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ABSTRACT 

Remote sensing has revolutionised many aspects of ecological research, enabling 

spatiotemporal data to be collected in an efficient and highly automated manner. The last two 

decades have seen phenomenal growth in capabilities for high-resolution remote sensing that 

increasingly offers opportunities to study small, but ecologically important organisms, such 

as insects. Here we review current applications for using remote sensing within 

entomological research, highlighting the emerging opportunities that now arise through 

advances in spatial, temporal and spectral resolution. Remote sensing can be used to map 



environmental variables, such as habitat, microclimate and light pollution, capturing data on 

topography, vegetation structure and composition, and luminosity at spatial scales 

appropriate to insects. Such data can also be used to detect insects indirectly from the 

influences that they have on the environment, such as feeding damage or nest structures, 

whilst opportunities for directly detecting insects are also increasingly available. 

Entomological radar and light detection and ranging (LiDAR), for example, are transforming 

our understanding of aerial insect abundance and movement ecology, whilst ultra-high spatial 

resolution drone imagery presents tantalising new opportunities for direct observation. 

Remote sensing is rapidly developing into a powerful toolkit for entomologists, that we 

envisage will soon become an integral part of insect science.  
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I. INTRODUCTION  

Remote sensing has revolutionised research in many fields of ecology and 

environmental science (Kerr & Ostrovsky, 2003; Chapman, Drake & Reynolds, 2011; 

Anderson & Gaston, 2013; Pettorelli et al., 2014; Davies & Asner, 2014; Zellweger et al., 

2019; Nowak, Dziób & Bogawski, 2019). Monitoring of ecological phenomena is dependent 

upon observational data collected across time and space that is often labour-intensive and 

expensive to obtain via conventional field sampling (Turner et al., 2003). The last four 

decades have seen the emergence of increasingly versatile remote-sensing products, which 

can offer efficient and automated methods of capturing such data (Riley et al., 2007; 

Anderson & Gaston, 2013; Belward & Skøien, 2015). These have developed into powerful 

tools for ecological research, enabling data to be collected over much larger areas and at 

greater frequency than would otherwise be possible (Kerr & Ostrovsky, 2003; Anderson & 

Gaston, 2013).  

Insects form a major component of Earth’s biodiversity and play a crucial role in 

many ecosystem functions (Gullan & Cranston, 2010). Remote sensing of insects, however, 

presents considerable challenges, due to both the cryptic nature of many species, and the 

constraints imposed by the resolution of available data. Insects are often orders of magnitude 

smaller than the spatial resolution (pixel size) of many remote-sensing products, whilst the 

short life cycles of many species mean that key phenomena for their monitoring and detection 

can be easily missed at low temporal resolutions (long revisit times between data collection) 



(Senf, Seidl & Hostert, 2017). Consequently, both the organisms themselves, along with the 

fine-scale habitat features which they may rely on, can be difficult to detect remotely (Nansen 

& Elliott, 2016; Senf et al., 2017).  

In spite of these limitations, remote-sensing applications have a long history within 

entomological research (Riley, 1989; Nansen & Elliott, 2016). In particular, extensive efforts 

have been directed towards the detection and monitoring of insect pests within agriculture 

and forestry settings (Latchininsky, 2013; Senf et al., 2017; Zhang et al., 2019; Iost Filho et 

al., 2020). Considerable potential remains to be realised, however, particularly in relation to 

broader aspects of studying insect ecology and conservation. Here, the use of remote sensing 

is still relatively rare (Leyequien et al., 2007; Galbraith, Vierling & Bosque-Pérez, 2015; 

Nowak et al., 2019), but as technology continues to advance, new avenues are opening 

rapidly. 

The last two decades have witnessed phenomenal growth in the availability of very 

high resolution remote-sensing products. Satellite missions, such as the Copernicus 

Programme’s Sentinel satellites, now offer ~10 m spatial resolutions with revisit times of less 

than a week, whilst sub-metre spatial resolutions at daily revisit times are now available from 

some commercial satellites (Drusch et al., 2012; Belward & Skøien, 2015) (Table 1). 

Affordable drone technology has rapidly emerged over this same period, offering localised 

surveys on demand and in unprecedented detail (Anderson & Gaston, 2013; Nowak et al., 

2019), whilst a renaissance of entomological radar has transformed the monitoring of 

airborne insects (Chapman et al., 2011). These recent developments offer enormous potential 

for insect science, which we seek to highlight in this review. 

 

II. REMOTE-SENSING TECHNIQUES 

(1) Platforms 



For the purposes of this review, remote sensing is defined as the detection of emitted 

or reflected electromagnetic radiation from afar. Sensors capable of detecting electromagnetic 

radiation may be deployed from a range of ground-based, satellite and aerial (such as aircraft 

and drones) platforms, the choice of which is largely governed by trade-offs between spatial 

and temporal resolution, and the geographical extent of the data required (Nagendra, 2001). 

Airborne platforms, for example, can offer higher spatial resolution images than satellite 

platforms, as they are operating at much lower altitudes (Anderson & Gaston, 2013). Drone 

technology, in particular, has revolutionised fine-scale remote sensing in recent years, with 

slow, low-altitude flights offering data at centimetre resolutions (Anderson & Gaston, 2013; 

Nowak et al., 2019). Spatially fine-scale data, however, typically involve a trade-off with 

geographical extent. Due to constraints imposed by limited flight times and a narrow swath 

(geographical coverage of each flypast), aerial platforms are usually only suitable for regional 

(aircraft) or site-level (drones) surveys (Khorram et al., 2012). The revisit times of aerial 

platforms can, however, be defined by the end-user, although in practice high operational 

costs are often restrictive in this respect for aircraft surveys (Anderson & Gaston, 2013). 

Satellites, on the other hand, can offer global coverage, but the temporal resolution of these 

data is determined by the satellite’s orbit and, for certain forms of data (e.g. optical data), also 

conditional on cloud-free conditions (Turner et al., 2003). Furthermore, higher temporal 

resolution for satellites has historically involved a cost of lower spatial resolution, however a 

new generation of Earth observation satellites (e.g. Sentinel-2) are now offering both fine-

scale temporal and spatial coverage (Drusch et al., 2012) (Table 1). Very high spatial 

resolution (sub-metre) products are also increasingly available from a growing range of 

commercial satellites, but these can be costly to obtain data from and so most users will be 

restricted to a single image (Nagendra et al., 2013).  

 



(2) Sensors 

Sensors supported by remote-sensing platforms can be categorised as either active or 

passive (Pettorelli et al., 2014). Active sensors emit their own radiation and then analyse the 

returning backscatter that is reflected back to them by objects. Passive sensors, on the other 

hand, measure the natural radiation, such as sunlight or thermal infrared, that is reflected or 

emitted by objects. 

 

(a) Optical sensors  

Optical sensors passively detect reflected electromagnetic radiation within the visible 

light (400–700 nm), near-infrared (NIR) (700–1400 nm) and shortwave infrared (SWIR) 

(1400–3000 nm) regions of the spectrum (Fig. 1). Depending on the application, the spectral 

resolution of instruments can range from panchromatic (single broad band) and standard red, 

green and blue (RGB) cameras (three band), through to multispectral and hyperspectral 

sensors that may comprise up to a dozen or hundreds of narrow spectral bands, respectively 

(Khorram et al., 2012). Panchromatic and RGB sensors mounted on satellite, aircraft or drone 

platforms provide aerial photographs for the mapping of landscape features, whilst the greater 

spectral resolution (more spectral bands with narrower sensitivity ranges) afforded by 

multispectral and hyperspectral sensors can assist with distinguishing vegetation 

characteristics (Khorram et al., 2012). Higher spectral resolution, however, typically involves 

a trade-off with an increased cost and payload of sensors (Iost Filho et al., 2020).  

Analysing reflectance profile data may involve the interpretation of spectral 

signatures (e.g. specific peaks or troughs in the spectral profile) or the computation of 

vegetation indices derived from the ratios between different spectral bands (Iost Filho et al., 

2020). Normalised Difference Vegetation Index (NDVI), for example, is a widely used index 

derived from the ratio between the reflectance of visible red light and NIR (Pettorelli et al., 



2011). As photosynthesising vegetation absorbs visible red light but reflects radiation in the 

NIR region, NDVI provides an index of net primary productivity from which plant biomass 

and Leaf Area Index (LAI: one-sided leaf area per unit area of ground surface) can be 

estimated (Pettorelli et al., 2011).  

 

(b) Thermal imaging 

Thermal imaging measures the long-wave (thermal) infrared radiation (TIR) (8000–

15000 nm) emitted by objects to derive estimates of their surface temperatures (Fig. 1). The 

relationship between temperature and radiation emittance is described by the Stefan–

Boltzmann Law and is dependent upon the object’s emissivity – how effectively its surface 

emits radiation (Vollmer & Möllmann, 2017). To obtain an accurate calculation of 

temperature, therefore, the emissivity of the surfaces being measured needs to be known. 

Most habitat surfaces have a broadly similar emissivity, with mean values falling between 

0.903 and 0.997 for a wide range of vegetation, rock and soil types (Rubio, Caselles & 

Badenas, 1997). This variation can, nonetheless, still prove problematic where highly 

accurate measurements of surface temperature are required for heterogenous environments, 

but can increasingly be resolved with the use of image classification methods to differentiate 

surface types within an image (Faye et al., 2016). Thermal imagery from satellite platforms 

typically offers spatial resolution in the range of 100–1000 m (Table 1), whilst drone-

mounted sensors are now capable of capturing thermal images at centimetre resolution. 

Thermal imaging can be used for applications such as the mapping of microclimate, 

monitoring plant health or distinguishing objects and organisms that thermally contrast with 

their surroundings. It should be noted, however, that such data only represent a snapshot of 

thermal conditions at a given moment in time. Multiple images at different times of day and 



year, and under different weather conditions will be necessary in order to capture the full 

variability of surface temperature through time (Bramer et al., 2018).  

 

(c) LiDAR 

  Light detection and ranging (LiDAR) is a form of active sensing that uses NIR laser 

pulses to measure the distance of objects (Davies & Asner, 2014) (Fig. 1). The energy 

waveform of the backscattered laser light is used to calculate individual return times and 

produce a point cloud from which three-dimensional structure is determined (Vierling et al., 

2008; Zellweger et al., 2019). In an ecological context, LiDAR can be used to map 

topography and vegetation structure at fine spatial resolutions (sub-metre), or can be used to 

detect small, airborne objects, such as insects (Davies & Asner, 2014; Brydegaard & Jansson, 

2019). For mapping purposes, LiDAR systems are usually aircraft-mounted, enabling 

coverage of entire landscapes or regions (Davies & Asner, 2014). As laser pulses are 

generally wider than individual leaves when they encounter vegetation, some of the light is 

able to pass through the upper canopy to reach sub-canopy levels and the ground, providing 

information on vertical habitat structure (Zellweger et al., 2019). Sub-canopy vegetation 

structure can be captured in even greater detail with terrestrial laser scanning (TLS). Ground-

based LiDAR systems, such as TLS or the various forms of entomological LiDAR (which 

may be scanning or a horizontal fixed-beam), can offer spatial resolutions of just a few 

millimetres, but are limited in geographical range to within just a few metres (for TLS) or 

hundreds of metres (for entomological LiDAR) (Vierling et al., 2008; Zellweger et al., 2019; 

Brydegaard & Jansson, 2019). At the other end of the scale, the Global Ecosystem Dynamic 

Investigation LiDAR (GEDI) is a new space-based system housed onboard the International 

Space Station. Beginning operation in 2019, it offers spatially coarse (~25 m footprint 



resolution), but temporally high resolution structural data at a global scale, between latitudes 

of 51.6° N and 51.6° S (Dubayah et al., 2020).  

 

(d) Radar 

Radio detection and ranging (radar) is a form of active sensing that uses microwaves 

(Fig. 1). Radar systems emit pulses of microwave radiation and then analyse the returning 

energy waveform that is reflected from objects. The returning backscatter at a given 

wavelength and polarisation can provide information on an object’s structure and dielectric 

properties (e.g. water content) (Bergen et al., 2009). Synthetic-aperture radar (SAR) is 

deployed on moving platforms, such as satellites or aircraft, and is used for mapping 

topography and vegetation structure (Bergen et al., 2009). SAR data from satellite platforms 

are readily available at high temporal resolutions and have the advantage over LiDAR and 

optical methods of being unaffected by cloud cover (Bergen et al., 2009). Vertical-looking 

radar (VLR) is a ground-based system that is used to detect airborne objects passing through 

a narrow, conical beam above the transmitter (Chapman, Reynolds & Smith, 2003). It can be 

used for monitoring airborne insect activity and migration, capturing information on insect 

morphology, position, horizontal speed and direction of travel (Chapman et al., 2003). 

Harmonic radar is used for tracking insect movement at low altitudes over distances of <1 km 

(Chapman et al., 2011). A rotating, scanning radar emits a signal at a particular frequency, 

which is received by a small, passive transponder fitted to the insect being tracked. This 

transponder then re-emits the signal at a different frequency so that it can be detected by the 

receiver, allowing the insect’s location to be determined (Chapman et al., 2011). 

 

(e) Structure-from-motion 



Structural information can also be obtained passively from aerial photographs using a 

process called structure-from-motion photogrammetry (SfM). SfM uses multiple, overlapping 

photographs taken from different camera positions to determine three-dimensional structure 

and camera pose simultaneously (Westoby et al., 2012). The process is fully automated and is 

now widely used as a method for mapping three-dimensional surfaces at centimetre 

resolutions from aerial drone images. The low operational costs and the user-defined 

flexibility of drone platforms are strong advantages of SfM, however, where vegetation cover 

is dense, it is less able to capture sub-canopy details compared to either LiDAR or radar 

(White et al., 2013; Wallace et al., 2016).  

 

III. HABITAT MAPPING 

Mapping of habitats is amongst the oldest and most widespread uses of remote 

sensing within ecology (Pettorelli et al., 2014). Continuous datasets of aerial photographs 

extend as far back as the early 1930s in some cases (Morgan, Gergel & Coops, 2010), whilst 

long-term satellite programmes have been collecting multispectral imagery since the first 

Landsat mission was launched in 1972 (Belward & Skøien, 2015). These longstanding data 

sets have been used extensively by ecologists to quantify changes in land cover through time 

and to explore species’ responses to the extent, connectivity and condition of habitats within 

landscapes (Kerr & Ostrovsky, 2003; Turner et al., 2003; Nagendra et al., 2013; Pettorelli et 

al., 2014). Habitat mapping has been widely used as a surrogate for species’ distribution and 

abundance (Nagendra, 2001; Leyequien et al., 2007), whilst the ease with which remote-

sensing data can be collated at different grain sizes has greatly facilitated investigation of 

species’ responses to landscape structure across multiple spatial scales (Galbraith et al., 

2015).  

 



(1) Vegetation indices 

Vegetation indices derived from reflectance data have been used quite widely as a 

proxy for mapping insect diversity. The most commonly used index for this purpose is 

NDVI, as it relates to primary productivity, plant biomass and habitat complexity (Pettorelli 

et al., 2011). Spatial variation in NDVI, for example, has been used as a predictor of butterfly 

(Levanoni et al., 2011) and ant (Lassau et al., 2005) species richness, and to predict the 

abundance, richness and composition of beetle assemblages (Lassau & Hochuli, 2008). Using 

very high resolution NDVI satellite data (2 m × 2 m) from WorldView-2, for example, 

Mairota et al. (2015) were able to model spatial patterns in lepidopteran and orthopteran 

diversity at varying grain sizes across calcareous grasslands in southern Italy. Their models 

incorporated both the standard deviation of NDVI and metrics relating to image texture for 

each nested sample site. Seasonal changes in vegetation indices have also been used as a 

proxy for insect phenology. Normalised difference water index (NDWI) and snow melt dates 

derived from MODIS satellite data, for example, have been used to predict the peak flight 

periods of moth species in Finland (Pöyry et al., 2018). Similarly, satellite-derived NDVI has 

been used as a predictor of honeybee (Apis mellifera) hive phenology (Nightingale et al., 

2008), whilst ground-based measurements of NDVI have been used to predict seasonal 

changes in tundra arthropod biomass (Sweet et al., 2015). With drone platforms, it is now 

even possible to capture phenological changes in vegetation at the scale of individual tree 

crowns (Fawcett, Bennie & Anderson, 2021). 

 

(2) Microhabitat characteristics 

Conventionally, mapping of habitat has tended to consider broad classifications of 

vegetation communities (Dennis, Shreeve & Van Dyck, 2003), and this remains true for 

remote sensing (Willcox et al., 2018). Using multispectral satellite imagery to identify 



patches of semi-natural grassland, for example, Luoto, Kuussaari & Toivonen (2002) were 

able to incorporate potential habitat patches into a distribution model of the clouded Apollo 

butterfly (Parnassius mnemosyne) in southwest Finland. Such vegetation units are not 

homogeneous at the scale of an insect, however, often providing a poor proxy for the 

requirements of a species (Vanreusel & Van Dyck, 2007). Habitat specialists are typically 

dependent upon specific resources that occur in only a subset of the available vegetation or 

which may be distributed across several different vegetation types. In recognition of this, 

Dennis et al. (2003, 2006) have argued for a bottom-up approach to characterising insect 

habitats, based on a concept of multiple, overlapping resources. Such features have 

historically been beyond the capabilities of remote sensing (Leyequien et al., 2007), but 

through advances in spatial, temporal and spectral resolution, along with improvements in 

our ability to interpret these data, remote-sensing products are increasingly able to provide 

the levels of detail necessary for resource-based characterisations of habitat.  

Drone technology, in particular, promises to revolutionise the fine-scale mapping of 

habitat heterogeneity, offering spatial resolutions at which microhabitat features and even 

individual host plants can be resolved (Anderson & Gaston, 2013). Very few studies to date 

have used drones to investigate insect microhabitats. As an example, however, Habel et al. 

(2016) used drone-captured aerial photographs to map habitat heterogeneity at 2 cm spatial 

resolution across an area of calcareous grassland. Using field data on the distribution and 

microhabitat requirements of two butterfly species, common blue (Polyommatus icarus) and 

Adonis blue (P. bellargus), they were able to train a habitat suitability model to predict the 

occurrence of caterpillars across the site from the red, green and blue reflectance values of 

each pixel. In some instances, it is even possible to identify the species and/or growth forms 

of individual plants, for instance, providing opportunities to quantify the floral resources 

available to pollinators. Drone-captured RGB/multispectral data, for example, have been used 



to measure floral abundance within hedgerows (Smigaj & Gaulton, in press) and to quantify 

the proportion of flowers, fruits and vegetative growth on individual heather plants (Calluna 

vulgaris) within heathland (Neumann et al., 2020). Coupled with the high temporal resolution 

that drones can offer, there is exciting potential for the seasonal tracking of floral resources 

across time and space (Galbraith et al., 2015). 

Similarly, vegetation and plant species classification is being further aided by the 

increasing availability of hyperspectral imagery, the greater spectral resolution of which can 

offer better discrimination of unique biophysical properties (Govender, Chetty & Bulcock, 

2007; Xie, Sha & Yu, 2008). Airborne hyperspectral data (at 60 cm spatial resolution), for 

example, have been used to map floral resources within savannah landscapes with a 

promisingly high degree of accuracy (83%), even capable of distinguishing certain broad 

categories of flower type (Landmann et al., 2015). The ability to interpret data is also 

becoming ever more sophisticated. Automation via machine learning is not only improving 

the efficiency with which images can be analysed, but also enables additional information to 

be captured from these images, such as pattern recognition of branching architecture and 

canopy shapes (Ghamisi et al., 2017; Kattenborn et al., 2020). 

 

(3) Habitat structure 

Remote sensing has also transformed our ability to quantify habitat structure, an 

important influence on insect assemblages (Bergen et al., 2009; Davies & Asner, 2014). 

Remote-sensing techniques such as LiDAR and SfM are able to capture three-dimensional 

complexity in unprecedented detail and, in many cases, more accurately than conventional 

field methods (Bergen et al., 2009; Davies & Asner, 2014) (Fig. 2). LiDAR-derived 

topographic and vegetation (e.g. vegetation heights and canopy openness) variables, for 

example, have been used to predict arthropod diversity (Müller et al., 2014), abundance and 



community composition (Knuff et al., 2020), the distribution of butterflies (Hess et al., 2013) 

and carabid beetles (Work, Onge & Jacobs, 2011; Bombi et al., 2019), and assemblages of 

beetles (Müller & Brandl, 2009) and spiders (Vierling et al., 2011). In many cases, the 

predictive power of these LiDAR-derived variables has proved equivalent or superior to field 

and/or reflectance-derived variables. Structural habitat data can also be obtained from 

satellite SAR. Betbeder et al. (2015), for example, used high-resolution (1.5 m) SAR data 

from TerraSAR-X to map hedgerow networks and quantify hedgerow canopy cover, relating 

this to the abundance of forest carabid species across an agricultural landscape. Being able to 

penetrate through leaf cover, SAR was better at detecting the presence of hedgerow gaps than 

the optical approaches used in this study. 

Increasingly, there is scope to combine both structural and reflectance data in the 

mapping of habitats. SfM techniques, for example, capture both structural and reflectance 

data simultaneously from aerial photographs (Westoby et al., 2012), enabling topography, 

structure and habitat characteristics to be mapped from drones at low cost and very high 

spatial resolutions (Wallace et al., 2016; Cunliffe, Brazier & Anderson, 2016; Fawcett et al., 

2019). Reflectance data can also be co-registered with LiDAR or SAR data to facilitate 

habitat characterisation. Redhead et al. (2016), for example, used a combination of LiDAR-

derived canopy heights and hyperspectral reflectance data to characterise landscape 

composition and its influence on the foraging distances of bumblebees. The launch of the 

Copernicus programme satellites, in particular, has greatly facilitated the availability of co-

registered radar (Sentinel-1) and optical (Sentinel-2) satellite imagery, enabling improved 

classifications of habitat, for instance in regions where persistent cloud cover is an issue 

(Lopes et al., 2020).  

 

IV. INSECT MICROCLIMATES 



The ability to remote sense habitat structure also enables the investigation of insect–

microclimate interactions. Climate is fundamental in governing the physiology and ecology 

of organisms, playing a key role in driving the abundance, phenology and distribution of 

species (Clarke, 2017). Until very recently, however, there has been a great disparity between 

the scale at which climate variables are conventionally measured and the scale at which they 

are experienced by small organisms, such as insects (Potter, Woods & Pincebourde, 2013). 

Close to the ground, climate is modified by the effects of topography and vegetation to 

produce fine-scale variation in microclimate that is maintained by low wind speeds (Bramer 

et al., 2018). These microclimates characterise the thermal environments of most insects, but 

are often highly heterogeneous and vary markedly from the regional climate averages 

measured by standard meteorological stations (Suggitt et al., 2011). The inability to capture 

this fine-scale variation in climate across geographically extensive areas has been a major 

limitation to most climate studies of insects to date (Potter et al., 2013; Suggitt et al., 2017).  

Remote sensing is increasingly able to provide environmental data at spatial scales 

that are physiologically relevant to insects. Crucially, whilst it has long been possible to 

collect single-point measurements of microclimate in situ with microsensors, remote sensing 

allows for microclimate variation to be mapped continuously across entire landscapes or 

regions (Zellweger et al., 2019). Through the use of remote-sensing products, it is now 

possible to determine the microclimate conditions of almost any given location and moment 

in time, leading to a paradigm shift in climate ecology research (Lembrechts & Lenoir, 2020).  

 

(1) Measuring microclimate 

(a) Surface temperature 

Drone-mounted thermal-imaging cameras can be used to map surface temperatures by 

directly measuring the TIR emitted by objects (Faye et al., 2016). Offering spatial resolutions 



of just a few centimetres, the resulting images provide a snapshot in time of surface 

temperatures across a landscape (Zellweger et al., 2019). Drone-based thermal imagery, for 

example, has been used for three-dimensional mapping of forest canopy surface temperatures 

(Webster et al., 2018) and to survey water surface temperature variation within river systems 

(Tonolla et al., 2012; Dugdale, Bergeron & St-Hilaire, 2015). Using canopy surface 

temperatures obtained in this way, for example, Faye et al. (2017) investigated the 

distribution and diversity of crop pests in relation to microclimate heterogeneity within potato 

fields. It is worth noting, however, that surface temperatures are not necessarily coupled to air 

temperatures, and so careful thought should be given to the appropriate measure of an 

organism’s microclimate (Zellweger et al., 2019). 

 

(b) Water content 

Remote-sensing techniques can also provide direct measurements of soil moisture or 

leaf water content. The emission and backscattering of microwaves are strongly influenced 

by the water content of objects, allowing for variables such as soil moisture to be mapped 

(Kornelsen & Coulibaly, 2013). With high spatial and temporal resolution SAR data now 

available from satellite platforms, such as Sentinel-1, along with the development of 

algorithms to remove interference from surface roughness and vegetation (historically a 

major limitation with C- or X-band SAR), near-real time monitoring of soil moisture content 

at sub-100 m resolutions is now a very real possibility (Paloscia et al., 2013). Very few 

studies to date have used SAR soil moisture products for entomological purposes, but 

investigations are underway to develop its use as a means of forecasting the emergence of 

locust swarms (Crooks & Cheke, 2014; Escorihuela et al., 2018).  

 

(2) Modelling microclimate 



An alternative approach to measuring microclimate directly is to model it. Modelling 

microclimate enables temperature and soil moisture conditions to be calculated at very fine 

spatiotemporal resolutions for almost any desired location or moment in time (Lembrechts & 

Lenoir, 2020) (Fig. 3). Modelling, therefore, can offer a more complete picture of 

microclimate variation through time and can also provide estimates for variables such as air 

and sub-surface soil temperatures that are not readily captured via direct sensing techniques 

(Bramer et al., 2018; Zellweger et al., 2019). A particular strength of modelling is that can be 

used to predict conditions under novel climate scenarios, allowing for past and future 

microclimate conditions to be (re)constructed (Bramer et al., 2018). In the context of 

entomology, this makes it highly valuable for predicting species’ responses to climate 

change. 

Microclimate models can either be statistical or mechanistic in nature. The former 

relies upon statistical associations of microclimate conditions with topography and vegetation 

to spatially interpolate data collected in situ with microsensors or to downscale regional 

climate data from weather stations (Bramer et al., 2018; Zellweger et al., 2019). Mechanistic 

models on the other hand, whilst driven by weather station data, use downscaling methods 

that simulate physical processes of heat and mass transfer to derive microclimate conditions 

(Bramer et al., 2018; Zellweger et al., 2019). Being mechanistic in process, they are 

generally considered to be more robust for making predictions under novel climates (Bramer 

et al., 2018). The complementary R packages NicheMapR (Kearney & Porter, 2017) and 

Microclima (Maclean, Mosedale & Bennie, 2019), for example, offer sophisticated 

approaches for mechanistically modelling microclimate. NicheMapR contains functions for 

calculating the full heat and water balance of soil/near-surface environments for point 

locations, whilst Microclima can capture mesoclimate effects, such as elevational cooling, 

wind shelter, coastal effects or cold air drainage, and is designed to provide gridded spatial 



estimates of conditions that also account for shading effects from topography and vegetation 

(Kearney et al., 2020).  

Irrespective of the type of model used, however, all microclimate modelling is 

dependent on high-resolution digital elevation models (DEMs) to map three-dimensional 

structure across the landscape. Airborne LiDAR and, more recently, drone-based SfM 

techniques are ideally suited for this purpose, being able to capture topography and 

vegetation structure at centimetre spatial resolutions (Zellweger et al., 2019). Multispectral 

reflectance data can also be used in models, for instance as a measure of surface albedo or to 

provide estimates of canopy shading from NDVI-derived LAI (Maclean et al., 2019). The 

advent of very high spatial resolution remote sensing, therefore, has been vital in allowing for 

microclimate conditions to be modelled at scales that are relevant to insects. 

 

(3) Applications for microclimate 

(a) Population dynamics and phenology 

Being able to measure or model microclimate has enormous potential for improving 

forecasts of insect population dynamics and phenology. Rebaudo, Faye & Dangles (2016), 

for example, found that within-canopy air temperatures are a better predictor of local pest 

performance for three potato moth species than either regional (weather station) or global 

(WorldClim) climate data sets. Similarly, (meta)population models that incorporate variation 

in microclimate air temperatures have been shown by Bennie et al. (2013) to improve 

predictions of annual population densities and habitat patch occupancy for the silver-spotted 

skipper butterfly (Hesperia comma). It is even possible to model the body temperature of 

insects themselves under different environmental conditions (Kearney & Porter, 2020), 

opening the door to mechanistic models of insect growth, survival and fecundity in response 

to local climate conditions (Maino et al., 2016).  



 

(b) Species distribution modelling 

Efforts are also being made to incorporate microclimate variation into species 

distribution models (Lembrechts, Nijs & Lenoir, 2019). Hodgson et al. (2015), for example, 

have used microclimate variation to model the fine-scale distribution and density of silver-

studded blue butterflies (Plebejus argus) across limestone grasslands in North Wales. 

Consideration of fine-scale variation in climate is particularly important when making 

predictions about species’ responses to climate change, because local microclimate 

conditions are often partially decoupled from regional climate (Potter et al., 2013). A 

growing body of evidence suggests that microclimate heterogeneity can help to buffer 

organisms against broad-scale changes in climate, leading to very different predictions about 

their future range changes and extinction risk than if regional climate data sets are used 

(Potter et al., 2013; Scheffers et al., 2014; Maclean et al., 2015; Suggitt et al., 2018). 

Microclimate variation, derived from remote-sensing data, will be essential to make accurate 

predictions about how species respond to climate change (Potter et al., 2013; Suggitt et al., 

2017). 

 

V. LIGHT POLLUTION 

Artificial light at night (ALAN) is another important environmental variable in 

entomological research. The increasing prevalence of light pollution and growing concerns 

about disruption to species’ behaviour, interactions and physiology has seen much focus in 

recent years on its potential ecological impacts (Owens & Lewis, 2018; Desouhant et al., 

2019; Boyes et al., 2021; Grubisic & van Grunsven, 2021).  

Imaging from Earth observation satellites can provide global monitoring of the 

brightness and extent of light pollution, allowing for changes in exposure to ALAN to be 



tracked across time and space (Bennie et al., 2014, 2015; Gaston, Duffy & Bennie, 2015; 

Levin et al., 2020; Li et al., 2020). To date, most readily available sources of night-time 

satellite imagery, such as VIIRS and DMSP, offer relatively coarse spatial resolution (750 

and 3000 m, respectively) (Barentine, 2019; Levin et al., 2020). Due to the high sensitivity 

required for night-time imaging, this is also restricted to panchromatic sensors and hence 

information on the spectral properties of emitted light is not captured (Barentine, 2019; Levin 

et al., 2020).  

Despite these limitations, satellite imagery offers a useful measure of site-level 

exposure to ALAN. Satellite-derived measurements of ALAN, for example, have been used 

to investigate temporal changes in light pollution with regards to its effects on pea aphid 

(Acyrthosiphon pisum) predation by ladybirds (Miller et al., 2017) and to assess the exposure 

of fireflies (Amydetes fastigiate) to light pollution within protected and non-protected areas of 

Atlantic rainforest (Vaz et al., 2021). Using a combination of ALAN data from VIIRS and 

radar-derived measurements of aerial insect abundance, Tielens et al. (2021) quantified the 

nocturnal movements of grasshopper swarms into urban areas as a result of attraction to light. 

Satellite data has also been used to investigate the phenological effects of light pollution on 

tree budburst (ffrench-Constant et al., 2016), suggesting potential for similar applications 

with insect phenology. 

Looking to the future, a new generation of Earth observation satellites are starting to 

offer night-time images at higher spatial resolutions (in some cases sub-metre) and across 

multispectral bands (enabling spectral analysis of emitted light) (Levin et al., 2020). Higher 

spatial resolution data can also be obtained from aircraft platforms, which offer a greater end-

user choice of spectral sensors (Kuechly et al., 2012). Aircraft-captured measurements of 

ALAN (1 m resolution), for example, have been used to investigate the effects of light 

pollution on the abundance and species richness of urban moth assemblages (Straka et al., 



2021). The use of drones is also starting to be trialled, offering very high spatial resolutions 

and, likewise, the potential for greater flexibility in the capture of spectral data (Fiorentin, 

Bettanini & Bogoni, 2019; Tabaka, 2020; Bouroussis & Topalis, 2020). 

 

VI. INDIRECT DETECTION OF INSECTS 

(1) Insect feeding signs 

On account of their small size, direct observation of insects is still well beyond the 

capabilities of most remote-sensing techniques (Pettorelli et al., 2014; Nowak et al., 2019). 

Although diminutive in size, insects can often be large in number and capable of having 

major influences on their surrounding environment (Leyequien et al., 2007). Effects such as 

defoliation and plant stress symptoms caused by insects are often readily observable with 

remote sensing and have a long history of being used to detect insects indirectly (Riley, 

1989). Much of this research has occurred in an agricultural or forestry setting, where the 

early detection and monitoring of pest species forms a vital part of plant-protection strategies 

(Zhang et al., 2019). In these situations, remote sensing can scale up and automatise 

surveillance across large areas that would otherwise be prohibitively expensive and labour-

intensive to monitor via conventional field surveys alone (Iost Filho et al., 2020). Remote 

sensing of insect pests has been extensively reviewed elsewhere (Senf et al., 2017; Zhang et 

al., 2019; Abd El-Ghany, Abd El-Aziz & Marei, 2020), so herein we provide only a brief 

overview.  

 

(a) Spectral feeding signs 

Feeding activity by insects causes loss of biomass and plant stress responses that can 

be detected from their spectral reflectance. Plant indices derived from multispectral satellite 

data, for example, have been extensively used for this purpose, particularly in the context of 



monitoring forest insect disturbances (Senf et al., 2017). Chief amongst these is NDVI, 

which, being a measure of photosynthetic activity, is sensitive to defoliation and plant die-

off, but other indices, such as Enhanced Wetness Difference Index (EWDI), Normalised Burn 

Ratio (NBR), Moisture Stress Index (MSI) and Disturbance Index (DI), have also been 

widely used (Senf et al., 2017). Satellite-derived NDVI, for example, has been used to map 

spatiotemporal patterns of forest defoliation caused by moth caterpillars (Spruce et al., 2011; 

Olsson, Lindström & Eklundh, 2016) and sawfly larvae (Eklundh, Johansson & Solberg, 

2009), and tree mortality induced by bark beetles (Hart & Veblen, 2015; Bryk, Kołodziej & 

Pliszka, 2021). High temporal resolution data are generally important for detecting 

defoliation pests due to the ephemeral nature of leaf loss (de Beurs & Townsend, 2008). 

Historically, therefore, most studies monitoring defoliators have had to rely on spatially 

coarse data, such as MODIS, in order to obtain the necessary temporal resolution (Rullan-

Silva et al., 2013; Senf et al., 2017). Bark beetle infestations, on the other hand, are typically 

longer lasting in effect and so higher spatial resolution (but lower temporal resolution) data, 

such as Landsat, can be used (Wulder et al., 2006; Senf et al., 2017). It can be expected, 

therefore, that the recent availability of both high spatial and temporal resolution 

multispectral data from platforms such as Sentinel-2 should greatly facilitate satellite 

monitoring of short-lived disturbance events.  

Spectral reflectance data from drones can now also be used for targeted inspections at 

very high spatial resolutions. This exceptional spatial detail can improve the detection 

accuracy of pest damage (Näsi et al., 2018), and is particularly well suited to field-scale 

surveys in agricultural settings, where low operational costs and user-defined revisit times 

allow for high frequency surveying (Iost Filho et al., 2020). Drones can also be equipped 

with a wider range of sensor types than are typically available from satellites (Iost Filho et 

al., 2020). Miniaturised hyperspectral sensors, for example, offer very high spectral 



resolutions that are able to detect the weak spectral changes associated with low infestation 

rates and the early stages of outbreaks (Zhang et al., 2019). Hyperspectral drone imagery, for 

example, has been used to detect bark beetle infestations in spruce forests (Näsi et al., 2015) 

and grape phylloxera (Daktulosphaira vitifoliae) infestations in vineyards (Vanegas et al., 

2018), in some cases even allowing for detection before infestations become apparent  

through visual inspection (Vanegas et al., 2018). Increasingly, machine learning techniques 

are also being applied to hyperspectral data to improve and automate the detection of pests 

(Zhang et al., 2019). 

 

(b) Structural feeding signs 

Host-plant responses to insects can also be detected from changes in vegetation 

structure. LiDAR, for example, has been used to map the defoliation cause by gypsy moth 

(Lymantria dispar) caterpillars (Meng et al., 2018). In this particular study, LiDAR data 

outperformed that of hyperspectral sensors as a standalone means of detecting defoliation, 

although the best performance was achieved using models that included both structural and 

spectral information. Similarly, the increased availability of high spatial and temporal 

resolution SAR data has seen growing interest in the use of this technology to map forest 

insect disturbances (Hollaus & Vreugdenhil, 2019). Tanase et al. (2018), for example, used 

satellite SAR data to distinguish between forest disturbances caused by windthrow and bark 

beetle infestations in the Bavarian Forest National Park in Germany. A ground-based X-band 

radar system has also been used to estimate the abundance of the grasshopper Heiroglyphus 

nigrorepletus in sorghum fields from changes in total chlorophyll (Singh, Sao & Singh, 

2007). Furthermore, the opportunity to combine both radar and optical data for monitoring 

insect disturbances can improve detection probabilities, especially for regions where 



persistent cloud cover is a major cause of interference (Ortiz, Breidenbach & Kändler, 2013; 

Hirschmugl et al., 2017). 

 

(2) Nest structures 

Aside from the damage they cause to plants, insects may also be detected from the 

structures that they build. The nest mounds of certain ant and termite species, for example, 

form prominent features in the landscape that are readily distinguishable at the spatial 

resolution of aerial photographs (Vogt, 2004b; Isabelle et al., 2014; Sandino, Wooler & 

Gonzalez, 2017) and even satellite imagery (Vogt, 2004a; Mujinya et al., 2014). Most 

species in studies to date typically make large (0.5 m to >10 m in diameter) and sparsely 

vegetated mounds, providing a strong contrast with the surrounding vegetation. Shadow 

effects (Isabelle et al., 2014) and a ring of vigorous vegetation growth fringing mounds may 

also help to accentuate them (Vogt, 2004a,b; Sandino et al., 2017). Spectral imaging of nest 

mounds has typically used RGB, panchromatic or NIR bands, with the accuracy of mound 

detection influenced by both mound characteristics (height, area, nest activity, vegetation 

cover) and the imaging method (spectral bands and resolution). Airborne LiDAR has also 

been deployed to map the nest mounds of Macrotermes termites remotely, not only allowing 

for the detection of nest mound locations, but also providing information on mound 

architecture (Levick et al., 2010; Davies et al., 2014; Davies, Baldeck & Asner, 2016). 

Drone-based SfM could also be deployed for these purposes, although to our knowledge, 

SfM has only been attempted for nest mounds using ground-based systems to date (Nauer et 

al., 2018; Vesala et al., 2019).  

For both spectral and structural approaches, mound size has a considerable influence 

on the detection probability of nest mounds (Vogt, 2004a,b; Davies et al., 2014; Isabelle et 

al., 2014; Sandino et al., 2017). Higher spatial resolution images from drones may help to 



address this issue, along with substantially reducing the operational costs of collecting aerial 

photographs (Anderson & Gaston, 2013). Increasingly, efforts are also being made to 

automate nest mound identification through the use of image segmentation algorithms and 

machine learning (Levick et al., 2010; Davies et al., 2014, 2016; Sandino et al., 2017). At 

present, however, remote-sensing data have a limited ability to infer the activity status of 

nests or to identify the species involved (Bala Ahmed & Pradhan, 2018). As a complement to 

conventional field surveys, however, it can offer a valuable means of scaling up data 

collection to a landscape scale.  

 

VII. DIRECT DETECTION OF INSECTS 

(1) Vertical-looking radar 

It has been known for more than 70 years that radar is capable of detecting individual 

flying insects and radar systems have been used by entomologists for this purpose since the 

late 1960s (Riley et al., 2007). During the last couple of decades, however, the development 

of VLR, in particular, has had a transformative effect on the monitoring of aerial insects 

(Chapman et al., 2011). VLR systems emit a conical X-band radar beam up into the sky, in 

which the linear plane of polarisation is continually rotated (Smith, Riley & Gregory, 1993; 

Chapman et al., 2003). The beam itself also nutates (wobbles) around the vertical axis, which 

enables the horizontal position and the mass of objects to be determined (Smith et al., 1993). 

Any insect (of approximately ≥1 mg mass) passing through this beam will reflect a signal 

back to the ground-based receiver, from which information on its shape, mass, altitude 

(assigned to a series of discrete height bands), body alignment, horizontal position and speed, 

and direction of travel can be estimated (Smith et al., 1993; Chapman et al., 2002b, 2003). 

With beam nutation turned off, it is also possible to measure wingbeat frequency, however 

this precludes estimates of body mass (Chapman et al., 2003). From shape, body mass and/or 



wingbeat frequency data, insects can be assigned to functional groups, although 

complementary sampling/observation of specimens is necessary for species identification in 

most cases (Chapman et al., 2003). Operation of the system is entirely autonomous (unlike 

earlier scanning radar systems), making it well suited for long-term monitoring (Chapman et 

al., 2002b, 2003).  

VLR has been used to quantify seasonal and diurnal patterns of insect migration for 

taxa such as hoverflies (Wotton et al., 2019), ladybirds (Jeffries et al., 2013) and Lepidoptera 

(Chapman et al., 2002a; Wood et al., 2009; Stefanescu et al., 2013). It has also allowed 

investigation of the vertical layering of flying insects in relation to atmospheric conditions 

(Reynolds et al., 2005; Reynolds, Smith & Chapman, 2008; Wood et al., 2010) and provided 

insights into the behavioural adaptations of insect migrants, such as flight orientation, the 

selection of favourable air flows and correction for crosswind drift (Chapman et al., 2008b,a, 

2010). 

 

(2) Harmonic radar 

Close to the ground, returning radar signals from flying insects are liable to be 

masked by much stronger echoes coming from ground features and vegetation (Riley et al., 

2007). Consequently, VLR is only suitable for detecting insects at high altitude, typically 

between a range of 150 m and 1200 m above the transmitter (Chapman & Reynolds, 2004). 

Where the detection of low-flying insects is required, one solution is to use harmonic radar. 

Here, a transponder fitted to the insect receives the incoming radar signal and re-emits a 

signal at a different frequency, allowing it to be differentiated from the echoes generated by 

ground features and vegetation (Riley et al., 2007). In this way it is possible to track the 

movement of tagged insects at low altitudes, over distances of a kilometre or so. For 

example, harmonic radar has been used to track the movement of butterflies (Cant et al., 



2005; Ovaskainen et al., 2008) and to investigate the foraging and orientation behaviours of 

bumblebees (Osborne et al., 1999, 2013; Lihoreau et al., 2012; Woodgate et al., 2016) and 

honeybees (Capaldi et al., 2000; Riley et al., 2005). It has also been used to study the 

pheromone-plume locating behaviour of male moths (Reynolds et al., 2007) and to locate the 

nests of Asian hornets (Vespa velutina) by tracking tagged workers back to their colonies 

(Maggiora et al., 2019). 

 

(3) Entomological LiDAR 

Another approach for detecting low-flying insects at close range is the development 

of entomological LiDAR. Being a much shorter wavelength than microwaves (Fig. 1), NIR 

avoids many of the issues of signal clutter from ground features or vegetation, and also offers 

far greater range resolution and the capability of detecting much smaller insects (<1 mg) than 

radar (Brydegaard, 2015; Brydegaard & Jansson, 2019). Insects flying through the laser beam 

produce a backscatter signal from which their position, cross-sectional area and wingbeat 

frequency can be determined (Brydegaard & Jansson, 2019). Spectral analysis of the 

backscatter can also provide information on molecular composition and microstructure 

(Brydegaard, 2015), whilst from the depolarisation of the returning signal it is possible to 

differentiate surface textures and thus partition contributions from furry insect bodies and 

glossy wings (Shaw et al., 2005). LiDAR, for example, has been used to detect damselflies 

flying over a stream (Guan et al., 2010), to measure temporal (Zhu et al., 2017; Malmqvist et 

al., 2018) and spatiotemporal (Kirkeby, Wellenreuther & Brydegaard, 2016; Tauc et al., 

2019) patterns of flying insect abundance, and to map densities of honeybees trained to detect 

landmines (Shaw et al., 2005). At present, the ability to classify insects into species or 

functional groups from field LiDAR data remains poor (Brydegaard, 2015; Kirkeby et al., 

2016), but laboratory experiments show promise for being able to distinguish species and 



even sexes from optical cross section, wingbeat frequency and spectral properties, aided by 

machine learning techniques (Moore & Miller, 2002; Brydegaard et al., 2009; Brydegaard, 

2015; Gebru et al., 2018; Genoud et al., 2018). Using fluorescent powder to mark insects, it 

is also possible to use LiDAR to track individuals (Guan et al., 2010; Mei et al., 2012). The 

fluorescent powder produces a distinctive spectral signal from which the individual can be 

identified, akin to harmonic radar, but without the need for the cumbersome transponders 

which are limited to use on larger insects (Mei et al., 2012). Powder tagging can be used to 

track the dispersal of insects or to generate population estimates through mark-without-

recapture (Brydegaard & Jansson, 2019).  

 

(4) Passive sensing of insects 

As the spatial resolution of sensors continues to improve, a limited number of 

opportunities for passive sensing are also starting to emerge. Drones flying at very low 

altitudes, for example, can capture photographs from which it is possible to distinguish large, 

conspicuous species, such as butterflies (Ivosevic, Han & Kwon, 2017). It is conceivable that 

such methods could be used for surveying insects in inaccessible locations, such as the forest 

canopy, although at present the probability of detecting individuals via such methods remains 

unknown. Another promising avenue is the use of thermal imaging to detect insect 

aggregations. Communal clusters of insects can often raise their collective body temperatures 

substantially above that of the surrounding environment through basking and/or generating 

metabolic heat (Porter, 1982; Heaton, Moffatt & Simmons, 2014). Hand-held thermal 

infrared cameras, for example, are used commercially to detect the presence of termite 

colonies within buildings (Reynolds & Riley, 2002), whilst aircraft-mounted thermal infrared 

cameras have been used to locate carcasses from the heat generated by fly maggots feeding 

within them (Lee et al., 2018). Very high spatial resolution drone thermal imagery, for 



example, has been used to locate aggregations of marsh fritillary caterpillars (Euphydryas 

aurinia) basking on their larval webs in early spring (R. J. Curtis, unpublished data). The 

effectiveness of such methods, however, is likely to vary depending on the climatic 

conditions at the time of survey (Lee et al., 2018). 

 

VIII. FUTURE PROSPECTS   

  As remote-sensing technology continues to develop and become more affordable, 

new opportunities are emerging for entomological research. In this section, we highlight 

some of the exciting potential for advances in the field that we believe to be approaching. 

 

(1) Dynamic niche mapping 

The unprecedented spatial and temporal resolution now offered by remote-sensing 

products will revolutionise the way we study species’ niches. At high spatial resolutions, the 

individual resources that an insect requires no longer occur within the same habitat pixel. 

Instead, an insect will be moving between different pixel classifications at different stages of 

its life cycle and even during a single day. The suitability of individual pixels will also vary 

through time, as resources become available or disappear, or an insect’s requirements change 

during its life. Similarly, the microclimate suitability of habitat pixels will wax and wane 

with climatic variation from year to year, day to day and hour to hour (Bennie et al., 2013). 

At these fine scales, habitat ceases to be a static classification, but rather a series of dynamic 

maps of multiple, overlapping resources (Dennis et al., 2003, 2006). With available remote-

sensing products able to quantify the conditions that insects experience, there is now a very 

real possibility of capturing the dynamics of shifting niche space, opening the door to more 

mechanistic models of habitat suitability and species’ distribution (Kearney & Porter, 2009).  

 



(2) Drone-based LiDAR 

Until recently, airborne LiDAR data has been limited to aircraft-mounted systems, 

constraining both the spatial and temporal resolution of data (Kellner et al., 2019). Drone-

mounted LiDAR systems capable of acquiring data at much lower altitudes are, however, 

becoming increasingly affordable and we anticipate their widespread uptake in ecological 

research within the next decade. These systems offer very dense point clouds of three-

dimensional structure, comparable in detail to that of TLS (Wallace et al., 2016; Kellner et 

al., 2019) and superior to SfM in discerning below-canopy structure (White et al., 2013; 

Wallace et al., 2016). Such phenomenally high spatial resolution, coupled with the temporal 

flexibility afforded by drone platforms, could offer rapid monitoring of changes in vegetation 

structure, such as that caused by insect defoliation. With spatial resolutions sufficient to 

resolve tree branching structure, drone LiDAR data might even enable important structural 

habitat features, such as standing deadwood or potential nest-site locations, to be identified. 

There is also potential for LiDAR data to offer additional information on vegetation 

composition or status through techniques such as laser-induced fluorescence. Spectroscopic 

analysis of the returning backscatter can be used to detect plant stress symptoms or to assist 

with species identification (Günther, Dahn & Lüdeker, 1994; Yang et al., 2016). 

 

(3) Monitoring migration at continental scale 

Entomological radar is currently on the verge of massively scaling up its geographical 

coverage of insect migration. Strategically arranged VLRs could be used to track the arrival 

of migrant insects across regions, for example to provide forecasts of crop pest risk 

(Chapman et al., 2011). Perhaps more exciting, however, is the potential for using data from 

existing networks of weather radars, offering near-continuous geographical coverage across 

entire countries or even continents (Chilson et al., 2012; Bauer et al., 2017). Weather radar 



data is already providing new insights into bird migration (Farnsworth et al., 2016; Dokter et 

al., 2018; Nilsson et al., 2019), and early investigations suggest good potential for its 

application within entomology. In North America, for example, weather radar has been used 

successfully to determine the abundance, displacement speed and direction of migrating corn 

earworm moths (Helicoverpa zea) (Westbrook, Eyster & Wolf, 2014) around the Texas–

Mexico border, and to investigate the movement of grasshopper swarms in response to urban 

light pollution (Tielens et al., 2021). In Europe, the BioDAR project is currently developing a 

library of weather radar signatures for different insect functional groups and has a citizen 

science project using weather radar to investigate the nuptial flights of alate ants [see 

https://biodarproject.org/]. It seems highly probable that continental-scale monitoring of 

flying insect abundance and movements will become a reality within the next decade. 

Further opportunities for studying insect movement are also arising through advances 

in radio telemetry. Telemetry involves fitting animals with an active (battery-powered) radio 

transmitter, enabling them to be individually identified (unlike harmonic radar) and tracked 

on foot using a portable antenna and radio receiver (Kissling, Pattemore & Hagen, 2014). 

Tracking with radio telemetry, for example, has been used to follow Asian hornets (V. 

velutina) back to their nest over distances of 1.33 km (Kennedy et al., 2018) – much further 

than can be achieved with a static harmonic radar antenna (Riley et al., 2007; Maggiora et al., 

2019). Whilst the additional weight associated with the battery currently constrains both the 

size of insect (≥0.2 g) and transmission distances (100–400 m) to which telemetry can be 

applied, as technology continues to develop it is not inconceivable that devices may one day 

be miniaturised and powerful enough to communicate with satellites, enabling continental-

scale tracking of individual migratory paths from space (Kissling et al., 2014).  

 

IX. CONCLUSIONS 

https://biodarproject.org/


(1) Remote sensing increasingly offers a powerful range of tools for studying the incredible 

abundance and diversity of insect life on this planet. With the spatial and temporal resolution 

of remote-sensing products continuing to improve, it is increasingly possible to work at the 

scales necessary for studying insects, enabling new insights into their behaviour, ecology and 

conservation.  

(2) Satellite and airborne sensors are capable of capturing information on the composition 

and structure of insect habitats, increasingly at sufficient resolutions for individual habitat 

resources to be distinguished. Climate conditions can also be mapped at scales 

physiologically relevant to insects – either by direct measurement with remote sensing or by 

capturing topographical and structural data from which microclimate conditions can be 

modelled. Similarly, satellite and airborne platforms also provide opportunities for 

monitoring the levels of light pollution that insect populations are exposed to. 

(3) Remote sensing can also be used to detect the presence of insects. Optical and structural 

data can be used to detect insects indirectly from the environmental effects that they induce, 

whilst radar and LiDAR enable flying insects to be directly observed or tracked. Increasingly, 

limited opportunities for the passive direct sensing of insects are also becoming available. 

(4) As remote-sensing technology continues to develop, we see great potential arising from 

the co-ordination of platforms/sensors and device miniaturisation to scale-up geographical 

coverage and to present new sensing opportunities. We hope to encourage more 

entomologists to consider remote-sensing methods within the remit of their research. 
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FIGURES AND TABLES 

 

Table 1. Temporal and spatial resolution of selected spectral bands for a range of earth observation satellites. 

NIR, near-infrared; SWIR, shortwave infrared; TIR, thermal infrared. 

Satellite/sensor Data access Operational 
Temporal 

resolution 

Spectral bands 

Panchromatic Blue Green Red 

Red 

edge NIR SWIR TIR 

MODIS Open data 1999–present  1–2 days – 500 m 500m 250 m – 250 m 500 m 1000 m 

AVHRR/3 Open data 1978–present <1 day – – – 1090 m – 1090 m 1090 m 1090 m 

VIIRS Open data 2011–present   <1 day 750 m 750 m 750 m 375 m – 375 m 375 m 375 m 

Landsat 8 Open data 2013–present 18 days 15 m 30 m 30 m 30 m – 30 m 30 m 100 m 

Sentinel-2 Open data 2015–present   5 days – 10 m 10 m 10 m 20 m 10 m 20 m – 

Sentinel-3 Open data 2016–present   <1 day – – 500 m 500 m – 500 m 500 m 1000 m 

SPOT-6/7 Commercial 2012–present   <1 day 1.5 m 6 m 6 m 6 m – 6 m – – 

Pleiades-1A/1B Commercial 2011–present   <1 day 0.5 m 2 m 2 m 2 m – 2 m – – 

IKONOS Commercial 1999–2015 3–5 days 0.82 m 3.2 m 3.2 m 3.2 m – 3.2 m – – 

GeoEye-1 Commercial 2008–present   <3 days 0.41 m 1.65 m 1.65 m 1.65 m – 1.65 m – – 

WorldView-3 Commercial 2014–present   <1 day 0.31 m 1.24 m 1.24 m 1.24 m 1.24 m 1.24 m 3.7 m – 

QuickBird Commercial 2001–2014  3–6 days 0.65 m 2.62 m 2.62 m 2.62 m – 2.62 m – – 



Fig. 1. A representation of the electromagnetic spectrum between wavelengths of 0.4 µm and 

300,000 µm, highlighting the main regions used for the remote sensing of insects. Passive 

sensing methods are shown in solid boxes and active sensing methods in hashed boxes. 

LiDAR, light detection and ranging; MWIR, medium-wave infrared; NIR, near-infrared;  

SAR, synthetic aperture radar; SWIR, shortwave infrared; TIR, thermal infrared; VL, visible 

light; VLR, vertical-looking radar. 
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Fig. 2. A digital surface model (DSM) of the Wheal Maid valley in Cornwall produced from 

LiDAR data processed to 1 m spatial resolution. Created using the EAlidaR and rayshader R 

packages. Data source: Environment Agency, UK. 



Fig. 3. Estimates of air temperature downscaled to increasingly fine spatial resolutions using 

the mechanistic microclimate model Microclima. (A) Standard weather station data set 

gridded at 5 km spatial resolution (macroclimate); (B) air temperature 1 m above ground at 

100 m spatial resolution (mesoclimate); (C) air temperature 5 cm above ground at 1 m spatial 

resolution (microclimate); (D) air temperature 5 cm above ground at 2 cm spatial resolution 

(microclimate).  
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