
The evolution of animal “intelligence”: Among-indiv idual differences and 

the heritable basis of cognitive and personality (c o)variation in the 

Trinidadian guppy ( Poecilia reticulata) 

 

 

 

 

Submitted by Pamela M Prentice to the University of Exeter as a thesis for the 

degree of Doctor of Philosophy in Biological Sciences May 2021. 

 

This thesis is available for Library use on the understanding that it is copyright 

material and that no quotation from the thesis may be published without proper 

acknowledgement.  

 

I certify that all material in this thesis which is not my own work has been identified 

and that no material has previously been submitted and approved for the award 

of a degree by this or any other University.  

 

Signature: …………………………………………………………. 

  



2 

 

  



3 

 

i. Abstract 

Among-individual variation in cognition is common within populations, and has 

been demonstrated across a range of animal taxa. From an evolutionary 

perspective, this variation is a pre-requisite for natural selection and genetic 

variation – both of which are required for adaptive evolution to occur. Selection 

has been hypothesised to favour high cognitive performance, however directional 

selection would be expected to erode genetic (and among-individual) variation 

over time. Furthermore, as selection does not act on traits in isolation, 

understanding the extent to which cognitive traits covary with other aspects of 

phenotype (e.g. personality traits) is an important factor. The question of how 

among-individual variation is maintained is therefore central to our understanding 

of the adaptive evolution of cognition in the context of the wider phenotype.  The 

overall aim of my PhD thesis was to study the evolutionary biology of among-

individual variation in cognitive and personality traits, and to explore the 

relationship between them in the Trinidadian guppy (Poecilia reticulata). I aimed 

to characterise among-individual differences in cognitive performance and 

personality, and investigate the extent to which genetic variation contributes to 

these, and to relationships between them. Each chapter was intended to obtain 

novel insights into the mechanisms explaining the existence and maintenance of 

these two important facets of behaviour across multiple hierarchical levels. I 

advocate the use of quantitative genetic style modelling approaches throughout, 

and seek to highlight the value of multivariate approaches to investigating animal 

cognition and associated behavioural traits.  Firstly, relationships between 

cognition and personality were explored at the among-individual level, using a 

measure of cognitive performance in a spatial learning task and a stress-related 

behavioural trait. Secondly, to further scrutinise links between cognition and 
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personality, the multivariate structure of among-individual variation in cognitive 

performance across different domains was investigated in addition to variation in 

personality trait ‘boldness’. Next, among-individual and genetic variation in 

phenotypic ‘predictability’ (within-individual variation) of a stress-related 

behavioural trait was analysed using a novel form of ‘double hierarchical’ model. 

I then explored whether genetic variation contributes to among-individual 

differences in cognitive performance in a detour reaching task, and further 

investigated whether an interplay by genotype-by-environment interactions 

contributed to this variation. And finally, I discuss these results and how they 

contribute to our understanding of the causes of among-individual variation in 

cognitive performance, in addition to their evolutionary implications and ideas for 

future work. 
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1. Chapter 1: General Introduction 

 

This thesis aims to investigate the causes of variation in cognitive and personality 

traits in Poecilia reticulata, and to explore the relationship between these two 

important facets of behaviour. I characterise among-individual differences in 

cognitive performance and personality and investigate the extent to which genetic 

variation contributes to these and to relationships between them.  In so doing I 

test hypotheses about the mechanisms driving and maintaining behavioural 

variation at multiple hierarchical levels. Throughout the thesis, I advocate the use 

of quantitative genetic style modelling approaches, and seek to highlight the value 

of multivariate approaches to investigating animal cognition and associated 

behavioural traits.  

 

Cognition in animals 

In the broadest sense, cognition refers to adaptive information processing, and 

so encompasses the set of mechanisms by which animals acquire, process, store 

and respond to information from the environment (Shettleworth, 2009a). 

Environmental information is acquired through the senses (e.g., vision, hearing, 

smell, taste, touch, electroreception) and processed by the brain  (Dukas, 2004). 

Functionally appropriate behaviours are then the result of an animal’s decision to 

act on the information received by the brain (Shettleworth, 2010a; Bräuer et al., 

2020). As such, cognitive processes play a major role in driving behaviour and 

are therefore vital for carrying out the day-to-day activities required for survival 

and reproduction (Boogert et al., 2011; Maille et al., 2016; Shohet et al., 2009; 

Smith et al., 2015).  
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Cognition is often described as including multiple aspects or ‘domains’ 

such as memory, attention, learning, behavioural inhibition and self-recognition 

(to name a few), all of which can themselves be further subdivided (Roitblat, 

2008; Shettleworth, 2010a). Research on animals has consequently examined 

many distinct aspects of cognitive ability across species, for example tool-use in 

New Caledonian crows (Corvus moneduloides (Kenward et al., 2006)), future 

planning in western scrub-jays (Aphelocoma californica (Raby et al., 2007)), 

numerosity in mosquitofish (Gambusia holbrooki (Agrillo et al., 2011)), and social 

learning in red-footed tortoise (Geocgelone carbonaria (Wilkinson et al., 2010)). 

Furthermore, great progress has been made by comparative psychologists in 

elucidating the cognitive mechanisms and neural structures underpinning animal 

behaviour (e.g. by investigating brain size as a predictor of cognitive performance 

(Kotrschal et al., 2013), or hippocampus volume in food-hoarding animals; (Roth 

et al., 2010)). Cognitive ability has long been known to vary among species, but 

it is also becoming clear that some organisms are capable of performing more 

sophisticated cognitive tasks than was previously thought possible. The cuttlefish 

(Sepia officinalis), for example, is a marine invertebrate that shows episodic-like 

memory in a foraging task (Jozet-Alves et al., 2013) and displays future planning 

behaviour when foraging for previously experienced food items (Billard et al., 

2020). These abilities are in fact broadly similar to those seen in vertebrate 

lineages with large complex brains, including birds (Clayton et al., 1998), apes 

(Martin-Ordas et al., 2010) and even human children (Russell et al., 2011).  

Differences in evolutionary history and brain structure suggest that 

cognitive abilities may have emerged multiple times independently (Roth, 2015). 

Psychologists have postulated several major adaptive hypotheses to explain both 

the emergence of cognition, and the presence of among-species differences in 
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ability. These include the “Ecological Intelligence Hypothesis”, which proposes 

that complex cognition evolved to meet the challenges associated with finding 

and processing food (Gibson, 1986; Sayol et al., 2016); the “Social Brain 

Hypothesis”, which predicts cognitive ability is driven by the demands of living in 

social groups (Dunbar, 1998; Ashton et al., 2018). Others have postulated 

cognitive abilities are primarily an adaptation to cope with the challenges of 

predators (Byrne et al., 2007; Skelhorn et al., 2015; Kotrschal et al., 2017). 

Support for all these hypotheses, and several others, is claimed across species, 

but it is important to note they need not be mutually exclusive.  

Historically, cognitive research was mainly focused on human intelligence 

and, as a consequence mammalian species (e.g. mice) used as biomedical 

models have also been important in experimental work (for a review, see 

McGonigle et al., 2014; Sternberg, 2002). In this human context, there has been 

longstanding interest in detecting and understanding differences in cognitive 

performance among humans (Hunt et al., 1973; Daneman et al., 1980; Deary et 

al., 2009). In contrast, until recently comparative work on non-human animals has 

largely addressed differences in cognitive abilities between species and, in some 

cases, among populations facing distinct environmental challenges (ecological 

and/or social). In these contexts, behavioural means were compared to address 

specific questions, while differences among-individuals within groups (e.g. 

species) were largely ignored, dismissed as noise, or attributed to experimental 

design inconsistencies. However, in line with the growth of animal personality 

research (discussed below), studies of cognition in non-human animals have 

increasingly viewed among-individual variation in cognition as an interesting 

phenomenon in its own right. In terms of understanding the evolution of traits, this 

level of variation is incredibly interesting and important, as it is a pre-requisite for 
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natural selection and genetic variation – both of which are required for adaptive 

evolution to occur (Wilson et al. 2010). 

 

Among-individual variation in cognition 

Biomedical studies, motivated primarily by understanding intelligence in humans, 

revealed the presence of among-individual variation in cognitive abilities in rodent 

(Tolman, 1924; Tryon, 1940; Galsworthy et al., 2002; Matzel et al., 2003) and 

primate models (Banerjee et al., 2009). Rats, for example, show considerable 

individual differences in the ability to learn to solve mazes, and this variation is at 

least partially determined by genetic factors (Tolman, 1924; Tryon, 1940). 

Behavioural ecologists have now started to reveal the extent of this variation 

across a much wider range of non-model organisms (Sih, Bell, & Johnson, 2004; 

Sih et al., 2012; Thornton et al., 2014).  Many empirical studies show that animal 

populations can harbour high levels of among-individual variation in cognitive 

performance (Boogert et al., 2018). This has been seen across a wide taxonomic 

groups including insects (Li et al., 2017), fish (Lucon-Xiccato & Bisazza, 2017a), 

birds (Quinn et al., 2016) and mammals (Mazza et al., 2019). For example, 

individual black-capped chickadees (Poecile areicapillus) vary in speed and 

performance accuracy in an acoustic discrimination task (Guillette et al., 2009, 

2010, 2015). Performance in a foraging task varies among individual bank voles 

(Myodes glareolus; (Mazza et al., 2018)), and inhibitory control varies among 

individual guppies (Poecillia reticulata) when presented with a detour reaching 

task  (Macario et al., 2021; Chapter 5 ). Consistent among-individual differences 

are also found across a range of cognitive domains, such as spatial memory 
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(Sonnenberg et al., 2019), association learning (Kniel et al., 2020), inhibitory 

control (Brandão et al., 2019) and problem solving (van Horik et al., 2019).  

Efforts to quantify patterns of among-individual variation in cognitive traits 

are still in relative infancy (Rowe et al., 2014; Thornton et al., 2014; Boogert et 

al., 2018), and empirical studies are somewhat limited (but see Niemelä et al., 

2013; Lucon-Xiccato, 2017a; Ashton et al., 2018; Prentice et al., 2020; Chapter 

2, 3 & 5  for examples). Moreover, progress to date has been limited by 

experimental and analytical paradigms common to comparative psychology 

(Rowe et al., 2014; Thornton et al., 2014). Specifically, robustly quantifying (as 

opposed to simply detecting) among-individual differences requires data 

structures not readily obtained using classic cognitive experimental paradigms 

used to estimate phenotypic means in small samples (e.g., tens of individuals 

and sometimes less). It requires high volume data sets with repeated measures 

on individuals. These are logistically difficult to collect, and require carefully 

designed psychometric tests that can be adapted to high throughput phenotyping 

of cognitive differences across multiple domains (Thornton et al., 2014). 

Furthermore, there is always a risk that apparent among-individual variation in 

cognitive performance actually arises from other factors. These can include 

differences in internal state (e.g. motivation due to satiety, stress, and hormonal 

or circadian cycles), imperfectly controlled aspects of the external environment 

(Dohm, 2002), or unknown prior experience (i.e., repeated exposure to cognitive 

challenges will alter performance via processes such as learning and memory 

(Griffin et al., 2015)).  

While the empirical challenges are not trivial, they are also not unique to 

the study of cognitive variation. Indeed, many of the same issues have been 

recognized in the broader field of animal personality (Martin et al., 2008). 
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Overcoming them requires a continued focus on rigorous experimental design, 

but this must be coupled with i) a recognition that high throughput data collection 

is essential and ii) use of analytical methods that are flexible enough to allow 

(potentially) confounding sources of variation to be jointly modelled. Multivariate 

linear mixed effects models, developed in evolutionary quantitative genetics and 

increasingly adopted in behavioural ecology offer a useful strategy in this regard.  

 

Animal personality: what is it and what maintains v ariation? 

Arguably, the recent focus on among-individual differences in cognitive 

performance owes much to the burgeoning study of ‘animal personality’. It is now 

abundantly clear that species typically harbour high levels of consistent among-

individual variation in behavioural traits generally (Dingemanse et al., 2005). 

Individual differences in (mean) behaviours, commonly referred to as personality, 

can manifest as, for instance, variation in aggressiveness (or sociability) towards 

conspecifics, or as differences in response to perceived risk (Réale et al., 2007; 

Bridger et al., 2015). Evidence from a wide variety of species shows that some 

individuals within populations are consistently more aggressive, more 

exploratory, or more ‘bold’ than others. For example, individual deer mice 

(Peromyscus maniculatus) consistently vary in escalation of aggressive 

behaviour exhibited when presented with a conspecific rival (Wilson et al., 2009). 

In this study, differences in aggression were shown to be partly genetic and 

therefore heritable, a finding that is quite typical of personality traits generally 

(Dochtermann et al., 2019). For example, risk taking behaviour is heritable in 

hand reared great tits (Parsus major; (Drent et al., 2003)), as is ‘shy-bold’ type 

variation characteristic of behavioural stress responses in brown trout (Salmo 
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trutta; (Kortet et al., 2014)) and guppies (P. reticulata;  (Prentice et al., 2020)). If 

personality traits are typically heritable, then we also know that they can have 

fitness consequences and so be under selection (Dingemanse, 2005; Smith et 

al., 2008). For example, individual wild African striped mice (Rhabdomys pumilio) 

that were quicker to respond to a predator stimuli had increased rates of survival 

(Maille et al., 2016). The combination of heritable variation and selection sets the 

stage for adaptive evolution, but also raises the question of what maintains this 

among-individual variation in behaviour within populations. Increasingly, 

individual personalities are being viewed as components of ‘extended’ life history 

strategies, that are expected to be correlated with – and trade-off against - other 

aspects of the phenotype. Since, strong directional or stabilising selection is 

usually predicted to erode variation (Roff, 2002), it is widely hypothesised that 

variation in personality traits is maintained by fitness trade-offs of some kind 

(Dingemanse et al., 2004; Quinn et al., 2016). Trade-offs may be with other 

aspects of personality, or with cognition, or perhaps with physiological and/or 

reproductive traits (Réale et al. 2010; Sih, Bell, & Johnson 2004; Wolf et al. 2007). 

For example, bolder individuals may be better at acquiring resources to invest in 

life history traits (e.g., growth, reproduction) but their behaviour may expose them 

to greater predation risk. If being bold (or shy) has both advantages and costs in 

this way, selection may maintain variation in a population. 

By focussing on among-individual differences the field of animal 

personality has done much to align the study of behaviour with concepts and 

methods widely used to investigate the evolution of phenotypic traits more 

generally (e.g. quantitative genetics; see below). However, the field remains 

fraught with (largely) semantic arguments about what constitutes personality in 

general, or how particular aspects of repeatable behaviour should be referred to 
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(e.g. as boldness, exploration, sociability). While this thesis seeks to avoid such 

arguments as far as possible, it is necessary to introduce the related concept of 

‘stress coping style’ (SCS). This is a verbal model derived from stress research 

which predicts that, when challenged by acute stressors in the environment, 

individuals will vary in response along a proactive/reactive continuum of variation 

(Coppens et al., 2010; Koolhaas et al., 1999; Sih, Bell, & Johnson 2004).  

Proactive individuals will tend to express more ‘fight or flight’ type behavioural 

responses induced by adrenaline-response to stressors. At the other extreme, 

reactive coping styles are more behaviourally ‘passive’ (e.g., freezing or hiding) 

and show high HPA(I) activity leading to cortisol response (Øverli et al., 2007; 

Carere et al., 2014). Thus, the model predicts consistent variation in behavioural 

response to stressors (e.g., isolation in a novel environment (White et al., 2016; 

Prentice, 2020, 2020) that is broadly analogous to shy-bold type personality 

variation. Note however that the SCS model explicitly predicts integration of these 

personality differences with among-individual differences in stress physiology. 

 

Are cognition and personality linked? 

Links between cognitive variation and personality are widely hypothesised 

perhaps in part because trade-offs are so frequently invoked as parallel 

explanations for both phenomena (for this argument applied to cognitive variation 

see e.g., Del Giudice et al., 2018). However, there is also empirical evidence of 

correlation structure between them. For example, great tits (Parsus major) that 

successfully learned to access food during a problem solving task laid more eggs 

than non-solvers and foraged less for their offspring (Cole et al., 2012). However, 

problem solvers (with putatively higher cognitive performance) were also less 
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competitive during foraging and more detrimentally, likely to desert their nest 

leaving offspring vulnerable to predation and starvation. If fitness trade-offs do 

shape variation in personality, it seems very possible that they may also 

drive (co)variation between behavioural and cognitive styles. For example, given 

the widely postulated cognitive trade-off between speed and accuracy of decision 

making (Chittka et al., 2009), accurate learners that pay careful attention to 

stimuli before taking action may generate behavioural profiles characteristic of 

shy personality types. Conversely, cognitive strategies favouring speed over 

accuracy may generate bolder, less neophobic and/or more exploratory 

personalities (Sih et al., 2012).   

Consideration of stress responses provides another perspective that has 

led to hypothesised links between personality and cognitive performance (Raoult 

et al., 2017; Gibelli et al., 2019).  For instance, ‘proactive’ styles are largely 

analogous to bold, exploratory and/or risk-taking personalities that, intuitively, 

may present individuals with more opportunities to learn initially. Conversely, it 

has been argued that behavioural flexibility, which is associated with ‘reactive’ 

stress coping styles (Coppens et al., 2010),  is important for cognitive tasks such 

as reversal learning that require updating information about the environment as 

conditions change (Koolhaas et al., 1999; Sih et al., 2012; Griffin et al., 2015). 

More simply, sensitivity to external stressors could also be a source of bias in 

experiments designed to assay variation in cognitive performance. For instance 

if more stressed individuals are less motivated to engage in a task and/or are 

focused on perceived sources of risk, they may perform poorly in assays and so 

be viewed as having lower cognitive ability.  

 

Variance partitioning and quantitative genetics 
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The empirical investigations of cognitive and personality variation - and 

covariation - described in this thesis rely on linear mixed effect models to 

statistically partition among-individual from within-individual variation. In some 

analyses, quantitative genetic “animal models” (Wilson et al., 2010) are also 

employed, in which among –individual variation is further partitioned to estimate 

genetic variance using a pedigree-based extension of the linear mixed model 

originally developed for animal breeders. Various other extensions to the basic 

mixed model are employed including ‘random regression’ (Martin et al., 2017) 

and ‘double hierarchical models’ (Lee et al., 2006). Detailed explanations of the 

modelling strategies are presented in the chapters where appropriate but here I 

give a simple overview of how and why variance partitioning is useful for studying 

cognitive variation and personality.  

Mixed models allow partitioning of trait variation (measured as variance) 

into within- and among- individual components given data that contains repeated 

observations of traits on known individuals (Dingemanse et al., 2013; Wilson, 

2018). Variance among-individuals necessarily implies some degree of 

behavioural consistency by those individuals, and is often described in a 

standardised way by the repeatability (R). This is estimated as an intraclass 

correlation (Hayes et al., 1997) and can be interpreted as the proportion of 

phenotypic variation that is due to differences between individuals. Formally, 

repeatability is  

R = VI / VP (1) 

where VI is the variance among individuals and VP is the total phenotypic 

variance. The total phenotypic variance comprises  

VP = VI + VR (2) 
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where VR = the variance among observations within individuals (often referred to 

as residual variance). Behaviours having low within-individual variance relative to 

among-individual variance are more repeatable. In other words, when individuals 

behave consistently across observations (VR is low) and when those consistent 

behaviours differ between individuals (VI is high) then the behaviour will be highly 

repeatable. Estimates of repeatability are interesting in their own right, but  are 

also a frequent first step towards studying the genetic basis of behavioural 

variation as they set an upper bound to heritability (Dohm, 2002). Where pedigree 

or relatedness data are also available, among-individual variance can be further 

decomposed to estimate behavioural heritability (h2 ;Wilson et al., 2010). This is 

done by further partitioning the variance among individuals (VI) into variance that 

is explained by shared genetic information, known as additive genetic variance 

(VA), and variance that is due to non-genetic, permanent environment 

components (VPE): 

h2  = VA/VP = VA/ (VA + VPE + VR)  (3) 

In fact there are many specific statistical methods for estimating variance 

components and obtaining heritability estimates. However, unlike older methods 

such as parent-offspring regression, the ‘animal model’ (a form of linear mixed 

effect model) is able to (i) utilise observations made on individuals in any arbitrary 

pedigree structure, (ii) deal with unbalanced data sets and (iii) be readily 

extended to include statistical control for other non-genetic sources of similarity 

between relatives that could otherwise bias estimates of genetic variance (Lynch 

et al., 1996; Charmantier et al., 2013). Increasing application of animal model 

analyses in behavioural ecology has revealed low to moderate heritabilities are 

common for  personality traits (Van Oers et al., 2005; Dingemanse et al., 2009; 

Niemelä et al., 2013; Prentice, Houslay, et al., 2020).  However rather few studies 
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have so far estimated genetic contributions to among-individual variation in 

animal cognitive traits (but see Hopkins et al., 2014; Langley et al., 2020; Sorato 

et al., 2018; Vardi et al., 2020).  

For a single trait, under (directional) selection, the rate at which the trait 

evolves is predicted as the product of h2 and the selection differential S (which 

provides a measure of how strong selection is (Falconer et al., 1996)). However, 

as the above discussion of trade-offs makes clear, natural selection rarely 

operates on single traits in isolation (Roff, 2002). If it is the multivariate phenotype 

as a whole that determines fitness, and if traits under selection are correlated with 

each other, then the rate and direction of evolutionary change will depend on the 

genetic (co)variance matrix (G), which provides a multivariate analogue of the 

single-trait additive genetic variance VA. For a multivariate phenotype, adaptive 

potential and evolutionary constraint arise from the alignment (or lack thereof) 

between G and the vector of selection β (Lande, 1979; Jones et al., 2004; Walsh 

et al., 2009), where β is the direction of change in multi-trait space that would 

maximise increase in mean fitness.  

Considering a multivariate phenotype gives a much broader and realistic 

view of how traits are likely to respond to selection and may show ways through 

which genetic and phenotypic variation in behaviour can be maintained (Wolf et 

al., 2012). However estimating G is very challenging, especially for cognitive and 

personality traits. If data requirements are already high for quantifying among-

individual variance in single cognitive traits, then they become exponentially more 

so when the target is a multivariate phenotype and among-individual variation is 

to be partitioned further.  Moreover pedigree and/or relatedness information must 

be obtained meaning either use of breeding experiments or molecular/genomic 

pedigree analysis techniques (Wilson et al., 2010). A partial solution may lie in 
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Cheverud’s conjecture that patterns of phenotypic variance and covariance could 

be suitable proxies for the underlying genetic architecture (Cheverud, 1988; Roff, 

1996). Accepting this view uncritically implies that the (co)variance structure of 

the phenotypic matrix P, which can be readily estimated in a set of individuals 

observed once only for each of the target traits, can yield robust insights into the 

structure of G. Although Cheverud’s conjecture is (arguably) implicit in most 

behavioural ecological studies, most quantitative geneticist would view this with 

scepticism for multivariate behavioural phenotypes characterised by high levels 

of within-individual variation. However, just as R sets an upper limit for h2 in the 

univariate case, estimating the among-individual (co)variance matrix (ID) 

provides a useful intermediate step here (Brommer, 2013). Since genes 

contribute to among-individual differences, G is a component of ID and ID is a 

component of P. Thus, all else being equal the among-individual covariance 

matrix will be a better proxy of the genetic matrix than the total phenotypic matrix. 

(Dochtermann, 2011; Brommer, 2013) 

 

Study species – The Trinidadian guppy ( Poecilia reticulata) 

In this thesis, I take a largely quantitative genetics approach to understanding 

variation in cognition and personality, relationships between them and genetic 

underpinnings. I use the Trinidadian guppy (Poecilia reticulata) as my model 

species throughout the thesis to explore these themes.  

The guppy is a small, shoaling species from the family Poeciliidae that 

generally inhabits freshwater streams found along the coastal fringes of mainland 

South America (Magurran, 2005). P reticulata is sexually dimorphic for size and 

growth. Once mature, male growth plateaus with priority switching to 
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reproduction. Conversely, female guppies exhibit indeterminate growth after 

maturity in order to maximise fecundity. Males are brightly coloured relative to 

females, and male colouration is an important factor in mating success (Williams, 

1967; Magurran et al., 1990; Nicoletto, 1993; Endler et al., 1995). This species 

has a promiscuous mating system where females mate with multiple males 

(Evans et al., 2001). The guppy, like most poeciliids is a livebearer, with mature 

males using a gonopodium (a modified anal fin) for insemination and internal 

fertilisation (Wourms, 1981). Females provision the eggs prior to fertilisation and 

retain them in the ovary cavity until the hatching and ‘birth’ of offspring (Magurran, 

2005). Broods range in size from 1 to 25 fry, with the average brood at around 15 

fry. Once released, fry are fully independent and capable of feeding with no active 

parental care exhibited by either parent. 

Guppies live in shoals primarily to reduce predation risk (and potentially 

increasing foraging efficiency). There is a high frequency of fission-fusion events, 

with males being the more mobile sex (Croft, et al., 2003), resulting in a dynamic 

social environments. Males maximise fitness by moving between multiple shoals 

of females, increasing potential mating encounters (Griffiths et al., 1998; Kelley 

et al., 1999; Croft, Albanese, et al., 2003; Croft, Arrowsmith, et al., 2003). In 

females, fitness depends on longevity and fecundity rather than mating 

opportunities (MaGurran et al., 1994). Therefore, females tend to exhibit stronger 

shoaling tendencies and higher shoal fidelity to reduce mortality from predation 

(Griffiths et al., 1998; Magurran et al., 2000; Magurran, 2005; Richards et al., 

2010). 

The guppy was chosen as a model system for several reasons. First, this 

species has recently become popular as a model for investigating animal 

cognition (Kotrschal et al., 2015; Lucon-Xiccato & Bisazza, 2016; Fong et al., 
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2019). This means I have been able to build upon the work of others and take 

advantage of published cognitive testing assay designs. For instance, guppies, 

have recently been used to investigate learning colour discriminations (Trompf et 

al., 2014; Buechel et al., 2018), numerical discrimination (Kotrschal et al., 2013; 

Lucon-Xiccato & Bisazza, 2017b), reversal learning (Buechel et al., 2018), spatial 

learning (Lucon-Xiccato & Bisazza, 2017c; Prentice, Mnatzaganian, et al., 2020) 

and  inhibitory control (e.g. Lucon-Xiccato & Bisazza, 2016). Second, as an 

important model system in evolutionary ecology generally, methods for assaying 

among-individual ‘personality’ variation  are also well established  (Burns et al., 

2008; White, 2016). One of the most common testing paradigms for quantifying 

personality is the open field trial (OFT), which provides a measure of exploratory 

behaviour and/or boldness in a novel, and somewhat risky environment (Burns 

et al., 2008). Risk is perceived as guppies are a shoaling species and isolation 

without cover leaves an individual open to increased predation risk.   

In fact previous studies on the wild-derived captive population of guppies 

used throughout my thesis have already highlighted the utility of the OFT for 

assaying personality variation associated with the behavioural stress response 

(see e.g., Prentice, Houslay, et al., 2020; Prentice, Mnatzaganian, et al., 2020). 

Observed behaviours expressed in the OFT are both repeatable and plastic with 

respect to experimentally-manipulated stressor severity (specifically perceived 

predation risk) (Houslay et al., 2018). We also know from pedigree-based 

quantitative genetic studies that individual (mean) behaviours and their 

predictability (defined as within-individual variance) are heritable (White & Wilson, 

2019; White, Houslay, et al., 2019; Prentice, 2020).   

Finally, there are pragmatic reasons for the use of guppies as a model 

system. They are easily maintained in a laboratory environment and it is possible 
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to breed large numbers over a relatively short space of time. Females are able to 

reproduce monthly, and can store sperm from a single mating for many months, 

which makes then highly fecund. This coupled with the (relative) ease with which 

behavioural data can be collected means this species is an ideal model, not just 

for investigating the structure of cognitive and personality (co)variation among 

individuals, but also among genotypes using pedigree-based quantitative genetic 

methods. 

 

Overview of thesis structure 

This thesis aims to investigate the causes of variation in cognition and personality 

in Poecilia reticulata, and to determine whether there are relationship between 

these two aspects of phenotype. I will test hypotheses about the mechanisms 

that drive cognitive and behavioural variation at multiple hierarchical levels – 

among-individuals and among-genotypes. Throughout the thesis I advocate the 

use of multivariate modelling strategies for quantifying and testing hypotheses 

about both animal cognition and behaviour. These strategies are commonly used 

in quantitative genetics but are yet to be widely adopted by behavioural 

ecologists.  

Following this general introduction (Chapter 1 ), Chapters 2-5  describe a 

series of four empirical studies of guppy behaviour. In Chapter 2 , I begin my 

research by investigating among-individual variation in spatial learning, a 

cognitive domain assayed using a maze test. I ask whether individuals differ in 

spatial learning ability, as measured by improvement in performance time across 

repeated maze trials, but also test whether this itself is repeatable at the individual 

level across two different maze layouts. I also investigate whether variation in 
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performance is correlated with, and so potentially explained by, personality 

variation in the form of behavioural stress response assayed using open field 

trials.  

In Chapter 3 , I continue to explore the structure of cognition and 

personality differences at the among-individual level. Here I seek to do this in a 

more fully multivariate way, by estimating the ID matrix among traits used as 

proxies of cognitive performance across three domains; association learning in a 

colour discrimination task; motor cognition in a novel motor task and cognitive 

flexibility in a reversal learning task. I also include a measure of the personality 

trait of ‘boldness’. Broadly the aim is to test hypothesised relationships of 

cognitive performance across multiple domains, as well as to further scrutinise 

the links between cognition and personality. More specifically, I ask whether there 

is evidence of performance trade-offs among cognitive domains, or whether the 

structure of ID is more consistent with variation in an overall, domain-general 

cognitive performance trait (‘general intelligence’; Burkart et al., 2017; Galsworthy 

et al., 2005; Plomin & Spinath, 2002). Relatively few studies have characterised 

the among-individual covariance structure between cognitive domains, and 

support for an underlying general intelligence factor among non-human animals 

remains limited (but see Galsworthy et al., 2005; Hopkins et al., 2014; Arden et 

al., 2016). 

While Chapter 2  and 3 characterise among-individual variation only, in 

Chapters 4  and 5, I build on this to investigate the extent to which behavioural 

differences between fish may be explained by genetic factors. Chapter 4  does 

not directly address cognitive traits, but builds on previous findings showing 

heritable personality variation in (mean) behavioural stress-response in the same 

population of guppies (White, 2016; Houslay et al., 2019). In particular, using a 
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novel form of ‘double hierarchical’ model I test for among-individual and genetic 

variation in not just average (or individual) behaviour, but also in within-individual 

variation (otherwise known trait ‘predictability’). This utilised a set of fish produced 

from known crosses (such that pedigree was known) and subjected individuals 

to repeated OFT assays. The idea of investigating phenotypic ‘predictability’ is 

relatively new but has attracted increasing attention because, for instance two 

individuals may be equally ‘bold’ on average (as determined from the individual 

mean behaviour across multiple observations) but differ in how much variation 

they exhibit around their individual-level mean phenotypes. Emerging evidence 

from livestock genetics suggests differences in phenotypic predictability can be 

due to genetic factors. The evolutionary implications of this can be viewed from 

two perspectives. Firstly, if predictability is genetically variable, then selection on 

within-individual variation (e.g. as posited by ‘bet-hedging’ type models) could 

produce an evolutionary response. Secondly, genetic variance in predictability 

can also be understood as a form of cryptic genotype-by-environment interaction 

(GxE). In turn the presence of GxE has two biological interpretations that are 

equivalent (but not obviously so). GxE means that genetic variance for the 

behavioural phenotype is environmentally sensitive, but also that behavioural 

plasticity is heritable (Nussey et al., 2007). 

In Chapter 5 , I return to the central theme of cognitive variation in a study 

of inhibitory control. In this chapter, I repeatedly expose individuals to a ‘detour 

task’ to test for genetic variance in inhibitory control. I also test for genotype-by-

environment interactions (GxE) by testing related fish under alternative 

experimental treatments that differ in degree of available visual information (using 

transparent vs semi-transparent barriers in the detour task). The fact that 

cognition is defined in relation to acquiring, processing and using information in 
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the environment makes the possibility of GxE interactions very plausible and 

intuitive. However so far, few animal cognition studies have characterised the 

importance of GxE, and I aim to address this gap in our knowledge here. I then 

further seek to validate the assumption that the detour task measures variation in 

cognitive processes (specifically inhibitory control) that is distinct from among-

individual differences in behaviour (be that cognitive or non-cognitive behaviours) 

expressed during a period of training trials. In this study I used a set of offspring 

fish produced by setting up small breeding groups with several males and 

females in each. In order to apply quantitative genetic models it was therefore 

necessary to first resolve the pedigree structure. This was done using 

microsatellite genotyping coupled to molecular pedigree analysis. 

Finally, in Chapter 6  I present a short general discussion in which I 

summarise the main findings from each empirical chapter and end with some final 

thoughts on improvements and directions for future research in the field of 

cognitive evolution.  
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2 Chapter 2: Cognitive performance and stress respo nsiveness in the 
Trinidadian Guppy – a multivariate approach 

 

This paper is published as: Prentice, P.M ., Mnatzaganian, C., Houslay, T.M., 

Thornton, A. and Wilson, A.J., 2020. Cognitive performance and stress 

responsiveness in the Trinidadian Guppy – a multivariate approach. Biorxiv.Org. 

 

2.1 Abstract 
 

Among-individual variation in cognitive performance has been recently 

demonstrated across a range of animal taxa. While this variation is a prerequisite 

for contemporary natural selection, it is also true that selection does not act on 

traits in isolation. Thus, the extent to which cognitive traits covary with other 

aspects of phenotype (e.g. personality traits) is expected to be an important factor 

in shaping evolutionary dynamics. Here we adopt a multivariate approach to test 

for spatial learning ability in a captive population of male Trinidadian guppies 

(Poecilia reticulata), and ask whether differences in cognitive performance are 

associated with (repeatable) differences in stress response behaviour. We focus 

on stress response for two reasons. First, functional links between cognitive traits 

and ‘stress coping style’ have been hypothesised. Second, individual-level 

studies of cognitive performance typically rely on multiple testing paradigms that 

may themselves be a stressor. Thus, there is a risk that variation in stress 

responsiveness is itself a cause of apparent, but artefactual variance in cognitive 

ability. Using a set of fish exposed repeatedly to two distinct spatial learning tasks 

(maze layouts), and an acute stress response test (open field trial), we find 

differences among-individuals in task performance that are repeatable within- 

and across maze layouts. On average performance improves with experience in 
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the first maze, consistent with spatial learning, but not the second. In both mazes 

there is among-individual variation in the trajectory of mean performance with trial 

number suggesting individuals differing in ‘learning rate’. Acute stress response 

behaviour is repeatable but predicts neither average time to solve the maze nor 

learning rate. We thus find no support for among-individual correlation between 

acute stress response and cognitive performance. However, we highlight the 

possibility that cumulative, chronic stress effects may nonetheless cause 

observed declines in performance across repeats for some individuals (leading 

to lack of improvement in mean time to solve the second maze). If so, this may 

represent a pervasive but difficult challenge for our ability to robustly estimate 

learning rates in studies of animal cognition. 

 

 

2.2 Introduction 
 

Cognition is defined as the set of mechanisms by which animals acquire, process, 

store and use information from the environment (Healy et al., 2010; Shettleworth, 

2010b), and is vital for carrying out day-to-day behaviours needed for survival 

and reproduction. While differences in cognitive performance among-species 

have long been studied in comparative psychology (for a review see Healy 2019), 

a more recent focus in behavioural ecology has been the characterisation of 

among-individual variation within populations of non-human animals (Lucon-

Xiccato & Bisazza, 2017a; Ashton et al., 2018; Boogert et al., 2018). This among-

individual variation is interesting from an evolutionary perspective, as it is a pre-

requisite for natural selection and genetic variation – both of which are 

fundamental for adaptive evolution to occur (Wilson et al. 2010). However, 

selection does not act on traits in isolation. Functional links between variation in 
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cognitive performance and other aspects of behaviour (including, for example 

neophobia, boldness and stress responsiveness) have been hypothesised 

(Griffin et al. 2015; Medina-García et al. 2017; Quinn et al. 2012; Sweis et al. 

2013). Robustly testing these relationships is often challenging, requiring  

multivariate data collection and analyses to detect and describe patterns of 

variation between associated traits at the appropriate level (e.g., among-

individual and/or among genotype; Dingemanse & Dochtermann, 2013). 

Nonetheless, such efforts are important if we hope to understand the adaptive 

evolution of cognition in the context of the wider phenotype (Thornton et al., 

2015). Here we address this broad goal in the more specific context of testing 

hypothesised links between cognitive performance and a stress-response (Øverli 

et al., 2007; Gibelli et al., 2019) in Trinidadian guppies (Poecilia reticulata).  

Quantifying patterns of among-individual variation in cognitive traits is still 

in its infancy (Rowe et al., 2014; Thornton et al., 2014; Boogert et al., 2018), and 

empirical studies therefore remain somewhat limited (but see Ashton et al. 2018; 

Tyrone Lucon-Xiccato & Bisazza 2017; Niemelä et al. 2013 for examples).  

However it is now abundantly clear that populations typically harbour high levels 

of among-individual variation in behavioural traits more generally (Dingemanse 

et al., 2005). Individual differences in (mean) behaviours, commonly referred to 

as personality, can manifest as, for instance, variation in aggressiveness or  

sociability towards conspecifics, or differences in response when faced with 

predators or other sources of perceived risk (Bridger et al. 2015; Réale et al. 

2007). Since, strong directional or stabilising selection is usually predicted to 

erode variation (Roff, 2002), it is widely hypothesised that variation in personality 

traits is maintained by fitness trade-offs of some kind (Dingemanse et al., 2004; 

Quinn et al., 2016), among other mechanisms. For example, bolder individuals 
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may be better at acquiring resources to invest in life history traits (e.g., growth, 

reproduction) but their behaviour may also expose them to greater predation risk. 

In this way personalities can themselves be viewed as components of life history 

strategies, leading to an expectation that they will be correlated with – and trade-

off against -  other aspects of physiological, reproductive, and behavioural 

phenotype (Réale et al. 2010; Sih, Bell, & Johnson 2004; Wolf et al. 2007). 

Certainly, arguments that trade-offs can maintain variation in cognitive 

performance parallel explanations made for widespread presence of personality.  

These could be trade-offs among cognitive domains, or between, for instance an 

overall cognitive performance trait (‘general intelligence’ (Plomin et al., 2002; 

Galsworthy et al., 2005; Burkart et al., 2017)) or other aspects of phenotype. 

Variation in an animal’s stress physiology may provide one putative source 

of among-individual differences in both personality traits and cognitive 

performance (Raoult et al., 2017; Gibelli et al., 2019).  The widely used concept 

of stress coping style model predicts that individuals will vary - both behaviourally 

and physiologically- along a proactive/ reactive continuum (Coppens et al., 2010; 

Koolhaas et al., 1999; Sih, Bell, & Johnson 2004).  As originally posited, the 

model predicts proactive coping styles will express more ‘fight or flight’ type 

behavioural responses induced by adrenaline-response to stressors. At the other 

extreme, reactive coping styles will be more behaviourally ‘passive’ (e.g., freezing 

or hiding) and show high HPA(I) activity leading to cortisol response (Øverli et al., 

2007; Carere et al., 2014). Various links to cognitive performance variation have 

been suggested. For instance, proactive styles are broadly thought to be 

associated with ‘bold’, exploratory, risk-taking personalities that may present with 

more opportunities to learn initially. Conversely, greater behavioural flexibility 

associated with reactive coping styles (Coppens et al., 2010) may be important 
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for tasks such as reversal learning, that require an ability to acquire (and use) 

new information under changing environmental conditions  (Koolhaas et al., 

1999; Sih et al., 2012; Griffin et al., 2015). More generally, sensitivity to external 

stressors or challenges could impact performance in cognitive assays if more 

stressed individuals are simply more or less motivated and/or are focused on 

sources of risk rather than environmental cues of rewards.  

Although hypothesised links between stress responsiveness (or coping 

style) and cognitive performance seem intuitive, empirical evidence is still limited 

to a small number of studies (Lukowiak et al., 2014; Mesquita et al., 2015; Bebus 

et al., 2016; Bensky et al., 2017; Brust et al., 2017; Mazza et al., 2018). There 

are also contrasting studies in which either a weak or no relationship was 

detected (Cole et al., 2011; Carazo et al., 2014; Guillette et al., 2015). It is also 

possible that relationships are variable across different aspects of cognition. For 

instance in sailfin mollies (Poecilia latipinna), individual fish displaying less 

thigmotaxic behaviour (an anxiety related behaviour in fish) performed better in a 

discrimination learning task than highly anxious individuals, whereas the opposite 

was found in a reversal learning task (Gibelli et al., 2019).  Clearly, there is need 

for more empirical work before a clear picture of the complex relationship 

between variation in cognitive performance and stress responsiveness/coping 

style is understood. Here we address this broad goal by testing the hypothesis 

that individual differences in cognitive performance and stress responsiveness 

are correlated in male Trinidadian guppies (Poecilia reticulata).  

The guppy is a freshwater poeciliid fish that is widely used as a model in 

behavioural and evolutionary ecology. Methods for assaying among-individual 

‘personality’ variation  are well established in this species generally (Burns et al., 

2008; S. J. White et al., 2016), while guppies have been used in cognitive studies 
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that target learning colour discriminations (Trompf et al., 2014; Buechel et al., 

2018), numerical discriminations (Kotrschal et al., 2013; Lucon-Xiccato & 

Bisazza, 2017b), reversal learning (Buechel 2018), spatial learning (Lucon-

Xiccato & Bisazza, 2017c; Prentice, Mnatzaganian, et al., 2020) and  inhibitory 

control (e.g. Lucon-Xiccato & Bisazza, 2016). Here, we investigate the 

relationship between behavioural stress response and performance in a spatial 

learning task in which male guppies repeatedly navigated a maze to access 

females as a reward. The cognitive task was repeated using a second, differently 

structured maze in order that we could assess not just variation in learning within 

a single spatial context, but also ask whether – for instance – individuals 

displaying greater performance in trials using the first maze subsequently also 

performed better in the second. In the wild, male guppies usually utilize large 

home ranges during mate search and foraging (Croft et al. 2003), and as such 

spatial learning is expected to be an ecologically relevant trait (Brown et al., 

2005). For our measure of stress responsiveness, we utilise ‘Open Field Trials’ 

(OFT). Widely used across species as a paradigm for characterising behavioural 

differences related to exploration, activity, and ‘shy-bold’ type variation (Gosling, 

2001; Bell et al., 2009), previous studies on this captive population  of guppies 

have highlighted its utility for assaying behavioural stress response (see e.g., 

Prentice et al 2020). Observed behaviours expressed in the OFT are both 

repeatable and plastic with respect to experimentally-manipulated stressor 

severity (specifically perceived predation risk) (Houslay et al., 2018). We also 

know from pedigree-based quantitative genetic studies that individual (mean) 

behaviours and their predictability (defined as within-individual variance) are 

heritable (White, 2019, 2019; Prentice, 2020). Furthermore, there is some 

evidence of genetic integration between OFT behaviour and cortisol expression, 
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strengthening the view that the OFT provides an appropriate assay of behavioural 

stress response; (Houslay et al., 2019).  

In what follows we: i) test for evidence of learning in naïve guppies 

repeatedly exposed to a spatial learning task (maze),  ii) ask whether individuals 

differ in cognitive performance across repeated trials and if so; iii) whether 

performance in the first maze predicts performance in a second spatial context 

(i.e. reconfigured maze). We predict that time to complete the mazes (our proxy 

of cognitive performance) will, on average, improve with experience consistent 

with spatial “learning”, but that individuals will consistently differ in cognitive 

performance within each maze. We also predict that individual performance in 

the first maze will be positively correlated with performance in the second, 

consistent with stable differences in cognitive ability, although we acknowledge 

proactive interference (difficulty inhibiting memory or previously learnt 

associations; Shettleworth, 2009a) may affect performance in the second maze. 

Finally, iv) we test the hypothesis that individual differences in cognitive 

performance will be associated with differences in stress responsiveness. 

Although empirical evidence suggests potential relationships in both directions 

between stress responsiveness and cognitive performance, withthe current 

absence of specific models, we make no a priori predictions about the sign of the 

relationship here. 

 

2.3 Methods 
 

Study site and housing 

 

All behavioural assays were carried out on guppies from a captive population 

(derived from wild fish collected in the Aripo River, Trinidad in 2008) housed at 



38 

 

the University of Exeter’s Penryn campus. Adult males (n = 64) were randomly 

sampled from the stock population, and housed in groups of 8 in separate home 

tanks (15 l, 18.5 × 37 × 22 cm) maintained at 23–24°C on a 12:12 light/dark cycle. 

The tanks shared a recirculating sump water supply which underwent a 25% 

water change once per week. All fish were fed to satiation twice daily on 

commercial flake food and live brine shrimp (Artemia salina) to control as much 

as possible for energetic and nutritional states prior to testing. We elected to focus 

on males only for several reasons. First, pilot studies showed a high occurrence 

of ‘freezing’ behaviour in females (relative to males) when introduced to the maze. 

While freezing can be a component of the behavioural stress response (Houslay 

et al., 2018), we considered that frequent occurrence during the cognitive assay 

would complicate data interpretation. Second, males show consistent sexual 

reproductive motivation towards females (Burns et al., 2008), enabling the use of 

females as a ‘reward’ for males solving the maze (Kotrschal et al., 2015).  Third, 

male guppies exhibit distinctive markings and colouration on body and fins. By 

recording and sketching these for each fish we were able identify individuals 

within groups without the need to subject individuals to invasive tagging. 

 

Ethics 

 

This work was conducted under the auspices of the Animals (Scientific 

Procedures Act) out with approval of the University of Exeter research ethics 

committee, under licence from the Home Office (UK) (Licence Number 

PPL30/3256).  Experimental procedures and behavioural assays were developed 

in accordance with the principles of the three Rs and ASAB guidelines (Buchanan 

et al., 2020) for use of animals. All periods of handling and emersion were kept 
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to a minimum and only fish deemed healthy and exhibiting normal behaviour were 

used in trials. At the end of the experiment, fish were returned to a designated 

‘retirement’ tank (containing females as well as males) and not used in any further 

experiments.  

 

Overview of behavioural testing scheme 

 

We used a repeated measures approach to test for among-individual 

(co)variation in spatial learning performance and stress responsiveness. Spatial 

learning was first assessed by repeatedly trialling individuals in a maze apparatus 

(Maze A, Figure 2.1). Each individual fish was tested once per day for 11 

consecutive days with reduction in time to complete the maze interpreted as 

‘learning’. This is consistent with previous studies using either time to complete 

an objective or to perform a particular task to investigate variation in cognitive 

performance among-individuals (Guillette et al., 2015; Lucon-Xiccato & Bisazza, 

2016; Mazza et al., 2018; Zidar et al., 2018). We acknowledge that this 

interpretation strictly requires the implicit assumption that the contribution of any 

other factors to among-individual variation (e.g., motivation, energetic state, 

experience previous to the experiment; Rowe & Healy 2014) is negligible relative 

to differential cognitive performance. We attempted to mitigate against other 

sources of among-individual variation as far as possible using standardised 

housing and husbandry conditions. Following completion of spatial learning trials 

using Maze A, individuals were tested for stress responsiveness three times each 

over a three-week period using Open Field Trials (OFT) with a mean (range) of 4 

(1-5) days between successive trials. Finally, fish were retested in a second maze 

(Maze B) with a different layout, and repeat trials conducted (as before) one per 
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day for 11 consecutive days. Thus, in total, the design called for all individuals to 

complete 22 spatial learning trials, 11 on each of two different maze layouts 

(distributed across two different mazes) and three OFT over a total testing period 

of 43 days.  Note that the sample size declined slightly across the experiment as 

(i) a few mortalities occurred naturally within the testing period and, (ii) we 

proactively ‘retired’ any fish not deemed to be feeding well and behaving normally 

in their home tanks as a precaution against cumulative adverse effects. Thus 63 

fish experienced Maze A, which declined to n=60 at trial 11 and OFT testing. Five 

fish were then removed prior to experiencing Maze B (n= 55 at trial 1 and n=53 

at trial 11). 

 

Spatial Learning Trials 

 

In order to facilitate more rapid data collection, a single aquarium (25 x 45 x 25cm) 

was divided into two, with each half containing an identical version of maze A 

(A1, A2). Two replicates of maze B were similarly constructed (Figure 2.1). This 

allowed two fish to be tested concurrently during trials. Each maze consisted of 

6 opaque Perspex panels (8 cm), spaced 5cm apart (Figure 2.1). A visually 

transparent perforated panel at one end of each maze was used to separate a 

small holding area (12.5 x 10 x 25 cm) contain two adult females selected 

randomly from stock. During trials the experimental maze tanks were lit from 

below by one fluorescent lamp and filled to a depth of 8 cm with room temperature 

water (approx. 23-24 °C). The water was taken from the same recirculating 

system used to house the male groups and was changed between each housing 

group (i.e. after every 4 runs with two fish trialled per run). Stimulus females were 

also changed at the same time. 
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At each trial, two males were individually netted from their home tank and 

quickly identified from natural markings. Each was randomly allocated to one of 

the two maze replicates and carefully placed within a perforated plastic tube in 

the ‘start’ zone (Figure 2.1). They were given 60 s to acclimate before the plastic 

tubes were removed. A Sunkwang C160 video camera mounted above the tank 

allowed the fish to be observed without disturbance. Tracking software 

(http://www.biobserve.com)  was then used to determine the start latency as the 

(post-acclimation) time taken before a fish started the maze by leaving the ‘start’ 

zone, and maze time as the latency from starting to completing the maze (with 

completion defined as reaching the ‘end’ zone; Figure 2.1). On reaching the ‘end’ 

zone individuals were given 60 s undisturbed visual access to the females before 

an opaque plastic sheet was inserted to obstruct females from view.  Following 

the 60 s reward period, fish were netted and returned to the home tank. To ensure 

standardized exposure to the reward stimulus, individuals that did not complete 

the maze within 480 s post-acclimation period (irrespective of whether they had 

started) were gently guided through the maze to the end zone using a net behind 

them and then experienced 60 s visual access to the females.  Following the 60 

s reward period, fish were netted and returned to the home tank. These fish were 

assigned a right censored value of 480 second for maze time. 

 

Open Field Trial (OFT) 

 

OFTs to characterise stress responsiveness closely followed the protocol 

described in White et al. (2016). For each trial, a single individual was netted from 

the home tank, quickly identified and introduced gently into the centre of an open 

arena (a 30 × 20 cm tank filled to 5 cm water placed on a lightbox). A cardboard 
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screen was around the tank prevented visual disturbance and a Sunkwang C160 

video camera mounted above the arena again allowed movement to be tracked. 

Following a 30 s acclimation period, individuals’ movements were tracked for 4 

minutes and 30 s to determine track length (total distance swum (cm)) and area 

covered (percent of tank area covered). These two observed behaviours which 

are known to be repeatable and heritable in this population (Houslay, 2018; 

White, 2019, 2019), were used to calculate the derived trait of relative area 

following Houslay et al. (2019). Relative area is the observed area covered in the 

trial minus the expected area covered under a simulated ‘random swim’ of length 

equal to the observed track length (see Houslay et al. (2019) for further detail on 

simulations).  Low values of relative area result from a ‘flight type’ behavioural 

stress response in which individuals swim rapidly (yielding a high track length) 

but exhibit thigmotaxis (staying close to the walls and seeking escape from the 

arena) and thus cover relatively little of the arena area. In contrast low values of 

relative area correspond to efficient exploration (i.e. a high proportion of the arena 

covered given distance swum), by putatively less stressed fish.  

 

Statistical Analysis 

 

Data from both types of behavioural assay were analysed using univariate and 

multivariate linear mixed effect models fitted by REML (restricted maximum 

likelihood) using ASReml within R (http://www.vsni.com) (Gilmour et al., 2009). 

By including individual identity as a random effect in these models we test for and 

characterise among-individual (co)variation. Traits were mean centred and 

scaled to standard deviation units to ease interpretation of results and facilitate 
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convergence of multivariate models. For maze time we did this using the overall 

mean and standard deviation of observations from both mazes in order to 

preserve any meaningful differences in performance between A and B.  With traits 

in standard deviation units (sdu), estimates of among-individual variance (Vind) 

can be interpreted as repeatabilities (i.e. proportion of the observed phenotypic 

variance explained by among-individual differences). However, we also calculate 

estimates of adjusted repeatability (R), the  proportion of phenotypic variance 

explained by consistent among-individual differences, after controlling for fixed 

effects on the mean (Nakagawa et al., 2010). Thus R=Vind/(Vind+VR) where VR is 

the residual (within-individual) variance estimated from each model. The 

significance of random effects was tested using likelihood ratio tests (LRT), while 

fixed effects (included in the various models as described below) were tested 

using conditional F-statistics. All models assumed Gaussian error structures, an 

assumption that was deemed acceptable based on visual inspection of the model 

residuals. 

Univariate analyses of maze performance and spatial learning  

 

We use maze time as our observed measure of performance. Here we describe 

in full the univariate analysis of data collected in maze A (subsequently maze 

timeA). Identical procedures were then applied to data from maze B. First, we 

visualised the distribution of maze timeA across repeat using box plots and also 

plotted the proportion of mazes completed as a function of repeat to see if a 

pattern of increasing average performance (i.e. decreasing maze time and/or 

increasing proportion of successful completion) was immediately apparent. Next 

a series of three nested models with identical fixed effects but differing random 

effect structure were fitted to the centred and scaled maze timeA data.  All models 
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included a fixed effect of trial number (the cumulative number of trials 

experienced by an individual, treated as a continuous variable), allowing us to 

test for improvement in the mean (indicative of learning). Additional fixed effects 

were included as statistical controls for potential sources of variance not relevant 

to hypotheses being tested here. These included time of day (in minutes after 9 

am), maze replicate (as a factor denoting position 1 or 2 in maze tank), and order 

caught from the home tank. The latter was to account for any cumulative 

disturbance effect of removing fish sequentially from the home tank and/or build-

up of chemical cues in the maze between water changes.  

The first model contained no random effects, while the second contained 

a random intercept of individual identity. Likelihood ratio test (LRT) comparison 

of these models was conducted to test the hypothesis that individuals differ in 

their average performance (maze timeA) across the 11 repeats, and we estimated 

the (adjusted) repeatability of performance under the second model. For the LRT 

we assume twice the difference in model log-likelihoods is distributed as a 50:50 

mix of Χ21 and Χ20 following Stram & Lee (1994). The third model was a first order 

random regression (i.e. a random slope and intercept model) in which each 

individual’s deviation from the fixed effect mean maze time can change as a linear 

function of trial number (1-11). Variation in random slopes means that there is 

among-individual variation around the mean maze timeA - trial number 

relationship. Thus, LRT comparison of the second and third models thus provides 

a test for among-individual variation in learning rate. This comparison is 

conducted assuming the test statistics is distributed as Χ22 since the third model 

has two extra parameters (a slope variance and a slope-intercept covariance). 

Note that among-individual variance in slopes cannot be scaled to a repeatability 

as within individual variance in slope is not estimable (using data from a single 
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maze; see below). Nor is its magnitude directly comparable to random intercept 

variance since slopes and intercepts are in different units. However, under the 

third model, among-individual variance in learning (slope) means that among-

individual variance maze timeA changes with trial number (Supplementary Info 

Figure S2.1, Appendix 2). Thus, to understand the biological effect size of 

estimated variance in slopes, we use the third model to predict among-individual 

variance (Vind) and adjusted repeatability (R) of maze timeA at both initial (trial 1) 

and final (trial 11) performance (following e.g., Nussey et al. (2007); see 

Supplemental Information Table S2.3 for didactic explanation and corresponding 

code). We note that among-individual variation at final performance has been 

used to infer differences in cognitive ability in studies adopting similar repeated 

measures designs (e.g. Langley et al. 2020) and so also has a useful biological 

interpretation here. 

Univariate analysis of relative area 

 

To verify our expectation that individuals would show consistent differences in 

stress responsiveness, we fit a simple random intercepts model to (scaled and 

centred) relative area. This model included fixed effects of trial number (1-3), and 

time of day (in minutes after 9 am in which each trial took place) as well as a 

random effect of individual identity. Adjusted repeatability (R) of relative area was 

calculated and the significance of among individual variance tested by LRT 

comparison to a simplified model with no random effect (assuming the test 

statistic was distributed as a 50:50 mix of Χ21 and Χ20 as above). 

Multivariate modelling of Maze A, Maze B and OFT data combined 

 

Finally, to test the predicted correlation structure between cognitive performance 
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and stress responsiveness, we formulated a trivariate mixed model in which the 

three response variables were maze timeA, maze timeB and relative area. Fixed 

effects were exactly as described above on all three traits.  Random effects were 

also as described above (i.e. individual level random intercepts and slopes for 

maze timeA and maze timeB but a random intercept only for relative area) but the 

multivariate formulation allowed us to estimate the full 5x5 among-individual 

covariance matrix (ID) among these effects. Since each observation of a fish 

provided data on a single trait only, residual covariances among traits were fixed 

to zero.  After fitting the model, we compared it to a simplified fit in which all 

among-trait covariance elements in ID were constrained to zero. This provides a 

global test of individual covariance between traits. We then scaled estimated 

pairwise covariances in ID to their corresponding correlations for easier 

interpretation (noting for a pair of effects x,y the correlation rxy = COVxy/(VxVy)0.5.  

This allowed us to scrutinise the correlation structure between stress 

responsiveness and cognitive performance in both mazes A and B, using both 

final performance and learning rate (i.e. random regression slope) as measures 

of cognition. Additionally, it allowed us to estimate the individual level correlation 

in cognitive performance measures (final maze time performance, learning) 

across mazes. These are not strictly equivalent to individual repeatabilities of 

cognitive performance measures across mazes (as opposed to individual 

repeatability of maze time across trials within mazes) because estimates could 

be negative. However, they can be readily interpreted in those terms; a strong 

positive correlation between, for example, individual learning in maze A and maze 

B means this latent variable is highly repeatable across mazes. Conversely, a 

negative correlation means that individuals learning faster in maze A tend to learn 

more slowly in maze B (and vice versa).  
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2.4 Results  
 

Performance in Maze A 

 

Plots of the raw data suggest that average time to complete Maze A decreases 

across trials, and that the success rate (proportion of individuals completing the 

tasks within the 480 s) tends to increase (Figure 2.2). These patterns are 

qualitatively consistent with expectations if (average) performance improves as a 

consequence of learning. The mixed model analysis of maze timeA confirms 

statistical support for this with a significant negative effect of trial repeat number 

(based on the full random slope and intercept model; coefficient = -0.043 (0.014) 

sdu, F1,59.8 = 10.140, P = 0.003. This effect size equates to an estimated decrease 

of 91.9 seconds in average maze time over the 11 trials.  Other fixed effects of 

order caught and maze position were non-significant (see Supplementary 

Information Table S2.1).  Likelihood ratio tests (LRT) confirmed among-individual 

variation in maze timeA (comparison of null and random intercept models; χ20,1 = 

155, P < 0.001). Under the random intercept model, repeatability of maze timeA 

conditional on fixed effects was estimated as RA = 0.343 (0.05).  

LRT comparison of the random intercept and first order random regression 

models showed the latter to be a significantly better fit to the data (χ22 = 25.0, P 

< 0.001). This comparison provides evidence for among-individual variance in the 

rate of change of maze timeA across repeated trials (interpretable, with caveats 

discussed below, as variation in rate of learning). Among-individual variance in 

intercepts (int) and slope (slp) were estimated as ������� = 0.394 (0.102) and 

�����	
 = 0.006 (0.002) respectively while the among-individual intercept –slope 

correlation was estimated as (�������,����	
= - 0.489 (0.147)). Biological 
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interpretation of these parameters is not completely straightforward. Given the 

scaling of trial number in the random effect structure of the model (see 

Supplementary Information Table S2.3) ������� is interpretable as among 

individual variance in maze timeA at first trial. While slope variance is in different 

units and thus not of directly comparable magnitude, variation in slopes actually 

means that among-individual variance in the observed trait (Vind for maze timeA) 

changes with trial repeat number. Here the random regression model predicts 

values of ������ = 0.394 (0.102), and  ������� = 0.542 (0.131)) at first and last trial 

in maze A respectively, suggesting more among individual variation in 

performance at the end of trials than at the beginning. The corresponding 

predictions of repeatability at first and last observed trial are RA1 = 0.431 (0.070) 

and RA11 = 0.511 (0.067). The negative intercept-slope correlation (�����.���,�.�	
= -

0.489 (0.1 47), χ22 = 6.182, P = 0.045), means that individuals with higher 

intercepts (high maze timeA at trial 1, tended to have lower slopes (i.e., more 

negative, indicative of faster learning). These patterns are represented visually in 

Figure 2.3, which shows the individual reaction norms predicted from the best 

linear unbiased predictions (BLUPs) of random intercept and slope for each fish 

(following e.g., Houslay & Wilson (2017)).  

Performance in Maze B 

 

In contrast to Maze A, plotting maze timeB data reveals no clear increase in 

performance (i.e. decrease in time) across trials. Furthermore, there is actually a 

trend towards fewer individuals successfully completing the task (Figure 2.2). 

However, we note that if the censored data points are excluded to leave only 

successfully complete trials, there is a decreasing trend in maze timeB with trial 

number. The mixed model analysis (which uses data from all trials) confirms the 
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lack of improvement in the mean maze timeB, with a (non-significant) positive 

estimate of the trial repeat number effect (from random slope and intercept model; 

coefficient =0.014 (0.014) ,  ��,���.  = 1.193, ! = 0.301). Effects of order caught 

and maze position were not significant (Supplementary Information Table S2.1). 

Likelihood ratio tests (LRT) between the univariate random intercept model and 

the null model with no random effect, shows the presence of significant among-

individual variation for maze timeB (χ20,1 = 182.041 P < 0.001), with a 

corresponding repeatability estimate of RB = 0.401 (0.055). The random slope 

model was a significantly better fit again (χ22 = 9.995 P = 0.007) providing 

evidence of among-individual variation in the performance-trial number 

relationship. Among-individual variance in intercepts (int) and slope (slp) were 

estimated as 0.472 (0.130) and 0.004 (0.002) respectively. These estimates 

mean predicted values of ����"� = 0.472 (0.130) and ����"�� = 0.635 (0.162)) 

which correspond to repeatabilities of RB1 = 0.439 (0.074)  and RB11 = 0.512 

(0.071). Given that there is no (significant) effect of trial number on mean maze 

timeB the presence of among-individual variance in slope suggest that some 

individuals are improving (consistent with learning) while for others performance 

is tending to get worse across repeats in Maze B. Furthermore, the among-

individual intercept –slope correlation was non-significant as (����".���,".�	
= -0.302 

(0.214), χ22 = 1.476, P = 0.478). The predicted patterns are again represented 

visually by plotting the individual reaction norms (Figure 2.3).  

Among-individual differences in OFT behaviour 

 

We found evidence of significant among-individual variation in relative area, 

#�$%$&'&()*)'+(,)'ℎ ./), 0 = 0.465 (0.089), 45,� = 20.421, ! < 0.0017. This 

replicates previous findings in the same population (Prentice, Houslay, et al., 
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2020) though the current estimate of repeatability is somewhat higher, likely due 

to differences in study design (e.g. the current study used a shorter inter-

observation interval and was limited to males only). Fixed effects from the OFT 

behaviour models are presented in the Supplementary Information Table S2.2 for 

completeness, although are not directly relevant to our hypotheses in this study.   

Multivariate model 

 

The full multivariate model (ID) of maze timeA, maze timeB and relative area 

provides evidence of some significant among-individual covariance structure 

between observed traits (comparison of the full model to one in which all among-

individual between trait covariances are fixed to zero; χ28 = 44.094, P < 0.001). 

Examination of the estimated covariances and correlations (Table 2.1) suggests 

this result is largely driven by a strong positive correlation between the individual 

intercepts for maze timeA and maze timeB 8�����.���,".��� = 0.686 (0.135)9. In other 

words performance at first trial is positively correlated at the individual level 

across mazes (since �����.���,".���= ������,"�). Using the multivariate random 

regression model to predict the corresponding correlation at final trial (i.e. trial 

11), performances across mazes yields an estimate (SE) of  �������,"�� =

0.602 (0.131). Thus, our results suggest strong positive among-individual 

correlation of performance as measured by maze time across trials and mazes. 

This is not only the case for first and last performance, but also for intermediate 

trial numbers as can be shown by transforming the ID estimate from the random 

regression model (as shown in Table 2.1) to a ‘character state’ correlation matrix 

among the full set of trials and maze specific observations, and relative area (see 

Supplementary Information Table S2.3 for this matrix and an explanation of the 
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transformation).  

However, returning to a reaction norm interpretation of results, we do not 

find evidence that reaction norm slopes (i.e. putative rates of learning) are 

correlated across mazes. While the multivariate model corroborates the presence 

of among-individual slope variance in mazes A and B, the correlation between 

them was only weakly positive and non-significant (�����.�	
,".�	
 = 0.216 (0.266); 

Table 2.1). Nor do we find statistical support for among-individual correlation 

between maze performance intercepts or slopes (for either maze) and relative 

area.  

2.5 Discussion 
 

Here, we show evidence of among-individual differences in performance – 

measured as time to complete a maze – in guppies exposed to a spatial learning 

test paradigm. Performance of individuals is repeatable both within, and across, 

the two spatial learning tasks (i.e. mazes) presented. However, the question of 

whether there is robust evidence of learning, on average or by individual fish, is 

somewhat less clear cut. In particular, in the first maze used (A) we find evidence 

of improvement in mean performance consistent with learning (on average). We 

also find among-individual variation in this rate of improvement, and so – 

putatively their rate of learning. However, the same fish exposed to maze B show 

(on average), no increase in performance across successive trials. We found 

among-individual correlation structure between performances (i.e. time in the 

maze) but not learning (i.e. rate of improvement) across the 2 spatial learning 

tasks. We did not however find any significant association between individual 

differences in maze performance (or learning) and repeatable stress 

responsiveness as measured in the open field trials.  In what follows we describe 
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each of these findings in more detail and discuss them in the wider context of the 

cognitive literature. 

The data from Maze A show that on average, time to complete the maze 

improves across repeated trials. This improvement suggests that spatial learning 

is occurring in the guppies, a finding consistent with previous studies of this 

species (Kotrschal et al., 2015; Lucon-Xiccato & Bisazza, 2017c; Fong et al., 

2019). We also see evidence of consistent, repeatable differences among-

individuals in performance in Maze A. This is shown in our reaction norm models 

as significant among-individual variance in intercept, which strictly represents 

performance at first trial. However, using among-individual variation in intercepts 

and slope to predict the corresponding variance at, and correlation among-, all 

trials (see Supplementary Information Table S2.3 for derivation and presentation 

of these estimates) reveals that in fact individual performance is positively 

correlated across all trials from 1 to 11. In simple terms, fish that are faster than 

average at completing Maze A in their first trial, tend to be faster than average 

across all subsequent trials too. Predicted repeatability of maze time is 

moderately high relative to many behavioural studies (e.g., 43% at trial 1, 51% at 

trial 11) but broadly comparable to estimates reported from similar assays 

designed to test cognitive variation; see Cauchoix et al., 2017) for an overview. 

We note that a contributing factor is likely to be short inter-observation period 

(here 24 hrs) typical of cognitive studies, since behavioural repeatabilities 

generally decline as this increases (Boulton et al., 2014). 

Accepting that improvement across repeated trials can be interpreted as 

learning (caveats to this are discussed below), our random regression model also 

provides evidence for among-individual variation in spatial learning in Maze A. 

Usefully, our modelling strategy allowed all observations to contribute to 
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estimating variance in the latent cognitive trait (learning) while avoiding 

statistically problematic ‘two-step’ analysis (Houslay et al., 2017). Although this 

strategy is now widely used in studies of behavioural plasticity, it has not yet been 

widely adopted by researchers focussing specifically on animal cognition (but see 

e.g., Langley et al., 2020). In addition to finding variance in slopes (learning), we 

estimated a negative among-individual intercept-slope correlation using the Maze 

A data; individuals with higher intercepts (i.e. maze time at first trial) tend to have 

lower (more negative) slopes. While it is therefore the case that those fish 

performing poorly initially exhibit higher rates of learning, it is also true - as noted 

above - that individual performance (maze time) is positively correlated across 

trials 1-11. These two results are entirely compatible because differences in 

learning (slope) are not sufficiently pronounced that initially poor performing (but 

fast learning) fish will generally ‘overtake’ initially good performing (but slow 

learning) individuals in expected time to complete the maze by trial 11. We cannot 

comment on what fitness consequences, if any, the variation detected here would 

have in wild fish. Nonetheless, this finding does highlight a danger with any 

common presumptions that cognitive abilities may be under positive selection. 

Here, if we assumed that fitness benefits were accrued by rapidly achieving a 

spatial task (e.g. locating a resource) regardless of mechanism, it would be the 

slower learners that were advantaged. Thus, while it is tempting to assume fast 

learners will achieve better outcomes, they may sometimes simply be those with 

the ‘most room for improvement’.  

Thus, findings from Maze A are consistent with our initial predictions that time 

to complete the maze would improve (on average) with experience due to spatial 

learning, but that individuals would also vary in both performance (maze time) 

and learning (rate of change in performance with experience). We also found that 
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individuals that were quicker (over all trials) to complete Maze A, tended to be 

quicker (over all trials) to complete Maze B. While this could be attributable to 

cognitive differences, there are certainly other possibilities. For instance more 

explorative and/or less neophobic individuals may be generally faster at solving 

tasks (Boogert et al., 2006; Bousquet et al., 2015; Zidar et al., 2018). Similarly 

there could be among-individual  variation in perceived cue salience (Meyer et 

al., 2012), individual physiology (Bókony et al., 2014), or motivation (van Horik et 

al., 2016). Regardless of these unknowns, an important difference between Maze 

A and Maze B was that we found no evidence of learning on average in the latter. 

In fact, for Maze B the mean maze time actually increased slightly, though not 

significantly, across trials. Despite this, patterns of individual variation around the 

mean trajectory were largely similar to those found in Maze A. Thus, there is 

among-individual variation in intercept (maze time at trial 1) and also in slope. 

Given that there is no (significant) change in mean performance, but there is 

significant variation in slopes, we conclude that some individuals are improving 

(learning) in Maze B while others are getting worse with experience. We also note 

that, as in Maze A, slope variance is present, but not sufficiently high to break 

down the positive correlation structure of individual performance (maze time) 

across trials 1-11. 

Although we did not formally test for differences in average slope between 

maze A and B, we note that approximate 95% confidence intervals do not overlap 

(estimated as coefficient±1.96SE). Several possibilities may explain the finding 

of spatial learning on average in A but not B. First, the results from maze A may 

be a false positive (Sterne et al., 2001; Fraser et al., 2018). However coinciding 

with previous studies which show this species is capable of learning an initial 

spatial learning task (Kotrschal et al., 2015; Lucon-Xiccato & Bisazza, 2017b; 
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Fong et al., 2019), we assume this unlikely. Second, it may be that the layout of 

maze B was more challenging to learn. This could certainly be true if, for instance 

learning to navigate a new maze following the acquisition of a previously learnt 

layout poses a more challenging task, for example due to proactive interference 

(difficulty inhibiting memory; Shettleworth, 2009a)). In this case the second maze 

may require more trials to detect improvement. There is some evidence for such 

effects in guppies. For instance, Lucon-Xiccato & Bisazza (2014) found that on 

average guppies took 14.61 trials to learn a reversed colour cue association, 

while Fong et al., (2019) found that on average, 15.30 trials were required for 

guppies to learn a reversed maze layout. A third possible explanation could be 

that, even if some individuals clearly did perform better over time, mean 

performance time is confounded by changes in motivation due to trial fatigue 

(reduced motivation) by the end of the trials in maze B.  

Another possible explanation is that learning does lead to gains in maze B 

performance, but that these are being masked at the level of the sample mean 

by concurrent changes in aspects of average individual ‘state’ that reduces 

cognitive performance and/or motivation. One plausible hypothesis is that chronic 

stress responses arise cumulatively from repeated capture and handling 

necessitated by the experimental design (Huntingford et al., 2006; Warren & 

Callaghan, 1976;  Wong et al., 2008). If so, this could negatively impact affected 

individuals and offset expected improvements in mean performance across trial 

number. Presently we cannot directly test this possibility, and variation in 

susceptibility to chronic stress response is not well understood. Nonetheless, our 

experiment does confirm repeatable among-individual variation (R= 

0.465 (0.089) in relative area covered in the OFT, used here as a measure of 

acute behavioural stress response. This  replicates previous results using 
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independent data sets of fish from the same captive population (White, 2016; 

Houslay, 2019; Prentice, 2020). Acute stressor exposure has been shown to 

affect cognitive performance in spatial learning tasks in both mammals and fish 

(Gaikwad et al., 2011; R. Y. Wong et al., 2019). At the individual level, there is 

also evidence to suggest short-term measures of acute stress responses can 

predict longer term organismal performance under chronic and/or repeated 

stressor exposure (Segerstrom et al., 2004; Salak-Johnson et al., 2007; Øverli et 

al., 2007).  

Here, our modelling approach did not provide compelling statistical support 

for strong relationships between relative area and either initial maze time, or 

learning (i.e. improvement in maze time) in either Maze A or B. However, the 

estimated correlation between relative area and maze time in Maze B actually 

rises to rind=0.336 (0.169) by trial 11 and thus approaching nominal significance 

at α=0.05 (assuming a lower 95% CI of rind - 1.96SE). To explore this further we 

conducted a post hoc likelihood ratio test comparison of a bivariate model of 

maze timeB and relative area; all effects as described for the trivariate model 

earlier) to the corresponding model fit where among-individual covariances 

between relative area and maze timeB (intercept and slope) were constrained to 

zero. The LRT did not provide evidence that the trivariate model was not a 

significantly better fit; χ22 = 3.098, P = 0.212). Thus, we do not find statistical 

support for the prediction, made under the stress coping style model, that (acute) 

stress responsiveness will (co)vary with cognitive performance (Coppens et al., 

2010; Sih et al., 2012; Griffin et al., 2015). Nonetheless, the possibility that 

chronic stress negatively impacts apparent learning cannot be completely 

excluded here. Empiricists rightly seek to minimise the possibility of stress 

confounding conclusions from cognitive studies. However, we suggest the 
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assumption that individuals remain (equally) ‘unstressed’ over experimental 

periods requiring repeated observations (and often repeated capture and or 

social isolation) is difficult to validate in practice.   

 In summary, here we have evidence of consistent differences among-

individuals in spatial task performance in the guppy P. reticulata. Individual 

performance is repeatable across trials within- and between two different spatial 

tasks (i.e. maze layouts). This among-individual variation in performance may 

well be mediated by cognitive factors but differences in ‘personality’ (e.g. 

neophobia, exploratory tendency) may also contribute. We also find evidence of 

improved performance with experience, consistent with spatial learning. In both 

tasks variation around the trajectory of mean performance across trial number 

was present. While this means individuals can be considered as differing in 

‘spatial learning rate’ it is important to note that performance declines for some 

individuals, especially in the second maze where there was no improvement in 

average time across 11 trials. We show here that an individual’s (repeatable) 

behavioural response to an acute stress stimulus does not predict either average 

performance in the maze or learning rate. However, we suggest the possibility 

that cumulative, chronic stress effects may contribute to declining performance 

(or reduced improvement) in our study. If individuals generally differ in 

susceptibility to chronic stress, this may represent a widespread but currently 

poorly acknowledged challenge for characterisation of cognitive variation in 

animal studies.  
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Table 2.1:  Among individual variance–covariance–correlation matrix from the final trivariate model of maze timeA, relative area 

and maze timeB. Variances are shown on the diagonal (dark grey shading), with covariances below and correlations above. 

Light grey shading denotes within trait covariance/correlation estimates (i.e. between reaction norm intercepts and slopes).  

Standard errors are shown in parentheses and bold font denotes nominally significant pairwise estimates assuming 

approximate 95% CI of ± 1.96SE). 

       Maze timeA Relative area 
 

       Maze timeB  
interceptA slopeA interceptB slopeB 

interceptA 0.436 (0.113) -0.489 (0.147) 0.286 (0.175) 0.686 (0.135) -0.129 (0.254) 

slopeA -0.027 (0.013) 0.007 (0.003) -0.075 (0.202) -0.006 (0.209) 0.216 (0.266) 

Relative area 0.127 (0.084) -0.004 (0.011) 0.451 (0.118) 0.024 (0.125) 0.377 (0.231) 

interceptB  0.299 (0.091) -0.003 (0.012) 0.011 (0.085) 0.437 (0.119) -0.309 (0.212) 

slopeB -0.005 (0.010) 0.001 (0.001) 0.016 (0.011) -0.013 (0.012) 0.004 (0.002) 
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Figure 2.1: Aerial view of the maze designs used in the experiments (A and B), 

each tank was split into two identical mazes (1 and 2). 
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a)              b) 

  

c)             d) 

  

 

Figure 2.2:  Plots of raw data of maze time across both maze designs. Boxplots 

(a) and (c) show the data distributions for time to complete Maze A and Maze B 

respectively across the 11 trials. Black boxes display data of all individuals and 

red boxes represent only those individuals that successfully completed the task 

within 480 s.  Horizontal lines within box correspond to behavioural medians, box 

boundaries correspond to first and third quartiles. When present, whiskers 

correspond to 10th and 90th percentiles, and points correspond to outliers. Plots 

(b) and (c) represent mean and standard errors for time to complete Maze A and 

B respectively. Colours represent the same groups; black error bars represent 

mean and standard errors of maze time for all individuals, and red represent only 

those individuals that successfully completed the maze in the allocated time.  
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a)   

 

b)   

 

Figure 2.3:  Spatial learning traits across Maze A and Maze B as a function of 

trial number, maze timeA (a), and maze timeB (b). Grey lines represent individual 

predicted reaction norms (BLUPs) from univariate random slope models for each 

trait. Coloured lines are used to illustrate reaction norms for a small random set 

of arbitrarily chosen individuals tested in both mazes. Black dashed line 

represents the trend in fixed effect mean maze time across repeat trials 
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3 Chapter 3: A multivariate view of cognitive diffe rences reveals 
domain-general correlation structure in the Trinida dian Guppy 
(Poecilia reticulata) 

 

3.1 Abstract 
 

Cognitive variation is common among-individuals within populations, and this 

variation can be consistent across time and context. From an evolutionary 

perspective, among-individual variation is important and required for natural 

selection. Selection has been hypothesised to favour high cognitive performance, 

however directional selection would be expected to erode variation over time. 

Additionally, while variation is a prerequisite for natural selection, it is also true 

that selection does not act on traits in isolation. Thus, the extent to which 

performance covaries among specific cognitive domains, and other aspects of 

phenotype (e.g. personality traits) is expected to be an important factor in shaping 

evolutionary dynamics.  Fitness trade-offs could shape patterns of variation in 

performance across different cognitive domains, however positive correlations 

between cognitive domains and personality traits are also known to occur. Here 

we aimed to test this idea using a multivariate approach to characterise and test 

hypothesised relationships of cognitive performance across multiple domains and 

personality, in the Trinidadian guppy (Poecilia reticulata). We estimate the 

among-individual correlation matrix (ID) in performance across three cognitive 

domains; association learning in a colour discrimination task; motor cognition in 

a novel motor task and cognitive flexibility in a reversal learning task, and the 

personality trait ‘boldness’ measured as time to emerge. We found no support for 

trade-offs occurring, but the presence of strong positive domain-general 

correlations in ID, where 57% of the variation is explained by the leading eigen 

vector. While highlighting caveats of how non-cognitive factors and assay 
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composition may affect the structure of the ID-matrix, we suggest that our findings 

are consistent with a domain-general axis of cognitive variation in this population, 

adding to the growing body of support for domain-general variation among-

individuals in animal cognitive ability.  

 

3.2 Introduction 
 

Interest in the cognitive mechanisms by which animals acquire, process, store 

and use information from the environment (Healy et al., 2010; Shettleworth, 

2010b), has grown substantially in recent years. Differences in cognitive abilities 

among-species have long been recognised (Wasserman et al., 2006; 

Shettleworth, 2009b), but we now know that variation among-individuals that is 

consistent across time and context is common in non-human animals (for a 

review, see Cauchoix et al., 2018). From an evolutionary perspective, variation 

at this level is required for natural selection and is thus central to our 

understanding of adaptive evolutionary dynamics (Roff, 2002). However, how or 

why this variation is maintained within populations is not always clear. For 

instance, while we might intuitively expect selection to favour high cognitive 

performance, directional selection of this form is generally expected to erode 

variation over time. One possibility is that fitness trade-offs could shape patterns 

of variation in cognition, just as they do in other aspects of phenotype (e.g. life 

history; Stearns, 1992). If so, do trade-offs arise among different cognitive 

‘domains’ or traits, with variation maintained because individuals (or genotypes) 

that perform better than average in some respects, perform worse in others? Here 

we test this idea using a multivariate approach to characterise and test 

hypothesised relationships of cognitive performance across multiple domains in 
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the Trinidadian guppy (Poecilia reticulata). We ask whether there is support for 

domain-specific correlation structure, where performance is negatively correlated 

as expected under the trade-off hypothesis. Or whether in fact domain-general 

correlation structure is present and uniformly positive – a pattern predicted if 

multivariate cognitive performance variation is explained by a single latent 

“general intelligence factor” (g) (Nisbett et al., 2012). 

Many empirical studies have now shown that animal populations can 

harbour high levels of variation in cognitive performance among individuals 

(Boogert et al., 2018). This has been shown across taxonomic groups including 

insects (Li et al., 2017), fish (Lucon-Xiccato & Bisazza, 2017a), birds (Quinn et 

al., 2016) and mammals (Mazza et al., 2019). Among-individual variation is also 

found across different cognitive domains (e.g. spatial memory (Sonnenberg et 

al., 2019); association learning (Kniel et al., 2020), problem solving (van Horik et 

al., 2019)), though relatively few studies have characterised the among-individual 

covariance (or correlation) structure between these. This is important to do 

because trade-offs between domains have been hypothesised to maintain 

cognitive variation (Del Giudice et al., 2018). This hypothesis leads to an 

expectation of domain-specific structure of variation, where negative correlation 

structure is exemplified by predictions of ‘speed-accuracy trade-offs’ (Biro et al., 

2008; Sih et al., 2012). Faster decision making should provide a competitive 

advantage (e.g. by increasing the potential rate of resource acquisition), but by 

allowing less time to assess environmental cues, error rates may be increased. 

In contrast, slower decisions may be more accurate, but being slow to act can 

mean resources are lost to competitors.  A number of empirical studies have 

provided support for speed-accuracy trade-offs in animals. For example, 

individual archerfish (Toxotes chatareus) that tended to make slower decisions 
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within a colour discrimination task also had greater accuracy (Jones et al., 2020). 

A similar result was found in zebrafish (Danio rerio) given a visual discrimination 

task (Wang et al., 2015), and in wild-caught great tits (Parus major) given a 

foraging task (Moiron et al., 2016). However, counter examples also exist. For 

example, a prior study of guppies found no support for a speed-accuracy trade-

off using a shape and a colour discrimination task (Lucon-Xiccato, Dadda, et al., 

2016), and three-spined sticklebacks (Gasterosteus aculeatus) making fast 

decisions in a spatial leaning task did not show reduced accuracy (Mamuneas et 

al., 2015).  

Another widely hypothesised cognitive trade-off that might maintain 

variation is between learning and cognitive ‘flexibility’ (Del Giudice et al., 2018). 

Flexibility is broadly defined as the ability to adapt when environmental stimuli or 

information cues change. It is often tested by reversal learning experimental 

paradigms in which individuals must be flexible to override old cue-reward 

associations and form new ones (Bitterman, 1965; Buechel et al., 2018; Kehagia 

et al., 2010). For example, in Florida scrub-jays (Aphelocoma coerulescens) 

individuals that were quick to learn an initial colour-reward cue (high associative 

learning performance), were slower to adjust when the cue signal was reversed 

(Bebus et al., 2016). The implication of such patterns is that some individuals are 

more ‘intrinsically driven’ than others; they learn initial associations quickly but, 

being less sensitive to external stimuli, struggle to adapt when cues are altered. 

However, again counter-examples can be found. For instance, those individual 

bumblebees (Bombus terrestris) that quickly learned to discriminate between two 

colours (where one was associated with a floral reward), were also faster to learn 

a new association when the cues were reversed  (Raine et al., 2012).  
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Thus, while trade-off among components of ‘multivariate’ cognitive ability 

are intuitive and evidenced in many cases, they may not be inevitable and 

positive correlations between specific domains are sometimes found (Guenther 

et al., 2017; Wallace et al., 2021).  If correlation structure among cognitive 

performance traits is universally positive (with respect to expected fitness 

consequences), then variation among individuals can be explained by a domain-

general structure that invokes a single latent general intelligence factor, 

sometimes denoted ‘g’ (Deaner et al. 2006; Lefebvre and Sol 2008).  While there 

is evidence for this in humans (Deary et al., 2010; Burkart et al., 2017), support 

for the g-model in non-human animals systems remains limited (but see Arden et 

al., 2016; Galsworthy et al., 2005; Hopkins et al., 2014; Shaw et al., 2015). Note 

that, under this model, trade-offs may still be important for maintaining cognitive 

variation, but if so they must operate between general intelligence and other (non-

cognitive) aspects of phenotype. This possibility is mirrored elsewhere in the 

behavioural literature since for example, individual personality can be viewed as 

a component of an extended ‘life history’ (Sih, Bell, & Johnson, 2004; Wolf et al., 

2007). Indeed, given that personality traits and cognitive performance are 

frequently correlated (Guenther et al., 2014; Nawroth et al., 2017; White et al., 

2017), and both thought to drive variation in resource acquisition, then trade-offs 

between them are plausible (Sih et al., 2012; Dougherty et al., 2018). 

Here, we investigate among-individual (co)variation between cognitive 

performance across three cognitive domains (associative learning, motor 

cognition and cognitive flexibility) in a captive population of wild-type guppies 

(Poecilia reticulata). Guppies have been widely used as a model in behavioural 

and evolutionary ecology, and methods for assaying among-individual variation 

in cognitive performance are well established (Laland et al., 1999; Miletto 
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Petrazzini et al., 2016). This species is known to perform well (on average) in 

tests of associative learning (Lucon-Xiccato & Bisazza, 2016; Kniel et al., 2020), 

motor cognition (Lucon-Xiccato & Bisazza, 2016; Lucon-Xiccato, Gatto, et al., 

2017), and cognitive flexibility (Cauchoix et al., 2018; Fong et al., 2019). However 

we know little about if and how these traits may covary among individuals within 

populations. Broadly stated, our goal is to estimate the structure of this 

multivariate variation to evaluate whether trade-offs among cognitive traits are 

evident, or whether among-fish variation is consistent with a domain-general 

intelligence model (g).  

We note that the extent to which among-trait associations shape, and in 

the particular context of trade-offs, constrain evolutionary adaptation strictly 

depends not on the phenotypic correlation structure, but on the genetic 

contribution to this. In particular, evolutionary constraint arises from the genetic 

(co)variance structure (G) and its alignment (of lack thereof) with selection 

(Lande, 1979; A. G. Jones et al., 2004; Walsh et al., 2009). Unfortunately 

estimation of G is challenging in general (requiring large volumes of data from 

related individuals; Wilson et al., 2010), and particularly so for cognitive traits. 

This is because high-throughput phenotyping of cognitive performance across 

multiple domains is notoriously laborious and challenging. Consequently, very 

few studies have estimated G  for sets of cognitive traits in non-human animals 

(but see Langley et al., 2020). Thus most multivariate studies of cognition, and 

behavioural phenotypes more generally, rely on Cheverud’s conjecture 

(Cheverud, 1988) that phenotypic patterns of covariation can be used to infer 

evolutionarily important relationships between traits. Accepting this view 

uncritically implies that the (co)variance structure of the phenotypic matrix P 

(historically referred to as the phenotypic gambit by Grafen  (1984)), which can 
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be readily estimated in a set of individuals observed once only for each of the 

target traits, can yield robust insights into the structure of G. However, 

behavioural traits are typically very plastic and often subject to high levels of 

measurement error (e.g. relative to morphological traits), in addition to sources of 

environmental variation. These phenomena lead to high levels of within-individual 

variation such that a single observation may tell us relatively little about an 

individual’s phenotype (and so genotype) (Brommer, 2013). In other words, the 

extent to which P is a good proxy for G will decline if P is dominated by within-

individual variation (plasticity, measurement error) versus among-individual 

variation (which includes genetic factors).   

In the present study we therefore adopt an intermediate approach in which 

we estimate the among-individual (co)variance matrix (ID) rather than either G or 

P. We do this by obtaining repeated measures of performance on individual fish. 

Since G is a component of ID while ID is a component of P, all else being equal 

we expect the among-individual covariance matrix to be better proxy of the 

genetic matrix than the total phenotypic matrix. We target multiple domains of 

cognitive performance allowing us to 1) test whether individuals differ in their 

ability to discriminate between rewarded and unrewarded colours in an 

association learning task; 2) ask whether speed accuracy trade- offs mediate 

variation in performance in the association task; 3) ask if individuals differ in 

performance in a novel motor task to access a reward; and 4) test whether 

individuals differ in their ability to learn a reversal learning task when the colour-

reward cue from the association task is reversed. We predict that individuals will 

differ in average performance within all three tasks; the association task, the 

novel motor task, and the reversal learning task as well as in their rates of 

improvement with experience (interpretable as learning).  Finally, we 5) estimate 
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the ID-matrix among all cognitive performance traits and a shy-bold type 

personality trait (henceforth referred to as ‘boldness’) and ask whether it provides 

evidence for trade-offs among cognitive domains or whether it is dominated by 

positive correlations consistent with the g-model of domain-general intelligence.  

 

3.3 Methods 
 

Ethics 

This work was conducted under the auspices of the Animals (Scientific 

Procedures Act) with approval of the University of Exeter research ethics 

committee, under licence from the Home Office (UK) (Licence Number 

PPL30/3256).  Experimental procedures and behavioural assays were developed 

in accordance with the principles of the three R’s and ASAB guidelines 

(Buchanan et al., 2020) for use of animals. All periods of handling and emersion 

were kept to a minimum and only fish deemed healthy and exhibiting normal 

behaviour were used in trials. At the end of the experiment, fish were returned to 

a designated ‘retirement’ tank (containing females as well as males) and not used 

in any further experiments.  

 

Husbandry 

All behavioural assays were carried out during the months between October 2019 

and January 2020. Data was collected from captive-bred guppies bred and 

housed at the fish laboratory at the University of Exeter’s Penryn campus. The 

population is descended from wild fish caught in February 2017 from the lower 

Aripo River, Trinidad and has been subsequently maintained with no deliberate 
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selection or inbreeding. All fish housed in the laboratory were fed to satiation 

twice daily (0800 – 1000h and again at 1600 – 1800h) using commercial flake 

food and live Artemia nauplii. Water temperature was maintained at 23-24°C in 

well-aerated closed system tank stacks that undergo 25% water changes each 

week and with weekly tests for ammonia, nitrate and nitrite levels. Lighting was 

kept at a 12:12 light/dark cycle. 

 

Experimental apparatus 

Adult males (n = 43) and females (n = 37) were sampled from the stock 

population. Sampling was haphazard but we approximately size matched fish 

within each sex (e.g. by avoiding very large females). Fish were then housed 

singly in separate tanks (15 l, 18.5 × 37 × 22cm) for the duration of behavioural 

testing. The tank set up closely followed that used by Lucon-Xiccato & Bisazza 

(2014), each being divided equally into a ‘home’ compartment at the rear of the 

tank, and a ‘test’ compartment at the front of the tank, separated into two 

compartments (using white plastic) by a guillotine door (Figure 3.1). The rear 

‘home’ compartment (20 x 18.5 cm) allowed individuals visual access to fish in 

neighbouring tanks.  Conversely, the ‘test’ compartment (17 x 18.5 cm) was 

screened from neighbours (using white plastic) to prevent any possibility of social 

learning (i.e. by observation of neighbours) influencing cognitive task 

performance. The ‘test’ compartment contained a white plastic plate (4 x 10 cm) 

placed on the gravel substratum, perforated with 2 equally spaced wells (Figure 

3.1). A total of 48 experimental tanks were used. These were contained within 

two ‘stacks’, each comprising 24 tanks (8 tanks per row, 3 rows high) on a shared 

recirculating water supply. As the testing protocol (described below) took 18 days 
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per fish, data were in practice collected in 3 ‘blocks’ over a total testing period 

spanning 12 weeks. Before cognitive testing all fish were allowed to acclimate to 

experimental tanks for 48 hours. During this period they were fed twice daily with 

bloodworm (Chironomidae larvae) pipetted into one (randomly chosen) well of 

the white plastic plate and the guillotine door was left open allowing unrestricted 

use of both compartments.  

 

Cognitive assay 

We used a repeated measures design to test performance across multiple 

cognitive domains within a single, extended, testing paradigm. Each fish was 

observed up to 63 times as it emerged from the home compartment to obtain a 

food item that had been placed in one of the two wells in the test compartment. 

Individual fish were trained to discriminate between a rewarded and an 

unrewarded colour cue, indicating which well the reward could be obtained from. 

In all trials, food items (bloodworms) were actually placed in both wells, but 

access was restricted by a small plastic disc for the well with the unrewarded 

colour cue. This was to ensure that olfactory cues would be insufficient to locate 

available food, instead fish were required to learn to associate a specific colour 

with reward access. The rewarded colour (either blue or green) was randomly 

determined for each fish prior to testing, ensuring balance across subjects to 

control for any innate colour bias. The relative position of the rewarded well (left 

versus right) for each trial was randomised and we also controlled for any effect 

this could have in our statistical modelling (described later).  

The 63 observations per individual were grouped into 7 ‘sets’ of 9 ‘trials’ 

(observations). Each set spanned a 2 day period which was followed by a rest 
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day before the next set. Test condition were altered between trial sets, by 

adjusting the position of green and blue coloured plastic counters. Specifically, 

after each set, the association task increased in difficulty as the coloured counter 

covered the holes to an increasing extent. This also allowed extraction of 

information on different cognitive traits as we now describe.  In set 1, the coloured 

counters covered 0% of the wells,  in set 2 we increased this to 25%, then 

subsequently this was increased to 50% (set 3), 75% (set 4) and 100% (set 5). 

Once the counters covered 75% of the wells (set 4), guppies had to dislodge the 

counters in order to reach the reward in the well underneath. We consider this a 

novel motor task, as fish had to learn to dislodge the counter by physical 

manipulation. The difficulty of this task is increased with 100% coverage (set 5). 

In the final two sets (set 6 and 7) of 9 trials we tested reversal learning task, by 

reversing the colour cue -food reward association previously learnt in the first 5 

sets.  

Prior to each trial, fish were guided into the ‘home’ compartment of the 

tank with a net, and the guillotine door was closed. The experimenter set up the 

test plate which was situated in ‘test’ compartment, by pipetting bloodworm into 

the wells in the plate (the food in the unrewarded hole was then covered by a 

small plastic disc), and the two coloured counters placed either to the side of (set 

1), or covering the well (partially or fully depending on set number as described). 

The trial started once the door to the experimental compartment was opened and 

continued until the fish ate the bloodworm from the rewarded well, or after 10 

minutes, whichever occurred first (see the electronic Supplementary Material, 

video S1, Appendix 1).  All trials were recorded with a GoPro Hero 6 camera, 

mounted in front of the tank and behavioural scoring of videos was quantified 

using the software BORIS (Friard et al., 2016). We imposed a deliberately weak 
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learning criterion, removing any fish that failed to achieve a minimum of 5/9 

successes (defined as locating and/or eating the food reward) at the end of each 

set. In fact, we wished to avoid selective removal of fish as far as possible such 

that, for example, among-individual variation seen in later sets can be interpreted 

as representative of the initial population. However, correlations between task 

performance may be confounded if the ability to solve each task is closely 

associated with the number of learning opportunities (Guez et al., 2016; Shaw et 

al., 2017). Differences, for example in motivation or neophobia, could mean some 

individuals engage with and solve the task each trial, while others do not (despite 

persistently trying to find a solution or because they do not engage with the task 

at all). In this way, individual participation directly influences the number of 

learning opportunities. Removal of fish that did not complete the task (by locating 

and eating the food reward) ensured data was collected in subsequent set of 

trials, only from individuals that had the same number of learning opportunities, 

thus reducing the possibility of confounding correlations in performance caused 

by differences in e.g. motivation or neophobia for example. Furthermore, since 

additional food (beyond the reward items) was not provided during the 

behavioural testing, the learning criterion also ensured that individuals not 

engaging with the task were not deprived of food for any longer than 2 days 

before being removed from the study. Over the course of the data collection, 16 

individuals were removed before the end of set 6.  

 

Trait definition 

Data obtained from the trial sets  were used to define observed proxies of one 

personality trait (boldness) and 6 measures of cognitive performance that are 
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collectively informative for 3 cognitive domains (association learning, motor 

cognition, and cognitive flexibility). The specific measures derived are described 

below and also summarised for reference in Table 3.1. 

 

Boldness 

During the first nine trials (set 1), time taken to emerge from the home 

compartment into the experimental compartment was recorded (emergence), as 

a proxy of consistent differences in personality trait ‘boldness’ (White et al.,  2016; 

White et al., 2020). 

 

Association learning  

We also focused on set 1 trials to test for speed-accuracy trade-offs, expecting 

that (on average) fish would have effectively learnt the association in later sets 

making the speed accuracy trade-offs less relevant to observed outcome. We 

recorded three behavioural variables. The first was whether the first counter 

explored was the correct (1) or incorrect (0) choice for obtaining the reward 

(ALaccuracy). A choice was deemed to have been made if individual fish swam 

within 1 body length of, and was actively exploring a counter. The second variable 

was time taken to make this first choice (ALspeed), measured in seconds from 

emergence into the test compartment. To evaluate overall performance in 

association learning, we used total time taken from emergence to find and eat 

the food reward. We did this using all observations from all  trials in sets 2 and 3 

(ALtime). During these sets of trials, the counters covered 25% and 50% 
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respectively, a level of coverage that still allowed fish to access the reward easily 

without any physical manipulation of the counter required.  

 

Motor Cognition 

To assess performance in the novel motor task, we used observations from trials 

insets 4 and 5 (where the counter covered 75% and 100% of the well area 

respectively). Note that at 75% coverage fish were required to physically 

manipulate the counter in order to reach the food reward. We used time taken by 

each individual in all trials to obtain and eat the food reward (MCtime). Note this 

was measured as time taken to obtain the food reward after they had made  the 

correct choice of counter in each trial.  

 

Cognitive flexibility 

This was assessed using observations from all trials in set 6 and 7, during which 

the reward colour was reversed. Note that counter coverage of the wells 

remained at 100% so fish needed to dislodge the counter in order to access the 

reward. For this reversal learning task we recorded the accuracy of each 

individuals’ first choice, (RLaccuracy) as well as the time taken, from emergence into 

the test compartment, to locate and eat the food reward (RLtime).  

 

Statistical analysis 

We used univariate and multivariate linear mixed effect models to characterise 

among-individual variation in and covariation among the traits defined. For 

analysis, the observed (censored) time traits from the cognitive tasks were 
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natural log-transformed (ALspeed, ALtime, MCtime and RLtime), and then all 

continuous time traits were multiplied by -1 (boldness, ALspeed, ALtime, MCtime and 

RLtime). Following this, all response variables were mean centred and scaled to 

standard deviation units.  The log transformation was to improve the assumption 

of Gaussian error structure, multiplication by -1 for ease of interpretation of 

multivariate analysis (so that larger values equate to higher performance in 

continuous traits),  and scaling to standard deviation units was to ease 

interpretation of estimated variance components. All models were fit by REML 

(restricted maximum likelihood) using ASReml-R 4.1 (Gilmour et al., 2009; Butler 

et al., 2018) within R version 3.6.1 (R Core Team, 2017). We make the standard 

assumptions that random effects and residuals are normally distributed with 

means of zero and variances to be estimated. We acknowledge that these 

assumptions are necessarily violated since the two accuracy traits are recorded 

as binary variables, while time data are censored (at 10 minutes). Consequently, 

we consider this strategy justifiable given that Gaussian mixed models are 

generally robust to violations of distributional assumptions (Schielzeth et al., 

2020). Pragmatically, we also note that the obvious alternative of fitting Bayesian 

multivariate generalised mixed models poses its own challenges. 

  

Univariate analysis 

First we fitted separate univariate mixed models to test for and characterise 

among-individual variation in each of our 7 traits (boldness, ALspeed, ALaccuracy, 

ALtime, MCtime, RLtime and RLaccuracy). All models included a fixed effect of the 

mean, as well as fixed factors of sex, stack (denoting which of two aquaria stacks 

the fish was tested in), colour (denoting the colour of counter individual fish were 
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trained to associate with the rewarded cue; green or blue), and reward side 

(denoting which side the rewarded counter was placed on; left or right). We also 

included trial number (i.e. the repeat number of trial, fitted as a factor to avoid 

assuming a linear functional form for any change in the mean across repeats). 

For each trait, we firstly fit this ‘null’ model without random effects, and then 

refitted with individual identity as a random intercept. For each trait we compared 

the full (i.e. with individual identity included) and null models by likelihood ratio 

tests (LRT) to obtain a statistical test of the among-individual variance (VI). To 

test a single variance component (which cannot be less than zero) we assume 

twice the difference in log-likelihood between the full and reduced models is 

distributed as a 50:50 mix of χ20,1 and χ21 as recommended by Visscher (2006). 

Since transformed traits are analysed in standard deviation units, total observed 

variance is 1 and VI can actually be interpreted as an estimate of repeatability. 

However, we also calculated estimates of the adjusted repeatability (R) which is 

the proportion of phenotypic variance conditional on fixed effects that is explained 

by among-individual differences (Nakagawa et al., 2010). Thus R = VI / VP where 

VI is the among-individual variance and VP is sum of VI and VR, the residual or 

within-individual variance. Conditional F-statistics were used to determine the 

significance of fixed effects in each (full) model, and we elected not to perform 

model simplification, as we wanted repeatability estimates to be conditioned on 

a common set of fixed effects and thus comparable across abilities. 

 

Multivariate analysis 

To test for the presence of, and investigate the structure of, the (co)variance ID-

matrix, we built a multivariate mixed model among all cognitive performance traits 
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and ‘boldness’. All response variables were transformed and scaled as per the 

univariate modelling procedure above, and we note that multiplication by -1 of all 

the observed (censored) time traits simplified interpretation of the correlation 

structure (as larger values equate to higher performance in continuous traits). 

Fixed and random effects were fitted on each trait as specified for the univariate 

models. Fixed effects estimates are reported in the Supplementary Information 

Table S3.1, Appendix 3. We specified the among-individual (VI) covariance 

structure as an unstructured matrix to be estimated. Note that R partitions 

observation-level covariances that are not statistically identifiable if traits are not 

measured at the same time (i.e., all covariances between traits measured in 

distinct ‘sets’ of trials). Where this was the case we constrained specific 

covariance terms in the residual (VR) matrix to equal zero. We tested for overall 

among-individual covariance among the traits by comparing this model against a 

reduced one in which ID was specified as a diagonal matrix (i.e., among-

individual variances are estimated but covariances are assumed to equal zero).  

To aid biological interpretation of the ID-matrix, we rescaled our estimate 

to the corresponding correlation matrix in which off diagonal elements are the 

among-individual correlations (rI) between each pair of traits. For any pair of traits 

(x,y), rI(x,y) = COVI(x,y)/ (VI(x)VI(y))0.5). We then further scrutinised the correlation 

structure among the cognitive traits only by dropping the row/column 

corresponding to boldness, and subjecting the resulting 6x6 submatrix, 

henceforth denoted IDrc (using rc to denote correlation scale (r) and cognitive 

traits (c)) to eigen vector decomposition. This simply provides a descriptive view 

of the major axes (or principle components) of variation in IDrc allowing us to 

determine the proportion of among-individual correlations captured by each 

principal component. Under the g model, we would expect uniformly positive 
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correlation structure in IDrc with a single major axis of variation on which all traits 

loaded with the same signs. Conversely, if trade-offs dominate the structure of 

among-individual variation in the multivariate cognitive phenotype IDrc should 

contain at least some negative correlations and the one or more important 

principle component should have loadings that are antagonistic in sign between 

traits that trade-off with each other. We estimated approximate 95% confidence 

intervals on the eigen values (scaled to proportions of variation in the matrix) and 

on the trait loadings associated with each principal component using a parametric 

bootstrap approach described in Boulton et al (2014). 

 

3.4 Results 
 

Visualisation of the raw data shows a varied effect of trial number on performance 

across traits and cognitive tasks (Figure 3.2; see Supplemental Information 

Figure S3.1 a–g of raw data across all sets of trials).  Average time to emergence 

(boldness) decreased over the first 9 trials but time-based measures of cognitive 

performance did not uniformly improve over the sets of trials used to assay them, 

as might intuitively be expected (Figure 3.2). Note however that for ALtime and 

MCtime the sets of 18 informative trials include an increase in task difficulty 

(between trials 9 and 10). There was no increase in task difficulty over the 18 

informative trials for the trait RLtime  anda negative (albeit weak) trend is seen, 

indicative of improving performance. In the association learning task, ALspeed and 

ALaccuracy increased over the first set of trials, similar to RLaccuracy in the reversal 

learning task which also increased with trial number over the set of trials used to 

assay this trait. The univariate mixed models confirmed the statistical significance 

of qualitative patterns seen in the raw data with respect to changes across trials 
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(see Supplementary Information Table S3.1 a–g). Noting that models were run 

on transformed traits such that positive effects correspond to increasing 

performance (i.e. decreasing time) and that trial number was fitted as a factor to 

avoid assuming linear trends, we found effects on emergence (F8, 555.7=9.24, P< 

0.001; with coefficients becoming more positive as trial number increased; Table 

S2.1), ALtime  (F17, 801.9=2.246, P=0.002; with coefficients becoming more 

negative), ALspeed  (F8, 555.0=7.380, P< 0.001; with coefficients becoming more 

positive), ALaccuracy  (F8, 555.0=4.602, P< 0.001; with coefficients becoming more 

positive), MCtime  (F17, 692.6=1.174, P< 0.001; coefficients becoming more 

negative). The effect of trial number on (mean) performance  was not significant 

in RLtime (F17, 581.2=1.565, P= 0.060) and RLaccuracy (F17, 584.2=1.085, P= 0.271). The 

significance and magnitude of all other fixed effects included varied across trait 

performances. These effects are not directly relevant to hypotheses being tested 

and we do not discuss them further, but they are reported in full in the 

supplemental information (see Supplementary Information Table S3.1). 

Likelihood ratio tests (LRT) provided strong statistical support for the presence of 

among-individual variance in all seven traits tested (LRT of model 1 vs. model 0; 

all P < 0.001; Table 3.2). Repeatabilies (R) estimated conditional on fixed effects 

(i.e. as R = VI/VP = VI/(VI+VR)) were low to  moderate ranging from 20-46% with 

a median across the seven traits of  33.5% (Table 3.2).  

The multivariate mixed model provided strong support for significant 

among-individual covariance in the ID-matrix.  Likelihood ratio comparison of the 

full model to a reduced fit in which all cross-trait covariances in ID were set to 

zero showed the former was a significantly better to fit to the data (χ221=242.756, 

P<0.001). Among traits, the estimated covariances/correlations were positive 

between all trait pairs (Table 3.3). Boldness, as captured by emergence was 
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strongly (and significantly; based on assuming approximate 95% CI of rI ±1.96 

SE) correlated with cognitive performance as measured by all traits in the 

association learning task ((r ± (SE)), ALtime = 0.663 (0.095), ALspeed = 0.818 

(0.046), ALaccuracy = 0.788 (0.062); Table 3.2), and to decision accuracy within 

the reversal learning task (RLaccuracy = 0.412 (0.171)).  

Among the subset of 6 cognitive traits all estimated among-individual 

correlations (rI) were positive (Table 3.3).  Among-individual correlations were 

strongly positive among all traits in the association task (rALtime. ALspeed = 0.758 

(0.074); rALtime. ALaccuracy = 0.729 (0.092); rALspeed. ALaccuracy = 0.894 (0.039)) 

providing no support for a speed accuracy trade-off.  Similarly both traits in the 

reversal learning task (rRLtime. RLaccuracy = 0.473 (0.144)) were positively correlated, 

and this same pattern of positive correlations was also found across traits 

putatively indicative of different cognitive domains. There was thus no evidence 

of negative correlations as predicted by domain-specific trade-offs and rather the 

structure of ID is consistent with the domain-general intelligence model (Table 

3.3).  

Eigen decomposition of IDrc reflects this, with the first major axis (first 

principle component, PC1, with 95% confidence intervals from 5000 bootstrap 

replicates) explaining 57.1% (42.7%, 69.8%) of the among-individual variation in 

multivariate phenotype on a correlation scale. Subsequent vectors necessarily 

explain sequentially diminishing amounts of variation (PC2 = 25.4% [12.6, 30.9]; 

PC3 = 12.1% [7.4, 15.6]; PC4 = 3.7% [4.7, 9.9]; PC5 = 1.6% [0.8, 5.5]; PC6 > 

0.001% [0, 0]). All 6 cognitive traits load with the same sign on PC1 and these 

loadings are statistically significant based on bootstrapped confidence intervals 

not overlapping zero (Figure 3.3; Supplementary Information Table S3.2). Thus 

the eigen decomposition reiterates the view that the correlation structure is 
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consistent with a dominant axis of among-individual variation in cognitive 

phenotype caused by differences in underlying domain-general intelligence g. On 

this axis, individuals at one end of the axis can be considered to have 

‘higher/better’ performance in all tasks (i.e. are faster and more accurate in the 

association task, faster to solve the motor cognition task, and faster and more 

accurate in the reversal learning task when the cue is reversed), while individuals 

at the other end perform relatively poorly in all respects.   

 

3.5 Discussion 
 

In this study we sought to determine whether – and to what extent – there exists 

among-individual variation for cognitive performance in a captive population of 

recently wild-derived guppies. Adopting a multivariate approach allowed us to test 

for covariation among multiple cognitive domains, as well as between cognitive 

performance and a shy-bold type axis of personality variation. Our study yields 

three main findings.  First, there is among-individual variation underpinning all 

cognitive traits. Second, there is strong among-individual correlation structure 

among cognitive traits and between cognition and bold type personality.  Thirdly, 

the structure of ID-matrix provides no support for the presence of important 

performance trade-offs among specific traits or cognitive domains tested. Rather 

we suggest that it is consistent with a single axis of domain-general variation that 

causes positively correlated performance across cognitive tasks, such that 

individuals at one end of the axis can be considered to have relatively low ‘general 

intelligence’ compared to those at the other end of the axis. The structure of ID-

matrix is therefore consistent with expectations under the g-model, although it is 

important to acknowledge that other latent factors could exist that create similar 
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expectations of covariation among observed behaviours. In what follows, we 

discuss these findings in the context of understanding variation in, and evolution 

of, animal cognition, while also drawing attention to important assumptions and 

caveats underpinning our conclusions.  

 Among-individual variation was found in each of the behavioural traits and 

tasks examined. That guppies show consistent among-individual differences in 

‘boldness’, as measured here by time to emerge into the test compartment over 

the first set of 9 trials (with a conditional repeatability of 43.9%) was expected 

given earlier studies of this population (e.g. Houslay et al., 2019) and guppies 

more generally (Brown et al., 2014; O’Neill et al., 2018; Gasparini et al., 2019).  

Indeed similar findings are common across a wide range of fish models used in 

behavioural studies (Boulton et al., 2018; White et al., 2020). We also find among-

individual variation in performance in all cognitive traits across each task. Thus, 

we conclude that individuals differ in: ability to discriminate between rewarded 

and unrewarded colours in an association learning task; ability to learn a novel 

motor task; and, in cognitive flexibility as tested by a reversal learning task. The 

estimated repeatabilities of our observed behavioural proxies are moderate 

relative to behavioural traits generally (Bell et al., 2009), but generally consistent 

with reports for cognitive assays in animals (Cauchoix et al., (2018)). A 

contributing factor is likely to be the short inter-observation period used. Here this 

was usually less than 24hrs and in fact up to 9 observations were made in any 

single 48hr period. This sampling frequency is quite typical for cognitive studies, 

and the short intervals between trails may explain a decrease in performance due 

to reduced motivation. Furthermore, since behavioural repeatabilities generally 

decline as inter-observation period increases (Boulton et al., 2014), this may also 

partially explain the strong signal of repeatability.  
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Our multivariate modelling provides no support for trade-offs among 

cognitive traits. This conclusion stems from the finding that the correlation 

structure in ID is universally positive. Thus, for example, speed-accuracy trade-

offs are not detected in our association learning trials. Speed-accuracy trade-offs 

are widely predicted to arise where behavioural outcomes depend on cognitive 

decision making (Briffa, 2013), although this prediction assumes that faster 

decisions are better (all else being equal). They have been detected in some 

animal studies, for instance in Carib grackels (Quiscalus lugubris) where 

individuals that solve novel problems faster also make more errors in 

discrimination learning tasks (Ducatez et al., 2019). Here we actually find the 

opposite pattern, faster individuals are more accurate, a result that seems 

counterintuitive but is consistent with reports in song sparrows (Melospiza 

melodia; (Boogert, Anderson, et al., 2011), and bumblebees (Bombus terrestris; 

Raine, 2012). We note that the correlation structure of behavioural ID-matrices 

can be sensitive to environmental context (Houslay et al., 2018) as a 

consequence of IxE interactions (among-individual differences in plasticity; 

Nussey et al., 2007). It is therefore possible trade-offs could be apparent only 

under specific conditions and/or assays. This scenario is suggested by a recent 

study of archerfish in which a speed-accuracy trade-off was only statistically 

significant under the more challenging of two cognitive testing treatments applied 

(Jones et al., 2020).  Plastic responses to social context could also be important 

since, for instance, in less competitive scenarios (including the single housing 

used here) slow decisions may carry minimal costs removing motivation to be 

fast (Sih et al., 2012). 

More broadly, we also find positive correlations in performance across 

traits picked as proxies of different cognitive domains. This is counter to 
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predictions under hypothesised trade-off models for maintaining variation. For 

instance, it has been hypothesised that individuals more reactive to changes in 

environmental cues will perform relatively poorly in association learning but –

being cognitively flexible – will do well in reversal learning tasks (Sih et al., 2012; 

Bebus et al., 2016). Here we find a strong positive among-individual correlation 

between our measures of performance in association and reversal learning 

(rI=0.54). Again we note the absence of apparent trade-offs has precedent in the 

animal cognition literature. For example, positive correlations have been reported 

between discrimination acquisition and reversal learning in sparrows (Boogert et 

al., 2011), social learning and innovative problem solving in pigeons (Columba 

livia; Bouchard et al., 2007), motor skill learning and reversal learning in 

pheasants (van Horik et al., 2018).  

If positive correlations in the ID-matrix provide no support for trade-offs, 

then the corollary is that they are consistent with a domain-general axis of 

cognitive variation among-individuals in this population. Thus, excluding the 

boldness proxy of emergence time and focusing on cognitive traits only, we found 

that 57% of the variation in correlation matrix was explained by the leading 

principle component (or eigen vector). By comparison in tests of the general 

intelligence model of cognition using human psychometric test batteries, an 

underlying g-factor is typically found to account for about 40–50% of the 

multivariate variation (Carroll, 1993; Deary, 2001). Under the g-model, trait 

performance in cognitive assays across multiple domains are expected to load 

strongly (and in the same direction) on a dominant first principle component 

(Plomin, 2001; Plomin et al., 2002). This is the pattern we found. Our results thus 

add to a small, but growing body of empirical literature finding support for domain-
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general variation among-individuals in animal cognitive ability (Shaw et al., 2015; 

Ashton et al., 2018).  

Our conclusion that (multivariate) cognitive variation in guppies is 

consistent with an underlying general intelligence factor requires some caveats. 

These largely arise because latent variables are, by definition, unmeasurable. 

Thus, all inferences about (latent) cognitive traits from (observed) behavioural 

performance measures are inevitably subject to assumptions. First, we are 

limited by the set of traits assayed. Inclusion of more cognitive domains, different 

assays, and/or different contexts, would provide more robust insight into the 

biological extent and evolutionary potential of general intelligence (Poirier et al., 

2020). Thus, for instance, we detect no evidence of domain-specific cognitive 

trade-offs, but they could occur among a wider set of traits (or contexts) not 

examined. Here we targeted the domains of association learning, motor cognition 

and reversal learning, but did so using a single testing paradigm in which 

performance measures share a requirement for individuals to discriminate 

between two coloured cues. This strategy may be predisposed towards finding 

positive correlation structure. Second, the eigen vector decomposition provides 

only a statistical description of the estimated correlation structure among 

observed traits; that ID is consistent with an axis of variation in an underlying 

general intelligence factor does not prove such a factor exists. Third, the positive 

correlation structure could be explained, at least in part, by shared dependence 

of the observed traits on some other parameter that varies among individuals 

such as metabolic state (Biro et al., 2010; Mathot et al., 2013; McKenzie et al., 

2016), satiety (Shettleworth, 1972; Ben-Shahar et al., 2001), or other drivers of 

motivation (van Horik et al., 2016). For example, the increase in mean 

performance time in the association task could be confounded by changes in 
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motivation due to trial fatigue (reduced motivation), at least for some individuals, 

even if some individuals clearly did perform better over time.  Experimental 

conditions can have important consequences for robust interpretation of studies 

targeting cognitive traits (Rowe et al., 2014; Griffin et al., 2015; Boogert et al., 

2018) and while we attempted to minimise ‘non-target’ sources of among-

individual variation  (e.g. by standardising food rations, housing and water 

chemistry) we cannot exclude the possibility that these contribute to the structure 

of ID. Finally, we acknowledge the potential for bias in our findings caused by 

selective removal of individuals due to our imposed learning criterion. Failure to 

participate in a cognitive test may result in sampling biases when measuring 

among-individual variation in cognitive performances (Thornton et al., 2012a; van 

Horik et al., 2017). Our learning criterion was specifically weak so that all included 

individuals represented, as far as possible, among-individual variation of the 

initial population.   

We also found that all six cognitive performance traits were positively 

correlated with ‘boldness’, measured here as an individual’s tendency to 

consistently emerge rapidly from the home compartment during trial 

observations. Pairwise correlations were nominally significant in four of the six 

cases. Our finding that bolder individuals perform better in cognitive tasks mirrors 

results reported from several other studies. For instance, boldness has been 

positively linked with associative learning in rainbow trout (Oncorhynchus mykiss; 

Sneddon, 2003), shape discrimination in Cavies (Cavia aperea; Guenther et al., 

2014a), and reversal learning in the Chimango Caracara, (Milvago chimango; 

Guido et al., 2017). While shy-bold type behavioural variation can have important 

fitness consequences (A. D. M. Wilson et al., 2010; Ariyomo et al., 2012; Ballew 

et al., 2017), estimates of contemporary selection on boldness in wild guppies 
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are lacking. Nonetheless, multiple studies have reported among-population 

differences in boldness mapping to differences in predation, a link that is 

consistent with the hypothesis that variable levels of risk could impose balancing 

selection that maintains variation in boldness. Very speculatively, if this is true, 

and if correlations in ID are recapitulated in G, the link between boldness and 

cognitive performance could help maintain variation in the latter. This is because 

selection on any one trait (e.g. boldness) has consequences for the evolutionary 

dynamics of genetically correlated traits (Roff, 2002). We do know that shy-bold 

type personality variation is heritable in the population of guppies under lab 

conditions, (White & Wilson, 2019; White, Houslay, et al., 2019; Prentice, 

Houslay, et al., 2020) but not how selection is acting in the field. 

  In summary, we find evidence that individual guppies do differ in cognitive 

performance as measured by a testing protocol that targets association leaning, 

motor cognition and cognitive flexibility (reversal learning).  We find no support 

for trade-offs occurring either between speed and accuracy (e.g. within the 

association learning trials) or between overall performance across cognitive 

domains. Subject to the caveats highlighted above, the absence of domain-

specific trade-offs and the presence of strong positive domain-general 

correlations in ID mean that the general intelligence model provides a good 

description of the structure of multivariate variation. Our results also suggest that, 

to the extent that directional natural selection favours higher performance in any 

single cognitive domain, it would lead to positively correlated evolutionary 

responses across all domains. However, this inference is dependent on ID being 

a reliable proxy for the G matrix (Brommer, 2013). Greater efforts to quantify G is 

thus an obvious, if challenging, next step towards understanding the maintenance 

of variation in and evolutionary dynamics of animal cognition.  
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Table 3.1:  Outline of behaviours used to assess performance within each 

putative cognitive domain, including details of corresponding set number at 

which each trait was measured and corresponding acronyms used within the 

text. 

 

Set Number Cognitive/ Behavioural 
Domain 

Trait Acronym 

1 Boldness Time to emerge 

(Time taken to emerge into the 
test compartment once the 
compartment door is opened) 

emergence 

1 – 3 Association learning   

(1) 

 

Speed accuracy trade-offs 

 

Decision speed  

(After emergence into test 
compartment, time taken to make 
first choice, measured as 
swimming within 1 body length 
of, and actively exploring correct 
counter.)  

ALspeed 

  Decision accuracy  

(Decision of first choice, choice 
measured as swimming within 1 
body length of, and actively 
exploring correct counter. Either 
correct or incorrect) 

ALaccuracy 

(2,3) Performance Time to eat  

(After emergence into test 
compartment, time taken to eat 
reward from the correct well) 

ALtime 

4, 5 Motor cognition Time to eat  

(After correct choice made (i.e. 
swimming within 1 body length 
of, and actively exploring correct 
counter), time taken to dislodge 
counter and eat the food reward)  

MCtime 

6, 7 Cognitive flexibility Time to eat 

(After emergence into test 
compartment, time taken to 
dislodge disc and eat reward 
from the correct well) 

RLtime 

  Decision accuracy 

(Decision of first choice, choice 
measured as swimming within 1 
body length of, and actively 
exploring correct counter. Either 
correct or incorrect) 

RLaccuracy 

 

  



91 

 

Table 3.2: Estimated among-individual variance (VI) and adjusted repeatability 

(R) from univariate models of all traits. Standard errors are shown in 

parentheses. Also shown are likelihood ratio tests of VI.  

Cognitive Domain  Trait  VI  R Χ2
0,1 P 

Personality - Boldness emergence 0.415 (0.077) 0.439 (0.049) 206.004 <0.001 

Associative Learning ALspeed 0.442 (0.081) 0.460 (0.049) 220.393 <0.001 

ALaccuracy 0.202 (0.045) 0.264 (0.046) 79.989 <0.001 

ALtime 0.341 (0.074) 0.335 (0.050) 186.345 <0.001 

Motor Cognition MCtime 0.275 (0.065) 0.329 (0.054) 171.462 <0.001 

Reversal Learning RLtime 0.372 (0.088) 0.375 (0.058) 178.426 <0.001 

RLaccuracy 0.182 (0.050) 0.203 (0.047) 65.327 <0.001 
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Table 3.3:  ID variance–covariance–correlation matrix from the multivariate mixed model. Estimated variances are shown on the diagonal 1 

(dark grey shading), with correlations above and covariances below. Standard errors are shown in parentheses, and bold font denotes 2 

nominally significant estimates assuming approximate 95% CI of ± 1.96SE.  3 

  4 

ID Matrix  emergence ALspeed ALaccuracy ALtime MCtime RLtime RLaccuracy 
emergence 0.426 (0.0773) 0.818 (0.046) 0.788 (0.062) 0.663 (0.095) 0.239 (0.164) 0.166 (0.176) 0.412 (0.171) 

ALspeed 0.361 (0.072) 0.458 (0.082) 0.894 (0.039) 0.758 (0.074) 0.271 (0.155) 0.228 (0.169) 0.397 (0.168) 

ALaccuracy 0.242 (0.052) 0.285 (0.056) 0.221 (0.046) 0.729 (0.092) 0.124 (0.175) 0.090 (0.184) 0.258 (0.190) 

ALtime 0.286 (0.072) 0.340 (0.076) 0.227 (0.055) 0.437 (0.092) 0.747 (0.082) 0.540 (0.129) 0.423 (0.161) 

MCtime 0.092 (0.067) 0.108 (0.067) 0.034 (0.049) 0.291 (0.075) 0.346 (0.078) 0.817 (0.067) 0.340 (0.167) 

RLtime 0.074 (0.082) 0.106 (0.083) 0.029 (0.060) 0.246 (0.085) 0.331 (0.083) 0.474 (0.112) 0.473 (0.144) 

RLaccuracy 0.122 (0.060) 0.122 (0.061) 0.055 (0.043) 0.127 (0.059) 0.091 (0.051) 0.148 (0.062) 0.205 (0.056) 

 5 
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Figure 3.1: Aerial view of the home tank used to house individual fish, showing 

the experimental compartment and test plate used during each task. 
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Figure 3.2:  Plots of raw data of total performance time across outlined sets and 

trials used to assay each trait. Emergence time (emergence), association 

learning task performance time (ALtime), association learning decision speed 

(ALspeed) and accuracy (ALaccuracy), motor cognition task performance time 

(MCtime), reversal learning task performance time (RLtime) and accuracy 

(RLaccuracy). Error bars represent mean and standard errors of performance time 
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for individuals. Blue line represents regression line through mean performances 

at each trial.  
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Figure 3.3: Trait loadings from the first eigen vector (principal component, PC1) 

of the ID-matrix. This axis explains 57.1% of the among-individual (co)variation 

found in the components of the cognitive phenotype in our guppy population. 

Points show trait loadings from the first eigen vector of our estimate of ID, with 

bars representing 95% confidence intervals on each loading (calculated from 

5000 bootstrapped replicates of the model) 
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4 Chapter 4: Genetic variance for behavioural ‘pred ictability’ of stress 
response 

 

This paper is published as: Prentice, P.M ., Houslay, T.M., Martin, J.G.A. and 

Wilson, A.J., 2020. Genetic variance for behavioural ‘predictability’ of stress 

response. 33(5), 642–652. 

 

4.1 Abstract 
 

Genetic factors underpinning phenotypic variation are required if natural selection 

is to result in adaptive evolution. However, evolutionary and behavioural 

ecologists typically focus on variation among individuals in their average trait 

values, and seek to characterise genetic contributions to this. As a result, less 

attention has been paid to if and how genes could contribute towards within-

individual variance, or trait “predictability”. In fact, phenotypic ‘predictability’ can 

vary among individuals, and emerging evidence from livestock genetics suggests 

this can be due to genetic factors. Here we test this empirically using repeated 

measures of a behavioural stress response trait in a pedigreed population of wild-

type guppies. We ask (1) whether individuals differ in behavioural predictability, 

and (2) whether this variation is heritable and so evolvable under selection. Using 

statistical methodology from the field of quantitative genetics, we find support for 

both hypotheses and also show evidence of a genetic correlation structure 

between the behavioural trait mean and individual predictability. We show that 

investigating sources of variability in trait predictability is statistically tractable, 

and can yield useful biological interpretation. We conclude that, if widespread, 
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genetic variance for ‘predictability’ will have major implications for the 

evolutionary causes and consequences of phenotypic variation.   

 

4.2 Introduction 
 

Among-individual variation in behavioural traits is widely referred to as ‘animal 

personality’ when individuals display behaviours that are repeatable across time 

and context (Gosling, 2001; Bell et al., 2009). Individual differences, which can 

sometimes account for a high proportion of the total observed behavioural 

variation in a population (Biro et al., 2013), are a pre-requisite for natural selection 

on behaviour and there is now abundant evidence that personality traits can affect 

fitness. Since strong directional or stabilising selection is usually predicted to 

erode variation, it is widely hypothesized that personality variation within 

populations is maintained by fitness trade-offs (Godin et al., 1995; Réale et al., 

2003; Dingemanse et al., 2004; Shackleton et al., 2005). Empirical investigations 

of this, and related hypotheses, have been facilitated by wide uptake of linear 

mixed effect models that allow partitioning of among-individual trait variation and 

estimation of behavioural repeatabilities (R) from data containing repeated 

observations of known individuals (Dingemanse et al., 2013; Wilson, 2018) . 

Where pedigree or relatedness data are also available, among-individual 

variance can be further decomposed to estimate behavioural heritability (Wilson 

et al., 2010). While the residual, or within-individual, component of variance is 

normally treated as ‘noise’ arising from plasticity (Nussey et al., 2007) and/or 

measurement error, some authors have argued that it deserves more attention 
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as a source of biological insight (Westneat et al., 2015). Here we follow this 

suggestion in a study of stress-related behaviour in wild-type guppies (Poecilia 

reticulata), and ask whether within-individual variance in behaviour should itself 

be viewed as a trait that can respond to selection. 

 A convenient, but rarely scrutinised assumption of typical statistical 

methods used to characterise personality is that within-individual (or residual) 

variation in behaviour is homogeneous across individuals. However, this need 

not be the case. In fact residual variation can itself differ among-individuals 

(Stamps et al., 2012),  a phenomenon variously referred to as among-individual 

differences in  ‘within-individual behavioural variance’, ‘intra-individual variability’, 

or ‘consistency’ (Müller et al., 2005; Stamps et al., 2012; Biro et al., 2013). Here 

we refer to this phenomenon as ‘predictability’ following terminology used by 

Cleasby et al (2015) and Martin et al (2017). Predictability has been the focus of 

some studies in human psychology (MacDonald et al., 2006; Hoffman, 2007) but, 

in recent years, has become a topic of interest in behavioural ecology (Stamps et 

al., 2012; Westneat et al., 2013). For example, recent empirical studies have 

provided evidence of variation among individuals in predictability of anti-predatory 

behaviours (Briffa, 2013) and parental care (Westneat et al., 2013). It is perhaps 

easy to envisage fitness consequences of within-individual variation (e.g., 

animals behaving less predictably when fleeing a predator could plausibly have 

a higher escape probability), although empirical estimates of selection are scarce.  

Specific hypotheses for the maintenance of among-individual differences in 

behavioural predictability are also lacking, though trade-offs among associated 



 
 
 

100 

 

 

 

life history traits could offer adaptive explanations just as they do for maintenance 

of variation in behavioural means (Westneat et al., 2013; Bridger et al., 2015; 

Mulder et al., 2016). ‘Speed-accuracy’ trade-offs have been proposed where 

observed behavioural outcomes depend on cognitive decision making (Briffa, 

2013) and predictability could also be condition-dependent. In the latter case if, 

for instance, canalising a behavioural response is costly then low predictability 

may represent phenotypic instability caused by poor individual condition.  

Behavioural predictability has also been postulated to have a genetic basis 

of variation among individuals (Martin et al., 2017). The implication is that if 

predictability both causes fitness variation and is heritable, it can itself be viewed 

as a trait that will evolve under natural selection. Though empirical tests of genetic 

variance for behavioural predictability are scarce more is known for non-

behavioural phenotypes. In particular, quantitative genetic methods (Hill, 1984; 

Hill et al., 2004; Rönnegård et al., 2010) have been increasingly applied to 

estimate genetic variation for predictability of production  traits in livestock, 

including milk yield (Rönnegård et al., 2013), litter size (Sorensen et al., 2003) 

and body weight (Sonesson et al., 2013). While increasing the mean of such 

production traits is a long-standing objective of artificial selection strategies, 

reducing the level of variation around the means also offers increased efficiency 

(and profitability) in livestock production and processing. Consequently, the 

reality that genetic variance ‘for variance’ occurs has prompted development of 

strategies to select more predictable genotypes, and thus reduce variation in 

target traits (Hill et al., 2010).   
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Evolutionary ecologists are now beginning to address the concept of 

predictability in relation to behavioural and life history traits with the goals of 

determining whether behavioural predictability consistently varies among-

individuals, whether this variation has a genetic basis, and how (if at all) 

predictability maps to fitness. A hindrance addressing these questions stems 

from a lack of consensus on how best to quantify and analyse predictability. Most 

studies to date have taken a two-step approach by, for instance, fitting a linear 

model to a set of behavioural observations, then calculating an estimate of within-

individual variation using model residuals for each individual,  which are then 

used in a subsequent analysis (Stamps et al., 2012; Biro et al., 2013; Highcock 

et al., 2014). Though intuitive, this approach is statistically problematic for a 

number of reasons, not least of which is that uncertainty in the predictions of the 

first model is not accounted for, increasing the risk of type 1 errors and 

anticonservative hypothesis tests (Houslay & Wilson 2017). Fortunately, a more 

robust approach to model variation in behavioural predictability is provided by the 

double hierarchical generalized linear model (DHGLM) developed by Lee and 

Nelder (2006). This model is an extension of the familiar ‘random intercept’ mixed 

model, however instead of only allowing random and fixed effects on the mean 

trait distribution, it also allows them on the residuals. In other words, it allows us 

to relax the assumption that residual variance is homogeneous, and ask whether 

it varies across levels of fixed (e.g. sex) or random (e.g. individual identity) effects 

(Cleasby et al. 2015; Lee & Nelder 2006).  
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Applied to repeated measures behavioural data, double-hierarchical 

models therefore allow simultaneous estimation of 1) among-individual variation 

in (mean) trait expression (i.e. the normal target of personality studies), 2) 

variation in predictability of a trait (i.e. differences in within-individual variance) 

(Lee & Nelder 2006) and 3) the correlation between the mean and the 

predictability at the individual level. Furthermore, given pedigree data, the 

DHGLM approach can be combined with the quantitative genetic ‘animal model’ 

(in a ‘double-hierarchical animal model’ DHAM), allowing among-individual 

variance to be further decomposed into genetic and non-genetic components. To 

date, only one study has used this approach to test for and estimate the genetic 

basis of behavioural predictability (Martin et al., 2017). Using a DHGLM, the 

authors of this study found evidence of among-individual variation in the 

predictability of docility (the reaction to being trapped and handled), as a 

repeatable behaviour in marmots (Marmota flaviventris). They also showed that 

individual marmots that were (on average) less docile were also less predictable. 

Using pedigree information, they went on to show that both (mean) behaviour 

and its predictability are heritable in this population, and so evolvable under 

selection. 

Here we use a captive population of wild-derived Trinidadian guppies 

(Poecilia reticulata) to test for variation in behavioural predictability and ask 

whether, if present, it arises in part from genetic differences among individuals. 

We focus on a putatively stress-related context, specifically the way in which an 

individual behaves in reaction to isolation in a novel environment, such as an 
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‘Open Field Trial’ (OFT) arena. The OFT is a widely used paradigm for 

characterising personality differences related to exploration, activity, and ‘shy-

bold’ type variation (Gosling, 2001; Bell et al., 2009). Previous work with P. 

reticulata has demonstrated that behaviours displayed during OFT are 

associated with exploration, but also risk-taking and stress response (White et 

al., 2016).  The fact that the OFT presents a mild stressor is notable because the 

widely used concept of ‘stress coping style’ predicts that individuals vary along a 

proactive/reactive continuum of variation (Coppens et al., 2010; Koolhaas et al., 

1999; Sih, Bell, & Johnson 2004), with proactive individuals tending to express 

more ‘fight or flight’ behaviours on average, but also forming more rigid, 

stereotyped routines more rapidly (Koolhaas et al., 1999). In other words, the 

coping style verbal model suggests variation among individuals in not only mean 

behaviour and behavioural predictability, but also correlation structure between 

these.   

Previous studies of this guppy population have already shown that the 

behavioural responses to the OFT are repeatable, but also plastic with respect to 

experimentally-manipulated stressor severity (specifically perceived predation 

risk) (Houslay et al., 2018). We also now know from pedigree-based analysis that 

(average) behaviours are heritable (White & Wilson, 2019; White, Houslay, et al., 

2019), and that there is genetic correlation structure between OFT behaviour and 

cortisol expression (strengthening the view that the OFT provides an assay of 

behavioural stress response; (Houslay et al., 2019)).  Here we aim to build on 

these earlier studies by, firstly confirming the repeatability and heritability of mean 
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behaviour in an independent sample; secondly, simultaneously estimating 

among-individual variation in mean behaviour and predictability using a DHGLM; 

and thirdly, asking whether - if present – variation in predictability is itself heritable 

using a DHAM. Finally, we test the prediction of the stress coping style model – 

at both among-individual and genetic levels – that there will be (co)variance 

between mean behaviour and predictability, with individuals (genotypes) 

displaying more ‘flight’ type behavioural stress responses also being more 

predictable. In the context of a DHGLM, we are thus predicting to have a positive 

covariance between a ‘flight’ type behavioural response and its variance at the 

individual (genotype) level. The ‘flight” type behavioural response here was a 

derived trait called relative area, where individuals that have a low relative area, 

i.e. displaying more flight type response, are expected to have a low within-

individual variance (i.e. high predictability). 

 

4.3 Methods 
 

Husbandry 

Behavioural assays were carried out on wild-type guppies from a captive 

population with known pedigree structure housed at the fish laboratory at the 

University of Exeter’s Penryn campus. Data used here have not previously been 

published, but were collected as part of a larger study for which methods have 

already been extensively described elsewhere (White et al., 2016; White & 

Wilson, 2019; White, Houslay, et al., 2019; Houslay et al., 2019). In brief, all fish 

used were descended from wild guppies caught from the lower Aripo River, 
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Trinidad in 2008. They were offspring of known parental crosses (as detailed in 

White & Wilson, 2018, for detailed breeding protocol), that had been raised in 

families before being tagged at maturity and then allocated to mixed family 

groups. Groups comprised 16-20 individuals (at 50:50 sex ratio) in 15 l tanks, with 

24 tanks within each “stack” having a common sump and shared recirculating 

water supply.  Fish were maintained at 22–24°C on a 12:12 light/dark cycle, with 

weekly 25% water changes on each stack, and were fed to satiation twice daily 

on commercial flake food and live brine shrimp (Artemia salina).  Note these fish 

were part of a larger pedigree structure containing 1,518 individual fish within a 

genetic pedigree structure comprised of maternal full-sibships nested within 169 

paternal half-sibships (as described in Houslay et al., 2019). Here, we pruned the 

full pedigree using the prunePed function in the R package MCMCglmm 

(Hadfield, 2010) to just include the informative individuals. Our final data set 

contained phenotypic date for 330 individuals from a pedigree with 2113 maternal 

offspring links, 1654 paternal offspring links, 218 sires and 344 dams, with a 

maximum depth of 4 generations.  

Behavioural data collection and trait definition 

Behaviour was assayed using Open Field Trials (OFT), a standardised assay of 

risk-related behaviours that is widely used in rodent, fish and bird studies (Boulton 

et al., 2014; White & Wilson, 2019; White, Houslay, et al., 2019). Our assay 

protocol closely followed that of Boulton et al. (2014) with repeat measures on 

related individuals providing the data structure needed to estimate among 

individual and genetic variance in personality and predictability. However, here 
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we conducted more repeats per individual with a planned maximum of 10 times. 

In practice some mortality occurred over the course of the data collection period 

(which was five weeks for each fish). Thus, in total we conducted 2970 

behavioural assays on 330 individuals (a mean of 9 per fish) from 23 groups. All 

experimental data was collected by the same technician, and carried out in two 

blocks for purely logistical reasons (Batch A; n = 176, Batch B; n= 154). For each 

block, fish were trialled over five weeks, with data collection occurring in weeks 

1, 3 and 5 at not less than 48 hour intervals (weeks 2 and 4 providing ‘breaks’).  

Each OFT comprised a fish being netted from its home tank and placed 

into an ‘arena’ comprised of a 30 × 20 cm fish tank filled to 5 cm water depth and 

lit from below with a light box. (Three identical arena ‘set-ups’ A, B and C were 

used concurrently during data collection to facilitate high throughput phenotyping, 

with fish allocated haphazardly among them).  Following a 30 s acclimation 

period, individuals were tracked for 180 s from a Sunkwang C160 video camera 

fixed above each tank and the tracking software Viewer II 

(http://www.biobserve.com). Each fish was then returned to its home tank. 

Behavioural experiments were conducted under license from the Home Office 

(UK) and under the auspices of the Animal (Scientific Procedures) 1986 Act, and 

with local ethical approval from the University of Exeter.  

A number of specific variables assayed by OFT have been used to assay 

‘risk-prone/risk-averse’, or ‘shy-bold’ type personality variation in fishes including 

guppies (Sih, Bell, & Johnson, 2004; White & Wilson, 2019). Here we extracted 

two variables from the video - total track length swum (cm) and the area covered 
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(percent of tank area explored, %). While both are expected a priori to be 

repeatable and heritable (Houslay et al., 2018; White & Wilson, 2019; White, 

Houslay, et al., 2019), previous work has failed to detect a strong positive 

(among-individual) correlation. This is notable since, if fish move randomly in the 

OFT arena, we expect area covered to increase as a monotonic function of track 

length. The lack of expected correlation actually arises from variation in how fish 

respond behaviourally to the stressor stimulus of the OFT. This variation is 

revealed by calculating the derived trait of relative area –defined as the difference 

between observed area covered and the predicted area covered given a ‘random 

swim’ of the track length actually observed (Houslay et al., 2019). To do this we 

(i) simulated ‘random swims’ in the arena across the full range of observed track 

lengths; (ii) estimated the ‘null’ relationship between simulated area and 

simulated track length using a fourth order polynomial regression (which captured 

97.85% of the variation); and (iii) used the regression equation to predict area 

covered given a ‘random swim’ corresponding to each observed track length. 

Code and a full description of the simulation approach is provided in Houslay et 

al. (2019). 

Biologically, high values of relative area arise from efficient exploration of 

the arena by a (putatively) less stressed individual (Figure 4.1 a). In contrast, low 

values of relative area arise from trials in which fish swim rapidly (yielding a high 

track length) but also display thigmotaxis (i.e. staying close to the tank wall 

resulting in a low area covered) (Figure 4.1a). This scenario is commonly 

observed and is biologically interpretable as a ‘flight’-type stress response (i.e. 
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the fish is seeking escape from the arena). 

 

Statistical analyses 

First, we sought to confirm our expectations from previous work on this population 

that there would be among-individual variation for mean behaviour (relative area). 

We did this using a simple univariate linear mixed-effects model fit by REML 

(restricted maximum likelihood) using ASReml-R 3.0  (Butler  2009; Gilmour et 

al. 2002) within R version 3.4.1 (R Core Team, 2017) in which relative area was 

modelled with random effects of individual identity and social housing group 

(Model 1). In addition to the mean, we included fixed effect factors of arena set-

up and fish sex, as well as within-group trialling order (as a continuous variable 

to account for any cumulative disturbance effect of removing fish sequentially 

from the home tank). Conditional F-statistics were used to determine the 

significance of fixed effects although we note they were simply included to control 

statistically for sources of variance not directly relevant to our present goals. 

Random effects were tested using likelihood ratio tests (LRT), assuming twice 

the difference in log-likelihood between full and reduced models is distributed as 

a 50:50 mix of χ20 and χ21 as recommended by Visscher (2006). We make the 

standard assumptions that random effects and residuals are normally distributed 

with means of zero and variances to be estimated. Importantly in the current 

context we also make the standard (but rarely stated) assumption that ‘residual’ 

variance is homogeneous across individuals (and fixed effect classes). We also 

calculated an estimate of the adjusted repeatability (conditional on fixed effects) 

as the intraclass correlation 0 = �: �;⁄ , where �: is the among-individual variance 
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and �; is the total phenotypic variance. �; is therefore calculated as �: + �>? +
�?, where �>? is the among-group variance (which accounts for environmental 

and social sources of variation among groups within home tanks) and  �? is the 

residual (within-individual) variance. The adjusted repeatability 0 is thus the 

proportion of phenotypic variance explained by among-individual differences in 

behavioural mean, after controlling for fixed effects (Nakagawa et al., 2010).  

 We then extended this model by including the individual genetic merit for 

(mean) behaviour as an extra random effect (Model 2). This becomes the 

standard repeated measures animal model of quantitative genetics (with 

additional fixed and random effects as described above), and allowed us to utilise 

the pedigree data to partition �: into additive genetic (�@) and non-genetic, 

permanent environment (�;A) components. We tested the significance of �@ by 

LRT (as described above) and estimated the narrow sense heritability ℎ (where 

ℎ =�@/�; and �; is the sum of the variance components and thus conditional on 

fixed effects). 

 To estimate among-individual variation of predictability of the behaviour 

(relative area), we used a double hierarchical generalized linear effect model 

(DHGLM) (Lee et al., 2006; Cleasby et al., 2015) of relative area (Model 3). The 

DHGLM allows for the simultaneous analysis of a mean level model and a 

dispersion level model each including fixed and random effects. We estimated 

not only the among-individual variation in residual variance (i.e. variation in 

predictability (�:B)) but also the correlation between the mean behaviour and its 

predictability at the individual level (Cleasby et al., 2015). To simplify slightly, we 
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included as fixed effects in the mean model only those variables that were 

statistically significant in Model 1, while for the dispersion part of the model, we 

included a fixed effect of sex (i.e. males and females are permitted to differ in 

average predictability). We included group and individual identity as random 

effects in both the mean and the dispersion part of the model. We also modelled 

the covariance (at group and individual levels) between the random means and 

the predictabilities of relative area. 

 Finally we extended Model 3 to include random genetic effects on both the 

mean and the predictability of the behaviour in a double hierarchical animal model 

(DHAM) (SanCristobal-Gaudy et al., 2009; Rönnegård et al., 2010). The DHAM 

thus allows us to partition among-individual (co)variance into genetic and non-

genetic (permanent environment) components using the pedigree. This DHAM 

(Model 4) has the same fixed effect structure as Model 3 for both mean and 

dispersion parts of the model. For the random effects, we included a permanent 

environment, an additive genetic and a group effect on both the mean and the 

dispersion models. Thus the double hierarchical models (Model 3 and 4) relate 

to each other in the same way as the ‘normal’ mixed models with random effects 

on the mean behaviour only (Models 1 and 2). In both model 3 and 4, the residual 

variance is dependent on the fixed and random effects included in the dispersion 

part of the model. However, it is possible to estimate an average residual variance 

for DHGLMs, �?. Assuming fixed effects in the dispersion part of the model are 

centred, we can estimate the (average) residual variance in model 4 as follow: 
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�? = $C% DE + �;AB
2 + �@B

2 + �>?B
2 F 

where η is the intercept of the dispersion model and �;AB, �@B and �>?B are the 

variance components associated with the permanent environment, genetic and 

group random effects in the dispersion part of the model respectively. 

 Both DHGLM and DHAM were fitted in a Bayesian framework using Stan 

(Carpenter et al., 2017) within R version 3.4.1 (R Core Team, 2017) via the 

package RStan version 2.18.0 (Stan Development Team, 2018). In order to 

optimize model specification in Stan, the residual variance was modelled on the 

log-normal scale and the covariance matrices of random effects were estimated 

as standard deviations and correlation matrices. We used uninformative (or 

weak) priors on all parameters. For fixed effect priors we used a normal 

distribution with mean of zero and a variance of 100. We used a half-cauchy 

distribution (cauchy(0,5)) for standard deviations and for the correlation matrices, 

we used a LKJ correlation distribution, parametrized in terms of its Cholesky 

factor (allowing for a uniform distribution between -1 and 1 for the correlation). 

Model 3 was fitted using 5 Markov chains each including 6,000 iterations, 2,000 

burn-in iterations and a thinning interval of 10. Model 4 was fitted using 5 chains 

each with 43,000 iterations, 3,000 burn-in iterations and a thinning interval of 100. 

Convergence was first assessed by visually inspecting the trace plots, which were 

also used to identify an appropriate number of burn-in iterations. We then 

checked that the Monte Carlo error was less than 1-5% of the posterior standard 

deviation, that the Brooks-Gelman-Rubin (BGR) diagnostic converged to 1 ± 0.2 
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and that the autocorrelation was below 0.05 for all parameters (Kass et al., 1997). 

The mode and 95% Highest Posterior Density Intervals (HPDI) were used to 

summarise the posterior distributions of the model parameters. For all calculated 

parameters (e.g., R, h2), the parameters are calculated at each iteration and we 

reported their posterior mode and HPDI. Consequently, their estimates might 

differ slightly from the calculation done directly on the posterior mode of their 

components. 

 

4.4 Results 
 

Model 1 revealed significant among-individual variation in relative area, 

#�$%$&'&()*)'+(,)'ℎ ./), 0 = 0.288 (0.024), 45,� = 517.44, ! < 0.0017 (Table 

4.1). Under this model the social group effect was also significant (45,� =
10.63, ! = 0.001 though it only explained 3.7% (1.9%) of the total variance.  

Comparison between model 1 and 2 provided strong evidence for significant 

additive genetic variance in mean behaviour #45,� = 10.88, ! < 0.0017, with the 

latter yielding an estimated heritability for relative area of ℎ = 0.110 (0.052), 
conditional on fixed effects (Table 4.1). These results are consistent with 

previously reported estimates using independent data from the same population 

(ℎ = 0.080 (0.003)) (Houslay et al., 2019), but note that both estimates are 

conditional on fixed effects that differ slightly. Fixed effects estimated from the 

current (and subsequent) models are presented in the Supplementary 

Information (Table S4.1 and S4.2, Appendix 4) for completeness, although are 

not directly relevant to our hypotheses in this study.   
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 The mean part of model 3 yields very similar point estimates of individual 

and group level variances to model 1, although the posterior of the latter was not 

very clearly distinct from zero. The repeatability of (mean) behaviour under Model 

3 is the same as that obtained in the standard repeat measures mixed model 

(Model 1) with 0 =0.288 (95% CrI , 0.248-0.348). More notably Model 3 provided 

evidence of among-individual variance in predictability, and also of a strong 

negative correlation between the individual mean and predictability of behaviour 

(Table 4.1). While frequentist-type P values are not applicable given the Bayesian 

inference, the 95% credible interval of the individual level variance in the 

dispersion part of the mode (�:B) is clearly distinct from zero. Similarly, the credible 

interval of the individual mean-predictability correlation is narrow and does not 

span zero (from which we can conclude statistical ‘significance’). 

These findings are mirrored at the genetic level. Thus Model 4 yields very 

similar estimates for the heritability of (mean) behaviour. However, the DHAM 

also shows that both the variation in individual predictability and the mean-

predictability correlation estimated in Model 3 have a genetic basis (Table 4.1). 

More precisely, both the genetic and permanent environment correlations 

between the mean behaviour and the variation (i.e. predictability) are strongly 

negative with 95% CrI that do not overlap zero (Table 4.1, Figure 4.2).  Thus, 

individuals - and genotypes – that are more explorative (express high mean 

relative area) are also more predictable (i.e. less variable) in their behavioural 

response to the OFT. Point estimates of the corresponding group level 

correlations are similarly strongly negative, though we reiterate that the amount 
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of variance in mean behaviour explained by group is low.  Fixed effect estimates 

from all models are not discussed here but are reported in full in the 

Supplementary Information (Supplementary Information, Tables S4.1 and S4.2). 

 

4.5 Discussion 
 

Here, we show evidence of among-individual variation in stress-related behaviour 

in the guppy P. reticulata and show that variation arises partly through heritable 

differences among fish.  The present data thus provide confirmation of earlier 

results showing genetic variation for individual mean behaviours expressed 

during open field trials (Houslay et al., 2018, 2019; White & Wilson, 2019; White, 

Houslay, et al., 2019). However, while previous analyses were limited to 

individual means, we now also show that (i) fish differ in behavioural predictability 

of relative area; (ii) variation in predictability is underpinned by additive genetic 

effects, and (iii) individual mean behaviour is genetically correlated with 

predictability. Our results show that  the assumption of homogeneous residuals, 

which is typical to linear (mixed) models applied in personality research 

(Dingemanse et al., 2013; Brommer, 2013), is violated. Fortunately, this will not 

generally bias measurement of among-individual or additive genetic variance in 

mean behaviours. However, it does highlight how standard analytical approaches 

will necessarily miss interesting and important components of variation among-

individuals. In what follows we first discuss our findings in relation to the 

behavioural stress response in guppies. We then broaden our focus with the aim 

of highlighting several consequences of (genetic) variance in predictability. We 
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argue that this phenomenon has interesting implications for the evolution of 

phenotypes under selection that are more general than the current behavioural 

context. 

First, we found variation in (mean) risk-related behaviour in this population of 

guppies at both the individual and genetic level. This is consistent with our 

previous work on the same population (Houslay et al., 2019), other species of 

wild-type poeciliid (Boulton et al. 2018), and the growing empirical evidence of 

heritable ‘personality’ variation across taxa (Dochtermann et al. 2014). Second, 

and of greater novelty, is the finding that behavioural predictability differs among 

individuals. Furthermore, our analyses demonstrate correlations between mean 

and predictability such that individuals expressing low relative area (i.e. more 

flight-type behavioural responses) are also less predictable (i.e. more variation in 

response to the OFT). The presence of correlation structure between behavioural 

mean and predictability is consistent with findings at the phenotypic (among 

individual) level from several other recent studies (Stamps et al., 2012; Mitchell 

et al., 2016). For example, a negative phenotypic correlation between mean 

activity rates and within-individual variation was previously estimated in guppies, 

where individuals that were more active, were also more predictable (Mitchell et 

al., 2016). Here, by using pedigree analysis we are also able to show that these 

individual-level patterns are underpinned by correlated genetic effects on 

behavioural means and predictabilities. To our knowledge only one previous 

study has attempted to measure a genetic correlation between mean behaviour 

and predictability (Martin et al., 2017). This study of docility in marmots estimated 



 
 
 

116 

 

 

 

a negative correlation between mean behaviour and predictability, though the 

genetic correlation was not statistically significant.   

Although the stress coping style (SCS) model does propose a relationship 

between average behavioural response to a stressor stimulus, and the 

predictability of behaviour, our results do not fully align with its specific 

predictions. This is because the structural pattern of observed variation in relative 

area found is not consistent with the proactive-reactive model of SCS (Koolhaas 

et al., 1999; Sih, Bell, & Johnson, 2004; Coppens et al., 2010) in which proactive 

individuals are expected to express more ‘fight or flight’ stress responses on 

average, but are also expected to be ‘bolder’ and/or more exploratory than 

reactive types. In fact, variation in relative area is orthogonal to this expectation, 

because it discriminates between a (putatively stressed) ‘flight’ response to the 

OFT (low relative area) and a (putatively less stressed) exploratory response 

(high relative area).  In other words, relative area is probably better interpreted 

as measuring the magnitude, rather than ‘style’ of the behavioural stress 

response. Thus, while SCS predicts that high (mean) ‘flight’ behaviour will be 

linked to high predictability within the proactive coping style, we find it is linked to 

low predictability instead and likely reflects a high magnitude of stress 

responsiveness. While this means the stress coping model does not provide a 

good description of guppy responses to the OFT (Houslay et al., 2019), we 

nevertheless argue that it provides a useful heuristic framework precisely 

because it emphasises the need to evaluate integration among stress-response 

components in a multivariate empirical framework. Here we show links between 

mean behaviour and predictability, but there is also evidence of genetic 
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integration between (mean) behaviour and glucocorticoid (GC) physiology (flight 

type behaviours being associated with higher GC levels; Houslay et al. 2019). It 

therefore seems likely that predictability will also be genetically correlated with 

GC responses and their rates of habituation to repeated or chronic stressor 

exposure (Houslay et al., 2019) though this remains to be confirmed.  

Before considering the evolutionary implications of this genetic covariance 

structure further, it is perhaps worth noting that mean-variance (or predictability) 

relationships may sometimes be inevitable given trait definitions and distributions 

(Tatliyer et al., 2019).  Here we derived the trait of relative area as a biologically 

relevant measure of behavioural stress response using observed data on the 

actual area covered and the distance swum. Specifically, relative area is defined 

as the difference between observed area covered and the predicted area covered 

given a ‘random swim’ as long as the observed track length. It is inevitable that 

the possible range of observed area covered is restricted for trials of low track 

lengths (i.e. a fish cannot cover 100% of the area with a very short track length) 

and, thus it is possible that (genetic) variance in predictability of relative area 

arises in part from (genetic) variance in mean track length. Although such 

dependencies might in principle also drive the (genetic) correlation between 

mean and predictability of relative area, this would lead in the present case to a 

positive correlation (Tatliyer et al., 2019), not a negative one as estimated here. 

However, to explore this further we fitted a post hoc DHAM model of the observed 

area covered (Supplementary Information, Table S4.3). We found the same 

pattern as reported above with respect to relative area; negative correlations were 

present between the mean behaviour and predictability at the individual and 
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genetic levels. Thus, while it is necessarily true that our quantitative results for 

relative area depend on track length, we do not think there is any sense in which 

our qualitative conclusions are driven by mathematical artefacts of trait definition.  

For completeness, we also ran a further DHAM for track length (another 

biologically relevant trait often used to investigate personality traits such as 

boldness or activity) (Burns et al., 2008; S. J. White & Wilson, 2019) 

(Supplementary Information, Table S4.4). We found among-individual differences 

in the trait mean and within-individual variance, which was in part due to additive 

genetic effects. This further suggests that the presence of genetic variance in 

predictability is not a particularly trait-limited phenomenon.  

Our results add to the small but emerging set of studies evidencing among-

individual and genetic variance for predictability (or intra-individual variation). If 

widespread, this could have major implications beyond the present focus on 

stress response and coping strategies. Variance among individuals means that 

behavioural predictability could be a direct target of selection, and if this does 

occur, the fact that it is heritable means it could evolve under selection. 

Furthermore, genetic correlation between the individual mean and the variation 

around it will allow correlated evolution of predictability in response to selection 

on ‘personality’ (individual average behaviour) and vice versa. Clearly our study 

tells us nothing about the fitness consequences of behavioural predictability in 

wild guppies. Nonetheless, low predictability can sometimes be selectively 

advantageous for prey species under specific predation threats (Briffa, 2013; 

Chang et al., 2017). For instance, in the jumping spider (Cosmophasis 

umbratical) low predictability is advantageous when faced with aggressive 
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predators (Chang et al., 2017).  There is also some evidence for predictability-

fitness associations in the pill bug (Armadillidium vulgare), where individuals 

become less predictable in risk-taking behaviour in unfamiliar, rather than familiar 

environments (Horváth et al., 2019) (but see Richardson et al. 2018 for a counter-

example). Predator-mediated direct selection on predictability thus seems at least 

a plausible hypothesis in guppies (though indirect selection arising from causal 

effects of the genetically correlated mean behaviour could be more important).  

We also note that, while advantages of low predictability do occur in a 

behavioural context (Briffa, 2013), it seems likely that high within-individual 

variation may more often be costly. For instance, given a single (constant) 

phenotypic optimum, an individual predictably expressing this value across 

multiple selective events will have higher fitness than a less predictable individual 

with the same mean phenotype. Where canalisation of some continuously 

distributed trait around the optimum is itself ‘expensive’, individuals of lower 

‘quality’ or ‘condition’ may also be less predictable in trait expression and incur 

costs as a result (Westneat et al., 2015). In other words, low predictability can be 

a symptom of inability to buffer trait expression against environmental effects. A 

complementary perspective at the genetic level is gained by recognising that 

heritable differences in predictability  can equally be viewed as ‘genetic 

heterogeneity of environmental variance’ (Mulder et al., 2007). Thus, this 

phenomenon is a manifestation of genotype x environment (GxE) interaction, in 

which the genotype-phenotype map is sensitive to one or more environmental 

parameters (Nussey et al., 2007). Although GxE are normally investigated across 

gradients of some environmental parameter defined a priori, our results show that 



 
 
 

120 

 

 

 

some guppy genotypes are more phenotypically plastic (i.e. less predictable) than 

others in respect to unknown (and uncontrolled) environmental variables. This 

shows that application of DHAM could be a useful strategy for characterising the 

potential importance of GxE in scenarios where the most relevant or appropriate 

descriptor of environmental variation is itself unclear (e.g. wild populations 

experiencing complex multivariate changes in environmental state). It is notable, 

for instance, that (linear) reaction norm models applied to wild vertebrates in 

naturally variable environments have generally detected limited support for GxE 

(e.g. Hayward et al. 2018), while evidence from experimental studies that 

manipulate environment conditions is compelling (Pigliucci et al., 1995; Ingleby 

et al., 2010; Des Marais et al., 2013). One explanation for this might be the 

(univariate) environmental descriptors used in the former, and/or the assumption 

that reaction norms are linear, have been inadequate or inappropriate choices. 

Typically ‘extrinsic’ variables (e.g. measures of climate) have been used, though 

some studies used environment specific trait means (Ramakers et al., 2018) or 

other measures of average ‘performance’ (e.g., annual mortality; Wilson et al., 

2006) as proxies for overall environmental quality. This approach is common in 

plant studies (following Finlay & Wilkinson, 1963) and may well have wider utility 

in evolutionary ecology. Regardless, demonstrating the presence of genetic 

variance for ‘predictability’ in behaviours or other traits could be a useful starting 

point for more targeted investigation of which specific environmental factors 

genotypes are responding to, and of what functional form those responses take. 

In conclusion, here we build on previous studies highlighting genetic 

variation in mean behavioural stress response traits, to show that variance is also 
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present in predictability of behaviour. This variation among individuals is itself 

underpinned by additive genetic effects, meaning behavioural predictability can 

be viewed as a trait with adaptive potential under selection. Furthermore, this is 

one of the first studies to estimate a genetic correlation between mean behaviour 

and predictability (i.e. within-individual variation), and so highlights the 

expectation that these aspects of phenotype will coevolve under selection. We 

recommend wider application of double hierarchical models, including the DHAM 

used here, to investigate the presence and causes of among-individual 

heterogeneity in environmental sensitivity of phenotypes generally (including but 

not limited to behaviours). By doing this we will gain a more complete picture of 

how variation is structured within and across hierarchical levels, and 

consequently a deeper understanding of the evolutionary ecology of labile traits 

in general. 

 



 
 
 

122 

 

 

 

Table 4.1:  Estimated variance components and derived parameters for mean and dispersion parts of the four models of relative area. 

Subscripts denote residual (R), group (GR), individual (I), permanent environment (PE) and additive genetic (A) components of variance 

and the corresponding mean-predictability correlations (r). We use the second subscripts (v) to denote variance in the dispersion part of 

the model (applicable to models 3 and 4 only). Also shown are the familiar measures of repeatability (R) and heritability (h2) of mean 

behaviour (estimated at an average residual variance in models 3 and 4). Values in parentheses indicate approximate standard errors for 

models 1 and 2, and 95% credible intervals for models 3 and 4.  

Parameter  Model 

1 (repeatability model) 2 (animal model) 3 (DHGLM) 4 (DHAM) 

VR 0.640 (0.018) 0.640 (0.018) 0.643 (0.587, 0.716) 0.617 (0.563, 0.74) 

Mean  

�>?  0.035 (0.019) 0.034 (0.018) 0.020 (0.004, 0.059) 0.021 (<0.001, 0.056) 

�:  0.273 (0.028) - 0.234 (0.191, 0.295) - 

�;A  - 0.173 (0.044) - 0.138 (<0.001, 0.226) 

�@  - 0.105 (0.052) - 0.052 (0.004, 0.302) 

R 0.288 (0.024) - 0.269 (0.221, 0.309) - 
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pe2 - 0.182 (0.047) - 0.165 (<0.001, 0.242) 

h2 - 0.110 (0.052) - 0.092 (0.009, 0.306) 

Predictability (dispersion) 

�>?B  - - <0.001 (<0.001, 0.038) <0.001 (<0.001, 0.038) 

�:B  - - 0.328 (0.244, 0.421) - 

�;AB  - - - 0.157 (<0.001, 0.264) 

�@B  - - - 0.146 (0.034, 0.420) 

Mean-predictability correlation 

rGR - - -0.482 (-0.922, 0.486) -0.603 (-0.951, 0.473) 

rI - - -0.955 (-0.988, -0.858) - 

rPE - - - -0.956 (-0.998, -0.199) 

rA - - - -0.921 (-0.987, -0.623) 
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Figure 4.1:  (a) Illustration of contrasting Open Field Trials (OFT), showing a) 

tracks swum by two individual fish (1, 2) as blue lines, and b) the resulting trait 

data. Here both fish swim a very similar track length, but individual 1 also covers 

a high percentage of the tank (Area covered = 65.7%) and displays an exploratory 

phenotype. By comparison Individual 2 covers much less area and is exhibiting 

a characteristic stress response of fast swimming along the tank walls. This 

results in very different values of relative area (0G) (where RA = GH− GH ̂IJ, GH = 

area covered,  = track length, and GĤIJ is the expected area covered in a random 

swim of observed TL, predicted by a fourth order polynomial regression fitted to 

simulated data; see Houslay et al 2019 for further details). 
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Figure 4.2:  Estimated genetic matrix of relative area mean and trait predictability. 

The black line captures 95% of variance in the genetic correlation between mean 

and predictability in relative area. The grey ellipses are bootstrapped replicates 

from model 4, showing uncertainty around the estimated matrix. Individual points 

are best linear unbiased predictions (BLUPs) of genetic values from individuals 

in our data set. 
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5 Chapter 5: Genetic and context-specific effects o n inhibitory control 
performance in the Trinidadian Guppy ( Poecilia reticulata)  

 

 

5.1 Abstract 
 

Among-individual variation in cognitive traits, which are widely assumed to have 

evolved under adaptive processes, is increasingly being demonstrated across 

animal taxa. As variation among individuals is required for natural selection, 

characterising the extent of individual differences is an important step towards 

understanding how cognitive traits evolve within populations. However, adaptive 

evolution also requires that differences in cognitive performance are heritable. 

Here we use a quantitative genetic study of wild-type guppies repeatedly exposed 

to a ‘detour task’ to test for genetic variance in the cognitive trait of inhibitory 

control. We also test for genotype-by-environment interactions (GxE) by testing 

related fish under alternative experimental treatments that differ in degree of 

available visual information (using transparent vs semi-transparent barriers in the 

detour task). Finally, by analysing behavioural data collected over a pre-testing 

training period (in which a cue-food reward association was trained), we seek to 

validate the assumption that the detour task measures variation in cognitive 

processes (specifically inhibitory control) that is distinct from among-individual 

differences apparent during training (e.g., personality, motivation, associative 

learning ability). We find among-individual variation in detour task performance, 

consistent with differences in inhibitory control. However, GxE means that 

heritable variation only contributes to this in one treatment (the fully transparent 
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cylinder). This suggest that the adaptive evolutionary potential of inhibitory control 

may be highly sensitive to environmental conditions. Equivalently, this result 

means that the plastic response of detour task performance to treatment 

environment is itself genetically variable. We find individual performance in 

training trials positively predicts performance in the detour task. However, among-

individual variation in the former is not a sufficient explanation for the latter. This 

supports our assumption that detour task performance effectively captures 

variation in cognitive processes (putatively inhibitory control), that is distinct from 

variation in other factors (cognitive or non-cognitive) expected to generate 

among-individual variation in training performance.  

 

 

5.2 Introduction 
 

Cognitive traits, defined as the set of mechanisms by which animals acquire, 

process, store and use information from their environment (Shettleworth, 2009a; 

Healy et al., 2010), are widely assumed to have evolved under adaptive 

processes. While comparative approaches to cognitive performance have a long 

history (for a review see Healy, 2019),  a more recent aim within behavioural 

ecology has been to characterise variation in cognitive performance among 

conspecific individuals within populations (for a review see Boogert et al., 2018).  

Variation among individuals is required for natural selection and is central to our 

understanding of adaptive evolutionary dynamics for any aspect of the phenotype 

(Roff, 2002). Thus, characterising the extent of individual differences in cognitive 

performance, as well as their consequences for fitness, will shed light into how 
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cognitive traits evolve within populations, and so diverge among populations and 

among species. However, adaptive evolution requires not just variation and 

selection, but also that differences in cognitive performance are heritable 

(Croston et al., 2015; Thornton et al., 2015). Here we test this premise using a 

quantitative genetic study of wild-type guppies repeatedly exposed to a ‘detour 

task’. Differences in performance within the detour task are expected to arise 

from cognitive processes (including, but not limited to, inhibitory control). In order 

to exclude the possibility that non-cognitive factors (such as motivation, state or 

personality) or other cognitive factors (such as associative learning ability) could 

drive individual performance in the detour task, we compared performance with 

prior training trials to aid discrimination between sources of variation. 

Recent studies have shown high levels of variation in cognitive 

performance among individuals of the same species (for a review see Boogert et 

al., 2018; Cauchoix et al., 2018), a  pattern that is seen across taxa, from insects 

(Li et al., 2017), fish (Prentice, Mnatzaganian, et al., 2020), to mammals (Nawroth 

et al., 2017) and birds (Guillette et al., 2015). Furthermore, among-individual 

differences in cognitive performance extend across many aspects, or ‘domains’, 

of cognition (e.g. spatial memory (Sonnenberg et al., 2019); spatial leaning (White 

et al., 2017), inhibitory control (van Horik et al., 2019)). The fitness consequences 

of this variation remain somewhat unclear; cognitive studies are often conducted 

under controlled laboratory conditions which can render meaningful estimation of 

selection on cognitive performance problematic. Early studies (Raine et al., 2008; 

Cole et al., 2012) suggest that differences in cognition do have fitness 

consequences and so are subject to natural selection, and evidence emerging 
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from more recent field studies further confirm this. . For example, cognitive 

performance across multiple domains was positively associated with reproductive 

success in female Australian magpies (Cracticus tibicen dorsalis) (Ashton et al., 

2018). In New Zealand robins (Petroica longipes), males that performed better in 

a spatial learning task produced more fledglings with higher rates of survival 

(Shaw et al., 2019). Similarly, in mountain chickadees (Poecile gambeli) higher 

performance in spatial learning and memory tasks was associated with increased 

probability of overwinter survival (Sonnenberg et al., 2019). While these studies 

provide evidence for contemporary selection acting on cognitive traits, genomic 

approaches have also been used to investigate strong selection in the past. For 

instance, using the fact that genetic variation is reduced in the vicinity of a 

beneficial mutation that spreads rapidly through a population (i.e. undergoing a 

'selective sweep'; Smith & Haigh, 1974),  recent studies have detected the 

signature of positive selection on genes associated with cognition and learning in 

great tits  (Parsus major) (Laine et al., 2016), and face recognition in populations 

of paper wasp (Polistes fuscatus) (Miller et al., 2020).  

Thus among-individual variation in cognitive performance has been shown 

in many animals (Guillette et al., 2015; Nawroth et al., 2017; Li et al., 2017; 

Prentice, Mnatzaganian, et al., 2020) and is likely to have fitness consequences 

(Ashton et al., 2018; Shaw et al., 2019; Sonnenberg et al., 2019).  These 

phenomena – variation among individuals, and fitness consequences of that 

variation,  represent two of three fundamental requirements for adaptive 

phenotypic evolution to occur (Wilson et al., 2010). The third requirement is that 

differences among individuals in a population arise, at least in part from heritable 
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genetic factors. To date rather few studies have explicitly investigated the extent 

to which heritable genetic variance contribute to among-individual variation in 

animal cognition (but see Hopkins et al., 2014; Quinn et al., 2016; Sorato et al., 

2018; Vardi et al., 2020; Langley et al., 2020). Furthermore, results from the few 

studies that have been done are somewhat mixed. For instance, genetic variation 

did contribute to differences in reversal learning among red junglefowl (Gallus 

gallus), but when individuals were trained to discriminate between a rewarded 

and an unrewarded cue, no heritable component to discrimination learning was 

detected (Sorato et al., 2018). Similarly no evidence of genetic variation in spatial 

learning was found in a recent study of delicate skinks (Lampropholis delicate) 

presented with a Y maze testing paradigm (Vardi et al., 2020). In a recent study 

of pheasants (Phasianus colchicus), Langley et al. (2020) reported quite low 

estimates of heritability (h2, the proportion of observed trait variance attributable 

to additive genetic effects)  for some tasks (e.g. spatial learning, h2 = 0.09), but 

more moderate ones for others (e.g., discrimination learning, h2=0.17; inhibitory 

control, h2 =  0.23). 

We should not be surprised that heritability estimates vary among 

populations and specific cognitive traits (indeed it would be more surprising if they 

did not). However, it is clear that further empirical exploration of the genetic 

underpinnings of animal cognition is required if we hope to gain a better 

understanding of how variation is structured generally. The very fact that 

cognition is defined in relation to acquiring, processing and using information in 

the environment makes the possibility of genotype-by-environment interactions 

(GxE) very plausible and intuitive. GxE occurs if the genotype-phenotype map is 
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sensitive to environmental conditions (Via et al., 1985; Nussey et al., 2007) and 

causes genetic variance within a population to vary with those conditions 

(Mackay, 1981; Roff, 2012). Thus we might predict that the contribution of genetic 

variation to among-individual differences in performance when challenged by a 

cognitive assay, will be highly sensitive to the information context provided (e.g.  

visual information availability; Pike et al., 2018). Equivalently, GxE means there 

is genetic variance for plasticity of performance across environmental contexts 

(Roff & Wilson, 2014).  

So far, if few animal cognition studies have characterised the importance 

of genetic variance within populations, then the contribution of GxE to date has 

been almost completely unexplored (see Thornton & Boogert, 2019). For other 

aspects of phenotype, there is abundant and compelling evidence of GxE from 

experimental studies that manipulate environment conditions (Pigliucci et al., 

1995; Ingleby et al., 2010; Des Marais et al., 2013). This work includes many 

examples of highly labile behavioural traits.  For example, ‘calling’ effort by male 

crickets has been shown to depend on the interactions of genes with 

environmental factors such as temperature, diet and social context (e.g. 

Callander et al., 2013; Hedrick et al., 2002; Kasumovic et al., 2012; Rapkin et al., 

2017).  Similarly the emergent field of ‘animal personality’ (among-individual 

variation in behavioural traits repeatable across time and context; Bell et al., 

2009; Gosling, 2001) has moved beyond characterising differences in average 

behaviour to also consider the implications of among-individual variation in 

plasticity (IxE). A growing number of studies have used quantitative genetic 

approaches to demonstrate that genetic variation in plasticity (i.e. GxE) 
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contributes to these personality traits (Edwards et al., 2017; Prentice et al., 2020; 

Rudin et al., 2019; Wey et al., 2019).  

In this study we seek to address these general gaps in our knowledge 

about genetic variation underpinning differences in cognitive performance. More 

specifically, we aim to characterise the importance of genetic variation, including 

GxE, among Trinidadian guppies (Poecilia reticulata) in inhibitory control as 

measured within a ‘detour task’. The detour task is a widely applied cognitive 

testing paradigm that requires an individual to temporarily move away from a 

(visible) goal or reward, and detour around a (typically) transparent obstacle in 

order to reach it. It tests an individual’s ability to inhibit pre-potent responses (i.e., 

attempting to move straight towards a reward) in favour of more effective or 

appropriate behaviours (i.e., detouring around the obstacle). This ability is 

thought to depend on several executive cognitive functions, such as working 

memory, route planning, and object permanence, but particularly on inhibitory 

control (for a review see Kabadayi et al., 2018). In human studies, inhibitory 

control positively predicts cognitive abilities across a range of tasks (Shamosh et 

al., 2008; Diamond, 2013) and academic achievement in children (Duckworth et 

al., 2012) while being negatively correlated with propensity for antisocial 

behaviour and drug abuse (Feil et al., 2010;  White et al., 1994). We note here 

that variation in performance in the detour task may also reflect other factors 

beyond inhibitory control, including motivation and associative learning of the 

affordances of the task (van Horik, Langley, et al., 2018; van Horik et al., 2019). 
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For non-human animals, the quantification of natural selection on inhibitory 

control remains limited (but see Ashton et al., 2018). However, it is well 

documented that animals can benefit from inhibiting behaviours, such as foraging 

or parental care when competing conspecifics or predator densities are high 

(Beran, 2015; Fontaine & Martin, 2006; Soltis et al., 2001).  Comparative research 

suggest this type of executive functioning and self-control is complex, and 

correlates with brain size (MacLean et al., 2014; although see Jelbert et al., 2016 

for an alterntive intepretation), however taxonomically widespread, presenting in 

mammals (Diamond, 1990; Bobrowicz et al., 2018; Barrera et al., 2019), birds 

(Boogert, Anderson, et al., 2011; Kabadayi et al., 2016; van Horik et al., 2019) 

and fish (Lucon-Xiccato, Gatto, et al., 2017; Lucon-Xiccato et al., 2019; Brandão 

et al., 2019). 

 Guppies are a freshwater poeciliid fish increasingly used as a model for 

both behavioural genetics (Prentice et al., 2020) and animal cognition (Kotrschal 

et al., 2015; Lucon-Xiccato & Bisazza, 2016; Fong et al., 2019). They have 

recently been used to explore variation in performance in learning colour 

associations (Trompf et al., 2014; Buechel et al., 2018), reversal learning 

(Buechel et al., 2018), numerical discriminations (Kotrschal et al., 2013; Lucon-

Xiccato & Bisazza, 2017b) and spatial associations ( Lucon-Xiccato & Bisazza, 

2017b; Prentice et al., 2020). Guppies also exhibit inhibitory control (e.g. Lucon-

Xiccato & Bisazza, 2016), and consistent among-individual differences in detour 

task performance have recently been documented (Macario et al., 2021). There 

is also some evidence that inhibitory control differs between sexes since, for 

example, in reversal learning tasks (which themselves require inhibition of 
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learned behaviours (Lai et al., 1995)) females have been found to inhibit a 

previously learned colour-reward association faster than males (Lucon-Xiccato et 

al., 2014; Lucon-Xiccato & Bisazza, 2017b). These studies provide us with a clear 

expectation that guppies will use inhibitory control to successfully complete a 

detour task, and that there will be variation among-individuals. However, the 

extent to which among-individual variation depends on genetic variation 

(including GxE) remains unknown. 

 In what follows we address these questions using a quantitative genetic 

study using guppies bred from a captive colony derived from fish sampled in the 

Aripo River, Trinidad. Fish in the study were first trained within a colour 

discrimination paradigm, and trained to feed from a green plastic disc placed in 

the same consistent location on the tank floor. Fish were then repeatedly assayed 

in a detour task requiring navigation around a transparent cylindrical barrier in 

order to reach a visible food reward on the opposite side. We tested for genetic 

variance in performance, but also for genotype-by-environment interactions 

(GxE). If present, GxE can be interpreted as genetic variance in plasticity of 

cognitive performance or (equivalently) as the presence of environment-specific 

genetic variance in performance. To do this each fish was tested under one of 

two treatment ‘environments’; half undergoing a detour task using a standard 

transparent cylinder, and half using a striped cylinder that provides additional 

visual information. The use of ‘semi-transparent’ barriers has been shown to 

improve average detour task performance in many cases resulting from an  

increase in cue salience (e.g., Juszczak & Miller, 2016; Noland, 2008; Santos et 

al., 1999), but not all. For instance, in a study of three avian species, semi-
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transparent barriers improved average performance in herring gulls (Larus 

cachinnans) and quails (Coturnix x C. Japonica hybrids) but had no effect in 

canaries (Serinus canaria) (Zucca et al., 2005). Here the objective is to test for 

an effect of treatment on genetic variance (i.e. GxE) and we make no strong 

predictions about any directional effect on mean performance. Relative to the 

standard cylinder, the striped treatment provides additional visual information that 

may improve average performance, but we also consider it possible the stripes 

could provide a mildly aversive stimulus, potentially causing a neophobic 

response, negatively impacting the speed with which fish reach the food reward.  

Finally, our experimental design necessarily requires some assumptions 

to be made about the relationship between latent cognitive traits (inhibitory 

control) and observed performance in the detour task. We therefore seek – as far 

as possible – to validate the involvement of cognitive traits by jointly analysing 

detour task performance with data on time to feed in the training stage of the 

experiment. Specifically we ask whether among-individual and/or genetic 

differences in time to feed in the absence of the cylinder (e.g. either due variation 

in motivation, personality or associative learning), might be sufficient to explain 

later variation in detour task performance. This allows us to quantify the extent to 

which the detour task reveals  (genetic) variation in cognitive performance (and 

putatively in inhibitory control), that could not be explained by variation in other 

factors (e.g., motivation, experience (van Horik, Langley, et al., 2018)). 

 

5.3 Methods 
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Ethics 

This work was conducted under the auspices of the UK Animals (Scientific 

Procedures) Act (1986) with approval of the University of Exeter research ethics 

committee, under licence from the Home Office (UK) (Licence Number 

PPL30/3256).  Experimental procedures and behavioural assays were developed 

in accordance with the principles of the three Rs and ASAB guidelines (Buchanan 

et al., 2020) for use of animals. All periods of handling and emersion were kept 

to a minimum and only fish deemed healthy and exhibiting normal behaviour were 

used in trials.  

 

Fish husbandry and breeding  

Fish used in this study were bred from a captive population P. reticulata housed 

at the fish laboratory at the University of Exeter’s Penryn campus. The population 

is descended from wild fish caught in 2017 from the lower Aripo River, Trinidad 

and has been subsequently maintained with no deliberate selection or 

inbreeding. All fish were fed to satiation twice daily (0800 – 1000h and again at 

1600 – 1800h) using commercial flake food and live Artemia nauplii. Water 

temperature was maintained at 23-24°C in well-aerated closed system tank 

stacks that undergo 25% water changes each week and with weekly tests for 

ammonia, nitrate and nitrite levels. Lighting was kept at a 12:12 light/dark cycle. 

Quantitative genetic analyses require knowledge of pedigree structure. 

Here we collected behavioural data an offspring generation comprising 374 

guppies (all tested as adults), produced from 6 small breeding groups over a 
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period of 4 months.  The breeding groups were housed in 15L tanks (18.5cm x 

37cm x 22cm) and varied somewhat in size and sex ratio (groups containing 2 -

7 males, and 4 - 7 females at any time). Variation was due to some mortalities 

over the breeding period, which were replaced with new fish. In total 54 adults 

from the parental generation entered breeding groups; all were sampled at 

random from the stock tanks but females used were kept isolated from males for 

3 months before use, reducing the possibility that they were carrying viable sperm 

from previous matings. Offspring produced in the breeding tanks were removed 

on sight and placed in separate 2.8L brood tanks (10cm x 28cm x 15cm). The 

‘broods’ were therefore grouped by (putative) family and date of birth. Note that 

multiple females in a breeding group may have given birth on the same day 

and/or paternity may be mixed within broods so putative family structure was 

subsequently tested using molecular data (described below). Offspring were 

raised in brood tanks to sexual maturity and all behavioural data was collected in 

a single period once the total offspring generation of mature fish reached 

sufficient sample size. This strategy was largely due to closure of the fish lab 

facility and working restrictions imposed during the COVID-19 pandemic. 

Consequently all offspring fish subjects exposed to behavioural tests were 

sexually mature but of varying age. Exact age of individual fish was unknown but 

ranged from 4 – 15 months from date of birth.  

 

Cognitive testing 
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We used a repeated measures design to test individual performance in a detour 

task. Guppies were individually transferred into 15L experimental tanks (18.5cm 

x 37cm x 22cm) and housed alone for the duration of the behavioural testing. The 

set-up of these experimental tanks closely followed that used by Lucon-Xiccato 

& Bisazza (2014), each being divided into two compartments (using white plastic) 

separated by a guillotine door (Figure 5.1). The rear ‘home’ compartment (20 x 

18.5 cm) allowed individuals visual access to fish in neighbouring tanks.  

Conversely, the ‘test’ compartment (17 x 18.5 cm) at the front of the tank was 

visually screened from neighbours (using white plastic). This was to prevent the 

possibility of social learning (from observation of neighbours) influencing 

individual performance in the detour task. Individuals were allowed to acclimate 

to experimental tanks for 48 hours prior to training and testing. During acclimation 

they were fed once a day (with 1/3 pipette of live artemia for males, and 1 pipette 

for females) and the guillotine door was left open to allow unrestricted use of both 

compartments. Experimental tanks were contained within two ‘stacks’, each 

comprising 24 tanks (8 tanks per row, 3 rows high) on a shared recirculating water 

supply. Thus data could be collected in a block of (up to) 48 fish at once. The 

testing protocol (described below) took 8 days per fish, so in practice this was 

done in 11 blocks over a total period spanning 13 weeks.  

For each individual in each block, the behavioural data collection protocol 

included two stages. First we trained naïve guppies to associate the appearance 

of a green disc placed on the floor of the test compartment with a food reward. 

Individual guppies were given nine food association training ‘trials’ (3 per day for 

3 successive days). To ensure fish had equal opportunity to learn the food 
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location, they did not proceed to the detour task if they did not locate food in 5/9 

of the training trials (See Chapter 3 for details of this weak learning criterion). 

Across all groups, a total of 8 females and 4 males did not proceed to the detour 

task trails. Prior to each trial, fish were gently guided with a net into the home 

compartment and the guillotine door was closed. The experimenter then placed 

a white plastic test plate (4 x 10 cm) with a green disc in the middle (diameter 1.5 

cm) on the tank floor in the test compartment. A food reward was then carefully 

placed on the green disc using a plastic pipette. For males a single (previously 

frozen) artemia was used, for females (which are much larger than males) we 

used 3 artemia. The guillotine door was then opened allowing the fish to swim 

into the test compartment and feed. The time to locate and eat the food reward 

was recorded for each fish using censored measurements. Specifically, we 

assessed whether the food item had been consumed at 1, 5, 10, and 20 minutes 

after opening the door, and (if not consumed) at 20 minute intervals thereafter to 

a maximum of 140 minutes. This recording strategy allowed a single 

experimenter to collect data on (up to) 48 individuals simultaneously.  

After the 3 day training stage, fish that successfully learnt the association 

were assayed three times in a detour task (once per day for three successive 

days). Detour task trials essentially repeated the training trials; fish were guided 

into the home compartment prior, the guillotine door closed, and the food item 

placed on the green disk. However, the green disk was now inside a plastic 

cylinder (Figure 5.2). Thus the fish needed to navigate around a barrier and 

access the cylinder (from either end) to obtain the food reward. Again we 

recorded (censored) time to eat by assessing the presence/absence of the food 
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item at 1, 5, 10, and 20 minutes after opening the door, and thereafter at 20 min 

intervals for a further 2 hours, then 60 min intervals for a further 5 hours, and a 

final check at 24 hours after opening the door.  Note that due to severe constraints 

on researcher lab time (arising from the covid-19 pandemic), collection of more 

detailed behavioural data including, for example, number of redundant attempts 

to directly acquire the food reward through the barrier (a common trait measured 

in detour reaching tasks; Kabadayi et al., 2017; Santacà., et al., 2019), were 

unfortunately not possible. 

To allow testing for GxE, each fish was randomly assigned to one of two 

alternative treatment levels in the detour task; either a transparent (unmarked) 

cylinder was used (low visual information of the cylinder), or a cylinder with three 

black horizontal lines was used (high visual information of the cylinder). Thus 

each individual experiences only one treatment but sibships are represented 

across both levels. Our naïve expectation was that more visual information 

should, on average, reduce time to access food in the detour task. However, 

increased visibility of the cylinder could also lead to neophobic behaviour having 

the opposite effects. It is important to note however that for the current objective 

of testing whether genotypes differ in their response to increased visual 

information, the magnitude and direction of any change in mean performance is 

incidental (though interesting).   

 

Microsatellite genotyping and pedigree analysis 
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Molecular pedigree analysis was conducted to fully resolve the pedigree structure 

needed for quantitative genetic modelling. At the end of the breeding stage, 

remaining parental generation individuals were euthanised by overdose of 

buffered MS-222 and individually stored in 70% ethanol at -5°C.  All offspring 

individuals were similarly euthanised at the end of behavioural data collection. 

For all individuals, DNA was extracted from tail tissue and processed according 

to the protocol described in Becher et al. (2002). We then genotyped fish at 6 

autosomal microsatellite loci (see Supplementary Information Table S5.1, 

Appendix 5 for details) as described in Becher et al. (2002) and Bergero et al. 

(2019). Polymerase chain reaction (PCR) reaction conditions were as follows: 8.3 

µL  GoTaq Mastermix (Promega), 0.2 µL each of fluorescently-labelled forward 

and reverse primer, 7.8 µL nuclease free-water and 2.5 µL DNA. The PCR 

programme consisted of 3 minutes at 90 °C, then 30 cycles of 30 seconds at 90 

°C, 20 seconds at 55 °C and 30 seconds at 72 °C, before a final extension period 

at 72 °C for 5 minutes. A random selection of individual amplifications across all 

6 primers were visualized on 2% agarose gel to confirm successful amplification. 

Following this, individual PCR products were separated by capillary 

electrophoresis in AB 3500 Genetic Analyzer (Thermofisher Scientific, Waltham, 

MA, USA). 

We genotyped the parental and offspring generations using the 

Genemapper ® ID-X software (Thermofisher Scientific, Waltham, MA, USA) by 

scoring individual genotypes across all 6 microsatellite markers using 

GENEMAPPER 3.7. Population allele frequencies were estimated in CERVUS 
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3.0 using the genotypes of the offspring generation across the six breeding 

groups. Individuals were assigned to full- and half-sibships using the program 

COLONY 2.0.4.5 (http://www.zsl.org/science/software/COLONY), which 

reconstructs parental genotypes from offspring genotypes using maximum 

likelihood (Jones &Wang 2009; Wang 2013).  Colony runs were programmed so 

that (half) sibships were assigned for each breeding group separately 

(recognising that relatedness across groups is assumed to be zero) and that the 

‘full likelihood structure ‘ was then obtained for each group and combined across 

groups to give an overall pedigree structure. The details of COLONY run 

parameters can be seen in Supplementary Information S5.2.  

 

Statistical analyses  

Performance in the detour task 
 

We estimated among-individual variation, heritability and GxE for the 

performance in the detour task by fitting a series of six univariate linear mixed 

effect models differing in random effect structure (explained below). All models 

were fit by REML (restricted maximum likelihood) using ASReml-R 4.1 (Gilmour 

et al., 2009; Butler et al., 2018) within R version 3.6.1 (R Core Team, 2017). We 

make the standard assumptions that random effects and residuals are normally 

distributed with means of zero and variances to be estimated.  

We use time to eat as our observed measure of performance in the detour 

task (and in the training trials). For analysis, the observed (censored) time data 

was tested for normality, natural log-transformed and then mean centred and 
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scaled to standarddeviation units. The log transformation improved the 

assumption of Gaussian error structure, while scaling to standard deviation units 

was just to ease interpretation of estimated variance components. All models 

included a fixed effect of the mean, as well fixed factors of sex, stack (denoting 

which of two aquaria stacks the fish was tested in), and treatment (1 = clear 

cylinder, 2 = stripy cylinder). We also included trial number (i.e. the repeat number 

1-3, fitted as a factor to avoid assuming a linear functional form for any change in 

the mean across repeats). Conditional F-statistics were used to determine the 

significance of fixed effects.  

All six models fitted included random effects of block (the set of up to 48 

fish that were phenotyped simultaneously) and brood tank (denoting early life 

housing environment). Model 1 included these two random effects only. We then 

extended this model by including an extra random effect of individual identity, to 

model among-individual variance (VI) in (mean) performance (Model 2). In Model 

3 we allowed for the possibility of IxE (among-individual variance in plasticity) by 

fitting treatment specific among-individual variances. Note that since each fish is 

observed for one treatment level only, individual plasticity across treatments is 

not observed. However, a test (albeit of limited statistical power) is possible 

because IxE leads to an expectation that VI will differ with environment (here 

between clear and stripy cylinder treatments). In Model 4 we reverted to the 

assumption of homogeneous VI across treatments, but extended the Model 2 to 

include the individual genetic merit for (mean) performance as an extra random 

effect. This becomes the standard repeated measures animal model of 

quantitative genetics, and allowed us to utilise the pedigree data to partition VI 
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into additive genetic (VA) and non-genetic, permanent environment (VPE) 

components (assumed homogeneous across treatments. In Model 5 we 

modelled GxE, extending the Model 3 formulation by partitioning treatment 

specific among-individual variance into treatment specific permanent 

environment and additive genetic variances, as well as estimating the cross-

treatment genetic correlation (rG). Note that, for the genetic part of the model this 

represents a ‘character state’ conceptualisation in which GxE would be manifest 

as VA1 ≠ VA2 and/or rG12<+1 (where subscripts 1 and 2 denote the clear and stripy 

cylinder treatments respectively).  Finally, in Model 6 we allowed VPE to differ 

between treatments but assumed no GxE (i.e. this model allows IxE but assumes 

any genetic variation is not treatment specific).    

We compared among these six models using the Akaike information 

criterion (AIC) and likelihood ratio tests (LRT). The latter were used to compare 

nested models with a standard hypothesis testing framework (e.g. LRT 

comparison of Models 1 and 2 provides a statistical test of among-individual 

variance).  Where models were compared by LRT to test a single variance 

component we assuming twice the difference in log-likelihood between full and 

reduced models is distributed as a 50:50 mix of χ20,1 and χ21 as recommended by 

Visscher (2006). For all other situations we (conservatively) set the degrees of 

freedom equal to the number of additional (co)variance components in the model 

complex model.  

In order to provide intuitive measures of effect size, we calculated the 

adjusted repeatability (R), where R is conditional on fixed effects and represents 
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the proportion of phenotypic variance explained by among-individual differences 

in behavioural mean (Nakagawa et al., 2010). Thus R = VI / VP where VI is the 

among-individual variance and VP is the phenotypic variance conditional on fixed 

effects (i.e. VP = VI + VB + VGR +VR where VB, VBT and VR are among- block, among-

brood tank and residual variances respectively). In Models 2 and 4 we similarly 

estimated adjusted heritabilities h2 (where h2= VA/VP, and is conditional on fixed 

effects). Note that in Models 3 and 5 treatment-specific estimates of VI, VPE and 

VA are used as appropriate to estimate treatment-specific R and/or h2.    

 

Performance in the training trials 

 

The primary purpose of modelling performance in the training trials was to 

determine whether differences among individuals and/or genotypes were 

detectable at this stage of the experiment, and - if so – to consider whether these 

alone might be sufficient to explain variation seen in detour task performance.  

We therefore first analysed training trial data in a very similar way to the detour 

task itself using a set of univariate mixed effects models. The response variable 

of time to eat was treated as described above, and the null model (Model 1) 

included the same fixed effects used for the detour task (but without treatment) 

and random effects of block and brood tank. To test for among-individual variance 

(VI) in performance we added a random effect of individual identity and compared 

this model (Model 2) to Model 1 by LRT. We then fitted a repeated measures 

animal model (Model 3), in which VI was partitioned into VA and VPE components. 
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We compared Models 2 and 3 to test the statistical significance of VA, and 

generated conditional estimates of R and h2 as described above.  

  Since all fish experienced the same conditions for the training trials, we 

did not model IxE or GxE across cylinder treatments. However, we did consider 

the possibility that there could be among-individual and/or genotype variation in 

the pattern of any change in performance across the 9 repeated training trials. 

We expect that, on average, time to obtain the food will decline across training 

trials (as individuals learn the association of the green disc with food) but variation 

in this process could have implications for determining whether differences in 

training trial performance are sufficient to explain variation in detour task 

performance. This would be especially true if individuals (or genotypes) tend to 

change their ranking of performance over the training period such that, for 

example, relative performance in early training trials did not predict performance 

at the end of the training periods.  We therefore fitted two additional models; 

Model 4 extended the Model 2 to a ‘random slope’ model in which the effect of 

individual identity was modelled as a first order (linear) function of trial number 

(treated as a continuous covariate).  Finally Model 5 was a random regression 

model in which both additive genetic and permanent environment effects were 

modelled in this way as linear functions of trial number.  

 

Effects of training on performance in the detour task 

 

To examine whether performance in the training trials predicts performance in the 

detour task, we lastly built bivariate mixed models. This allowed us to test the 
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among-individual and genetic relationships between performance in training trials 

and performance in the detour task. Fixed effects on each trait were as specified 

above. Random effects of block and brood tank were included and allowed to 

covary across traits while residual (observation level) covariance across traits is 

not statistically identifiable so was not estimated. Based on univariate modelling 

of training trial data we elected to include random intercepts only for this trait (see 

results for justification), but we did include treatment specific variances for the 

detour task. This meant the among-individual variation was estimated as a 3x3 

variance-covariance-correlation matrix (ID) in which the diagonal elements 

correspond to VI in:  (mean) performance in the training trials; (mean) 

performance in the detour task for treatment 1; and (mean) performance for 

treatment 2.  All correlations in the matrix are identifiable and so were estimated. 

We note that the data structure contains very little information for estimating the 

among-individual correlation (rID) between detour task performance in the two 

treatments (since each fish experienced only one). However, constraining this 

correlation to zero may limit the model to unlikely parameter space (i.e. given 3 

variables A, B, C, if, for instance rAB and rAC are strongly positive then it becomes 

very unlikely that rBC = 0).  We compared this to a simplified formulation in which 

the among-trait correlations in ID were all constrained to zero, providing a global 

test of among-individual correlation between traits. We then used an analogous 

multivariate animal models to estimate the genetic (G) and permanent –

environment (PE) components of the ID matrix.  We tested similarly conducted 

an overall tests for genetic correlation structure in G by LRT comparison to a 
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simpler model in which all pairwise genetic correlations (rG) were constrained to 

zero.  

 

 

5.4 Results  
 

Detour task 

Visual inspection of the raw data revealed an increase in average performance 

(i.e. decrease in time) across repeated trials (Figure 5.3).  This was true for both 

sexes irrespective of treatment. Females were faster to eat than males at all trials 

in both treatments, while both sexes were faster to eat at all trials when 

experiencing the clear cylinder treatment (Figure 5.3). The univariate models 

confirmed the statistical significance of these qualitative patterns, revealing 

significant effects of sex, trial number and treatment on (mean) performance in 

the detour task. Estimated fixed effects were very similar across all models. Here 

we present estimates made under Model 2 (see Supplementary Information 

Table 5.3 for all fixed effect results, including those not directly relevant to current 

hypotheses). On average, males took longer to locate and eat the food reward 

(coefficient ± SE=0.617 ± 0.074, F1,1070=64.98, P< 0.001; note all effect sizes are 

in SDU of log transformed times), and fish became, on average, quicker at 

obtaining the food reward across trials (trial 1 (-0.411 ± 0.089); trial 2 (-0.287 ± 

0.047); trial 3 (-0.575 ± 0.047) F2,712.7=74.05, P< 0.001). Furthermore, 

performance was slower on average for fish that experienced the striped cylinder 

treatment (0.613 ± 0.074, F1,1070=69.75, P<0.001), compared to the clear cylinder. 



 
 
 

149 

 

 

 

This provides evidence of plasticity in (mean) performance across the two 

treatment environments in the detour task.  

Model comparisons based on AIC and LRT provided strong support for the 

presence of among-individual variation in performance (e.g., LRT Model 2 vs. 

Model 1; χ20,1=214.541, P<0.001; Table 5.1). Under model 2, performance in the 

detour task was highly repeatable (R=0.467 ± 0.033; Table 5.2). Model 3, did not 

significantly improve the fit (LRT Model 3 vs. Model 2; χ21=0.124, P=0.725) and 

yielded treatment specific estimates of among-individual variance that were very 

similar (Treatment 1 (VI =0.372 ±0.056); Treatment 2 (VI=0.343 ±0.052); Table 

5.2). Thus there is strong evidence of among-individual variance and population 

level plasticity across the treatments, but not for IxE.  

Statistical support for genetic contributions to variance in detour task 

performance is somewhat equivocal. On one hand, the animal model was not a 

better fit than the simple repeated measures mixed model (LRT comparison of 

Models 4 and 2; Table 5.1) and in fact the VA estimate was bound to zero in the 

former. On the other hand, LRT comparison suggested Model 5 was a significant 

improvement on Model 6 (which allowed no GxE and constrained constant VA 

across treatments; χ22=12.452, P=0.002). We therefore fully acknowledge that 

statistical support for genetic involvement is limited. However, while Model 2 

(simple repeatability model) has the lowest AIC, Model 5 (GxE) is next (with a 

ΔAIC of 1.633) suggesting that, to the extent genes do matter, so does GxE. 

Model 5 certainly provides our best estimate of genetic parameters and indicates 

the presence of moderate VA under treatment 1, while VA in treatment 2 was 
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bound to zero (model 5; treatment 1, VA=0.214 ±0.140, h2=0.263 ±0.154, Table 

5.2). The cross treatment genetic correlation was estimated as negative but also 

bound to the edge of permissible parameter (rG.treatment1.2 =-0.995, no standard 

error estimated).  

 

Training trials 

Plots of the raw data show a strong pattern of improvement in average 

performance (i.e. decreases in time to obtain food) across the trials (Figure 5.4).  

Males were slower on average (median) than females. Univariate models 

confirmed the statistical significance of these qualitative patterns, revealing 

significant effects of sex and trial number on (mean) performance. Note that 

estimated fixed effects were similar across models, and here we present 

estimates as obtained under Model 2. (Note that all fixed effect results, can be 

found in Supplementary Information Table S5.3). On average, males took longer 

to eat the food reward (coefficient ± SE=0.414 ± 0.088, F1,285.1=14.94,P< 0.001), 

and trial number had a significant effect on performance F8,2373=183.80, P< 

0.001).  On average fish obtained the food item faster as training experience in 

increased, coefficients becoming more negative as trial number increased (see 

Table S4.3). In contrast to the detour task itself, we also detected a stack had a 

significant effect of stack on performance in training, with fish in stack B 

significantly slower to obtain food than those in A (0.241 ± 0.088, F1,283.8=7.53, 

P=0.006). Model comparisons provided strong support for the presence of 

among-individual variation in performance during the training period (LRT model 
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2 vs. model 1; χ20,1=1142.475, P<0.001, Table 5.3) with Model  2 yielding an 

estimate of R=0.485 ± 0.033.  Model 3 (animal model) was not a significant 

improvement on this (LRT model 3 vs. model 2; χ20,1=0.352, P=0.277) so there 

is no statistical support for genetic variance. Under Model 3 the estimated 

heritability was very low (h2= 0.034 ±0.060; Table S4.4).  

 The random regression modelling provided evidence for among-individual 

variation in the rate of improvement across training trials (LRT Model 4 vs. Model 

2; χ20,2=116.760, P<0.001, Table 5.3). Among-individual variance in intercepts 

(int) and slope (slp) were estimated as VI_int=0.581 ± 0.064 and VI_slp=0.007 ± 

0.001 respectively, with an among-individual intercept –slope correlation was 

estimated as rI_int_slp=- 0.575 ± 0.057 (Note variance component estimates from 

all models can been seen in Supplementary Information Table S5.4). Here the 

negative among-individual intercept –slope correlation means that individuals 

with higher intercepts (i.e., poor performance time at the beginning of trials) 

tended to have smaller (i.e. more negative) slopes which correspond to faster 

improvement across training. Model 5 (GxE model) was not a significant 

improvement on Model 4 (LRT Model 5 vs. Model 4; χ20,3=2.096, P=0.553) 

providing no statistical support for the presence of genetic variance, or GxE, 

across repeated trial number.   

There is thus strong statistical support for IxE (but not GxE) in training trial 

performance, where E is the ‘environmental’ axis of experience as measured by 

trial number. Since the consequences of this for current purposes are not 

immediately apparent, we projected the among-individual intercept-slope 
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covariance matrix to a ‘character state’ view (following e.g. Nussey et al., 2007; 

see Supplemental Information Table S5.5 for didactic explanation and 

corresponding code). This simply transforms the slope-intercept (co)variance 

structure to an estimate of the among-individual covariance matrix for the nine 

trial number specific performances. This transformation shows that, while IxE is 

statistically significant, its magnitude is insufficient to cause much change in VI 

with trial number or to disrupt the uniformly positive among-individual correlation 

structure (Table S4.5). This means that individual rank ordering of performance 

largely stays the same across the training periods (i.e. there is not much reaction 

norm crossing). Due to this result, we elected revert to a random intercepts 

approach for this trait in the multivariate model (below). 

 

Bivariate analysis 

The bivariate model yielded an estimate of the among-individual covariance 

structure (ID) that revealed positive relationships between individual performance 

in the treatment specific detour tasks and the training trials (comparison of the full 

model to one in which all among-individual between trait covariances are fixed to 

zero; χ23 = 33.389, P <0.001). Estimated among-individual correlations (± SE) 

were 0.491 ± 0.089 in treatment 1 (clear cylinder) and 0.306 ± 0.097 in treatment 

2 (stripy cylinder; Table 5.4). Note that a strong positive correlation between 

individual performance in the two detour task between treatments was also 

obtained (rind.treatment1.2=0.816 ± 0.610; Table 5.4). Strictly this parameter is 

actually identifiable in our model however, although sibships are represented 



 
 
 

153 

 

 

 

across both levels no individual experienced both treatments, therefore the data 

here contains very little information for its estimation. Hence the SE is very large 

and we do not interpret this correlation further.   

 Extending the bivariate model to partition ID into G and PE added little 

additional insight, which was not unexpected given the results of univariate 

analyses. Estimates of VA for training trial performance and detour task under 

treatment 1 were very similar to univariate models, while VA for the detour task 

under model 2 was again bound to zero. All estimated genetic correlations were 

bound to (effectively) -1.  Thus, with respect to genetics, the multivariate model 

simply recapitulates the conclusion that there is substantial genetic variance for 

the detour task in treatment 1 (VA=0.238 ±0.122; similar to the univariate 

estimate). Statistical support remains equivocal however. The multivariate animal 

model is not a significantly better fit than the ID model using the expected degrees 

of freedom (LRT, G vs. ID; χ26 = 9.356, P=0.155).  However, one could make a 

post hoc argument that this is significant given that only 2 additional parameters 

are estimated in G (the other 4 of 6 being set to boundary conditions by the REML 

algorithm).   

 

 

5.5 Discussion 
 

In this study we sought to characterise among-individual and genetic 

variation in inhibitory control, using performance in a detour task as an observable 

proxy for the ability to inhibit prepotent behaviour. Our analyses show that 
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individuals vary considerably in detour task performance and thus, subject to 

important assumptions (discussed below), are likely to differ in inhibitory control. 

We also find strong evidence of plasticity in average performance across 

treatment environments. Contrary to predictions, when the visual information 

available for the detour task was increased by adding stripes to the clear cylinder, 

fish took longer to obtain the food item. Support for genetic contributions to 

observed variance was somewhat mixed, although we find some evidence for a 

GxE interaction, which results in heritable variation in performance only being 

evident in one treatment (the clear cylinder).  By also analysing data collected 

from the period of training used to establish the cue-reward association needed 

for the detour task we show that individuals differ in performance during training 

and that this positively predicts, but is insufficient to fully explain, variation in the 

detour task itself.  In what follows, we discuss the implications of these results in 

the context of understanding variation in, and evolution of, animal cognition. 

However, throughout our discussion we also highlight caveats and assumptions 

arising from the use of performance in the detour task as a proxy for the latent 

cognitive trait of inhibitory control, and consider alternative explanations for the 

observed results. 

 

Among-individual and genetic variance in detour task performance 

Guppies in our study show consistent among-individual variation in detour task 

performance measured as the time to navigate a barrier and obtain a food reward. 

Repeatability of performance is moderately high (e.g., 47% averaged across the 
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treatments) in comparison to estimates reported across assays designed to test 

cognitive variation in animals (see Cauchoix et al., 2018 for a review).  Accepting 

that the task provides a valid measure of inhibitory control (an assumption we 

explore further below), this result is consistent with studies adopting similar 

experimental paradigms in this species (Santacà, Busatta, Lucon-Xiccato, et al., 

2019; Lucon-Xiccato, Bisazza, et al., 2020; Macario et al., 2021).  Our 

observations of apparent learning (i.e. fish become faster at locating the food 

reward over successive trials) and sexual dimorphism (i.e. females perform better 

than males) also recapitulate findings from these previous studies. Males are 

more persistent in trying to pass through the transparent cylinder and are 

therefore slower in the detour task (Lucon-Xiccato & Bisazza, 2017b). Though 

speculative, sex differences in inhibitory control might reflect sex-specific 

selection on behaviour since, for instance, persistent male harassment of females 

can be rewarded by higher rates of copulation (Endler, 1984; MaGurran et al., 

1994). As such, sex specific reward systems may account for the differences in 

performance we see here between females and males. Based on performance in 

reversal learning tasks, several studies have also shown that male fish present 

lower cognitive flexibility than females when a learned response becomes 

inappropriate (Lucon-Xiccato et al., 2014; Brandão et al., 2019). It seems at least 

plausible that increased persistence coupled to reduced cognitive flexibility, 

presents as lower inhibitory control in male guppies relative to females in our 

experiment. We also note that it is possible that sex differences in performance 

may arise due to differences in reinforcement of the cue-reward association, 

rather than differences in learning ability per se.  
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While among-individual variation was strong, we did not find evidence of a 

significant genetic contribution to this using the standard animal model approach 

that assumes the phenotypic value of a genotype is constant across the two 

treatments. This result contrasts somewhat with reports of moderate, significant 

h2 estimates for inhibitory control in humans and other animals  (Friedman et al., 

2008; Schachar et al., 2011; Cervantes et al., 2013; Gnanadesikan et al., 2020). 

However, when modelling genotype-by- environment interaction (GxE), our 

analyses actually suggest that there is moderate heritability (26.3%) but that this 

is context-specific, and specifically is limited to the clear cylinder treatment. From 

an evolutionary perspective, the obvious implication of this result is that, if 

inhibitory control is under directional selection, whether or not it evolves at all may 

depend on the environmental conditions.  

While GxE implies the presence of environment-specific genetic variance, 

it can equally be understood as genetic variance for, and thus adaptive potential 

of, phenotypic plasticity (Pigliucci, 2001; Hill et al., 2010). Here, viewing our 

results from the perspective of phenotypic plasticity presents some 

complementary insights.  We note that while our experimental design precludes 

directly observing individual-level plastic responses to treatment, differences in 

average detour task performance between clear and stripy cylinders show that 

plasticity occurs. Although our directional prediction was tentative, we had 

expected the stripy cylinder to provide more visual information and result in faster 

location of the food reward (Santos et al., 1999; Juszczak et al., 2016). In fact the 

opposite pattern arose, a result that suggests the more visible cylinder presents 

as an aversive stimulus, potentially by eliciting neophobia and/or predator 
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avoidance behaviour (Brown et al., 2013).  A point that follows from this is that, 

the detected GxE for observed performance in the detour task need not strictly 

imply GxE for the latent trait of inhibitory control if observed time to eat the food 

object also depends on motivation (or neophobia) that is also genetically variable 

(at least in some environments). 

As a more general caveat to our interpretation of results, we suggest that 

here – as in most cognitive testing studies – it is potentially problematic to view 

observed performance variation as being attributable to a single latent trait. Time 

to complete a detour task is widely used as a proxy for inhibitory control (although 

additional behaviours are also often measured; Lucon-Xiccato et al., 2017; 

Macario et al., 2021). Collection of more detailed behavioural data including, for 

example, whether individuals successfully inhibited redundant attempts to directly 

acquire the food reward through the barrier (Kabadayi et al., 2017; Santacà., et 

al., 2019), would have been useful to strengthen the assumed link between time 

to complete the task and inhibitory control. Unfortunately, the requirement for 

high-throughput phenotyping, coupled with severe constraints on researcher lab 

time (arising from the covid-19 pandemic) precluded the collection of such data. 

We acknowledge that completing the detour task may involve additional cognitive 

processes (e.g., working memory, route planning), behavioural traits (e.g., 

exploration; Kabadayi et al., 2018) and aspects of ‘state’ (e.g. prior experience, 

physiological condition, motivation). We attempted to minimise these sources of 

‘non-target’ variation as much as possible by: standardising food rations, housing 

and water conditions to minimise differences in motivation or state; avoiding any 

capture of fish during the training and testing periods (since handling stress 
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influences observed behaviours Wong et al., 2008)); acclimating all individuals to 

experimental housing for 48 hours before the onset of training; and feeding only 

in the ‘test’ compartment of experimental housing to minimise any aversion to 

emergence into this area.  

 

Variation in training performance  

Several additional conclusions emerge from our analysis of the 

performance (measured as time to eat the food) in the training portion of the 

study. As in the subsequent detour test we see sex differences.  Females are 

faster to eat than males, a common finding in guppy studies using food rewards  

(Laland et al., 1999; Lucon-Xiccato, Gatto, et al., 2020).  Fish also become, on 

average faster at locating the food reward over successive training trials. We 

interpret this as likely reflecting that the training of the colour signal-food reward 

association utilised in the detour task was successful. Although, not a specific 

objective of our study this result adds to the accumulating evidence for 

associative learning in guppies (Trompf et al., 2014; Lucon-Xiccato & Bisazza, 

2017a; Kniel et al., 2020).  

We also show that individual fish vary in training performance overall 

(averaged across trials), and in the rates at which they improve over repeated 

training opportunities, but we find no statistical support for genetic contributions 

to this. If we accept an increase in mean performance with repeated training 

events as evidence of association learning in the population, then statistical 

support for among-individual variation in random regression slopes (IxE for 
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training performance where E is trial number) demonstrates among-individual 

differences in association learning (following e.g., Langley et al., 2020).  However, 

some caution is warranted here. First, our analysis shows that the ‘fastest 

learners’ (i.e. those with steepest negative slopes) actually tend to be the poorer 

performers overall. In other words, fast learning fish are actually those with the 

greatest ‘most room for improvement’. Second, the positive correlations across 

all ages under a ‘character state’ view of among-individual variation shows that 

initially poor, but fast learning individuals, remain poorer than average after 9 

training trials (i.e. fast learning is not enough to compensate for a poor starting 

performance). Third, and just as with respect to the detour task data, we caution 

against an uncritical interpretation of these patterns. The variation among-

individuals in time to obtain food in training is consistent with variation in learning 

ability, but other possibilities cannot be excluded. For instance, in the absence of 

cognitive variation per se some fish may be consistently faster that others to 

obtain a food if they are more exploratory (or less neophobic; Boogert et al., 2006; 

Bousquet et al., 2015; Zidar et al., 2018), or more motivated (van Horik & 

Madden, 2016). Distinguishing between these possibilities is experimentally 

challenging, and will be particularly so if, for instance, associative learning ability 

is correlated with aspects of personality (e.g. exploration and boldness) expected 

to impact time to obtain the reward. Such correlation structure has been reported 

in a number of fish and bird studies (Guillette et al., 2009; DePasquale et al., 

2014; Quinn et al., 2016). 

  Although we have argued above that variation in training performance is 

interesting in its own right, the primary rationale for analysing this data was to 



 
 
 

160 

 

 

 

validate our assumption that the detour task is informative for cognitive 

processes, and specifically inhibitory control, that are distinct from those 

employed during the training period. Statistically, this assumption would be 

difficult to justify if variation among-individuals (and/or genotypes) in training was 

sufficient to explain all variation revealed in detour task performance. Biologically, 

this could arise if, for instance, variation in the detour task performance was 

completely explained by differences in motivation to feed, neophobia or ability to 

learn the cue-food association.  

We actually find that individual performance in training positively predicts 

detour task performance in both treatments, but also that (based on approximate 

95% CI) the corresponding among-individual correlations are also significantly 

less than +1. This implies that, factors contributing to among-individual variation 

in training performance (whether cognitive or otherwise) likely contribute to, but 

are insufficient to fully explain, detour task performance. Specifically, the 

estimated covariance structure in ID implies that 75% of among-individual 

variance in the detour task in treatment 1, and 90% in treatment 2, is statistically 

independent of training performance (based on calculating conditional variances 

following (Hansen et al., 2008).    

This result is consistent with our assertion that detour task performance is 

informative for inhibitory control, even if observations also depend causally on, 

for instance, personality or other cognitive variation (such as operant rather than 

classical conditioning) revealed in the training period. We also note that the 

correlation structure could arise because of non-causal association of traits that 
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contribute to training performance (e.g. association learning) with inhibitory 

control. We cannot distinguish these possibilities from our experimental design 

but individual-level correlations of inhibitory control with personality and/or other 

cognitive traits  have been reported in guppies  (Lucon-Xiccato, Montalbano, et 

al., 2020), and several bird studies (Ashton et al., 2018; Langley et al., 2020).  

 

Summary 

In conclusion, here we find evidence of among-individual variation in 

inhibitory control in guppies. Our results suggest that GxE occurs such that 

heritable variation is present in one environment when a standard detour testing 

paradigm is applied, but not when additional visual information is provided in the 

form of a striped cylinder. This suggest that the genetic variance in, and so 

potential for further adaptive evolution of, inhibitory control may be highly 

sensitive to environmental conditions. An alternative view of the same 

phenomenon is that plasticity in detour task performance, and so (with some 

assumptions) inhibitory control is genetically variable. We also find that an 

individual’s performance in training trials used to create a food-cue association 

positively predicts individual performance in the detour task. However, it is 

insufficient to explain all among-fish variance in the latter. As such, we argue that 

the detour task is capturing distinct cognitive processes (i.e., inhibitory control), 

however other cognitive factors and/or differences in ‘personality’ are likely 

contributing to among-individual variation in performance.  
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Table 5.1:  LRT and AIC model comparison – detour task 

AIC values and likelihood ratio test comparisons across univariate models for 

performance in the detour task trials.  

 

Model  AIC LnL  LRT 

Comparison 

Test for  Χ2 DF P 

1 799.719 -396.860 - - - - - 

2 587.178 -289.589 2 vs 1 VI 214.541 0,1 <0.001 

3 589.054 -289.527 3 vs 2 IxE 0.124 1 0.725 

4 589.178 -289.589 4 vs 2 VA 0 0,1 0.499 

5 588.811 -286.406 - - - - - 

6 591.054 -289.527 6 vs 5 GxE 12.452 2 0.002 
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Table 5.2:  Estimated variance components and derived parameters for the six models of performance in the detour task trials. Subscripts 

denote block (B), brood tank (BT), residual (R), individual (I), permanent environment (PE) and additive genetic (A) components of variance. 

Also shown, where applicable are corresponding estimates of repeatability (R), heritability (h2), the intraclass correlation corresponding to 

VPE (denoted pe2) and the cross-treatment genetic correlation (rG). Parameter estimates specific to treatment 1 (clear cylinder) and 2 (stripy 

cylinder) are denoted with subscripts and standard errors are provided in parentheses where available. Note that variances were 

constrained to be positive and correlations between -1 and +1. Where parameters are fixed at boundary conditions no SE is estimated. 

 

Parameter  Model    

1  2  3  4  5  6 

VB 0.018 (0.013) 0.016 (0.014) 0.015 (0.013) 0.016 (0.014) 0.011 (0.012) 0.015 (0.013) 

VBT 0.013 (0.012) 0.000 (-) 0.000 (-) 0.000 (-) 0.000 (-) 0.000 (-) 

VR 0.730 (0.032) 0.392 (0.021) 0.392 (0.021) 0.392 (0.021) 0.392 (0.021) 0.392 (0.021) 

VI - 0.357 (0.038) 0.372 (0.056)1
 

0.343 (0.052)2
 

- - - 

VPE - - - 0.357 (0.038) 0.199 (0.096)1 

0.338 (0.052)2 

0.371 (0.056)1 

0.343 (0.051)2 

VA - - - 0.000 (-) 0.214 (0.140)1 

0.000 (-)2 

0.000 (-) 

R - 0.467 (0.033) 0.477 (0.043)1 - - 0.392 (0.021) 
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0.458 (0.042)2 

pe2 - - - 0.467 (0.033) 0.244 (0.126)1 

0.456 (0.043)2 

0.477 (0.043)1 

0.458 (0.042)2 

h2 - - - 0.000 (-) 0.263 (0.154)1 

0.000 (-)2 

0.000 (-) 

rG - - - - -0.995 (-) - 
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Table 5.3:  LRT and AIC model comparison – training trials 

AIC values and likelihood ratio test comparisons across univariate models for 

performance in the training trials. 

 

Model  AIC LnL  LRT 

Comparison 

Test  for  Χ2 DF P 

1 1803.996 -898.998 - - - - - 

2 663.521 -327.761 2 vs 1 VI 1008.849 0,1 <0.001 

3 665.170 -327.585 3 vs 2 VA 0.352 0,1 0.277 

4 550.762 -269.381 4 vs 2 IxE 116.760 0,2 <0.001 

5 554.666 -268.333 5 vs 4 GxE 2.096 0.3 0.553 
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Table 5.4:  ID variance–covariance–correlation matrix from the bivariate mixed 

model. Estimated variances are shown on the diagonal (dark grey shading), with 

correlations above and covariances below. Also shown are the G and PE 

variance–correlation matrices estimates from the bivariate animal model 

(covariances are not shown as back-calculating them becomes problematic with 

variances bound to zero and/or correlations at ±1).   Standard errors are shown 

in parentheses where available, and bold font denotes nominally significant 

estimates assuming approximate 95% CI of ± 1.96SE.  

 

 Training Trials  
 

                        Detour Task  

 
Treatment 1  Treatment 2  

ID Matrix     

Training Trials  0.379 (0.037) 0.491 (0.089) 0.306 (0.097) 

Detour Task - Treatment 1  0.187 (0.040) 0.376 (0.037) 0.816 (0.607) 

Detour Task - Treatment 2  0.110 (0.038) 0.293 (0.220) 0.343 (0.052) 

G Matrix     

Training Trials  0.004 (0.012) -0.999 (-) -0.999 (-) 

Detour Task - Treatment 1  - 0.238 (0.122) -0.999 (-) 

Detour Task - Treatment 2  - - 0.000 (-) 

PE Matrix     

Training Trials  0.377 (0.037) 0.770 (0.212) 0.309 (0.096) 

Detour Task - Treatment 1  - 0.190 (0.087) 0.999 (-) 

Detour Task - Treatment 2  - - 0.338 (0.051) 
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Figure 5.1: Aerial view of the tank set up used for association training trials and 

detour task trials.  
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(a)      (b) 

   

Figure 5.2: Photographs of the test plate used during the detour trials for a) 

treatment 1, showing the (unmarked) transparent cylinder which represented 

low visual information, and for b) treatment 2 which shows the cylinder with 

three black horizontal lines, used to represent high visual information. The 

photographs show the open ends of the cylinders in which fish could access to 

the food reward, in addition to the green plastic disc upon which the food reward 

was placed.  
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Figure 5.3:  Plots of raw data of performance time across trials. Plot represent 

mean and standard errors for performance time in the detour task in treatment 1 

(clear cylinder) and 2 (stripy cylinder), across the 3 trials for males (blue) and 

females (red). Error bars represent mean and standard errors of performance 

time for individuals.  
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Figure 5.4.  Boxplot of data distributions for performance in the 9 training trials for 

males (blue) and females (red). Horizontal lines within box correspond to 

behavioural medians, box boundaries correspond to first and third quartiles. 

When present, whiskers correspond to 10th and 90th percentiles, and points 

correspond to outliers.  
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6 Chapter 6: General Discussion 
 

My PhD thesis broadly aimed to investigate the causes of variation in cognitive 

and personality traits in Poecilia reticulata, and investigate the extent to which 

genetic variation contributes to these and to relationships between them.  The 

question of how natural selection can give rise to repeatable among-individual 

differences in cognitive and personality traits has attracted much attention from 

theoreticians and empiricists (Réale et al., 2007; Wolf et al., 2012; Croston et al., 

2015; Boogert et al., 2018). However, to date and despite the notable scientific 

input, the evolutionary origin of adaptive cognitive behaviour is still poorly 

understood. My thesis chapters were specifically planned to further our 

understanding of the adaptive causes of individual differences in cognitive and 

personality traits. Here, I summarise the results of each chapter before 

suggesting some potential improvements to methodologies used here, and then 

outline some possible directions of future work to assess the adaptive nature of 

cognitive performance traits.  

In terms of understanding the evolution of traits, among-individual variation 

is important as it is as pre-requisite for natural selection and genetic variation – 

both of which are required for adaptive evolution to occur (Wilson et al., 2010). 

Phenotypic variation is found in almost all labile traits even in the presence of 

strong natural selection; however strong directional or stabilising selection is 

usually predicted to erode variation in phenotypes, or at least its genetic 

component. This presents an evolutionary conundrum. What maintains genetic, 

and so presumably, among-individual variation?  
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The most commonly hypothesised ‘resolution’ to this conundrum in 

evolutionary ecology is that because (i) natural selection does not act on traits in 

isolation, and (ii) traits are correlated, trade-offs arise that impose constraints on 

adaptation and maintain variation. If this idea applies to cognition, then the extent 

to which cognitive traits covary with other aspects of phenotype (e.g. personality 

traits) is expected to be an important factor in shaping their evolutionary 

dynamics. 

In Chapter 2, I investigated hypothesised links between cognitive 

performance and personality traits. I used a multivariate approach to investigate 

the presence of (co)variation in cognitive performance in two spatial learning 

tasks and a behavioural stress response in an open field task.  I found among-

individual differences in task performance that were repeatable within- and 

across both maze layouts, where performance in the first maze predicted 

performance in the second maze. Average performance improved with 

experience in the first maze, consistent with spatial learning. However, there was 

no evidence of average improvement within the second maze, potentially owing 

to cumulative chronic stress effects. Individuals also differed in ‘learning rate’ 

across both mazes, suggesting that while some individuals improved across 

trials, performance declines for others, especially in the second maze. Although 

personality, measured here as (repeatable) stress response behaviour, did not 

correlate with cognitive performance, it seems both possible and plausible that 

cumulative, chronic stress effects contribute to declining performance. If so, this 

study points to the potential importance of considering chronic stress effects in 

cognitive assays. Chronic stress can be induced by repeated handling and/or 
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exposure to assays and thus represents a potentially widespread but currently 

poorly acknowledged challenge for characterisation of cognitive variation in 

animal studies.  

In Chapter 3 , I continued my investigation of the structure of variation in 

cognition and personality differences at the among-individual level. I again used 

multivariate analytical approaches, but here also took a more ‘holistic’ view of 

cognitive phenotype by estimating the ID matrix among traits used as 

performance proxies across three domains; association learning in a colour 

discrimination task; motor cognition in a novel motor task and cognitive flexibility 

in a reversal learning task, in addition to a measure of the personality trait of 

‘boldness’. There was no evidence of trade-offs between personality and 

cognitive performance (both among- and within- cognitive domains). I found a 

strong positive domain-general correlation structure in the ID-matrix among all 

traits, and (on the correlation scale) 57% of the variation in multivariate cognitive 

performance was explained by the leading eigen vector. Although there are some 

important assumptions and caveats, these findings are consistent with variation 

in an overall, domain-general cognitive performance trait (similar in structure to 

the ‘general intelligence (g)’ model; Burkart et al., 2017; Galsworthy et al., 2005; 

Plomin & Spinath, 2002). If the correlation structure in ID is recapitulated in G, 

selection on any one trait would cause positively correlated evolutionary 

responses across all others (Roff, 2002). Shy-bold type behavioural variation can 

have important fitness consequences ( Wilson et al., 2010; Ariyomo et al., 2012; 

Ballew et al., 2017), and selection on this is therefore likely to impact evolutionary 

dynamics of cognitive performance (and vice versa). Thus Chapter 3  
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demonstrates the importance of considering the multivariate phenotype, which 

gives a much broader and realistic view of how traits are likely to respond to 

selection, revealing ways through which genetic and phenotypic variation in 

behaviour can be maintained (Wolf et al., 2012).  

The extent to which among-trait associations shape evolutionary 

adaptation strictly really depends not on the phenotypic correlation structure per 

se, but on the genetic contribution to this. As such, in Chapter 4 I built on the 

among-individual variation characterised in Chapter 2 and 3 by investigating the 

extent to which behavioural differences may be explained by genetic factors. In 

Chapter 4 , I built on previous work demonstrating genetic variation in personality, 

measured as (individual mean) behavioural stress-response in open field trials 

(OFT).  With collaborators, I used a novel form of ‘double hierarchical’ model to 

test for among-individual and genetic variation in mean behaviour, but also in 

within-individual variation (otherwise known trait ‘predictability’). We used a 

pedigree of fish and subjected individuals to repeated OFT assays.  The idea of 

investigating phenotypic ‘predictability’ is relatively new but has attracted 

increasing attention because, for instance two individuals may be equally ‘bold’ 

on average (as determined from the individual mean behaviour across multiple 

observations) but differ in how much variation they exhibit around their individual-

level mean phenotypes.  

Here we found individuals differed in behavioural predictability, and that 

this variation was heritable, meaning behavioural predictability can be viewed as 

a trait with adaptive potential under selection. Furthermore, we also found 
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evidence of a genetic correlation structure between the behavioural trait mean 

and individual predictability, where individuals - and genotypes – that were more 

explorative were also more predictable (i.e. less variable) in their behavioural 

response to the OFT. This leads to the expectation that these aspects of 

phenotype (mean behaviour and predictability) will coevolve under selection. In 

fact the stress coping style (SCS) model proposes a relationship between 

average behavioural response to a stressor stimulus, and the predictability of 

behaviour, where high (mean) ‘flight’ behaviour will be linked to high trait 

predictability within the proactive coping style. Our results confirm the association 

but did not fully align with its specific predictions (we found high (mean) ‘flight’ 

behaviour was linked to low predictability).  In part this may be because the trait 

we focussed on to measure behavioural stress response arguably revealed 

variation in the magnitude, rather than ‘style’ of the behavioural stress response. 

Admittedly the distinction between these concepts is somewhat indistinct. 

Nonetheless, our findings do emphasise the need to evaluate genetic integration 

among stress-response traits in a multivariate empirical framework. On a more 

general level, our results show that  the common assumption of homogeneous 

residuals, typical to linear (mixed) models applied in personality research is 

violated (Dingemanse et al., 2013; Brommer, 2013). While this does not invalidate 

conclusions from simpler models addressing variation in (individual) mean 

behaviour only, it does demonstrate that deeper insights can be obtained by also 

modelling variability in trait predictability.   

Finally, in Chapter 5 I returned to the central theme of cognitive variation 

in a study of inhibitory control. In this chapter, I firstly used a mixed breeding 
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design, coupled with microsatellite genotyping and pedigree analysis, to 

reconstruct a pedigree of fish of known relatedness. I then exposed individuals to 

a ‘detour task’ to test for genetic variance in inhibitory control. I also tested for 

genotype-by-environment interactions (GxE) by testing related fish under 

alternative experimental treatments that differ in degree of available visual 

information (using transparent vs semi-transparent barriers in the detour task). 

To date, few animal cognition studies have characterised the importance of GxE. 

Given that cognition is defined in relation to acquiring, processing and using 

information in the environment, the possibility of GxE interactions are very 

plausible and intuitive. In terms of phenotypic plasticity, average performance 

was plastic across treatments, and mean performance in the clear cylinder 

treatment was faster.  

There was also evidence of GxE, which resulted in heritable variation in 

performance being present in the clear cylinder treatment only.  GxE here implies 

the presence of environment-specific genetic variance, but it can equally be 

understood as genetic variance for, and thus adaptive potential of, phenotypic 

plasticity (Pigliucci, 2001; Hill et al., 2010). In terms of adaptive evolutionary 

potential, inhibitory control may be highly sensitive to environmental conditions, 

which may provide a mechanism by which additive genetic variation is 

maintained. Equivalently, this result means that the plastic response of detour 

task performance to treatment environment is itself genetically variable. This 

highlights the importance of testing environment in studies investigating genetic 

variation of cognitive traits. Furthermore in Chapter 5, I presented repeatable 

among-individual differences in performance in the training trials and in learning 
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rate across trials, where ‘fastest learners’ (i.e. those with the steepest negative 

slopes) were poorer performers (slower than average by the end of trials). I also 

demonstrated that, although individual performance in training trials positively 

predicted performance in the detour task, it was not a sufficient explanation for 

the latter. This finding suggests that the detour task incorporates cognitive 

processes (putatively inhibitory control) that are distinct from those employed 

during the initial training trails (cognitive or non-cognitive). These findings again 

highlight the importance of multivariate approaches for estimating patterns of 

(co)variation that might otherwise go undetected in univariate trait-by-trait 

analysis.  

 

 

Concluding remarks and future directions 

The question of how, if and why, cognition evolves has been pivotal, 

receiving growing attention in the last few years. Thornton & Wilson's (2015) 

commentary on cognitive evolution highlighted the necessary conditions for traits 

to respond to selection, expressed as the “Darwinian Holy Trinity”: 1) phenotypic 

variation that is 2) heritable and 3) affects fitness. It is clear that high levels of 

variation in cognitive performance is present among individuals of the same 

species (Boogert et al., 2018; Cauchoix et al., 2018). However while estimates of 

among-individual variation are common, estimates of heritable variation are 

limited in comparison. This is not surprising owing to challenges of collecting large 

enough data sets of robust measures of cognition required to statistically partition 
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variance using quantitative genetic analysis (discussed in Chapter 1) . The 

challenges of estimating genetic variation in cognitive traits were also discussed 

in Chapter 5 , where genetic variance in detour task performance was detected 

under one environmental treatment. This chapter highlighted the importance of 

the environment on the expression of (genetic) variance in (putative) inhibitory 

control, and suggests that the adaptive evolutionary potential of cognitive 

performance may be highly sensitive to environmental conditions. GxE 

interactions are increasingly studied in the animal personality literature. In 

Chapter 4, we used quantitative genetic approaches to demonstrate that GxE 

interactions contribute to personality traits. However to date, few animal cognition 

studies have characterised the importance of GxE. Given that cognition is defined 

in relation to acquiring, processing and using information in the environment, the 

possibility of GxE interactions are very plausible, and represent an important and 

interesting avenue for future research. 

It is commonly assumed (but seldom tested) that elevated cognitive 

performance provides fitness benefits (Thornton et al., 2019). For traits to evolve, 

there must be selective consequences of the underlying phenotypic variation 

present within populations. Throughout my thesis I have presented evidence of 

among-individual variation in cognitive performance across multiple cognitive 

domains (Chapter 2, 3 and 5) , in addition to evidence of genetic variation 

contributing to among-individual differences (Chapter 5 ). Fitness consequences 

arising from among-individual and genetic variance in cognitive performance 

were not explored in this thesis. However, in order to fully test the adaptive 

potential of cognitive traits, we require both knowledge of the underlying genetic 
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architecture, and selection. Estimates of selection on cognitive traits are critical 

to our understanding of how natural selection may drive the evolution of cognitive 

abilities (Thornton et al., 2012b, 2014). An approach that targets individual 

variation in cognition and fitness is key to elucidating contemporary selection in 

wild populations. Potential avenues for future research could explore 

experimental assays targeting heritable cognitive performance and fitness 

measures. For example, an intermediary solution could involve measuring 

cognitive performance on a pedigree of guppies (of known relatedness) bred in 

the lab, following which individuals are released into a semi-wild mesocosm, 

where measures of fitness can be estimated over time (e.g. survival and 

reproduction).  

Throughout my thesis, I have advocated the use of quantitative genetic 

modelling approaches as providing an ideal framework for investigating among-

individual differences in cognitive and behavioural variation. They allow patterns 

of among-individual (co)variation to be estimated and, through the use of 

multivariate mixed models and eigen decomposition, direct estimation of axes of 

among-individual variation to be summarised. In Chapter 3, I used a multivariate 

approach to characterise and test hypothesised relationships of cognitive 

performance across multiple domains and personality. Although the use of 

multivariate approaches are limited within the field of animal cognition, recent 

studies have utilised linear mixed models (e.g. Moiron et al., 2016), and with the 

inclusion of pedigree information, animal models have been used to investigate 

multivariate correlation structures in cognitive traits (Sorato et al., 2018; Langley 

et al., 2020; Poirier et al., 2020). Future research investigating evolutionary 
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causes and consequences of cognitive traits would benefit from considering the 

multivariate approaches to give a broader and more realistic view of how traits 

are likely to respond to selection (Wolf et al., 2012). 

Recently mixed model approaches have been advocated due to their ease 

in controlling for confounding variables, which are common when measuring 

latent traits such as cognition (Thornton et al., 2015; Morand-Ferron et al., 2016). 

In contrast to other biological traits, cognition is unobservable and can only be 

inferred through observation of behavioural or neural responses in carefully 

designed experiments. This represents a fundamental problem when trying to 

accurately measure a latent trait such a cognition. As in most cognitive studies, it 

is potentially problematic to view observed performance variation as being 

attributable to a single latent trait. General caveats and assumptions must be 

made when quantifying individual differences in cognitive abilities, and 

confounding variables must be accounted for. Cognitive performance in many 

tasks may involve additional cognitive processes and/ or behavioural traits. 

Furthermore, aspects of ‘state’ (e.g. prior experience, physiological condition, 

motivation) will add further complexity to how cognitive abilities are expressed, 

and each of these factors are also likely to interact. The effect of ‘non-target’ 

variation on the expression of cognitive abilities can have implications for 

quantifying individual differences, and may also obscure repeatability estimates 

for learning performances (Cauchoix et al., 2018) and general cognitive ability 

(Burkart et al., 2017). These issues are highlighted throughout this thesis 

(Chapters 1, 2, 3 and 5) , and I have attempted to account for and minimise 

sources of ‘non-target’ variation as much as possible. Multivariate approaches 
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make it easier to control for such confounding variables (Nakagawa et al., 2010). 

However, although complimentary, multivariate analysis is not a substitute for 

good experimental design. Combining conceptual and experimental rigor of 

cognitive science, with the large sample sizes and powerful analytical framework 

of quantitative genetics is advised. In this way, we can improve our understanding 

of the genetic causes and fitness consequences of among-individual variation in 

cognition, in the hope of elucidating the evolutionary processes that have shaped, 

and continue to shape, animal cognition.  
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9 Appendix 2 
 

Supplementary Information: Chapter 2 

 

Table S2.1: Fixed effect estimates from the full ra ndom intercept and 

random slope model for maze time in both maze A and  B 

Table S2.2: Fixed effect estimates from the full ra ndom intercept and 

random slope model for relative area. 

Table S2.3: Character state representation of among -individual correlation 

structure between trial specific maze time (both mazes) and relative area. 

Figure 2.1: Characterising individual variation in learning performance  

 

 

Table S2.1:  Fixed effect estimates (with standard errors in parentheses) from the 

full random intercept and random slope model for maze time in both maze A and 

B 

Maze  Fixed effect Effect size 

(SE) 

DF F P 

A  Intercept 0.140 (0.117) 1, 114.6 1.369 0.075 

  Trial -0.043 

(0.014) 

1, 59.8 10.140 0.003 

  Maze position 

(top) 

0.105 (0.061) 1, 600.3 2.987 0.085 

  Order  -0.025 

(0.015) 

1, 635.1 3.189 0.096 
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B  Intercept 0.172 (0.140) 1, 107.7 2.552 0.111 

  Trial 0.014 (0.014) 1, 53.6 1.193 0.301 

  Maze position 

(top) 

0.066 (0.070) 1, 540.4 0.892 0.345 

  Order -0.030 

(0.020) 

1, 565.8 2.760 0.116 
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Table S2.2:  Fixed effect estimates (with standard errors in parentheses) from the 

full random intercept and random slope model for relative area from the open field 

trials (OFT). 

Model  Fixed effect Effect size 

(SE) 

DF F P 

OFT  Intercept 0.229 (0.451) 1, 159 0.003 0.613 

  Trial -0.262 

(0.066) 

1, 116.8 15.710 < 0.001 

  Time 0.000 (0.000) 1, 150.3 0.003 0.953 
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Table S2.3:  Character state representation of among-individual correlation 

structure between trial specific maze time (both mazes) and relative area. 

 

Table 1 in the main text presents the estimated among individual (ID) covariance 

matrix of reaction norm (RN) intercepts and slopes for Maze timeA, Maze timeB 

and relative area (intercept only). Assuming the assumption of linear reaction 

norms hold true this can be transformed to the corresponding ‘character state’ 

(CS) among-individual covariance matrix of trial specific maze times and relative 

area (designated IDCS).  

For a single trait (e.g. Maze timeA),  IDCS =Q·IDRN·QT (following e.g. equation 5.8 

in Roff et al., 2014), where IDRN  is the 2x2 covariance matrix of reaction norm 

(RN) intercepts and slopes,  QT is the transpose of matrix Q,  and Q itself contains 

the values of the covariate (trial number) at which we wish to evaluate IDCS. 

Where we want IDCS to be an 11x11 matrix containing the among-individual 

variance in maze time at each trial number (1-11) on the diagonal, and the 

covariance between each pair of trial numbers in the off diagonal elements  

Q = 

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎡1 1
1 2
1 3
1 4
1 5
1 6
1 7
1 8
1 9
1 10
1 11⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎤
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Following this, but expanded to the multivariate case, we transformed the estimated covariance matrix (ID) formulated under the 

trivariate model described in the main text (i.e., with individual effects on Maze A and B modelled as first order random 

regressions of trial number) to the corresponding character state matrix. This was then rescaled to yield point estimates of the 

among-individual correlation between trial specific performance within- and across-mazes, and between these performances 

and stress responsiveness. For simplicity we do not similarly attempt to transform estimates of uncertainty, but note that this 

table is a mathematical consequence (and transformation) of the statistical estimated presented in Table 1 of the main text (i.e. 

this is same set of results presented a different way). 

 

  A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 RA B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 

A1                        

A2 0.993                       

A3 0.969 0.991                      

A4 0.925 0.963 0.990                     

A5 0.860 0.914 0.959 0.989                    

A6 0.778 0.846 0.909 0.958 0.990                   

A7 0.684 0.765 0.843 0.910 0.960 0.991                  

A8 0.586 0.678 0.768 0.85 0.917 0.965 0.992                 

A9 0.491 0.590 0.690 0.785 0.867 0.929 0.971 0.994                

A10 0.402 0.507 0.615 0.719 0.812 0.888 0.943 0.977 0.995               

A11 0.321 0.430 0.544 0.656 0.759 0.845 0.910 0.955 0.983 0.996              

RA 0.286 0.293 0.295 0.292 0.284 0.269 0.249 0.228 0.205 0.183 0.162             

B1 0.686 0.725 0.757 0.777 0.782 0.770 0.744 0.707 0.665 0.621 0.577 0.024            

B2 0.691 0.733 0.769 0.792 0.800 0.791 0.767 0.733 0.691 0.648 0.605 0.062 0.996           

B3 0.689 0.735 0.774 0.801 0.812 0.806 0.784 0.752 0.712 0.670 0.627 0.101 0.981 0.995          
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B4 0.681 0.729 0.771 0.801 0.815 0.812 0.794 0.764 0.726 0.686 0.645 0.140 0.957 0.980 0.995         

B5 0.666 0.716 0.760 0.793 0.810 0.811 0.795 0.768 0.733 0.694 0.655 0.178 0.922 0.955 0.979 0.995        

B6 0.644 0.696 0.742 0.777 0.797 0.801 0.789 0.764 0.732 0.696 0.659 0.214 0.879 0.920 0.954 0.980 0.995       

B7 0.617 0.670 0.717 0.754 0.777 0.784 0.775 0.754 0.724 0.691 0.656 0.246 0.829 0.878 0.921 0.956 0.981 0.995      

B8 0.586 0.639 0.687 0.726 0.752 0.761 0.755 0.737 0.711 0.680 0.648 0.274 0.775 0.831 0.882 0.925 0.959 0.982 0.996     

B9 0.552 0.606 0.655 0.695 0.722 0.734 0.731 0.716 0.693 0.665 0.636 0.299 0.718 0.781 0.838 0.889 0.931 0.963 0.984 0.996    

B10 0.518 0.571 0.620 0.661 0.690 0.704 0.704 0.692 0.672 0.647 0.620 0.319 0.661 0.729 0.793 0.851 0.900 0.939 0.968 0.987 0.997   

B11 0.484 0.536 0.585 0.627 0.657 0.673 0.675 0.666 0.649 0.627 0.602 0.336 0.605 0.678 0.747 0.810 0.866 0.911 0.947 0.972 0.989 0.997  
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Figure. S2.1:  Characterising individual variation in learning performance. Main panel 

(A) shows an average (black dashed line) decrease in maze time with trial number 

from 1 to 11 consistent with learning. Inset panels show how individual trajectories 

may vary around this because of differences in reaction norm intercepts (B) and or 

slopes (C-E). Where slopes vary (C-E), a corollary of this is that the among-individual 

variance (Vind) in maze time will change across trials. This could potentially increase 

(C) or decrease (D) monotonically, or there could be an intermediate trial number at 

which variance is minimised (E) or maximised (not shown). Where reaction norms tend 

to cross a lot within the range of trial numbers explored (E), this will result in low (and 

potentially negative) among-individual correlations between early and late trials. 
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10 Appendix 3  
 

Supplementary Information: Chapter 3 

 

 

Table S3.1: Fixed effects estimates for the full un ivariate models for each trait 

Table S3.2: Principle components loadings (eigen de composition) of ID matrix 

Figure S3.1: Plots of raw data of all traits across  each set of trials 

 

 

 

Table S3.1: Fixed effects estimates for the full univariate models Fixed effect 

estimates (with standard errors in parentheses) from full univariate models for each 

trait. Intercept represents estimate at Trial number = 1, sex = Female, Stack = A, 

Colour = Blue and Reward side = Left. 

 

Table S3.1a  – emergence 

Trait  Fixed effect Effect size 

(SE) 

DF F P 

emergence Mean Intercept 0.555 (0.213) 1, 81.9 0.002 0.966 

  Trial number (2) -0.082 (0.136) 8, 555.7 9.240 <0.001 

  Trial number (3) 0.425 (0.138)    

  Trial number (4) 0.580 (0.138)    

  Trial number (5) 0.475 (0.118)    

  Trial number (6) 0.523 (0.125)    
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  Trial number (7) 0.572 (0.121)    

  Trial number (8) 0.603 (0.126)    

  Trial number (9) 0.363 (0.125)    

  Sex (Male) -0.324 (0.168) 1, 82.4 3.705 0.057 

  Stack (B) 0.101 (0.168) 1, 82.6 2.328 0.550 

  Colour (Green) -0.030 (0.152) 1, 81.9 0.034 0.846 

  Reward side 

(Right) 

-0.113 (0.070) 1, 561.8 2.585 0.108 
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Table S3.1b  – ALtime 

Trait  Fixed effect Effect size 

(SE) 

DF F P 

ALtime Mean Intercept 0.151 (0.227) 1, 58.5 0.146 0.704 

  Trial number (2) -0.224 (0.149) 17, 801.8 2.246 0.002 

  Trial number (3) -0.250 (0.147)    

  Trial number (4) -0.043 (0.154)    

  Trial number (5) 
-0.298 (0.150) 

   

  Trial number (6) -0.313 (0.174)    

  Trial number (7) -0.265 (0.170)    

  Trial number (8) -0.417 (0.158)    

  Trial number (9) -0.403 (0.149)    

  Trial number (10) -0.377 (0.152)    

  Trial number (11) -0.567 (0.154)    

  Trial number (12) -0.269 (0.176)    

  Trial number (13) -0.414 (0.158)    

  Trial number (14) -0.527 (0.155)    

  Trial number (15) -0.587 (0.178)    

  Trial number (16) -0.512 (0.154)    

  Trial number (17) -0.688 (0.182)    
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  Trial number (18) -0.553 (0.227)    

  Sex (Male) 0.315 (0.181) 1, 59.5 2.381 0.087 

  Stack (B) 0.430 (0.181) 1, 59.2 3.606 0.021 

  Colour (Green) -0.362 (0.146) 1, 87.8 5.894 0.015 

  Reward side 

(Right) 

-0.095 (0.065) 1, 803.4 2.110 0.147 
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Table S3.1c  – ALspeed 

Trait  Fixed effect Effect size 

(SE) 

DF F P 

ALspeed Mean Intercept -0.657 (0.216) 1, 81.7 0.002 0.970 

  Trial number (2) 0.131 (0.134) 8, 555.0 7.380 <0.001 

  Trial number (3) 0.423 (0.136)    

  Trial number (4) 0.659 (0.137)    

  Trial number (5) 
0.499 (0.117) 

   

  Trial number (6) 0.648 (0.124)    

  Trial number (7) 0.631 (0.120)    

  Trial number (8) 0.508 (0.124)    

  Trial number (9) 0.395 (0.216)    

  Sex (Male) 0.197 (0.172) 1, 82.3 1.347 0.261 

  Stack (B) -0.102 (0.172) 1, 82.4 1.277 0.554 

  Colour (Green) 0.223 (0.155) 1, 81.7 2.011 0.156 

  Reward side 

(Right) 

0.148 (0.070) 1, 560.9 4.552 0.033 
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Table S3.1d  – ALaccuracy 

Trait  Fixed effect Effect size 

(SE) 

DF F P 

ALaccuracy Mean Intercept -0.645 (0.177) 1, 79.3 0.002 0.963 

  Trial number (2) -0.137 (0.140) 8, 558.0 4.602 <0.001 

  Trial number (3) 0.203 (0.142)    

  Trial number (4) 0.330 (0.142)    

  Trial number (5) 
0.361 (0.122) 

   

  Trial number (6) 0.374 (0.124)    

  Trial number (7) 0.395 (0.124)    

  Trial number (8) 0.308 (0.129)    

  Trial number (9) 0.230 (0.177)    

  Sex (Male) 0.103 (0.127) 1, 79.3 1.049 0.418 

  Stack (B) -0.205 (0.127) 1, 79.5 4.229 0.112 

  Colour (Green) 0.907 (0.115) 1. 79.3 61.770 <0.001 

  Reward side 

(Right) 

0.030 (0.072) 1, 567.4 0.161 0.689 
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Table S3.1e  – MCtime 

Trait  Fixed effect Effect size 

(SE) 

DF F P 

MCtime Mean Intercept 0.242 (0.244) 1, 48.1 0.002 0.967 

  Trial number (2) 0.028 (0.174) 17, 692.6 1.174 <0.001 

  Trial number (3) -0.099 (0.174)    

  Trial number (4) 0.143 (0.149)    

  Trial number (5) -0.288 (0.171)    

  Trial number (6) 0.178 (0.154)    

  Trial number (7) -0.037 (0.171)    

  Trial number (8) 0.386 (0.174)    

  Trial number (9) 0.104 (0.172)    

  Trial number (10) -0.332 (0.147)    

  Trial number (11) -0.516 (0.229)    

  Trial number (12) -0.468 (0.150)    

  Trial number (13) -0.309 (0.151)    

  Trial number (14) -0.272 (0.152)    

  Trial number (15) -0.452 (0.148)    

  Trial number (16) -0.166 (0.149)    

  Trial number (17) -0.233 (0.152)    
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  Trial number (18) -0.502 (0.146)    

  Sex (Male) -0.063 (0.192) 1, 48.3 -0.974 0.742 

  Stack (B) 0.262 (0.193) 1, 48.3 3.742 0.180 

  Colour (Green) -0.560 (0.158) 1, 48.1 12.61 0.001 

  Reward side 

(Right) 

0.279 (0.072) 1, 694.8 15.07 <0.001 
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Table S3.1f  – RLtime 

Trait  Fixed effect Effect size 

(SE) 

DF F P 

RLtime Mean Intercept -0.341 (0.307) 1, 47.7 0.005 0.946 

  Trial number (2) 0.196 (0.197) 17, 581.2 1.565 0.060 

  Trial number (3) 0.272 (0.214)    

  Trial number (4) 0.328 (0.195)    

  Trial number (5) -0.012 (0.193)    

  Trial number (6) 0.332 (0.190)    

  Trial number (7) 0.224 (0.197)    

  Trial number (8) 0.360 (0.196)    

  Trial number (9) 0.344 (0.213)    

  Trial number (10) 1.132 (0.594)    

  Trial number (11) 0.343 (0.234)    

  Trial number (12) 0.449 (0.218)    

  Trial number (13) 0.272 (0.205)    

  Trial number (14) 0.487 (0.254)    

  Trial number (15) 0.494 (0.206)    

  Trial number (16) 0.616 (0.200)    

  Trial number (17) 0.503 (0.206)    
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  Trial number (18) 0.310 (0.205)    

  Sex (Male) -0.104 (0.219) 1, 47.7 0.169 0.638 

  Stack (B) -0.153 (0.227) 1, 47.9 0.380 0.505 

  Colour (Green) 0.348 (0.182) 1, 47.4 3.529 0.066 

  Reward side 

(Right) 

0.043 (0.078) 1, 578.4 0.308 0.579 
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Table S3.1g  – RLaccuracy 

Trait  Fixed effect Effect size 

(SE) 

DF F P 

RLaccuracy Mean Intercept -0.402 (0.263) 1, 46.3 0.110 0.742 

  Trial number (2) 0.206 (0.211) 17, 584.2 1.085 0.271 

  Trial number (3) 0.104 (0.230)    

  Trial number (4) 0.350 (0.209)    

  Trial number (5) 0.280 (0.206)    

  Trial number (6) 0.290 (0.203)    

  Trial number (7) 0.279 (0.211)    

  Trial number (8) 0.185 (0.210)    

  Trial number (9) 0.315 (0.228)    

  Trial number (10) 0.058 (0.636)    

  Trial number (11) 0.001 (0.260)    

  Trial number (12) 0.327 (0.233)    

  Trial number (13) 0.359 (0.219)    

  Trial number (14) 0.225 (0.272)    

  Trial number (15) 0.548 (0.220)    

  Trial number (16) 0.514 (0.214)    

  Trial number (17) 0.610 (0.220)    
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  Trial number (18) 0.437 (0.219)    

  Sex (Male) -0.008 (0.166) 1, 46.4 0.006 0.963 

  Stack (B) -0.303 (0.173) 1, 48.1 5.464 0.086 

  Colour (Green) 0.631 (0.138) 1, 46.1 20.860 <0.001 

  Reward side (Right) 0.025 (0.084) 1, 579.9 0.089 0.764 
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Table S3.2: – Principle components analyses (eigen decomposition) of ID matrix 

 

Table S3.2a : Phenotypic variance (%) explained by six principle components of ID (on a correlation scale), with 95% confidence 

intervals from 5000 bootstrap replicates 

PC1 PC2 PC3 PC4 PC5 PC6 

0.571 [0.427, 0.698] 0.254 [0.126, 0.309] 0.121 [0.074, 0.156] 0.037 [0.047, 0.099] 0.017 [0.008, 0.055] 0.001 [0, 0] 

 

 

Table S3.2b: Loadings of six cognitive traits onto six principle components of ID (on a correlation scale) 

 PC1 PC2 PC3 PC4 PC5 PC6 

ALspeed -0.435    0.431 -0.022 -0.217  0.758 -0.047 

ALaccuracy -0.384  0.543  0.081 -0.198 -0.555  0.451 

ALtime -0.513  0.056  0.254  0.423 -0.240 -0.658 

MCtime -0.396 -0.471  0.343  0.373  0.193  0.571 

RLtime -0.367 -0.523  0.022 -0.737 -0.135 -0.174 

RLaccuracy -0.329 -0.139 -0.900  0.231 -0.065  0.070 
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Figure S3.1: Plots of observed means for all perfor mance time and decision 
accuracy measures across sets and trials 

 

Figure S3.1a : emergence 

 

 

Figure S3.1b : ALtime 
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Figure S3.1c : ALspeed 

 

 

Figure S3.1d : ALaccuracy 
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Figure S3.1e : MCtime 

 

 

Figure S33.1f : RLtime 

 

  


