12.9 0.0055 0.12

0.25 2.5 4.12 2.75 1.76 1.08 0.0002 0.01

0.25 25 13.04 27.5 6.14 9.74 0.0016 0.01

suggested values for k1 are close to the ones of k̄1 for the
slow perturbation but the ones for k2 were chosen to be
approximately 50% of those of k̄2 in all cases. The esti-
mated bound is not always close to the prescribed ac-
curacy η due to the saturation constraints on the gains
k1, k2. However, the actual bound for x1 is up to 58 times
smaller than the conservative estimation W1.

6 Conclusions

The stability of under-tuned super-twisting sliding mode
control loops under the effect of periodic perturbations
were studied in this paper. Based on arguments from
regularisation and averaging theory, it was shown that
under milder gain conditions than the ones required for
finite-time stability, the solutions of the closed-loop sys-
tem, for sufficiently fast periodic perturbations, converge
to a stable limit cycle. The width of the limit cycle in
the phase plane linearly increases with the perturbation
bound, while it quadratically decreases for smaller per-
turbation periods. Moreover, tuning guidelines were pro-
vided, based on a conservative estimation of the bound
of the control variable. The theoretical findings were ver-
ified in simulation. Experimental validation will be pur-
sued in future work, especially in the context of motion
control systems such as machine tool drive trains.

References

[1] Y. Altintas. Manufacturing Automation: Metal Cutting
Mechanics, Machine Tool Vibrations, and CNC Design.
Cambridge University Press, 2 edition, 2012.

[2] H. Alwi, C. Edwards, and C. P. Tan. Fault Detection and
Fault-Tolerant Control Using Sliding Modes. Springer Science
& Business Media, 2010.

[3] A. Barth, M. Reichhartinger, J. Reger, M. Horn, and
K. Wulff. Lyapunov-design for a super-twisting sliding-mode
controller using the certainty-equivalence principle. Ifac-
papersonline, 28(11):860–865, 2015.

[4] G. Bartolini, A. Ferrara, and E. Usai. Chattering avoidance
by second-order sliding mode control. IEEE Transactions on
automatic control, 43(2):241–246, 1998.

[5] A. K. Behera, A. Chalanga, and B. Bandyopadhyay. A
new geometric proof of super-twisting control with actuator
saturation. Automatica, 87:437–441, 2018.

[6] C. Edwards and Y. Shtessel. Adaptive dual-layer super-
twisting control and observation. International Journal of
Control, 89(9):1759–1766, 2016.

[7] C. Edwards and Y. B. Shtessel. Adaptive continuous higher
order sliding mode control. Automatica, 65:183–190, 2016.

[8] C. Edwards, S K. Spurgeon, and R. J. Patton. Sliding
mode observers for fault detection and isolation. Automatica,
36:541–553, 2000.

[9] S. V. Emelyanov. Variable structure control systems.
Moscow, Nouka, 1967.

[10] H. Gross, J. Hamann, and G. Wiegärtner. Electrical feed
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