Title: Incorporating equity concerns in cost-effectiveness analyses: A systematic literature review

Running title: Incorporating equity concerns in cost-effectiveness analyses

Authors: Thomas Ward, MSc¹; Ruben E Mujica-Mota, PhD^{1,2}; Anne E Spencer, PhD¹; Antonieta Medina-Lara, PhD¹

¹Health Economics Group, College of Medicine and Health, University of Exeter; ²Academic Unit of Health Economics, School of Medicine, University of Leeds

Corresponding author: Thomas Ward (Email: <u>tw494@exeter.ac.uk</u>; Phone: 01392 725565; Address: College of Medicine and Health, St Luke's Campus, Heavitree Road, Exeter, EX1 2LU)

Funding: This research has been supported by a PhD studentship grant for Thomas Ward from the Dennis and Mereille Gillings Foundation.

Conflicts of interest/Competing interests:

TW: Mr. Ward reports grants from Dennis and Mereille Gillings Foundation, during the conduct of the study. AML: Dr. Medina-Lara reports being a member of the NIHR HTA Committee 2020-2024; the South West for Research for Patient Benefit Programme 2021-2023; the NIHR Global Health Units Research Funding Committee 2021-2025; and the NIHR Global Health Groups Research Funding Committee 2021-2025. AS: Dr. Spencer has nothing to disclose.

RMM: Dr. Mujica-Mota has nothing to disclose.

Availability of data and material: Not applicable

Code availability: Not applicable

Authors' contributions:

All authors contributed to the concept and design, drafting and critical revision of the manuscript. The acquisition of data and the provision of study materials was contributed to by TW and AML. Further, AS, AML and RMM provided supervision to TW throughout the manuscript development. AS assisted with attaining funding through TWs PhD grant and TW contributed to the analysis and interpretation of data alongside administrative support.

Abstract

Word count: 511

Introduction

The aim of this study is to review analytical methods that enable the incorporation of equity concerns within economic evaluation.

Methods

A systematic search of PubMed, Embase and EconLit was undertaken from database inception to February 2021. The search was designed to identify methodological approaches that are currently employed to evaluate health-related equity impacts in economic evaluation studies of health care interventions. Studies were eligible if they described or elaborated on a formal quantitative method used to integrate equity concerns within economic evaluation studies. Cost-utility, cost-effectiveness, cost-benefit, cost-minimisation and, cost-consequence analyses, as well as health technology appraisal and budget impact analysis, alongside any relevant literature reviews, were included. For each of the identified methods, summaries of the scope of equity considerations covered, the methods employed and their key attributes, data requirements, outcomes, and strengths and weaknesses were provided. A traffic light assessment of the practical suitability of each method was undertaken, alongside a worked example, applying the different methods to evaluate the same decision problem. Finally, the review summarises the typical trade-offs arising in cost-effectiveness analyses and discusses the extent to which the evaluation methods are able to capture these.

Results

In total, 68 studies were included in the review and methods could broadly be grouped into equity-based weighting (EBW) methods, extended cost-effectiveness analysis (ECEA), distributional cost-effectiveness analysis (DCEA), multi-criteria decision analysis (MCDA), and mathematical programming (MP). EBW and MP methods enable equity consideration through adjustment to incremental cost-effectiveness ratios, whilst equity considerations are represented through financial risk protection (FRP) outcomes in ECEA, social welfare functions (SWFs) in DCEA, and scoring/ranking systems in MCDA. The review identified potential concerns for EBW methods and MCDA with respect to data availability, and EBW methods and MP with respect to explicitly measuring changes in inequality. The only potential concern for ECEA relates to the use of FRP metrics which may not be relevant for all healthcare systems. In contrast, DCEA observed no significant

concerns but relies on the use of SWFs which may be unfamiliar to some audiences and requires societal preference elicitation. Consideration of typical cost-effectiveness and equity-related trade-offs highlighted the flexibility of most methods with respect to their ability to capture such trade-offs. Notable exceptions were trade-offs between quality of life and length of life, for which we find DCEA and ECEA unsuitable, and the assessment of lost opportunity costs, for which we find only DCEA and MP to be suitable. The worked example demonstrated that each method is designed with fundamentally different analytical objectives in mind.

Conclusions

The review emphasises that, not only are some approaches better suited to particular decision problems than others, but also that methods are subject to different practical requirements and that significantly different conclusions can be observed depending on the choice of method and the assumptions made. Further, to fully operationalise these frameworks, there remains a need to develop consensus over the motivation for equity assessment, which should necessarily be informed with stakeholder involvement. Future research of this topic should be a priority, particularly within the context of equity evaluation in health care policy decisions.

Highlights

We undertake a systematic search of relevant economic databases to identify methodological approaches that are currently employed to evaluate health-related equity impacts in economic evaluation studies of health care interventions.

The review adds to the published literature by systematically comparing the scope of equity considerations covered, alongside the methods, outcomes, data requirements, and strengths and weaknesses of each of the identified methods, with a focus on their practical application in economic evaluation of health care policy; a traffic light system is used to assess the suitability of each method for use in cost-effectiveness analysis and HTA.

We demonstrate that, not only are some approaches better suited to particular decision problems than others, but also that methods are subject to different practical requirements and may confer significantly different conclusions depending on the assumptions made.

1. Introduction

The World Health Organisation describes equity as "the absence of avoidable or remediable differences among groups of people, whether those groups are defined socially, economically, demographically, or geographically", and strongly advocates the reduction of health care inequities¹. Importantly, health care inequities may be thought of as the unfair and avoidable differences in health status seen within and between regions or groups of people. Within this context, health care equity evaluation relates to the measurement of health-related outcomes and health care resource use distribution within a population, with the goal of establishing whether or not patients have equal opportunity to attain their full potential for health².

Social determinants of health such as level of education, income, and geographical location, are examples of unfair differences that contribute to health outcome variability. Globally, lower levels of education, income and living standards, are all factors associated with increased morbidity and mortality^{3,4}. Over recent years, Western societies have seen a significant evolution in health care policy alongside substantial advancement of medical technologies. However, these improvements are not necessarily correlated with reductions in healthcare inequality. For example, the study by Mackenbach et al. (2016) suggests that, in Europe, whilst the absolute inequalities gap has narrowed, the relative inequality gap has widened, with 82% of the countries assessed demonstrating increased relative inequality in survival between the periods 1990-94 and 2005-09, in both men and women (i.e., whilst the differences in life expectancy between population subgroups has declined, the distribution of life expectancy within subgroups has become more unequal)⁵. Policies specifically employed to reduce these inequalities have commonly been focused outside of health care policy, aiming instead to address the underlying social causes. However, the introduction of specific health care policies, or the reimbursement of specific treatments, have the potential to inadvertently impact the distribution of health to the disadvantage of certain groups in society, and so their effects on equitable health distribution also need to be studied. An example of such an effect has consistently been observed amongst colorectal screening initiatives, where there exists substantial differences in screening uptake by socioeconomic status, with the least deprived observing significantly higher rates of uptake⁶.

In Europe, healthcare systems are based on the Beveridge or Bismarck models (or an amalgamation of the two), with the former providing government-backed (single-payer) health care for all citizens, funded through general taxation, and the latter providing health care through both government-backed and private institutions, with

funding coming from employer and employee payments^{i 7,8}. In the majority of these countries, as in many others around the world, the (formal or informal) evaluation of new health care policies is typically based on principles of efficiency, where the health benefits of a particular policy or treatment are weighed against the costs of introducing that policy or treatment⁹. Those that are deemed cost-effective based on a particular threshold or formula are reimbursed, and those that are not deemed cost-effective are not reimbursed. However, there exist no formal analytical frameworks from which to assess the equity impacts of health care policy decisions, beyond general discussion by the groups appointed to design the policy guidelines at the relevant stages of evidence appraisal. With an increasingly heterogeneous patient population, alongside a treatment landscape that is moving further towards targeted medicine, the need to understand whether the introduction of a new health care policy is likely to increase or decrease existing health inequities is becoming increasingly important¹⁰.

Sassi et al. (2001) were the first to systematically review equity measures for economic evaluation, adopting relatively broad search strategies and research objectives¹¹. Eleven years later, the systematic review by Johri et al. (2012) explored whether cost-effectiveness analysis could integrate equity concerns into Health Technology Assessment (HTA) and identified two obstacles that have impeded their use in decision making to date: the multiplicity of equity components and values, and the lack of a widely accepted normative source on which to ground equity value choices¹². Over subsequent years, Dukhanin et al. (2018) reviewed methodological solutions that could enable the integration of social justice concerns with economic evaluation, and Lal et al. (2018) reviewed equity measurement methods that could be used specifically in the context of public health policies^{13,14}. Most recently however, Avancena et al. (2021) described applications of equity-informative cost-effectiveness analyses¹⁵. The study focused on exploring the applications and settings of the various methods and examined how the introduction of an equity dimension affected cost-effectiveness value outcomes, and subsequently, the favourability of the interventions under assessment and the conclusions of the comparison.

The objectives of this study are to identify and summarise the methodological approaches that are currently employed to evaluate health-related equity impacts in economic evaluation studies of health care interventions, focusing on their practical suitability for use in economic evaluation of health care policy, and the systematic comparison of the scope of equity considerations covered, alongside the methods, outcomes, data requirements, and strengths and weaknesses of each of the identified methods.

ⁱ Typically, unemployed citizens or those in poverty cannot pay and receive limited healthcare coverage; exceptions exist where governments opt to fund healthcare for those in impoverished circumstances.

2. Methods

2.1. Search strategy

The review has been conducted according to the PRISMA-P (Preferred Reporting Items for Systematic reviews and Meta-Analyses Protocols) guidelines¹⁶. Systematic multi-string search strategies were developed using a combination of text words and index terms in line with eligibility criteria to retrieve studies from published literature. Searches were performed in PubMed (Medline), Embase and EconLit from database inception to February 2021. The review protocol was registered online with PROSPERO where further details may be found¹⁷. A summary of the search strategies can be found in **Supplemental Appendix A**.

The search was designed to identify methodological approaches that are currently employed to evaluate healthrelated equity impacts in economic evaluation studies of health care interventions. Studies were eligible if they described or elaborated on a formal quantitative method used to integrate equity concerns within economic evaluation studies. Cost-utility, cost-effectiveness, cost-benefit, cost-minimisation and, cost-consequence analyses, as well as health technology appraisal and budget impact analysis, alongside any methodological studies describing these types of analysis were included. Literature reviews were also considered if they met the eligibility criteria. Eligibility criteria were developed based on five previously published literature reviews with similar search strategy themes¹¹⁻¹⁵. An overview of each of the previously published literature reviews can be found in **Supplemental Appendix B**. Analyses which only presented results stratified by relevant equity strata (akin to subgroup analysis) were excluded. Editorials, case studies, letters, conference abstracts, phase I and phase II clinical trials, newspaper articles, book sections, patient and expert opinion or commentary, social media and papers describing adaptations of existing economic models (unless the adaptation relates to the incorporation of equity considerations) were excluded.

Titles and abstracts of the identified studies were screened by one reviewer and checked for accuracy by a second reviewer. Those that did not meet eligibility criteria were excluded. Subsequently, all data were extracted using a standardised data extraction template in Microsoft Excel. Data were extracted by one reviewer and checked for accuracy and completeness by a second reviewer. Any discrepancies between reviewers were resolved by consensus or referral to a third reviewer.

2.2. Review framework

For each of the identified methods, information pertinent to the following review components was extracted and summarised:

- A. An overview of each method (including summary of the scope of equity considerations covered, methods employed and their key attributes, data requirements, outcomes, and strengths and weaknesses);
- B. A traffic light assessment of the practical suitability of each method for use in economic evaluation studies and HTA;
- C. An illustration of the typical trade-offs observed in cost-effectiveness analyses, and discussion around the ability of the identified methods to accommodate equity considerations arising from these tradeoffs.

We describe each of the review components in more detail below.

A. Overview of methods

We initially summarise the methods and measures used to capture inequity of health status or outcomes and resource use. In a similar vein to Williams et al. (1997), we choose to focus on the assessment of health outcomes, as opposed to equity in process or allocation of health care resources¹⁸. In this sense, the equitable distribution of resource or health care access are considered as precursors to achieving equitable distribution of outcomes and, given equitable distribution of outcomes is a goal of most healthcare systems, this is where we focus our assessment. Importantly, and with this in mind, when we refer to assessment of the extent to which equitable outcome distribution is achieved, this is considered within the context of patients' having equal opportunity to attain their full potential health. We report on the scope of equity considerations covered, alongside the methods, outcomes, data requirements, and strengths and weaknesses of each method. In this context, health status or outcomes are typically measured by primary clinical effectiveness measures (e.g., mortality or life years), and/or preference-based measures of health (e.g., quality-adjusted life years [QALYs]). Importantly, we distinguish between methods that are designed to modify outcomes to account for societal preferences for inequality (e.g., methods that re-weight QALY outcomes) and those that can explicitly measure

the impact of a health care policy decision on the distribution of health status or outcomes. Further, given that equitable distribution of health care is typically measured by specific summary measures of inequality or equity,

such as the Gini coefficient, or social welfare functions (SWFs) such as the Atkinson index or the Kolm index, we summarise the measurement metrics used within each of the identified studies in a supplemental appendix¹⁹⁻²². We also summarise the reported applications of each of the methods in the identified studies, including a summary of the equity dimensions investigated in each of the studies.

B. Traffic light assessment of practical suitability

We evaluate each of the identified methods within the context of economic evaluation, including their practical suitability for inclusion within economic evaluation studies and HTA frameworks, and different settings (e.g., high- versus low-income countries). We identify three key elements for consideration:

- Informational and analytical requirements: What data and analytical requirements and constraints are relevant to the method?
- Generalisability: Can the method be applied consistently across heterogeneous applications and populations?
- Interpretability: Are the methods and results accessible to stakeholders and do they provide definitive conclusions?

Analytical requirements cover the information/data requirements and practical analytical constraints associated with the methods. With the evolution of modelling methods and the increasing availability of relevant data, the potential complexity of analyses has increased. Whilst analytical complexity may be required to fully realise the outcomes of a particular decision problem, computationally onerous or data intensive methods may not alter conclusions and may result in a lack of transparency and interpretability, deterring widespread adoption. Therefore, it is important that trade-offs between analytical complexity and the requirements of the equity evaluation objectives are considered.

Methods may be considered generalisable if they can be consistently applied and produce comparable evaluations across heterogeneous applications (e.g., different types of intervention) and populations (e.g., different disease areas)²³. This is particularly important within individual healthcare systems and settings, where the specific objectives and structures of economic analyses can differ, and consequently, where a particular equity evaluation approach may be better suited than another.

Finally, the ease with which the methods and results are accessible and interpretable by a range of stakeholders is important and alludes to the importance of evaluating method complexity and transparency. Conventional cost-effectiveness analysis applies equal weight to the costs and benefits of all individuals and seeks to maximise the total health within a population. One merit of the current economic evaluation framework is the ability to derive definitive conclusions from analyses, such that one intervention, amongst competing interventions, is identified as the optimum intervention, with results typically presented as incremental cost-effectiveness ratios (ICERs) evaluated at appropriate willingness-to-pay (WTP) thresholds²⁴. Whilst these metrics are now well established, the introduction of an equity dimension offers the potential for use of measurement metrics that are less familiar and/or more complex in nature. Subsequently, the extent to which equity methods can be readily integrated within current economic evaluation frameworks, provide transparent measurement of changes in outcome inequality, and produce clear conclusions, is assessed. In this respect, preference is given to methods that require no (or little) additional output beyond that of current cost-effectiveness frameworks, alongside methods that are able to explicitly identify an optimum policy amongst all evaluated policies. Additional detail surrounding the assessment of individual components is provided in **Supplemental Appendix C**.

C. Equity considerations and typical cost-effectiveness trade-offs

We attempt to illustrate typical trade-offs that might be evaluated across the spectrum of economic evaluations in health care, for example, the case in a budget constrained system where the loss of alternative health care interventions is traded off against the chosen intervention. Consistent with the published literature on health care inequality and the rhetoric from health care providers and policy makers, we make reference to health care access, health care experience and health outcomes as the key components of health inequalities²⁵⁻²⁸. We subsequently consider whether the equity evaluation methods can accommodate equity considerations arising from the trade-offs described.

Subsequently, we illustrate an application of each of the methods with a worked example evaluating the costeffectiveness of a hypothetical cancer screening programme in a UK setting. In brief, we compare the addition of universal and targeted cancer screening reminders to a conventional cancer screening program and evaluate outcomes across socioeconomic/deprivation quintiles. Patients are initially invited for screening with the resultant uptake favouring the least deprived. Three scenarios are evaluated:

- Universal reminder: A one-off reminder is sent to all patients that have not yet been screened (increasing uptake by 5%);
- Targeted reminder: Multiple reminders are sent to all patients in the two most deprived socioeconomic quintiles that have not yet been screened (increasing uptake by 15% in the two quintiles targeted);
- Current standard of care (SoC): No screening reminders.

Each strategy directly influences the uptake of screening, which subsequently influences the rate of diagnoses and treatment, and ultimately, total costs and quality adjusted life expectancy (QALE). A complete description of the evaluation methodology is provided in **Supplemental Appendix D**. We aim to demonstrate practical considerations for each of the methods and to highlight the drivers of evaluation conclusions, with such consideration providing further insight into the overall scope of each of the methods. An economic evaluation comparing each of the strategies is undertaken, with preferences for inequality reduction across socioeconomic quintiles captured.

3. Results

3.1. Search overview

The search identified 2,410 citations, after excluding duplicates. During the screening of titles and abstracts, a further 2,172 citations were excluded. Upon full-text assessment of the remaining 238 articles, 46 studies met criteria for inclusion. An additional 22 studies were identified through screening of the bibliographies of the most relevant literature reviews that were identified in the search (**Figure 1**). Amongst included studies, methods for evaluating equity in economic evaluations could broadly be grouped into five categories²: 1) equity-based weighting (EBW) methods (n=25); 2) distributional cost-effectiveness analysis (DCEA) (n=20); 3) extended cost-effectiveness analysis (ECEA) (n=17); 4) multi-criteria decision analysis (MCDA) (n=6); and 5) mathematical programming (MP) (n=2).

Of the 25 studies describing EBW methods, 17 studies described methods $only^{29-45}$, whilst only one was an applied study⁴⁶; the remaining seven studies described simplified or hypothetical case study examples designed to illustrate the use of the underlying method⁴⁷⁻⁵³. The methodological case studies and the applied study were limited to European (n=6)^{46,48,50-53} and Australian (n=2)^{47,49} settings; two studies evaluated pharmacological therapies for breast cancer^{48,50}, three studies looked at multiple diseases and interventions^{46,51,52}, one looked at optimal versus non-optimal treatment in schizophrenia patients⁴⁹, one looked at ICU versus general ward care⁴⁷, and the final study evaluated the impact of vaccinating for varicella zoster and herpes zoster⁵³. DCEA was used in 20 studies, 18 of which were applied studies or methodological case studies and were conducted in UK (n=8)^{54.61}, Ethiopian (n=2)^{62,63}, Tanzanian (n=2)^{64,65}, South Korean (n=2)^{66,67}, Dutch (n=1)⁶⁸, Malawian (n=1)⁶⁹, Brazilian (n=1)⁷⁰ and US (n=1)⁷¹ settings; six evaluated cancer or cardiovascular screening interventions^{58-61,66,67}, five evaluated multiple interventions across multiple disease areas^{54-56,69,70}, one study evaluated the introduction of a rotavirus vaccination⁶³, and the remainder evaluated single pharmacological interventions (n=1)⁶⁵, general improvements in health care provision (n=2)^{62,64} or lifestyle interventions (n=3)^{57,68,71}.

In total, 15 of the 17 ECEA publications were applied studies, all of which were undertaken in African $(n=7)^{72-78}$, Asian $(n=6)^{79-84}$, or African and Asian $(n=2)^{85,86}$, settings; of these, three studies evaluated vaccination programmes alone (measles [n=1] and rotavirus $[n=2])^{7973,86}$, six studies evaluated pharmacological interventions for various disease areas^{72,74,76,81,83,84}, and one study evaluated both vaccination (cervical cancer)

² Some studies described multiple methods and therefore reported totals sum to greater than the number of studies; SLRs were not included in these totals.

and a pharmacological intervention (childhood diarrhoea)⁷⁵. The final five studies focused on public health policy and included the impact of reduced salt intake on cardiovascular disease incidence⁷⁷, the impact of a sugar tax on type 2 diabetes outcomes⁷⁸, the effect of an increased availability of care workers on general neonatal care outcomes⁸², the impact of improved sanitation on childhood diarrhoea outcomes⁸⁰, and the influence of improved education on adolescent maternal mortality⁸⁵. Across MCDA publications, three described case studies looking at pharmacological interventions, including an Australian study on coronary heart disease⁸⁷, a European study on breast cancer⁵⁰ and an Israeli study looking at 18 health care interventions across multiple disease areas⁸⁸. Only one of the two MP studies was an applied study, focusing on HIV treatment in South Africa⁸⁹. An overview of all identified studies can be found in **Supplemental Appendix E**.

3.2. Overview of methods

3.2.1. Equity-based weighting

EBW involves the use of numerical weights to give greater (or lesser) influence to specific groups of people. In cost-effectiveness/utility analyses, this typically involves weighting utility scores for estimating QALYs and reevaluating ICERs based on the new weighted utility scores. Alternatively (or in parallel), weighting can be applied to costs or WTP thresholds.

Of the 25 EBW studies, 23 studies proposed conventional EBW methods, 21 of which focused on re-weighting QALYs, with two focusing on re-weighting costs^{29,31-47,49-53}. Most prevalent were equity weights based on initial health or disease severity (n=11), propensity for health gain (n=5) and age (n=5). The derivation of weights was described in nine studies, with most describing preference elicitation based on forms of best-worst scaling and discrete choice experimentation⁹⁰. Key data requirements for EBW methods include the underlying equity preference weights and the ability to disaggregate the target of the weighting function (e.g., QALYs) by the relevant equity stratification factor (e.g., socioeconomic status). A summary of the key attributes of each of the equity evaluation methods is presented in **Table 1**.

The remaining two EBW studies proposed less conventional methods. Karnon et al. (2015) described a method aiming to replace the QALY with the 'SAVE' (a non-utility-based measure, equivalent to saving the life of a young person), with a preference elicitation study (using a person trade-off survey approach) undertaken to estimate the number of SAVE's equivalent to relevant outcome events associated with the progression and treatment of early-stage breast cancer⁴⁸. In contrast, Versteegh et al. (2019) used a hypothetical oncology

example that combined probabilistic analysis with different WTP thresholds for different levels of disease severity, to introduce the severity-adjusted probability of cost-effectiveness³⁰.

3.2.2. Extended cost-effectiveness analysis

As suggested by its title, ECEA represents an extension to cost-effectiveness analysis, by incorporating additional non-health benefits, typically through the evaluation of a policy's ability to provide financial risk protection (FRP). FRP is concerned with the avoidance of financial difficulties associated with individuals being required to partially or entirely fund their own health care and, as such, is commonly evaluated in countries without national single-payer healthcare systems⁹¹. Equity concerns are captured through the stratification (or subgrouping) of the population based on specific equity criteria, with FRP outcomes subsequently compared across the different strata. It should be noted that ECEA does not always have to be concerned with FRP, with other dimensions encompassing, for example, educational, agricultural, or environmental benefits.

With the exception of one study (De Neve et al. [2018]) that evaluated FRP alongside educational outcomes, all studies focused solely on FRP^{35,72-86,92}. In these studies, equity was consistently evaluated across household income quintiles and FRP was evaluated in terms of household expenditure averted, catastrophic health expenditure or impoverishment. Saksena et al. defines catastrophic health expenditure to be when a household's out-of-pocket (OOP) payments are so high relative to its available resources that the household foregoes the consumption of other necessary goods and services⁹¹. In contrast, impoverishment is defined when OOP payments push households below or further below the poverty line, a country-specific threshold under which even the most basic standard of living is not ensured⁹¹. The importance of these outcomes relies on the household's ability to 'bounce back' and recover quickly from such an impact (i.e., consideration of whether FRP is afforded over a short or long period of time). The identified studies do not explicitly consider this aspect and typically focus on long-term FRP outcomes.

3.2.3. Distributional cost-effectiveness analysis

Distributional cost-effectiveness analysis (DCEA) measures the change in the distribution of costs and benefits before and after the introduction of a new intervention or policy, in order to identify those that benefit and those that lose out, as a function of displaced programmes. For example, in a screening programme in which both clinical- and cost-effectiveness is achieved for the average patient, the uptake of the screening programme, and the subsequent health outcomes of patients, might differ significantly by socioeconomic status, with certain groups failing to benefit from such interventions, perpetuating health inequalities. DCEA works by conditioning model input parameters on the relevant equity strata, enabling the distribution of cost and benefit outcomes to be quantified. For a QALY-oriented approach, QALY gains associated with the new programme are added to the QALE of the whole population. Subsequently, the costs of the new programme are converted into foregone QALYs (i.e., the QALYs lost due to the absence of funding for other health care programmes) using a predefined monetary valuation for a QALY and are subtracted from the QALE of the whole population. Subsequently, this allows for the identification of the 'winners' and 'losers' amongst the general population, in this case, the socioeconomic groups that (on aggregate) benefit most or least.

A total of 17 studies utilised DCEA as described above (hereupon termed 'conventional DCEA')^{34,35,54-68,70,71}. However, a different approach (termed 'aggregate DCEA') was also identified in which aggregate costeffectiveness outcomes (as opposed to model input data) are disaggregated based on external data and their expected impact across the individual subgroups of a particular equity dimension. Benefit outcomes are disaggregated based on their expected distributional impact across patients with the target disease, whilst cost outcomes are disaggregated based on their expected distributional impact across the wider healthcare system and general population (i.e., estimating the impact of foregone QALYs as in conventional DCEA). Three studies adopted this approach; two of these studies utilised data from the English NHS hospital episode statistics datasets, and the third study utilised data from household surveys based in Malawi to distribute outcomes^{54,56,69}.

Both DCEA methodologies enable a quantitative assessment of the degree of inequality using metrics such as the Gini index. Using SWFs such as the Atkinson social welfare index, DCEA can also be used to analyse the trade-offs between efficiency, in terms of maximising overall population health, and health equity, in terms of achieving a more equal distribution of health across the chosen equity strata and amongst the general population. The cornerstone of this inequality measure is the concept of Equally Distributed Equivalent (EDE) health, where EDE health is the level of health that, if equally distributed, would provide the same value (social welfare) as the existing unequal distribution, with the difference indicating the change in health-related social welfare. A positive change in EDE therefore represents a scenario in which population health increases and health inequality reduces, or a scenario in which the trade-off between increasing (decreasing) population health by an amount X and increasing (decreasing) health inequality by an amount Y is deemed acceptable; this acceptability is controlled by the inequality aversion parameter. Several studies presented results associated with multiple

different equality measurement metrics (despite consistent analytical objectives), and notably, without justification for their choice, suggesting there is currently no clear consensus on which metrics are most appropriate. The most common measurement metrics used were the Atkinson index (n=8) and the slope index of inequality (n=8) and the most common SWFs were the Atkinson and Kolm social welfare indices (n=10 and n=6, respectively). We regard DCEA as a practical and intuitive approach for estimating the distributional impact of a health care policy on societal welfare and, using the aggregate DCEA approach, avoids the requirement for stratified input data which is rarely available. **Supplemental Appendix F** provides a list of the inequality measurement metrics and SWFs that were described in detail across DCEA studies, alongside additional background information.

3.2.4. Multi-criteria decision analysis

In contrast to the other methods described herein, cost-effectiveness analysis may only form a component part of MCDA. The premise of MCDA is to evaluate multiple criteria, including those concerned with equity, that are typically heterogeneous in nature. This is implemented by establishing preferences between options (e.g., interventions) by reference to an explicit set of objectives that the decision makers have identified, and for which they have established measurable criteria to assess the extent to which the objectives have been achieved^{93,94}. The performance of each option against each criterion is then evaluated, resulting in either a qualitative ranking of options or a quantitative scoring of options through which a decision on the most suitable option can be made. In this context, equity is evaluated and measured through the ranking or scoring of options amongst the criteria that pertain to equity. For example, an equity evaluation criterion might be the uptake of care amongst different groups, with higher scores available for policies promoting equal care uptake. Notably, certain criterion may be given greater weight than others, depending on the overall objectives of the analysis; for example, equity criteria may be given greater weight than those of efficiency.

Six studies described MCDA, with three describing quantitative evaluation through explicitly defined scoring systems, one describing qualitative methods and two a mixture of both^{43,50,87,88,92,93}. The most common criterion included in the MCDA frameworks were cost-effectiveness analysis, severity of disease, size of population-level benefit and intervention effectiveness. Only three of the identified studies reported criterion specific to the consideration of equity, including age (with weight given to programmes targeted to younger patients), poverty reduction and socioeconomic status (with weight given to programmes providing health benefits to the most

deprived patient groups), amongst others. Whilst MCDA approaches have been adopted in other areas (most prevalently, the energy, environment and sustainability sectors), there appears to be hesitation to apply them more widely in health care decisions, likely due to the necessity to force direct comparison between fundamentally different components, where the potential subjectivity of decision makers may influence conclusions⁹⁵⁻⁹⁷.

3.2.5. Mathematical programming

MP approaches use mathematical optimisation techniques with the goal of maximising health gains (or an alternative health care metric) subject to specific constraints^{35,89}. Within the context of equity evaluation, specific equity goals are employed as constraints within the cost-effectiveness analysis framework and then mathematical algorithms are used to optimise modifiable aspects (e.g., treatment choice) of the modelled healthcare system. MP is particularly useful in comparing health care policies where there exist a large number of modifiable factors and the most efficient strategy is not immediately obvious (e.g., treatment allocation decisions in complex treatment pathways, as in Baltussen et al.)⁹³. However, MP approaches do not explicitly compare equity outcomes, but rather seek to explore the impact of a particular equity constraint on other outcomes. Further, MP relies heavily on the choice of constraints imposed in the analysis. In an equity-oriented example, such constraints could include ensuring a minimum level of service provision for disadvantaged patient groups, or regions, or specifying a maximum level of resource use disparity between patient groups. The choice of constraint and the ability of MP to optimise outcomes are dependent on the availability, suitability, and analytical structure, of modifiable parameters built into the modelling framework, alongside the availability of data relating the relevant constraints, modifiable parameters, and the MP optimisation objective.

Two studies described MP approaches^{35,89}, with only one describing an application of the method. Cleary et al. described an MP approach to evaluating HIV care strategies in South Africa, focusing on the evaluation of three optimisation strategies: health maximisation, equal treatment, and a third scenario where 'decent' minimum social choice rules were specified. The authors suggest the evaluation of further equity constraints in future work and argue that budget constraints should be incorporated more regularly within economic evaluation. This is further emphasised by Epstein et al., who highlight that in practice WTP thresholds are not typically consistent with the existence of an overall fixed budget for health care⁹⁸.

3.3. Traffic light assessment of practical suitability

Key practical considerations associated with the use of equity evaluation methods in economic evaluation and HTA frameworks are described in **Figure 2**, alongside a traffic light assessment of each method in the context of each individual consideration. Additional context and justification for each individual assessment is provided in **Supplemental Appendix C**.

With respect to analytical requirements, we observe concerns for EBW and MCDA methods where it is expected that significant further research on preference elicitation for equity weights and the relevant attributes of the MCDA framework would be required. There remains a lack of consensus on the best approaches to elicit such information and, not only would these studies likely have to be large to ensure statistical precision and representativeness, but there is potential for many multiple studies being required if estimates are likely to differ by disease area or intervention, or indeed any relevant population strata. Data requirements for other methods may be more manageable, with the potential to identify data within original sources (e.g., clinical trials), or to utilise existing publications alongside data readily available in large comprehensive national datasets such as the Clinical Research Practice Datalink (CPRD) or the National Health Service (NHS) Hospital Episode Statistics (HES) datasets, as found in the UK^{99,100}. However, it is acknowledged that such datasets may not be available, or may not be representative, in poorer countries or in countries without universal healthcare systems.

With regards to generalisability, DCEA provides the most flexible approach with consistent application across disease areas and intervention type, whilst representing equity concerns through the explicit measurement of the extent to which equity is achieved in outcome distribution, something that is relevant to all healthcare systems. In contrast, ECEA utilises an outcome based on FRP which is unlikely to be deemed of significant importance to whole population healthcare systems, that inherently mitigate the impact of adverse health outcomes on household expenditure¹⁰¹; as such, certain disease areas or intervention types may observe little to no impact on FRP, making comparisons difficult. Obviously, in settings where out-of-pocket payments for health care are prevalent, FRP becomes a more relevant outcome and the impact on FRP across different disease areas and interventions becomes more variable. EBW, MCDA and MP methods all utilise outcomes based on their underlying economic evaluation framework and therefore, are arguably relevant to most healthcare systems. However, it is likely that these methods require further consideration to account for inputs or criteria that may vary across different disease areas and interventions. For example, it has been demonstrated that the strength of inequality aversion in societal preferences (as required in EBW) is dependent upon disease severity, and

consequently, disease area¹⁰². Similar considerations are relevant for MCDA criteria elicitation and evaluation, whilst equity constraints applied to MP evaluations may simply not be viable for different disease areas and intervention types. In contrast, despite also requiring estimates of inequality aversion, DCEA is not subject to the same concerns of generalisability, due to a focus on estimating the inequality impacts of individual health care policies on the entire healthcare system, rather than just on the population associated with the individual disease area or intervention. As such, there is no immediately obvious reason to suggest DCEA cannot be applied consistently across disease areas and types of intervention.

Finally, when evaluating interpretability, the only major concerns we identify are the lack of ability of EBW, MCDA and MP methods to explicitly measure changes in the extent to which equitable outcome distribution is achieved, although it is acknowledged that this may not necessarily be a requirement or objective for all healthcare systems or policy makers. These methods rely on pre-specified preferences, criteria or constraints to modify existing outcomes based on preferences for inequality aversion, but do not explicitly measure the extent to which outcome distribution is made more or less equitable by the decision problem. We also highlight two main themes for further consideration: firstly, the use of metrics that are unfamiliar or irrelevant to certain audiences, such as equity measurement metrics and FRP; and secondly, the requirement for additional criteria to be specified relating to the acceptance of equity-efficiency trade-offs (akin to the use of WTP thresholds in cost-effectiveness analysis) before definite conclusions may be obtained¹⁰³. Methods of DCEA, ECEA and MCDA are most susceptible to such concerns.

3.4. Equity considerations and typical cost-effectiveness trade-offs

In **Table 2** we describe examples of some typical trade-offs arising in cost-effectiveness analyses and highlight the evaluation methods that are able to capture the associated equity concerns. Notably, most methods are able to capture a large range of different cost-effectiveness and equity-related trade-offs, with ECEA, on balance, being the least flexible approach, given its inability to capture social preferences for inequality aversion and its focus on FRP outcomes. DCEA and MP are the only methods that explicitly capture trade-offs associated with the measurement of opportunity cost offsets. However, we believe that with adaptation, such considerations could be incorporated within the frameworks of the other methods. Further, neither DCEA nor ECEA are able to capture preferences between extension of life and quality of life, or more generally they are unable to account for preferences between multiple health states or outcome measures.

Cost-effectiveness analyses have the potential to cover (to some extent) multiple different trade-offs. The shaded cells in **Table 2** highlight trade-offs that are not explicitly represented in the studies identified in this review. The transfers typically not represented relate to transfers between those with and without disease, transfers between quality of life and length of life and geographical transfers. Intergenerational transfers are considered to the extent of favouring outcomes for the younger generation (consistent with the 'fair innings' argument) but the explicit impact of the trade-offs are not evaluated. These gaps in the evidence represent opportunities for the methods to be applied to different types of trade-offs to further explore the limitations and suitability of the methods in different contexts.

Table 3 describes results of a hypothetical example of each method applied to the same decision problem. With no adjustment for equity considerations the base case ICERs associated with Universal and Targeted screening reminders (compared to the current SoC) were ≤£30,000 and £30,000-50,000, respectively; an ICER of >£50,000 was predicted for Targeted versus Universal screening reminders. Detailed results can be found in Supplement Appendix D. The EBW method provided additional weighting to QALYs gained by the most deprived quintile of patients, improving cost-effectiveness across all comparisons, but naturally favoured the Targeted strategy the most. Using the ECEA method had no impact on the overall ICERs but additional granularity is provided by reporting ICERs for individual subgroups. In our example, the 'extension' (and equity) component of ECEA considered the expected reduction in the number of patients facing poverty, with both Universal and Targeted strategies reducing poverty compared to SoC.

Under both conventional and aggregate DCEA approaches, the Targeted and Universal strategies were both estimated to reduce overall public health, as the value of foregone QALYs outweighed the population-level health benefits of each strategy. The Universal strategy increased inequality, whilst the Targeted strategy decreased inequality when compared to both the Universal and SoC strategies under the conventional DCEA method, but only when compared to the Universal strategy under the aggregate DCEA method, with such differences attributed to the greater weight given to the distribution of foregone QALYs amongst the most deprived under the aggregate DCEA approach.

Two approaches to MCDA are demonstrated: the value measurement method and the outranking approach, as detailed in Thokala et al. [2012]¹⁰⁴. Strategies were scored based on cost-effectiveness, total QALE gain, provision of equal access, the level of inequality reduction and the level of innovation of the programme, and despite similar scoring and ranking approaches the 'winning' intervention in each scenario differed across the

two approaches. Finally, we note that the MP approach is unable to offer any unique insight into the initial decision problem as there are no optimisable aspects, therefore without modifying the decision problem, outcomes under an MP approach cannot be estimated. A potential useful application of MP beyond the initial decision problem might be the optimisation of a combined Universal/Targeted reminder approach to maximise QALE gains or minimise QALE variation across deprivation quintiles under a fixed screening budget.

4. Discussion

To our knowledge this is the first study to review and directly contrast analytical methods for integrating equity value judgements within cost-effectiveness analysis and HTA, in terms of the methods, outcomes, the practical data requirements and the key strengths and weaknesses of each approach. We highlight key practical concerns associated with each of the methods. For example, we identify potential concerns for EBW methods and MCDA with respect to data availability, and EBW methods and MP with respect to an inability to explicitly measure changes in outcome inequality. The only significant concern for ECEA relates to the use of FRP metrics which may not be relevant for all healthcare systems. In contrast, DCEA observed no major concerns but relies on the use of SWFs which may be unfamiliar to some audiences and require societal preference elicitation. Consideration of typical equity-related trade-offs highlighted the flexibility of most methods with respect to their ability to capture such trade-offs. Notable exceptions were trade-offs between quality of life and length of life, for which we find DCEA and ECEA unsuitable, and the assessment of lost opportunity costs, for which we find only DCEA and MP to be suitable. The ability of the evaluation methods to accommodate different concerns is further highlighted through a hypothetical example application, which demonstrates that each method is designed with fundamentally different analytical objectives in mind. The example application imposes the use of each method for the evaluation of the same decision problem and emphasises that, not only are some approaches better suited to particular decision problems than others but also, that significantly different conclusions can be observed depending on the choice of method and the assumptions made.

This review has highlighted that equity evaluation methods can be broadly categorised into those whose objective is to: a) modify aspects of the economic evaluation framework through the introduction of constraints or preference weights; or b) explicitly measure the impact of a health care policy decision on the distribution of health outcomes across relevant equity-relevant strata. Within the context of these broad objectives, EBW methods likely represent the most intuitive and flexible approach for incorporating equity concerns in economic analyses when focused on the first objective. For evaluations seeking to explore the impact of a health care policy decision on the distribution of health care outcomes, DCEA is likely the most suitable choice of method given its focus on outcome distribution measurement, its ease of integration with economic evaluation frameworks and its ability to provide consistent and comparable output across analyses.

For EBW methods that aim to weight costs or health outcomes there is a lack of consensus on weighting preferences and their derivation¹⁰⁵. For example, consensus exists that there is societal preference for greater

weight to health gains amongst younger people and those with more severe illness but estimates for the size of such weights differ significantly across studies^{102,106}. Such differences allude to the difficulties in estimating generalisable social preferences that remain valid across an array of important health care evaluation factors such as the evaluation setting, the disease area and the type of intervention being evaluated, notwithstanding the ever-evolving state of societal opinion. A similar concern is recognised for the use of SWFs in DCEA. SWFs are used to incorporate preferences for inequality aversion and enable conclusions to be made through the evaluation of trade-offs between equity and efficiency, after the distribution of health care outcomes has been quantified through the use of relevant equity measurement metrics. Indeed, the difficulty in derivation and the limited use of measures derived from the views of patients, the public and other stakeholders in social preference elicitation studies may have contributed to the lack of uptake of these methods by decision-makers. With this in mind, we believe that effective future strategies for incorporating societal concern for inequality aversion within economic evaluations might overcome such problems through provision of sensitivity analyses utilising a range of degrees of inequality aversion in decision-maker preferences, starting from the point of no aversion (akin to a typical cost-effectiveness analysis). Such a strategy might only be undertaken for evaluations in which either a very positive or negative impact on inequality is likely. Subsequently, future work might then focus on enabling informed qualitative/deliberative assessment through appropriate communication of equity efficiency trade-offs. Under this type of framework, and without the restriction of a pre-defined inequality 'threshold' for assessment (not dissimilar to a static willingness-to-pay threshold), there remains flexibility to assess the equity-efficiency trade-offs of policies on a case-by-case basis, whilst avoiding onerous undertakings within assessments anticipated to provide little to no equity benefit or harm.

One notable limitation of our study is the lack of direct input from individual stakeholder groups, particularly with respect to their perspectives on the interpretability of equity analysis methods and their results. The perspectives and priorities of each set of stakeholders with respect to costs, health, health inequality, and their trade-offs, is an extremely important aspect requiring further consideration. Our study provides initial steps to considering such aspects, but we would advocate further research involving formal input from different stakeholder groups in order to understand which methods are most relevant to different groups, and how methods might be improved to better cater to a wide range of perspectives. Further, whilst we have endeavoured to provide objective assessment of each of the methods where possible, our assessment framework inherently introduces some subjectivity. However, we view this initial indicative assessment as an important step in the context of promoting further deliberation and discussion before formal adoption of the methods. Finally,

although not necessarily a limitation as such, we also highlight the nature of the hypothetical example application for further consideration. In order to demonstrate the potential impact of the choice of equity evaluation method, the example was necessarily contrived. It is anticipated that such a large range of differences across all methods would not be observed when evaluating real-world applications, due in part to a more consistent equity evaluation approach amongst methods were the specification of constraints, criteria or societal preferences are required, and the greater likelihood of observing larger differences in efficiency and/or equity outcomes between interventions.

Whilst we have attempted to directly contrast each of the methods in the context of pre-defined criteria, the suitability of each of the methods inherently depends upon the objectives of the equity analyses¹⁰⁷. Indeed, each of the methods has the capacity to offer unique perspectives, therefore, focus should be given to identifying the most appropriate methods for use in the context of the specific equity evaluation objective. Further, in order to fully operationalise these frameworks and enable their full potential, there remains a need to develop consensus over the motivation for equity analyses, with such consensus informed through involvement with all potential stakeholders. Future research on this topic should be a priority, particularly within the context of equity impacts. In parallel, continued application of the methods beyond their theoretical frameworks, and demonstration of their real-world applicability, should continue to be pursued in order to provide greater opportunity for their evolution and improvement.

References

- The World Health Organisation. Equity. https://www.who.int/healthsystems/topics/equity/en/. Published 2020. Accessed November 2020.
- 2. The World Health Organisation. Social determinants of health. https://www.who.int/healthtopics/social-determinants-of-health#tab=tab_1. Published 2020. Accessed November 2020.
- 3. Mackenbach JP, Valverde JR, Bopp M, et al. Determinants of inequalities in life expectancy: an international comparative study of eight risk factors. *The Lancet Public Health*. 2019;4(10):e529-e537.
- National Academies of Sciences, Engineering and Medicine; Health and Medicine Division; Board on Population Health and Public Health Practice; Committee on Community-Based Solutions to Promote Health Equity in the United States. The Root Causes of Health Inequity. In: Baciu A, Negussie Y, Geller A, ed. *Communities in Action: Pathways to Health Equity*.2017.
- 5. Mackenbach JP, Kulhánová I, Artnik B, et al. Changes in mortality inequalities over two decades: register based study of European countries. *BMJ.* 2016;353:i1732.
- 6. Essink-Bot M-L, Dekker E. Equal access to colorectal cancer screening. *The Lancet*. 2016;387(10020):724-726.
- Or Z, Cases C, Lisac M, Vrangbaek K, Winblad U, Bevan G. Are health problems systemic? Politics of access and choice under Beveridge and Bismarck systems. *Health Econ Policy Law.* 2010;5(3):269-293.
- Ministry of Health, Consumption and Social Welfare, Spain. Health care systems in the European Union countries: Health characteristics and indicators 2019. 2019. https://www.mscbs.gob.es/estadEstudios/estadisticas/docs/presentacion_en.pdf. Accessed January 2021.
- 9. The National Institute for Health and Care Excellence. NICE technology appraisal guidance. https://www.nice.org.uk/about/what-we-do/our-programmes/nice-guidance/nicetechnology-appraisal-guidance. Published 2020. Accessed November 2020.
- 10. Ward T, Medina-Lara A, Mujica-Mota RE, Spencer AE. Accounting for heterogeneity in resource allocation decisions: methods and practice in UK cancer technology appraisals. *Value in Health (in press).* 2021.
- 11. Sassi F, Archard L, Le Grand J. Equity and the economic evaluation of healthcare. *Health Technol Assess.* 2001;5(3):1-138.
- 12. Johri M, Norheim OF. Can cost-effectiveness analysis integrate concerns for equity? Systematic review. *Int J Technol Assess Health Care*. 2012;28(2):125-132.
- Lal A, Moodie M, Peeters A, Carter R. Inclusion of equity in economic analyses of public health policies: systematic review and future directions. *Aust N Z J Public Health*. 2018;42(2):207-213.
- 14. Dukhanin V, Searle A, Zwerling A, Dowdy DW, Taylor HA, Merritt MW. Integrating social justice concerns into economic evaluation for healthcare and public health: A systematic review. *Soc Sci Med.* 2018;198:27-35.
- 15. Avanceña ALV, Prosser LA. Examining Equity Effects of Health Interventions in Cost-Effectiveness Analysis: A Systematic Review. *Value in Health.* 2021;24(1):136-143.
- 16. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ.* 2009;339:b2535.
- 17. Ward T M-LA, Mujica-Mota RE, Spencer AE. The incorporation of equity considerations in cost-effectiveness analyses: a systematic literature review. PROSPERO 2020 CRD42020180904 2020.

h<u>ttps://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=180904.</u> Published July 2020.

- 18. Williams A. Intergenerational Equity: An Exploration of the 'Fair Innings' Argument. *Health Economics.* 1997;6(2):117-132.
- 19. Atkinson AB. On the measurement of inequality. *Journal of Economic Theory.* 1970;2(3):244-263.
- 20. Kolm S-C. Unequal inequalities. I. *Journal of Economic Theory*. 1976;12(3):416-442.
- 21. Regidor E. Measures of health inequalities: part 2. *Journal of Epidemiology and Community Health.* 2004;58(11):900-903.
- Gini CW. Variability and mutability, contribution to the study of statistical distributions and relations. studi cconomico-giuridici della r. universita de cagliari (1912). reviewed in : Light, r. j., margolin, b. h. : An analysis of variance for categorical data. J American Statistical Association. 1971;66:534-544.
- 23. The National Institute for Health and Care Excellence. Improving health and social care through evidence-based guidance. https://www.nice.org.uk/. Published 2020. Accessed November 2020.
- 24. Paulden M. Recent amendments to NICE's value-based assessment of health technologies: implicitly inequitable? *Expert Review of Pharmacoeconomics & Outcomes Research*. 2017;17(3):239-242.
- 25. OECD. Health Inequalities. https://www.oecd.org/health/inequalities-in-health.htm. Published 2020. Accessed December 2020, 2020.
- 26. The Kings Fund. What are health inequalities? https://www.kingsfund.org.uk/publications/what-are-healthinequalities?gclid=EAIaIQobChMI3Zbo0rux6gIVDNiyCh3_gQkIEAAYASAAEgI7ffD_BwE. Published 2020. Accessed November 2020.
- 27. Exworthy M, Blane D, Marmot M. Tackling health inequalities in the United Kingdom: the progress and pitfalls of policy. *Health Serv Res.* 2003;38(6 Pt 2):1905-1921.
- National Institute for Health and Care Excellence. Glossary. Health inequalities. <u>https://www.nice.org.uk/glossary?letter=h</u>. Published 2020. Accessed December 2020, 2020.
- 29. Daems R, Maes E, Glaetzer C. Equity in pharmaceutical pricing and reimbursement: Crossing the income divide in Asia Pacific. *Value in Health Regional Issues.* 2013;2(1):160-166.
- Versteegh MM, Ramos IC, Buyukkaramikli NC, Ansaripour A, Reckers-Droog VT, Brouwer WBF. Severity-Adjusted Probability of Being Cost Effective. *PharmacoEconomics*. 2019;37(9):1155-1163.
- Haaland OA, Lindemark F, Johansson KA. A flexible formula for incorporating distributive concerns into cost-effectiveness analyses: Priority weights. *PLoS ONE*. 2019;14(10):e0223866.
- 32. Bleichrodt H. Health Utility Indices and Equity Considerations. *Journal of Health Economics*. 1997;16(1):65-91.
- 33. Bleichrodt H, Diecidue E, Quiggin J. Equity Weights in the Allocation of Health Care: The Rank-Dependent QALY Model. *Journal of Health Economics.* 2004;23(1):157-171.
- Cookson R, Drummond M, Weatherly H. Explicit Incorporation of Equity Considerations into Economic Evaluation of Public Health Interventions. *Health Economics, Policy and Law.* 2009;4(2):231-245.
- 35. Cookson R, Mirelman AJ, Griffin S, et al. Using Cost-Effectiveness Analysis to Address Health Equity Concerns. *Value in Health.* 2017;20(2):206-212.
- 36. Dolan P. The measurement of individual utility and social welfare. *Journal of Health Economics.* 1998;17(1):39-52.
- Gafni A, Birch S. Equity Considerations in Utility-Based Measures of Health Outcomes in Economic Appraisals: An Adjustment Algorithm. *Journal of Health Economics*. 1991;10(3):329-342.

- 38. Nord E, Pinto JL, Richardson J, Menzel P, Ubel P. Incorporating societal concerns for fairness in numerical valuations of health programmes. *Health Econ.* 1999;8(1):25-39.
- 39. Nord E. Towards Cost-Value Analysis in Health Care? *Health Care Analysis.* 1999;7(2):167-175.
- 40. Nord E. Concerns for the worse off: fair innings versus severity. *Soc Sci Med.* 2005;60(2):257-263.
- 41. Rodríguez E, Pinto-Prades J-L. The social value of health programmes: is age a relevant factor? *Health Economics.* 2000;9(7):611-621.
- 42. Round J, Paulden M. Incorporating Equity in Economic Evaluations: A Multi-attribute Equity State Approach. *European Journal of Health Economics.* 2018;19(4):489-498.
- 43. Sussex J, Towse A, Devlin N. Operationalizing value-based pricing of medicines : a taxonomy of approaches. *Pharmacoeconomics*. 2013;31(1):1-10.
- 44. Tsuchiya A. Age-related preferences and age weighting health benefits. *Soc Sci Med.* 1999;48(2):267-276.
- 45. Ubel PA, Nord E, Gold M, Menzel P, Prades JL, Richardson J. Improving value measurement in cost-effectiveness analysis. *Med Care.* 2000;38(9):892-901.
- 46. Lindemark F, Haaland Ø A, Kvåle R, Flaatten H, Norheim OF, Johansson KA. Costs and expected gain in lifetime health from intensive care versus general ward care of 30,712 individual patients: a distribution-weighted cost-effectiveness analysis. *Crit Care.* 2017;21(1):220.
- 47. Ong KS, Kelaher M, Anderson I, Carter R. A cost-based equity weight for use in the economic evaluation of primary health care interventions: case study of the Australian Indigenous population. *Int J Equity Health.* 2009;8:34.
- 48. Karnon J, Partington A. Cost-Value Analysis and the SAVE: A Work in Progress, But an Option for Localised Decision Making? *PharmacoEconomics*. 2015;33(12):1281-1288.
- 49. Carr VJ, Lewin TJ, Neil AL. What is the value of treating schizophrenia? *Australian and New Zealand Journal of Psychiatry*. 2006;40(11-12):963-971.
- 50. Baeten SA, Baltussen RMPM, Uyl-De Groot CA, Bridges J, Niessen LW. Incorporating equityefficiency interactions in cost-effectiveness analysis - Three approaches applied to breast cancer control. *Value in Health.* 2010;13(5):573-579.
- 51. Bleichrodt H, Doctor J, Stolk E. A Nonparametric Elicitation of the Equity-Efficiency Trade-Off in Cost-Utility Analysis. *Journal of Health Economics.* 2005;24(4):655-678.
- 52. Stolk EA, van Donselaar G, Brouwer WB, Busschbach JJ. Reconciliation of economic concerns and health policy: illustration of an equity adjustment procedure using proportional shortfall. *Pharmacoeconomics.* 2004;22(17):1097-1107.
- 53. Luyten J, van Hoek AJ. Integrating Alternative Social Value Judgments Into Cost-Effectiveness Analysis of Vaccines: An Application to Varicella-Zoster Virus Vaccination. *Value Health*. 2021;24(1):41-49.
- 54. Love-Koh J, Cookson R, Gutacker N, Patton T, Griffin S. Aggregate Distributional Cost-Effectiveness Analysis of Health Technologies. *Value in Health.* 2019;22(5):518-526.
- 55. Love-Koh J, Pennington B, Owen L, Taylor M, Griffin S. How health inequalities accumulate and combine to affect treatment value: A distributional cost-effectiveness analysis of smoking cessation interventions. *Soc Sci Med.* 2020;265:113339.
- 56. Griffin S, Love-Koh J, Pennington B, Owen L. Evaluation of Intervention Impact on Health Inequality for Resource Allocation. *Medical decision making : an international journal of the Society for Medical Decision Making.* 2019;39(3):171-182.
- 57. Allen K, Pearson-Stuttard J, Hooton W, Diggle P, Capewell S, O'Flaherty M. Potential of trans fats policies to reduce socioeconomic inequalities in mortality from coronary heart disease in England: cost effectiveness modelling study. *Bmj.* 2015;351:h4583.

- 58. Kypridemos C, Collins B, McHale P, et al. Future cost-effectiveness and equity of the NHS Health Check cardiovascular disease prevention programme: Microsimulation modelling using data from Liverpool, UK. *PLoS Medicine*. 2018;15(5):e1002573.
- 59. Asaria M, Griffin S, Cookson R, Whyte S, Tappenden P. Distributional cost-effectiveness analysis of health care programmes A methodological case study of the UK bowel cancer screening programme. *Health Economics (United Kingdom).* 2015;24(6):742-754.
- 60. Asaria M, Griffin S, Cookson R. Distributional Cost-Effectiveness Analysis: A Tutorial. *Medical decision making : an international journal of the Society for Medical Decision Making.* 2016;36(1):8-19.
- 61. Collins B, Kypridemos C, Cookson R, et al. Universal or targeted cardiovascular screening? Modelling study using a sector-specific distributional cost effectiveness analysis. *Preventive Medicine*. 2020;130:105879.
- 62. Olsen M, Norheim OF, Memirie ST. Reducing regional health inequality: a sub-national distributional cost-effectiveness analysis of community-based treatment of childhood pneumonia in Ethiopia. *International Journal for Equity in Health.* 2021;20(1):9.
- 63. Dawkins BR, Mirelman AJ, Asaria M, Johansson KA, Cookson RA. Distributional Cost-Effectiveness Analysis in Low- and Middle-Income Countries: Illustrative Example of Rotavirus Vaccination in Ethiopia. *Health Policy and Planning*. 2018;33(3):456-463.
- 64. Ngalesoni FN, Ruhago GM, Mori AT, Robberstad B, Norheim OF. Equity impact analysis of medical approaches to cardiovascular diseases prevention in Tanzania. *Soc Sci Med.* 2016;170:208-217.
- 65. Robberstad B, Norheim OF. Incorporating concerns for equal lifetime health in evaluations of public health programs. *Social Science and Medicine*. 2011;72(10):1711-1716.
- 66. Lee TH, Kim W, Shin J, Park EC, Park S, Kim TH. Strategic distributional cost-effectiveness analysis for improving national cancer screening uptake in cervical cancer: A focus on regional inequality in South Korea. *Cancer Research and Treatment.* 2018;50(1):212-221.
- 67. Lee KS, Park EC. Cost effectiveness of colorectal cancer screening interventions with their effects on health disparity being considered. *Cancer Research and Treatment*. 2016;48(3):1010-1019.
- 68. Oosterhoff M, Over EAB, van Giessen A, et al. Lifetime cost-effectiveness and equity impacts of the Healthy Primary School of the Future initiative. *BMC Public Health.* 2020;20(1):1887.
- 69. Arnold M, Nkhoma D, Griffin S. Distributional impact of the Malawian Essential Health Package. *Health Policy Plan.* 2020;35(6):646-656.
- 70. Love-Koh J, Mirelman A, Suhrcke M. Equity and economic evaluation of system-level health interventions: A case study of Brazil's Family Health Program. *Health Policy and Planning*. 2020;36(3):229-238.
- Pitt AL, Goldhaber-Fiebert JD, Brandeau ML. Public Health Interventions with Harms and Benefits: A Graphical Framework for Evaluating Tradeoffs. *Med Decis Making*. 2020;40(8):978-989.
- 72. Pecenka CJ, Johansson KA, Memirie ST, Jamison DT, Verguet S. Health gains and financial risk protection: an extended cost-effectiveness analysis of treatment and prevention of diarrhoea in Ethiopia. *BMJ Open.* 2015;5(4):e006402.
- 73. Driessen J, Olson ZD, Jamison DT, Verguet S. Comparing the health and social protection effects of measles vaccination strategies in Ethiopia: An extended cost-effectiveness analysis. *Social Science and Medicine*. 2015;139:115-122.
- 74. Johansson KA, Strand KB, Fekadu A, Chisholm D. Health Gains and Financial Protection Provided by the Ethiopian Mental Health Strategy: An Extended Cost-Effectiveness Analysis. *Health Policy and Planning.* 2017;32(3):376-383.
- 75. Johansson KA, Memirie ST, Pecenka C, Jamison DT, Verguet S. Health Gains and Financial Protection from Pneumococcal Vaccination and Pneumonia Treatment in Ethiopia: Results from an Extended Cost-Effectiveness Analysis. *PLoS One.* 2015;10(12):e0142691.

- 76. De Neve JW, Andriantavison RL, Croke K, et al. Health, financial, and education gains of investing in preventive chemotherapy for schistosomiasis, soil-transmitted helminthiases, and lymphatic filariasis in Madagascar: A modeling study. *PLoS Negl Trop Dis.* 2018;12(12):e0007002.
- 77. Watkins DA, Olson ZD, Verguet S, Nugent RA, Jamison DT. Cardiovascular disease and impoverishment averted due to a salt reduction policy in South Africa: an extended cost-effectiveness analysis. *Health Policy Plan.* 2016;31(1):75-82.
- 78. Saxena A, Stacey N, Puech PDR, Mudara C, Hofman K, Verguet S. The distributional impact of taxing sugar-sweetened beverages: findings from an extended cost-effectiveness analysis in South Africa. *BMJ Glob Health.* 2019;4(4):e001317.
- 79. Levin CE, Sharma M, Olson Z, et al. An extended cost-effectiveness analysis of publicly financed HPV vaccination to prevent cervical cancer in China. *Vaccine.* 2015;33(24):2830-2841.
- 80. Nandi A, Megiddo I, Ashok A, Verma A, Laxminarayan R. Reduced burden of childhood diarrheal diseases through increased access to water and sanitation in India: A modeling analysis. *Soc Sci Med.* 2017;180:181-192.
- 81. Megiddo I, Colson A, Chisholm D, Dua T, Nandi A, Laxminarayan R. Health and economic benefits of public financing of epilepsy treatment in India: An agent-based simulation model. *Epilepsia*. 2016;57(3):464-474.
- 82. Nandi A, Colson AR, Verma A, Megiddo I, Ashok A, Laxminarayan R. Health and economic benefits of scaling up a home-based neonatal care package in rural India: a modelling analysis. *Health Policy Plan.* 2016;31(5):634-644.
- 83. Raykar N, Nigam A, Chisholm D. An extended cost-effectiveness analysis of schizophrenia treatment in India under universal public finance. *Cost effectiveness and resource allocation : C/E.* 2016;14:9-9.
- 84. Verguet S, Laxminarayan R, Jamison DT. Universal public finance of tuberculosis treatment in India: an extended cost-effectiveness analysis. *Health Econ.* 2015;24(3):318-332.
- 85. Verguet S, Nandi A, Filippi V, Bundy DAP. Maternal-related deaths and impoverishment among adolescent girls in India and Niger: findings from a modelling study. *BMJ Open.* 2016;6(9):e011586.
- Verguet S, Murphy S, Anderson B, Johansson KA, Glass R, Rheingans R. Public finance of rotavirus vaccination in India and Ethiopia: An extended cost-effectiveness analysis. *Vaccine*. 2013;31(42):4902-4910.
- 87. Banham D, Lynch J, Karnon J. An equity-Effectiveness framework linking health programs and healthy life expectancy. *Australian Journal of Primary Health*. 2011;17(4):309-319.
- 88. Golan O, Hansen P. Which health technologies should be funded? A prioritization framework based explicitly on value for money. *Israel Journal of Health Policy Research*. 2012;1(1):44.
- Cleary S, Mooney G, McIntyre D. Equity and efficiency in HIV-treatment in South Africa: the contribution of mathematical programming to priority setting. *Health Econ*. 2010;19(10):1166-1180.
- 90. Potoglou D, Burge P, Flynn T, et al. Best–worst scaling vs. discrete choice experiments: An empirical comparison using social care data. *Social Science & Medicine*. 2011;72(10):1717-1727.
- 91. Saksena P, Hsu J, Evans DB. Financial risk protection and universal health coverage: evidence and measurement challenges. *PLoS Med.* 2014;11(9):e1001701-e1001701.
- 92. Phelps CE, Lakdawalla DN, Basu A, Drummond MF, Towse A, Danzon PM. Approaches to Aggregation and Decision Making-A Health Economics Approach: An ISPOR Special Task Force Report [5]. *Value Health.* 2018;21(2):146-154.
- 93. Baltussen R, Niessen L. Priority setting of health interventions: the need for multi-criteria decision analysis. *Cost Eff Resour Alloc.* 2006;4:14-14.

- 94. Marsh K, M IJ, Thokala P, et al. Multiple Criteria Decision Analysis for Health Care Decision Making--Emerging Good Practices: Report 2 of the ISPOR MCDA Emerging Good Practices Task Force. *Value Health.* 2016;19(2):125-137.
- 95. Zopounidis C, Doumpos M. Multi-criteria decision aid in financial decision making: methodologies and literature review. *Journal of Multi-Criteria Decision Analysis.* 2002;11(4-5):167-186.
- 96. Karvetski CW, Lambert JH, Linkov I. Emergent conditions and multiple criteria analysis in infrastructure prioritization for developing countries. *Journal of Multi-Criteria Decision Analysis.* 2009;16(5-6):125-137.
- 97. Mardani A, Jusoh A, Md Nor K, Khalifah Z, Zakwan N, Valipour A. Multiple criteria decisionmaking techniques and their applications – a review of the literature from 2000 to 2014. *Economic Research-Ekonomska Istraživanja*. 2015;28(1):516-571.
- 98. Epstein D, Chalabi Z, Claxton K, Sculpher M. Mathematical programming for the optimal allocation of healthcare resources. 2005.
- 99. National Institute for Health Research. Clinical Practice Research Datalink. In: National Institute for Health Research, ed. Vol 20202020.
- 100. NHS Digital. Hospital Episode Statistics. In: NHS Digital, ed2020.
- 101. The World Health Organization. *Research for universal health coverage: World health report* 2013. 2013.
- 102. Reckers-Droog V, van Exel J, Brouwer W. Equity Weights for Priority Setting in Healthcare: Severity, Age, or Both? *Value in Health.* 2019;22(12):1441-1449.
- 103. McCabe C, Claxton K, Culyer AJ. The NICE Cost-Effectiveness Threshold. *PharmacoEconomics*. 2008;26(9):733-744.
- 104. Thokala P, Duenas A. Multiple criteria decision analysis for health technology assessment. *Value Health.* 2012;15(8):1172-1181.
- Wailoo A, Tsuchiya A, McCabe C. Weighting must wait: incorporating equity concerns into cost-effectiveness analysis may take longer than expected. *Pharmacoeconomics*. 2009;27(12):983-989.
- Skedgel C, Wailoo A, Akehurst R. Societal preferences for distributive justice in the allocation of health care resources: a latent class discrete choice experiment. *Med Decis Making*. 2015;35(1):94-105.
- 107. Chang W-C. The meaning and goals of equity in health. *Journal of Epidemiology and Community Health.* 2002;56(7):488-491.

Note: The size of each node (or circle) is not designed to convey any information, and is provided to more easily differentiate methods only

Table 1: Overview of key equity evaluation method attributes

	Equity-based	Extended cost-	Distributional cost-effectiveness analysis		Multi-criteria	Mathematical		
	weighting		Conventional DCEA Aggregate DCEA		(MCDA)	programming (MP)		
Scope				00 0				
Approach aim	To evaluate the impact of societal preference for inequality aversion on CE outcomes	To evaluate and measure the distributional impact of health care policies on poverty and personal financial outcomes	To evaluate and measure of health care polic	e the distributional impact ies on CE outcomes	To combine and evaluate multiple disparate criteria in a decision-making framework	To provide optimal solutions to economic allocation decisions subject to relevant constraints		
Ability to capture multiple equity dimensions?	~	✓	✓		✓	✓		
Approach to equity incorporation (direct or indirect) ¹	Direct: Incorporates equity weights within evaluation	Indirect: Reports/ measures changes in outcome inequality distribution	Indirect: Reports/ measures changes in outcome inequality distribution		Indirect: Equity component stands apart from CE component until combined through weighted scoring/ranking	Direct: Incorporates equity constraints within evaluation		
Possible to explicitly measure the extent to which health care outcomes are distributed equitably?	×	~	\checkmark		x ²	×		
Methods	•		•		•			
Core equity mechanism	Weighting of outcomes/costs	Derivation of distributional CE/FRP outcomes	Derivation of distributional CE/equity impact and use of SWFs		Evaluation and weighting of outcomes across multiple criteria to rank/score strategies	Equity constraints in an optimisation analysis		
Requires modification to underlying CE model?	 ✓ if focus of weighting is not readily disaggregated (× otherwise) 	4	~	×	×	~		
Impact on benefit (e.g., QALYs) and costs	Re-weighted based on pre-defined preferences for inequality aversion	Distribution of cost and QALY outcomes	Distribution of cost and QALY outcomes assessed across relevant groups		Unchanged	Potentially modified in line with the optimisation approach		

	amongst different groups ³	assessed across relevant groups						
Uses aggregate CE outcomes data only?	4	×	×	~	~	×		
Outcomes								
Equity evaluation outcome	ICER	ICER and measurement of FRP or equivalent	ICER, specific inequality measure (e.g., slope index of inequality) & SWF		Score or rank (alongside results of individual evaluation criteria)	ICER or the specific optimisation target		
Overview of criteria used to elicit policy reimbursement conclusions	WTP threshold	WTP threshold	WTP & inequality	aversion parameter	Highest ranking/ scoring policy	WTP threshold or the specific optimisation target		
Data								
Data requirements beyond those of typical cost- effectiveness analyses	 Equity preference weights; Stratification of relevant outcomes (i.e., the target of the weighting function) by the relevant equity stratification factor. 	 Out-of-pocket payment outcomes stratified by relevant equity stratification factor; Poverty or 'catastrophic' spending threshold. 	 Baseline population health (e.g., QALE) stratified by relevant equity stratification factor; Estimates of relevant CE model inputs stratified by relevant equity stratification factor; Knowledge on distribution of opportunity costs. Preferences for inequality aversion. 	 Baseline population health (e.g., QALE) stratified by relevant equity stratification factor; Stratification of relevant outcomes by the relevant equity stratification factor; Health care utilisation for specific indication and for whole population stratified by relevant equity stratification factor; Preferences for inequality aversion. 	 Consensus on MCDA criteria; Consensus on scoring/ranking strategy for each MCDA criteria; Preference weights (if certain criteria are to be valued above others). 	 MP optimisation objective; Relevant equity constraints; Data to relate the relevant constraints, modifiable parameters, and the MP optimisation objective. 		
Strengths and weaknesses								
Key method strengths	Analytically and conceptually simple	Provides additional granularity and information on aspects beyond cost- effectiveness	Possible to explicitly measure the extent to which health care outcomes are distributed equitably		Able to evaluate multiple disparate components (including those outside of the CE framework)	Ability to incorporate budget constraints and cost-offset impacts		

Key method weaknesses	Potentially requires significant further research on inequality preference elicitation	FRP outcomes likely not relevant to some health care systems	Significant amount of additional data required	Requires consensus over both the overarching MCDA framework criteria, and its scoring/ranking rules	Potentially requires significant adaptation to underlying CE model
	Decision problems for which there is a need to incorporate equity concerns within the existing ICER-oriented CE framework and for which outcomes in different groups of people are valued differently (and such value is known)	Decision problems in which additional non- health benefits are important (typically those associated with FRP)	Decision problems for which an explicit measurement of the extent to which inequality/inequity of health outcomes increases or decreases	Decision problems in which multiple components beyond CE are of significant importance to the decision panel	Decision problems in which there exist modifiable and influential constraining factors that influence outcomes and where the optimal solution or decision is not immediately obvious

CE: cost-effectiveness; DCEA: distributional cost-effectiveness analysis; ECEA: extended cost-effectiveness analysis; ICER: incremental cost-effectiveness ratio; FRP: financial risk protection; MCDA: multi-criteria decision analysis; MP: mathematical programming; QALE: quality-adjusted life expectancy; QALY: quality-adjusted life year; SWF: social welfare function; WTP: willingness-to-pay.

<u>Notes</u>

¹Direct approaches incorporate fairness considerations into the economic analysis by, for example, imposing weights or constraints which directly impact the subsequent cost-effectiveness calculations and outcomes. Indirect approaches, however, make no attempt to modify the economic analysis calculations. Instead, they report fairness considerations alongside the economic analysis, allowing for discrete comparisons within the final fairness informed economic evaluation.

²Not typically included in such analyses but it would be possible to measure the distributional equity impact if this was included as its own independent criterion within the MCDA framework – but this would likely then necessitate some form of DCEA.

³Does not require both QALYs and costs to be adjusted

Types of transfer	Example trade-offs		Illustrative application	Example	Equity concern	Is the equity evaluation method able to capture the equity concern described? ¹				
				intervention or comparison		EBW Methods	ECEA	DCEA	MCDA	MP
Transfers between the types of patients that will receive care	Increased inequality in health outcomes	Increased population health	Intervention that extends life but with an unequal distribution of benefit	Targeted cancer screening versus no cancer screening	Preferences for equality of outcomes	~	~	*	~	~
Intertemporal transfers	Short- to medium- term costs to change behaviours	Longer term health care benefits	Public health intervention	Promotion of specific behaviours or habits that can improve physical, mental, and emotional health (e.g., food labels)	Accounting for potential opportunity costs associated with spending on alternative programmes in the short-term	×	×	~	×	V
Transfers between the types of patients that will receive care	Small life expectancy benefit to many (possibly all)	Large life expectancy benefit to few	High cost, high efficacy treatment versus low cost, low efficacy treatment	HIV treatment regimes in budget constrained health care systems	Preferences for equality of care provision	~	*	~	~	~
Intergenerational transfers	Current generations changing behaviours and bearing costs in terms of lower growth	Future generations benefit in terms of improvements in environment and health	Societal policies	Environmental policies	Intergenerational equity (e.g., the 'fair innings' argument ¹⁸)	~	<	<.	~	*
Transfers between those with and without disease	Health gain to small number of people who will contract cancer	Health lost to those that do not have cancer and that undergo unnecessary investigations	Test thresholds for diagnostic testing	Changes in the referral thresholds for further testing of patients	Preferences for health gains or resource distribution based on initial health status	~	~	~	~	~

Table 1: Examples of typical equity-related trade-offs that might be evaluated in cost-effectiveness analyses across the spectrum of economic evaluation in health care
Transfers between quality of life and length of life	Life extending treatments	Increases in quality of life alone	Treatment extending life or improving quality of life	Stroke prevention versus rehabilitation	Preferences between quality of life and length of life	~	×	×	~	~
Geographical transfers	An increase in the opportunity of those currently untreated to access and receive treatment	Probability that rural patients (with less access) gain but urban patients (with better access) lose out with respect to health	Access to care	Relocation of hospital services from urban to rural locations	Preferences for equality of care access	~	~	~	✓	✓

DCEA: distributional cost-effectiveness analysis; EBW: equity-based weighting; ECEA: extended cost-effectiveness analysis; HIV: human immunodeficiency virus; MCDA: multi-criteria decision analysis; MP: mathematical programming.

<u>Notes</u>

Shaded cells contain examples of trade-offs that are not explicitly represented in the studies identified in this review; intergenerational transfers are considered to the extent of favouring outcomes for the younger generation (consistent with the 'fair innings' argument) but the explicit impact of the trade-offs are not evaluated.

¹These results attempt to highlight which equity evaluation methods may be used to capture aspects of the particular equity concern, but we do not attempt to rank methods, nor delineate between the relative strengths and weaknesses of the equity evaluation attributes, as described previously. We evaluate each of the methods within the context of their core methodology, acknowledging that with adaptation some of the methods may be able to account for additional equity concerns, although the potential for such adaptation is not described here.

Evaluation method		ICER (£/QALY)]	Inequality impact	1	Dominant intervention (direct comparison) ²				
	U v SoC	T v SoC	T v U U v SoC		T v SoC	T v U	U v SoC	T v SoC	T v U		
Standard cost- effectiveness analysis	≤£30,000	£30,000- 50,000	>£50,000	NA	NA	NA	U	SoC	U		
EBW (QALYs)	NC	≤£30,000	£30,000- 50,000	Unclear	Unclear	Unclear	NC	Т	NC		
ECEA	All subgroups: ≤£30,000	All subgroups: £30,000- 50,000	All subgroups: ≤£30,000 or £30,000- 50,000 ³	Reduces poverty	Reduces poverty	Dependent on deprivation status ⁴	Unclear	Unclear	Unclear		
DCEA (conventional)	NC	NC	NC	Reduces PH / increases inequality	Reduces PH / reduces inequality	Reduces PH / reduces inequality	SoC	Т	Т		
DCEA (aggregate)	NC	NC	NC	Reduces PH / increases inequality	Reduces PH / increases inequality	Reduces PH / reduces inequality	SoC	NC	Т		
MCDA (value measurement approach)	NC	NC	NC	None	Unclear, but targeted strategy focused to most deprived	Unclear, but targeted strategy focused to most deprived	NC	Т	NC		
MCDA (outranking approach)	NC	NC	NC	None	Unclear, but targeted strategy focused to most deprived	Unclear, but targeted strategy focused to most deprived	NC	Т	Т		

Table 1: Results of an illustrative application of each of the equity evaluation methods

DCEA: distributional cost-effectiveness analysis; EBW: equity-based weighting; ECEA: extended cost-effectiveness analysis; MCDA: multi-criteria decision analysis; MP: mathematical programming; NC: no change; OO: optimisation objective; PH: population health; QALY: quality-adjusted life year; SoC: standard of care; T: Targeted strategy; U: Universal strategy

<u>Notes</u>

Shaded cells represent selection conclusions that are different to those of the 'standard cost-effectiveness analysis' scenario.

NC represents no change relative to the 'standard cost-effectiveness analysis' scenario.

¹The equity impact is evaluated within the context of the specific example application and the individual method approaches; those with an 'Unclear' equity impact are described in this way as the method does not explicitly describe equity impact outcomes.

²Dominance criteria are based on the approaches described for each individual method; for the standard cost-effectiveness analysis, a WTP threshold of £30,000 is assumed; those described as 'Unclear' are described in this way as the method does not define explicit criteria for the preference of one intervention over another. ³ICERs in the \leq £30,000 range represented negative incremental costs and negative incremental QALYs and so would <u>NOT</u> be deemed cost-effective.

⁴Comparisons for the Q1-3 (least deprived) groups favour the Universal strategy and comparisons for the Q4-5 (most deprived) groups favour the Targeted strategy (when results are aggregated the Universal strategy is preferred); a similar relationship with poverty reduction is observed.

Supplemental Appendix A

In brief, searches have been informed by previous literature reviews and published literature review filters. Economic analysis search terms (e.g. PubMed: #1-17) were informed by a review of economic evaluation filters; the National Health Service Economic Evaluation Database search filter was chosen as it offered a sensitivity of 0.999 and was more than twice as precise as the two filters that were more sensitive (sensitivities of 1.000) [1]. Specific cost-effectiveness search terms were subsequently combined with the pre-defined search filter (e.g. PubMed: #18-19). Outcome search terms (e.g. PubMed: #20-23) were informed by a review of candidate publications that were identified as potential targets of the review [2-6].

Proposed PubMed search strategy

Table. PubMed search strategy

#	# Search terms						
m		of records					
Study	design						
1	(economics[mh:noexp])	27,285					
2	("costs and cost analysis"[mh])	242,129					
3	(economics, dental[mh:noexp])	1,915					
4	(economics, hospital[mh])						
5	(economics, medical[mh:noexp])	9,117					
6	(economics, nursing[mh:noexp])	4,002					
7	(economics, pharmaceutical[mh:noexp])	2,969					
8	(economic*[Title/Abstract] OR cost[Title/Abstract] OR costs[Title/Abstract] OR	857,536					
	costly[Title/Abstract] OR costing[Title/Abstract] OR price[Title/Abstract] OR						
	prices[Title/Abstract] OR pricing[Title/Abstract] OR						
	pharmacoeconomic*[Title/Abstract])						
9	(expenditure*[Title/Abstract] NOT energy[Title/Abstract])	31,483					
10	(value[Title/Abstract] AND money[Title/Abstract])	3,217					
11	(budget*[Title/Abstract])	30,763					
12	#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11	1,000,732					
13	((energy[Title/Abstract] OR oxygen[Title/Abstract]) AND cost[Title/Abstract])	30,059					
14	(metabolic[Title/Abstract] AND cost[Title/Abstract])	8,559					
15	((energy[Title/Abstract] OR oxygen[Title/Abstract]) AND expenditure[Title/Abstract])	27,777					
16	#13 OR #14 OR #15	61,651					
17	#12 NOT #16	963,928					
18	(cost-util*[Title/Abstract] OR cost util*[Title/Abstract] cost-benefit*[Title/Abstract]	168,714					
	OR cost benefit*[Title/Abstract] OR cost-effect*[Title/Abstract] OR cost						
	effect*[Title/Abstract] OR cost-min*[Title/Abstract] OR cost min*[Title/Abstract] OR						
	cost-consequence*[Title/Abstract] OR cost consequence*[Title/Abstract] OR economic						

	evaluation*[Title/Abstract] OR economic assessment*[Title/Abstract] OR economic					
	analys*[Title/Abstract] OR health technolog*[Title/Abstract])					
19	#17 AND #18	156,691				
Outco	omes					
20	(equit*[Title/Abstract] OR inequit*[Title/Abstract] OR inequalit*[Title/Abstract] OR	140,201				
	disparit*[Title/Abstract] OR equalit*[Title/Abstract])					
21	(health[Title/Abstract] OR healthcare[Title/Abstract])	2,169,366				
22	(method[Title/Abstract] OR methods[Title/Abstract] OR methodolog*[Title/Abstract]	7,905,813				
	OR approach*[Title/Abstract)					
23	#20 AND #21 AND #22	43,153				
Langu	lage					
24	English[Language]	27,340,288				
Combine						
25	#19 AND #23 AND #24	1,296				

Proposed Embase search strategy

 Table. Embase search strategy

#	Search terms						
		of records					
Study	design						
1	health-economics.sh.	33,339					
2	exp economic-evaluation/	314,841					
3	exp health-care-cost/	299,173					
4	exp pharmacoeconomics/	206,733					
5	(econom\$ OR cost OR costs OR costly OR costing OR price OR prices OR pricing OR	1,126,840					
	pharmacoeconomic\$).ti,ab.						
6	(expenditure\$ not energy).ti,ab.	42,345					
7	(value adj2 money).ti,ab.	2,535					
8	budget\$.ti,ab.	40,299					
9	#1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8	1,497,004					
10	(metabolic adj cost).ti,ab.	1,590					
11	((energy OR oxygen) adj cost).ti,ab.	4,481					
12	((energy OR oxygen) adj expenditure).ti,ab.	32,921					
13	#10 OR #11 OR #12	37,864					
14	#9 NOT #13	1,489,223					
15	(cost-util\$ OR cost util\$ OR cost-benefit\$ OR cost benefit\$ OR cost-effect\$ OR cost	234,126					
	effect\$ OR cost-min\$ OR cost min\$ OR cost-consequence\$ OR cost consequence\$ OR						
	economic evaluation\$ OR economic assessment\$ OR economic analys\$ OR health						
	technolog\$).ti,ab.						
16	#14 AND #15	229,174					
Outco	omes						
17	(equit\$ OR inequit\$ OR inequalit\$ OR disparit\$ OR equalit\$).ti,ab.	162,505					
18	(health OR healthcare).ti,ab.	2,729,031					
19	(method OR methodolog\$).ti,ab.	9,970,498					

20	#17 AND #18 AND #19	43,131
Langu	lage	
21	English.lg.	30,726,170
Comb	ine	
22	#16 AND #20 AND #21	1,407

Proposed EconLit search strategy

Table. EconLit search strategy

		Number
#	Search terms	of
		records
Outcon	mes	
1	AB (equit* OR inequit* OR inequalit* OR disparit* OR equalit*)	66,601
2	TI (equit* OR inequit* OR inequalit* OR disparit* OR equalit*)	30,687
3	AB health OR TI health OR AB healthcare OR TI healthcare	53,703
4	AB (method OR methods OR methodolog*) OR TI (method OR methods OR	137,706
	methodolog*)	
5	(#1 OR #2) AND #3 AND #4	726
Langu	age	
6	LA English	1,653,473
Combi	ine	
7	#5 AND #6	680

References

- 1. Glanville J, Kaunelis D, Mensinkai S. How well do search filters perform in identifying economic evaluations in MEDLINE and EMBASE. Int J Technol Assess Health Care. 2009;25(4):522-9.
- Asaria M, Griffin S, Cookson R. Distributional Cost-Effectiveness Analysis: A Tutorial. Med Decis Making. 2016;36(1):8-19.
- Love-Koh J, Cookson R, Gutacker N, Patton T, Griffin S. Aggregate Distributional Cost-Effectiveness Analysis of Health Technologies. Value Health. 2019;22(5):518-26.
- Dawkins BR, Mirelman AJ, Asaria M, Johansson KA, Cookson RA. Distributional cost-effectiveness analysis in low- and middle-income countries: illustrative example of rotavirus vaccination in Ethiopia. Health Policy Plan. 2018;33(3):456-63.
- Asaria M, Griffin S, Cookson R, Whyte S, Tappenden P. Distributional cost-effectiveness analysis of health care programmes--a methodological case study of the UK Bowel Cancer Screening Programme. Health Econ. 2015;24(6):742-54.
- 6. Cookson R, Drummond M, Weatherly H. Explicit incorporation of equity considerations into economic evaluation of public health interventions. Health Economics, Policy and Law. 2009;4(2):231-45.

Supplemental Appendix B

Table. Overview of previous SLRs evaluating equity concepts in cost-effectiveness analyses

Study	Sassi et al. (2001) [1]	Johri et al. (2012) [2]	Dukhanin et al. (2018)	Lal et al. (2018) [4]	Carlson et al. (2020) [5]	Avancena et al. (2021)
			[3]			[6]
Objective	The aims of this project	To systematically review	To identify existing	To assess current	To identify proposed	To catalogue and describe
	were threefold:	published studies	methodological solutions	approaches to inclusion of	alternatives to the	peer-reviewed
	1. To review the	describing formal methods	that would be suitable for	equity in economic	conventional QALY	applications of equity-
	methodological	to consider equity in the	adaptation to integrating	analysis of public health	metric, assess them for	informative CEAs to date,
	solutions proposed	context of cost-	social justice concerns	interventions and to	feasibility, and illustrate	and to explore what
	for addressing equity	effectiveness analysis	into economic evaluation,	recommend best	how their use might affect	conditions and
	concerns through	(CEA).	and to characterize and	approaches and future	model outcomes and	interventions these
	economic evaluation		analyse the challenges	directions.	resource allocation	methods have been used
	and to determine		traditionally faced by		decisions	for and in what settings,
	whether these are		those solutions in their			alongside the shift in
	consistent with the		previous implementations.			outcome favourability
	theoretical					after the introduction of an
	foundations of					equity dimension.
	economic evaluation,					

whether they are			
practically viable,			
and whether their			
adoption would be			
sufficient to confer			
normative strength to			
the results of			
economic analyses			
2. To assess whether			
and how the potential			
distributional effects			
of resource allocation			
decisions have been			
taken into			
consideration in			
existing economic			
evaluations			
To examine the cost-			
effectiveness and the			

	distributional implications					
	of selected healthcare					
	policies currently in use in					
	the UK, with the aim of					
	identifying possible					
	equity-efficiency trade-					
	offs and determining how					
	these have been dealt with					
	in the absence of					
	appropriate analyses					
Databases	• Medline	• PubMed	PubMed	Medline Complete	PubMed	MEDLINE
			• Embase	• Health Economics	• EconLit	
			PsychINFO	Evaluations	• Web of Science	
			• EconLit	Database	• Embase/MEDLINE	
			• Philosopher's Index	• EconLit		
			• Scopus			
Inclusion	Articles concerned	Article describes or	Publications needed	• Studies that assessed	Studies that	Studies that are
criteria	with health	elaborates on a	either to contain	public health	discussed an	applied CEAs that
	interventions directly	formal proposal to	actual economic	interventions using	alternative or	explore the costs and

		aimed at improving		integrate equity with		avaluation (a a		aconomia avaluation	adjustment to the		health hanafite of two
		anned at improving		integrate equity with		evaluation (e.g.,		economic evaluation	adjustment to the		nearm benefits of two
		the health of		CEA		cost-effectiveness		techniques that	conventional QALY		or more alternatives
		individuals or	•	Primary purpose of		analysis, cost-utility		compare alternative		•	Studies that explicitly
		populations		article was to		analysis, cost-benefit		courses of action in			mention equity as a
	•	Evidence of		advance quantitative		analysis) or consider		terms of both costs			consideration or
		consideration of costs		methods enabling		the application of		(resource use) and			decision-making
		and outcomes of two		equity concerns to		theory for economic		consequences			principle
		or more alternatives		be considered		analysis		(outcomes, effects)		•	Studies that apply an
	•	Article describes		explicitly with cost-	•	Publications were	•	Study stratified			equity-informative
		original research		effectiveness results		also required to		<u>data or outcomes</u>			CEA method to
	•	Costs explicitly		for health		capture fairness		<u>by socioeconomic</u>			analyse or
		evaluated		interventions		considerations that		position group/s			incorporate at least
	•	Effectiveness	•	Review papers were		(a) involve intended	•	Studies aimed at			one equity criterion
		measured		retained only if		beneficiaries' cross-		whole population,			
		quantitatively		judged to have made		dimensional		whole community, or			
	•	Cost-effectiveness or		a novel contribution		subjective personal		were targeted at			
		cost-benefit analysis	•	No language		life experience and		specific individuals			
	•	Cost-consequence		restrictions were		(b) can be		and groups of people			
		analysis		applied		manifested at the		within a country,			

	level of	community or	
	subpopulations	organisation	
	• Inclusion eligibility		
	was dependent on		
	the provision of a		
	methodological		
	solution or		
	characterization of		
	an associated		
	challenge. To be		
	included, solutions		
	must have been used		
	for, or must have		
	been described as		
	suitable for,		
	integrating fairness		
	considerations that		
	share key		

						characteristics (a)						
						and (b) above						
Exclusion	•	Studies where the	•	Monographs,	•	Publications that	•	Studies that were not	•	None reported	•	Tutorial or methods
criteria		abstract was not		reports, and		were unrelated to		public health				papers, systematic or
		available were		conference abstracts		medicine, healthcare,		interventions or				narrative reviews,
		excluded	•	Papers that were not		or public health		policies				and non-peer-
				about CEA, not	•	Publications were	•	Studies that				reviewed
				about equity, or		not eligible if they		examined groups				publications indexed
				failed to offer		addressed fairness		that were not SEP-				in Medline
				specific, formal		considerations that		based			•	Studies featuring
				methodological		were exclusively	•	Studies that analysed				MCDAs
				proposals.		objective in nature		a low-income				
			•	Articles whose		(such as age or		country as one				
				primary purpose		income quintiles) or		population				
				was:		limited to the	•	Non-English				
				\circ to assess the fit		individual level.		language studies				
				of public values	•	Publications that						
				with the standard		pertained only to						
				CEA model or;		procedural justice						

		\circ to elicit	Publications whose			
		empirical values	discussions of			
		for equity	fairness were derived			
		preferences were	solely from public			
		also judged not	deliberation			
		to satisfy the				
		relevancy				
		criterion				
Dates over	• The following	Database inception	• 1 st January 1995 to	Database inception	Not reported	Database inception
which	specific years: 1987,	to 6 th March 2011	26 th November 2015	to date of search		to 13 th August 2019
searches	1992, 1995, 1996,			(although date of		
were	1997			search not reported)		
conducted						
Outcomes	Study characteristics	• Study identification	Verbatim passages	Study characteristics	• Type of alternative	• Article details (title,
	• Intervention type	(authors; journal;	pertaining either to	• Study objectives	method	authors, date of
	• Analysis type	date of publication;	methodological	• Interventions	• Strengths and	publication)
	Outcome measure	type of study, study	solutions or to	• Measures of	weaknesses of	• Country/geography
		location, funding	associated challenges	socioeconomic	method	
		sources);		position	• Data availability	

Patient subgroup	• Study design and	Descriptive themes	SEP specific	Calculation burden	• Setting (national,
used in equity	methods	in the extracted data	modelling inputs	• Overall	subnational,
dimension	(perspective, design,		• Use of health equity	implementation	healthcare/clinical)
• Distributional	outcomes,		impact plane	feasibility	• Study population
effects methodology	interventions		• Health inequality		• Disease area
	considered,		measures		• Intervention type
	respondent sample		• Equity weights		• Prevention stage
	for empirical		• Financial impacts		(primary, secondary,
	studies); and		• Analysis of		or tertiary).
	• Equity concepts		opportunity costs		• Perspective of the
					analysis
					• Interventions/
					scenarios and
					comparators
					• Measure of health
					benefit
					• Method of cost and
					benefit estimation

						Currency and costing
						year
						• Sources of data for
						transition
						probabilities, costs,
						and utilities
						• Equity or
						distributional
						criterion
						incorporated
						• Type of equity-
						informative CEA
						• Base-case cost-
						effectiveness finding
						and equity analysis
						result
Search	Yes – although unclear	Yes	Yes	Yes – search terms cited	Yes	Yes
towns	which strate and and in			hut not docomb - 1		
terms	which strategy used in			but not described		
reported	final review (example					

	below is an example of				specifically for each		
	their 'gold standard'				database		
	search)						
Search	1. 'Costs and cost	2.	"Cost-Benefit	Extensive search term list	("cost-effectiveness" OR	"QALYs" and	Equity search terms:
terms	analysis'/		Analysis"[Majr] OR	provided in direct copy of	"cost-utility" OR "cost-	"methodology" and	(((((((((((equit*[Title/Abs
	2. Economics.sh.		"Quality-Adjusted	Dukhanin et al	benefit" OR "cost-	"alternatives"	tract]) OR
	3. 1 and 2		Life Years"[Mesh]	supplemental appendix	consequence" OR		inequitable[Title/Abstract]
	4. 'animal'/		OR "DALY"[tw])	(see below file).	"economic evaluation") OR "distributional
	5. 'human'/	3.	"Social		OR "economic analysis")		issues"[Title/Abstract])
	6. 4 not (4 and 5)		Justice"[Mesh] OR	Dukhanin 2016.	AND (socioeconomic*		OR
	7. 3 not 6		"Social	Search Termsdocx	OR "social class" OR		distributi*[Title/Abstract])
	8. Journal article.pt.		Values"[Mesh] OR		"social hierarchy" OR		OR
	9. (English or French or		"Resource		"social inequality" OR		inequality[Title/Abstract])
	Italian or Spanish).la.		Allocation"[Mesh]		depriv* OR disadvantage*		OR "unequal
	1. 7 and 8 and 9		OR "Health Care		OR income OR		distribution"[Title/Abstrac
			Rationing"[Mesh]		educational OR		t]) OR
			OR "Equity" [tw]		occupation OR residence)		unequal[Title/Abstract]))))
			OR "Health				

Priorities/economics	NOT "low income	CEA search terms:
"[Mesh] OR "Health	countr*"	((((((((((((()(cost-
Priorities/ethics"[Me		utility
sh]		analysis"[Title/Abstract])
4. 1 & 2		OR "cost-effectiveness
		analysis"[Title/Abstract])
		OR "cost-value
		analysis"[Title/Abstract])
		OR cost-
		utility[Title/Abstract]) OR
		cost-
		effectiveness[Title/Abstra
		ct]) OR cost-
		value[Title/Abstract]) OR
		"economic
		evaluation"[Title/Abstract
]) OR
		CEA[Title/Abstract]) OR
		"incremental cost-

			effectiveness
			ratio"[Title/Abstract]) OR
			ICER[Title/Abstract]) OR
			incremental cost-
			effectiveness
			ratio[Title/Abstract]) OR
			CUA[Title/Abstract]) OR
			"resource
			allocation"[Title/Abstract]
) OR resource
			allocat*[Title/Abstract]))))
			CEA MEsH terms:
			(((((("Technology
			Assessment,
			Biomedical"[Mesh]) OR
			"Cost-Benefit
			Analysis"[Mesh]) OR
			"Cost Allocation"[Mesh])

						OR "Costs and Cost Analysis"[Mesh]))))) AND (English[lang])
Number	4 951	683	2 388	426	3 248	8 910
of initial	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		2,500		5,210	0,210
'hits'						
Number	424	51	26	29	28	54
of studies						
included						
in review						
Key	Broad review	• Limited search	Restrictive inclusion	Limited search	No limitations	Searched only one
literature	objectives	strategy	criteria	strategy	reported specifically	database
review	• Outdated	• Focused to one	• The review may not	• Focused on SEP-	for the literature	• Only 1 author
limitations	• Focused to one	database only	have uncovered the	based analyses only	review aspect	conducted several
	database only	• Outdated	full set of challenges	Minimal discussion		steps in the
	• Statement describing	Minimal discussion on	hampering the use of	on merits of		qualitative
	results as poor: "The	merits of approaches	identified solutions	approaches in		assessment
	overall picture	in different	for the integration of	different applications		• Exclusion of other
	illustrated above is	applications	social justice			methods of

amining equity
fects in CEAs (eg,
CDA)
e CHEERS
ecklist does not
aluate the quality
CEAs and only
w they are
ported

References

- Sassi F, Archard L, Le Grand J. Equity and the economic evaluation of healthcare. Health Technol Assess. 2001;5(3):1-138.
- 2. Johri M, Norheim OF. Can cost-effectiveness analysis integrate concerns for equity? Systematic review. International Journal of Technology Assessment in Health Care. 2012;28(2):125-32.
- Dukhanin V, Searle A, Zwerling A, Dowdy DW, Taylor HA, Merritt MW. Integrating social justice concerns into economic evaluation for healthcare and public health: A systematic review. Soc Sci Med. 2018 Feb;198:27-35.
- 4. Lal A, Moodie M, Peeters A, Carter R. Inclusion of equity in economic analyses of public health policies: systematic review and future directions. Aust N Z J Public Health. 2018;42(2):207-13.
- Carlson JJ, Brouwer ED, Kim E, Wright P, McQueen RB. Alternative Approaches to Quality-Adjusted Life-Year Estimation Within Standard Cost-Effectiveness Models: Literature Review, Feasibility Assessment, and Impact Evaluation. Value in Health. 2020;23(12):1523-1533.
- Avancena ALV, Prosser LA. Examining Equity Effects of Health Interventions in Cost-Effectiveness Analysis: A Systematic Review. Value in Health. 2021;24(1):136-143.

Supplemental Appendix C

Table 1: Traffic light assessment guide

			Description of assessment criteria					
Component		Overview	Green	Orange	Red			
			No concerns	Potential minor concerns	Potential major concerns			
	Data requirements	The extent to which additional data is required, beyond that which is typically required for cost- effectiveness analysis	No additional data requirements beyond those of a typical CE analysis	Some additional data requirements beyond those of a typical CE analysis	Extensive additional data requirements beyond those of a typical CE analysis			
Informational and analytical requirements	Data availability	How readily available any additional data requirements are	Data is readily available from sources used in the current CE analysis framework	Data will require sourcing but is likely available from published sources or from relevant healthcare bodies (or equivalent)	Data is not likely to be available currently, with further research studies required			
	Technical complexity	How technically complex and how analytically onerous the method is	Requires little additional technical understanding beyond that required for typical CE analysis	Some additional technical knowledge required	Extensive additional technical knowledge required			
	Disease area	How generalisable the method is across different disease areas	Method is applied consistently across disease areas with no differences in method-specific input data	Method is applied consistently across disease areas but with differences in method-specific input data	Method cannot be applied to all disease areas (for any reason)			
Generalisability	Type of intervention	How generalisable the method is across different types of health care intervention	Method is applied consistently across intervention types with no differences in method- specific input data	Method is applied consistently across intervention types but with differences in method- specific input data	Method cannot be applied to all intervention types (for any reason)			
	Healthcare system	How generalisable the method is for use in different healthcare systems	Method outcomes are likely to be applicable to all healthcare systems	-	Method outcomes are unlikely to be applicable to all healthcare systems			
Interpretability	Conceptual complexity	How conceptually complex the method is compared to a typical CE analysis and the extent to which is introduces	The method is no more conceptually complex than typical CE analysis and does not introduce unfamiliar methodological components	The method is no more conceptually complex than typical CE analysis but does introduce potentially new methodological components	The method is conceptually complex and introduces significant methodological complexity			

		new methodological components			
	Integration with CE outcomes	The extent to which the method integrates equity outcomes with those included in typical CE analyses (e.g., costs, QALYs, ICER)	The method is used to modify typical CE outcomes (e.g., the ICER) and no additional output is presented	Additional output is presented alongside (or in combination with) typical CE outcomes	Method does not integrate with typical CE outcomes
	Equity measurement	The extent to which the method enables the explicit measurement of changes in outcome inequality distribution	The method inherently measures changes in outcome inequality distribution	The method can provide a measure of change in outcome inequality distribution but only under specific circumstances that are unique to the particular method	The method cannot measure changes in outcome inequality distribution
	Conclusiveness	The extent to which the method enables the derivation of a clear conclusion	The method is able to explicitly identify a favoured policy amongst all policies	The method is able to explicitly identify a favoured policy amongst all policies for individual outcomes but does not provide an assessment of policy preference amongst multiple outcomes	The method is unable to identify a favoured policy amongst all policies
CE: cost-effectiven	ess: ICER: increment	al cost-effectiveness ratio.			

 Table 2: Traffic light assessment results - additional context and justification for assessment result

Component		Context/justification for assessment result						
Component		EBW	ECEA	DCEA	MCDA	MP		
	Data requirements	Preferences for inequality aversion	FRP data	Input stratification; preferences for SWF evaluation	MCDA approach, components and preferences			
Informational and analytical requirements	Data availability	Preferences for inequality aversion	FRP data	Input stratification; preferences for SWF evaluation	MCDA approach, components and preferences			
	Technical complexity				Dependent on structure and size of MCDA approach	Model adaptation; optimisation analysis		
	Disease area	Different preferences for inequality aversion	Some diseases observe no impact on FRP		Different MCDA components or preferences	Different constraints and/or objectives		
Generalisability	Type of intervention		Some interventions observe no impact on FRP		Difference MCDA components and preferences	Difference constraints and/or objectives		
	Healthcare system		FRP likely not relevant to all healthcare systems					
	Conceptual complexity		Introduces potentially new methodological components (e.g., FRP)	Introduces potentially new methodological components (e.g., equity measurement metrics and SWFs)				
Interpretability	Integration with CE outcomes		FRP outcomes not integrated with CE outcomes	Movement away from the ICER				
	Equity measurement	Cannot measure changes in outcomes inequality			Measurement possible if included as its own component	Measurement in the context of the objective only		
	Conclusiveness		Additional criteria required to combine CE and FRP outcomes					

CE: cost-effectiveness; DCEA: distributional cost-effectiveness analysis; ECEA: extended cost-effectiveness; FRP: financial risk protection; ICER: incremental cost-effectiveness; MCDA: multi-criteria decision analysis; MP: mathematical programming; SWF: social welfare function

Supplemental Appendix D

Opening note: Readers should be aware that the example presented herein is purely hypothetical, and whilst some input data and assumptions are based on published estimates, a large proportion of inputs and assumptions are contrived in order to demonstrate particular applications. As such, results should be considered within the context of their hypothetical nature.

Hypothetical applied example: Methodology overview

We illustrate an application of each of the equity evaluation methods with a hypothetical worked example, evaluating the cost-effectiveness of a hypothetical cancer screening programme in a UK setting. We compare the addition of universal and targeted cancer screening reminders to a conventional one-time cancer screening program and evaluate outcomes across socioeconomic/deprivation quintiles. **Figure 1** provides an overview of the screening process.

All patients are initially invited for cancer screening and those that accept the screening offer are assumed to undertake a low-cost blood test. Subsequently, and upon a positive test result, patients are invited to a more complex and costly confirmatory screening test. Sensitivity and specificity of the initial blood tests are assumed to be 99% and 95%, respectively. We assume that the confirmatory test has a sensitivity and specificity of 100%. The initial blood test is assumed to cost £3 per-person, and the confirmatory test is assumed to cost £600 per-person.

Screening uptake is stratified by deprivation quintile. Under the two screening reminder scenarios, it is assumed that universal screening reminders increase the uptake of initial screening by 5% and that targeted screening reminders increase the uptake of initial screening by 15%, irrespective of deprivation quintile. The screening reminders are assumed to have no affect on the uptake of confirmatory screening. An overview of cancer prevalence and screening uptake estimates is provided in **Table 1**. The universal screening reminder is assumed to consist of a one-off reminder in the form of a letter, whilst the targeted reminder is assumed to consist of multiple letter- and telephone-based reminders. The universal and targeted reminders are assumed to cost a total of £2 and £8 per-person, respectively.

Subsequently, cancer patients that are identified by the screening programme are assumed to be diagnosed at an earlier cancer stage than those diagnosed away from the screening programme (i.e., those that either were not screened or those that returned a false negative result). We assume that the lifetime cost of cancer patients identified by the screening programme is lower than that of those identified away from the screening programme as we assume that treatment of earlier stage cancer is less expensive. All cost data used in the analysis is summarised in **Table 2**. Similarly, we also assume that cancer patients identified by the screening programme observe a greater quality-adjusted life expectancy (QALE). Estimates of QALE for each group are summarised in **Table 3** and are stratified by deprivation quintile. As a simplifying assumption, we assume no differentiation in costs by deprivation status.

We focus on the evaluation of equity within the context of socioeconomic/deprivation status, with the broad goal of incorporating concerns for the achievement of equitable outcomes across this equity dimension. We assume a cohort size of 10,000,000 people and evaluate two scenarios against the current standard of care (SoC) (i.e., no universal or targeted screening reminders):

- Universal reminder: A one-off reminder is sent to all patients that have not yet been screened
- Targeted reminder: Multiple reminders are sent to all patients in the two most deprived socioeconomic quintiles (Q4 and Q5) that have not yet been screened

Table 1: Overview of prevalence and screening uptake estimates

Deprivation quintile	Proportion of population (%)	Cancer prevalence (%)	Initial blood test screening uptake – current SoC (%)	Confirmatory screening uptake (%)
Q1 (least deprived)	14.29%	0.05%	69.07%	85.64%
Q2	22.45%	0.05%	65.36%	83.59%
Q3	26.53%	0.05%	61.08%	79.62%
Q4	20.41%	0.05%	55.20%	78.10%
Q5 (most deprived)	16.33%	0.05%	45.00%	76.25%
Q: quintile; SoC: standard of care				

Table 2: Overview of costs applied in the analysis

Cost item	Cost (£)
Screening (per-person)	
Initial blood test screening	£3
Subsequent confirmatory screening	£600
Universal reminder	£2
Targeted reminder	£8
Lifetime cancer care costs (per-patient)	
Cancer detected through screening programme	£20,000
Cancer detected away from screening programme	£30,000

Table 3: Overview of QALE estimates

	Health distribution (average QALE)			
Doprivation quintila	Cancer	Cancer		
Deprivation quintile	(identified through	(not identified through	No cancer	
	screening)	screening)		
Q1 (least deprived)	71.55	66.23	73.67	
Q2	69.73	64.55	71.80	
Q3	67.85	62.81	69.86	
Q4	66.32	61.40	68.29	
Q5 (most deprived)	60.87	56.35	62.68	
Q: quintile; QALE: quality-adjusted life expectancy				

Hypothetical applied example: Equity-based weighting (EBW) method

Overview of equity application: With an EBW method the objective is to incorporate societies preferences for equitable distribution by re-weighting outcomes, giving greater weight to outcomes observed in subgroups for which society feels are underserved.

Description of example approach: We opt to adopt a QALY weighting approach where QALY outcomes of the analysis are re-weighted for societies preferences for resource allocation. We first aggregate outcomes by deprivation quintile and then apply the weights to the QALY outcomes. We assume equal weighting for all deprivation quintiles (i.e., weighting of 1.00), except for the most deprived quintile (Q5) for which we apply a weighting of 1.52 (informed by Lal et al. [2018]), inherently increasing the value of QALYs gained in this patient subgroup [1].

Hypothetical applied example: Extended cost-effectiveness analysis (ECEA)

Overview of equity application: ECEA is an expansion of cost-effectiveness analysis, which compares the relative costs and gains in health outcomes of interventions. ECEA also includes non-health benefits such as financial risk protection and distributional consequences like equity in the economic evaluation of health policies. This enables health policy makers to take into account multiple criteria and make trade-offs among competing demands.

Description of example approach: We first stratify results by deprivation quintile in order to assess the impact within the individual subgroups and provide assessors with an indication as to the impact of the screening programmes amongst our pre-defined equity dimension (deprivation status). Next, we attempt to estimate the impact of each of the screening programmes on poverty. To do this, we first estimate the annual disposable income of people in each deprivation quintile and the annual disposable income lost as a result of a cancer diagnosis. We then assume that income is normally distributed and estimate the corresponding proportion of people in each deprivation quintile that lie below the UK poverty line, which we assume to be represented by a weekly income of £268 after housing costs for a working-age couple [2]. **Table 4** provides an overview of the income data used in the example.

Table 4: Overview of income data used in the ECEA example

Deprivation quintile	Annual disposable income (£)	Annual income loss (cancer identified through screening)	Annual income loss (cancer not identified through screening)
Q1 (least deprived)	£75,000	£2,000	£5,000
Q2	£40,000	£2,000	£5,000
Q3	£30,000	£2,000	£5,000
Q4	£20,000	£2,000	£5,000
Q5 (most deprived)	£10,000	£2,000	£5,000

Q: quintile.

Notes: To estimate the proportion of people in each deprivation quintile that lie below the UK poverty line we convert the annual disposable income and the annual income loss to a weekly equivalent, and assuming a standard deviation of 20% of the mean weekly disposable income (before cancer income losses), use the normal distribution to approximate the proportion of patients in each deprivation quintile with a weekly income less than £268.

Hypothetical applied example: Conventional DCEA

Overview of equity application: Conventional DCEA attempts to account for the opportunity costs associated with the introduction of a new policy or intervention by valuing such costs in terms of foregone QALYs. These foregone QALYs are subsequently included in the distribution of health gains and used to estimate the change in health distribution over any relevant equity strata. DCEA also attempts to analyse the trade-offs between improving population health and improving health equality.

Description of example approach: We use the study by Asaria et al. (2016) as a guide for this example [3]. As described in the publication, the main steps in the modelling stage are:

- 1. Estimating the baseline health distribution;
- 2. Modelling changes to this baseline distribution due to the health interventions being compared, allowing for the distribution of opportunity costs from additional resource use;
- **3.** Adjusting the resulting modelled health distributions for alternative social value judgments about fair and unfair sources of health variation.

For steps 1 and 2 in the modelling stage, the baseline health distribution (i.e., per-person QALE estimates) and changes to this distribution are estimated based on the average health distribution data observed in **Table 3**, accounting for the total number of cancer patients identified through each of the screening strategies. We assume our SoC scenario represents the baseline QALE. We model each of the screening strategies as in the

standard cost-effectiveness analysis approach. To account for opportunity costs from displaced activities, we take the incremental expenditure of the universal and targeted scenarios (compared to SoC) and convert these costs to foregone QALYs using a value of £20,000/QALY. We then assume that these foregone QALYs are distributed equally (proportionally) across deprivation quintiles, and we subtract these from the total population QALYs estimated under each of the screening reminder strategies. For step 3, we take a simplistic approach and make a social value judgement that assumes all differences in QALE across deprivation quintiles can be considered 'unfair'. Therefore, we make no adjustments in line with this modelling step.

Subsequently, we use the estimated distributions to quantify the change in total population health and analyse trade-offs between improving population health and reducing unfair health inequality. To analyse trade-offs, we calculate the equally distributed equivalent (EDE) level of health for the Atkinson index using the following equation:

$$h_{ede} = \left[\frac{1}{n}\sum_{i=1}^{n}h_{i}^{(1-\varepsilon)}\right]^{\left(\frac{1}{1-\varepsilon}\right)}$$

Where h_i is the QALE of each person in the cohort, ε is the inequality aversion parameter and n is the total number of persons in the evaluation. We utilise an inequality aversion parameter of 10.95 [4].

EDE is the common level of health in a hypothetical equal distribution of health that has the same level of social welfare as the actual unequal distribution of health, with the difference indicating the change in health-related social welfare. Comparing the incremental QALYs to the incremental EDE provides the QALY valuation of any change in inequality. For example, if an intervention increases population health by 100,000 QALYs and increases EDE by 101,000 QALYs, the reduction in health inequality attributed to the intervention is valued at 1,000 QALYs.

Hypothetical applied example: Aggregate DCEA

Overview of equity application: In a similar approach to conventional DCEA, aggregate DCEA attempts to account for the opportunity costs associated with the introduction of a new policy or intervention by valuing such costs in terms of foregone QALYs. These foregone QALYs are subsequently included in the distribution of health gains and used to estimate the change in health distribution over any relevant equity strata. DCEA also attempts to analyse the trade-offs between improving population health and improving health equality. The main

difference between DCEA methodologies, is that aggregate DCEA is designed to be used with aggregated costeffectiveness outcomes and estimates the distribution of foregone QALYs using external data.

Description of example approach: We use the study by Love-Koh et al. (2019) as a guide for this example [5]. The methodology generally mirrors that of conventional DCEA with two exceptions. The first exception relates to the distribution of outcomes across deprivation quintiles, which under an aggregate DCEA approach would be estimated from a single set of aggregated cost-effectiveness outcomes, disaggregated based on observed resource use in the disease area of interest. Since we already have the disaggregated outcomes and there is no need to estimate these, we do not undertake this step. The second exception relates to the distribution of foregone QALYs. In the conventional DCEA example we assumed that foregone QALYs were equally (proportionally) distributed across deprivation quintiles. In this aggregate DCEA example we assume that foregone QALYs are distributed based on the estimated distribution of total medical resource use across deprivation quintiles, as estimated by Love-Koh et al. (2020) [6]. This distribution is presented in **Table 5**.

Deprivation quintile	Health opportunity cost distribution			
	Males	Females	Total (used)	
Q1	0.08	0.06	0.14	
Q2	0.09	0.07	0.16	
Q3	0.12	0.10	0.22	
Q4	0.12	0.10	0.22	
Q5	0.14	0.12	0.26	
Q1	0.08	0.06	0.14	

Table 5: Health opportuni	ity cost distribution
---------------------------	-----------------------

Hypothetical applied example: MCDA

Overview of equity application: MCDA aims to provide a framework from which to evaluate multiple criteria that are typically heterogeneous in nature. Criteria associated with the achievement of healthcare equity may be specified, and given the nature of MCDA, significant flexibility with regards to the evaluation or inclusion of equity concerns is possible.

Description of example approach: We use the study by Thokala et al. (2012) as a guide for this example [7]. We demonstrate the use of two MCDA approaches, namely the value measurement method and the outranking
approach. Both methods are described in detail in the guiding publication. We first specify the criteria through which each screening programme is to be assessed, and in our example, we include cost-effectiveness, total QALE gain, provision of equal access, the level of inequality reduction and the level of innovation of each programme. An overview of the criteria, their explicit scoring algorithms and the weights applied to each criterion are summarised in **Table 6**. Two of the criteria may be considered as criteria related to the consideration of equity, namely the provision of equal access and the inequality reduction criteria.

For the value measurement method, the score for each criterion is multiplied by the respective weight and tallied for each screening programme. The screening programme with the highest score is the 'winner'. For the outranking approach, we are concerned with dominance and aim to evaluate when a strategy outranks the other strategy. We compare scores across each criterion as in the value measurement method but consider only those in which a score difference (after weighting) of 2 or more (our indifference threshold) exists. For each criterion for which this is the case we derive the concordance index. For our universal strategy, the concordance index is defined as the ratio of the sum of weights in the criteria for which the universal screening reminder is at least as good as the targeted screening reminder, to the sum of weights in all criteria (and vice versa for the targeted screening reminder). Subsequently, the screening programme with the highest concordance index is the 'winner'.

It is worth noting here that we only discuss the 'preferred' strategy and we do not consider, for example, that in order to be reimbursed (or indeed be considered further at all), a specific minimum score threshold could be set.

MCDA evaluation criteria	Scoring algorithm for each criterion	Weight applied to each evaluation criterion
Cost-effectiveness	Score of 3 for ICER <£20,000; score of 2 for ICER between £20,000 and £30,000; score of 1 for ICER between £30,000 and £50,000; 0 otherwise. Additional 1 point for most cost-effective strategy.	2
Total QALE gain	Score of 3 to interventions that provide a QALE gain greater than 1 (per patient); additional score of 1 to the strategy which provides the greatest QALE gain.	2
Provision of equal access	Score of 2 for interventions that provide approximately equal opportunity across patient groups (qualitative assessment); 0 otherwise.	1

Table 6: Overview of MCDA criteria

Inoquality	Score of 2 for pro-poor QALE gains (i.e., QALE gains favour				
reduction	the poor), score of 1 if QALE gains approximately equally	3			
reduction	distributed (qualitative assessment); score of 0 otherwise.				
Innovation	Score of 2 if intervention or programme can be considered	1			
	novel or innovative; score of 0 otherwise.	1			
ICER: incremental cost-effectiveness ratio; MCDA: multi-criteria decision analysis; QALE: quality-adjusted					
life expectancy					

Hypothetical applied example: MP

Note: we note that the MP approach is unable to offer any unique insight into the initial decision problem as there are no optimisable aspects, therefore without modifying the decision problem outcomes under an MP approach cannot be estimated. Therefore, we do not present results of an MP analysis in the main manuscript body. However, below we attempt to illustrate a potentially useful application of MP beyond the initial decision problem.

Overview of equity application: Typical cost-effectiveness analyses are undertaken with the aim of directly comparing two (or more) policies or interventions in a particular setting. MP is typically concerned with optimising outcomes based on a given set of constraints and objectives, and therefore requires modification to the underlying assessment framework, potentially making comparisons with the underlying 'standard' cost-effectiveness analysis difficult. Equity constraints may be introduced so that the effectiveness of policies can be assessed in scenarios in which a particular equity goal is important, but it is important to note that MP does not offer measurement of equitable distribution, nor does it provide a more granular understanding of equity issues without first imposing additional constraints on the analysis.

Description of example approach: Two optimisation analyses are undertaken. Under each scenario, the proportion receiving each type of screening reminder (universal or targeted) in each deprivation quintile was allowed to vary freely. The first scenario (Scenario A) is constrained by a maximum screening budget with the goal of maximising QALE gains; the second scenario (Scenario B) utilises the same budget constraint but with the goal of reducing the total QALE variation across deprivation quintiles. **Table 7** provides an overview of the optimisation objectives and constraints used in each scenario.

The Solver application in Excel was used to generate results for each scenario. The Evolutionary solver method was used. Settings used for the Solver application are provided in **Table 8**.

Table 7: MP optimisation objectives and constraints

	Scenario A	Scenario B			
		Variation of total QALYs across			
Optimisation target	Total QALYs (maximisation)	deprivation quintiles			
		(minimisation)			
	Constraint: Not greater than the average total of the Universal and				
Total screening budget (£)	Targeted screening costs as observed in the standard cost-effectiveness				
	analysis				
Proportion of potients reseiving	Constraint: The proportion must be greater than or equal to 0 and				
semanting nomindang	smaller than or equal to 1; a single patient cannot receive multiple sets				
screening reminders	of reminders				
QALY: quality-adjusted life year					

Table 8: MP Solver settings

Solver setting	Value
Solver method	Evolutionary
Constraint precision	0.0000001
Convergence	0.000001
Mutation rate	0.075
Population Size	1,000
Random Seed	0
Maximum Time without improvement	60
Notes: All other settings remain as Excel default.	·

Hypothetical applied example: Detailed results

More detailed results of the analyses are provided in **Table 9**.

Table 9: Results of an illustrative application of each of the equity evaluation methods

Equity evaluation method	Approach overview	Outcome	Evaluation conclusion	Reason for evaluation conclusion	Key conclusion drivers
Standard cost- effectiveness analysis	Universal screening reminders and targeted screening reminders compared to current SoC; No equity evaluation component	U v SoC (ICER): £24,616 T v SoC (ICER): £31,724 T v U (ICER): £3,036,798	Universal strategy <u>cost-</u> <u>effective</u> versus SoC at WTP threshold of £30,000/QALY Targeted strategy <u>not cost-</u> <u>effective</u> versus SoC at WTP threshold of £30,000/QALY Targeted strategy <u>not cost-</u> <u>effective</u> versus Universal strategy at WTP threshold of £30,000/QALY	Conclusion is dependent on the ICER being above or below the WTP threshold	-
EBW (QALYs)	QALY outcomes for patients in the most deprived quintile are given additional weighting	U v SoC (ICER): £22,951 T v SoC (ICER): £26,065 T v U (ICER): £48,710	Both Universal and Targeted strategies are <u>cost-effective</u> versus SoC at WTP threshold of £30,000/QALY Targeted strategy <u>not cost- effective</u> versus Universal strategy at WTP threshold of £30,000/QALY	Adjusted ICERs are below the WTP threshold	Chosen QALY weights

ECEA	Cost-effectiveness outcomes are stratified by age group: ages 50-54; ages 55-59; ages 60-64; ages 65-69. Further, using UK-specific income data and poverty definitions, the impact of the intervention on the proportion of patients living in poverty is assessed for each age group.	ICER U v T v T v U SoC SoC Q1 £24,125 NA £24,125 Q2 £24,425 NA £24,425 Q3 £24,986 NA £24,986 Q4 £24,620 £31,639 £31,639 Q5 £24,808 £31,843 £31,843 Average £24,616 £31,724 £3,036,798 Reduction in the proportion of cancer patients facing poverty (%) U v SoC T v SoC T v U Q1 0.00% 0.00% 0.00% Q2 0.01% 0.00% -0.01% Q3 0.09% 0.00% -0.09% Q4 0.97% 2.87% 1.89% Q5 0.17% 0.58% 0.40% Average 0.25% 0.68% 0.43%	Universal strategy <u>cost</u> <u>effective</u> versus SoC at WTP threshold of £30,000/QALY Targeted strategy <u>not cost</u> <u>effective</u> versus SoC at WTP threshold of £30,000/QALY Targeted strategy <u>not cost</u> <u>effective</u> versus Universal strategy at WTP threshold of £30,000/QALY Targeted strategy offers <u>greater poverty reduction</u> than universal strategy and SoC	Conclusion is dependent on the ICER being above or below the WTP threshold (although, alternative subgroup decisions might be made based on disaggregated analyses); the reduction in poverty of each strategy may also change conclusions but such criteria are not specified here	Effectiveness estimates by subgroup (deprivation quintile) Poverty reduction: Poverty line; Income estimates; Cancer- related income loss estimates
DCEA (Conventional)	Cost-effectiveness analyses are stratified by deprivation quintile. The opportunity costs associated with a new intervention are evaluated and the resulting change in the distribution of health amongst the population is measured using relevant inequality measurement metrics.	U v SoC ICER: £24,616 Incremental population QALYs: -230 (after opportunity costs accounted for) ΔEDE: -288 T v SoC ICER: £31,724 Incremental population QALYs: -586 (after opportunity costs accounted for) ΔEDE: 32 T v U ICER: £3,036,798	Universal strategy <u>cost</u> <u>effective</u> versus SoC at WTP threshold of £30,000/QALY but <u>reduces</u> <u>population health</u> and <u>increases health inequality</u> Targeted strategy <u>not cost</u> <u>effective</u> versus SoC at WTP threshold of £30,000/QALY and <u>reduces</u> <u>population health</u> but <u>reduces health inequality</u>	ICERs remain unchanged as they are not modified to account for opportunity cost. As new interventions with an ICER greater than the cost per QALY of forgone alternatives (assumed to be £20,000) would be expected to reduce the total health of the population, we observe reduced incremental population QALYs for both screening strategies.	Value of foregone QALYs; baseline and changes in QALE distribution; Distribution of foregone QALYs (although not assessed here); inequality aversion parameter

		Incremental population QALYs: -356 (after	Targeted strategy <u>not cost-</u>	EDE is the common level of	
		opportunity costs accounted for)	effective versus Universal	health in a hypothetical equal	
		Δ EDE : 320	strategy at WTP threshold of	distribution of health that has	
			£30,000/QALY and reduces	the same level of social	
			population health but	welfare as the actual unequal	
			reduces health inequality	distribution of health, with the	
			Universal strategy cost-	difference indicating the	
	Aggregated cost-effectiveness	U. v. So.C	effective versus SoC at	change in health-related social	
	results are disaggregated		WTP threshold of	welfare.	
	across deprivation quintiles		£30,000/QALY but reduces		
	based on external resource use	Incremental population QALYs: -230 (after	population health and		
	data (although in our example	opportunity costs accounted for)	increases health inequality		
	this is not necessary as we	AEDE: -520			Value of foregone
	have the disaggregated output). The opportunity costs associated with a new intervention are evaluated and the resulting change in the distribution of health amongst the population is measured using relevant inequality	m	Targeted strategy not cost-		QALYs; baseline
		T v SoC ICER: £31,724 Incremental population QALYs : -586 (after opportunity costs accounted for) Δ EDE : -268	effective versus SoC at		and changes in
DCEA			WTP threshold of		OALE distribution:
(Aggregate)			£30.000/OALY but reduces		Distribution of
00 00 0000			population health and		foregone OALYs:
			increases health inequality		inequality aversion
			<u></u>		parameter
		T v U	Targeted strategy not cost-		purumeter
		ICER: £3,036,798	effective versus Universal		
	Opportunity costs are	Incremental population QALYs: -356 (after	strategy at WTP threshold of		
	distributed based on external	opportunity costs accounted for)	f30 000/OAL V and reduces		
	resource use data	Δ EDE : 252	population health but		
	resource use data.		reduces health inequality		
	Evolution oritoric are based		Volue measurement method:	The value measurement	Underlying MCDA
	Evaluation criteria are based	Value measurement method: The universal	Value measurement method:	The value measurement	Underlying MCDA
	on cost-effectiveness, total	strategy scores 11 and the targeted strategy	Universal strategy preferred	method sums the weighted	approach; Choice
	QALE gain, provision of equal	scores 9	with score of 11 (compared	scores for each criterion and	of evaluation
MCDA	access, the level of inequality		to 9)	compares the total, with the	criteria; Scoring
	reduction and the level of innovation of the program; for	Outranking approach: The universal strategy		nigner value representing the	system; weights
		has a concordance index of 0.22 and the	Outranking approach:	preferred strategy.	applied to each
	each criterion and screening		Targeted strategy preferred		criterion;

	strategy, a score is estimated,	targeted strategy has a concordance index of	with a concordance index of	The outranking approach	Indifference
	with total scores subsequently	0.33	0.33 (compared to 0.22)	compares only those criteria in	threshold
	weighted by the relative			which a significant positive	(outranking
	importance of each criterion.			difference is observed (defined	approach only)
	Two MCDA approaches are			by a user-defined indifference	
	undertaken (the value			threshold) and then divides	
	measurement method and the			each score through by the sum	
	outranking approach) ¹⁰⁵ .			of the weights to create an	
				index, with the higher value	
				representing the preferred	
				strategy.	
				We only discuss the 'preferred'	
				strategy and we do not	
				consider, for example, that in	
				order to be reimbursed (or	
				indeed be considered further at	
				all), a specific minimum score	
				threshold could be set.	
	Two optimisation analyses are			Scenario A provides either	
	undertaken. Under each		Unclear as strict conclusion	universal or targeted screening	
	scenario, the proportion		criteria not specified:	reminders to all, with targeted	
	receiving each type of	Scenario A v SoC	further in order to	screening focused to the least	
	screening reminder (universal	ICER: £25,678	accommodate an MP	deprived where a greater initial	
	or targeted) in each	Incremental QALYs: 0.22	approach the analysis	screening uptake will go	Ontimisation
	deprivation quintile was	Q1-Q5 QALY range: 11.57	moves away from a strict	further due to the increased	objectives:
MP	allowed to vary freely.		policy versus policy	subsequent likelihood of	Evaluation
		Scenario B v SoC	comparison and focuses on	uptake of the confirmatory	constraints
	The first scenario (Scenario A)	ICER: £31,134	further optimising policies	screening. This results in a	constraints
	is constrained by a maximum	Incremental QALYs: 0.18	or exploration of policy	lower ICER and greater QALY	
	screening budget with the goal	Q1-Q5 QALY range: 10.94	impacts under specific	gain, but also a wider gap in	
	of maximising QALE gains		constraints	terms of total QALY between	
	and the second scenario		constraints	the most and least deprived.	
	(Scenario B) utilises the same				

budget constraint but with the		Scenario B provides either				
goal of reducing the total		universal or targeted screening				
QALE variation across		reminders to all patients in the				
deprivation quintiles.		Q4 and Q5 subgroups (and to a				
		proportion in the Q3 subgroup)				
		but no reminders to patients in				
		the Q1 and Q2 subgroups. This				
		results in a lower gap in terms				
		of total QALY between the				
		most and least deprived, but a				
		greater ICER and lower total				
		QALY gain (compared to				
		Scenario A).				
DCEA: distributional cost-effectiveness analysis; EBW: equity-based weighting; ECEA: extended cost-effectiveness analysis; EDE: equally distributed equivalent; ICER: incremental cost-						
effectiveness ratio; MCDA: multi-criteria decision analysis; MP: mathematical programming; Q: quintile; QALE: quality-adjusted life expectancy; QALY: quality-adjusted life year; SoC:						
standard of care; T: targeted; U: universal; WTP: willingness-to-pay.						

References

[1] Lal A, Mohebi M, Sweeney R, Moodie M, Peeters A, Carter R. Equity Weights for Socioeconomic Position:
Two Methods-Survey of Stated Preferences and Epidemiological Data. Value Health. 2019 Feb;22(2):247-253.
doi: 10.1016/j.jval.2018.07.006. Epub 2018 Aug 28. PMID: 30711071.

[2] Trust for London. Poverty definitions and thresholds. Available from https://www.trustforlondon.org.uk/data/poverty-thresholds/. Accessed May 2021.

[3] Asaria M, Griffin S, Cookson R. Distributional Cost-Effectiveness Analysis: A Tutorial. Med Decis Making.
2016 Jan;36(1):8-19. doi: 10.1177/0272989X15583266. Epub 2015 Apr 23. PMID: 25908564; PMCID:
PMC4853814.

[4] Robson M, Asaria M, Cookson R, Tsuchiya A, Ali S. Eliciting the Level of Health Inequality Aversion in England. Health Econ. 2017 Oct;26(10):1328-1334. doi: 10.1002/hec.3430. Epub 2016 Sep 20. PMID: 27649686; PMCID: PMC6120144.

[5] Love-Koh J, Cookson R, Gutacker N, Patton T, Griffin S. Aggregate Distributional Cost-Effectiveness
 Analysis of Health Technologies. Value Health. 2019 May;22(5):518-526. doi: 10.1016/j.jval.2019.03.006.
 PMID: 31104729.

[6] Love-Koh J, Cookson R, Claxton K, Griffin S. Estimating Social Variation in the Health Effects of Changes in Health Care Expenditure. Med Decis Making. 2020 Feb;40(2):170-182. doi: 10.1177/0272989X20904360.
Epub 2020 Feb 15. PMID: 32065026; PMCID: PMC7430104.

[7] Thokala P, Duenas A. Multiple criteria decision analysis for health technology assessment. Value Health.
2012 Dec;15(8):1172-81. doi: 10.1016/j.jval.2012.06.015. Epub 2012 Oct 6. PMID: 23244821.

Supplemental Appendix E

Table. Overview of studies

Method Type	Author & Publication Year	Title	Journal	Study type*	Country of application	Disease Area	Comparison**	Equity stratification factors^	Inequality measurement/valuation^^
DCEA (aggregate)	Arnold, et al. (2020)	Distributional impact of the Malawian Essential Health Package	Health Policy Plann	Applied	Malawi	Multiple disease areas / broad healthcare	Pharmacological, vaccination & general healthcare : Multiple (73) interventions	Household wealth; Urban/rural status	Inequality measurement: Atkinson index SWF: Atkinson EDE
DCEA (aggregate)	Love-Koh, et al. (2019)	Aggregate Distributional Cost-Effectiveness Analysis of Health Technologies	Value Health	Applied	UK	Multiple disease areas / broad healthcare	Pharmacological: Multiple (27) interventions	Socioeconomic status	Inequality measurement: Slope index of inequality; Relative index of inequality; Atkinson index; Kolm index SWF: Atkinson EDE; Kolm EDE
DCEA (aggregate)	Griffin, et al. (2019)	Evaluation of Intervention Impact on Health Inequality for Resource Allocation	Med Decis Making	Methodological Case Study	UK	Multiple disease areas / broad healthcare	Pharmacological, education, lifestyle, and general healthcare : Multiple (134) interventions	Socioeconomic status	Inequality measurement: Slope index of inequality; Relative index of inequality; Atkinson index; Kolm index SWF: Atkinson EDE; Kolm EDE
DCEA (conventional)	Love-Koh, et al. (2020a)	Equity and economic evaluation of system-level health interventions: A case study of Brazil's Family Health Program	Health Policy Plann	Applied	Brazil	Multiple disease areas / broad healthcare	General healthcare: Programme Saude da Familia (PSF) (a community-level primary care system intervention); No PSF	Region	Inequality measurement: Slope index of inequality; relative index of inequality SWF: Atkinson EDE; Kolm EDE
DCEA (conventional)	Allen, et al. (2015)	Potential of trans fats policies to reduce socioeconomic inequalities in mortality from coronary heart disease in England: cost effectiveness modelling study	ВМЈ	Applied	England	Coronary heart disease	Policy: Total ban on trans fatty acids in processed foods; Improved labelling of trans fatty acids; Bans on trans fatty acids in restaurants and takeaways; Current SoC	Socioeconomic status	Inequality measurement: Slope index of inequality SWF: None reported

DCEA (conventional)	Olsen, et al. (2021)	Reducing regional health inequality: a sub-national distributional cost- effectiveness analysis of community-based treatment of childhood pneumonia in Ethiopia	Int J Equity Health	Applied	Ethiopia	Pneumonia (children)	General healthcare: Community- based treatment; No treatment	Region	Inequality measurement: Gini coefficient SWF: None reported
DCEA (conventional)	Oosterhoff, et al. (2020)	Lifetime cost-effectiveness and equity impacts of the Healthy Primary School of the Future initiative	BMC Public Health	Applied	Holland	Weight-based chronic disease (children)	Lifestyle: Healthy Primary School of the Future Programme; Physical Activity School Programme; SoC	Socioeconomic status	NR
DCEA (conventional)	Lee, et al. (2018)	Strategic distributional cost- effectiveness analysis for improving national cancer screening uptake in cervical cancer: A focus on regional inequality in South Korea	Cancer Res Treat	Applied	South Korea	Cervical cancer	Screening: Current strategy (screening biennially); current strategy plus postal recommendation for those in high- risk areas; Universal screening with postal screening recommendation; Universal screening with strong postal screening recommendation	Health inequality	Inequality measurement: Atkinson index SWF: Atkinson ICER
DCEA (conventional)	Lee, et al. (2016)	Cost effectiveness of colorectal cancer screening interventions with their effects on health disparity being considered	Cancer Res Treat	Applied	South Korea	Colorectal cancer	Screening: Annual FOBT; Annual FOBT with basic reminders for provinces with higher mortalities than the national average; Annual FOBT with basic/enhanced reminders for all provinces (universal reminder 1 and 2); No screening	Health inequality	Inequality measurement: Atkinson index SWF: Atkinson ICER
DCEA (conventional)	Ngalesoni, et al. (2016)	Equity impact analysis of medical approaches to cardiovascular diseases prevention in Tanzania	Soc Sci Med	Applied	Tanzania	Cardiovascular disease	Pharmacological: No medical prevention; WHO approach (patients with a moderate or high CVD risk treated); Differentiated risk threshold by age approach (different risk thresholds were applied to different age groups such that treatment is provided to a proportion of the population); ESC approach (assumed a scenario in which Tanzania is willing to pay more than one GDP per capita for a unit of health gain such that it would become "very cost-effective" to treat all individuals with a 10-	CVD risk group	Inequality measurement: Gini coefficient SWF: Achievement index

							year CVD risk equal to or above 5%)		
DCEA (conventional)	Kypridemos, et al. (2018)	Future cost-effectiveness and equity of the NHS Health Check cardiovascular disease prevention programme: Microsimulation modelling using data from Liverpool, UK	PLoS Med	Applied	UK	Cardiovascular disease	Screening & lifestyle: Current implementation of NHS Health Check (A); NHS Health Check `targeted' toward the most deprived areas (B); `Optimal' NHS Health Check coverage, uptake, treatment and lifestyle change; A combined with structural population-wide interventions targeting unhealthy diet and smoking; B combined with structural population-wide interventions targeting unhealthy diet and smoking; No NHS Health Check	Socioeconomic status	Inequality measurement: Absolute equity slope index; Relative equity slope index SWF: None reported
DCEA (conventional)	Love-Koh, et al. (2020b)	How health inequalities accumulate and combine to affect treatment value: A distributional cost- effectiveness analysis of smoking cessation interventions	Soc Sci Med	Methodological Case Study	England	Diseases associated with smoking	Pharmacological & lifestyle: Multiple (21) interventions	Socioeconomic status	Inequality measurement: Slope index of inequality; relative index of inequality SWF: Atkinson EDE; Kolm EDE
DCEA (conventional)	Dawkins, et al. (2018)	Distributional Cost- Effectiveness Analysis in Low- and Middle-Income Countries: Illustrative Example of Rotavirus Vaccination in Ethiopia	Health Policy Plann	Methodological Case Study	Ethiopia	Rotavirus	Vaccination: No vaccination; Standard vaccination; Hypothetical 'pro-poor' vaccination programme	Wealth	Inequality measurement: Atkinson index SWF: Atkinson EDE
DCEA (conventional)	Robberstad, et al. (2011)	Incorporating concerns for equal lifetime health in evaluations of public health programs	Soc Sci Med	Methodological Case Study	Tanzania	Hypertension (adults) and pneumococcal diseases (children)	Pharmacological & vaccination: Hydrochlorothiazide (hypertension); Vaccination (children)	Health inequality	Inequality measurement: Gini coefficient SWF: Achievement index
DCEA (conventional)	Asaria, et al. (2015)	Distributional cost- effectiveness analysis of health care programmes - A methodological case study of the UK bowel cancer screening programme	Health Econ	Methodological Case Study	UK	Bowel cancer	Screening: Universal reminder; Targeted reminder; Standard screening; No screening	Socioeconomic status; Gender; Ethnicity	Inequality measurement: Relative gap index; Relative index of inequality; Atkinson index; Gini index; Absolute inequality indices; Absolute gap index; Slope index of inequality; Kolm index

									SWF: Atkinson EDE; Kolm EDE
DCEA (conventional)	Asaria, et al. (2016)	Distributional Cost- Effectiveness Analysis: A Tutorial	Med Decis Making	Methodological Case Study	UK	Bowel cancer	Screening: Universal reminder; Targeted reminder; Standard screening; No screening	Socioeconomic status; Gender; Ethnicity	Inequality measurement: Relative gap index; Relative index of inequality; Atkinson index; Gini index; Absolute gap index; Slope index of inequality; Kolm index SWF: Atkinson social welfare index; Kolm social welfare index
DCEA (conventional)	Collins, et al. (2020)	Universal or targeted cardiovascular screening? Modelling study using a sector-specific distributional cost effectiveness analysis	Prev Med	Methodological Case Study	UK	Cardiovascular disease	Screening: No screening; 'Current' basic universal screening; Enhanced universal screening with 'increased' population-wide delivery; 'Universal plus targeted' with top- up delivery to the most deprived fifth	Socioeconomic status	Inequality measurement: Slope index of inequality SWF: None reported
DCEA (conventional)	Pitt, et al. (2020)	Public Health Interventions with Harms and Benefits: A Graphical Framework for Evaluating Tradeoffs	Med Decis Making	Methodological Case Study	USA	Obesity	Policy: Meat price increase of 5%; Meat price increase of 10%; Meat price increase of 25%; Meat price increase of 50%	Ethnicity; Gender	Inequality measurement: Gini coefficient SWF: None reported
DCEA (conventional)	Cookson, et al. (2009)	Explicit Incorporation of Equity Considerations into Economic Evaluation of Public Health Interventions	Health Econ Policy L	Methodology	-	-	-	NR	NR
DCEA (conventional)	Cookson, et al. (2017)	Using Cost-Effectiveness Analysis to Address Health Equity Concerns	Value Health	Methodology	-	-	-	NR	NR
EBW (costs)	Ong, et al. (2009)	A cost-based equity weight for use in the economic evaluation of primary health care interventions: case study of the Australian Indigenous population	Int J Equity Health	Methodological Case Study	Australia	Primary healthcare	Hypothetical non-specific example	Race	NA
EBW (costs)	Daems, et al. (2013)	Equity in pharmaceutical pricing and reimbursement:	Value Health Regional	Methodology	-	-	-	Regional GDP	NA

		Crossing the income divide in Asia Pacific							
EBW (other)	Karnon, et al. (2015)	Cost-Value Analysis and the SAVE: A Work in Progress, But an Option for Localised Decision Making?	Pharmacoeco nomics	Methodological Case Study	England	Breast cancer	Pharmacological: Tamoxifen; Letrozole	Disease severity	NA
EBW (QALYs)	Lindemark, et al. (2017)	Costs and expected gain in lifetime health from intensive care versus general ward care of 30,712 individual patients: a distribution-weighted cost- effectiveness analysis	Crit Care	Applied	Norway	Multiple disease areas / broad healthcare	General healthcare: ICU care; General ward care	Disease severity	NA
EBW (QALYs)	Carr, et al. (2006)	What is the value of treating schizophrenia?	Aust NZ J Psychiat	Methodological Case Study	Australia	Schizophrenia; Depression; Anxiety	General healthcare: Optimal' treatment; 'Non-optimal' treatment	Disease severity; QALE gain	NA
EBW (QALYs)	Baeten, et al. (2010)	Incorporating equity- efficiency interactions in cost-effectiveness analysis - Three approaches applied to breast cancer control	Value Health	Methodological Case Study	Europe	Breast cancer	Screening & pharmacological: Intervention; No intervention	Age; Stage of diagnosis	NA
EBW (QALYs)	Bleichrodt, et al. (2005)	A Nonparametric Elicitation of the Equity-Efficiency Trade-Off in Cost-Utility Analysis	J Health Econ	Methodological Case Study	Holland	Multiple disease areas / broad healthcare	Pharmacological & surgical: Multiple (12) interventions	QALE without intervention	NA
EBW (QALYs)	Stolk, et al. (2004)	Reconciliation of Economic Concerns and Health Policy	Pharmacoeco nomics	Methodological Case Study	Holland	Multiple disease areas / broad healthcare	Pharmacological, surgical & vaccination: Multiple (10) interventions	QALE without disease; Disease- related QALY loss	NA
EBW (QALYs)	Luyten, et al. (2021)	Integrating Alternative Social Value Judgments Into Cost-Effectiveness Analysis of Vaccines: An Application to Varicella-Zoster Virus Vaccination	Value Health	Methodological Case Study	UK	Varicella zoster and herpes zoster (children)	Vaccination: Vaccination; No vaccination	Disease type; Age; Vaccination status	NA

EBW (QALYs)	Versteegh, et al. (2019)	Severity-Adjusted Probability of Being Cost Effective	Pharmacoeco nomics	Methodology	Holland	Broad oncology	Hypothetical non-specific example	Disease severity	NA
EBW (QALYs)	Haaland, et al. (2019)	A flexible formula for incorporating distributive concerns into cost- effectiveness analyses: Priority weights	PLoS ONE	Methodology	-	-	-	NR	NA
EBW (QALYs)	Bleichrodt, et al. (1997)	Health Utility Indices and Equity Considerations	J Health Econ	Methodology	-	-	-	NR	NA
EBW (QALYs)	Bleichrodt, et al. (2004)	Equity Weights in the Allocation of Health Care: The Rank-Dependent QALY Model	J Health Econ	Methodology	-	-	-	QALE without intervention	NA
EBW (QALYs)	Cookson, et al. (2009)	Explicit Incorporation of Equity Considerations into Economic Evaluation of Public Health Interventions	Health Econ Policy L	Methodology	-	-	-	NR	NA
EBW (QALYs)	Cookson, et al. (2017)	Using Cost-Effectiveness Analysis to Address Health Equity Concerns	Value Health	Methodology	-	-	-	NR	NA
EBW (QALYs)	Dolan, et al. (1998)	The measurement of individual utility and social welfare	J Health Econ	Methodology	_	-	-	Pre-treatment health status; Post-treatment health status	NA
EBW (QALYs)	Gafni, et al. (1991)	Equity Considerations in Utility-Based Measures of Health Outcomes in Economic Appraisals: An Adjustment Algorithm	J Health Econ	Methodology	-	-	-	NR	NA
EBW (QALYs)	Nord, et al. (1999a)	Incorporating societal concerns for fairness in numerical valuations of health programmes	Health Econ	Methodology	-	-	-	Severity of illness; Limitations in potential for health	NA

EBW (QALYs)	Nord, et al. (1999b)	Towards cost-value analysis in health care?	Health Care Anal	Methodology	-	-	-	Severity of illness; Limitations in potential for health	NA
EBW (QALYs)	Nord, et al. (2005)	Concerns for the worse off: fair innings versus severity	Soc Sci Med	Methodology	-	-	-	Overall QALE; Disease severity	NA
EBW (QALYs)	Rodriguez, et al. (2000)	The social value of health programmes: Is age a relevant factor	Health Econ	Methodology	-	-	-	Age	NA
EBW (QALYs)	Round, et al. (2018)	Incorporating Equity in Economic Evaluations: A Multi-attribute Equity State Approach	Eur J Health Econ	Methodology	-	-	Hypothetical non-specific example	Age; Disease severity	NA
EBW (QALYs)	Sussex, et al. (2013)	Operationalizing Value- Based Pricing of Medicines	Pharmacoeco nomics	Methodology	-	-	-	NR	NA
EBW (QALYs)	Tsuchiya, et al. (1999)	Age-related preferences and age weighting health benefits	Soc Sci Med	Methodology	-	-	-	Age	NA
EBW (QALYs)	Ubel, et al. (2000)	Improving value measurement in cost- effectiveness analysis	Med Care	Methodology	-	-	-	Severity of illness; Limitations in potential for health	NA
ECEA	Levin, et al. (2015)	An extended cost- effectiveness analysis of publicly financed HPV vaccination to prevent cervical cancer in China	Vaccine	Applied	China	Cervical cancer (children)	Screening & vaccination: Vaccination plus screening; Screening	Wealth	NA
ECEA	Pecenka, et al. (2015)	Health gains and financial risk protection: an extended cost-effectiveness analysis of treatment and prevention of diarrhoea in Ethiopia	BMJ Open	Applied	Ethiopia	Diarrhoea (children)	Pharmacological, general healthcare & vaccination: Publicly financed diarrhoeal treatment alone; Publicly financed diarrhoeal treatment and rotavirus vaccination	Wealth quintiles	NA

ECEA	Driessen, et al. (2015)	Comparing the health and social protection effects of measles vaccination strategies in Ethiopia: An extended cost-effectiveness analysis	Soc Sci Med	Applied	Ethiopia	Measles	Vaccination: Routine immunisation; Routine immunisation with financial incentives; Mass campaigns (known as supplemental immunisation activities)	Income	NA
ECEA	Johansson, et al. (2017)	Health Gains and Financial Protection Provided by the Ethiopian Mental Health Strategy: An Extended Cost- Effectiveness Analysis	Health Policy Plann	Applied	Ethiopia	Mental health	Pharmacological & general healthcare: Increased coverage of interventions; Current coverage	Income	NA
ECEA	Johansson, et al. (2015)	Health gains and financial protection from pneumococcal vaccination and pneumonia treatment in Ethiopia: results from an extended cost-effectiveness analysis	PLoS ONE	Applied	Ethiopia	Pneumococcal disease and pneumonia (children)	Vaccination & general healthcare: Increased vaccination coverage (pneumococcal disease) and increased case management (pneumonia); Current SoC	Income groups	Inequality measurement: Gini coefficient SWF: None reported
ECEA	Nandi, et al. (2017)	Reduced burden of childhood diarrheal diseases through increased access to water and sanitation in India: a modeling analysis	Soc Sci Med	Applied	India	Childhood diarrheal diseases	Sanitation: Coverage rates of piped water and improved sanitation are separately increased across all Indian households randomly to a 95% level; Coverage rates of piped water and improved sanitation are increased to at least 95% level separately within each state	Wealth quintiles	NA
ECEA	Megiddo, et al. (2016)	Health and economic benefits of public financing of epilepsy treatment in India: an agent-based simulation model	Epilepsia	Applied	India	Epilepsy	Pharmacological & surgery: First- line anti-epilepsy drugs (AEDs); first- and second-line AEDs; first- and second-line AEDs and surgery	Income quintiles	NA
ECEA	Nandi, et al. (2016)	Health and economic benefits of scaling up a home-based neonatal care package in rural India: a modelling analysis	Health Policy Plann	Applied	India	Neonatal diseases	General healthcare: Delivery of Home-based Neonatal Care (HBNC) through the current accredited social health activists (ASHA) network; Increasing the number of ASHAs such that 90% of the rural population in each state receives neonatal care through	Wealth quintiles	NA

							existing channels or the new HBNC package		
ECEA	Raykar, et al. (2016)	An extended cost- effectiveness analysis of schizophrenia treatment in India under universal public finance	Cost Eff Resour Alloc	Applied	India	Schizophrenia	Pharmacological & general healthcare: Enhanced public financing of schizophrenia treatment; Current SoC	Income quintiles	NA
ECEA	Verguet, et al. (2015)	Universal public finance of tuberculosis treatment in India: an extended cost- effectiveness analysis	Health Econ	Applied	India	Tuberculosis	General healthcare: Universal public financing of tuberculosis treatment; No universal financing	Income quintiles	NA
ECEA	Verguet, et al. (2013)	Public finance of rotavirus vaccination in India and Ethiopia: An extended cost- effectiveness analysis	Vaccine	Applied	India & Ethiopia	Rotavirus (children)	Vaccination: Publicly financed vaccination coverage; Vaccination with no public funding	Income	NA
ECEA	Verguet, et al. (2016)	Maternal-related deaths and impoverishment among adolescent girls in India and Niger: findings from a modelling study	BMJ Open	Applied	India and Niger	Adolescent maternal mortality	Education: One-year increase in the education level of young girls; Current SoC	Income quintiles	Inequality measurement: Gini coefficient SWF: None reported
ECEA	De Neve, et al. (2018)	Health, financial, and education gains of investing in preventive chemotherapy for schistosomiasis, soil- transmitted helminthiases, and lymphatic filariasis in Madagascar: a modeling study	PLoS Negl Trop Dis	Applied	Madagascar	Schistosomiasis, soil-transmitted helminthiases, and lymphatic filariasis (children)	Pharmacological: Praziquantel (schistosomiasis); Albendazole (ascariasis); Albendazole (hookworm disease); Albendazole (trichiasis); Albendazole (lymphatic filariasis)	Intervention; Disease type	NA
ECEA	Watkins, et al. (2016)	Cardiovascular disease and impoverishment averted due to a salt reduction policy in South Africa: an extended cost-effectiveness analysis	Health Policy Plan	Applied	South Africa	Cardiovascular disease	Lifestyle: Lowering daily salt intake to 5g; No change in salt intake	Income quintiles	NA
ECEA	Saxena, et al. (2019)	The distributional impact of taxing sugar-sweetened beverages: findings from an extended cost-effectiveness analysis in South Africa	BMJ Glob Health	Applied	South Africa	Type 2 diabetes	Policy: 10% sugar tax; No sugar tax	Socioeconomic status	NA

ECEA	Cookson, et al. (2017)	Using Cost-Effectiveness Analysis to Address Health Equity Concerns	Value Health	Methodology	-	-	-	NR	NA
ECEA	Phelps, et al. (2018)	Approaches to Aggregation and Decision Making-A Health Economics Approach: An ISPOR Special Task Force Report [5]	Value Health	Methodology	-	-	-	NR	NA
MCDA (qualitative)	Banham, et al. (2011)	An equity-Effectiveness framework linking health programs and healthy life expectancy	Aust J Prim Health	Methodological Case Study	Australia	Coronary heart disease	Pharmacological & lifestyle: Clinical review, optimised pharmacotherapy, and lifestyle modification; No intervention	Socioeconomic status	NA
MCDA (quantitative & qualitative)	Phelps, et al. (2018)	Approaches to Aggregation and Decision Making-A Health Economics Approach: An ISPOR Special Task Force Report [5]	Value Health	Methodology	-	-	-	NR	NA
MCDA (quantitative & qualitative)	Sussex, et al. (2013)	Operationalizing Value- Based Pricing of Medicines	Pharmacoeco nomics	Methodology	-	-	-	NR	NA
MCDA (quantitative & qualitative)	Baltussen, et al. (2006)	Priority setting of health interventions: the need for multi-criteria decision analysis	Cost Eff Resour Alloc	Methodology	NR	Multiple disease areas / broad healthcare	Pharmacological & general healthcare: ART (HIV); Treatment (childhood pneumonia); Inpatient care (Schizophrenia); Plastering (simple fractures)	NR	NA
MCDA (quantitative)	Baeten, et al. (2010)	Incorporating equity- efficiency interactions in cost-effectiveness analysis - Three approaches applied to breast cancer control	Value Health	Methodological Case Study	Europe	Breast cancer	Screening & pharmacological: Intervention; No intervention	Age; Stage of diagnosis; Number of beneficiaries; Individual health benefit; Poverty reduction; Cost- effectiveness	NA
MCDA (quantitative)	Golan, et al. (2012)	Which health technologies should be funded? A prioritization framework	Isr J Health Policy	Methodological Case Study	Israel	Multiple disease areas / broad healthcare	Pharmacological, devices and dental care: Multiple (18) interventions	The extent to which, if the technology were	NA

		1						and the last from day d	
		based explicitly on value for						not to be funded,	
		money						patients would be	
								denied treatment	
								due to a lack of	
								alternative	
								treatments or	
								difficulties	
								accessing them;	
								and the existence	
								of other important	
								equity-related	
								social or ethical	
								benefits, such as	
								the technology	
								being targeted at	
								specific	
								populations with	
								prima facie	
								special claims	
								(e.g. children or	
								minorities) or	
								serving to reduce	
								health gaps	
								(inequalities), etc.	
		Equity and efficiency in						Treatment	
	Cleary, et al.	HIV-treatment in South					Pharmacological: No ART; First-	inequality (i.e.,	
MP	(2010)	Africa: the contribution of	Health Econ	Application	South Africa	HIV	line ART; First- and second-line	opportunity for	NA
	(2010)	mathematical programming					ART	treatment)	
		to priority setting						d'outiliont)	
MD	Cookson, et	Using Cost-Effectiveness	X7 1 TT 1/1	N 4 11				ND	
MP	al. (2017)	Analysis to Address Health	value Health	Methodology	-	-	-	INK	INA
		Equity Concerns							
		Examining Equity Effects of							
	Avanceña et	Health Interventions in Cost-							
SLR	al (2021)	Effectiveness Analysis: A	Value Health	SLR	-	-	-	-	-
	al. (2021)	Systematic Review							
		Systematic Review							
		Alternative Approaches to							
	Carlson, et al	Quality-Adjusted Life-Year							
SLR	(2020)	Estimation Within Standard	Value Health	SLR	-	-	-	-	-
	(2020)	Cost-Effectiveness Models:							
		Literature Review,							

		Feasibility Assessment, and Impact Evaluation							
SLR	Dukhanin, et al. (2018)	Integrating social justice concerns into economic evaluation for healthcare and public health: A systematic review	Soc Sci Med	SLR	-	-	-	-	-
SLR	Johri, et al. (2012)	Can cost-effectiveness analysis integrate concerns for equity? Systematic review	Int J Technol Assess	SLR	-	-	-	-	-
SLR	Lal, et al. (2018)	Inclusion of equity in economic analyses of public health policies: systematic review and future directions	Aust NZ J Publ Heal	SLR	-	-	-	-	-

ART: anti-retroviral therapy; CVD: cardiovascular disease; DCEA: distributional cost-effectiveness analysis; EBW: equity-based weighting; ECEA: extended cost-effectiveness analysis; EDE: equally distributed equivalent; FOBT: faecal occult blood test; HIV: human immunodeficiency virus; ICER: incremental cost-effectiveness ratio; ICU: intensive care unit; MCDA: multi-criteria decision analysis; MP: mathematical programming; NA: not applicable; NHS: national health service; NR: not reported; QALE: quality-adjusted life expectancy; SLR: systematic literature review; SoC: standard of care; SWF: social welfare function; WHO: World Health Organisation

Notes

General: Where studies appear in the table more than once it is because they describe more than one methodology.

*'Applied' studies focus on a dedicated application of the equity evaluation method to a particular decision problem; 'Methodological case studies' focus predominantly on describing methodology but provide either an applied case study example or a hypothetical non-specific worked example; 'Methodology' studies describe only the underlying methodology of the equity evaluation method and do not provide any form of worked example.

**'Lifestyle' interventions include those aimed at modifying a person's behaviour or lifestyle; 'General healthcare' interventions include those were no description of the specific intervention was provided, and those aimed at improving healthcare in the widest context (which may therefore encompass all aspects of healthcare provision).

^Equity stratification factors are described if relevant and if the study describes an application, case study or hypothetical example

^^Equity measurement metrics and social welfare functions are evaluated only for DCEA and ECEA studies

Supplemental Appendix F

Overview

This supplemental appendix provides a brief overview of each of the inequality measurement metrics and social welfare functions (SWFs) utilised in studies identified in the review. We do not attempt to summarise the relative strengths and weaknesses of each approach as this has been studied previously [1-4]. Rather, we focus on providing their formulaic representation in the context of health inequality, focusing on health as measured by the QALY.

Inequality measurement metrics

Gini coefficient

Original publication: Gini (1936) [5]

Like most inequality and inequity measurement metrics, the Gini coefficient has a background in economics, specifically in wealth distribution measurement, and is strongly associated with the Lorenz curve. In a wealth-based context, the Lorenz curve graphically represents the distribution of wealth within a population, with the x-axis representing the cumulative proportion of individuals ranked from least wealthy to most wealthy, and the y-axis representing the cumulative share of wealth. Substituting health in place of wealth gives us the Lorenz curve as observed in **Figure 1**, where the x-axis now represents the cumulative proportion of individuals ranked from least healthy to most healthy, and the y-axis represents the cumulative share of health.

Figure 1: Health-based Lorenz curve

Under this framework, a diagonal line represents equal health among individuals, whilst the larger the deviation from the diagonal, the larger the degree of inequality. The Gini index or coefficient is calculated based on this curve, where the magnitude of the index can range from 0 (where the curve coincides with the diagonal) to 1 (where all the health of the population is concentrated in a single person). The Gini index is calculated using the following formula:

$$G = \frac{\sum_{i=1}^{n-1} |p_i - q_i|}{\sum_{i=1}^{n-1} p_i}$$

Where p_i and q_i represent the proportion of individuals (or groups) by health level and the cumulative total proportion of health of these individuals (or groups), respectively.

Atkinson Index

Original publication: Atkinson (1970) [6]

The Atkinson index was developed as a relative measure of income inequality and is useful in determining which end of the distribution contributes most to the observed inequality. Of particular significance is the use of

an inequality aversion parameter ε which gives greater weight to changes in a given portion of the income distribution. The Atkinson index can be used as a measure of health-based inequality by replacing measures of income with measures of health. The Atkinson index defined in the contest of quality-adjusted life expectancy (QALE) can be constructed as:

$$A_{\varepsilon} = 1 - \left[\frac{1}{N}\sum_{i=1}^{N} \left(\frac{Q_{i}}{\bar{Q}}\right)^{1-\varepsilon}\right]^{\frac{1}{1-\varepsilon}}$$

Where N is the total population size, Q_i is the QALE estimate of the *i*th individual, \overline{Q} is the mean QALE of the population and ε is the level of inequality aversion ($\varepsilon \ge 0$).

As ε increases, the Atkinson index becomes more sensitive to changes at the lower end of the health distribution. Conversely, as ε decreases, the Atkinson index becomes less sensitive to changes in the lower end of the distribution. The Atkinson index is never highly sensitive to changes at the upper end of the distribution, as ε is strictly non-negative. In the UK, published evidence suggests that, at current levels of QALE, the general public are willing to weight health gains to the poorest fifth of people in society six to seven times as highly as health gains to the richest fifth, resulting in an ε parameter value of 10.95 [7]. The theoretical range of Atkinson values is between 0 and 1, with 0 representing a state of equal distribution.

A special case of the Atkinson index where $\varepsilon = 1$ is represented by the following equation:

$$A_{\varepsilon} = 1 - \left[\sum_{i=1}^{N} \frac{Q_i}{\bar{Q}}\right]^{\frac{1}{N}}$$

Kolm Index

Original publication: Kolm (1976) [8]

In a similar fashion to the Atkinson index, the Kolm index was developed as a measure of income inequality, but with a focus on measuring absolute inequality as opposed to relative inequality. It similarly uses an equality aversion parameter α to give greater weight to changes in a given portion of the income distribution. The Kolm index is represented by the following equation:

$$K_{\alpha} = \left(\frac{1}{\alpha}\right) \log\left(\frac{1}{N} \sum_{i=1}^{N} e^{\alpha(\bar{Q}-Q_i)}\right)$$

Where N is the total population size, Q_i is the QALE estimate of the *i*th individual, \overline{Q} is the mean QALE of the population and α is the level of inequality aversion ($\alpha > 0$).

Much like the Atkinson index, as α increases, the Kolm index becomes more sensitive to changes at the lower end of the health distribution. Conversely, as α decreases, the Kolm index becomes less sensitive to changes in the lower end of the distribution. The Kolm index is never highly sensitive to changes at the upper end of the distribution, as α is strictly non-negative. In the UK, published evidence suggests that, at current levels of QALE, the general public are willing to weight health gains to the poorest fifth of people in society six to seven times as highly as health gains to the richest fifth, resulting in an α parameter value of 0.15 [7].

Slope Index of Inequality and Relative Index of Inequality

Both the slope and relative indices of inequality are simple regression-based indices. They rely on a regression relating health outcomes with the relative position of groups across a relevant distribution, for example, the relative position of social groups on the socioeconomic distribution [9]. An example of such a regression is presented in **Figure 2**. The slope index of inequality (SII) corresponds to the slope of the regression line, representing an absolute measure of inequality, whilst the relative index of inequality (RII) is obtained by extrapolating the regression line towards the extreme groups on the x-axis (i.e., 0 and 1 in **Figure 2**) and calculating the ratio of the value at the bottom of the hierarchy (e.g., the intercept) to the value at the top of the hierarchy (e.g., the intercept plus the slope), and represents a relative measure of inequality.

Figure 2: Hypothetical example of the difference in health across socioeconomic quintiles and the associated slope and relative indices of inequality (informed by examples from Khang et al. [2019] and Renard et al. [2019]) [9-10]

Absolute Gap Index and Relative Gap Index

The absolute and relative gap indices are simple measures of differences in inequality between the two most extreme groups observed in a distribution. As illustrated in **Figure 3**, the gap index is simply calculated as the difference in health between the two most extreme socioeconomic quintiles, whilst the relative gap index is calculated as the ratio of health outcomes between the two most extreme socioeconomic quintiles.

Figure 3: Hypothetical example of the difference in health across socioeconomic quintiles and the associated absolute and relative gap indices

Social Welfare Functions

SWFs can be used to analyse the trade-offs between efficiency, in terms of maximising overall population health, and health equity, in terms of achieving a more equal distribution of health across the chosen equity strata and amongst the general population. The cornerstone of this inequality measure is the concept of Equally Distributed Equivalent (EDE) health, that is a common level of health in a hypothetical equal distribution of health that has the same level of social welfare as the actual unequal distribution of health, with the difference indicating the change in health-related social welfare. A positive change in EDE therefore represents a scenario in which population health increases and health inequality reduces, or a scenario in which the trade-off between increasing (decreasing) population health by an amount X and increasing (decreasing) health inequality by an amount Y is deemed acceptable; this acceptability is controlled by the inequality aversion parameter.

When subtracted from 1 and multiplied by the mean level of health, the Atkinson and Kolm indices can be used to summarize the value of a distribution of health in terms of the equally distributed equivalent (EDE) level of health [11]. In a QALY-based example, the EDE is the level of population health (expressed in QALYs) that, if provided uniformly to everyone in a population, would yield the same amount of social welfare to the distribution of health being evaluated. An intervention estimated to reduce health inequality will have an EDE health impact more positive than its net population health impact. Conversely, an intervention that increases health inequality would have an EDE more negative than their net population health impact, with the difference showing the loss of social welfare in terms of QALYs.

Combining the Atkinson and Kolm indices with the mean level of health in the distribution to obtain the EDE level of health gives the following equations [12]:

$$EDE_{A,\varepsilon} = (1 - A_{\varepsilon})\overline{Q}$$

 $EDE_{K,\alpha} = \overline{Q} - K_{\alpha}$

When $\varepsilon = 0$, marginal increases in health produce the same level of social welfare whether they go to a less healthy or healthier individual. In this case, the EDE level of health is equal to mean health in the population, and the Atkinson index is zero. Similarly, when $\alpha = 0$, the EDE level of health is equal to mean health in the population, and the Kolm index is zero.

References

[1] Regidor E. Measures of health inequalities: part 1. J Epidemiol Community Health. 2004 Oct;58(10):858-61.
doi: 10.1136/jech.2003.015347. PMID: 15365113; PMCID: PMC1763348.

[2] Regidor E. Measures of health inequalities: part 2. J Epidemiol Community Health. 2004 Nov;58(11):900-3.doi: 10.1136/jech.2004.023036. PMID: 15483304; PMCID: PMC1732621.

[3] Alonge O, Peters DH. Utility and limitations of measures of health inequities: a theoretical perspective. Glob Health Action. 2015 Sep 9;8:27591. doi: 10.3402/gha.v8.27591. PMID: 26361347; PMCID: PMC4565845.

[4] Tao Y, Henry K, Zou Q, Zhong X. Methods for measuring horizontal equity in health resource allocation: a comparative study. Health Econ Rev. 2014 Dec;4(1):10. doi: 10.1186/s13561-014-0010-x. Epub 2014 Aug 10.
PMID: 26054400; PMCID: PMC4884040.

[5] Gini, C. On the Measure of Concentration with Special Reference to Income and Statistics. Colorado College Publication. 1936. General Series No. 208, 73–79.

[6] Atkinson, AB. On the measurement of inequality. Journal of Economic Theory. 1970. 2 (3), pp. 244–263, doi:10.1016/0022-0531(70)90039-6.

[7] Robson M, Asaria M, Cookson R, Tsuchiya A, Ali S. Eliciting the Level of Health Inequality Aversion in England. Health Econ. 2017 Oct;26(10):1328-1334. doi: 10.1002/hec.3430. Epub 2016 Sep 20. PMID: 27649686; PMCID: PMC6120144.

[8] Kolm, SC. Unequal inequalities. I, Journal of Economic Theory. 1976. No. 12. Issue 3. p. 416-442.

[9] Renard F, Devleesschauwer B, Speybroeck N, Deboosere P. Monitoring health inequalities when the socio-economic composition changes: are the slope and relative indices of inequality appropriate? Results of a simulation study. BMC Public Health. 2019 May 30;19(1):662. doi: 10.1186/s12889-019-6980-1. PMID: 31146708; PMCID: PMC6543610.

[10] Khang YH, Lim D, Bahk J, Kim I, Kang HY, Chang Y, Jung-Choi K. A publicly well-accepted measure versus an academically desirable measure of health inequality: cross-sectional comparison of the difference between income quintiles with the slope index of inequality. BMJ Open. 2019 Jun 27;9(6):e028687. doi: 10.1136/bmjopen-2018-028687. PMID: 31248930; PMCID: PMC6597623. [11] Griffin S, Love-Koh J, Pennington B, Owen L. Evaluation of Intervention Impact on Health Inequality for Resource Allocation. Med Decis Making. 2019 Apr;39(3):171-182. doi: 10.1177/0272989X19829726. Epub
2019 Feb 28. PMID: 30819034.

[12] Asaria M, Griffin S, Cookson R, Whyte S, Tappenden P. Distributional cost-effectiveness analysis of health care programmes--a methodological case study of the UK Bowel Cancer Screening Programme. Health Econ. 2015 Jun;24(6):742-54. doi: 10.1002/hec.3058. Epub 2014 May 2. PMID: 24798212.