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Abstract
Environmental conditions change rapidly along elevational gradients and have been found to affect community composition 
in macroscopic taxa, with lower diversity typically observed at higher elevations. In contrast, microbial community responses 
to elevation are still poorly understood. Specifically, the effects of elevation on vector-associated microbiota have not been 
studied to date, even though the within-vector microbial community is known to influence vector competence for a range of 
zoonotic pathogens. Here we characterize the structure and diversity of the bacterial microbiota in an important zoonotic 
disease vector, the sheep tick Ixodes ricinus, along replicated elevational gradient (630–1673 m) in the Swiss Alps. 16S 
rRNA sequencing of the whole within-tick bacterial microbiota of questing nymphs and adults revealed a decrease in Faith’s 
phylogenetic microbial alpha diversity with increasing elevation, while beta diversity analyses revealed a lower variation 
in microbial community composition at higher elevations. We also found a higher microbial diversity later in the season 
and significant differences in microbial diversity among tick life stages and sexes, with lowest microbial alpha diversity 
observed in adult females. No associations between tick genetic diversity and bacterial diversity were observed. Our study 
demonstrates systematic changes in tick bacterial microbiota diversity along elevational gradients. The observed patterns 
mirror diversity changes along elevational gradients typically observed in macroscopic taxa, and they highlight the key role 
of environmental factors in shaping within-host microbial communities in ectotherms.

Keywords Ixodes ricinus · Microbial community composition · Host-associated microbiota · Tick-borne disease dynamics · 
Invertebrates · Microbial biogeography · Lyme disease risk

Introduction

Because of the rapid changes in abiotic conditions along 
elevational gradients, radical elevational species com-
munity turnovers are often observed within short geo-
graphical distances [1]. Indeed, temperature and oxygen 
pressure decrease, whereas ultraviolet radiation increases 
with increasing elevation [2]. Other abiotic factors, such 
as precipitation, wind velocity, seasonality, soil formation 

processes, and disturbance, typically also show systematic 
changes along elevation clines, but also vary by geographi-
cal context [2]. All of these abiotic factors affect species 
community composition and diversity along elevational 
gradients [1].

In macroscopic taxa, such as plants, invertebrates, and 
mammals, biodiversity is typically found to either linearly 
decrease with increasing elevation or to show a hump-
shaped pattern where diversity is highest at intermediate 
elevations [3]. In addition, community composition and the 
strength and direction of biotic interactions have been found 
to vary along elevational clines [4, 5]. Much less is known 
about how microbial communities change along elevational 
gradients, and the existing empirical studies suggest incon-
sistent elevation patterns that differ from patterns observed 
in macroscopic taxa [e.g., 7–9].

If diversity gradients along elevational clines are different 
in microbes compared to macroscopic taxa, the underlying 
factors affecting these gradients are likely to differ as well. 
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For macroscopic taxa, climatic variables seem to be the most 
important factors affecting diversity patterns [3], whereas for 
microbes, we do not yet have a good framework to under-
stand trends in community composition [9]. To date, the 
best studied microbial communities are soil bacteria: their 
diversity seems to be mainly determined by the quality and 
composition of the soil, such as soil pH or carbon, without 
any systematic changes along elevational clines [6].

Compared to ‘free-living’ microbial communities, host-
associated microbiota are shaped by an additional key fac-
tor: the identity, ecology, life history, and quality of the host 
[10], which may affect microbial community composition 
along elevational gradients. However, patterns of diversity 
and community composition in host-associated microbi-
ota do not seem to follow a consistent pattern either. For 
example, in pika (Ochotona curzionae) individuals living 
at higher elevation were found to have a higher alpha (i.e., 
the mean species diversity) and beta (i.e., heterogeneity in 
species composition) diversity in their gut microbial com-
munity compared to individuals living at lower elevation 
[11], whereas human skin microbiota shows a decrease in 
alpha diversity but an increase in beta diversity with increas-
ing elevation [12].

Microbial communities of ectothermic hosts are expected 
to be most strongly affected by elevational gradients because 
ectotherms do not buffer ambient temperature as strongly as 
endothermic species. Furthermore, the microbiota of inver-
tebrates is typically not stable [13]. Yet, changes in micro-
biota composition in invertebrate hosts along environmental 
gradients remain largely unexplored.

Ixodes ticks are common vectors for human pathogens 
including Borrelia sp. and Rickettsia sp., and recent stud-
ies suggest that the tick’s commensal microbiota composi-
tion affects the probability of harboring human pathogens 
[14]. Ixodes ricinus has three life stages throughout its life 
cycle: larva and nymph stages, during which a blood meal 
is needed to progress to the next stage, and the adult stage, 
during which females require a blood meal to lay eggs. Usu-
ally the hosts for earlier life stages are small-sized mammals 
or birds, whereas adult ticks seek blood meals from larger 
mammals, such as ungulates. Due to climate warming, I. 
ricinus has expanded its distribution into both higher lati-
tudes and higher elevations in many parts of Europe [15]. 
At the same time, the incidence of the diseases caused by 
tick-borne pathogens, such as Borrelia sp., continues to 
increase in many regions [16]. The abundance and distri-
bution of ticks are strongly influenced by temperature and 
other climatic variables: low winter temperatures increase 
tick mortality, whereas warmer temperatures during sum-
mer months lead to a faster life cycle and a longer activity 
period [17, 18].

While there is growing body of research on how 
changing environmental conditions might affect specific 

tick-associated microbes, specifically pathogens [19–21], 
there is a lack of studies on how the structure of the com-
mensal tick microbiota (or the microbiota of any other 
disease vector) changes along elevational clines and how 
this may indirectly affect pathogen prevalence and disease 
dynamics (but see [21]). Abiotic variables may affect tick 
microbiota composition and diversity either directly through 
effects on microbial growth, competition, and/or transmis-
sion [22] or indirectly through changed tick behavior or life 
history [17]. Furthermore, ticks quest in the undergrowth, 
attach to their vertebrate host, and suck blood for a number 
of days. The tick microbiota is thus likely acquired from soil 
and plants but also from their host’s skin and blood [23], 
which all likely vary along elevational clines and may thus 
shape tick microbial communities.

Here we exploit the rapidly changing environmental 
conditions along elevational gradients in the Swiss Alps to 
quantify changes in tick microbiota diversity and commu-
nity structure along elevational cline. Specifically, we test if 
tick bacterial microbiota diversity and community structure 
vary along elevational gradient and if these patterns differ 
with season or across tick life stages and sexes. Furthermore, 
we analyzed how ecological processes influence community 
turnover by comparing phylogenetic relatedness within and 
between tick microbiota.

Based on previous findings, we predict systematic dif-
ferences in tick bacterial microbiota composition along 
elevational gradients. Furthermore, because of differences 
in their behavior and ecology [17, 18], we predict differences 
in microbiota structure and diversity between tick life stages 
and sexes.

Materials and Methods

Tick Sampling

We collected questing Ixodes ricinus ticks at three different 
locations in the Swiss Alps (Kanton Graubünden). Three 
sites per location were identified, one at low (630–732 m 
above sea level), one at medium (1094–1138 m) and one at 
high (1454–1673 m) elevation (Fig. 1; Table 1). At each site, 
tick sampling was performed thrice, once in June, once in 
July, and once in August 2014 by dragging a white blanket 
(1 m × 1 m) over the ground vegetation as described previ-
ously [24] (see Supplementary Materials S1 for additional 
details).

Tick Microbiota

16S rRNA sequencing has been described previously 
[21]. In short, we randomly selected I. ricinus ticks from 
each sampling site (Table 1). We cut ticks in half with 
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a sterilized blade to facilitate DNA isolation and then 
used the DNeasy Blood & Tissue kit (Qiagen; Hilden, 
Germany) to extract DNA. We processed negative con-
trols (N = 5) alongside the tick samples. We characterized 
tick bacterial community composition by sequencing the 
hypervariable V4 region of the 16S gene using the primers 
515FB and 806RB [25] and prepared sequencing libraries 
following the Earth Microbiome 16S Illumina Amplicon 
protocol (see Supplementary materials S1 for details). 
The libraries were sequenced on Illumina MiSeq at the 
Functional Genomic Center Zurich with a target length of 
250 bp following the manufacturer’s protocol.

Sequences were analyzed using the mothur pipeline with 
MiSeq standard operation procedures [26] with 99% simi-
larity threshold for OTU clustering. Raw sequenced were 
deposited in the Sequence Read Archive under BioProject 
PRJNA506875. The complete metadata of the samples and 
their matching sequence accession numbers are deposited in 
FigShare (https:// doi. org/ 10. 6084/ m9. figsh are. 14540 892), 
while code of all statistical analysis can be found in: https:// 
github. com/ aivelo/ tick- biodi versi ty.

Using mothur, we purged unsuccessful contigs and pre-
served only contigs between 250 and 310 bp. The align-
ment was made against aligned SILVA bacterial references 
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Fig. 1  Location of tick sampling sites in the Swiss Alps. Different 
shapes (i.e., triangle, circle, and square) represent the different loca-
tions, whereas colors represent the different elevations (white = low, 
gray = medium, black = high). Rivers are shown in black and motor-

way in gray. Elevational contours for 700 m and 900 m are in gray, 
whereas contours for 1100 m, 1300, 1500 m, 1700 m, and 1900 m are 
in black. Map data ©2021 Google, GeoBasis-DE/BKG

Table 1  Tick sampling sites in 
the Swiss Alps

Location Site Coordinates Elevation Sequenced Ixodes ricinus ticks

North East (m) Nymphs Males Females

1 Sagogn 46.783 9.233 693 0 9 13
Flims 46.827 9.280 1138 3 5 3
Ruschein 46.795 9.169 1454 0 1 1

2 Rodels 46.760 9.425 630 2 5 4
Tomils 46.772 9.453 1144 3 5 4
Feldis 46.789 9.453 1673 1 1 0

3 Passugg 46.840 9.538 732 0 5 6
Castiel 46.826 9.569 1094 0 3 3
Praden 46.817 9.589 1582 1 0 1

https://doi.org/10.6084/m9.figshare.14540892
https://github.com/aivelo/tick-biodiversity
https://github.com/aivelo/tick-biodiversity
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(release 128; https:// www. arb- silva. de/ docum entat ion/ 
relea se- 128/). We used 99% similarity to determine OTUs 
and classified them using SILVA taxonomy. Only samples 
with > 500 amplicons and OTUs which were present in 
at least two samples were included in the analyses. We 
rarified the samples to 500 amplicons to account for vari-
ation in amplicon numbers. The rarefaction approach was 
required because of substantial variation in amplicon num-
bers across samples.

Statistical Analysis

Bacterial Alpha Diversity

Bacterial taxonomic alpha diversity (inverse Simpson 
index; [27]) and Faith’s phylogenetic alpha diversity [28] 
were calculated with the R package vegan [29]. Addition-
ally, we calculated two more phylogenetic alpha diversity 
indices: Nearest Relatedness Index, NRI, (equivalent to 
-1 standardized effect size of mean pairwise distances 
in communities, which estimates the average phyloge-
netic relatedness between all possible pairs of bacterial 
taxa within a tick) and Nearest Taxon Index, NTI, (− 1 
times standardized effect size of mean nearest taxon dis-
tances in communities, which calculates the mean nearest 
phylogenetic neighbor among the bacterial taxa within 
a tick). Thus, while NTI reflects the phylogenetic struc-
turing near the tips of the tree, NRI reflects structuring 
across the whole tree. The ratio between these two meas-
ures (i.e., NTI/NRI) provides a measure of phylogenetic 
clustering among OTUs: if NTI/NRI is positive, it sug-
gests that there is phylogenetic clustering of OTUs (i.e., 
closely related OTUs are more likely to co-occur than by 
chance), whereas negative values indicate phylogenetic 
overdispersion (i.e., co-occurring OTUs are less related 
than expected by chance) [30]. We performed the analyses 
using the picante package [31]. To create null models, 
we randomized the bacterial community compositions 
obtained from the data using same distance matrices, but 
randomizing the bacterial OTU labels across taxa.

For each alpha diversity measures we used linear mixed 
models with the R package lme4 [32] to test for associations 
between bacterial alpha diversity and tick life stage/sex, 
sampling month, and linear and quadratic terms of eleva-
tion with full interactions between linear terms. Sampling 
location was included as a random effect in the model. We 
used a model selection approach based on Akaike’s Informa-
tion Criterion and model fit with conditional  R2 in the pack-
age piecewiseSEM [33] to test which combination of factors 
best describes variation in tick bacterial alpha diversity. The 
model selection is presented in the supplementary methods 
(S2), while the final model is described in the results.

Bacterial Beta Taxonomic Diversity

We analyzed tick bacterial beta diversity on pairwise matri-
ces using five different indices. Two of the indices measure 
taxonomic beta diversity: Bray–Curtis dissimilarity, which 
takes into account the abundance of OTUs [34] and Jac-
card index, which takes only presence-absence of OTUs into 
account [35], thus providing information on both aspects 
of beta diversity. The other three indices measure phyloge-
netic beta diversity: weighted UniFrac (wUF), which takes 
into account the unshared branch lengths for all OTUs and 
weights OTUs based on OTU counts [36], equivalent to 
the phylogenetic alpha diversity index; βNTI, which is a 
between-community equivalent of NTI (see above) [37], and 
Bray–Curtis-based Raup–Crick (BC-RC) abundance which 
measures the deviance of observed turnover while taking 
into account OTU relative abundances (i.e., between-com-
munity equivalent of NRI) [38]. Bray–Curtis and Jaccard 
indices were calculated with the R package vegan, UniFrac 
with mothur, βNTI with MicEco package [39], and BC-RC 
with code presented by Stegen et al. [38].

First, we performed permutational ANOVA with dissimi-
larity matrices using the package vegan to test for associa-
tion between the first three measures of beta diversity (Jac-
card, Bray–Curtis, UniFrac) and elevation, tick life stage/
sex, sampling location, and sampling month. Permutational 
ANOVA partitions distance matrices among sources of vari-
ation and fit linear models [40]. Initial models included all 
variables and interactions and, if non-significant, they were 
dropped during the model selection by removing the vari-
ables with the highest p-value, starting with the least signifi-
cant interaction. Model selection was evaluated based on R2 
values of remaining variables. The results of the permuta-
tional ANOVA are visualized by performing non-metrical 
multidimensional scaling on Bray–Curtis dissimilarities and 
plotting the samples on the two first axes.

Second, we used an analysis of multivariate homogeneity 
of group dispersion using the package vegan to test whether 
elevation, sampling location, sampling month, or tick life 
stage/sex is associated with tick microbiota composition, 
again using the first three measures of beta diversity (Jac-
card, Bray–Curtis, UniFrac). This analysis is a multivari-
ate analogue of Levene’s test for homogeneity of variances 
[41] and tests whether variation in community composition 
among groups is similar.

Influences of Ecological Processes on Community Turnover

We used two measures of beta diversity (βNTI and BC-RC) 
for the analysis of ecological processes on community turno-
ver. To study which ecological processes shape within-tick 
bacterial community composition, we used the phylogenetic 
signal of organismal niches as described by Stegen et al. [38, 

https://www.arb-silva.de/documentation/release-128/
https://www.arb-silva.de/documentation/release-128/


Elevational Changes in Bacterial Microbiota Structure and Diversity in an Arthropod‑Disease…

1 3

42]. By assuming that closely related taxa are ecologically 
more similar to each other and thus their niches are more 
similar, we can infer which processes govern community 
composition. Stochastic dynamics should lead to random 
community assembly, environmental filtering should lead to 
a community consisting of taxa that are more closely related 
than expected by chance, whereas strong competition should 
lead to a community consisting of less closely related taxa. 
Finally, environmental change should lead to increased phy-
logenetic turnover.

Two cases of deterministic processes are possible: if 
βNTI < − 2, phylogenetic turnover is lower than expected 
by chance suggesting consistent selective pressures (homog-
enous selection), if βNTI > 2, phylogenetic turnover is higher 
than expected by chance, suggesting shifts in selective pres-
sure due to environmental change (variable selection). If 
βNTI is between − 2 and 2, it suggests stochastic processes 
determine community composition [42]. If BC-RC < − 0.95, 
the compositional turnover between communities is low, 
thus suggesting a strong dispersal between two communi-
ties (homogenizing dispersal). If BC-RC > 0.95, turnover is 
high due to a low rate of dispersal leading to ecological drift 
(dispersal limitation). Finally, in situations of moderate dis-
persal and weak selection, it is possible that none of these 
four processes shape community composition (undominated) 
[42]. We analyzed processes within sites and compared these 
within-site results for tick sex/stages and elevations. Due 
to low sample sizes per site, nymphs and samples from 
high elevations were not included in community turnover 
analysis.

Additional analyses of phylosymbiosis between tick pop-
ulation genetic structure and microbiota structure and ran-
dom forest classification are presented in the Supplementary 
material (S3 and S4). Furthermore, we present sensitivity 

analyses in the Supplementary material (S6), which confirm 
the robustness of our findings to unequal sample sizes across 
elevations and life stages.

Results

We sequenced the microbiota of 92 Ixodes ricinus ticks and 
five negative controls, resulting in 13 214 477 amplicons. No 
amplification was observed in the negative controls. After 
contig assembly and quality control, 1 802 719 sequences 
were retained for OTU analysis. There was a median of 1 
661 quality-controlled amplicons per tick, with an interquar-
tile range of 5 744. 79 samples with more than 500 ampli-
cons per sample and a Good’s coverage estimator ≥ 0.95 was 
included in the diversity analyses (Fig. 2).

In total, 5 181 bacterial OTUs were identified. The 
median number of OTUs per rarified sample was 83 OTUs, 
with a 95% confidence interval of 30–121 OTUs. After 
excluding OTUs that occurred in only one sample, 864 
OTUs were used in subsequent analyses. Four OTUs were 
present in at least 90% of the samples and represented 38.9% 
of all amplicons: Candidatus Midichloria (Otu0001) (which 
was present in all samples), Pseudomonas (Otu0002), and 
Sphingomonas (Otu0006 and Otu0009).

Ixodes Ricinus Microbiota Alpha Diversity

There was a significant elevation and sampling month effect 
on tick microbiota alpha diversity based on Faith’s phylo-
genetic index. Lower bacterial diversity was observed at 
higher elevations (2.0 index points per 1000 m) and diversity 
increased from June to August (1.74 index points). For other 
alpha diversity indices (inverse Simpson, NRI and NTI) only 
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tick sex/life stage was retained in the final models (Table 2, 
S1). Female ticks had the lowest bacterial diversity, while 
male ticks or tick nymphs had the highest (Table 2, Fig. 3). 
No other environmental variables were significantly associ-
ated with tick microbiota alpha diversity (Table S1).

NTI/NRI was mostly (70/79) positive across the samples 
(median 1.13 with interquartile range 0.81–1.74), suggesting 
phylogenetic structuring of tick bacterial microbiota. There 
were no clear effects of elevation on phylogenetic structuring 
(high elevations 80%, median 1.60, IQR 0.61–2.34; mid-
dle elevations 86%, median 1.05, IQR 0.85–2.31; and low 

elevations 91%, median 1.19, IQR 0.77–1.65; F5,73 = 0.73, 
p = 0.60).

Ixodes ricinus microbiota beta diversity

First, the analysis of tick microbiota beta diversity based on 
Jaccard index revealed significant differences in microbiota 
compositions along elevational clines. In addition, tick stage/
sex was a significant predictor of beta diversity across all 
beta diversity indices (Table 3). No other variable was signif-
icantly associated with microbial beta diversity (Table S2).

Table 2  The final linear mixed 
models for different alpha 
diversity measures

Measure Variables Value Standard error DF t p

Inverse Simpson Female intercept 7.58 1.27 74 5.97 < 0.001
Male 2.81 1.45 74 2.21 0.03
Nymph 3.41 2.17 74 2.11 0.04

Faith’s phylogenetic 
diversity

June 0 m intercept 1.55 2.64 74 0.59 0.56
Elevation -0.002 0.0001 74 -2.02 0.05
Month 0.86 0.37 74 2.36 0.02

NRI Female intercept -1.95 0.19 74 -10.3 < 0.001
Male tick 0.95 0.28 74 3.42  0.001
Tick nymph 0.88 0.41 74 2.15 0.04

NTI Female intercept -2.17 0.18 74 -12.2 < 0.001
Male tick 0.59 0.26 74 2.27 0.02
Tick nymph 0.11 0.39 74 0.29 0.78
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Second, a significantly larger group dispersion was 
observed at lower elevations (Bray–Curtis dissimilarity: 
F8,70 = 5.9, adj. p < 0.001; Jaccard distance: F8,70 = 11.4, 
adj. p < 0.001; wUF: F8,70 = 3.1, adj. p = 0.02, Fig. 4), sug-
gesting that among-tick variation in bacterial community 
composition is higher at lower elevations. Additionally, 
significant group dispersion was observed across sampling 
locations (Bray–Curtis index F2,76 = 5.3, adj. p = 0.02), 
while for other indices and variables, no significant het-
erogeneity in bacterial community composition was 
observed (Table S3). Sensitivity analyses demonstrated 
that the results of the diversity analyses were not biased 
by unequal sample sizes across elevations or life stages 
(Supplementary material S6).

Influences of Ecological Processes on Community 
Turnover

In general, Undominated ecological processes were the 
most common relationships among communities (Fig. 5, 
Supplementary Materials Table S5–6). It suggests a mod-
erate rate of dispersal among communities and relatively 

Table 3  Best models describing 
bacterial microbiota beta 
diversity (quantified as Bray–
Curtis dissimilarity, Jaccard 
distance, and unweighted 
UniFrac distance, respectively)

Mean squares Modeled F DF R2 p

Bray–Curtis tick stage/sex 0.84 3.50 2 0.08  < 0.01
residuals 0.24 76 0.91

Jaccard elevation 0.36 1.48 1 0.02 0.02
tick stage/sex 0.51 2.11 2 0.05  < 0.01
residuals 0.24 75 0.93

weighted UniFrac tick stage/sex 0.26 3.31 2 0.08  < 0.01
residuals 0.08 76 0.92
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weak selection. There were no statistically significant differ-
ences in community turnover process between samples from 
the same vs. different sites (χ2

4 = 2.45, p = 0.65), between 
low and medium elevation sites (χ2

4 = 4.10, p = 0.39), 
and between females and males (χ2

4 = 6.88, p = 0.14). As 
between-site and within-site processes had similar distri-
butions, the scale of the processes affecting tick micro-
biota is likely either larger (i.e., geographical) or smaller 
(i.e., within-tick) than our study. Among the groups with 
larger sample sizes, it is notable that female ticks showed a 
very low proportion of variable selection (1.1%), whereas 
variable selection was of substantially higher importance 
in male ticks (6.3%). In contrast, homogenous selection 
was more pronounced in female ticks (7.3%) compared to 
male ticks (3.3%). The sum of deterministic processes (i.e., 
homogenous and variable selection combined) was similar 
in females and males (8.4% and 9.5%, respectively). It sug-
gests that deterministic processes have a similar, although 
limited, effect in shaping the microbiota composition of 
female and male ticks, while the specific type of selection 
(homogenous vs. variable) differs between sexes. Stochastic 
processes (i.e., dispersal limitation, homogenizing disper-
sal, and especially undominated processes) were found to 
shape tick bacterial community composition in both sexes 
(females, 84.8%, males, 82.8%).

Discussion

We observed significant changes in bacterial alpha and beta 
diversity in Ixodes ricinus ticks along replicated elevational 
gradients in the Swiss Alps. Alpha diversity measured as 
Faith’s phylogenetic distance significantly decreased with 
increasing elevation, mirroring elevational diversity patterns 
observed in many macroscopic taxa [3], as well as in human 
skin microbiota [12]. In addition, microbiota composition 
(beta diversity) measured as Jaccard’s index differed along 
elevational clines with significantly lower variation in bac-
terial community composition at higher elevations. These 
differences in tick bacterial beta diversity along elevational 
clines contrast patterns observed in previous studies that 
found either no association with elevation (e.g., in soil bac-
teria [6]) or higher beta diversity at higher elevations (e.g., 
in mammalian skin and gut microbiota [11, 12]). We also 
observed seasonal changes in tick microbiota composition, 
with higher diversity later in the season.

Elevational changes in diversity were observed for some 
of the diversity indices, but not for others. Faith’s phyloge-
netic diversity measures the sum of the branch lengths of a 
phylogenetic tree. In contrast to taxonomic indices of alpha 
diversity (e.g., inverse Simpson’s index), it does not consider 
OTU abundances. Similarly, Jaccard beta diversity index is 
calculated on only presence and absence of OTUs, whereas 

Bray–Curtis index considers OTU abundances. Thus, our 
results suggest that the elevational differences in tick bacte-
rial diversity are mainly driven by the presence or absence of 
rarer species, rather than differences in relative OTU abun-
dances. 40% of all amplicons belonged to only four OTUs 
(of 864 OTUs included in the analysis in total), suggesting a 
highly skewed abundance distribution. There is currently not 
a good general understanding of the functional importance 
of tick bacterial microbiota or how the relative abundance 
of different OTUs affect its functionality. While we expect 
that the most abundant OTUs are also the most functionally 
relevant, relatively rare OTUs may have substantial effects 
on the hosts or within-host microbial interactions [43].

Currently we can only speculate about the factors that 
may mediate the observed changes in tick bacterial micro-
biota diversity along elevational clines. Elevation is strongly 
associated with temperature, soil moisture, tick host commu-
nity structure, and land use [1], which might all directly or 
indirectly shape microbial colonization and thus microbiota 
diversity. A recent study on I. scapularis ticks in Canada 
found that ticks at the range expansion front had a different 
microbiota compared to ticks in the core range [44]. There 
is evidence that ticks have been undergoing a range expan-
sion to higher elevations in recent years because of climate 
warming [15], so mountain tops represent a range expansion 
front [15]. Genetic diversity is typically reduced at range 
expansion fronts [45], which might contribute to differences 
in microbiota composition [10]. We directly tested for such 
effects in our study but found no indication that host genetic 
diversity or differentiation explains variation in microbial 
diversity (see Supplementary material S4, Table S4).

The analysis of ecological processes on community turno-
ver suggested that stochastic processes have a strong effect 
on tick microbiota composition. Homogenizing dispersal, 
which could be facilitated by cofeeding, (i.e., two or sev-
eral ticks sharing microbes by feeding in close proximity on 
the same host), however, played a minor role. Ticks gener-
ally only feed from one host individual per life stage, which 
could provide opportunities for deterministic processes, 
yet these were rarely observed. Furthermore, no evidence 
for higher turnover at the expansion edge has been found, 
although our ability to detect such effects might be limited 
by the low number of ticks sampled at high elevation sites. 
Understanding the timeframe which shapes within-host 
microbiota composition will be essential to better under-
stand the factors that contribute to the elevational differ-
ences in microbial diversity observed in our study. However, 
unfortunately it is next to impossible to longitudinally follow 
changes in tick microbiota, making this a challenging task.

In addition to elevational and seasonal effects on the bac-
terial microbiota of ticks we observed substantial differences 
in tick microbiota composition across tick life stages and 
sexes. In line with our findings a lower microbiota diversity 
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in female ticks has been previously observed in I. scapularis 
and I. affinis ticks [46, 47]. Sex differences in microbiota 
composition could be due to sex differences in physiology 
or behavior, including host preference. In many species 
males have larger home ranges than females, which might 
lead to exposure to a more diverse bacterial community and 
explain the higher microbial diversity in male ticks. Yet, 
to our knowledge movement patterns of male and female 
ticks have not been studied to date. No difference in sea-
sonal activity is observed between adult male and female 
ticks [48], but during the nymph stage, female ticks become 
more engorged, i.e., take up more blood [49], which might 
partly explain the observed sex differences in microbiota 
composition [23].

In a previous study, using a joint OTU distribution mod-
eling approach [21], we found that individual-level variation 
in OTU presence or absence masked the effects of larger-
scale ecological factors. In contrast, we found here clear 
signals of variation in microbiota community structure and 
composition due to elevation and tick life stage and sex. 
This suggests that the whole community might respond in a 
different way than individual microbial species in relation to 
environmental variation, emphasizing the need to consider 
host-associated microbiota both at the whole community as 
well as the individual species level.

In conclusion, we found that alpha diversity of tick-asso-
ciated bacteria decreased with increasing elevation and that 
variation in within-tick bacterial communities was much 
more pronounced at lower elevations. Both of these effects 
were mainly driven by the presence-absence of rarer species 
rather than differences in relative OTU abundances. Given 
that bacterial microbiota composition influences the vector 
competence of ticks [50], understanding the functional con-
sequences of the observed elevational differences in micro-
biota composition for tick-borne disease dynamics will be 
an important next step.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s00248- 021- 01879-5.

Acknowledgements This study was funded by Finnish Cultural Foun-
dation Postdoc Pool grant (to TA), the Stiftung für wissenschaftliche 
Forschung an der Universität Zürich (17_027), the Swiss National Sci-
ence Foundation (PP00P3_128386 and PP00P3_157455), the Univer-
sity of Zurich Research Priority Program “Evolution in Action: from 
Genomes to Ecosystems,” the Faculty of Science of the University of 
Zurich, and the Baugarten Stiftung (all to BT). We thank the numerous 
people who helped collecting ticks in the field, Glauco Camenisch, 
Elisa Granato, Jennifer Morger, and Alessia Pennachia for help with 
laboratory work, Lucy Poveda for help with MiSeq sequencing, and 
Frédéric Guillaume for providing access to IT infrastructure.

Author contributions TA and BT conceived and designed this study, 
ML and BT designed and implemented data collection, and TA did 
laboratory work, analyzed the data, and wrote the first draft with all 
the authors reviewing and editing the manuscript.

Funding Open access funding provided by University of Hel-
sinki including Helsinki University Central Hospital. This study was 
funded by Finnish Cultural Foundation Postdoc Pool grant (to TA), 
the Stiftung für wissenschaftliche Forschung an der Universität Zürich 
(17_027), the Swiss National Science Foundation (PP00P3_128386 
and PP00P3_157455), the University of Zurich Research Priority Pro-
gram “Evolution in Action: from Genomes to Ecosystems,” the Faculty 
of Science of the University of Zurich, and the Baugarten Stiftung (all 
to BT).

Availability of data and material Raw sequence data are available in 
SRA under BioProject PRJNA506875 and sample metadata in Fig-
share: https:// doi. org/ 10. 6084/ m9. figsh are. 14540 892

Code availability Statistical analysis code is available in GitHub: 
https:// github. com/ aivelo/ tick- biodi versi ty.

Declarations 

Conflicts of interest The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Sundqvist MK, Sanders NJ, Wardle DA (2013) Community 
and ecosystem responses to elevational gradients: processes, 
mechanisms, and insights for global change. Annu Rev Ecol 
Evol Syst 44:261–280. https:// doi. org/ 10. 1146/ annur ev- ecols 
ys- 110512- 135750

 2. Körner C (2007) The use of “altitude” in ecological research. 
Trends Ecol Evol 22:569–574. https:// doi. org/ 10. 1016/j. tree. 2007. 
09. 006

 3. Rahbek C (2005) The role of spatial scale and the perception of 
large-scale species-richness patterns. Ecol Lett 8:224–239. https:// 
doi. org/ 10. 1111/j. 1461- 0248. 2004. 00701.x

 4. Dunn RR, Mccain CM, Sanders NJ (2007) When does diversity 
fit null model predictions? Scale and range size mediate the mid-
domain effect. Glob Ecol Biogeogr 16:305–312. https:// doi. org/ 
10. 1111/j. 1466- 8238. 2006. 00284.x

 5. Nogués-Bravo D, Araújo MB, Romdal T, Rahbek C (2008) Scale 
effects and human impact on the elevational species richness gra-
dients. Nature 453:216–219. https:// doi. org/ 10. 1038/ natur e06812

 6. Fierer N, Mccain CM, Meir P et al (2011) Microbes do not follow 
the elevational diversity patterns of plants and animals. Ecology 
92:797–804. https:// doi. org/ 10. 1890/ 10- 1170.1

 7. Singh D, Lee-Cruz L, Kim WS et al (2014) Strong elevational 
trends in soil bacterial community composition on Mt. Halla, 
South Korea. Soil Biol Biochem 68:140–149. https:// doi. org/ 10. 
1016/j. soilb io. 2013. 09. 027

https://doi.org/10.1007/s00248-021-01879-5
https://doi.org/10.6084/m9.figshare.14540892
https://github.com/aivelo/tick-biodiversity
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1146/annurev-ecolsys-110512-135750
https://doi.org/10.1146/annurev-ecolsys-110512-135750
https://doi.org/10.1016/j.tree.2007.09.006
https://doi.org/10.1016/j.tree.2007.09.006
https://doi.org/10.1111/j.1461-0248.2004.00701.x
https://doi.org/10.1111/j.1461-0248.2004.00701.x
https://doi.org/10.1111/j.1466-8238.2006.00284.x
https://doi.org/10.1111/j.1466-8238.2006.00284.x
https://doi.org/10.1038/nature06812
https://doi.org/10.1890/10-1170.1
https://doi.org/10.1016/j.soilbio.2013.09.027
https://doi.org/10.1016/j.soilbio.2013.09.027


 T. Aivelo et al.

1 3

 8. Wang J, Soininen J, Zhang Y et al (2011) Contrasting patterns 
in elevational diversity between microorganisms and macroor-
ganisms. J Biogeogr 38:595–603. https:// doi. org/ 10. 1111/j. 1365- 
2699. 2010. 02423.x

 9. Looby CI, Martin PH (2020) Diversity and function fo soil 
microbes on montane gradients: the state of knowledge in a chang-
ing world. FEMS Microbiol Ecol 96:fiaa122

 10. Benson AK, Kelly SA, Legge R et al (2010) Individuality in gut 
microbiota composition is a complex polygenic trait shaped by 
multiple environmental and host genetic factors. Proc Natl Acad 
Sci USA 107:18933–18938. https:// doi. org/ 10. 1073/ pnas. 10070 
28107

 11. Li H, Zhou R, Zhu J et al (2019) Environmental filtering increases 
with elevation for the assembly of gut microbiota in wild pikas. 
Microb Biotechnol 12:976–992. https:// doi. org/ 10. 1111/ 1751- 
7915. 13450

 12. Li H, Wang Y, Yu Q et al (2019) Elevation is associated with 
human skin microbiomes. Microorganisms. https:// doi. org/ 10. 
3390/ micro organ isms7 120611

 13. Ross BD, Hayes B, Radey MC et al (2018) Ixodes scapularis does 
not harbor a stable midgut microbiome. ISME J 12:2596–2607. 
https:// doi. org/ 10. 1038/ s41396- 018- 0161-6

 14. Narasimhan S, Rajeevan N, Liu L et al (2014) Gut microbiota of 
the tick vector Ixodes scapularis modulate colonization of the 
Lyme disease spirochete. Cell Host Microbe 15:58–71. https:// 
doi. org/ 10. 1016/j. chom. 2013. 12. 001

 15. Garcia-Vozmediano A, Krawczyk AI, Sprong H et al (2020) 
Ticks climb the mountains: Ixodid tick infestation and infection 
by tick-borne pathogens in the Western Alps. Ticks Tick Borne 
Dis 11:101489. https:// doi. org/ 10. 1016/j. ttbdis. 2020. 101489

 16. Mysterud A, Jore S, Østerås O, Viljugrein H (2017) Emergence 
of tick-borne diseases at northern latitudes in Europe: a com-
parative approach. Sci Rep 7:16316. https:// doi. org/ 10. 1038/ 
s41598- 017- 15742-6

 17. Gray JS (1991) The development and seasonal activity of the tick 
Ixodes ricinus: a vector of Lyme borreliosis. Rev Med Vet Ento-
mol 79:323–333

 18. Gardiner WP, Gettinby G, Gray JS (1981) Models based on 
weather for the development phases of the sheep tick, Ixodes 
ricinus L. Vet Parasitol 9:75–86. https:// doi. org/ 10. 1016/ 0304- 
4017(81) 90009-1

 19. Oechslin CP, Heutschi D, Lenz N et al (2017) Prevalence of tick-
borne pathogens in questing Ixodes ricinus ticks in urban and 
suburban areas of Switzerland. Parasit Vectors 10:1–18. https:// 
doi. org/ 10. 1186/ s13071- 017- 2500-2

 20. Estrada-Peña A, Ostfeld RS, Peterson a T, et al (2014) Effects 
of environmental change on zoonotic disease risk: an ecological 
primer. Trends Parasitol 30:205–214. https:// doi. org/ 10. 1016/j. pt. 
2014. 02. 003

 21. Aivelo T, Norberg A, Tschirren B (2019) Bacterial microbiota 
composition of Ixodes ricinus ticks: the role of environmental 
variation, tick characteristics and microbial interactions. PeerJ 
7:e8217. https:// doi. org/ 10. 1101/ 559245

 22. Thapa S, Zhang Y, Allen MS (2019) Effects of temperature on 
bacterial microbiome composition in Ixodes scapularis ticks. 
Microbiologyopen 8:e719. https:// doi. org/ 10. 1002/ mbo3. 719

 23. Narasimhan S, Swei A, Abouneameh S et al (2021) Grappling 
with the tick microbiome. Trends Parasitol. https:// doi. org/ 10. 
1016/j. pt. 2021. 04. 004

 24. Lemoine M, Cornetti L, Tschirren B (2018) Does Borrelia burg-
dorferi sensu lato facilitate the colonisation of marginal habitats 

by Ixodes ricinus? A correlative study in the Swiss Alps. bioRxiv. 
https:// doi. org/ 10. 1101/ 273490

 25. Carey HV, Walters WA, Knight R (2013) Seasonal restructuring 
of the ground squirrel gut microbiota over the annual hiberna-
tion cycle. Am J Physiol Regul Integr Comp Physiol 304:R33-42. 
https:// doi. org/ 10. 1152/ ajpre gu. 00387. 2012

 26. Kozich JJ, Westcott SL, Baxter NT et al (2013) Development of a 
dual-index sequencing strategy and curation pipeline for analyz-
ing amplicon sequence data on the MiSeq Illumina sequencing 
platform. Appl Environ Microbiol 79:5112–5120. https:// doi. org/ 
10. 1128/ AEM. 01043- 13

 27. Simpson EH (1949) Measurement of diversity. Nature 163:688
 28. Faith DP (1992) Conservation evaluation and phylogenetic 

diversity. Biol Conserv 61:1–10. https:// doi. org/ 10. 1016/ 0003- 
2697(75) 90168-2

 29. Oksanen J, Blanchet FG, Kindt R, et al (2020) vegan: Community 
Ecology Package. Version 2.5–7

 30. Webb CO (2000) Exploring the phylogenetic structure of eco-
logical communities: an example for rain forest trees. Am Nat 
156:145–155. https:// doi. org/ 10. 1086/ 303378

 31. Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: R tools 
for integrating phylogenies and ecology. Bioinformatics 26:1463–
1464. https:// doi. org/ 10. 1093/ bioin forma tics/ btq166

 32. Bates D, Mächler M, Bolker B, Walker S (2015) Fitting linear 
mixed-effects models using lme4. J Stat Softw. https:// doi. org/ 10. 
18637/ jss. v067. i01

 33. Lefcheck JS (2016) piecewiseSEM: Piecewise structural equation 
modelling in R for ecology, evolution, and systematics. Methods 
Ecol Evol 7:573–579. https:// doi. org/ 10. 1111/ 2041- 210X. 12512

 34. Bray JR, Curtis JT (1957) An ordination of the upland forest com-
munity of Southern Wisconsin. Ecol Monogr 27:325–349. https:// 
doi. org/ 10. 2307/ 19422 68

 35. Jaccard P (1912) The distribution of the flora in the alpine zone. 
New Phytol 11:37–50. https:// doi. org/ 10. 1111/j. 1469- 8137. 1912. 
tb056 11.x

 36. Lozupone C, Lladser ME, Knights D et al (2011) UniFrac: an 
effective distance metric for microbial community comparison. 
ISME J 5:169–172. https:// doi. org/ 10. 1038/ ismej. 2010. 133

 37. Chase JM, Kraft NJB, Smith KG et al (2011) Using null models 
to disentangle variation in community dissimilarity from variation 
in α-diversity. Ecosphere. https:// doi. org/ 10. 1890/ ES10- 00117.1

 38. Stegen JC, Lin X, Fredrickson JK et al (2013) Quantifying com-
munity assembly processes and identifying features that impose 
them. ISME J 7:2069–2079. https:// doi. org/ 10. 1038/ ismej. 2013. 
93

 39. Russel J. (2021). Russel88/MicEco (Version v0.9.14). Zenodo. 
https:// doi. org/ 10. 5281/ zenodo. 46397 87

 40. Anderson MJ (2001) A new method for non-parametric multivari-
ate analysis of variance. Austral Ecol 26:32–46. https:// doi. org/ 
10. 1046/j. 1442- 9993. 2001. 01070.x

 41. Anderson MJ, Ellingsen KE, McArdle BH (2006) Multivariate 
dispersion as a measure of beta diversity. Ecol Lett 9:683–693. 
https:// doi. org/ 10. 1111/j. 1461- 0248. 2006. 00926.x

 42. Stegen JC, Lin X, Fredrickson JK, Konopka AE (2015) Estimating 
and mapping ecological processes influencing microbial commu-
nity assembly. Front Microbiol 6:1–15. https:// doi. org/ 10. 3389/ 
fmicb. 2015. 00370

 43. Lozupone CA, Stombaugh JI, Gordon JI et al (2012) Diversity, 
stability and resilience of the human gut microbiota. Nature 
489:220–230. https:// doi. org/ 10. 1038/ natur e11550

 44. Clow KM, Weese JS, Rousseau J, Jardine CM (2017) Microbiota 
of field-collected Ixodes scapularis and Dermacentor variabilis 

https://doi.org/10.1111/j.1365-2699.2010.02423.x
https://doi.org/10.1111/j.1365-2699.2010.02423.x
https://doi.org/10.1073/pnas.1007028107
https://doi.org/10.1073/pnas.1007028107
https://doi.org/10.1111/1751-7915.13450
https://doi.org/10.1111/1751-7915.13450
https://doi.org/10.3390/microorganisms7120611
https://doi.org/10.3390/microorganisms7120611
https://doi.org/10.1038/s41396-018-0161-6
https://doi.org/10.1016/j.chom.2013.12.001
https://doi.org/10.1016/j.chom.2013.12.001
https://doi.org/10.1016/j.ttbdis.2020.101489
https://doi.org/10.1038/s41598-017-15742-6
https://doi.org/10.1038/s41598-017-15742-6
https://doi.org/10.1016/0304-4017(81)90009-1
https://doi.org/10.1016/0304-4017(81)90009-1
https://doi.org/10.1186/s13071-017-2500-2
https://doi.org/10.1186/s13071-017-2500-2
https://doi.org/10.1016/j.pt.2014.02.003
https://doi.org/10.1016/j.pt.2014.02.003
https://doi.org/10.1101/559245
https://doi.org/10.1002/mbo3.719
https://doi.org/10.1016/j.pt.2021.04.004
https://doi.org/10.1016/j.pt.2021.04.004
https://doi.org/10.1101/273490
https://doi.org/10.1152/ajpregu.00387.2012
https://doi.org/10.1128/AEM.01043-13
https://doi.org/10.1128/AEM.01043-13
https://doi.org/10.1016/0003-2697(75)90168-2
https://doi.org/10.1016/0003-2697(75)90168-2
https://doi.org/10.1086/303378
https://doi.org/10.1093/bioinformatics/btq166
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.18637/jss.v067.i01
https://doi.org/10.1111/2041-210X.12512
https://doi.org/10.2307/1942268
https://doi.org/10.2307/1942268
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1111/j.1469-8137.1912.tb05611.x
https://doi.org/10.1038/ismej.2010.133
https://doi.org/10.1890/ES10-00117.1
https://doi.org/10.1038/ismej.2013.93
https://doi.org/10.1038/ismej.2013.93
https://doi.org/10.5281/zenodo.4639787
https://doi.org/10.1046/j.1442-9993.2001.01070.x
https://doi.org/10.1046/j.1442-9993.2001.01070.x
https://doi.org/10.1111/j.1461-0248.2006.00926.x
https://doi.org/10.3389/fmicb.2015.00370
https://doi.org/10.3389/fmicb.2015.00370
https://doi.org/10.1038/nature11550


Elevational Changes in Bacterial Microbiota Structure and Diversity in an Arthropod‑Disease…

1 3

from eastern and southern Ontario, Canada. Ticks Tick Borne Dis 
9:235–244. https:// doi. org/ 10. 1016/j. ttbdis. 2017. 09. 009

 45. Excoffier L, Foll M, Petit RJ (2009) Genetic consequences of 
range expansions. Annu Rev Ecol Evol Syst 40:481–501. https:// 
doi. org/ 10. 1146/ annur ev. ecols ys. 39. 110707. 173414

 46. van Treuren W, Ponnusamy L, Brinkerhoff RJ et al (2015) Vari-
ation in the microbiota of Ixodes ticks with regard to geography, 
species, and sex. Appl Environ Microbiol 81:6200–6209. https:// 
doi. org/ 10. 1128/ AEM. 01562- 15

 47. Zolnik CP, Prill RJ, Falco RC et al (2016) Microbiome changes 
through ontogeny of a tick pathogen vector. Mol Ecol 25:4963–
4977. https:// doi. org/ 10. 1111/ mec. 13832

 48. Randolph S, Green R, Hoodless A, Peacey M (2002) An empiri-
cal quantitative framework for the seasonal dynamics of Ixodes 
ricinus. Int J Paras 32:979–989

 49. Dusbábek F (1996) Nymphal sexual dimorphism in the sheep tick 
Ixodes ricinus (Acari: Ixodidae). Folia Parasitol 43:75–79

 50. Narasimhan S, Fikrig E (2015) Tick microbiome: the force within. 
Trends Parasitol 31:315–323. https:// doi. org/ 10. 1016/j. pt. 2015. 03. 
010

https://doi.org/10.1016/j.ttbdis.2017.09.009
https://doi.org/10.1146/annurev.ecolsys.39.110707.173414
https://doi.org/10.1146/annurev.ecolsys.39.110707.173414
https://doi.org/10.1128/AEM.01562-15
https://doi.org/10.1128/AEM.01562-15
https://doi.org/10.1111/mec.13832
https://doi.org/10.1016/j.pt.2015.03.010
https://doi.org/10.1016/j.pt.2015.03.010

	Elevational Changes in Bacterial Microbiota Structure and Diversity in an Arthropod-Disease Vector
	Abstract
	Introduction
	Materials and Methods
	Tick Sampling
	Tick Microbiota
	Statistical Analysis
	Bacterial Alpha Diversity
	Bacterial Beta Taxonomic Diversity
	Influences of Ecological Processes on Community Turnover


	Results
	Ixodes Ricinus Microbiota Alpha Diversity
	Ixodes ricinus microbiota beta diversity
	Influences of Ecological Processes on Community Turnover

	Discussion
	Acknowledgements 
	References


