
University of Exeter

Department of Computer Science

University Examination Timetable

Optimisation: Analysis, Initialisation,

and E↵ective Heuristic Optimisation

Amjad Alasmar Alsuwaylimi

November, 2020

Supervised by Professor Jonathan Fieldsend & Dr Alberto Moraglio

Submitted by Amjad Alasmar Alsuwaylimi, to the University of Exeter as a thesis for the

degree of Doctor of Philosophy in Computer Science , November, 2020.

This thesis is available for Library use on the understanding that it is copyright material

and that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identi-

fied and that no material has previously been submitted and approved for the award of a

degree by this or any other University.

(signature) ...

Abstract

In higher education institutions, particularly universities, the task of scheduling exam-

inations is a heavily constrained problem involving the allocation of exams, and corre-

sponding enrolled students, to examination rooms over a limited number of periods. This

is commonly performed by heuristic optimisers, as the task is NP-complete. The re-

search work presented in this thesis focuses on examination timetabling with the aim of

investigating three main areas: (i) initialising e�cient seeded solutions for starting exami-

nation timetabling heuristics, (ii) developing a novel genetic algorithm-based examination

timetabling optimiser, and (iii) analysing and comparing published works from the liter-

ature.

The new iterative initialisation algorithm presented here attempts to generate legal and

high-quality solutions, to feed into a heuristic optimiser. Subject to satisfying hard con-

straints, it schedules as many conflicting examinations as possible in the early and late

periods of a timetable, whilst managing the soft constraints. The proposed initialisation

strategy is empirically verified on problem instances from two di↵erent benchmark sets:

ITC 2007 and Yeditepe, and compared to a number of popular initialisation approaches.

The e↵ectiveness of this approach is also evaluated via incorporation in an exemplar evo-

lutionary algorithm.

This thesis also investigates a novel genetic algorithm that incorporates new operators to

avoid various types of violations that occur in the exam timetable optimisation task. It

utilises the initialisation approach developed earlier in the thesis, as well as specialised

operators for search. It is validated on a range of problems and is seen to produce results

that place its performance amongst the state-of-the-art.

The third area of investigation of this thesis is concerned with issues in the comparison

between published works on examination timetabling in the literature. Such comparison

is often di�cult and can be misleading because results obtained di↵er significantly in run-

times — even when variations in computational power are accounted for. Consequently,

a multi-objective comparison scheme based on (uncertain) Pareto dominance is presented

and utilised with the aim of comparing published exam timetabling approaches on the

Toronto benchmark sets to identify the (probabilistic) Pareto set of optimisers.

Acknowledgements

I would like to take this opportunity to personally thank a number of people for their

help and support during my PhD study. First and foremost, I would like to express my

profound gratefulness and deep honours to my first supervisor, Professor Jonathan Field-

send, for his constant guidance, support, help, encouragement, and constructive comments

throughout this study. I really appreciate his dedicated commitments and professionalism

in supervising my research study.

Also, I would like to express my gratitude to Dr Alberto Moraglio, my second supervisor,

for all the positive, constructive comments in my work that he has always given to me

despite his busy schedule and commitments. I also profoundly thank Dr Ke Li and Dr

Christine Mumford as my examiners, who already gave valuable feedback to improve the

thesis.

I would also like to thank the Northern Border University of Saudi Arabia for the doctoral

scholarship and other financial support throughout the course of my PhD study.

Special thanks to my lovely wife Reham Alanazi, my kids Feras and Dana, who always

bring joy and laughter; thanks for being there for me. Finally, thank you very much to

my parents, brothers and sisters for their support, love, and prayers.

Contents

List of tables iv

List of figures vii

List of algorithms ix

Nomenclature and Abbreviations xiii

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Research Objectives . 4

1.3 Research Contributions . 5

1.4 List of Publications . 6

1.5 Overview of the Thesis . 6

2 Background and Literature Review 8

2.1 Introduction . 8

2.2 Overview of Educational Timetabling Problems 8

2.2.1 University Timetabling Problems . 11

2.2.2 University Examination Timetabling Problems 12

2.3 Benchmark Examination Timetabling Datasets 16

2.3.1 University of Toronto Dataset . 17

2.3.2 International Timetabling Competition 2007 Dataset 19

2.3.3 University of Yeditepe Dataset . 22

2.3.4 Other Benchmark Examination Timetabling Datasets 23

2.4 Algorithmic Techniques for the University Examination Timetabling 27

2.4.1 Exact Techniques . 27

2.4.2 Constructive Heuristic Techniques 28

2.4.2.1 Graph Colouring Heuristics 29

2.4.2.2 Fuzzy-based Techniques . 31

2.4.2.3 Decomposition Techniques 34

2.4.2.4 Neural Networks . 35

2.4.3 Meta-heuristics and Improvement Heuristic Techniques 36

2.4.3.1 Hill-Climbing . 38

2.4.3.2 Tabu Search . 39

2.4.3.3 Simulated Annealing . 41

2.4.3.4 Variable Neighbourhood Search 44

2.4.3.5 Great Deluge Algorithm . 46

i

2.4.3.6 Genetic Algorithms . 48

2.4.3.7 Ant Colony Optimisation 52

2.4.3.8 Memetic Algorithms . 55

2.4.4 Hybrid Meta-heuristics . 57

2.4.5 Hyper-heuristics . 58

2.4.6 Multi-objective Techniques . 59

2.5 State-of-the-Art Meta-heuristics for the Examination Timetabling 62

2.5.1 Approaches Applied to the Uncapacitated Examination Timetabling 63

2.5.2 Approaches Applied to the Capacitated Examination Timetabling . 65

2.6 Significant Challenges in the Examination Timetabling Literature 72

2.7 Summary . 73

3 A New Initialisation Method for Examination Timetabling Heuristics 75

3.1 Introduction . 75

3.2 Initialisation for Examination Timetabling Problems 76

3.2.1 Largest Degree . 78

3.2.2 Largest Weighted Degree . 78

3.2.3 Largest Enrollment First . 78

3.2.4 Saturation Degree . 78

3.2.5 Random Schedule Allocation . 79

3.3 Proposed Initialisation Approach . 79

3.3.1 Front List . 82

3.3.2 Back List . 82

3.3.3 Middle List . 82

3.4 Experimental Results and Comparison . 86

3.4.1 Phase 1: Initialisation . 87

3.4.2 Phase 2: Optimisation . 100

3.5 Analysis of Results . 104

3.5.1 Statistical Test Method . 104

3.5.2 Statistical Analysis . 105

3.5.2.1 Phase 1: Initialisation . 106

3.5.2.2 Phase 2: Optimisation . 108

3.6 Summary . 109

4 An Exam Specialised Genetic Algorithm for Examination Timetabling

Problem 110

4.1 Introduction . 110

4.2 Genetic Algorithm for Examination Timetabling 111

4.3 Examination Solution Representation . 113

4.4 Proposed Modifications to the Basic Genetic Algorithm 116

4.4.1 Phase 1: Initialisation . 117

4.4.2 Phase 2: Optimisation . 117

4.4.2.1 Moderate Mutation . 121

4.4.2.2 Period Based Mutation . 123

4.4.2.3 Deep Mutation . 124

ii

4.4.2.4 Period Based Deep Mutation 126

4.4.2.5 Heavy Mutation . 127

4.4.2.6 Light Mutation . 129

4.4.2.7 Elite Light Mutation . 129

4.5 Enhanced Roulette Wheel Selection Strategy 130

4.6 Proposed Exam Specialised Genetic Algorithm 131

4.7 Experimental Results and Discussion . 133

4.7.1 Experimental Environment . 134

4.7.2 Parameter Settings . 134

4.7.3 Reported ‘best’ Results of the Benchmark Sets 134

4.7.3.1 Reported ‘best’ Results of the Toronto Benchmarks 134

4.7.3.2 Reported ‘best’ Results of the ITC 2007 Benchmarks . . . 138

4.7.3.3 Reported ‘best’ Results of the Yeditepe Benchmarks 140

4.7.4 Comparison with the Basic Genetic Algorithm 140

4.7.5 Comparison with the State-of-the-Art Approaches 143

4.7.5.1 Toronto Dataset . 143

4.7.5.2 ITC 2007 Dataset . 146

4.7.5.3 Yeditepe Dataset . 147

4.8 Summary . 150

5 A Novel Multi-objective Framework to Analyse 25 years of Exam

Timetable Optimisation 151

5.1 Introduction . 151

5.2 Reported ‘best’ Results from the Literature over Time 152

5.2.1 Reported ‘best’ Results of the Toronto Benchmarks 152

5.2.2 Reported ‘best’ Results of the ITC 2007 Benchmarks 153

5.3 Problems with Comparing Results from the Literature 153

5.4 Uncertain Multi-Objective Analysis of Published Results 159

5.5 Summary . 168

6 Conclusions and Future Work 170

6.1 Introduction . 170

6.2 Research Summary . 170

6.3 Future Work . 172

6.3.1 Improving the Investigated Approaches 172

6.3.2 Anytime Analysis . 173

6.3.3 Hybridisation . 173

6.3.4 Parameter Tuning . 174

6.3.5 Many-objective Optimisation Problem Formulation and Applying

Many-objective Optimisation Approaches 174

Bibliography 175

iii

List of Tables

2.1 The key di↵erences between examination and course timetable problems. . . 12

2.2 The characteristics of problem instances from the Toronto benchmark dataset. . . 17

2.3 The characteristics of problem instances from the ITC 2007 benchmark

dataset. 19

2.4 The weight of ITC 2007 examination benchmark sets. 22

2.5 A list of penalties in relation to ITC 2007 soft constraints. 22

2.6 The characteristics of problem instances from Yeditepe dataset. 23

2.7 The characteristics of the examination timetabling problems benchmark

datasets from di↵erent universities. 24

2.8 The characteristics of University of Nottingham benchmark dataset. 24

2.9 The characteristics of the Melbourne benchmark datasets. 25

2.10 The characteristics of problem instances from Suleyman Demirel University

dataset. 25

2.11 The graph colouring solution as a timetable. 29

2.12 The graph colouring heuristics in examination timetabling. 30

2.13 Advantages and disadvantages of multi-objective evolutionary algorithms

(MOEAs). 62

2.14 The strategy within Hyper-heuristics (HH) framework (Muklason, 2017). . . 68

2.15 Survey of approaches for examination timetabling problems by 2008. 69

2.16 Survey of approaches for examination timetabling problems reported be-

tween 2009-2015. 70

2.17 Survey of approaches for examination timetabling problems reported in

state-of-the-art. 71

3.1 List of variables used in Algorithm 3.1, Algorithm 3.2, and Algorithm 3.3. . 86

3.2 List of methods used in Algorithm 3.1, Algorithm 3.2, and Algorithm 3.3. . 86

3.3 Median soft constraint cost results, and timings on the ITC 2007 dataset.

The hyphen symbol ‘-’ means the method cannot produce feasible solutions

for the corresponding instance. Bold is lowest median soft constraint cost

result. Bold and underlined results are significantly better than all others

according to the Mann-Whitney U test with the Holm-Bonferroni correction

at the critical level (↵ = 0.05). 88

3.4 Yeditepe dataset results. Notation as in Table 3.3. 89

3.5 Median best solution cost EA results over 30 runs and Median Absolute

Deviation (MAD) after 8 minutes (per run) — ITC2007 problems. Notation

as in Table 3.3. 101

iv

3.6 Median best solution cost EA results over 30 runs and Median Absolute

Deviation (MAD) after 8 minutes (per run) — Yeditepe problems. Notation

as in Table 3.3. 102

3.7 Comparison between the results obtained from OBSI and RD in initialisa-

tion and optimisation phases. The hyphen symbol ‘-’ means the method

cannot produce feasible solutions for the corresponding problem instance. . 104

3.8 Adjusted (Mann-Whitney U Test) p-values on the ITC 2007 datasets. The

hyphen symbol ‘-’ means the method cannot produce feasible solutions for

the corresponding problem instance. 106

3.9 Adjusted (Mann-Whitney U Test) p-values on the Yeditepe datasets. No-

tation as in Table 3.8 . 107

3.10 Adjusted (Mann-Whitney U Test) p-values on the ITC 2007 datasets. No-

tation as in Table 3.8 . 108

3.11 Adjusted (Mann-Whitney U Test) p-values on the Yeditepe datasets. No-

tation as in Table 3.8 . 109

4.1 Results of a basic GA and ESGA on the Toronto, the ITC 2007, and the

Yeditepe problem instances are obtained after 30 runs. The best values are

shown in bold. 141

4.2 Improvement factor (percentage) between the results on the Toronto, the

ITC 2007, and Yeditepe benchmark sets of ESGA with the basic GA. . . . 142

4.3 Results of the ESGA on the Toronto benchmark set are obtained after ten

runs with a fix time limit (10800 seconds). 143

4.4 Comparison ‘best’ results of the proposed approach with reported ‘best’

results of various state-of-the-art approaches on the Toronto benchmark

set. In the measure column ‘M’, (f
min

) presents the best solution value

(minimum penalties and the row ‘R’ is rank. The comparison is made

between the best soft constraints cost of each approach. The best solutions

are in boldface. (-) indicates that a feasible solution could not be obtained,

or the following datasets were not tested. 145

4.5 Running times (in seconds t(s)) for the Toronto benchmark set. (**) indi-

cates that the authors did not report the algorithm execution time, and (-)

means that the algorithm was not able to obtain a feasible solution. 146

4.6 Comparison ‘best’ results of the proposed approach with reported ‘best’

results of the ITC 2007 finalists and more recent approaches applied to the

ITC 2007 benchmark set. Notation as in Table 4.4 148

4.7 Comparison ‘best’ results of the proposed ESGA approach with reported

‘best’ results of state-of-the-art approaches for Yeditepe dataset. Notation

as in Table 4.4. 149

v

5.1 Reported results of various state-of-the-art approaches on the Toronto bench-

mark set. In the measure column ‘M’, (b) presents the best solution values

reported over the multiple runs for an approach (minimum penalties) and

the row (m) is the mean results. (-) indicates that a feasible solution could

not be obtained, or the following datasets were not tested. In the row

marked with (***), the authors did not report the mean results. 154

5.2 Reported results of the ITC 2007 finalists and more recent approaches ap-

plied to the ITC 2007 benchmark set. Notation as in Table 5.1 155

5.3 Running times (in seconds t(s)) for the Toronto benchmark set. (**) indi-

cates that the authors did not report the algorithm execution time, and (-)

means that the algorithm was not able to obtain a feasible solution. 157

5.4 Running times (in seconds t(s)) for the ITC 2007 benchmark set. Notation

as detailed in caption of Table 5.3. 158

5.5 Number of repetitions for approaches that have been applied to the Toronto

and the ITC 2007 benchmark sets. (-) indicates that algorithm was not

applied to the corresponding benchmark set. 159

5.6 Number and percentage of times based on the best and the mean costs for

each above algorithm appears in uncertain Pareto set of optimal algorithm.

A ‘-’ indicates the authors did not report the mean costs. 162

5.7 Benchmark-wide pair-wise uncertain dominance comparison between the

algorithms on the Toronto benchmark sets. 169

vi

List of Figures

2.1 Diagram of the university timetabling problem (Babaei et al., 2015a). . . . 9

2.2 A graph model for a simple university timetabling problem (a) An undi-

rected graph; (b) A solution for the university timetable problem. 30

2.3 Membership functions for the linguistic variable ‘speed’. 32

2.4 The one-pair Kempe-chain (a) before and (b) after the move. 43

2.5 The two-pair Kempe-chain (a) before and (b) after the move. 43

3.1 The Front Section (FS), the Middle Section (MS), and the Back Section (BS). 79

3.2 An example of satisfying Period Spread (PS) constraint using the proposed

initialisation approach. 81

3.3 Boxplots of the soft constraint costs for all initialisation strategies per-

formed on the ITC 2007 problem instances 1–6, where OBSI: ordering-based

scheduling initialisation, LD: largest degree, LWD: largest weighted degree,

LE: largest enrollment, SD: saturation degree and RD: random. Y-axis on

log scale. 90

3.4 Boxplots of the soft constraint costs for all initialisation strategies performed

on the ITC 2007 problem instances 7–12. Notation as in Figure 3.3 91

3.5 Boxplots of the soft constraint costs for all initialisation strategies performed

on the Yeditepe problem instances 1–6. Notation as in Figure 3.3. Y-axis

on log scale. 92

3.6 Boxplots of the soft constraint costs for all initialisation strategies performed

on the Yeditepe problem instances 7–8. Notation as in Figure 3.3. Y-axis

on log scale. 93

3.7 Boxplots of the log execution time in milliseconds for all initialisation strate-

gies on the ITC 2007 problem instances 1–4. Notation as in Figure 3.3. . . 93

3.8 Boxplots of the log execution time in milliseconds for all initialisation strate-

gies on the ITC 2007 problem instances 5–10. Notation as in Figure 3.3. . . 94

3.9 Boxplots of the log execution time in milliseconds for all initialisation strate-

gies on the ITC 2007 problem instances 11–12. Notation as in Figure 3.3. . 95

3.10 Boxplots of the log execution time of all initialisation strategies on the

Yeditepe problem instances 1–4. Notation as in Figure 3.7. 95

3.11 Boxplots of the log execution time of all initialisation strategies on the

Yeditepe problem instances 5–8. Notation as in Figure 3.7. 96

3.12 The scatter plot with cost values and execution time amounts for all ini-

tialisation strategies performed on ITC 2007 instances 1–6. 97

3.13 The scatter plot with cost values and execution time amounts for all ini-

tialisation strategies performed on the ITC 2007 problem instances 7–12. . . 98

vii

3.14 The scatter plot with cost values and execution time amounts for all ini-

tialisation strategies performed on the Yeditepe problem instances 1–6. . . . 99

3.15 The scatter plot with cost values and execution time amounts for all ini-

tialisation strategies performed on the Yeditepe problem instances 7–8. . . . 100

4.1 An example of GA for solving examination timetabling problem. 112

4.2 Representation and Crossover Parent. 114

4.3 The Mutation Parent. 114

4.4 Chromosome representing a solution. 115

4.5 Flowchart of the proposed ESGA. 133

5.1 Times (s) employed on ITC 2007 benchmark datasets (as assigned by com-

petition software tool) are shown inside the nodes. These are sorted from

fastest (top of diagram) to slowest (bottom of diagram) and labelled by ref-

erence number and year of publication. Note for (Alsuwaylimi and Field-

send, 2019) this is the time for OBSI+EA, as the initialisation by itself

(OBSI) takes significantly under the budget assigned (which is the same

budget as OBSI + EA, as experiments were conducted on the same machine).160

5.2 Illustration of uncertain multi-objective algorithm comparison. (a) Deter-

ministic comparison. Algorithm b dominates algorithms c and d (it is faster

and gives better solutions), and is mutually non-dominated with a (which

returns a worse solution, but is much quicker). The uncertain Pareto set

in this case is {a, b}. (b) Comparison using uncertainty bound on timings.

Although b is still seen to dominate d, we cannot be certain that it domi-

nates c due to the uncertainty over the relative e↵ective timings (indicated

by the width of the horizontal bars going through the respective operating

points). The uncertain Pareto set in this case is {a, b, c}. 160

5.3 Uncertain Pareto fronts of published algorithm results (the best cost over

multiple runs) on the Toronto problem instances 1–7. Horizontal uncer-

tain timing bar coloured red for uncertain Pareto front members (i.e. P). . 163

5.4 Uncertain Pareto fronts of published algorithm results (the best cost over

multiple runs) on the Toronto problem instances 8–13. Horizontal uncer-

tain timing bar coloured red for uncertain Pareto front members (i.e. P). . 164

5.5 Uncertain Pareto fronts of published algorithm results (the mean cost

over multiple runs) on the Toronto problem instances 1–7. Horizontal

uncertain timing bar coloured red for uncertain Pareto front members (i.e.

P). 165

5.6 Uncertain Pareto fronts of published algorithm results (the mean cost

over multiple runs) on the Toronto problem instances 8–13. Horizontal

uncertain timing bar coloured red for uncertain Pareto front members (i.e.

P). 166

viii

List of Algorithms

2.1 Pseudo-code for a Hill-Climbing (HC) algorithm. 39

2.2 Pseudo-code for a Tabu Search (TS) algorithm. 40

2.3 Pseudo-code for a Simulated Annealing (SA) algorithm. 42

2.4 Pseudo-code for a Variable Neighbourhood Search (VNS) algorithm. 45

2.5 Pseudo-code for a Great Deluge Algorithm (GDA). 46

2.6 Pseudo-code for a Genetic Algorithm (GA). 49

2.7 Pseudo-code of a Ant Colony Optimisation (ACO). 53

2.8 Pseudo-code for a Memetic Algorithm (MA) 55

3.1 Pseudo-code of Front List (FL) heuristic. 83

3.2 Pseudo-code of Back List (BL) heuristic. 84

3.3 Pseudo-code of Middle List (ML) heuristic. 85

4.1 Pseudo-code of Check Coincidence. 118

4.2 Pseudo-code of Rollback. 119

4.3 Pseudo-code of Assignment. 120

4.4 Pseudo-code of the Rescheduling. 121

4.5 Pseudo-code of the proposed MM mutation. 122

4.6 Pseudo-code of the proposed PBM mutation. 124

4.7 Pseudo-code of the proposed DM mutation. 126

4.8 Pseudo-code of the proposed PBDM mutation. 127

4.9 Pseudo-code of the proposed HM mutation. 128

4.10 Pseudo-code of the proposed LM mutation. 129

4.11 Pseudo-code of the proposed ELM mutation. 130

4.12 Pseudo-code of the Exam Specialised Genetic Algorithm (ESGA). 132

ix

Nomenclature and Abbreviations

List of Acronyms

P Pareto set (p. 161)

AVG RK Average Ranking (p. 143)

EGD Extended Great Deluge (p. 46)

FD Flex-Deluge (p. 46)

NLGD Non-Linear Great Deluge (p. 46)

NP Non-deterministic Polynomial (p. 12)

NSGA-II Non-dominated Sorting Genetic Algorithm-II (p. 62)

PAES Pareto Archived Evolution Strategy (p. 62)

PESA-II Pareto Enveloped based Selection Algorithm-II (p. 62)

PESA Pareto Enveloped based Selection Algorithm (p. 62)

SPEA2 Strength Pareto Evolutionary Algorithm2 (p. 62)

SPEA Strength Pareto Evolutionary Algorithm (p. 62)

ACO Ant Colony Optimisation (p. 52)

BL Back List (p. 82)

BS Back Section (p. 79)

CD Conflict Density. (p. 16)

CP Constraint Programming (p. 27)

DM Deep Mutation (p. 124)

EAs Evolutionary Algorithms (p. 3)

ELM Elite Light Mutation (p. 129)

ERW Enhanced Roulette Wheel Selection Strategy (p. 131)

ESGA Exam Specialised Genetic Algorithm (p. 110)

FL Front List (p. 82)

FS Front Section (p. 79)

GAs Genetic Algorithms (p. 48)

GC Graph Colouring (p. 29)

GDA Great Deluge Algorithm (p. 46)

GRASP Greedy Randomised Adaptive Search Procedure (p. 31)

HC Hill-Climbing (p. 38)

HH Hyper-heuristics (p. 58)

x

HM Heavy Mutation (p. 127)

ILP Integer Linear Problem (p. 28)

ILS Iterated Local Search (p. 66)

IP Integer Programming (p. 27)

ITC 2007 International Timetabling Competition 2007 (p. 19)

LD Largest Degree (p. 77)

LE Largest Enrolment (p. 77)

LM Light Mutation (p. 129)

LWD Largest Weighted Degree (p. 77)

MAs Memetic Algorithm (p. 55)

MILP Mixed-Integer Linear Programming (p. 28)

MISTA Multidisciplinary International Conference on Scheduling: Theory and

Applications (p. 9)

ML Middle List (p. 82)

MM Moderate Mutation (p. 121)

MOEAs Multi-objective evolutionary algorithms (p. 59)

MOPs Multi-objective optimisation problems (p. 59)

MS Middle Section (p. 79)

MSSH Multi-Start Stochastic Hill-climbing (p. 76)

OBSI Ordering-Based Scheduling Initialisation (p. 86)

OR Operations Research (p. 1)

PATAT Practice and Theory of Automated Timetabling (p. 9)

PBDM Period Based Deep Mutation (p. 126)

PBM Period Based Mutation (p. 123)

PL Period List (p. 86)

PSO Particle Swarm Optimisation (p. 47)

RD Random Schedule Allocation (p. 79)

RK Ranking (p. 143)

SA Simulated Annealing (p. 41)

SCE Shu✏ed Complex Evolution (p. 56)

SD Saturation Degree (p. 77)

SI Swarm Intelligence-based algorithms (p. 3)

SPL Selected Period List (p. 86)

TS Tabu Search (p. 39)

VNS Variable Neighbourhood Search (p. 44)

xi

List of Symbols

↵ schedule of exams to rooms at periods (p. 86)

R

p

available room in period. (p. 86)

rp get a random period (p. 86)

↵ history coe�cient (influence of pheromone) (p. 53)

� heuristic coe�cient (influence of heuristic information) (p. 53)

�E the di↵erence in the objective value (energy) between the current solution

and the generated neighboring solution (p. 41)

⌘

ij

the heuristic information on edge (i, j) (p. 53)

⇢ evaporation rate (p. 53)

⌧

ij

the amount of pheromone on edge (i, j) (p. 53)

|E| number of exams (p. 14)

|P | number of periods available (p. 14)

c soft constraints cost (p. 125)

C = |E|⇥ |E| Conflict Matrix (p. 16)

c

ij

the number of students enrolled for both exam i and j (p. 16)

E set of exams (p. 14)

eList selected exams list (p. 121)

f(Sol) the fitness value of the initial solution (p. 39)

f(Sol⇤) the fitness value of a neighbouring solution (p. 39)

K

B

the Boltzmann constant (p. 41)

m total number of ants (p. 53)

mp number of periods to be mutated (p. 123)

Mut

size

the size of mutation (p. 124)

MutL mutation list (p. 119)

N(Sol) set of neighbours of the solution Sol (p. 40)

N

k

i

set of neighbourhood of ant k in node i (p. 53)

N

k

(Sol) set of solutions in the k

th neighborhood of solution (p. 44)

ne number of exams (p. 121)

Next Pop next population (p. 132)

np number of periods (p. 121)

P set of periods available (p. 14)

p

i

the period scheduled to exam i (p. 18)

P

k

ij

the probability of ant k location i choosing a location j (p. 53)

pc crossover probability (p. 48)

pe

i

a penalty value imposed to the violation of a specific constraint (p. 125)

PL period list (p. 119)

pm mutation probability (p. 48)

Pop population (p. 49)

Popsize population size (p. 48)

xii

R

p

set of room lists, available each period (p. 120)

R

exclusive

room exclusive (hard) constraint (p. 119)

R

seats

the available seats of room (p. 119)

random[0, 1) random variable function returning value in range [0,1) (p. 41)

RL room list (p. 119)

rn number of runs (p. 130)

S a set of students (p. 21)

s a student (p. 21)

SL solutions list ordered by their cost values (p. 124)

Sol initial solution (p. 39)

Sol

0
best admissible neighbour (p. 40)

Sol

⇤ neighbour solution of the initial solution (p. 39)

sp selection probability value (p. 123)

sr solution rank (p. 123)

T timetable (p. 122)

t iteration (p. 49)

TE current temperature (p. 41)

TE0 initial temperature (p. 41)

temp temporary list (p. 121)

w weight associated with soft constraint (p. 22)

w

2D weight for “Two Exams in a Day” (p. 21)

w

2R weight for “Two Exams in a Row” (p. 21)

w

FL weight for “Front Load penalty” (p. 21)

w

NMD weight for “No Mixed Duration” (p. 21)

w

PS weight for “Period Spread” (p. 21)

w

i

an attached weight (p. 125)

X

ij

one if exam i clashes with exam j (i.e. exam i and j have common stu-

dents), and zero otherwise (p. 14)

X

p

the maximum number of exams that can be scheduled at period p (p. 15)

Y

ip

one if exam i is allocated to period p; otherwise Y

ip

equals zero (p. 14)

Y

jp

one if exam j is allocated to period p; otherwise Y

jp

equals zero (p. 14)

Z

ip

the cost of scheduling exam i in period p (p. 14)

Max maximum number reached by random (p. 121)

o↵s new solutions (o↵spring) (p. 121)

TBList tabu list (p. 40)

UP parameter that represents the rain speed (p. 46)

LEVEL the water level (p. 46)

xiii

Chapter 1

Introduction

1.1 Background and Motivation

When solving a problem, people usually search for the best possible solution from those

available, using background information and choosing between candidate solutions from a

search space (i.e. the number of possible solutions to the problem). This work is concerned

particularly with solving timetabling problems. Timetabling problems occur in various

fields, including in healthcare (e.g. Burke et al. (2004c)), education (e.g Kristiansen and

Stidsen (2013)), sports (e.g. Easton et al. (2004) and Trick (2011)), and transportation

(e.g. Leake (1996)). Timetabling problems have become a research area in Operations

Research (OR) and Artificial Intelligence (AI), with a number of conferences having been

dedicated to the topic. Within the education domain, educational timetabling can be

classified into three categories (Schaerf, 1999): School timetabling (Abdullah et al., 2005),

Course timetabling (Abdullah et al., 2005), and Exam timetabling (Qu et al., 2009b). The

similarities and di↵erences between these categories are discussed in Chapter 2.

In the field of higher education, the problems are known as University Timetable Problems.

These consist of allocating meetings between teachers and students within a given period

of time while satisfying various constraints. University timetabling problems are often

large as there are more programmes, classes, and resources than in secondary or primary

education scenarios. There are also more interactions because students have more choices,

while di↵erent programmes require similar teaching. Higher education timetabling has

therefore been proven to be di�cult tasks faced by educational institutions (Bardadym,

1995). The need for automated scheduling to build a feasible timetable that satisfies the

requirements of all students and teachers has become increasingly di�cult in recent years

due to the increasing proliferation in the number of students and courses as universities

expand, and as the options available within degree programmes increase. Matched with

this, there are limitations in some other facilities like rooms and periods, etc., which tend

to lag in their corresponding increase (if they increase at all). This has motivated many

researchers and commercial software providers to use artificial intelligence, mathematical

models, meta-heuristic algorithms, and other algorithms to assist sta↵ in building high-

quality solutions to their timetabling problems.

1

1. Introduction

In this thesis, the focus is the university examination scheduling problem. This problem

involves an administratively taxing task, which is frequently repeated in various academic

institutions for each course session. Furthermore, in recent years, this problem has become

increasingly challenging because of the rise in the number and complexity of students’

examination enrolments (i.e. students are given the flexibility to enrol in di↵erent modular

courses across faculties) (Burke et al., 1994a; McCollum, 2007).

Recently, evolutionary algorithms and meta-heuristic approaches have attracted a lot of

attention as potential solutions to such examination timetabling problems. Such problems

involve many constraints that must be satisfied simultaneously, such as meeting regula-

tions, using resources properly, and meeting people’s requirements to which evolutionary

algorithms are particularly well-suited (Silva et al., 2004). The e�ciency of these ap-

proaches is often dependent on the initial population, which is optimised from, however.

An initial solution in examination timetabling problem is normally constructed using an

appropriate heuristic (or set of initial solutions), then evolutionary algorithms or meta-

heuristics are employed to improve this initial solution. Generally speaking, therefore, high

quality and diverse initial solutions will improve the performance within an evolutionary

timetabling algorithm. In the current state-of-the-art timetabling solutions, however, while

a lot of work has been directed towards developing e↵ective search heuristics, there has

been less consideration of the task of generating the initial solutions (therefore identifying

more promising solutions in the space search to start from) for the timetabling problem,

in a way that meets as many constraints as possible.

Common approaches to solving examination timetabling problems typically include two

phases: a construction phase and an improvement phase (Hertz, 1991). The basis of the

construction phase are approaches such as Graph-Colouring (Carter and Laporte, 1996;

Burke et al., 2007), Fuzzy Logic (Asmuni et al., 2005b) and Neural Networks (Corr et al.,

2006a) that start with an empty solution and then attempts to construct a complete (fi-

nal) solution. In contrast, in the improvement phase, the focus is on repeatedly improving

the complete solution until an optimal solution is produced. Some examples of improve-

ment approaches are: Tabu Search (Di Gaspero and Schaerf, 2000; White and Xie, 2000;

Kendall and Hussin, 2005b), Simulated Annealing (Burke and Newall, 2003; Thompson

and Dowsland, 1998) Memetic Algorithms (Burke et al., 1995c; Burke and Silva, 2005), Ge-

netic Algorithms (Burke et al., 1995b), Ant Colony Optimisation (Dowsland and Thomp-

son, 2005; Eley, 2007), Particle Swarm Optimisation (Chu et al., 2006), the Great Deluge

Algorithm (Burke et al., 2004a), as well as hybridisations of distinct heuristic methods

(Caramia et al., 2001; Merlot et al., 2003).

The other well-known objective of examination timetabling in the literature is to solve this

problem and obtain high-quality timetables. To this end, many meta-heuristic approaches

have been proposed and applied by researchers (Burke et al., 1996; Carter et al., 1996; Qu

et al., 2009b). These research have been devoted to investigate various approaches, develop

new methods in order to solve the problem e↵ectively and produce promising findings.

However, due to the inherent complexity of the problem, there are still opportunities for

improvements in the current state-of-the-art.

2

1. Introduction

Some of these approaches are population-based. In these approaches, an algorithm works

on several solutions, attempting to enhance them. The population-based approaches can

be characterised into Swarm Intelligence (SI)-based algorithms and Evolutionary Algo-

rithms (EAs) (Yang, 2010; Dréo et al., 2006).

SI depends on mimicking the cooperative problem-solving behaviour exhibited in social

colonies’ collective intelligence within a self-organised system (Burke and Newall, 2004;

Kirkpatrick et al., 1983; Clerc and Kennedy, 2002), which arises from the local com-

munication between individuals and the environment (Burke and Bykov, 2008). These

characteristics of SI motivated researchers to use such behaviour to tackle optimisation

problems (Blickle and Thiele, 1995). SI-based algorithms, which include the Ant Colony

Optimisation algorithm (Dowsland and Thompson, 2005), Fish Swarm Optimisation algo-

rithm (Turabieh and Abdullah, 2011a), and Artificial Bee Colony algorithm (Alzaqebah

and Abdullah, 2011), have been widely employed to solve the examination timetabling

problems in the existing literature.

Evolutionary algorithms, meanwhile, comprise several heuristics that can solve optimisa-

tion problems through the imitation of some natural evolutionary aspects. An example

of an evolutionary algorithm is the Genetic Algorithm (GAs) (Holland, 1992). Genetic

algorithms have been the evolutionary algorithms most commonly used by researchers to

solve combinatorial optimisation problems (Mohammed et al., 2017). Several researchers

have used GAs to solve examination timetabling problems (Corne et al., 1993, 1994b;

Paechter et al., 1994; Burke et al., 1994a; Pillay and Banzhaf, 2010). They concluded that

conventional GAs had not generated good results compared to a number of approaches

developed for the examination timetabling problem. However, modified basic genetic op-

erators have been seen to enhance the algorithm’s performance (Zhong et al., 2013). This

observation, therefore, motivated us to establish a further goal for this research, to focus

on enhancing conventional genetic algorithms to improve initial solutions obtained during

the construction phase.

The construction of an examination timetabling problem is a challenging task and quite

often time-consuming. It is concerned with assigning exams to a specific number of periods

so as to satisfy a given set of constraints (Balakrishnan, 1991; Schaerf, 1999; Qu et al.,

2009a). Many approaches have been investigated in an attempt to solve examination

timetabling problems (as we shall see later in Chapter 2). These approaches often em-

ployed ordering strategies (i.e. di↵erent graph colouring heuristics) in order to construct

examination timetables in the construction phase. Since none of the ordering strategies

provides a guarantee of successful scheduling, there have been extensive studies on con-

structive approaches reported in scientific literature. Most of these incorporated graph

colouring heuristics have employed some adaptive strategies (Rahman et al., 2009; Burke

and Newall, 2004), fuzzy techniques (Asmuni et al., 2009; Pais and Burke, 2010), decom-

position (Abdul-Rahman et al., 2014a; Qu and Burke, 2007), and neural networks (Corr

et al., 2006b). As a result, approaches related to these ordering strategies are used to con-

struct a feasible timetable before proceeding to improve the solution quality. Furthermore,

several studies have shown that a high quality initial solution influenced the performance

of the search algorithm e.g. Burke and Newall (2003); Gogos et al. (2012). However, most

3

1. Introduction

previous researches published that have been surveyed do not emphasise the importance

of generating good quality solutions where administration requirements are considered in

the construction phase without taking into account markers’ and students’ preferences.

Therefore, this has motivated this research to investigate whether the use of a new ini-

tialisation method could be of benefit in the construction phase and the influence of this

method on the solution quality when an improvement approach is employed, as it is an

under-explored area.

In addition, an observation of the recent examination timetabling literature shows that

there are a number of issues encountered in comparison between approaches proposed to

solve examination timetabling problems. Research published in this area often proposes

new optimisers, which are evaluated against common test problems but run for very dif-

ferent durations (and thus potentially computation times) than the prior work they are

compared to. Additionally, a variable range of repeats is also used (with the best found

across repeats taken as a measure of quality). Such issues mean it is di�cult to interpret

and rank optimisers fairly based on previously published results alone. Therefore, this

observation also motivated us to address some of these concerns, through developing a

comparison framework.

1.2 Research Objectives

As mentioned above, this thesis focuses on the examination timetabling problem. As such,

besides aiming to propose a strategy that could be used to establish a good starting point

for subsequent exam timetabling optimisation heuristics, we are aiming to produce feasible

solutions for all instances, with better quality and diversity while also being competitive

with other algorithms specially developed for solving examination timetabling problems.

To be specific, the research aims at proposing a new initialisation approach, whose main

novelty stems from the way it manages allocation among three interacting lists of exams.

These lists are arranged and processed in a step-wise fashion in order to provide a good

satisfaction of hard and soft constraints. In addition to the development of a new initiali-

sation approach (as mentioned earlier), we aim to investigate a meta-heuristics approach

to minimise the total cost of soft constraints. An improvement methodology involves an

exam specialised genetic algorithm which incorporates novel operators for this problem.

The exam specialised genetic algorithm employs our developed initialisation method in or-

der to take advantage of good initial search populations. Furthermore, it is designed with

the aim of e↵ectively exploring and e�ciently exploiting the solution space. Moreover, the

crossover operator is eliminated in order to produce a high-quality examination timetable

in a shorter time compared to the conventional genetic algorithms. The study also aims

to address a number of issues identified with the common comparison between published

works on examination timetabling in the literature and derive an uncertain Pareto analysis

to mitigate uncertainties in e↵ective computation capabilities between published works.

The objectives listed below sum up the scientific aim of the work reported in this thesis.

The first objective concentrates on the construction of high quality solutions while the

second objective seeks to further improve the quality of these solutions. The third ob-

4

1. Introduction

jective analyses results from the last 25 years of exam timetable optimisation, comparing

and contrasting these using a specially developed framework. Each of the objectives is

discussed fully in the corresponding chapters.

• To propose a novel initialisation algorithm to seed the initial population in order to

provide a good starting point for subsequent optimisation of the exam timetabling

solution by means of a meta-heuristic algorithm.

• To propose an optimisation method that incorporates novel operators (directed and

undirected mutations and an enhanced selection strategy) which are applied to ex-

aminations or periods to improve the quality of the final solution.

• To develop a framework to compare the published exam timetabling results on the

Toronto benchmark sets to identify optimal approaches whilst explicitly accounting

for the uncertainly in timing due to potential di↵erences in e↵ective computing power

used across studies.

1.3 Research Contributions

The main contributions of the research reported in this thesis are that it proposes a

novel heuristic for constructing examination timetabling and that it is the first study

to investigate an uncertain multi-objective analysis of published examination timetabling

approaches. The specific contributions are described below:

• The presentation of a new initialisation method for constructing examination timeta-

bles. This shows an improvement in terms of the quality and diversity of the solution

when compared with other initialisation methods from the literature (i.e. di↵erent

graph colouring heuristics and random scheduling).

• Application of an exam specialised genetic algorithm adapted with novel operators

to solve capacitated and uncapacitated examination timetabling problems. The

approach is incorporated with the new initialisation method to improve the solutions

obtained within reasonable computational times. Notably, the study introduces a

number of novel mutation operators as well as an enhanced roulette wheel selection

strategy. It is concluded that the combination of the novel initialisation method

proposed in this thesis with the proposed algorithm adapted with the new operators

can significantly improve solutions and avoid various types of violation. Moreover,

the finding of this research is that the proposed algorithm is competitive with many

state-of-the-art schedulers from the literature (after comparison with 16 algorithms

in respect to an uncapacitated problem (the Toronto dataset), and 27 algorithms in

respect to capacitated problems (both the ITC 2007 and Yeditepe datasets).

• The investigation, for the first time, of a bi-objective comparison scheme based

on (uncertain) Pareto dominance in order to identify the uncertain Pareto front,

and dominated algorithms, for published approaches designed to solve the Toronto

benchmark sets. Although many approaches have been developed and proposed in

the last few decades, this analysis suggests that among the top-ranked approaches

5

1. Introduction

are our proposed initialisation approach and an approach from Burke and Bykov

(2008).

1.4 List of Publications

The following publications have been conducted as a result of this research. The chapter

in this thesis which describes the content of the publication, is also presented.

• Amjad. A. Alsuwaylimi and Jonathan. E. Fieldsend, “A New Initialisation Method

for Examination Timetabling Heuristics”, 2019 IEEE Symposium Series on Compu-

tational Intelligence (SSCI), Xiamen, China, 2019, pp.1636-1643 (Chapter 3).

• Amjad. A. Alsuwaylimi and Jonathan. E. Fieldsend, “An uncertain multi-objective

analysis of 25 years of exam timetable optimisation”. Submitted to the Journal of

Information Sciences (Chapter 5).

1.5 Overview of the Thesis

This thesis is organised into six chapters. This chapter has presented the introduction, ob-

jectives, and the contribution claimed for the research and an outline of the dissemination

of the research work. The remainder of this thesis is structured as follows:

Chapter 2 provides details of the fundamental aspects of the research area that will be

tackled, introduces various educational timetabling problems and concentrates upon par-

ticular research issues concerned with university examination timetabling problems. It

describes the benchmark datasets widely used in the examination timetabling community

and reviews the di↵erent algorithms and approaches investigated in respect to examination

timetabling problems, with a focus on the recent approaches applied to the benchmarks.

Chapter 3 elaborates on the initialisation approach proposed in this research. In the course

of this chapter, popular initialisation approaches from the literature and all the main pro-

ducers involved in constructing initial examination timetables are described. Furthermore,

this chapter presents comparisons between our proposed initialisation and other popular

initialisation strategies in the initialisation phase, as well as when they are incorporated

within a simple Evolutionary Algorithm. The implementation and experimental analy-

sis of these strategies are discussed in respect to two well-known capacitated benchmark

datasets.

Chapter 4 presents an exam specialised genetic algorithm that can utilise the higher qual-

ity seed solutions that have been generated by our proposed initialisation method (see

Chapter 3) to optimise a problem more e↵ectively. The proposed approach and mutation

operators are presented in this chapter. A comparison is undertaken between the pro-

posed approach and a basic Genetic Algorithm for both capacitated and uncapacitated

benchmark datasets. In addition, a comparison is made with state-of-the-art approaches.

Chapter 5 presents practical issues in examination timetabling and performance assess-

ment. It outlines the fundamental problems that arise when comparing the algorithm

6

1. Introduction

performances published in the literature. It also summarises the performance of popu-

lar exam timetabling optimisation approaches in respect to common exam timetabling

benchmarks. The popular capacitated and uncapacitated benchmarks used in this study

are briefly described. This chapter also describes a multi-objective analysis of the results

that can address some of the issues that have been identified, and presents a comparison

of 16 di↵erent approaches using the uncapacitated benchmark.

Finally, the overall conclusions of the work presented in this thesis, and opportunities for

possible future research are presented in Chapter 6.

7

Chapter 2

Background and Literature

Review

2.1 Introduction

This chapter provides details of the fundamental aspects of the research area. First, it

describes the general timetabling problem, specifically the university timetabling problem

and the related constraints that need to be considered in the problem. Next, it provides an

overview of examination timetabling and identifies methods used in it. Then, it describes

the literature relevant to the university examination timetabling problems, focusing on

automated solutions to these problems and the most influential works for the scope of the

current study.

Broadly, the remaining sections of the chapter fall into two parts. The first part, in Sections

2.2 through to 2.3, describes the timetabling problem, moving from the general articula-

tion of what timetabling involves through to the specific issue of university examination

timetabling. The second part, in Sections 2.4 to 2.5, introduces the various techniques that

have been applied to the examination timetabling problem, moving from the distinction

between exact, constructive, and improvement techniques with advantages and disadvan-

tages of each of these techniques in Subsections 2.4.1, 2.4.2, and 2.4.3, through to the

detail of specific meta-heuristic algorithms in Subsection 2.4.3, and the specific research

in relation to hybrid meta-heuristics, hyper-heuristics and multi-objective approaches in

Subsections 2.4.4 to 2.4.6. Section 2.5 discusses which of these various approaches are the

current state-of-the-art in university examination timetabling. Section 2.6 presents the in-

sights and motivations obtained by this background study and literature review. Finally,

section 2.7 summarises the chapter.

2.2 Overview of Educational Timetabling Problems

Timetabling problem is considered to be a highly constrained scheduling problem. It is

a challenging and complex problem in the AI and OR and has been actively researched

8

2. Background and Literature Review

since the 1960s. During that time, many conferences have been held to discuss the best

possible ways to tackle this kind of problem, such as Practice and Theory of Automated

Timetabling (PATAT), which specifically addressed the topic at the centre of this thesis.

Other conferences explore timetabling in theory and practice, such as the Multidisci-

plinary International Conference on Scheduling: Theory and Applications (MISTA). In

general, timetabling can be classified into many di↵erent categories, such as educational

timetabling, transportation timetabling, nurse rostering, and sports timetabling. Educa-

tional timetabling is the problem that has been most extensively explored among those

interested in artificial intelligence (Lewis, 2008; Qu et al., 2009b). Figure 2.1 shows a

diagram of the university timetabling problem.

Scheduling

Problems

Timetabling

Problems

Educational

Timetabling Problems

University

 Timetabling Problems

High School

Timetabling Problems

University Course

 Timetabling Problems

University Examination

 Timetabling Problems

...

...

Figure 2.1 Diagram of the university timetabling problem (Babaei et al., 2015a).

There are some conflicting views related to the terms timetabling and scheduling that can

be found in the literature. For instance, Wren (1996) defined the term timetabling as

the process of assigning given resources into a limited number of available periods and

locations in order to achieve the highest potential satisfaction of a set of stated objectives,

while the term scheduling is referred to the process of assignment of certain resources into

periods and places with the aim of decreasing the total cost of resources employed. On the

contrary, Carter (2001) emphasised that the term timetabling determines when events will

occur but does not usually entail allocating resources as scheduling does. For instance, the

process of creating a university course calendar typically does not include identifying which

professors will be assigned to which specific course. This information is usually determined

upon well before creating the course timetable. However, we believe that minor distinctions

between various perspectives on what is meant by the terms timetabling and scheduling

are not significant. The critical point is that scientific progress undertaken in addressing

and understanding timetabling problems from many application domains will be made by

depending on the state-of-the-art in other scheduling problems and vice versa. Hence,

both terms are considered equivalent in this work and will be used interchangeably in the

text.

9

2. Background and Literature Review

In general, Burke et al. (2004d) defined the timetabling problem as the problem that

consists of a limited number of periods, a set of resources, a given number of meetings,

and a set of pre-defined schedule requirements (i.e. constraints). The main objective

is that periods and resources are assigned to the meetings while constraints should be

satisfied as much as possible. The following terms are commonly used in the timetabling

problem:

• Event: the activity that will be scheduling.

• Period: the duration of time during which the event can be allocated.

• Resources: the distinct resources that the event needs, such as rooms.

• Constraints: restriction of an event in terms of where and when it must be scheduled.

There are two types of constraints: soft (which are preferred to be satisfied) and hard

(which must be satisfied).

• Individual: a person who must be present at an event.

• Conflict: the scheduling of two events that have at least one individual in common

in the same period.

• Instance: the problem that will be solved – it often includes number of exams, total

number of students enrolled, number and capacity of available rooms, and number

of periods.

• Examination session: this term involves a fixed length of examination timetable

(i.e. number of periods over a specified length of time) where all exams should be

scheduled into those periods. Universities often organise two examination sessions

throughout the year, which often last for two or three weeks.

As mentioned above, timetable constraints are identified as hard and soft. Hard constraints

are those that must be achieved under any situation; soft constraints, however, can be

broken when necessary. The fitness of a solution to hard constraints is specified by the

degree of complete fulfilment. While in soft constraints, the degree of satisfaction is used

to determine the number of satisfied soft constraints. Based on a survey (Qu et al.,

2009b), the most studied area for the timetabling problem is educational timetabling,

which includes school timetabling and university timetabling (course and examination).

Schaerf (1999) and Meĺıcio et al. (2004) also categorised educational timetabling problems

into three types:

1. School timetabling: the classes are distributed across the week, ensuring that no

teacher has two classes at the same time and that no class has two teachers.

2. University examination timetabling: the university exams are scheduled in a manner

that avoids a conflict between exams for courses sharing some students while trying

to expand the time between students’ exams as much as possible.

10

2. Background and Literature Review

3. University course timetabling: the scheduling of lectures across the week while min-

imising overlaps between lectures for courses that share some students.

There are, however, distinctions in the three kinds of timetabling addressed; for exam-

ple, the duration of examination sessions di↵ers based on the institution. Whereas the

course and school timetable are usually organised based on weekly rules. A more detailed

description of the di↵erences between these types can be found in (Carter and Laporte,

1996). For a full description of the di↵erences between university examination and course

timetabling problems, see (McCollum, 2007)

2.2.1 University Timetabling Problems

The timetabling problems in universities are known to be highly constrained optimisation

problems. Finding a feasible and optimal timetable is a challenging task due to the extreme

constraints imposed by limited rooms and periods, alongside the complex mix of course

options available to students. In recent years, the need for automated timetabling has

become very important at universities due to the increase in the number of students,

courses, and also teachers, and the limitation of some other facilities like rooms, labs,

etc. This combination makes it impractical to construct a timetable manually, and this

has motivated many researchers to attempt to apply artificial intelligence, mathematical

models, meta-heuristic algorithms and other algorithms to build high-quality models to

solve university timetabling problems.

In itself, the task of optimising timetabling problems is not a new one, with research

stretching back at least five decades. Gotlieb (1962) provided the earliest research in this

field. The author tried to address curriculum-based course timetabling and considered

that each class could be processed by only one teacher at a time for a group of students,

while the number of periods was freely chosen.

The general timetabling problem can be expressed as follows: numerous events must be

timetabled by allocating them to specific periods. Such problems occur in a variety of

domains such as universities and schools. In a university timetabling problem: a set of

events, courses or exams are scheduled within a fixed number of rooms and periods within

a week or semester. University timetabling problems involve the allocation of courses or

exams, students, teachers and rooms within a fixed number of periods while accounting

for specific constraints.

A solution is either feasible or valid if it satisfies all of the hard constraints, and a feasible

solution is the best solution if it satisfies all of the soft constraints as well (Silva et al.,

2004). It is very di�cult, or may even be impossible to satisfy all of the soft constraints,

however. This complexity requires scheduling of a class or exam timetable to be treated

as a solution over hard constraints and for optimisation over soft constraints (Rudová

and Murray, 2002). Because the number of variables di↵er between di↵erent universities,

however, according to their specific class or exam structures and constraints, it is di�cult

to form a general solution that can meet the requirements of all universities.

Many researchers have attempted to simplify the problem by considering only simple

11

2. Background and Literature Review

exam structures. A general technique, however, should consider di↵erent aspects to users

when simplified. Instead, it should include all possibilities that can be simplified based on

individual user requirements. Because the numbers and types of constraints di↵er between

universities, they should be classified carefully to generalise the problem.

Rather than considering a particular university with only specific constraints, other con-

straints should be considered, which would satisfy most universities. These should fall

under the category of hard constraints. All other constraints can be explicitly categorised

as soft constraints. In other words, soft constraints should not be a part of the problem

so that adding or deleting them should not a↵ect the main problem or solution.

University examination timetabling University course timetabling

A number of exams may be scheduled

in one room or an exam may be divided

between several rooms.

One course should normally be

scheduled within one room.

Aims to decrease the number of student

who have exams within adjacent periods.

Usually, it is preferred that students have

two or more consecutive courses.

Table 2.1 The key di↵erences between examination and course timetable problems.

As shown earlier in Figure 2.1, university timetabling problems can be classified into two

main categories: university examination and course timetabling. Each category has its

own requirements, constraints, and timetabling structure (Schaerf, 1999; Schaerf and Di

Gaspero, 2001). The main significant di↵erences between them are briefly summarised in

Table 2.1. The main focus of this thesis is on the university examination timetabling prob-

lem. Therefore, the following sections will discuss the university examination timetabling

problems in greater detail.

2.2.2 University Examination Timetabling Problems

Examination timetabling is a time-consuming, recurring and important administrative

task in academic institutions (Qu et al., 2009b). It is often di�cult and demanding, and it

a↵ects many people (administrators, academic sta↵, and students) (Prida Romero, 1982).

The process of finding a feasible or optimal timetable for exams is often a challenging

task due to the extremely constrained nature of these problems. This calls for the use

of heuristic and meta-heuristic algorithms that do not guarantee an optimal examination

timetable but are in many cases able to obtain a “good enough” timetable for practical

purposes. Thus, it is impossible to carry out an exhaustive search for the examination

timetable in a reasonable time (i.e. polynomial-time) because of the exponential growth

of this problem. This, in turn, has been proved to lie in the set of NP-complete problems,

according to some researchers, e.g. Karp (1972), de Werra (1985), de Werra (1997), Cooper

and Kingston (1995), and Schaerf (1999).

Before defining an NP-complete problem, it is crucial first to introduce some notions re-

lated to computational complexity theory in order to understand the NP-complete prob-

lem. In computational complexity (which is a sub-field of theoretical computer science and

12

2. Background and Literature Review

mathematics), a finite size problem that can be solved by an algorithm in “polynomial

time” and can be tracked belongs to the P problems that are said to be “easy problems”.

In contrast, a problem is called NP (which stands for Non-deterministic Polynomial) when

its solution can be guessed and verified in non-deterministic polynomial time. In the NP

problem, the execution times of the latter grow much more rapidly as the problem size

increases. NP-Hard is the set where problems are at least as hard as NP. This means NP-

Hard problems are equally or more complex than any problem in NP set. NP-Complete

is the intersection set of NP and NP-Hard. A problem in the NP-Complete set can be

reduced to any other NP-Complete problem. That means if any of the NP-Complete

problems would have an e�cient solution, then all of the NP-Complete problems could be

solved with the same solution (Cook, 1971; Karp, 1972).

Examination timetabling is essentially the problem of scheduling the exams of courses

avoiding conflicts between exams that have common students and ensuring that, as far as

possible, individual students’ exams are spread through the examination period (Schaerf,

1999). Additional factors that have to be taken into account are the availability of rooms,

and the preferences of lecturers or markers of the exams (e.g., do they expect to have

enough time for marking, especially for exams with a large number of students). As with

the course timetabling problem, the exams timetabling problem, therefore, has both hard

and soft constraints, and the quality of the timetable is defined by the extent to which soft

constraints are met (Qu et al., 2009b). This feeds through to two “qualities” of solution:

a feasible solution, where the hard constraints are achieved, and an optimised solution

where there is an attempt to build on the feasible solution by meeting as many of the soft

constraints as possible (Schaerf, 1999).

Many universities are witnessing a growing number of student enrolments in a wide variety

of courses with more combined degree courses. This adds to the challenge of developing

examination timetabling software. Burke et al. (1996) researched examination timetabling

problems in universities in more than fifty universities. They found that the constraints

vary significantly from one university to another. Some examples of hard constraints for

examination timetabling are:

• Certain examinations have to be successive or take place in a specific sequence (af-

ter/before each other).

• Exams having the largest number of students should be scheduled first and earlier

in the timetable to allow more time for marking.

• Examinations which are given by the same instructor, if scheduled in the same

periods, must be assigned to neighbouring classrooms.

• No student should have two exams at the same time.

• Certain examinations have to take place in a specific room.

• There has to be enough seating capacity in the room for the number of students

scheduled for it.

13

2. Background and Literature Review

In general, the accepted hard constraints for examination timetabling problems are:

1. There must be enough seating capacity.

2. No student should have two exams at the same time (simultaneously).

Examination timetabling problems have the following characteristics (di↵erent from course

timetabling problems) (Schaerf, 1999):

• There is only one exam for each subject.

• The conflicts condition is strict. It is acceptable that a student is forced to skip a

lecture due to time clashes but not an exam.

• There are various types of constraints such as no more than one exam should take

place per day for each student, or there should not be too many consecutive exams

for each student.

• The number of periods may vary, unlike course timetabling where it is fixed.

• There can be more than one exam per room.

Various academic institutions impose a variety of constraints (Burke et al., 1996). Such

variations make the examination timetabling problem more complex and challenging, since

the variety of constraints may require di↵erent formulations of objective functions or eval-

uation functions. Hence, several models and formulations for examination timetabling

problems have been presented by various researchers (as described later). For instance,

de Werra (1985) provided a formal approach to the examination timetabling problem,

which is based on a mathematical programming model. To clarify this approach, let us

consider the following notations:

• E is a set of exams, E={e1, e2, . . . , e|E|}.

• |E| is the number of exams.

• P is a set of periods available, P = {p1, p2, . . . , p|P |}.

• |P | is the number of periods available.

• Z

ip

is the cost of scheduling exam i in period p.

• Y

ip

is one if exam i is allocated to period p; otherwise Y

ip

equals zero.

• Y

jp

is one if exam j is allocated to period p; otherwise Y

jp

equals zero.

• X

ij

is one if exam i clashes with exam j (i.e. exam i and j have common students),

and zero otherwise.

An examination timetable is considered feasible if the following hard constraints are ful-

filled: (i) each exam must be assigned once, and (ii) any conflicting exams must not be

assigned in the same period. The problem aims to produce an exam timetable using P

14

2. Background and Literature Review

periods without violating these hard constraints. The objective is to minimise the cost

of scheduling examination i in period p. This examination timetabling problem can be

represented as adopted from Terashima-Maŕın (1998).

min

|E|X

i=1

|P |X

p=1

Z

ip

Y

ip

(2.1)

Subject to:

|P |X

p=1

Y

ip

= 1, 8 i 2 {1, . . . , |E|} (2.2)

|E|�1X

i=1

|E|X

j=i+1

|P |X

p=1

Y

ip

Y

jp

X

ij

= 0 (2.3)

Equations (2.2) and (2.3) illustrate the hard constraints that must be satisfied. Equation

(2.2) denotes that the timetable must be feasible where all examinations must be scheduled,

and each examination must be scheduled only once. Equation (2.3) denotes that no student

should sit for more than one examination in the same period. If examination i and

examination j are scheduled in period p, the number of students sitting both examination

i and j (X
ij

) must be equal to zero, and this should be true for all examinations already

scheduled. The other hard constraint to consider is room capacity. If X
p

is the maximum

number (capacity) of examinations that can be scheduled in period p, then the hard

constraints can be represented as:

|E|X

i=1

Y

ip

 X

p

p 2 P = {p1, p2, . . . , p|P |} (2.4)

It can be said that the ultimate aim of the solution to the examination timetabling problem

is to guarantee that all students can take any exams they are required to take. In addition,

however, it is also desirable to use resources (such as rooms, periods and more) e↵ectively.

In order to achieve this, certain types of constraints must be satisfied, and this level of

satisfaction gives an indication of quality for the timetable.

In the examination timetabling research community, some previously published works

have shared benchmark datasets. Two extensively used benchmark datasets that many

researchers have used, and continue to use, are the Toronto (Carter et al., 1996), and

International Timetabling Competition 2007 (ITC 2007) benchmark datasets (McCollum

et al., 2007, 2012a). The details of the most popular benchmark datasets are discussed in

the following section.

15

2. Background and Literature Review

2.3 Benchmark Examination Timetabling Datasets

This section introduces the benchmark datasets most widely used to evaluate the e�ciency

and e↵ectiveness of proposed algorithms. These are from Toronto (Carter et al., 1996),

Nottingham (Burke et al., 1995c), Melbourne (Merlot et al., 2003), and Yeditepe (Parkes

and Ozcan, 2010). The Toronto dataset, among these four datasets, has been the most

widely used by the examination timetabling community, for instance, it is used in many

papers that can be found in the PATAT conference, such as Burke and Carter (1998),

Burke and Erben (2003), Burke and Erben (2001), Burke and Trick (2005), and Özcan

et al. (2019). More recently, the Second International Timetabling Competition (ITC

2007) dataset has gained prominence. This test suite is taken from anonymised institutions

for the purpose of competition use (McCollum et al., 2007). It adds additional real-world

constraints to the problem, as well as new forms of evaluation and data. The introduction

of these datasets has encouraged researchers to develop many approaches.

Examination timetabling constraints vary from institution to institution because each

one has di↵erent requirements and constraints to suit its business model. Moreover, the

stakeholders of the examination timetable can be a↵ected due to them having di↵erent

preferences in terms of a high-quality timetable. For instance, an administrator might

require scheduling all the exams avoiding conflicts (i.e. no student should be assigned to

sit two exams at the same day); students prefer exams to be spread as much as possi-

ble to allow for revision time between exam papers. Commonly-used constraints in the

examination timetabling problem are considered in this section.

Examination timetabling problems can be categorised as Capacitated or Uncapacitated

(Kahar and Kendall, 2010; Aldeeb et al., 2019). With regard to the capacitated problem,

room capacity is considered as a hard constraint. On the other hand, room capacities are

not considered in the uncapacitated problem. The Toronto dataset is uncapacitated prob-

lems whilst the Nottingham, Melbourne, Yeditepe, and ITC 2007 datasets are capacitated

problems.

In the examination scheduling literature, the characteristics of all the benchmark problems

are presented as data for each problem (i.e. instance or problem instance) involved in

tables which are organised based on the name of institution, followed by the name of each

instance, the total number of students enrolled for the examination session, a number of

exams exists in the instance, a number of total enrolments of students for the courses, the

density of conflict, and required number of periods for each instance.

The Conflict Density (CD) of each problem instance demonstrates the di�culty with re-

spect to exams in conflict. In order to calculate the density of the conflicting exams in each

of the instances, a Conflict Matrix, C = |E|⇥ |E| where exams i,j 2 {e1, e2, . . . , e|E|}(|E|
is the number of exams). Element c

ij

indicates the number of students registered for both

exam i and exam j. In the matrix, each element c
ij

= 1 if exam i has at least one common

student with exam j (i.e. conflicting exams); c
ij

= 0 otherwise (Broder, 1964). The CD

represents the ratio between the number of elements of value “1” to the total number of

elements in the conflict matrix. Formally, CD is presented by the formulation (Carter

16

2. Background and Literature Review

et al., 1996):

CD =

P|E|�1
i=1

P|E|
j=i+1(

�ij

|E|)

|E| (2.5)

As shown in Equation above, |E| denotes the number of exams and �

ij

is a decision

variable assuming value one if exam i and exam j have at least one student in common

while taking value zero otherwise. We now detail each benchmark dataset in turn.

2.3.1 University of Toronto Dataset

Problem Description

The Toronto benchmark set is one of the most widely used datasets in the literature for

testing examination timetable optimisation algorithms. The dataset consists of 13 real-

world exam timetabling problems introduced by Carter et al. (1996) that are collected

from di↵erent academic institutions. Three instances are from Canadian highs schools, five

instances from Canadian institutions, one instance from the London School of Economics,

one instance from King Fahd University (in Dhahran) and the last instance from Purdue

University. Table 2.2 shows the specifications for the Toronto datasets (Carter et al.,

1996).

Hard Constraints

The dataset enforces only one hard constraint that prevents any student from taking two

exams in the same period.

Soft Constraints

It has only one soft constraint that requires expanding the students’ exams by five periods

at least.

Problem No. of No. of No. of No. of Conflict

University Instance Exams Students Enrolments Periods Density

Carleton University, Ottawa car91 682 16,925 56,877 35 0.13

Carleton University, Ottawa car92 543 18,419 55,522 32 0.14

Earl Haig Collegiate, Toronto ear83 190 1125 8109 24 0.27

Ecole des Hautes Etudes Commercials, Montreal hec92 81 2823 10,634 18 0.20

King Fahd University, Dharan kfu93 461 5349 25,113 20 0.06

London School of Economics lse91 381 2726 10,918 18 0.06

Purdue University, Indiana pur93 2419 30,029 120,681 42 0.03

Ryerson University, Toronto rye92 486 11,483 45,051 23 0.07

St. Andrews High School, Toronto sta83 139 611 5751 13 0.14

Trent University, Peterborough tre92 261 4360 14,901 23 0.18

University of Toronto, Arts & Science uta92 622 21,266 58,979 35 0.13

University of Toronto, Engineering ute92 184 2749 11,793 10 0.08

York Mills Collegiate Institute, Toronto yor83 181 941 6034 21 0.29

Table 2.2 The characteristics of problem instances from the Toronto benchmark dataset.

17

2. Background and Literature Review

Problem Formulation

The formulation of the Toronto problem is defined by Carter et al. (1996). This formulation

is simplified as the only hard constraint taken into account is the exam conflict and one

soft constraint (as discussed above). In order to clarify this formulation, several notations

are considered as follows:

• E = {e1, e2, . . . , e|E|}, the exams set.

• P = {p1, p2, . . . , p|P |}, the set of predefined periods.

• C = |E|⇥ |E|, the conflict matrix, where each element, in the matrix, c
ij

denotes

the number of common students in exam i and exam j, where exams i, j 2 E.

• |S|, the total number of students in a given problem instance.

• c

ij

, the total number of students enrolled for both exam i and j. c

ij

= 1 if exam i

conflict, i.e. have at least one common student, with exam j or c
ij

= 0, otherwise.

• p

i

, the period scheduled to exam i(i 2 {1, . . . , |E|}) within the set of predefined

periods (1  p

i

 |P |).

The soft constraint is defined by the function f

c

as shown in Equation (2.6).

f

c

=
1

|S|

|E|�1X

i=1

|E|X

j=i+1

c

ij

⇥ proximity(i, j) (2.6)

where:

proximity(i, j) =

8
<

:

25

2|pi�pj |
if 1  |p

i

� p

j

|  5,

0 otherwise.
(2.7)

subject to:
|E|�1X

i=1

|E|X

j=i+1

c

ij

⇥ �(pi,pj) = 0, �(pi,pj) =

(
0, p

i

6= p

j

1, p

i

= p

j

. (2.8)

Equation (2.6) represents the soft constraint that aims to reduce the number of exams

allocated in adjacent periods in such a way as to minimise the number of students sitting

exams in close proximity. Equation (2.7) determines the penalty that can be incurred by

scheduling the exams i and j in periods p
i

and p

j

, respectively. The weight of the penalty

is 16, 8, 4, 2, and 1, for exams scheduled within one, two, three, four, and five periods,

respectively. If the period spread is more than five, the penalty weight is equal to zero.

Equation (2.8) defines the only hard constraint, requiring that there can be no conflicts

between exams that are scheduled in the same period.

18

2. Background and Literature Review

2.3.2 International Timetabling Competition 2007 Dataset

Problem Description

The second international timetabling competition (ITC 2007) included three tracks, namely

Track 1 — examination timetabling, Track 2 — post-enrolment-based course timetabling,

and Track 3 — curriculum-based course timetabling (Mccollum et al., 2010). Here we

concentrate on its examination datasets, which are derived from real-world timetabling

problems. The exam timetabling track involves eight publicly available instances and four

hidden instances. Each instance has distinct characteristics and constraints (i.e. soft and

hard constraints) that are similar to those constraints encountered in practice. Table 2.3

illustrates the characteristics of these problem instances.

Problem No. of No. of No. of No. of Conflict Tot.Room

Instance Exams Students Enrolments Periods Density capacity

Exam1 607 7891 32,380 54 0.05 802

Exam2 870 12,743 37379 40 0.01 4076

Exam3 934 16,439 61,150 36 0.03 5212

Exam4 273 5045 21,740 21 0.15 1200

Exam5 1018 9253 34,196 42 0.009 2395

Exam6 242 7909 18,466 16 0.06 2050

Exam7 1096 14,676 45,493 80 0.02 2530

Exam8 598 7718 31,374 80 0.05 922

Exam9 169 655 2532 25 0.08 170

Exam10 214 1577 7853 32 0.05 1914

Exam11 934 16,439 61,150 26 0.03 4924

Exam12 78 1653 3685 12 0.18 1525

Table 2.3 The characteristics of problem instances from the ITC 2007 benchmark dataset.

All exams have to be scheduled (a complete solution), and exams cannot be divided

between rooms and periods. A feasible solution must satisfy all the hard constraints,

whereas the quality of an examination timetable is determined by the soft constraint

violations subject to this. The examination timetabling problem specified in ITC 2007 is

an extension to the previous model, which is formulated in Toronto specification (Leite

et al., 2018), in which novel hard constraints, as well as soft constraints, are introduced.

The following is the extended set of hard constraints, as well as soft constraints (McCollum

et al., 2012b).

Hard Constraints

The hard constraints are listed below (Mccollum et al., 2010):

H1: No Conflicts – A conflict can exist between a pair of exams, which are attended by

a specified student when these exams are scheduled in a same period, or in the same

period. The hard constraint necessitates that such conflicts do not exist within the

scheduled exams of students.

19

2. Background and Literature Review

H2 : Room Occupancy – For each specified room and each specified time slot, the

number of the allocated seats must be less than or equal to the number of the

available seats in the specified room.

H3: Period Utilisation – For each of the exams, the exam duration must be less than

or equal to the duration of the period. Period-related constraints, which are a group

of time-ordering requirements between exams’ pairs must be observed, particularly

for any pair (exam1, exam2) of exams, these constraints are specified as follows:

H4: After Constraint – exam1 must occur firmly after exam2.

H5: Exam Coincidence – exam1 must occur simultaneously to exam2.

H6: Period Exclusion – exam1 must not occur simultaneously to exam2.

H7: Room Related – Satisfaction-of-room-related hard constraints (e.g. exam

A

must

be completely arranged in room

X

).

In addition, all the specified exams must be arranged, and must not be divided between

specified periods or specified rooms. Therefore, an examination timetable could be ob-

tained, which satisfies the entire hard constraints.

Soft Constraints

The soft constraints for the ITC 2007 examination track are (Mccollum et al., 2010):

S1: Two Exams in a Row – The number of times, whereby examinations are consecu-

tively arranged for a student, must be minimised.

S2: Two Exams in a Day – This the case, where there are three periods or more on

a specified day. This involves the number of occurrences of a student, who has two

exams on a specified day that are not adjacent directly, which means that students

must have at least a free period between exams; such a case must be minimised.

S3: Period Spread – This soft constraint necessitates that the examinations’ set taken

by students is spread over a fixed number of time slots.

S4: Mixed Durations – A penalty should be incurred when there are exams in the same

room and in the same period with the existence of mixed durations.

S5: Front Load – It is necessary to distribute exams with the largest number of students,

and distribution should be performed at the commencement of the examination

session.

S6 & S7: Room and Period Penalties – A utilisation penalty for the rooms, as well

as the periods are specified so that the utilisation of given rooms or some periods is

reduced to a minimum.

20

2. Background and Literature Review

Problem Formulation

The key objective of tackling the problem of these datasets involves satisfying the entire

set of hard constraints and minimising the total soft constraint violation (or penalty value)

(Mccollum et al., 2010). In other words, the number of hard constraint violations must

equal zero, whereas the quality of an examination timetable is determined by the soft

constraint violations subject to this. The best quality solution is that with the lowest

weighted sum of soft constraint violations. Formally, subject to all hard constraints are

satisfied, the objective function is to minimise the total penalty as result of soft constraint

violations defined by as given in Equation (2.9) for ITC 2007, where the total penalty for

the soft constraint violations is calculated for each student s.

f

c

(x) = w

NMD

C

NMD+w

FL

C

FL+C

P +C

R+
X

s2S
(w2R

C

2R
s

+w

2D
C

2D
s

+w

PS

C

PS

s

). (2.9)

Where ‘x’ represents a complete timetabling solution. ‘S’ refers to students’ set. ‘w’

represents the weighting applied to each of the individual penalties. These weights are

defined in the ‘institutional model index’ file. Each problem instance has its own weight,

and each associate weight is described as follows:

• w

2R: weight for “Two Exams in a Row”. w2R corresponds to the number of students

that take two exams, that are scheduled back to back on the same day, multiplied

by this weight.

• w

2D: weight for “Two Exams in a Day”. w2D corresponds to the number of students

sitting two exams that are allocated not back to back but on the same day, multiplied

by this weight.

• w

PS : weight for “Period Spread”. w

PS corresponds to the sum of occurrences of

students who are sitting exams within a fixed period spread defined in the problem

instance.

• w

NMD: weight for “No Mixed Duration”. wNMD corresponds to all the exams that

have the same duration we count 0. Otherwise we count the number of di↵erent

durations minus “1” multiplied by this weight.

• w

FL: weight for “Front Load penalty”. w

FL corresponds to the number of large

exams allocated in the latter periods multiplied by this weight. The number of

periods considered as latter periods and the number of students constituted “large

examinations” are given.

Table 2.4 summaries the weights associated with soft constraints for the ITC2007 dataset.

Weights are not included with the period C

P as well as the room-related soft constraint

C

R in the objective function because they were already covered in their definition found

in McCollum et al. (2012b). Table 2.5 illustrates the detailed penalties of Equation (2.9)

where some penalties (C2R
s

,C2D
s

,and C

PS

s

) are directly associated to each student s and

21

2. Background and Literature Review

other penalties (CNMD,CFL,CP , and C

R) are not directly associated to each student.

Problem

Instance w

2D
w

2R
w

PS

w

NMD

w

FL

w

P

w

R

Exam1 5 7 5 10 100 30 5

Exam2 5 15 1 25 250 30 5

Exam3 10 15 4 20 200 20 10

Exam4 5 9 2 10 50 10 5

Exam5 15 40 5 0 250 30 10

Exam6 5 20 20 25 25 30 15

Exam7 5 25 10 15 250 30 10

Exam8 0 150 15 25 250 30 5

Exam9 10 25 5 25 100 10 5

Exam10 0 50 20 25 100 10 5

Exam11 50 10 4 35 400 20 10

Exam12 10 35 5 5 25 5 10

Table 2.4 The weight of ITC 2007 examination benchmark sets.

Soft Mathematical

Constraint Symbol Description

S1 C

2R
s

“Two Exams in a Row” penalty for student s.

S2 C

2D
s

“Two Exams in a Day” penalty for student s.

S3 C

PS

s

“Period Spread” penalty for student s.

S4 C

NMD “No Mixed Duration” penalty.

S5 C

FL “Front Load” penalty.

S6 C

P “Period” penalty.

S7 C

R “Room” penalty.

Table 2.5 A list of penalties in relation to ITC 2007 soft constraints.

2.3.3 University of Yeditepe Dataset

Problem Description

The Yeditepe dataset is comprised of a number of datasets from the Faculty of Engineering

and Architecture of Yeditepe University (Parkes and Ozcan, 2010). In general, they are

smaller than the ITC 2007 problems with regards to a number of exams, students, and

periods. Also, this dataset is less constrained compared with the ITC 2007 as it contains

two hard constraints and only one soft constraint (in ITC 2007, there are seven hard

constraints and seven soft constraints). The characteristics of the Yeditepe dataset are

given in Table 2.6.

22

2. Background and Literature Review

Hard Constraints

The Yeditepe examination timetabling problems’ hard constraints are:

• Examination conflict: Any student must not have more than one exam at any

given time period.

• Capacity: It is not possible to exceed the number of seats in any given room at any

given time period.

Soft Constraints

Two exams in a row (C2R
s

): Two exams should not be scheduled in two adjacent periods

on the same day.

Problem No. of No. of No. of No. of Conflict

Instance Exams Students Rooms Days Periods Density

YUE20011 126 559 2 6 18 0.18

YUE20012 141 591 2 6 18 0.18

YUE20013 26 234 2 2 6 0.25

YUE20021 162 826 2 7 21 0.18

YUE20022 182 869 2 7 21 0.17

YUE20023 38 420 1 2 6 0.2

YUE20031 174 1125 2 6 18 0.15

YUE20032 210 1185 2 6 18 0.14

Table 2.6 The characteristics of problem instances from Yeditepe dataset.

Problem Formulation

The objective function of Yeditepe is given below in Equation (2.10):

(Minimise)
X

s2S
w

2R
C

2R
s

. (2.10)

Two exams in a row (C2R
s

) is a penalty given whenever a student s has to attend two

distinct exams scheduled in two consecutive periods on the same day. The weight (w2R)

for this penalty is “1” for all problem instances of Yeditepe (Parkes and Ozcan, 2010).

2.3.4 Other Benchmark Examination Timetabling Datasets

Other examination timetabling problems datasets in the literature include those of the Uni-

versity of Nottingham, University of Melbourne, Suleyman Dermirel University, MARA

University Malaysia dataset (Kendall and Hussin, 2005b), Universiti Kebangsaan Malaysia

(UKM) (Ayob et al., 2007a), Universiti Malaysia Pahang dataset (UMP) (Kahar and

Kendall, 2010), KAHO Sint-Lieven (Demeester et al., 2012), Middle East Technical Uni-

versity (METU) (Ergül, 1995), École de Technologie Supérieure (ETS) (Wong et al., 2002),

23

2. Background and Literature Review

Hubei University of Technology (HUT) (OuYang and Chen, 2010), University of the Thai

Chamber of Commerce (Innet, 2013), Universiti Utara Malaysia (UUM) (Abdul-Rahman

et al., 2014), Universiti Sains Islamic Malaysia (USIM) (Aldeeb et al., 2015). The proper-

ties of these datasets are summarised in Table 2.7.

No. of No. of No. of No. of No. of Conflict

Dataset Students Exams Rooms Periods Days Enrolments Density

Mara (UiTM) 84675 472201 470793

UKM 14047 818 7 42 15 75857 0.05

UMP 3550 157 20 10 12731 0.05

KAHO 135 groups 336 71 40

METU 16000 1467 1 39 13

ETS 370 173 32 11

HUT 2134 224 18 14

UTCC 135 71 10 33 11

UUM 13359 639 40 22 11 0.04

USIM 854 18 20 10 6140

Table 2.7 The characteristics of the examination timetabling problems benchmark datasets from
di↵erent universities.

Burke et al. (1995c) introduced the Nottingham dataset which included 800 exams with

10,034 student conflicts among them, 7,896 students and 33,997 distinct enrolments. The

exams have to be distributed into 26 periods or less. The following constraints have to be

achieved:

1. No student should have two exams at the same period.

2. Occupancy of exam rooms cannot exceeded 1550 students because the maximum

number of seats is specified as 1550 seats.

3. If any student has two exams on the same day, there must be at least one complete

period between them.

Any examination timetable must meet the first two constraints to be at least feasible.

The scale of the problem is considered a challenge for finding a complete solution within a

feasible number of trials. The problem is made more complex by the size and the number

of the rooms available for each period. Table 2.8 presents a description of Nottingham

dataset (Burke et al., 1995c).

Problem No. of No. of Tot.Room No. of No. of Conflict

Instance Exams Students Capacity Enrolments Periods Density

NOTT 800 7896 1550 33997 23 0.03

Objective: minimise consecutive exams on the same day.

Table 2.8 The characteristics of University of Nottingham benchmark dataset.

24

2. Background and Literature Review

Merlot et al. (2003) provided two datasets for the exam timetabling problem that were

gathered from Melbourne University at the PATAT conference in 2002. The first dataset

included 521 exams, 28 sessions, 20656 students and 62248 enrolments. The second dataset

included 562 exams, 31 sessions, 19816 students and 60637 enrolments. In the Melbourne

datasets, there are two exam sessions on each of five workdays, and the sessions’ capacities

varied. This dataset aims to minimise the occasions in which two exams are scheduled

consecutively for a given student, either overnight or on the same day. Some exams were

restricted to particular sessions. In one problem instance, this denied all feasible solutions.

The characteristics of each these datasets are given in Table 2.9 (Merlot et al., 2003).

Problem No. of No. of No. of No. of

Instance Exams Periods Students Enrolments Objective

I 521 28 20656 62248
Minimise adjacent exams on

the same day or overnight

II 562 31 19816 60637
Minimise adjacent exams on

the same day or overnight

Table 2.9 The characteristics of the Melbourne benchmark datasets.

The SDU dataset is from Suleyman Demirel University and was first introduced by Altıntas

et al. (2014). The SDU examination timetabling problem here is a capacitated problem

which means room capacities are considered as a hard constraint. During exams in each

period, there is a maximum capacity of seating available. So, the number of students

taking any exam should not exceed the capacity of the room (i.e. the number of students

taking an exam in a particular room cannot exceed the capacity of that room). The SDU

dataset consists of a set of five real-world exam timetabling problem instances and has been

formulated in the same way as the ITC 2007 benchmark instances. The characteristics of

the SDU instances are concisely given in Table 2.10, where Density indicates the percentage

of conflict density whilst HC shows the number of hard constraints.

Problem No. of No. of No. of No. of Conflict

Instance Exams Students Rooms Periods Density Period HC

SDU01 212 10953 17 50 3.24 142

SDU02 236 11012 26 61 5.08 123

SDU03 430 24867 29 80 1.37 317

SDU04 166 8028 18 59 12.60 61

SDU05 269 12091 33 46 3.59 173

Table 2.10 The characteristics of problem instances from Suleyman Demirel University dataset.

From the literature survey, we observe that most of the current studies over examination

timetabling problems concentrate on benchmark problems. Using the same examination

benchmark datasets in di↵erent studies conducted is crucial to assess the e�ciency and

e�cacy of a particular approach accurately. Depending on the reported results, it can

25

2. Background and Literature Review

also provide a quick understanding and generalisation of the strength or capability of a

particular approach for solving this problem e↵ectively. Thus, three di↵erent examination

benchmark datasets (i.e. the Toronto, ITC 2007, and Yeditepe) are used in this thesis to

test the proposed approaches and compare the results against existing literature on these

benchmark datasets. These benchmark problems chosen have been in use for a number of

years now. However, from the recently published works, it is clear that these benchmark

datasets are still used extensively (Aldeeb et al., 2019). Researchers are still interested in

finding (near) optimal solutions for them (Bellio et al., 2021).

The organisation of international timetabling competitions has highly influenced the re-

search in educational timetabling (Müller et al., 2018). The overall aim of this organisation

was to provide a better understanding between researchers and practitioners by enabling

emerging approaches to be trailed and tested on real-world models of timetabling prob-

lems (Mccollum et al., 2010). The success of this organisation is definitive evidence of the

importance and complexity of the timetabling problem. In 2002, the first International

Timetabling Competition (ITC 2002) was prepared by the European Metaheuristics Net-

work (Paechter et al., 2002), which concentrated on a simplified version of the university

course timetabling problem. The next (i.e. second) competition was in 2007, where the

ITC 2007 consists of three tracks on curriculum-based timetabling (Di Gaspero et al.,

2007; Bonutti et al., 2012), post-enrollment timetabling (Lewis et al., 2007), and exami-

nation timetabling (McCollum et al., 2007). The ITC 2007 competition aimed to narrow

the gap between practice and research by providing a significant degree of complexity in

the tracks by adding more hard and soft constraints so that the employed formulations are

closer to the real world needs (Mccollum et al., 2010). In 2011, research in another area of

educational timetabling was encouraged by the ITC 2011 competition (Post et al., 2016),

where the focus was on the important area of High School Timetabling. This is a complex

common problem faced by thousands of educational institutions around the world. The

fourth competition was in 2019, aiming to motivate further research on complex university

course timetabling problems (Müller et al., 2018). The most recent competition is ITC

2021, which focuses on sport timetabling (Van Bulck et al., 2021).

Because the focus of this thesis is on solving university examination problems, a particu-

lar track of the ITC 2007 has been chosen, which is dedicated to examination timetabling

problems for universities. This track was developed to reflect the challenges of tackling

real-world examination timetabling problems. It is complex and rich with many consider-

ations related to hard and soft constraints. This provided us with valuable test data and

insight into our proposed approaches. We believe that the problem model, as described in

ITC 2007, can capture most of the requirements usually encountered in reality. It is inter-

esting to note that competitors’ ITC 2007 examination track results are still maintained

at the competition website, where all problem instances are available. Many researchers

are still interested in investigating their approaches using this track in a similar manner

as the Toronto datasets did a decade ago, as demonstrated in (Bellio et al., 2021).

For the Yedtiepe dataset, although few prior works use this dataset, there is more clarity,

consistency, and standard format than other datasets. Thus, this is the reason why this

dataset is chosen for testing in this thesis. Furthermore, this dataset is in the same format

26

2. Background and Literature Review

as ITC 2007 format, allowing testing this dataset by the same optimiser Muklason et al.

(2017). The following section presents di↵erent algorithmic techniques that have been

successfully applied to the university examination timetabling problem.

2.4 Algorithmic Techniques for the University Examination

Timetabling

Since the 1990s, the examination timetable problem has been extensively investigated by

the optimisation community. Surveys conducted by Carter et al. (1996) and Schaerf (1999)

reviewed early approaches used to tackle the examination timetabling problem. From the

more recent surveys by Qu et al. (2009b) and Gashgari et al. (2018), the timetabling so-

lution methods can be typically classified into these categories: exact algorithms, graph

colouring techniques, single-solution based meta-heuristics, population-based algorithms,

hyper-heuristics, and techniques of decomposition or clustering. Hybrid algorithms, which

combine the features of several algorithms, are generally viewed as the state-of-the-art in

the application domain (Caramia et al., 2001; Merlot et al., 2003). Because of the com-

plexity of the examination timetabling problem, precise methods (i.e. exact techniques)

can be applied only on small-sized problem instances. Since the real problem instances

that exist in practice are typically large scale, precise methods are often impractical in the

time available. As a result, heuristic and meta-heuristic algorithms are used to tackle this

problem.

Most of the existing algorithmic techniques utilised to tackle examination timetabling

problems are based on single objective models. There are, however, a few studies that

focus on the multi-objective approaches in the literature. Other approaches related to

constructing exam timetables are graph colouring heuristics, fuzzy-based, decomposition,

and neural networks.

2.4.1 Exact Techniques

Heuristics and meta-heuristics are approximation algorithms that only enumerate the

search space partially and therefore do not guarantee an optimal solution. Exact tech-

niques, however, can perform an implicit enumeration of the search space. Hence, these

techniques are named complete techniques (i.e. algorithms) since they guarantee their

optimality where the encountered solution is optimal (Talbi, 2009). These techniques can

have an excessive time overhead, however, which is prohibitive for larger practical problems

(Chen and Bushnell, 1996). Examples of these techniques involve Constraint Program-

ming (CP) (Boizumault et al., 1996; Freuder and Wallace, 2005) and Integer Programming

(IP) (Bosch and Trick, 2005).

Bou✏et and Nègre (1996) applied exact approaches to tackle exam timetabling prob-

lem. In this work, three approaches were proposed (i.e. Tree Search, Tabu Search, and

Computer-Aided Design System) and then an exact method based on the GC method was

employed to explore the path in the tree. The tree search method was capable of tackling

this problem. The proposed approach has only been applied to solve the examination

timetabling problem of the University of Technology of Compiègne, however.

27

2. Background and Literature Review

CP permits direct programming with constraints (Boizumault et al., 1996). This makes it

possible to solve problems like the timetabling problem easily and flexibly. Two important

characteristics of the technique include using backtracking, as well as logical variables.

CP varies from other kinds of programming in that it stipulates the steps necessary for

execution. In CP, however, only the properties which should or should not be in the

solution can be stipulated (i.e. the hard constraints) (Qu et al., 2009b).

Merlot et al. (2003) proposed a hybrid three-phase approach involving CP, Simulated

Annealing, and Hill-Climbing. The CP implemented in this study was similar to that

proposed in Boizumault et al. (1996). In the first phase, CP was performed in order

to generate an initial feasible solution within a short time. In the second and third

phases, Simulated Annealing and Hill-Climbing methods were employed to improve the

quality of the solution. Kempe-chain neighbourhood structures were used to encourage the

diversification of the search space (Thompson and Dowsland, 1996b). The aim also is that

chains of conflicting examinations are swapped between two or more feasible periods. This

hybridisation approach was tested over three di↵erent datasets (i.e. Melbourne, Toronto,

and Nottingham).

IP involves a mathematical programming technique (Al-Yakoob et al., 2010). In this

technique, the optimisation problem that should be solved must be created as an Integer

Problem. When the objective function, as well as the constraints, are linear, and the

entire problem variables are integer-valued, the IP problem is referred to as an Integer

Linear Problem (ILP) . When both integer and continuous variables are present, however,

the problem is referred to as a Mixed-Integer Linear Programming (MILP) (Feng et al.,

2017). Schaerf (1999) surveyed a number of approaches utilising the MILP technique to

school, course, and examination timetabling problems.

It is worth noting that the major advantages of the exact techniques are that they have a

good performance in many problems. They can provide an appropriate solution to simple

optimisation problems (Jansson and Knüppel, 1995). Furthermore, these techniques are

easy to design and implement (Festa, 2014). Furthermore, they can easily incorporate

assumptions to solve problems (Beheshti and Shamsuddin, 2013; Aladağ and Hocaoğlu,

2007). On the other hand, the significant disadvantage is that these techniques are ine�-

cient when addressing large-scale and complex combinatorial optimisation problems such

as examination timetabling problems (Beheshti and Shamsuddin, 2013). This is due to

the techniques’ inability to search exhaustively in search spaces that grow exponentially

with the given problem size.

2.4.2 Constructive Heuristic Techniques

In the literature the most successful approaches exclusively dedicated to solving timetabling

problems consist of two phases: the construction phase and improvement phase (Hertz,

1991). In the construction phase, an empty solution is constructed by an iterative ap-

proach, and this construction process is repeated until a final solution is completed. This

process is often performed by utilising some heuristics (Burke et al., 2010c). In contrast,

in the improvement phase, an improvement approach is employed to improve the quality

28

2. Background and Literature Review

of the solution initially constructed in the construction phase until an optimal solution is

obtained.

The next subsections describe the most widely-used approaches in the construction phase.

Improvement heuristic techniques, meanwhile, are discussed in Section 2.4.3.

2.4.2.1 Graph Colouring Heuristics

Graph colouring (GC) heuristics are the most commonly used method in the construction

phase. It is defined as the problem of colouring vertices of a graph with the fewest number

of colours possible while ensuring that no two neighbouring vertices have the same colour

(Carter et al., 1996). Examination timetabling problem, in its simplest form (without soft

constraints), can be represented as a graph colouring problem where the vertices represent

the examinations, and the edges represent the conflict between pair examinations, and the

colour of the vertices represent di↵erent periods that are available in the exam timetable

(Carter, 1986). A definition of the concepts and terms related to a graph can be found in

(Burke et al., 2004b). An undirected graph G = (V,E) is a representation that comprises

a set of vertices, V = v1, v2, . . . vn (representing the events) and a set of edges E where

every edge connects two distinct vertices (Garey and Johnson, 1979). If (v
i

, v

j

) is an edge

in a graph G = (V,E), then vertex v

i

is adjacent to vertex v

j

(Burke et al., 2004b). In

such a way, every vertex in the graph represents a distinct exam, and every edge represents

a conflict between the two exams (connected vertices). The rule is that every adjacent

vertex is coloured with a di↵erent colour where every colour represents a period in the

timetable, and the number of colours used should be minimal (Garey et al., 1974).

To convert a simple graph colouring solution to a valid examination timetable, Figures

2.2 (a) and (b) show an example of a graph model for a simple examination timetabling

problem. Figure 2.2 (a) presents a simple timetable which is converted to equivalent

undirected graph colouring, i.e. in this example we attempt to schedule ten exams (denoted

as e1 to e10). Figure 2.2 (b), represents the solution found using an optimal number of

colours (periods), which is four periods (denoted as p1, p2, p3 and p4). Table 2.11 represents

the solution (in timetable form) converted from Figure 2.2 (b). This figure shows that

events e1, e9 and e5 are scheduled in period p1 events e2, e3 and e10 are scheduled in period

p2 and so on.

p1 p2 p3 p4

e1 e2 e6 e4

e9 e3 e7

e5 e10 e8

Table 2.11 The graph colouring solution as a timetable.

Several graph colouring heuristics (i.e. Largest Degree, Weighted Largest Degree, Largest

Enrollment, and Saturation Degree) have been proposed in order to construct a conflict-

free timetable. These heuristics prioritise events according to the level of di�culty in the

29

2. Background and Literature Review

Figure 2.2 A graph model for a simple university timetabling problem (a) An undirected graph;
(b) A solution for the university timetable problem.

scheduling process. The rationale behind this is to ensure that the most di�cult exam is

scheduled first (Burke et al., 2004b). Examples of common graph colouring heuristics are

in Asmuni et al. (2005a) and Burke et al. (2007). For more details on these heuristics (see

chapter 3). Table 2.12 shows a brief description of the most common GC based heuristic

orderings applied to examination timetabling problems.

Ordering heuristic Description

Largest Degree Exams with a higher degree of conflicts are scheduled first.

Least Saturation Degree Exams with least number of available periods are scheduled first.

Largest Enrollment
Exams with a higher degree of students’ enrollment are scheduled

first.

Weighted Largest Degree
Exams with a higher degree of conflicts and a higher number of

students involved in the conflict are scheduled first.

Random Ordering Exams are scheduled randomly.

Table 2.12 The graph colouring heuristics in examination timetabling.

The graph colouring heuristics mentioned above were extensively studied in early schedul-

ing research and are still in use today as an initialisation approach for meta-heuristics,

or by completely integrating them with meta-heuristics in various ways. For instance,

Appleby et al. (1961) applied graph colouring heuristic to create school timetables. Since

that time, it has been extendedly used graph-based heuristic orderings to solve other types

of scheduling problems. Largest Degree was the most commonly heuristic ordering em-

ployed in the earlier examination timetabling research (Broder, 1964; Cole, 1964; Welsh

and Powell, 1967). The heuristic orderings Largest Enrollment and Largest Degree were

used by Wood (1968), where exams that require the room with the largest capacity were

chosen first. Thus, these exams were then ordered decreasingly by the number of exams

in conflict. The same procedure was used for the second largest room and so on. Johnson

(1990) also combined heuristic orderings Largest Enrollment, and Largest Degree, where it

30

2. Background and Literature Review

has been considered them simultaneously through the simple linear combination of Largest

Degree, with Largest Enrollment, multiplied by a varied weighted factor w
LE

.

A study on the performance of these four heuristic orderings (i.e. Largest Degree, Satura-

tion Degree, Weighted Largest Degree, and Largest Enrolment) was presented by Casey

and Thompson (2002). The heuristic orderings were utilised to produce the initial so-

lutions in the construction phase of a Greedy Randomised Adaptive Search Procedure

(GRASP) algorithm. Roulette wheel selection was then used to select the next exam to

be allocated from the top n exams in the exam ordering. The appropriate value for n

was experimentally chosen depending on the total number of exams in the problem in-

stance. The selected exam was then allocated into the first period that met all the hard

constraints.

Foxley and Lockyer (1968) used a priority formula to order exams. This formula used all

information concerning the exams extracted from the problem. Furthermore, a manual

special priority setting was used in order to override other soft constraints. For example,

final exams were given special priority and were timetabled first.

One of the main advantages of graph-based heuristics is they are capable of producing

initial solutions in a shorter time and are easy to apply (Carter, 1986). Scheduling exams

are conducted smoothly in a sequential manner by considering certain criteria to ensure

that the scheduling process ends by allocating all the exams in the first (i.e. construction)

phase. In some cases, however, it is di�cult to assign the exams in the first attempt. This

can have a significant e↵ect on the initialisation process. Thus, the main disadvantage of

graph-based heuristics is that a feasible examination timetable is not always achievable

during the first phase. Furthermore, these heuristics are not su�cient to produce high

quality initial solutions (Burke et al., 2007; Ayob et al., 2007b; Qu et al., 2009b). In the

literature, di↵erent heuristic orderings have been examined. It has been demonstrated that

determining which heuristic ordering would be most appropriate for any given problem is

challenging (Carter et al., 1996). In addition, the investigation presented in Burke and

Newall (2004) indicated that better solutions could be obtained during the initialisation

phase by adaptively changing the heuristic ordering. A common observation in many

approaches indicates that constructing high quality solutions in the construction phase

should not be precluded from consideration. A study by Burke et al. (1998a) suggested

that the use of an appropriate initialisation method for generating the initial solutions of an

evolutionary algorithm for timetabling problems could substantially improve performance.

Therefore, this observation led to the conjecture that this thesis concentrates on studying

a new initialisation method that can simultaneously consider hard and soft constraints

during the construction phase, which might improve the quality of the solutions obtained.

2.4.2.2 Fuzzy-based Techniques

The concept of fuzzy logic was first presented in 1965 by Zadeh based on the fuzzy set

theory (Zadeh, 1965). Fuzzy logic is not logic that is fuzzy (i.e. not clear or vague), but

it is the logic that aims to describe fuzziness by using fuzzy techniques. Basically, fuzzy

techniques are utilised to represent and employ knowledge that is uncertain, ambiguous,

31

2. Background and Literature Review

or imprecise and relates reasoning with linguistic terms.

In the more traditional propositional logic, each proposition or fact in real-life situations

is represented by two values of the truth. These values are true or false. However, there

is still some degrees of uncertainty that is not involved. The limitations of the traditional

(i.e. crisp) logic are in describing uncertainties. On the other hand, the power of fuzzy

logic is in handling such the limitations where it can measures the degree to which the

proposition is correct. In fuzzy logic, numeric values between 0 and 1 are defined to each

proposition or fact in order to present uncertainty where 0 is equated with completely

false value and 1 is equated with completely true. Values between (0,1) indicate partially

false and partially true, and are described by linguistic expressions.

Zadeh (1975) proposed the term ‘linguistic variable’ to refer to a variable whose values are

in the form of “linguistic expressions” instead of numerical values. For example, ‘speed’

is a linguistic variable with linguistic value ‘fast’. ‘medium’ and ‘slow’ are other possible

linguistic values for the linguistic variable ‘speed’. These linguistic values are characterised

by a fuzzy set (membership function) in a universe of discourse U = [0, 120], they might

be interpreted as:

• ‘slow’ to be a speed below about 30 mph.

• ‘medium’ to be a speed around 65 mph.

• ‘fast’ to a speed above about 85 mph.

These linguistic values would be associated with fuzzy sets whose membership functions

are are shown in Figure 2.3.

(mph)

30 65 85

µ

speed

0

0.5

1

Speed

slow medium fast

Figure 2.3 Membership functions for the linguistic variable ‘speed’.

Fuzzy methodologies have been investigated for other timetabling problems such as air-

crew rostering by Teodorović and Lučić (1998), driver scheduling by Li and Kwan (2003)

and nurse rostering by Auf’m Hofe (2001). Fuzzy-based techniques have been applied

successfully to timetabling problems (i.e. examination and course timetabling problems).

In the specific context of examination timetabling, Asmuni et al. (2005b) used a fuzzy

technique to solve the examination timetabling problem. In their work, several sets of

two graph colouring heuristics were combined, and the examinations were ordered based

on the di�culty of timetabling them. The approach is based on three ordering heuristics

32

2. Background and Literature Review

derived from GC strategies (i.e. largest enrolment, saturation degree, and largest degree)

and three combinations of two heuristics. The fuzzy approach is used in Asmuni et al.

(2005b) to evaluate input variables, which are the knowledge obtained from the heuristics,

and these then help to generate an exam weight as an input variable. In order to obtain

a feasible examination timetable, the examinations were ordered based on decreasing ex-

amination weight values and allocated in the exam timetable in such a way as to satisfy

all hard constraints. The approach used a strategy named ‘bumped back’. This strategy

is used to ‘unschedule’ (‘bump back’) any exams that were already assigned earlier in

order to maintain feasibility and avoid an infinite loop. In this work, conflicting exams are

moved from the selected period (i.e. a period that has been selected randomly from the

list of periods) into another valid period and inserting the current unscheduled exam (i.e.

skipped exam) into the selected period or the need to use the bump back strategy where

it ‘bumps’ the scheduled exams (exams which cause conflict) back to the unscheduled

exam list in order to make periods available for the skipped exams (i.e. exams that could

not be assigned in the first attempt and are recorded on a ‘skipped list’ due to no valid

free-conflict period was available). The work showed that a tuning procedure needed to

be employed to improve the quality of solutions.

Petrovic et al. (2005) applied a fuzzy technique to meet two hard constraints. The first

constraint was the front-load constraint, where examinations with the largest number of

students must be timetabled earlier. The second constraint was that students should have

a su�cient break time between two adjacent exams. Fuzzy sets and fuzzy rules were em-

ployed for determining the degree of constraint satisfaction and acquiring the satisfaction

degree for each constraint. The approach was verified on the Toronto benchmark sets.

Asmuni et al. (2009) also implemented a fuzzy technique to construct solutions for exam-

ination timetabling problems. Three criteria were presented in this work in order to show

the performance of the approach. The first criterion was the penalty weight compared

with other construction heuristics. The second criterion was the number of bump-back

strategies required for each dataset. The last criterion was the processing time for a static

and dynamic heuristic for each combination. The results showed that the approach was

capable of obtaining a better result than other approaches on the Toronto benchmark set.

Generally, researchers who have applied fuzzy-based techniques have frequently enumer-

ated the many advantages and disadvantages that these techniques o↵er Behrooz et al.

(2018). Most studied examination timetabling problems revealed that these techniques

have the ability to mimic how human timetabling experts (i.e. (timetabling o�cers)

construct real-world exam timetables (Asmuni et al., 2005a). When soft constraints are

considered during the construction phase, the satisfaction of a soft constraint is often

satisfied or not satisfied when binary logic is applied. Thus, another advantage of fuzzy

techniques is that the degree of satisfaction of these constraints can be measured (Petrovic

et al., 2005). Each soft constraint is satisfied to a certain degree. In addition, these tech-

niques also help to maximise the satisfaction degree of any constraints where the quality

of constructed solutions is considered higher if all the soft constraints have a high degree

of satisfaction. As stated in Zimmermann (1996), fuzzy techniques are advantageous of

combining multiple sources of information, Asmuni (2008) successfully combined multi-

33

2. Background and Literature Review

ple heuristics simultaneously in the construction process by using fuzzy methodologies in

order to provide a measure of the di�culty of allocating exams.

Fuzzy techniques do have some disadvantages, however. The main disadvantage of apply-

ing the fuzzy methodologies is that producing initial solutions take more computational

time. Moreover, tuning the best fuzzy model (i.e. best set of membership functions for

the given set of rules) requires more time to guide the constructive algorithm used. Fur-

thermore, the membership functions are not fixed where they di↵er in each problem (i.e.

there is no generic fuzzy model that suits all problem instances) (Asmuni et al., 2009).

2.4.2.3 Decomposition Techniques

The basic idea behind decomposition is to “divide and conquer”, as as an optimal solution

could be achieved more easily and quickly for smaller sub-problems utilising relatively

simple approaches (Carter, 1983). Decomposition techniques are another way to resolve

complex problems, especially those with a large search space. The technique works by

dividing the problem into sub-problems that can be solved more easily and then provide

opportunities to improve the quality of the obtained solutions. The early assignment of

certain sub-problems can a↵ect the feasibility, however (Qu et al., 2009b).

A few studies have attempted to apply decomposition techniques to the examination

timetabling problem. Burke and Newall (1999) incorporated the memetic algorithm with

a decomposition method for solving the examination timetabling problem. The approach

in this work is a multi-stage approach that divides problems into sub-components, e↵ec-

tively meaning that scheduling takes place on one group at once. The backtracking and

forward-checking strategies are employed in order to verify the feasibility of solutions.

Experimental results showed that the approach considerably enhanced the quality of the

solutions and reduced the amount of time taken to find those solutions when tested on

three instances (i.e. car92, kfu93 and pur93) of the Toronto dataset and one large instance

(i.e. Nott) of the Nottingham dataset.

Qu and Burke (2007) investigated the potential of an adaptive decomposition approach

for producing an initial solution for the examination timetabling problem. Their approach

involved two stages. In the first stage, the aim was to generate a complete solution. First,

the problem was split into two groups, with the first group consisting of di�cult exams

(determined based on the feasibility of the exams in the prior iteration). The size of this

group is always changed based on an assessment of the examinations at the end of each

iteration. After the first stage (i.e. the constructive stage) an adaptive decomposition

was applied. At this point, the approach proceeded to the improvement phase where

the exams in the second group (the ‘easy’ exams) were then reordered so as to improve

the quality of the generated solutions. This work also introduced the concept of a set of

‘boundary examinations’ between the di�cult and easy sets. The approach was tested

on the Toronto benchmark datasets and found to be an e↵ective and simple technique

compared with other techniques.

In Kendall and Li (2008), the decomposition technique combined a number of examinations

that had common features into one examination in order to simplify the problem. This

34

2. Background and Literature Review

combining of examinations was based on a criterion of compatibility that measures the

viability of the combination and this helped to decrease the size of the search space when

constructing the examination timetable. The study demonstrated that the approach can

improve the solution quality, although it requires high computation time, particularly for

large-sized problem instances. This approach, so far, has been tested on only one instance

(i.e. the sta83) of the Toronto benchmark datasets where it has shown competitive results.

Abdul-Rahman et al. (2014b) extended the study presented by Qu and Burke (2007). The

approach separated the exam timetabling problem into two sets (i.e. a di�cult set and

an easy set). Initially, the scheduling process assumed that all exams could be placed

easily, but the di�cult set was gradually increased as infeasibility became evident during

the process. The di�cult set therefore consisted of those exams that can cause hard

constraint violations in order to schedule them in di↵erent ways. The approach also

presented a boundary set which is located between the two sets (i.e. the di�cult and easy

sets), with all exams in this set considered as di�cult exams. Roulette wheel selection

was performed within a prefixed size in order to shu✏e the best exam ordering.

Many advantages can be enumerated for using the decomposition techniques. Many au-

thors stated that the decomposition techniques require less computational work than tra-

ditional methods (Bulut et al., 2004; Momani and Odibat, 2006; Wazwaz, 2005). Other

advantages include splitting up a problem into smaller sub-problems helps solve the prob-

lem more e�ciently where the decomposition techniques are employed where the number

of variables and constraints is often significantly reduced in the individual models and

becomes less di�cult to solve (Stefansson et al., 2011).

There are, however, some evident disadvantages of the decomposition algorithm. In the

examination timetabling problems often have a high number of exams that have to be

timetabled. Decomposition technique for timetabling might be more e�cient if they con-

sider subsets of exams, rather than the whole set of exams (Carter, 1983). The technique

allocates subsets of exams sequentially, adding the exams from the current subset into an

already created timetable. Each subset is small enough to be tackled by other approaches.

However, The major disadvantage of such a decomposition is that feasibility often could

not be achieved due to early assignment of certain sub-problems (Qu et al., 2009b).

2.4.2.4 Neural Networks

The basic idea behind neural networks is derived from systems of neurons in the human

brain. Researchers were aiming to understand human behaviour and the thinking pro-

cess by modelling human brain development (Porto-Pazos et al., 2011). Even now, many

prominent researchers in the neural networks field have a background in psychology. In

a neural network algorithm, interconnected ‘brain cells’ (i.e. input, hidden and output

layers) inside a computer can manipulate data to allow the computer to understand pat-

terns, learn things, and make decisions in a human-like manner (Haykin, 1999). The

input layer includes neurons that transmit information to the hidden layer in the same

way as sensory neurons do in biological neural networks. The hidden layers are made up

of neurons that link to other neurons on a neighboring hidden layer or the last layer (i.e.

35

2. Background and Literature Review

the output layer), and they are where the majority of the processing occurs. In addition,

there are neurons responsible for showing the output in response to the provided inputs

in the output layer (Haykin, 1999). Neural networks are capable of learning from their

experiences and adapting to changes in the environment. The learning begins using two

approaches, supervised learning and unsupervised learning (Ansari and Bakar, 2014).

Corr et al. (2006a) implemented a neural network for constructing an examination timetable.

GC heuristics, as well as the Kohonen self-organising neural network, were employed in

this approach in order to train the regularities of the defined input feature vector. In the

construction process, a measure of the di�culty of scheduling examinations is determined

before proceeding to ordering and assigning the examinations. The most di�cult examina-

tions must be scheduled first to a period. During the construction process, therefore, three

groups of examination (i.e. early, middle, late) were categorised by the neural network

using three graph heuristics. Toronto’s collection of benchmark examination datasets was

used to verify this approach. The work illustrated that neural networks could be used to

generate feasible solutions to the examination timetabling problem.

The advantage of the neural network is that it can be self-learning, learning decision

making like a human, and easy to implement by a computer (Dong et al., 2019). On the

other hand, The disadvantage is that it is arduous to understand its reasoning process

and reasoning basis. Moreover, when the information is insu�cient, it loses the ability to

work (Ansari and Bakar, 2014). Another disadvantage is that the computional time taken

to obtain the solutions depends on the neural network size. High computational time are

required if the size of the neural networks are large. In addition, training the large neural

network are often not conducted in shorter time (Whitley et al., 1995).

2.4.3 Meta-heuristics and Improvement Heuristic Techniques

Classical search methodologies such as dynamic programming, integer linear program-

ming (Kanit et al., 2009) and Graph Colouring (Burke et al., 1994b, 1995b) are usually

ine↵ective and ine�cient for tackling resource-constrained problems. Accordingly, meta-

heuristic algorithms such as Simulated Annealing, Tabu Search, Hill-Climbing, Ant colony,

and Evolutionary Algorithms have become widespread in the optimisation area in recent

years because of their robustness, ability to satisfy a large number of constraints, mod-

elling capability and e↵ective solutions to many real-world problems such as airline crew

scheduling, round-robin sports scheduling, nurse scheduling, etc. (Burke and Petrovic,

2002; Petrovic and Burke, 2004; Lewis, 2008; Babaei et al., 2015b; Kochetov, 2016; Tein

and Ramli, 2010; Lewis and Thompson, 2011; Deng and Lin, 2011).

The 'meta-heuristic' term was presented for the first time by Glover in 1986 by joining the

Greek prefix “meta” that means beyond or of high-level with heuristic which is from the

Greek heuriskein and means “to search”. A meta-heuristic is formally defined, however, as

“an iterative generation process which guides a subordinate heuristic by combining intelli-

gently di↵erent concepts for exploring and exploiting the search space, learning strategies

are used to structure information in order to find e�ciently near-optimal solutions” (Os-

man and Laporte, 1996). Many additional, similar definitions have been provided, e.g. by

36

2. Background and Literature Review

Voß et al. (2012), Glover and Laguna (1993), and Glover and Laguna (1997).

Blum and Roli (2003, 2008) summarised the principal characteristics of meta-heuristics as

follows:

• Meta-heuristics are considered as strategies to direct the search process.

• The objective is to explore the search space as e�ciently as much as possible in order

to find near optimal solutions.

• The complexity degree of meta-heuristics algorithms ranges from simple procedures

to complex learning processes.

• They are considered approximate and often non-deterministic.

• Meta-heuristics can be combined with intelligent mechanisms to avoid getting trapped

in confined areas of the search space.

• Meta-heuristics are problem-independent techniques.

• Nowadays, the advanced meta-heuristic techniques utilise search experience (adding

memory for saving the properties of the best solution reached until that moment) in

order to guide the search toward “good” regions of the search space.

In the context of the present survey, meta-heuristic techniques can be categorised into one-

phase optimisation algorithms, two-phase optimisation algorithms, and algorithms which

allow relaxation (Teoh et al., 2015). With regard to one-phase optimisation algorithms,

both the hard and soft constraints are satisfied at the same time, whereas in the two-

phase optimisation algorithms, all hard constraints are satisfied first to obtain a feasible

solution (timetable) before satisfying the soft constraints. With respect to algorithms

allowing relaxation, the first stage will produce a population of high-quality feasible solu-

tions (timetables) by concentrating on a particular main criterion and relaxing the other

criteria. In the second stage, the algorithm starts searching for a compromise solution

that satisfies as many of the soft constraints as possible without violating the solution

obtained from the first stage. Obtaining high-quality feasible timetables requires com-

putation time, however, and this can make it very di�cult to obtain an optimal or even

near-optimal solution within a short time period without violating any of constraints.

Problem instances can be tackled by algorithms that utilise both heuristics, as well as

meta-heuristics. Heuristic algorithms are problem-dependent. This means that they can

be adapted to a specified problem, whereby an advantage of the details can be taken. GC

heuristics are, for instance, utilised to generate solutions for a specified timetable problem

instance, but only the hard constraints are typically employed in the improvement phase

(Carter and Laporte, 1996; Burke et al., 2007). Meta-heuristics, however, are problem-

independent, meaning that they can be utilised to optimise any type of problem, and this

in turn means that they can typically consider both the hard and the soft constraints

simultaneously.

Meta-heuristic algorithms can be divided into two sub-types: single-solution meta-heuristics

37

2. Background and Literature Review

and population-based meta-heuristics (Talbi, 2009). Single-solution meta-heuristics mainly

aim at modifying and optimising one single solution; they maintain the search focused on

the local regions. This type of meta-heuristic is, therefore, exploitation oriented. Exam-

ples include Hill-Climbing, Tabu Search, Simulated Annealing, Variable Neighbourhood

Search, Great Deluge (Talbi, 2009), each of which is discussed in the following subsec-

tions. On the other hand, population-based meta-heuristics mainly aim at modifying and

optimising multiple candidate solutions in parallel; they maintain the search focus on the

whole space. This type of meta-heuristic is, therefore, exploration oriented. Examples

include Genetic Algorithms, Ant Colony Optimisation, Memetic Algorithm, and Hybrid

(Talbi, 2009). The next subsection discusses the categories of meta-heuristic approaches.

Many papers have described the advantages of the usage of meta-heuristic algorithms and

how they can address the educational timetabling problems, such as Genetic Algorithm

(Pongcharoen et al., 2008; Alves et al., 2017), Tabu Search (De Causmaecker et al., 2009;

Islam et al., 2016), Simulated Annealing (Aycan and Ayav, 2009; Cheraitia and Haddadi,

2016), Ant Colony Optimisation (Lutuksin and Pongcharoen, 2010; Khair et al., 2018), the

Great Deluge (Turabieh and Abdullah, 2011b; Burke and Bykov, 2016), Hyper-heuristics

(Burke et al., 2007; Epitropakis and Burke, 2018), Evolutionary Algorithm (Sultan et al.,

2008; Leite et al., 2016) and many more. In general, these algorithms show very promising

results and have many advantages (Blum and Roli, 2003; Beheshti and Shamsuddin, 2013):

• They are robust and adaptive to changes in the environment and conditions.

• They can be used in tackling complex problems.

• They can incorporate other techniques to prevent becoming stuck in local optima.

• These algorithms can find promising areas of the search space in a reasonable com-

putational time due to their ability to explore and exploit.

• They are easily applicable in parallel processing.

Although these algorithms have achieved satisfactory results in many domains, includ-

ing in examination timetabling problems, they cannot provide a guarantee that optimal

solutions will be found, and they have some unavoidable disadvantages. The following

subsections discuss the most popular algorithms applied to the examination timetabling

problems, moving from definitions and methodologies to advantages and disadvantages for

each algorithm.

2.4.3.1 Hill-Climbing

Hill-Climbing (HC) is one of the simplest meta-heuristic local search methods, also called

iterative improvement. The algorithm iteratively chooses the current solution and pro-

duces a neighbouring solution, If this is better than the preceding one, the method will

move to that solution (Burke et al., 2005a). The termination condition for HC is applied

when it is unable to find a better solution (Hansen and Mladenović, 2001). The funda-

mental pseudo-code of a HC for a minimisation problem is described in Algorithm 2.1

below (Hoos and Stützle, 2004) where Sol is an initial solution, Sol⇤ is any solution that

38

2. Background and Literature Review

can be reached by modifying one element in the initial solution (a neighbour solution of

the initial solution). f(Sol) and f(Sol⇤) indicate the fitness value of the initial solution

and the neighbouring solution, respectively.

Algorithm 2.1 Pseudo-code for a Hill-Climbing (HC) algorithm.

1: Sol an initial candidate solution
2: evaluate(Sol)
3: while Sol 6= a local optimum do
4: Choose an unevaluated neighbour Sol⇤ of Sol
5: evaluate(Sol⇤)
6: if f(Sol⇤) <f(Sol) then
7: Sol := Sol

⇤

8: end if
9: end while

10: Return Sol . the best solution found.

Because HC is usually trapped in local optima, its performance is somewhat poor. In

order to enhance its performance, therefore many researchers have hybridised HC with

another method. For example, Tam and Ting (2003), Burke et al. (2003a), Abuhamdah

and Ayob (2010a), and Abuhamdah and Ayob (2010b) successfully applied an enhanced

version of HC with other methods to solve course timetabling problems.

Merlot et al. (2003) presented a hybrid algorithm for solving examination timetabling

problems. The hybridisation included three phases: Constraint Programming, Simulated

Annealing, and HC, where HC was employed to further improve solutions obtained. Their

approach was tested on the Toronto, the University of Melbourne, and Nottingham bench-

mark datasets. In another study, Kendall and Hussin (2005b) investigated implementing a

hyper-heuristic with HC to tackle examination timetabling problems from the MARA Uni-

versity of Technology. They found that their approach generated good quality solutions

with respect to proximity cost.

Bykov and Petrovic (2016) successfully applied HC for the examination timetabling prob-

lem. Moreover, HC is a basis for some other meta-heuristic methods such as Simulated

Annealing, Tabu Search, and Memetic Algorithms (see below). Other studies that have

discussed HC with respect to the examination timetabling problem can be found in Mandal

and Kahar (2015).

The main advantage of HC is that it is a simple method and easy to implement and

hybridise with other algorithms. However, the disadvantage is that it is easily led to

fall into local optima as it only accepts better solutions within a certain neighbourhood,

without exploring other neighbourhoods.

2.4.3.2 Tabu Search

The Tabu Search (TS) method was introduced by Glover (1986). Glover and Laguna

(1997) defined TS as: “A meta-heuristic that guides a local heuristic search procedure to

explore the solution space beyond local optimality”. TS has overcome the drawback of the

HC method (stuck in local optima) by using a memory referred to as the “tabu list” that

39

2. Background and Literature Review

is used to store the visited solutions in order to prevent the same solution being revisited

in the future.

Algorithm 2.2 shows the pseudo-code of a TS for a minimisation problem (Martins and

Ribeiro, 2006). Sol0 is an initial solution and a neighbourhood of a solution Sol is a

set N(Sol). Each solution Sol

0 2 N(Sol) is reached from Sol by an operation called a

move. TBList means the tabu list (Glover, 1989). Procedure Select Best Neighbour

returns the best non-forbidden neighbour solution Sol. If the TBList list is full, the oldest

forbidden solution is removed from it (i.e. the TBList). The incumbent solution is inserted

into the TBList and is replaced by the best neighbour Sol
0
.

Algorithm 2.2 Pseudo-code for a Tabu Search (TS) algorithm.

1: Generate an initial solution Sol0 and set Sol Sol0

2: Sol

⇤ Sol

3: TBList ;
4: while stopping criterion is not reached do

5: Sol

0 Select Best Neighbour(N(Sol)\ TBList)

6: if f(Sol
0
) <f(Sol⇤) then

7: Sol

⇤ Sol

0

8: end if

9: if |TBList| = Tabu List Size then

10: remove the oldest solution from the tabu list (TBList)

11: end if

12: TBList TBList [Sol

13: Sol Sol

0

14: end while

15: return Sol

⇤

Many researchers have applied the TS method to tackle university timetabling problems.

The TS algorithm was first applied by Costa (1994) to university course timetabling prob-

lems, while Alvarez-Valdes et al. (2002) applied TS in the academic scheduling problem.

The authors used two successive phases that consist of a main method employed to produce

a clash-free feasible timetable and then a TS method to enhance the produced timetable.

Because the TS behaviour depends on the neighbourhood structure to find the global op-

timum value, De Causmaecker et al. (2009) proposed four di↵erent techniques to diversify

the neighbourhood structure (Swap move, Time-Swap neighbourhood, Room-Swap neigh-

bourhood, and Time-Room Swap neighbourhood). These techniques were also called the

horizontal swap because they involved content swapping within the same candidate solu-

tion.

Wilke and Ostler (2008) used TS to solve the problem of school timetabling. TS was

compared to several algorithms (i.e. genetic algorithm, simulated annealing, and branch &

bound) with the aim of providing a software framework that can solve various timetabling

problems. Simulated annealing generally was capable of obtaining the best result. TS,

however, was able to improve the solution in a shorter computational time.

40

2. Background and Literature Review

Mushi (2006) developed a TS method that generates course timetables by decreasing

penalties over an invalid solution (i.e. timetable). The approach was tested on a dataset

from the University of Dar-as-salaam. The results were compared with a manually con-

structed course timetable. In addition, termination condition was determined if there is

no improvement after 1000 iterations. The findings revealed that their proposed system

outperformed the manual system. A set of examples of the implementation of TS methods

to solve examination timetabling problems can be found in Amaral and Pais (2016).

The TS method is considered a robust local search ability of the global iterative optimi-

sation method. The advantage of using the TS method is that it uses a flexible memory

of search history to avoid roundabout and escape the trap of local optima (Abido, 2002).

However, the deficiency (i.e. disadvantage) is that sometimes the TS needs to reach a

previously visited solution, so that roundabout is unavoidable and a better diversification

strategy is required (Fouskakis and Draper, 2002). Other advantages are that a longer

tabu list may cause longer computational time. In addition, the TS depends strongly on

the initial solution and serial iterative search process (Zhang, 2011).

2.4.3.3 Simulated Annealing

Another HC-based method that attempts to avoid being trapped in local optima is Simu-

lated Annealing (SA). The origins of the method are in statistical mechanics (the Metropo-

lis Algorithm), and it was first introduced as a search algorithm for combinatorial optimi-

sation problems in Kirkpatrick et al. (1983) and Černỳ (1985). It simulates energy levels

in cooling solids to achieve a stable crystal lattice structure with a minimum energy state

(Dong et al., 2019). The main idea is to accept uphill moves that lead to worse quality

solutions than the current solution in order to escape from local minima while, during the

search, the size of such uphill moves deemed acceptable e↵ectively decreases.

The pseudo-code for a SA for a minimisation problem is described in Algorithm 2.3 (Aarts

and Korst, 1989), where K

B

indicates to the Boltzmann constant and TE are the tem-

perature values (i.e. the temperature of the heat bath), which are selected depending on

the cooling approach. Generally, the temperature remains fixed for the first generations

before it is decreased by the annealing scheduler (Kirkpatrick et al., 1983; Skiundefinedcim

and Golden, 1983; Luke, 2009). For minimisation problems, the algorithm starts from an

initial solution Sol0 and sets the temperature at TE0 and then randomly searches di↵erent

neighbourhoods gradually decreasing the value of improvement which can help to escape

from local optima. For each TE, the inner loop is performed until thermal equilibrium

is reached. At each iteration, a neighbour solution Sol

⇤ and the variation �E in the

objective value are computed. The new solution Sol

⇤ replaces the incumbent if �E is

less than zero, (i.e. if the new solution is better). The state transition is performed with

probability e

��E/(KBTE) when the new solution is worse than the current solution. Once

thermal equilibrium is met, the TE is decreased depending on the annealing schedule. In

most implementations, the new TE is geometrically decreased, by the multiplication of

the current TE by a constant smaller than 1.

41

2. Background and Literature Review

Algorithm 2.3 Pseudo-code for a Simulated Annealing (SA) algorithm.

1: Generate an initial solution Sol0 and set Sol Sol0

2: Compute the initial temperature TE0

3: TE TE0

4: while stopping criterion is not reached do

5: while thermal equilibrium is not reached do

6: Obtain a neighbour solution Sol

⇤ 2 N(Sol) at random

7: Compute �E = f(Sol⇤)� f(Sol)

8: if �E < 0 then

9: Sol Sol

⇤

10: else

11: if e

��E/(KBTE)
> random[0, 1) then

12: Sol Sol

⇤

13: end if

14: end if

15: end while

16: decrease TE according with the annealing schedule

17: end while

18: return Sol

SA has been extensively investigated and successfully applied to many areas, among them

being examination timetabling. Johnson (1990) applied SA to a real-world examination

timetabling problem. The SA was capable of producing a high-quality solution compared

to manual techniques. Also, Thompson and Dowsland (1998) applied SA to the exami-

nation timetabling problem in order to reduce soft constraint violations. The approach

solved the problem in two phases: in the first, it successfully obtained an initial feasible

timetable, and then in the second optimised the generated timetable. An adaptive cooling

schedule was also implemented.

Thompson and Dowsland (1998) and Dowsland and Thompson (2012) also applied SA

to solve the exam timetable problem. They compared three neighbourhood operators

(standard, in which the neighbourhood includes solutions produced by altering the colour

of S-Chains, single vertex, and Kempe chains). They showed that the Kempe chains

neighbourhood operator is the most e�cient as this operator provided more flexibility to

allow large and di�cult exams to move within the timetable. For measuring the algorithm

performance, eight examination timetable problem instances collected from various univer-

sities were used as tasted. Mühlenthaler (2015) explored the structure of the search space

in the examination timetable problem and set up suitable conditions for the connectedness

of clash-free timetables under the operation of Kempe-exchange.

The Kempe-chain move has been successfully employed in examination timetabling prob-

lems in order to escape from a local optimum during the search process, presented in

studies by Casey and Thompson (2002), Merlot et al. (2003), Burke and Bykov (2006),

Burke et al. (2010a), Shaker and Abdullah (2009), and Gogos et al. (2010). Generally,

the Kempe-chain neighbourhood works over two subsets of exams, in which it selects

42

2. Background and Literature Review

exam1 exam5

exam2 exam6

exam7exam3

exam4 exam8

Period1 Period2

exam8 exam3

exam6 exam1

exam7exam5

exam4 exam2

Period1 Period2

(a) (b)

Figure 2.4 The one-pair Kempe-chain (a) before and (b) after the move.

exam6

exam3

exam8

exam2

exam7

exam5

exam4

exam1

Period1 Period2 Period3

exam11

exam10

exam12

exam9

(a)

exam6

exam10

exam8

exam9

exam7

exam5 exam4

exam1

Period1 Period2 Period3

exam3

exam2

exam12

exam1

(b)

Figure 2.5 The two-pair Kempe-chain (a) before and (b) after the move.

exams randomly and attempts to swap these exams between another two valid periods.

Each subset of exams is linked by edges in order to represent the clashes between the ex-

ams (Thompson and Dowsland, 1996a). Figure 2.4 illustrates an example of the standard

Kempe-chain (i.e. one-pair or one-move kempe-chain). In addition, two-pair Kempe-chain

is another variant of Kempe-chain that have been employed in examination timetabling

where includes exams connected within k di↵erent periods (Thompson and Dowsland,

1996a; Tuga et al., 2007). Figure 2.5 presents an example of a two-pair Kempe-chain.

Frausto-Soĺıs and Alonso-Pecina (2008) hybridised TS and SA algorithms to tackle the

43

2. Background and Literature Review

ITC 2007 course timetabling problem. The method included two phases; a construction

and an improvement phase. In the construction phase, SA was employed to construct

a feasible course timetable. While in the improvement phase, SA was utilised to obtain

a solution as close to the optimal solution as possible, within a determined time limit.

The TS algorithm is employed whenever there is no improvement in the solution quality.

The approach was capable of producing feasible solutions, although overall solutions qual-

ity was lacking. Further, the hybridisation of SA with other approaches in examination

timetabling showed promising results. Other recent examples of the application of SA in

examination timetabling problem can be found in Battistutta et al. (2017), Leite et al.

(2019a), and June et al. (2019a).

The advantages of the SA algorithm are as follows (Selim and Alsultan, 1991). First,

the SA algorithm could easily be hybridised as well as modified. Second, the SA does

not “stick” to a local optimum solution. Third, it is also a high-performance algorithm,

robust, and is relatively easy to code, even for complex problems (Zhang, 2011). On the

other hand, it has some advantages. Application of the SA may require large amounts

of computation time. Another disadvantage of SA is that more iterations are required

to obtain the best solution. Moreover, it does not have a memory compared to the TS.

Hence, previously visited solutions are possibly revisited (Zolfaghari and Liang, 1999).

2.4.3.4 Variable Neighbourhood Search

Variable neighbourhood search (VNS) is a local search meta-heuristic originally introduced

by Mladenović and Hansen (1997) and Hansen and Mladenović (2001) for solving a set of

combinatorial and global optimisation problems. During the local search, this approach

changes more than one neighbourhood structure dynamically. The aim is to avoid getting

trapped in local optima. This helps VNS explore the search space more e↵ectively, jumping

from the current solution to a new neighbourhood once a better new neighbourhood is

found (Abdullah et al., 2005; Burke et al., 2010b). Furthermore, VNS is considered to

be a descent-ascent approach that requires implementation of a shaking method and local

search iteratively to obtain a high quality solution to a problem. Algorithm 2.4 below

shows pseudo-code for a VNS algorithm for minimisation problem adopted by Mladenović

and Hansen (1997).

A set of neighbourhood structure N

k

is determined first during the initialisation process

where k = 1, . . . , k
max

indicates the total number of neighbourhood structures used in the

local search. f(Sol) means the quality of the solution Sol. The VNS begins from an initial

solution Sol that is initialised randomly from the kth neighbourhood. There are three steps

in the VNS procedure (i.e. shaking, local search, and move) that are repeated until some

stopping criterion is reached, such as a maximum number of iterations, a set number of

non-improving iterations or a pre-set CPU time. Intensification and diversification often

work together, so the main aim of VNS is to balance between them when it explores the

search space. The local search step has an intensification purpose to converge to a good

solution, whilst the shaking step is considered as a diversification method that helps to

prevent cycling during the search process. In the shaking step, a solution Sol

00
in the k

th

neighbourhood of the current solution Sol is chosen at random, where Sol

00
is considered

44

2. Background and Literature Review

Algorithm 2.4 Pseudo-code for a Variable Neighbourhood Search (VNS) algorithm.

1: Initial a set of neighbourhood structures N
k

, k = 1, . . . , k
max

2: Generate the initial solution Sol0 and set Sol Sol0

3: while termination conditions not met do
4: Set k 1
5: while k  k

max

do
6: Obtain a neighbour solution Sol

0 2 N

k

(Sol) at random . Shaking step
7: Sol

00 Local Search(Sol
0
) . Local search step

8: if f(Sol
00
) < f(Sol) then

9: Sol Sol

00
. Move step

10: k 1
11: else
12: k k + 1
13: end if
14: end while
15: end while
16: return Sol

as the starting point for the local search. Then the process continues by visiting the

k

th neighbourhood of the current solution Sol sequentially until a local optimum Sol

00

is found. The solution Sol

00
is accepted if f(Sol

00
) is better than f(Sol). Note once a

neighbourhood structure produces a better solution, the local search process restarts from

the first neighbourhood (k = 1). Otherwise, k is incremented (i.e. k := k + 1) and a

di↵erent neighbourhood is used.

The VNS approach have been widely used in many optimisation areas. For instance, VNS

was implemented to tackle a nurse scheduling problem (Burke et al., 2003b), a graph

colouring problem (Avanthay et al., 2003), a median cycle problem (Pérez et al., 2003),

and project scheduling problem (Fleszar and Hindi, 2004). The VNS approach has also

been applied successfully to solve examination timetabling problems (Wong et al., 2005;

McCollum et al., 2003).

A variable neighbourhood descent employing multiple neighbourhood structures was pro-

posed by Wong et al. (2005) to solve an uncapacitated examination problem. Exploration

and exploitation of the search space of solutions are considered when a di↵erent local search

operator integrates for each neighbourhood structure. This approach was tested over 16

uncapacitated examination timetabling problem datasets from the Toronto, Nottingham,

and Melbourne datasets. Experimental results showed that the approach performed well

compared with other published approaches that related to these benchmark datasets.

A study by Burke et al. (2010b) has proposed hybridisation of a VNS with a genetic algo-

rithm. The genetic algorithm in this approach was considered as a neighbourhood selector

within a VNS approach, which means it worked at a high-level rather than being directly

applied to solve the problem. The genetic algorithm intelligently carried out the search

process by choosing the list of neighbourhoods from the variable neighbourhood Search

framework. The aim was to prove that the solution quality was based on the selection

of a neighbourhood. The approach was capable of solving the examination timetabling

problem and obtaining high-quality solutions to the Toronto benchmark problems.

45

2. Background and Literature Review

One significant advantage of the VNS is that it requires relatively few parameters that must

be tuned (Burke et al., 2010a; Pérez-Peló et al., 2019). However, the major disadvantage

is that the VNS implementation requires more execution time of solving large and complex

problems (Burke et al., 2010a).

2.4.3.5 Great Deluge Algorithm

The Great Deluge algorithm (GDA) was first proposed by Dueck (1993). The GDA is

considered to be a type of local search similar to SA. The GDA is much simpler than SA,

however, since it allows worse solutions to be accepted based on some given conditions.

It also requires only one parameter to be tuned, which is the “UP” parameter. This

parameter represents the ‘rain speed’ which influences the estimation of the quality of

the obtained solution and the amount of computation time. This algorithm is simulated

based on the analogy of a rising water level. Algorithm 2.5 shows a GDA algorithm pseudo-

code for a minimisation problem (Talbi, 2009). In minimisation problems, solutions are

accepted by the “UP” parameter if the cost value (objective value) is less than or equal to

the current solution, which is always low in every iteration based on the decay rate. In a

typical implementation of the GDA, the algorithm essentially begins with an initial water

level as the quality of the initial solution, which is based on cost value. Then the level

of water is decreased by an amount of decrease of the “UP” parameter. The best value

for this parameter is between 0 and 1 (Dueck, 1993), unless the algorithm needs a long

computation time to explore the uncovered area of the landscape to reach good solutions.

There are many variants form of GD in the literature such as Extended Great Deluge

(EGD), Flex-Deluge (FD), and Non-Linear Great Deluge (NLGD). A detail discussion of

these variants can be found in Sin and Kham (2012).

Algorithm 2.5 Pseudo-code for a Great Deluge Algorithm (GDA).

Input: Level L

1: Sol Sol0 . Generation of the initial solution.

2: Choose the rain speed UP . UP >0

3: Choose the initial water level LEV EL

4: Repeat

5: Generate a random neighbour Sol
0

6: if f(Sol
0
) < LEV EL then

7: Sol Sol

0
. Accept the neighbor solution.

8: LEV EL = LEV EL - UP . Update the water level.

9: end if

10: Until Stopping criteria satisfied

Output: Best solution found.

Burke and Newall (2003) applied the GDA to examination timetabling problems to in-

crease the quality of the initial examination timetables that could be obtained. In the

initialisation phase, the examination timetables were constructed by an adaptive ordering

method that was taken from Burke and Newall (2004). The performance of the GDA was

compared with two local search algorithms, namely, HC and SA. In this study, several

46

2. Background and Literature Review

termination conditions were specified where the number of iterations for which the algo-

rithm would be run was determined (i.e. two million iterations), stopping prematurely if

there is no improvement in the solution quality after a certain number of iterations (i.e.

one million iterations). The approach was tested on the Toronto problems. Experimental

results showed that the GDA performance outperformed both HC and SA.

Furthermore, in Burke and Bykov (2006), in an extension of their work in Burke et al.

(2004a), the flex-deluge algorithm was also proposed and implemented for solving the

examination timetabling problems. Some modifications were made to the GDA and HC

that helped to propose novel acceptance criteria are based on a flexibility coe�cient.

Updating the flexibility coe�cient helped to explore the landscape e↵ectively and guide the

approach to avoid certain moves. Kempe chain neighbourhood (Thompson and Dowsland,

1996b, 1998) was used in order to fulfil all hard constraints. The approach has been verified

on the Toronto benchmark datasets, achieving some of the best results in the literature at

this time.

McCollum et al. (2009) investigated an extended GDA for solving examination timetabling

problems from the Second International Timetabling Competition 2007 (ITC 2007). This

approach consisted of two phases. In the first phase, the work was focused on employing

the adaptive ordering heuristics proposed by Burke and Newall (2004) where the initial

solution was constructed. The solutions were improved in the second phase (i.e. the

improvement phase using a reheating mechanism). The approach was capable of returning

good solutions compared to other published results.

Turabieh and Abdullah (2011b) incorporated a heuristic operator (i.e. an electromagnetic-

like mechanism) with the GDA in order to solve capacitated and uncapacitated ex-

amination timetabling problems widely studied in the literature. The principle of the

electromagnetic-like mechanism was based on Particle Swarm Optimisation (PSO) method

first proposed by Birbil and Fang (2003). In this work, the initial solutions were generated

by using the GC heuristics (i.e. saturation degree, largest degree and largest enrolment)

(Balakrishnan, 1991; Weitz and Lakshminarayanan, 1997; Carter et al., 1996). The aim

was to move towards the uncovered area of the search space so as to reach the global

optimum where the decay rate of the GDA was frequently decreased. This helped the

approach to decrease the probability of being trapped by a local optimum. The approach

was competitive compared with other approaches where it obtained the best results on

the Toronto and ITC 2007 benchmark datasets.

As aforementioned, the GDA algorithm has been successfully applied to timetabling prob-

lems and many optimisation problems. The GDA algorithm has an advantage over other

algorithms in that it is simple and needs less e↵ort to implement (Nahas et al., 2008; Jaddi

and Abdullah, 2013). In addition, it requires only one input parameter to be tuned (Sin

and Kham, 2012). However, the GDA algorithm su↵ers from the disadvantage of getting

trapped quickly in local optimum, most often with low-quality solutions (McMullan, 2007;

Ghatei et al., 2012).

47

2. Background and Literature Review

2.4.3.6 Genetic Algorithms

Genetic Algorithms (GAs) were first developed by Holland (1992) based on the concept

of natural selection. Specifically, they apply the principle of evolution through recom-

bination, selection of the fittest and mutation; in nature this principle leads to the en-

hancement of species that are better adjusted for survival in a given environment, but

Evolutionary Algorithms use this to solve computationally hard problems. GAs are re-

peated population-based approaches; they first search a set of candidate solutions, then

a series of genetic operators (selection, recombination, and mutation) are repeatedly ap-

plied (Hoos and Stützle, 2004). In every iteration, these genetic operators generate new

candidate solutions, which are replaced with the solution in the current population (par-

tially or completely). Every candidate solution has a cost value, which corresponds to the

objective function value (Hoos and Stützle, 2004). The pseudo-code of the basic steps of a

genetic algorithm are described in Algorithm 2.6 (Talbi, 2009). The following main steps

summarise GAs (Davis, 1991; Mitchell, 1998):

Step 1: The problem variable domain is represented as a fixed-length chromosome, which

identifies the number of chromosomes in the population (Popsize), the mutation

probability is referred to as (pm) and the crossover probability is referred to as (pc).

Step 2: A fitness function is determined to measure the fitness value of each individual

chromosome in the problem domain and this then becomes the basis for choosing

chromosomes that will be ‘mated’ during reproduction.

Step 3: The initial population of chromosomes is generated randomly of size Popsize :

x1;x2;x3; . . . ;xPopsize

.

Step 4: The fitness value of each chromosome is computed: f(x1); f(x2); f(x3); . . . ; f(xPopsize

).

Step 5: A pair of chromosomes is chosen for mating from the current population. The

selection of parent chromosomes is associated with a probability that is related to

their fitness. The probability of a chromosome being selected for mating increases

in line with its fitness value.

Step 6: The genetic operators, mutation and crossover, are applied to the selected pair

of chromosomes to create a pair of o↵spring chromosomes.

Step7: The created o↵spring chromosomes are placed in the new population.

Step 8: Step 5 will be repeated until the size of the new population becomes equal to the

size of the initial population (Popsize).

Step 9: The new (o↵spring) population will be replaced with the initial (parent) chromo-

some population.

As we can see, a GA creates an iterative process in which each iteration is called a gen-

eration. A typical number of generations for a simple GA can range from 50 to over 500

48

2. Background and Literature Review

(Mitchell, 1998). The entire set of generations is called a run. At the end of a run, we

expect to find one or more highly fit chromosomes.

Algorithm 2.6 Pseudo-code for a Genetic Algorithm (GA).

1: Generate the initial population Pop of solutions
2: t 0
3: Evaluate Fitness(Pop)
4: while stopping criterion is not reached do
5: Parents Selection(Pop)
6: O↵spring Reproduction(Parents)
7: O↵spring Mutation(O↵spring)
8: Evaluate Fitness(O↵spring)
9: Pop Select Best(O↵spring [Pop)

10: t t+ 1
11: end while
12: return the best individual in Pop.

GAs can therefore be characterised by the following features:

1. The selection phase: a process for choosing individuals (corresponding to solutions

of the optimisation problem) from the population. The selection’s primary objective

involves emphasising good solutions while eliminating solutions that are bad in the

population so that the population’s overall fitness becomes better. Also, the selection

can copy good chromosomes amongst the current population into the population of

the following generation. Roulette Wheel Selection, Rank Selection and Tournament

Selection, etc. are among the generally applied selection methods.

2. The crossover phase: a process for creating new o↵spring individuals by combining

the information contained in the parent individuals.

3. The mutation phase: a mechanism for producing a new solution by random

disturbance of the previous solutions.

4. A rule for updating the population (solutions from the current population).

Since the GA generally promised successful implementations, it was utilised in many stud-

ies of the timetabling problems. For instance, Erben and Keppler (1995) studied a weekly

course timetabling problem in which they used GA to allocate teachers, classes, rooms

and course modules to a number of periods within a week. They generated random pop-

ulations of feasible solutions during the initiation stage. The mutation was executed by

allocating new rooms and periods at random and a “cycle crossover operator” was used to

create feasible o↵spring. They tested the algorithm using a large data sample and showed

that the algorithm was able to achieve positive results.

Blum et al. (2002a) used GAs to deal with university class timetabling problems, seeking to

reduce the complexity of those problems by initialising a solution over a set of consecutive

heuristic rules. Myszkowski and Norberciak (2003) applied two GAs to solve theoretical

and real-world course timetabling problems. They described a hybrid GA system and

briefly debated the architecture of the system with two distinct solution representations.

49

2. Background and Literature Review

Their hybridisation system involved hyper-heuristics to set up the operating parameters

of the algorithm and TS to speed up the solution finding process. They protected 20% of

the population size (10% of most varied solutions and 10% of the best quality solutions)

to produce promising solutions. The most varied solutions were selected according to

their greatest distance from the rest of the population, and the best quality solutions were

selected based on their best fitness cost from the population. The diversity measurement,

i.e. the distance between two timetables, was generated through one of the following

methods:

• Number of pairs of events organised with identical resources in the same period in

both timetables.

• Number of events organised with identical resources in the same period in both

timetables.

• Search space convergence: how often the tuple <period, event, resources> is repre-

sented in the whole population.

A number of distinct crossover operators were proposed by Lewis and Paechter (2004) (e.g.

conflict-based crossover, sector-based, student-based and day-based). In order maintain

feasibility after crossover process, a genetic repair function was applied. They tested their

algorithm on TTComp2003 datasets. The results showed that the most e↵ective crossover

method was the conflict-based crossover, and that the algorithm was able to produce a

great number of di↵erent feasible timetables in a sensible amount of time.

Massoodian and Esteki (2008) investigated GA-based approaches to solve the curriculum-

based course timetabling in track 3 of the ITC 2007. The approach comprises two stages:

construction and improvement. The first stage focuses on obtaining a feasible solution,

while the second stage minimises violations of the soft constraints. Furthermore, at each

stage, Local search is employed to further refind the best chromosome. The approach was

able to obtain good quality solutions quickly compared to employing GA alone.

A genetic algorithm was also applied by Sutar and Bichkar (2012) to find a solution to a real

university timetabling problem in India. The initial population was generated randomly

and the parents were chosen for crossover according to their fitness values. Mutation

was applied to all the generated o↵spring resulting from crossover. The implementation of

mutation and crossover operators was not obvious in their research, however. In respect to

soft and hard constraints, learning space capacities were not mentioned, and they did not

give priority to lecturers’ period availabilities, although maximum and minimum working

hours per week were allocated.

Colorni et al. (1991) examined GAs applied to the timetable problem, as did Fang (1994).

Wong et al. (2002) also solved the examination timetabling problem with a GA. The au-

thors developed an automation tool for exam timetabling using GA, as well as a repair

mechanism to tackle infeasible solutions. They tested their system at the École de Tech-

nologie Supérieure of the Université du Québec. Pillay and Banzhaf (2010) introduced

a two-phase solution to the examination timetabling problem, where the first phase gen-

50

2. Background and Literature Review

erated feasible timetables, and second phase improved these timetables by reducing the

violations of soft constraints. The evolutionary process was guided by domain-specific

knowledge as a heuristic approach and a crossover operator is not employed, with only a

mutation operator applied.

Burke et al. (1995a) applied GAs to minimise the number of periods required for exam

timetabling problems. They employed uniform crossover operators, di↵erent selection

methods, two graph colouring heuristics (i.e. Largest Degree and Largest Colouring De-

gree), and a random heuristic. They also developed special heuristics in order to address

two constraints (i.e. the number of periods and spreading conflicting exams). These heuris-

tic crossover operators were proposed to prevent infeasible timetables from being created

during the recombination process. The experimental results revealed that producing good

quality timetables depends on integrating heuristics in crossover operators. Burke et al.

(1995b) successfully implemented similar heuristic crossover operators for another set of

more di�cult timetabling problems.

Colorni et al. (1991) investigated applying the GA to the timetable case. Applying a GA

to timetabling, as well as scheduling, has also been investigated by Fang (1994). Wong

et al. (2002), meanwhile, applied the GA specifically to the examination timetable prob-

lem. They are an exam timetable automation tool, which is based on a genetic algorithm.

A mechanism for repair has been developed to repair infeasible solutions, which are the

results of applying the variation operators. This system has been tested at the École

de Technologie Supérieure of the Université du Québec. Caldeira and Rosa (1997) ap-

proached the high school timetabling problem by utilising the genetic algorithm. Based

on their algorithm, the researchers adopted a problem specific chromosome representation.

They used a repair algorithm after the genetic operators to avoid searching through non-

feasible timetables and explored various fitness functions. In addition, Fernandes et al.

(1999a,b) employed evolutionary algorithms intending to solve the problem of high school

timetabling. Also, Pillay and Banzhaf (2010) applied a two-phase method to the exam-

ination timetable problem, where feasible timetables were produced in the first phase,

and improvements were made to these in the second phase to reduce the costs of the soft

constraints. Domain-specific knowledge in the form of heuristics was utilised to direct the

evolutionary process, and only a mutation operator was utilised for the variation operators.

Beligiannis et al. (2008) applied an evolutionary algorithm to a related school timetabling

problem, and just as in the previous work, no crossover operator was utilised in the algo-

rithm. Through this, the authors revealed that the use of mutation alone was adequate to

obtain good new solutions. More research on using GA to solve course timetabling prob-

lem and how the diversity control is preserved can be found in Lewis and Paechter (2005),

Blum et al. (2002a), Frausto-Solis et al. (2006), and Lewis (2012). In addition, Recent

studies applying GAs to examination timetabling problems can be found in Obaid et al.

(2012), Jha (2014), Gonsalves and Oishi (2015), Rozaimee et al. (2017), and Mohammed

et al. (2017).

There are many advantages of the GA. The GA is robust and well-suited to apply to com-

plex problems such as optimisation problems and in various domains such as Scheduling,

Business, and Engineering (Zhang, 2011; Petrovski et al., 2005). Furthermore, the GA

51

2. Background and Literature Review

is inherently parallel, where it applies to a population of candidate solutions rather than

a single solution Cantu-Paz (1999). Another advantage is the random generation of the

initial population which means that the GA is able to sample the whole solution space

and not just a small region. Variation-inducing tactics, i.e. mutation and crossover, is

advantageous to prohibit the GA from being trapped in one part of the solution space

Sumathi et al. (2008). Although GA has been extensively used in various problems, it

su↵ers from some disadvantages. The GA has the inherent disadvantages of premature

convergence and unpredictable results (Beheshti and Shamsuddin, 2013). It does not o↵er

guarantees with respect to convergence to the global optimum. Additionally, it utilises

complex functions in the selection and crossover operators, and the encoding scheme often

is complicated and time-consuming (Beheshti and Shamsuddin, 2013). Moreover, in order

to guide the searching to find the global optimum, the GA is governed by several param-

eters (Zhang, 2011). Thus, the e↵ectiveness of GA highly depends on the tweaks that

are made to these parameters. Furthermore, The performance of the GA largely depends

upon its operators (i.e. crossover and mutation operators). However, the crossover oper-

ators often cause violations of the problem requirements (i.e. hard constraint violations)

(Raghavjee and Pillay, 2013; Umbarkar and Sheth, 2015). A repair mechanism usually

follows the crossover operator in order to repairs the infeasible solutions. Consequently, a

longer computational time is required for the GA to employ this mechanism.

2.4.3.7 Ant Colony Optimisation

Ant Colony Optimisation algorithm (ACO) was first proposed by Dorigo et al. (2006). It is

inspired by the ability of ants to identify the shortest way to transport their food through

their deposit of pheromone. This algorithm simulates the behaviour of ants, and is based

on the principle of positive feedback. Every ant relies on pheromone trails that are left by

other ants to choose a path in unknown surroundings, adding its own pheromone trails in

turn. The probability of future ants choosing that path is increased when more ants pass

the same way. This positive feedback in time motivates the ants to choose the shortest

path. The algorithm known as the pheromone mode is developed based on a parameterised

probabilistic model with di↵erent pheromone values. Each trail has a pheromone value,

and it is updated during every run-time to get a bias towards high quality solutions (Dorigo

and Blum, 2005). Dorigo et al. (1991) employed this principle in a search meta-heuristic.

They designed an artificial ant colony, where ants generate solutions. The quality of each

solution a↵ects the probability of further solutions being constructed. In choosing solution

components, the probability of choosing node j by ant k, which is currently at the node,

is calculated using the random proportional rule is determined by the following formula:

P

k

ij

=

8
>><

>>:

⌧

↵
ij⇥⌘

�
ijP

k2Nk
i

⌧

↵
ik⇥⌘

�
ik

8 j 2 N

k

i

0 otherwise

(2.11)

Where ⌧

ij

is the value of the pheromone path on the edge of connecting node i to node

j, the heuristic value of that edge is given by ⌘

ij

where it indicates an estimation of the

52

2. Background and Literature Review

partial solution constructed until the current step and which will guide the ants’ search

with problem specific information. ↵ and � represent the parameters which determine the

e↵ect ratio of the pheromone path (i.e. the pheromone information ⌧

ij

on edge (i, j)), and

the heuristic information ⌘

ij

on edge (i, j). The feasible neighbourhood of ant k from node

i is given by N

k

i

(i.e. the set of nodes that have not yet been visited by ant k currently

located in node i).

The pheromone trail between node i and event/student node j marks the desirability

of scheduling that event/student in that node. In each algorithm iteration, only one of

the ants updates the pheromone trails based on the quality of the constructed solution

candidate. The heuristic value ⌘

ij

is controlled by the parameters (i.e. ↵ and �) for each

ant. It is important to note that the heuristic value is dynamically modified throughout

the algorithm execution (Socha et al., 2003). It is set to zero when it is determined that

the constraints of the problem would be violated if the edge (i, j) were included in the tour,

and to one otherwise. The pseudo-code of a ACO is illustrated in Algorithm 2.7 (Fidanova

et al., 2019). The main pheromone trail update procedure is defined in Equation (2.12)

where ⇢ reduces the value of the pheromone (i.e. the reduction rate of the pheromone),

and �⌧

ij

is a new added pheromone, that is proportional to the quality of the solution.

The value of the objective function measures the quality of the solution that is obtained

by the ant.

⌧

ij

 ⇢⌧

ij

+�⌧

ij

(2.12)

Algorithm 2.7 Pseudo-code of a Ant Colony Optimisation (ACO).

1: Initialise number of ants
2: Initialise the ACO parameters: m, ⇢,↵,�

3: while stop condition is not reached do
4: for k =0 to m do
5: ant k chooses start node
6: while Sol is not constructed do
7: ant k selects higher probability (P k

ij

) node
8: end while
9: end for

10: Update pheromone trails
11: end while

The important ACO parameters revealed in Algorithm 2.7 are: total number of ants (m),

local pheromone coe�cient (i.e. influence of pheromone) (↵), heuristic coe�cient (i.e.

Influence of heuristic information) (�), pheromone evaporation (controls the rate at which

historical information is lost)(⇢).

The ACO has been applied to solve complex combinatorial optimisation problems, includ-

ing timetabling, and surveys on the application of the ACO can be found in Dorigo and

Blum (2005). The MAX-MIN ant system and the ant colony system (ACS) system were

proposed by Socha et al. (2003) for solving university course timetabling. They aimed to

minimise the number of violations of soft constraints in feasible timetables, specifically,

minimising the probability of a student having more than one class per day and limiting

53

2. Background and Literature Review

the number of classes that students have at the end of the day. The two algorithms begin

with a population of ants and each ant builds a timetable by assigning all the events to

periods. Ants choose periods probabilistically according to a matrix of pheromone values

and heuristic information. The di↵erence between the two algorithms lies in the ways in

which pheromone values are updated. The ACS uses a special local update rule that is

applied to the element which is selected in the pheromone matrix, symmetric to a certain

period (p) for an event (e). It aims to decrease the probability of other ants choosing the

same period for the same event, and to motivate them to choose other periods. When all

events are assigned to periods, rooms are then assigned and a hill-climbing local search

heuristic is applied to enhance the solution produced. The numbers of students attending

and space capacities were taken into account as hard constraints. In addition to the local

update rule, ACS uses a global update rule which sets lower and upper bounds to control

the maximum di↵erence between the lowest and highest pheromone levels. On other hand,

The MAX-MIN ant system uses only a global update rule.

Dowsland et al. (2002) investigated the advantages of ant colony optimisation in exami-

nation timetabling. They attempted to distinguish between exam timetabling problems

and random graphs by testing various modifications of the ant colony algorithm, such as

assigning candidate exams lists first, as well as the impact of di↵erent measures of solution

quality on the strength of the pheromone trail, etc. They revealed that these modifications

could provide a foundation for extending the ant colony meta-heuristic to incorporate soft

constraints.

Costa and Hertz (1997) developed a method called ANTCOL using ACO and a sequential

heuristic for addressing graph colouring problems. In successive generations, each ant

colours the vertices using dynamic (i.e. recursive largest first, saturation degree) or static

(i.e. smallest last, largest first, random) constructive methods. The colour for each vertex

is selected based on the probability value of the pheromone. The result of this experiment

showed that the dynamic methods performed significantly better than the static methods.

The importance of this research is that it highlights the promise of ACO for solving

examination timetabling problems.

Dowsland and Thompson (2005) researched the application of ACO to the examination

timetabling problem. The objectives of this study were to conduct a comparison between

a set of random graphs observed by Costa and Hertz (1997) with the performance of

ANTCOL on typical timetabling graphs, and to identify trail calculations, ANTCOL

parameter values and promising constructive heuristic combinations. The results showed

when ANTCOL was modified for application to the examination timetabling problem it

was able to minimise the number of periods required for a feasible timetable comparing to

the best published approaches in the literature. More details about ACO applied to exam

timetabling problem can be seen in Azimi (2005).

The advantage of the ACO is that it is robust as it is capable of accepting any knowledge

transferred by its pheromone trails (Mavrovouniotis, 2013). It is also versatile in dealing

with a large range of combinatorial optimisation problems (Selvi and Umarani, 2010).

Moreover, It also is inherently parallelised where it can easily search among a population in

54

2. Background and Literature Review

parallel (Zhang, 2011). Furthermore, it can quickly adapt to dynamic changes such as new

distances as it is inspired from nature, so it has adaptation capabilities due to pheromone

evaporation (Bonabeau et al., 1999; Mavrovouniotis and Yang, 2013). ACO is strongly

based on positive learning on learning from positive feedback (i.e. positive learning). By

means of positive feedback, the ACO attempts to determine which solution components

are required to assemble high-quality solutions (Nurcahyadi and Blum, 2021). On the

other hand, the significant disadvantage of the ACO is that the probability distribution

(i.e. probability rule to choose solutions) can change changed for each generation (Guntsch

and Middendorf, 2002). Thus, the ACO does not guarantee the discovery of the optimal

solution, although it is a stochastic and multi-directional search algorithm (Lutuksin and

Pongcharoen, 2010). Blum et al. (2002b) and Dorigo and Blum (2005) also reported that

the original ACO has a deficiency in bias deception known as the first order and second

order deception which means that some solution components will be updated on average

more frequently than others. This is why an optimum solution is not guaranteed.

2.4.3.8 Memetic Algorithms

Memetic algorithms (MAs) are evolutionary-based approaches integrated with local search

techniques. MAs are more advanced versions of GAs in that they can improve an indi-

vidual within a generation. This purpose is often achieved by repairing individuals in the

population between generations or using local search methods such as HC. MA begins

the search with a random initial population (Hoos and Stützle, 2004). In each iteration,

the next generation of candidate solutions is obtained by applying mutation, selection,

recombination and perturbative local search, and the search process ends when a number

of termination criteria are satisfied (Hoos and Stützle, 2004). Algorithm 2.8 shows the

pseudo-code of a simple MA (Hart et al., 2004).

Algorithm 2.8 Pseudo-code for a Memetic Algorithm (MA) .

1: Initialise population
2: Evaluate each candidate solution
3: while termination criterion is not satisfied do
4: Select parents
5: Recombine to produce o↵spring
6: Mutate o↵spring
7: Improve o↵spring via Local Search
8: Evaluate o↵spring
9: Select individuals for next generation

10: end while

An MA of two local search methods integrated with the GA for solving Socha’s datasets

was presented by Jat and Yang (2008). The explorative search ability of GAs is improved

by the use of the exploitative search ability of these local search methods. Rossi-Doria

et al. (2002) mentioned that MA did not perform well in the experiments with only the

first local search, while MA is e�cient for solving the problem (Naseem and Shengxiang,

2009). Later, Yang and Jat (2011) widened their work into more sophisticated approaches

involving GAs with local search techniques and a guided search strategy, which they called

EGSGA and GSGA, respectively.

55

2. Background and Literature Review

Generally, their GAs were built based on a steady state GA where one o↵spring is generated

in each iteration. The initial population is generated randomly, and they applied two local

search routines to lead the search toward the local optimal solution. Six neighbourhood

structures were used in those local search routines to allocate courses into periods, and

then a matching algorithm was used to allocate periods and rooms to courses. The good

solutions were chosen from the population and these were progressed to the rest of the

genetic operators. After mutation, the created o↵spring were improved by the same local

search routines as had been applied in the initialisation. Finally, TS was utilised along

with three neighbourhood structures to further enhancement the fitness of the best solution

achieved from the preceding local search routines. The results of the two algorithms showed

that they were e↵ective in creating good quality results, especially the EGSGA for both

the TTComp2003 and Socha datasets. Jat and Yang (2011) also used MA (a GA with

TS) to solve the ITC 2007 (Track 2) datasets.

The combination of a GA and HC optimisation was proposed by El-Sherbiny et al. (2015)

to construct a university course timetable. The authors’ objective was to minimise the

violation of any soft constraints. A set of hard constraints regarding professors and teachers

were assigned: a class must be assigned to just one teacher in a period, and the room

cannot be assigned more than once at any specific period. In addition, a specific number

of periods were defined per week and a class should attend a specific number of lectures

per week. A cost function representing the utilisation of spaces was considered in the set of

soft constraints. The cost function aimed to minimise the di↵erence between the capacity

of the learning space and the number of students attending.

In recent work presented by Leite et al. (2016) applied the memetic algorithms proposed

by Neri and Cotta (2012) in order to solve the examination timetabling problem. The pro-

posed method is based on the Shu✏ed Complex Evolution algorithm(SCE) (Duan et al.,

1993) and is hybridised with the great deluge (GD) algorithm (Dueck, 1993). Thus, the

population is arranged to sets, called complexes, which evolve using recombination inde-

pendently and then local search operators. The crossover operator, which they developed,

maintains the diversity of the population, as does the solution update mechanism. Soria-

Alcaraz Jorge et al. (2012) used a di↵erent approach for tackling the course timetabling

problem, namely a parallel model in a meta-heuristic algorithm. The developed parallel

approach uses the methodology of a design model for tackling the problem.

The advantage of MAs is that their ability to examine the search space more e�caciously

than local search routines or standard EAs (e.g. GAs) (Burke and Newall, 1999; Blum

and Roli, 2003, 2008; Burke and Petrovic, 2002), and it is this advantage that has led

to their pervasive application in various fields of optimisation. Moreover, so as to utilise

the search experience, a memory is used to supply components of elite solutions for the

recombination operator, like using within Tabu Search (as in Burke et al. (2003d), and

Hertz (1991)). On the other hand, one of the most typical disadvantages of MA is their

tendency to converge prematurely after a number of iterations (Črepinšek et al., 2013).

Another disadvantage is that the MAs often possess numerous parameters leading to very

time-consuming with an unclear tuning (Nalepa and Blocho, 2016).

56

2. Background and Literature Review

2.4.4 Hybrid Meta-heuristics

Two or more algorithms are collectively and cooperatively hybridised in order to solve a

predefined problem (Ting et al., 2015). The idea of hybridisation is to enhance perfor-

mance by merging other algorithms with a meta-heuristics algorithm. Raidl et al. (2010)

argue, however, that it is possible to do the hybridisation among the of meta-heuristic al-

gorithms themselves. In addition, there are other methods to do the hybridisation process

that include the hybridisation between meta-heuristics with operation research methods,

problem specific algorithms or with any other artificial intelligence algorithms. The au-

thors also discussed human interaction hybridisation. The hybrid method aims to combine

the best characteristics of one technique with good or better characteristics available in

other techniques. Note that hybrid methods have been represented in some of the methods

that have already been described (to a lesser or greater extent). Many researchers have

proven the e↵ectiveness of the hybridisation method in examination timetabling.

Caramia et al. (2001) implemented hybridisation on various benchmark instances and

they got the best known results. They added improvements steps after applying a greedy

scheduler which assigns exams that are arranged based on the degree of conflict in turn

to the lowest obtainable period with regard to the conflict free requirement. Also, Mer-

lot et al. (2003) obtained the best known results by applying a hybrid method. Their

method involved combining CP, HC, and SA for capacitated and uncapacitated exami-

nation timetabling. They used a CP method to create feasible initial solutions. SA was

used to improve the quality of the timetable, where they employed a Kempe chain neigh-

bourhood (Thompson and Dowsland, 1996b,a, 1998). After that, HC was used to further

improve the timetable. Based on their experimental results, the hybrid method was found

to be preferable to the other methods currently applied by Melbourne University and also

obtained better results when used with other standard benchmark instances.

Burke and Newall (2004) applied the hybridisation process on the method used by Burke

and Newall (2003) with GD algorithm used by Burke et al. (2004a). Their method presents

the best known results on examination benchmark problems. Côté et al. (2005) pre-

sented another good approach to the implementation of hybridisation on the examination

timetabling problem.

A three-stage hybrid approach was proposed by Merlot et al. (2003). In the first stage,

CP method was utilised in order to generate an initial feasible solution. SA algorithm

was employed in the second stage to improve the obtained solution. The final stage

was also considered as improvement stage where a further enhancement was applied by

implementing a HC algorithm.

Duong and Lam (2004) investigated a hybrid approach that can be composed of constraint

programming and simulated annealing. This hybridisation has been used to solve the

exam timetabling problem at the HoChiMinh City University of Technology. Simulated

annealing was employed on the initial solutions constructed by constraint programming. A

Kempe Chain neighbourhood was utilised within the Simulated Annealing, whose cooling

schedule was empirically determined by using mechanisms and algorithms. Backtracking

57

2. Background and Literature Review

and forward checking also were used to minimise the searching e↵ort. The findings revealed

that it is crucial to tune the components in hybridisation to solve the specific problems.

Hybridisation o↵ers significant advantages in increasing the diversity in a population and

enhancing the search capability of the developed hybrid algorithm (Ting et al., 2015).

Hybridisation also provides an e�cient behaviour and higher flexibility when suitable

meta-heuristics are hybridised (Blum et al., 2011). For instance, the combination of a

local search method and an evolutionary algorithm can refine solutions during searching.

The evolutionary algorithm has the power of identifying the promising regions of the

search space easily, while the local search method is e↵ective to discover the best solutions

of high quality in such promising regions, thus promoting e�cient behaviour and higher

flexibility. However, the disadvantages of these algorithms are the need for proper setting

of the algorithm-dependent parameters, and a large number of iterations is required (Pei

et al., 2019). Hybridisation increases the complexity of the hybrid algorithm as it is

required extra components in the overall architecture of the hybrid algorithm. As a result,

there is still some resistance to accept hybrid algorithms by researchers (Ting et al., 2015).

2.4.5 Hyper-heuristics

While meta-heuristics techniques are considered to be among the most e�cient methods

that can be applied to the benchmark data, their use to solve examination timetabling

problems is a↵ected by the reliance on parameter tuning, or the method of embedding

domain knowledge (in other words, the hard coding of soft and hard constraints). This

means that these techniques have to be tailor-made for one specific problem, and produce

poor results when applied to di↵erent problems. While parameter tuning is a very e↵ec-

tive way of enhancing the techniques, the task of tuning parameters to make the used

techniques fit a new problem is equivalent to that of developing an entirely new algorithm.

This has prompted many researchers to try to develop new methods that will work at a

higher level of generality.

Hyper-heuristics (HH) is a promising approach in this regard, and has attracted substantial

scholarly attention. The term hyper-heuristics can be represented as heuristics that select

heuristics, where the attention is focused on the heuristics’ search space instead of the

solutions’ search space, as is widely used in meta-heuristic-based implementations (Burke

and Erben, 2003; Ross et al., 2003). Hyper-heuristics aims to allow the approaches to

be more general, overcoming the fine-tuning, and problem-particular methods that often

need great e↵ort for a particular problem.

Meta-heuristics such as SA, TS and GA can be employed as a high-level strategy while

constructive heuristics, such as graph heuristics and constraint satisfaction can be low-level

strategies. Hyper-heuristic methods have been implemented successfully in order to tackle

highly constrained optimisation problems such as timetabling (Burke et al., 2007), course

timetabling (Burke and Newall, 2003; Soria-Alcaraz et al., 2014), examination timetabling

(Bilgin et al., 2006; Burke et al., 2006), sales summit scheduling (Cowling et al., 2000),

vehicle routing (Bai et al., 2007), etc. Ross et al. (2004) proposed a general steady state

GA approach in order to construct solutions by search within a simplified search space of

58

2. Background and Literature Review

problem state descriptions. The GA search was on heuristics instead of actual solutions.

Three di↵erent fitness functions were tested in order to study the descriptions of the

problem state (corresponding to heuristics) experimentally. The study showed that the

proposed approach delivered promising results for course and exam timetabling problems

and can be applied e↵ectively to a wide range of problems.

The approach proposed by Sabar et al. (2012) involved constructive heuristics selection

hyper-heuristics applied to the examination timetabling problem, where the ordering of

all exams is dependent on a di�culty index (DI). In the latter, the work di�culty index is

calculated using a hierarchical hybridisation of di↵erent graph colouring heuristics such as

Largest Enrolment, Saturation Degree, Largest Degree and Largest Weighted Degree (as

will be discussed in Chapter 3). Also, Roulette Wheel Selection was used to assign exams

into periods. The proposed approach was tested on the Toronto and ITC 2007 datasets and

showed promising and also competitive results when compared with the previous work in

the literature. The most recently-published studies on examination timetabling problems

with hyper-heuristics can be found in Soria-Alcaraz et al. (2016), Muklason et al. (2017),

and Kusumawardani et al. (2019).

The significant advantage of hyper-heuristics is that they lead to a more general approach

that can handle a wide range of problem domains compared to current meta-heuristic

algorithms, which tend to be customised to a particular problem (Burke et al., 2013). An-

other advantage is that hyper-heuristics have the potential of saving a significant amount

of e↵ort as they can automate the process of tuning and choosing a heuristic to a given

class of problem instances. This process is often the time-consuming and expensive part of

the implementation of a heuristic (Burke et al., 2009). However, the major disadvantage

of hyper-heuristics is that they are computationally more expensive compared to other

heuristics as they often require an iterative process for training (Garza-Santisteban et al.,

2020). In addition, designing and implementing hyper-heuristics is excessively expensive

and very complicated for users to understand and maintain (Burke et al., 2003c).

2.4.6 Multi-objective Techniques

Multi-objective optimisation involves optimising two or more contrasting objectives si-

multaneously subject to a number of constraints (Deb and Deb, 2014). Multi-objective

evolutionary algorithms (MOEAs) are e↵ective to solve real-world and benchmark Multi-

objective optimisation problems (MOPs) due to several reasons, which are: flexible and

robust, fewer chances to be trapped in local minima, returning more than one optimal

solution, and easy to implement (Guliashki et al., 2009). MOEAs are based on popu-

lation, where the iterations are performed on a set of solutions (i.e. population), and

after each generation, it returns a number of solutions. Multi-objective evolutionary algo-

rithms can be divided into two classifications: elitist and non-elitist algorithms (Rudolph,

1994). Regarding elitist MOEA, there is a mechanism that can preserve good solutions

in every iteration, while there is no such mechanism in non-elitist MOEA. Therefore, the

performance of the non-elitist algorithm is often worst compared to the elitist algorithm.

In MOEA, a solution a can be said to be better than (i.e. dominate) solution b, if it returns

59

2. Background and Literature Review

equal or better objective functions on all objectives considered, and is strictly better on

at least one. Furthermore, a solution is said to be non-dominated if there are no other

solutions considered that dominate it. If no feasible solution dominates a, then solution a

is known as a Pareto optimal solution (Teich, 2001; Coello et al., 2007).

In general, the examination timetabling problem is often implemented just as a single-

objective problem. However, it is inherently a multi-objective optimisation problem (Burke

et al., 2001, 2008). Researchers only take into account the number of clashes in an exami-

nation timetable. Burke and Newall (2004) declared that when the timetable is allocated

a considerable number of periods, it is possible to eliminate the clashes, and Burke et al.

(1995a) also declared that a longer timetable is needed to minimise conflicts. But, it is

clear that the examination timetabling problem is a two-objective optimisation problem;

the two objectives to minimise are the number of periods and the number of clashes. Ide-

ally, such multiple conflicting cost functions should be minimised using multi-objective

optimisation (Cheong et al., 2007).

Many studies of MOEAs have been presented recently. Malim et al. (2006), for example,

applied three distinct artificial immune systems for both exam and course timetabling

problems and claimed that the algorithm is convenient for the two timetabling problems.

Later, however, they discovered a mistake in their code, and their research is invalid (Qu

et al., 2009b). McCollum et al. (2007) provided a remarkable expansion to the combi-

nation of realistic instances of the ITC 2007 competition in the exam timetabling track.

Comparing the new model with that used in the examination track with the Toronto one,

the new model is used much more extensively since it is a lot of distinct soft constraints

that are prepared in order to build timetables that achieve the requirements of the di↵er-

ent individual parties. The violations in constraints have penalties, and this can lead to

having a multi-objective optimisation problem.

Even though the examination problem has previously been represented as a multi-objective

problem, Prida Romero (1982), Burke et al. (2001), McCollum et al. (2007), and McCol-

lum et al. (2012a) have provided a new outstanding formulation that gives rise to new

opportunities and obstacles. Each distinct penalty is given a weight in order to appear in

the instances as single-objective problems. Although experience informs the weights that

express the trade-o↵ between penalties, the consequences of changing them need studying

since they are still partially ad hoc.

A lot of previous researches were conducted on multi-objective method for exam timetabling

using the Toronto dataset, as an uncapacitated exam timetabling problem. Also, to han-

dle each constraint as a distinct objective function, as in works provided by Paquete and

Fonseca (2001), and Petrovic and Bykov (2002), the standard objective function is being

minimised by the objectives. For example, decreasing the number of periods and prox-

imity cost. A lot of researches have been conducted for this work as Wong et al. (2004),

Mumford (2010), Côté et al. (2005), Cheong et al. (2007), and Cheong et al. (2009).

Paquete and Fonseca (2001) studied bi-objective exams timetabling. In the problem formu-

lation, the objectives are just the soft constraints, specifically between-group and within-

60

2. Background and Literature Review

group. In between-group constraint, exams in a group have not to be scheduled at the

same time with any exam from other groups, whereas in within-group constraint, exams

in the same group have not to be scheduled on the same day. In this research, objective

evolutionary algorithms are used to solve the problem. In addition, Petrovic and Bykov

(2002) studied a nine-criteria and bi-criteria problem. Based on Burke and Newall (1999),

in the bi-criteria problem, the objective function includes the number of conflicts; the

students have two exams in adjacent periods, and students have to take exams in adjacent

overnight periods, whereas the objective functions in the nine-criteria problem are based

on Burke et al. (2001) and includes three groups related to room capacities, the proximity

of exams, and finally the time and order of exams.

Wong et al. (2004) presented a study that applied a hybrid multi-objective evolutionary

algorithm with two objectives. The first one, decreasing the number of students that

must take a successive exam, and the second one minimising the timetable length and

the number of periods. They represented a solution as a vector, including exams, and

the value of each element represents a period. Two local searches that relied on the tabu

search algorithm were applied instead of the crossover operators. The function of the first

one is to reform the infeasible solution, and the second one is to decrease proximity cost.

A random solution is generated without attention to its feasibility when the algorithm

starts. Then the first local search algorithm utilises a one-move neighbourhood structure

by moving the exams having a conflict to another period. After that, the second local

search starts its work, where a VNS is simplified (Hansen and Mladenović, 2001) with

two neighbourhood structures; that is one-move and Kempe chain. In addition, based

on the Pareto Strength concept, the solutions are ranked (Knowles and Corne, 2000).

The mutation operator is applied by allocating a random period to choose exams. The

pre-defined mutation rate is identified for each exam.

Extended the work by Burke et al. (1995c), graph colouring heuristics is utilised by the

reinsertion method to arrange the eliminated exams. A Pareto fitness ranking scheme, an

expansion of the Pareto fitness ranking scheme, is used to rank the solutions (Fonseca,

1995) by penalising the rank when the length of the timetable is not within the required

range of the timetable length. It is comparable to the goal sequence domination scheme

(Tan et al., 2003). In order to exploit the optimal solution, hill climber and micro-genetic

algorithm, which is GA with short evolution and small population (Dozier et al., 1994) are

combined with the single objective function. Five problem instances of the Toronto dataset

and one problem instance of the Nottingham dataset were used to test the implemented

algorithm. The wanted length of the timetable is identified to three below, and three

above the particular periods.

Cheong et al. (2009) declare that the implemented method executed well when they com-

pared it with seven other recently applied optimisation approaches, and the best results

for four out of the seven datasets were tested. It must be observed, however, that the

objective was amended from the original version over the tested techniques that it com-

pared to. There was also doubt about how they compared their results with prior results

because the objectives are distinct.

61

2. Background and Literature Review

Mumford (2010) applied for the same work where she optimised two objective functions,

which were used to optimise the standard objective function (the spread of examinations

for individual students), and at the same time, the proposed approach also minimised

the length of the timetable. This approach also employed a greedy algorithm with a

memetic algorithm to solve the problem. Although these are initial works for solving

exam timetable problems, few recent studies have mentioned a multi-objective method

for ITC 2007 dataset, despite the description of multi-objective for this problem being

specified by Burke et al. (2008).

The most well-known multi-objective algorithms include NSGA-II (Non-dominated Sort-

ing Genetic Algorithm-II) (Deb et al., 2002), SPEA (Strength Pareto Evolutionary Al-

gorithm) (Zitzler and Thiele, 1998), SPEA2 (Strength Pareto Evolutionary Algorithm2)

(Zitzler and Thiele, 1998; Zitzler et al., 2001), PAES (Pareto Archived Evolution Strategy)

(Knowles and Corne, 2000), PESA (Pareto Enveloped based Selection Algorithm) (Corne

et al., 2000), and PESA-II (Pareto Enveloped based Selection Algorithm-II)(Corne et al.,

2001). These approaches have been successfully implemented to solve MOPs. Table 2.13

highlights the advantages and disadvantages of these algorithms (Konak et al., 2006).

Algorithm Advantage

NSGA-II Single parameter tuned algorithm, and e�cient.

SPEA No need to define any parameter for clustering.

SPEA2 Improved SPEA and extreme solutions are preserved.

PAES Implementation is simple and computationally e�cient.

PESA Implementation is simple and e�cient.

PESA-II Extended version of PESA, and good solutions diversity.

Algorithm Disadvantage

NSGA-II Only objective space is considered when the crowding distance is applied.

SPEA Clustering takes more time and extreme solutions may not get preserved.

SPEA2 Rank assignment and diversity preservation methods are more time consuming.

PAES
Its performance depends on cell size, and does not belong to population-based

approaches.

PESA Its performance depends on size of hyperbox.

PESA-II Its performance depends on size of hyperbox.

Table 2.13 Advantages and disadvantages of multi-objective evolutionary algorithms (MOEAs).

2.5 State-of-the-Art Meta-heuristics for the Examination

Timetabling

The examination timetabling problem has become an interesting research area for a lot of

researchers from various fields, such as operational research (OR) and artificial intelligence

(AI). In spite of the extensive literature, the exam timetabling problem remains an interest-

ing research topic as many emerging meta-heuristic techniques continue to o↵er promising

results. This section provides a review of seminal works combined with state-of-the-art

62

2. Background and Literature Review

approaches investigated in the area of research. Three popular examination timetabling

problems, namely, The Toronto, ITC 2007, and Yeditepe datasets, are used for evaluating

the performance of the proposed approaches in this thesis. As mentioned earlier, exam-

ination timetabling problems can be categorised as either capacitated or uncapacitated

(Kahar and Kendall, 2010). The Toronto problem is considered a standard uncapacitated

examination timetabling problem. Both the ITC 2007 and Yeditepe examination datasets

are capacitated problems.

Surveys on state-of-the-art examination timetabling problem algorithms techniques, and

formulations have been reported in previous studies, such as those of Carter et al. (1996),

Schaerf (1999), McCollum (2007), Lewis (2008), Qu et al. (2009b), and Burke and Petrovic

(2002). Furthermore, Tables 2.15 and 2.16 provide a survey of approaches for examination

timetabling problems reported between 1967 until recent date. The name of the methods,

examination datasets used, and number of examination datasets that have been used

are given in these tables. We also extend the literature survey with recently-published

literature summarised in Table 2.17.

2.5.1 Approaches Applied to the Uncapacitated Examination

Timetabling

Yang and Petrovic (2005) apply a hyper-heuristic approach merged with case-based rea-

soning in order to select graph heuristics to create a feasible initial solution. A great

deluge algorithm is then implemented to enhance the initial solution. The authors use

hyper-heuristics to explore the search space of heuristics instead of searching for direct

solutions. They applied their approach to the Toronto problem and obtained the best

results in the literature for several instances at this time.

As mentioned in Section 2.4.3.7, the ant algorithm has been used to solve hard combina-

torial optimisation problems, including exam timetabling (Dorigo and Blum, 2005). Eley

(2007) implemented an ant algorithm and incorporated the ant systems and the max-min

ant systems with two randomised strategies in order to find the pheromone trail and the

constructive heuristic. Several parameters need to be considered during the implementa-

tion, such as the evaporation rate, the weighting factors, and the number of cycles, in order

to make sure that the proposed algorithm worked e�ciently. The proposed approach was

tested on the Toronto benchmark sets, and obtained results that were competitive with

the best published approaches.

Caramia et al. (2008) implemented a hybrid approach to tackle capacitated and uncapac-

itated examination timetabling problems. This study attempts to generate a high-quality

exam timetable with small length (i.e. a minimum number of periods). The scheduling

process starts with a greedy scheduler by attempting to assign examinations into the least

number of periods as well as conflict-free slots. The approach also allocates exams by

placing those with the highest conflicts first in order to identify the number of periods

and ensure that all exams can be scheduled. Once the process has been completed, HC

is employed as a ‘penalty decreaser’ to minimise the number of periods and maximise

the quality of the timetable. The process continues until there is no more improvement.

63

2. Background and Literature Review

At this stage, HC has applied again as a ‘penalty trader’. This approach was tested on

the Toronto and Nottingham benchmark sets and demonstrated an ability to produce

high-quality solutions superior to many best-known approaches in the literature.

A late acceptance strategy was proposed by Burke and Bykov (2008), being a new variant

of hill-climbing. They investigated the performance of the proposed method by applying it

to uncapacitated exam timetabling problem (i.e. the Toronto benchmark sets). Although

it is categorised as an iterative search method, it depends on a more sophisticated move

acceptance mechanism. A new candidate solution is compared to solutions obtained from

prior iterations. A list C of length L is created to store the cost function values of accepted

solutions from each iteration. During the search iterations, a neighbouring solution with

a better or equal cost value is accepted in the list.

In addition, Burke et al. (2010b) proposed a variable neighbourhood search (VNS) incor-

porated within a GA. In this work, di↵erent neighbourhood structures such as descent-

ascent, biased VNS, and problem-specific neighbourhoods were investigated. Also, various

initialisation strategies (i.e. greedy and a random construction technique) were applied.

Although the proposed approach was capable of obtaining a high quality solution for one

instance of the Toronto problem, it requires a relatively large amount of computation time.

Pillay and Banzhaf (2010) used a two-phase GA approach to solve the examination

timetabling problem. In the first phase, GAs are used to generate feasible solutions for

constructing the initial population. During the second phase, GAs are further utilised to

generate feasible solutions from the previous phase, while attempting to minimise the cost

of the soft constraint. They use domain-specific knowledge in the form of heuristics to

guide the evolutionary process. The e↵ectiveness of this approach has been verified on the

Toronto benchmark sets.

Abdullah and Alzaqebah (2013) presented a hybridisation approach combining a modified

bees algorithms with local search algorithms (i.e. simulated annealing, late acceptance

hill-climbing). In order to exploit and fully explore the entire search space, they use

three selection strategies (i.e. disruptive, tournament, and raking) and a self-adaptive

technique. The aim of the selection strategies is to improve the diversity of the population,

while the self-adaptive method is used to monitor the neighbourhood search and prevent

the algorithm from getting stuck in a local optimum. The approach has been tested on

thirteen instances of the Toronto and eight instances of the ITC 2007 benchmark sets.

In Leite et al. (2016), the proposed approach implements a memetic algorithm so-called

“Shu✏ed Complex Evolution Algorithm” in which the population is organised into com-

plexes (sets) that are evolved individually by using local search operators and recombi-

nation. Diversity of population is maintained by using various recombination operators

and applying a special mechanism to update the solution. Fong et al. (2015) proposed a

hybrid swarm-based algorithm to academic timetabling. The algorithm can be used in dif-

ferent university timetabling problems, namely both examination and course timetabling,

and has been tested on the Toronto benchmark dataset and the Socha benchmark set,

respectively.

64

2. Background and Literature Review

Alzaqebah and Abdullah (2015) conducted two hybridisations using the bee colony op-

timisation algorithm (BCO) in both cases. The first hybrid couples the BCO algorithm

with the HC algorithm by using late acceptance strategies, while the second hybrid couples

BCO with SA. In comparison with others, the first hybrid achieves the best results for

both datasets (Toronto and ITC 2007 problems).

A cellular memetic algorithm is proposed in Leite et al. (2018). It incorporates a cellular

evolutionary algorithm with threshold acceptance local search to tackle the examination

timetabling problem and is evaluated on the Toronto and ITC 2007 problems. Experimen-

tal results showed that the approach is able to improve on four out of thirteen instances

of the Toronto set and three out of twelve of the ITC 2007 set.

Khair et al. (2018) developed an approach implementing an ACO, where the ant system

(AS) has been used with the aim of obtaining good feasible solutions for university exam

timetabling problems. The main purpose of this system is to optimise and discover paths

ways based on index updating of the pheromone. The proposed approach was empirically

tested over 33 instances of uncapacited examination timetabling problem from the Fac-

ulty of Informatics and Computing (FIC), University of Sultan Zainal Abidin (UniSZA).

The experimental results showed that the performance of ACO was capable of solving

the exam timetable scheduling problems generated from UniSZA and expanding between

two or more adjacent exams for each student and obtaining good quality solutions. How-

ever, further improvements are needed for the proposed approach in order to solve public

benchmark problem datasets and allow for the production of high-quality solutions.

2.5.2 Approaches Applied to the Capacitated Examination Timetabling

Müller (2008) sought to solve the three problems that were established by the ITC 2007

competition, winning two of them and being a finalist on the third. To solve the prob-

lems, he preferred a hybrid approach, which is organised in a two-phase algorithm. The

Iterative Forward Search (IFS) algorithm is used in the first phase (Müller, 2005) so that

feasible solutions, as well as Conflict-based Statistics, are obtained (Müller et al., 2004) in

order that the IFS is prevented from looping. The second phase involves using multiple

optimisation algorithms applied in the following order: HC (Russell and Norvig, 2010),

GD (Dueck, 1993), and, optionally, SA (Skiundefinedcim and Golden, 1983).

Gogos et al. (2008) achieved second place in the Examination Timetabling track. Like

Müller’s approach, this involves two phases. The first phase commences with a pre-

processing stage. In this stage, hidden dependencies between the exams are checked in

order to accelerate the optimisation phase. The second stage is a construction stage us-

ing a meta-heuristic called Greedy Randomised Adaptive Search Procedure (GRASP). In

this phase, optimisation methods can be applied in the following order: HC, SA, IP (the

Branch and Bound procedure), finishing with the so-called ‘Shaking Stage’, which can

only be applied according to certain conditions. This Shaking Stage ‘shakes’ the current

solution by passing back to the SA phase in order to create a similarly good solution.

This stage aims at forcing SA to restart with solutions that are more promising so as to

generate better results.

65

2. Background and Literature Review

Atsuta et al. (2008) won third place in the ITC 2007 Examination Timetabling track,

as well as second place on other tracks, applying a similar approach in each case. The

approach involves applying a constraint satisfaction problem-solver that adopts a hybridi-

sation of TS, as well as Iterated Local Search (ILS).

De Smet (2008) di↵ers from other approaches because he did not use a problem-specific

heuristic, which is known to find a feasible solution. Instead, he used the Drool’s rule

engine called the drools-solver (Drools, 2020). The drools-solver involves a combination

of optimisation heuristics, in addition to meta-heuristics with a very e�cient score cal-

culation. The score of the solution is the sum of the constraints’ weight, which is being

broken. After a feasible solution is found, he used TS to enhance the solutions obtained

from the drools-solver.

A two-phase algorithm variant was proposed by Pillay (2008) using a developmental ap-

proach based on cell biology. The goal involves forming a well-developed organism through

creating cells and proceeding with the cell division, cell interaction and cell migration pro-

cesses. In this approach, each of the cells signifies a period. The first phase involves the

process of creating the first cell, cell division and cell interaction, while the second phase

involves cell migration.

McCollum et al. (2009) applied an adaptive ordering heuristic to construct solutions fol-

lowed by an extended meta-heuristic version of GD. The approach was tested on the exam

timetabling problems from ITC 2007. It was confirmed as an e↵ective approach, obtaining

the best results in five out of the eight instances.

Demeester et al. (2012) employed a hyper-heuristic based approach to resolve three timetabling

problems: Toronto, ITC 2007, and the KAHO Sint–Lieven (Ghent, Belgium) timetabling

problem. The authors applied a construction, as well as an improvement approach. In

the event that no feasible solution is obtained in the construction phase, the algorithm

continues with the improvement phase. Also, extra correcting actions can be performed

to eliminate infeasibilities.

Gogos et al. (2012) proposed an enhanced algorithm version. The authors claimed that the

enhanced behaviour is due to more sophisticated process flow, early detection of plateaus,

added heuristics, as well as optimised data structures, which achieve the exploration of a

much larger number of Kempe Chain moves.

An adaptive BCO was proposed by Alzaqebah and Abdullah (2014) combined with a

late-acceptance HC algorithm. This proposed method was applied to the Toronto and

ITC 2007 benchmark sets. Also, in a study that was recently conducted by Alzaqebah

and Abdullah (2015), the researchers proposed a hybrid BCO to solve the examination

timetable problem.

A single-stage procedure was proposed by Battistutta et al. (2017) based on the SA ap-

proach for the ITC 2007’s examination timetable problem. Based on this method, non-

feasible solutions are included in the search space, dealing with appropriate penalties. A

statistically-principled experimental analysis was conducted to investigate the parameter

66

2. Background and Literature Review

selection e↵ect. Then, a feature-based parameter tuning is performed. A memetic algo-

rithm, called the cellular memetic algorithm, was proposed by Leite et al. (2018), involving

a hybrid-based approach.

Muklason et al. (2017) proposed a multi-phase approach in order to solve the Toronto, ITC

2007, and Yeditepe problems and find good solutions that cloud match student preferences

and meet their satisfaction. This approach consists of three phases. In phase 1, an initial

feasible solution is produced by an adaptive heuristic ordering approach. Phases 2 and

3, respectively, use a selection of hyper-heuristics to improve the quality of the initial

solution, and attempt to achieve fairness in the optimised solutions.

More recently, the structure-based partial solution search (SBPSS) by Rajah and Pillay

(2019) improved on the best results of ITC 2007 Examination track. The SBPSS is a

multi-point search approach that aims to solve this problem incrementally. Solutions are

initialised partially, and at each generation, one solution component is selected randomly

and added to each partial solution continuously. This process stops when all solution

components are completely added to the solutions. Leite et al. (2019a) introduced the

latest version of the Simulated Annealing algorithm, which is called “FastSA”. In the

approach provided, each chosen exam would only be changed if there were any permitted

changes in the immediately preceding temperature bin the stated exam. Ten temperature

bins have been developed, and FastSA has verified that an equal number of evaluations

are carried out in each bin. If an exam does not have any accepted movement in the

preceding temperature bin, the exam possibly would have few or zero accepted future

movement. The proposed FastSA and the basic SA have been applied over the ITC 2007

exanimation scheduling problem. The experimental results showed that the proposed

approach outperformed the basic SA for four out of twelve problem instances of the ITC

2007 and obtained result beating the best-known result over one problem instance of the

ITC 2007. However, the proposed approach needs a large amount of computational time

to produce final solutions compared to the with state-of-the-art approaches.

Various hyper-heuristic strategies were proposed by Muklason et al. (2017). They consist

of combining several hyper-heuristics strategies, i.e. great deluge (GD), extended great

deluge (XGD), and modified extended great deluge (MXGD) and di↵erent low-level heuris-

tic selection strategies, including simple random (SR), reinforcement learning (RL), and

self-adaptive (SA) learning. Therefore, nine hyper-heuristic strategies, as shown in Table

2.14, are introduced in this work and applied to the Yeditepe Benchmark Set. In addition,

the author proposed three methods to construct feasible initial solutions involving adap-

tive ordering heuristics with hierarchical hybridisation of basic graph colouring heuristics,

sequential construction with the maximal clique and saturation degree heuristic, and an

adaptive linear combination ordering heuristic with a heuristic modifier based on squeaky

wheel optimisation (SWO) (Joslin and Clements, 1999).

67

2. Background and Literature Review

No Hyper-heuristics Heuristics Selection Method Move Acceptance Method

1 SR-GD-HH Simple Random Great Deluge

2 RL-GD-HH Self-adaptive Great Deluge

3 SA-GD-HH Reinforcement Learning Great Deluge

4 SR-XGD-HH Simple Random Extended Great Deluge

5 RL-XGD-HH Self-adaptive Extended Great Deluge

6 SA-XGD-HH Reinforcement Learning Extended Great Deluge

7 SR-MXGD-HH Simple Random Modified Extended Great Deluge

8 RL-MXGD-HH Self-adaptive Modified Extended Great Deluge

9 SA-MXGD-HH Reinforcement Learning Modified Extended Great Deluge

Table 2.14 The strategy within Hyper-heuristics (HH) framework (Muklason, 2017).

68

2. Background and Literature Review

Approach Method Year
Examination Dataset No. Examination

dataset used
Reference

Toronto ITC 2007 Other

Graph based

sequential techniques

Reduction to Graph Colouring
1967 x x x 0 (Welsh and Powell, 1967)

1981 x x X 1 (Mehta, 1981)

1982 x x X 1 (Mehta, 1982)

Graph based ordering: saturation degree. 1979 x x X 1 (Brélaz, 1979)

Largest weighted degree 1996 X x x 1 (Carter et al., 1996)

Largest enrolment
1968 x x X 1 (Wood, 1968)

2004 x x x 0 (Burke et al., 2004b)

Extended clique
1998 X x x 1 (Burke et al., 1998b)

2001 X x x 1 (Carter and Johnson, 2001)

2004 X x x 1 (Burke and Newall, 2004)

Fuzzy system
2005 X x x 1 (Asmuni et al., 2005a)

2007 X x x 1 (Asmuni et al., 2006)

Neural network 2006 X x x 1 (Corr et al., 2006a)

Backtracking 1996 X x x 1 (Carter et al., 1996)

Look ahead 2007 X x x 1 (Burke and Newall, 1999)

Constraint based techniques

1997 x x X 1 (David, 1998)

1999 x x x 0 (Brailsford et al., 1999)

1999 x x X 1 (Reis and Oliveira, 1999)

2003 X x X 2 (Merlot et al., 2003)

2004 x x X 1 (Duong and Lam, 2004)

2006 X x x 1 (Le Huédé et al., 2006)

Meta-heuristics:

1) Local search based

algorithms

Tabu search

2000 X x X 2 (Di Gaspero and Schaerf, 2000)

2001 X x X 2 (White and Xie, 2000)

2002 x x X 2 (Paquete and Stützle, 2002)

2002 X x x 1 (Di Gaspero, 2002)

2004 X x x 1 (Di Gaspero, 2002)

Simulated annealing

1996 x x X 5 (Thompson and Dowsland, 1996b)

1998 x x X 8 (Thompson and Dowsland, 1998)

1998 x x X 1 (Bullnheimer, 1997)

2002 X x X 2 (Merlot et al., 2003)

Great deluge algorithm
2003 X x x 1 (Burke and Newall, 2003)

2004 X x X 2 (Burke et al., 2004a)

2004 X x X 2 (Burke and Newall, 2004)

Large neighbourhood search
2007 X x X 2 (Abdullah et al., 2007b)

2007 X x x 1 (Abdullah et al., 2007a)

Variable neighbourhood search (VNS) 2006 X x x 1 (Burke et al., 2010a)

Iterated local search
2000 X x x 1 (Caramia et al., 2001)

2002 x x X 2 (Paquete and Stützle, 2002)

2008 X x X 2 (Caramia et al., 2008)

Greedy randomised adaptive

search procedure (GRASP)
2002 X x x 1 (Casey and Thompson, 2002)

2) Population based

algorithms

Genetic algorithm

1994 x x X 2 (Corne et al., 1994b)

1994 x x x 0 (Corne et al., 1994a)

1995 x x X 1 (Ross et al., 1995)

1997 X x x 1 (Ross et al., 1997)

1999 X x x 1 (Terashima-Maŕın et al., 1999b)

1999 x x x 0 (Terashima-Maŕın et al., 1999a)

2000 x x X 1 (Erben, 2000)

2002 x x X 1 (Sheibani, 2002)

2002 x x X 1 (Wong et al., 2002)

2003 X x X 2 (Ross et al., 2003)

2004 X x x 1 (Côté et al., 2005)

2006 X x X 2 (Ülker et al., 2006)

Memetic algorithm

1995 X x x 1 (Burke et al., 1995c)

1998 X x x 1 (Burke et al., 1998a)

1998 X x x 1 (Burke et al., 1998b)

1999 X x x 1 (Burke and Newall, 1999)

Ant algorithm
2005 X x x 1 (Azimi, 2005)

2005 X x x 1 (Dowsland and Thompson, 2005)

2007 X x x 1 (Eley, 2007)

Artificial immune algorithms 2006 X x x 1 (Malim et al., 2006)

Multi-criteria

techniques

1995 x x X 1 (Colijn and Layfield, 1995)

2000 x x X 1 (Burke et al., 2001)

2002 X x X 2 (Petrovic and Bykov, 2002)

2004 x x x 0 (Silva et al., 2004)

2005 x x X 3 (Burke et al., 2005b)

2006 X x X 2 (Le Huédé et al., 2006)

2007 X x X 2 (Cheong et al., 2007)

Hyper-heuristics
Tabu-search based hyper-heuristic 2005 X x x 1 (Kendall and Hussin, 2005a)

Graph-Based hyper-heuristic 2007 X x x 1 (Burke et al., 2007)

Table 2.15 Survey of approaches for examination timetabling problems by 2008.

69

2. Background and Literature Review

Approach Method Year
Examination Dataset

No.dataset used Reference
Toronto ITC 2007 Other

Graph based

sequential techniques

Standard constructive graph colouring base heuristics
2009 x x X 2 (Redl, 2009)

2010 x x X 1 (Kahar and Kendall, 2010)

2014 x x X 1 (Abdul-Rahman et al., 2014)

Adaptive hybrid heuristics 2009 X x x 1 (Qu et al., 2009a)

Fuzzy multiple heuristic ordering 2009 X x x 1 (Asmuni et al., 2009)

Roulette wheel graph colouring 2009 X x x 1 (Sabar et al., 2009b)

Construction with grid resources 2009 x X x 1 (Gogos et al., 2009)

Clustering and graph colouring heuristics 2012 x x X 2 (Othman and Mashhod, 2012)

Rough set approach 2011 X x x 1 (Thomas et al., 2011)

Adaptive selection of heuristics 2014 X X x 2 (Burke et al., 2014)

Adaptive decomposition and ordering

strategy based on GC heuristics
2014 X x x 1 (Abdul-Rahman et al., 2014b)

Meta-heuristics:

1) Local search based

algorithms

Integrated problem solving steering framework 2012 X x x 1 (Thomas et al., 2012)

Rough sets 2011 X x x 1 (Khader et al., 2011)

HC combined with neighbourhood structure 2011 X x x 1 (Ahandani and Vakil-Baghmisheh, 2011)

Hybrid multi neighbourhood Tabu search 2011 X x x 1 (Ab Malik et al., 2011)

Scatter search
2009 X x x 1 (Sabar and Ayob, 2009)

2010 x X x 1 (Gogos et al., 2010)

Tabu Search (TS)
2009 X x x 1 (Sabar et al., 2009a)

2012 X x x 1 (Pais and Amaral, 2012)

Great Deluge algorithm
2009 X x x 1 (Abdullah et al., 2009)

2015 x x X 2 (Mohmad Kahar and Kendall, 2015)

Integrated hybrid approach 2011 X X x 2 (Turabieh and Abdullah, 2011b)

Iterated two-stage multi-neighbourhood TS 2009 X x x 1 (Ab Malik et al., 2009)

Variable Neighbourhood Search
2009 X x x 1 (Qu and Burke, 2009)

2010 X x x 1 (Burke et al., 2010b)

GRASP with hybrid meta-heuristic local search 2012 x X x 1 (Gogos et al., 2012)

Intelligent Water Drop algorithm 2014 X x x 1 (Aldeeb et al., 2014)

2) Population based

algorithms

Genetic algorithm
2010 x X x 1 (Pillay and Banzhaf, 2010)

2013 x x X 1 (Innet, 2013)

Memetic algorithm
2012 x X x 1 (Abdullah and Turabieh, 2012)

2012 x X x 1 (Özcan et al., 2012)

Evolutionary ruin and stochastic rebuild 2015 X x x 1 (Li et al., 2015)

Hybrid fish swarm
2011 x X x 1 (Turabieh and Abdullah, 2011a)

2015 X x x 1 (Fong et al., 2015)

Hybrid artificial bee colony
2011 x X x 1 (Alzaqebah and Abdullah, 2011)

2013 X X x 2 (Abdullah and Alzaqebah, 2013)

2015 X X x 2 (Alzaqebah and Abdullah, 2015)

An adaptive artificial bee colony and

late-acceptance HC algorithm
2014 X X x 2 (Alzaqebah and Abdullah, 2014)

Memetic algorithm with harmony search algorithm 2014 X x x 1 (Al-Betar et al., 2014)

Hybrid intelligent Water Drops algorithm(HIWD) 2015 x x X 1 (Aldeeb et al., 2015)

Multi-Objective
2009 X x x 1 (Cheong et al., 2009)

2010 X x x 1 (Mumford, 2010)

Hyper-heuristics

Graph-colouring constructive hyper-heuristics
2009 X x x 1 (Qu et al., 2009a)

2012 X x x 1 (Pillay, 2012)

2012 X X x 2 (Sabar et al., 2012)

Monte-carlo hyper-heuristics 2012 X x x 1 (Burke et al., 2012a)

Linear combination heuristics hyper-heuristic 2012 X x x 1 (Burke et al., 2012b)

Adaptive selection of heuristics 2014 X X x 2 (Burke et al., 2014)

Hyper-heuristics with late acceptance strategy 2012 X X X 3 (Demeester et al., 2012)

Novel Hyper-heuristic Approaches in Exam Timetabling 2012 X X x 2 (Soghier, 2012)

Scatter search hyper-heuristic 2009 X x x 1 (Sabar and Ayob, 2009)

Table 2.16 Survey of approaches for examination timetabling problems reported between 2009-2015.

70

2. Background and Literature Review

A
p
p
ro
ac
h

M
et
h
od

s
Y
ea
r

E
xa

m
in
at
io
n
D
at
as
et

N
o.

E
xa

m
in
at
io
n

d
at
as
et
s
u
se
d

R
ef
er
en

ce
T
or
on

to
IT

C
20

07
O
th
er

G
ra
p
h
b
as
ed

se
qu

en
ti
al

te
ch
n
iq
u
es

G
ra
p
h
co
lo
u
ri
n
g
h
eu

ri
st
ic

w
it
h
S
im

u
la
te
d
an

n
ea
li
n
g

20
16

X
x

x
1

(C
h
er
ai
ti
a
an

d
H
ad

d
ad

i,
20

16
)

G
ra
p
h
co
lo
u
ri
n
g
b
as
ed

op
ti
m
is
ed

al
go

ri
th
m

20
16

x
x

X
1

(S
ah

ar
an

an
d
K
u
m
ar
,
20

16
)

N
on

li
n
ea
r
h
eu

ri
st
ic

m
od

ifi
er

of
G
ra
p
h
C
ol
ou

ri
n
g
H
eu

ri
st
ic
s

20
17

X
x

x
1

(A
b
d
u
l-
R
ah

m
an

et
al
.,
20

17
a)

W
eb

-b
as
ed

ex
am

in
at
io
n
ti
m
et
ab

li
n
g
sy
st
em

20
17

x
x

X
1

A
b
d
u
l-
R
ah

m
an

et
al
.
(2
01

7b
)

M
et
a-
h
eu

ri
st
ic
s
L
oc
al

se
ar
ch
-b
as
ed

al
go

ri
th
m
s

S
im

u
la
te
d
an

n
ea
li
n
g

20
16

X
x

x
1

(C
h
er
ai
ti
a
an

d
H
ad

d
ad

i,
20

16
)

20
17

x
X

x
1

(B
at
ti
st
u
tt
a
et

al
.,
20

17
)

20
19

x
X

x
1

(L
ei
te

et
al
.,
20

19
b
)

20
19

x
x

X
2

(J
u
n
e
et

al
.,
20

19
b
)

H
il
l-
C
li
m
b
in
g

20
16

x
X

x
1

(B
yk

ov
an

d
P
et
ro
vi
c,

20
16

)

20
17

x
X

x
1

(B
u
rk
e
an

d
B
yk

ov
,
20

17
)

G
re
at

d
el
u
ge

al
go

ri
th
m

20
16

X
X

x
2

(B
u
rk
e
an

d
B
yk

ov
,
20

16
)

20
20

X
X

x
2

(M
an

d
al

et
al
.,
20

20
)

M
et
a-
h
eu

ri
st
ic
s

p
op

u
la
ti
on

b
as
ed

al
go

ri
th
m
s

G
en

et
ic

al
go

ri
th
m

20
16

X
x

x
1

(I
sh
ak

et
al
.,
20

16
)

H
yb

ri
d
p
ar
ti
cl
e
sw

ar
m

O
p
ti
m
is
at
io
n

20
17

x
x

X
1

(M
ar
ie
-S
ai
nt
e,

20
17

)

A
nt

co
lo
ny

al
go

ri
th
m

20
18

x
x

X
1

(K
h
ai
r
et

al
.,
20

18
)

20
19

x
x

X
1

(K
h
ai
r
et

al
.,
20

19
)

M
em

et
ic

al
go

ri
th
m

20
16

X
X

x
2

(L
ei
te

et
al
.,
20

18
)

20
18

X
X

x
2

(L
ei
te

et
al
.,
20

18
)

P
la
nt

P
ro
p
ag

at
io
n
w
it
h
lo
ca
l
se
ar
ch

20
17

X
x

x
1

(C
h
er
ai
ti
a
et

al
.,
20

17
)

M
u
lt
i-
ob

je
ct
iv
e
T
ec
h
n
iq
u
e

T
ab

u
S
ea
rc
h
m
u
lt
i-
cr
it
er
ia

ap
p
ro
ac
h

20
16

X
x

x
1

(A
m
ar
al

an
d
P
ai
s,

20
16

)

M
u
lt
i-
ob

je
ct
iv
e
ap

p
ro
ac
h
b
as
ed

on
w
ei
gh

te
d
T
ch
eb
yc
e↵

sc
al
ar
is
at
io
n

20
17

X
X

x
2

(M
u
kl
as
on

et
al
.,
20

17
)

M
em

et
ic

m
u
lt
i-
ob

je
ct
iv
e
op

ti
m
is
at
io
n
al
go

ri
th
m

b
as
ed

on
N
N
IA

20
17

X
x

x
1

(L
ei

an
d
S
h
i,
20

17
)

M
u
lt
i-
O
b
je
ct
iv
e
B
as
ed

E
-c
on

st
ra
in
t
m
et
h
od

20
17

X
x

x
1

(B
ti
ss
am

an
d
A
b
ou

n
ac
er
,
20

17
)

F
u
zz
y
G
ro
u
p
in
g
G
en

et
ic

A
lg
or
it
h
m

fo
r
M
u
lt
i-
C
ri
te
ri
on

ex
am

in
at
io
n
ti
m
et
ab

li
n
g

20
17

X
x

x
1

(M
u
ti
n
gi

an
d
M
b
oh

w
a,

20
17

)

M
em

et
ic

al
go

ri
th
m

b
as
ed

on
M
O
E
A
/D

fo
r
th
e
ex
am

in
at
io
n
ti
m
et
ab

li
n
g
p
ro
b
le
m

20
18

X
x

x
1

(M
u
ti
n
gi

an
d
M
b
oh

w
a,

20
17

)

H
yp

er
-h
eu

ri
st
ic
s

H
yp

er
-h
eu

ri
st
ic
s
an

d
fa
ir
n
es
s
in

ex
am

in
at
io
n
ti
m
et
ab

li
n
g
p
ro
b
le
m
s

20
17

X
X

X
3

(M
u
kl
as
on

et
al
.,
20

17
)

G
re
at

D
el
u
ge

B
as
ed

H
yp

er
-h
eu

ri
st
ic
s

20
19

x
x

X
1

(M
u
kl
as
on

et
al
.,
20

17
)

Table 2.17 Survey of approaches for examination timetabling problems reported in state-of-the-art.

71

2. Background and Literature Review

2.6 Significant Challenges in the Examination Timetabling

Literature

The literature study revealed that the most critical challenge encountered in this field

is that the problem was often derived from an individual definition, and the quality of

solutions obtained was measured di↵erently. Consequently, many formulations of the ex-

amination timetabling problem were introduced, attempting to capture most aspects of the

problem that most universities have to encounter every academic term. Hence, researchers

have proposed several academic benchmarks to provide the examination timetabling com-

munity with a standard test base on which approaches can be tested.

From our review also, we have found that many approaches proposed in the literature

involve multiple phases, which usually consist of an initialisation phase followed by opti-

misation phases. Graph colouring heuristics are among the most widely used methods in

the initialisation phase. This is due to their significant strength, where they can construct

good examination timetables within a short computational time and are also very easy

to implement. Notwithstanding the advantages and capabilities of the graph colouring

heuristics, many concerns found in the literature related to them:

• They can lead to early assignments, in which no feasible periods will be available for

exams later in the construction process.

• High-quality initial solutions are missed during the construction phase as attempting

to satisfy soft constraints are neglected.

• Current research trends in this field include using an adaptive method or hybridis-

ation graph heuristics with other methods for ensuring the feasibility of the initial

solution.

• They cannot appropriately address the complex examination timetabling problems

and sometimes fail to produce feasible solutions.

These issues have potential ramifications for the optimisation process as a whole. Good

initial solutions can facilitate the improvement technique to locate the optima (i.e. global

optima or good local optima) (Rahnamayan et al., 2007; Clerc, 2008). On the other hand,

starting from bad areas may prevent the approach proposed from obtaining the optima

(Maaranen et al., 2004). Therefore, the initialisation phase should, we argue, be better

considered a significant driver for obtaining better final solutions increases. I.e. starting

the improvement phase with a good initial solution is necessarily result in a good final

solution. Furthermore, a common disadvantage of all existing approaches is that they use

an iterative procedure of improving an initial solution, where the search for the result

takes place around this solution, and this means that the result directly depends on the

initial solution, and there is a problem of its choice.

In our review of the literature, we have devoted the majority of our discussion towards the

application of meta-heuristics to these problems. There are still other problems related to

the improvement phase, which are particularly interesting to the research carried out in

72

2. Background and Literature Review

this thesis. To date, there is no optimal solution to this problem as numerous parameters

and constraints have to be taken into account. Furthermore, e↵ort is required to adjust

a number of parameters and enhance operators for particular problems to achieve high-

quality solutions to those problems.

Another challenge encountered is choosing an appropriate algorithm to improve initial

solutions in the optimisation phase. This is because numerous algorithms that have been

used to solve the examination timetabling problems. After reviewing the advantages and

disadvantages of each algorithm applied to solve this problem, the genetic algorithm is

chosen in this work due to its advantages compared to other algorithms. However, some

issues related to the crossover operator have been revealed in the literature. Some GA

operators also need to be enhanced.

As we have also seen, it is also quite common, particularly in examination timetabling

applications, for authors to state that their approaches were able to obtain better results

than previously produced results by published works in the literature. There are a number

of potential pitfalls in comparison between these approaches. Some necessary information

is not provided to conduct a fair comparison. Thus, there is a real need to develop a

standardised analysis approach in order to analyse and fairly compare various examination

timetabling algorithms.

Therefore, all of the above challenges discussed o↵er motivations for further research. In

addition, the literature review and background study have provided us with some ideas

for our further investigations.

2.7 Summary

A lot of work seen in the literature has focused on developing and tuning optimisation

heuristics for examination timetabling problems, and for ‘healing’ mechanisms to fix puta-

tive solutions which break various hard constraints. In addition, much work has also been

directed toward developing e↵ective search heuristics in this domain in order to obtain

high-quality exam timetables. In this chapter, constructive heuristic approaches such as

graph colouring heuristics, fuzzy-based techniques, and neural networks have been intro-

duced. Exact approaches, including integer programming and constraint programming,

have also been successfully implemented to solve this problem.

This chapter has also presented various approximation algorithms, including heuristics and

meta-heuristics, have been employed when the nature of the combinatorial optimisation

problem makes an optimal solution intractable. These approaches have demonstrated

great success in the area of examination timetabling problem. It can be observed that the

most successful and e↵ective approaches in the literature are typically the combination

of graph colouring based ordering methods and meta-heuristics. Graph colouring-based

ordering methods are often applied in the first phase to construct initial exam timetables.

The quality of the obtained timetables are then improved by a meta-heuristic approach.

Other recent approaches (i.e. hyper-heuristic, multi-objective and multi-criteria) were also

presented.

73

2. Background and Literature Review

The approaches discussed in this chapter o↵er many ideas for the following chapters that

aim to propose methods to construct and tackle the examination timetabling problem.

Furthermore, the Toronto, ITC 2007 examination timetabling track and Yeditepe bench-

mark sets are used to evaluate the performance of approaches proposed in this thesis. The

next chapter discusses the implementation of a new initialisation strategy for constructing

high-quality examination timetables.

74

Chapter 3

A New Initialisation Method for

Examination Timetabling

Heuristics

The work presented in this chapter was published in 2019 IEEE Symposium Series on

Computational Intelligence (SSCI) (Alsuwaylimi and Fieldsend, 2019).

3.1 Introduction

Before tackling the examination timetabling pipeline, this chapter presents a new ini-

tialisation strategy for constructing initial feasible solutions for examination timetabling.

The aim is to construct high-quality solutions for the benchmark examination timetabling

problems widely studied in the literature with their standard single objective function.

As mentioned earlier, exam timetabling is classified in the class of NP-complete optimi-

sation problem. The problem requires the scheduling of the exams corresponding to a set

of courses, while satisfying a range of constraints determined by exam timetabling sta↵.

There are commonly two types of constraints: hard constraints which must be satisfied

for a solution to be viable (e.g. a student should not sit two exams at the same time),

and soft constraints which we would prefer to satisfy, but are not absolutely necessary to

meet (e.g. a student should not sit two exams in quick succession), see for example (Sigl

et al., 2003). Concisely: satisfying all the hard constraints produces a feasible timetable;

whereas soft constraints can be violated.

Many papers have proposed methods to construct examination timetables as discussed in

Chapter 2. Often graph-colouring forms the basis, e.g. Carter and Laporte (1996) and

Burke et al. (2007). Computational intelligence approaches such as Fuzzy Logic (Asmuni

et al., 2005b) and Neural Networks (Corr et al., 2006a) have been employed, however

the bulk of work in this area has employed methods from the broad area of evolutionary

computation. For instance, Di Gaspero and Schaerf (2000), Kendall and Hussin (2005b),

and White and Xie (2000) applied tabu search. Simulated Annealing was used in Burke

75

3. A New Initialisation Method for Examination Timetabling Heuristics

and Newall (2003), Thompson and Dowsland (1998), and Memetic Algorithms in Burke

et al. (1995c), Burke and Silva (2005). Genetic Algorithms were used in e.g. (Burke

et al., 1995b), Ant Colony optimisation in e.g. Dowsland and Thompson (2005) and

Eley (2007), Particle Swarm Optimisation in e.g. Chu et al. (2006). The Great Deluge

Algorithm in Burke et al. (2004a), and hybridisations of distinct heuristic methods in e.g.

(Caramia et al., 2001) and Merlot et al. (2003). More recently Hyper-heuristic approaches

have gained popularity (Muklason, 2017; Pillay and Özcan, 2019). The e�cacy of an

optimisation heuristic is often dependent on the initial population from which it starts.

High quality and diverse initial solutions are generally thought to improve the subsequent

performance of a timetabling algorithm (Burke et al., 1998a).

The initial population can be generated by a number of methods. Most commonly these

attempt to generate ‘high quality’ solutions (i.e. ones that have low soft constraint vi-

olations, and preferably no hard constraint violations) so that the search is initialised

in ‘good’ areas of design space. This minimises the subsequent run time required of the

algorithm to find an acceptable solution. It is this area of algorithm design we are particu-

larly concerned with in this chapter. Therefore, we propose a new initialisation approach,

whose main novelty stems from the way it manages three interacting lists of examinations

to allocate. Thus, these lists are arranged and processed in a step-wise fashion in order to

provide a good satisfaction of hard and soft constraints.

The rest of the chapter is as follows. Section 3.2 describes popular initialisation approaches

from the literature. Our proposed approach is outlined in Section 3.3. Experimental results

and comparison are discussed in Section 3.4. Section 3.5 presents statistical analysis and

discusses the results. Finally, a summary of the work conducted in this chapter is presented

in Section 3.6.

3.2 Initialisation for Examination Timetabling Problems

Many researchers have studied initialisation methods for evolutionary algorithms (EAs)

to help solve timetabling problems. Corne and Ross (1995a) proposed an initialisation

method where a random operator was used to ensure diversity to support either a higher

quality solution or a more random solution (hard constraints could be violated). They

concluded that the strictness of the achievement of the hard constraints could result in an

inferior ultimate outcome in regard to the soft constraints. However, it is hard to apply

this method to problems that enforce a high plenty weight to the violation of the hard

constraints. Corne and Ross (1995b) used this approach to initialise EAs, and presented

a comparison between genetic algorithms (GAs), simulated annealing (SA), and multi-

start stochastic hill-climbing (MSSH) algorithms in regard to the performance when they

started from both seeded solutions and random solutions. Their results show that the

GA’s performance was the worst among the studied algorithms when it started from

random solutions. However, when the algorithms started from seeded solutions, the GA’s

performance increased to the extent that it performed the best, whilst the SA and MSSH

were much less a↵ected. Burke et al. (1995b) proposed a hybrid approach between heuristic

measures and a roulette wheel-style method to enhance the solutions’ quality while keeping

76

3. A New Initialisation Method for Examination Timetabling Heuristics

some diversity between them. Work presented in Burke and Newall (1997) studied the

e↵ect of random sequential initialisation followed by hill-climbing — each solution resulted

in a better group of solutions than the former approach.

As discussed in Section 2.6.1 of Chapter 2, graph colouring heuristic algorithms are widely

used to construct initial feasible exam timetables, see for example Carter and Laporte

(1996), de Werra (1985), Qu et al. (2009b), Burke and Petrovic (2002), and Ayob et al.

(2007b). To exploit the link between the two problems, some authors employed two-phase

algorithms. In this algorithm, the GC heuristics can be used in the first phase so that an

initial feasible solution is obtained.

The GC problem involves assigning colours to an element graph’s type following certain

constraints. The simplest sub-type is vertex colouring, which mainly aims to give several

vertices, as well as edges unique colours so that no adjacent vertices are coloured the same.

The goal in this case involves finding a solution with the lowest number of colours possible.

Considering the mapping between the GC problem and the examination timetable problem

(see Chapter 2), GC heuristics like the Saturation Degree Ordering are very common for

obtaining initial solutions. A number of graph colouring heuristics have been introduced

in the literature and have been applied to the examination timetable problem (Carter,

1986). Among the di↵erent GC heuristics, Brélaz (1979) has investigated the application

of the saturation degree heuristic (Cheong et al., 2009) to the examination timetable

problem. The findings concluded that saturation degree is capable of obtaining lower-

conflict timetables for all the datasets in comparison to the other graph colouring heuristics

(largest degree, colour degree, extended saturation degree, and random). These heuristics

will be discussed in more detail later in this chapter.

In the initialisation process, the exams are represented as vertices, while the edges are the

conflicts between them. Immediately neighbouring vertices are assigned distinct colours.

The colour therefore denotes the time period(s) in the timetable. These heuristic methods

prioritise scheduling according to the level of the di�culty in scheduling (number or weight

of edges) in order to schedule the most di�cult exams first. It is widely recognised in the

literature that one of the challenges in the process of assigning examinations is deciding

which examination should be scheduled to which resource (i.e. room and period) first, and

di↵erent ordering strategies have been utilised in this domain (for example, Broder (1964);

Cole (1964); Peck and Williams (1966); Welsh and Powell (1967); Laporte and Desroches

(1984); Burke et al. (1994b); Carter et al. (1994); Joslin and Clements (1999); Burke et al.

(2004a); Rahman et al. (2009), and Kahar and Kendall (2010)).

In this work, four graph colouring heuristics have been applied on the basis of them being

the most commonly-used such heuristics that have demonstrated the ability to obtain

high-quality examination timetables (Asmuni et al., 2005b; Burke et al., 2007; Kendall

and Hussin, 2005a). These are: Largest Degree (LD), Largest Weighted Degree (LWD),

Largest Enrolment (LE), and saturation Degree (SD). These heuristics can be divided

into two categories: dynamic and static heuristics (Qu and Burke, 2009). The LD, LE

and LWD are considered static methods in which the value for each examination does not

77

3. A New Initialisation Method for Examination Timetabling Heuristics

change during the iteration. SD, meanwhile, can be categorised as a dynamic method

since it conducts dynamic changes when any consecutive exam has been assigned. The

sub-sections below describe each of these methods.

3.2.1 Largest Degree

The LDmethod was first utilised for tackling examination timetabling problems by (Broder,

1964). In this method, the degree represents the number of exams in conflict (i.e. exams

are ordered in decreasing number of conflicts). This method gives the priority in scheduling

to the exams that have the most conflicts with other exams.

Cole (1964) has employed this method to construct examination timetables. In that work,

an examination conflict matrix was generated, which is a square matrix of dimension equal

to the number of examinations. This matrix is used to determine any pair of examinations

that are conflicting, as well as the number of students enrolled in these examinations.

In Peck and Williams (1966), the largest degree method of graph colouring was again

presented as a means of solving the examination timetabling problem. Here, however, the

ordering was modified by rearranging the allocation of exams to non-conflicting periods.

Welsh and Powell (1967) investigated the graph colouring method to identify the fewest

number of colours (chromatic number) applied to the vertices of a graph. The aim was

to construct a conflict-free graph in which two adjacent vertices did not have matching

colour. The LD heuristic was capable of finding the colour of the vertices.

3.2.2 Largest Weighted Degree

LWD is the same as the LD, but it applies a weight to each conflict by counting the

number of students participating in that conflict. As such, the priority in scheduling is

given to core exams (Carter et al., 1996; ARANI and Lotfi, 1989) (i.e. those with largest

conflicting cohorts).

3.2.3 Largest Enrollment First

Wood (1968) developed a university timetabling system for the University of Manchester.

The LE was presented to determine exams that should be scheduled into timetables. This

method depends on arranging exams so that those with the highest number of enrolled

students are scheduled first.

3.2.4 Saturation Degree

As previously mentioned, SD is considered to be a dynamic ordering heuristic since it has

the ability to colour vertices dynamically. This heuristic was first introduced by Brélaz

(1979). The SD method was successfully applied to solve the examination timetabling

problem (Rahman et al., 2009; Burke and Newall, 2004; Carter et al., 1996). In this

method, the priority in assignment is given to those exams that have the fewest number

of free periods for scheduling without violating of any hard constraints. In order to settle

ties between exams, the LD approach is used.

78

3. A New Initialisation Method for Examination Timetabling Heuristics

3.2.5 Random Schedule Allocation

In addition to the graph-colouring approaches listed above, random schedule allocation

(RD) is adapted widely to generate initial solutions in exam timetabling (Jha, 2014). RD

orders the examinations list randomly and schedules exams into the first valid period

satisfying the hard constraints. Exams are taken sequentially starting from the top of a

randomly ordered list. If the scheduling process fails to obtain non-conflicting examination

timetable (i.e. satisfy all hard constraints), the process is repeated with a new random

ordering.

Room1

Room2

Room3
.
.
.

RoomN

.

.

Room1

Room2

Room3
.
.
.

RoomN

.

.

Room1

Room2

Room3
.
.
.

RoomN

.

.

. . .

Room1

Room2

Room3
.
.
.

RoomN

.

.

Room1

Room2

Room3
.
.
.

RoomN

.

.

Room1

Room2

Room3
.
.
.

RoomN

.

.

Room1

Room2

Room3
.
.
.

RoomN

.

.

. . .

Room1

Room2

Room3
.
.
.

RoomN

.

.

Room1

Room2

Room3
.
.
.

RoomN

.

.

Room1

Room2

Room3
.
.
.

RoomN

.

.

Room1

Room2

Room3
.
.
.

RoomN

.

.

. . .

Room1

Room2

Room3
.
.
.

RoomN

.

.

Period 1 Period 2 Period 3 Period N

Period N+1 Period N+2 Period N+3 Period K

Period K+1 Period K+2 Period K+3 Period M

FS

MS

BS

exam12,exam2

exam22,exam25

exam4,exam7

exam6,exam30

exam8,exam13

exam9,exam27

exam40,exam33

exam14,exam29

exam1,exam26

exam35,exam33

exam15,exam50

exam16,exam24,exam5

exams 17,18,44,36

exam11

exam41 exam42,exam39

exam52,exam20

exam48,exam19

exam49,exam10

exam53,exam60

exam54

exam47,exam31

exam57,exam61

exam62,exam16

exam56,exam28

exams46,64,66

Figure 3.1 The Front Section (FS), the Middle Section (MS), and the Back Section (BS).

3.3 Proposed Initialisation Approach

We now propose a new algorithm to construct initial solutions for examination timetabling

problems, that can be used as seed solutions for meta-heuristic algorithms. The proposed

algorithm attempts to schedule the largest number of conflicting exams as possible in the

first periods of a timetable, which we name the Front Section (FS), and in the last

periods of the timetable named Back Section (BS) while also attempting to satisfy all

hard and soft constraints. The number of periods in the FS and BS are equal to a given

number of spread periods determined by the Period Spread (PS) constraint, which

aims to spread each student’s exams over a given number of periods. The overarching idea

behind the proposed algorithm is to satisfy the PS constraint for each student of any exam

scheduled into periods of the Middle Section (MS) (i.e. the periods after FS periods

and before BS periods). Figure 3.1 shows the FS, MS, and BS sections, where the FS

starts from the first period of the exam timetable until period N. whereas the MS starts

79

3. A New Initialisation Method for Examination Timetabling Heuristics

directly after period N and the last period of the MS is period K. The last section (i.e. BS)

starts immediately after period K until the last period of the timetable. Furthermore, the

solution is well constructed by creating a list of period objects composited of room objects

that can contain exam objects. Each object type has its own properties used to check

hard and soft constraints before scheduling exams in any room for a particular period.

In order to avoid violation of the PS constraint for an exam timetabled in any period, T ,

of MS, with period spread range X, then the X periods before and after period T must

not contain any conflicting exam (i.e. an exam with students in common). On the other

hand, if an exam is timetabled in the first period of the FS, then the number of periods

N that must not contain any conflicting exam is just the X periods which fall after this

period, so N = X. Also the same period range N = X is used if an exam is timetabled in

the last period of the BS, where just the N periods that fall before the last period must be

free of conflicting exams. In case an exam is timetabled in the second period of FS, then

the number of periods N that must have no conflicting exams in order to satisfy the PS

constraint is N = 1+X (one period falling before and X periods falling after that period

T). Also, scheduling an exam in the period before the last period of BS requires the same

period range, N = X +1 (i.e. X periods falling before and one period falling after period

T).

Timetabling an exam in the third period of FS or in the third period before the last period

of BS requires N = X + 2 and so on until the period number becomes equal to PS (i.e.

the last period in the FS or the first period in the BS). Then N = (X � 1) +X, which is

still lower than timetabling an exam in any period of MS, which will require 2X periods

N = X +X having no conflict exam(s) to satisfy the PS constraint. More clarification on

the method described above is shown in Figure 3.2.

According to the proposed method, for each period the available rooms of a timetable are

ordered increasingly by their capacities, also the exams are ordered in three lists which

are: Front List (FL), Back List (BL), and Middle List (ML). Each list initially

contains all exams to be scheduled.

80

3. A New Initialisation Method for Examination Timetabling Heuristics

N periods

An exam timetabled
in Period T of MS

MS
BSFS

Period Period Period Period Period Period Period Period Period PeriodFS's Periods BS's Periods

Any N periods must not
contain any exam with

students in common in order
to satisfy PS constraint

(assuming PS range X = 5) N periodsN periods

An exam timetabled in
the first period of FS

FS = PS range X

MS BSFS

Period Period Period Period Period MS's Periods

An exam timetabled in
the second period of FS

MS BSFS

Period Period Period Period Period MS's PeriodsPeriod

N periods

1 period

An exam timetabled in
the third period of FS

MS BSFS

Period Period Period Period Period MS's PeriodsPeriod

X periods2 periods

Period

An exam timetabled in
the second period of BS

MS BSFS

Period Period Period PeriodPeriodMS's Periods Period

N periods

1 period

An exam timetabled in
the third period of BS

MS BSFS

Period PeriodPeriod Period PeriodMS's Periods Period Period

2 periodsN periods

An exam timetabled in
the first period of BS

BS = PS range X

MS BSFS

Period Period Period Period Period

N periods

MS's PeriodsBS's
Periods

N = 2X = 10 periods (5 periods before and 5 periods after falling that period T)

N = X (only 5 periods falling after the first period of FS)

N = X (only 5 periods falling before the last period of BS)

N = 1+ X (1 period before and 5 periods falling after the second period of FS)

N = X + 1 (5 periods falling before and 1 period after the period before the last period of BS)

X= 2 + X (2 periods falling before and 5 periods falling after the third period of FS

N = X + 2 (5 periods falling before and 2 periods falling after the third period before the last period of BS)

Period Period Period Period Period

Period Period Period PeriodPeriod

Period Period Period Period Period

BS's
Periods

Period Period Period PeriodPeriod

Period Period Period Period Period

Period Period Period Period Period

Figure 3.2 An example of satisfying Period Spread (PS) constraint using the proposed initialisation
approach.

81

3. A New Initialisation Method for Examination Timetabling Heuristics

3.3.1 Front List

In the Front List (FL), as detailed in Algorithm 3.1, the exams are sorted by decreasing

number of conflicts with other exams (line 4), subject to ‘after’ constraints being observed.

This list is then processed from the front.

Once any exam in this list is scheduled in any period in the FS, it is removed from the other

lists (ML and BL — lines 19–20). On the other hand, if any exam cannot be scheduled

in any period in the FS, then it is removed only from the FL and remains in the other

lists to be scheduled via one of them later (line 29). Note that, the variables and methods

used in Algorithm 3.1 are briefly explained in Tables 3.1 and 3.2.

3.3.2 Back List

In the Back List (BL), the exams are sorted by decreasing number of conflicts with other

exams, subject to ‘before’ constraints being observed (line 5 of Algorithm 3.1). This

constraint is derived from the ‘after’ constraint that stipulates which exams must occur

after others.

The scheduling process starts by attempting to schedule BL exams as much as possible in

the BS, starting from the last period of BS until to the first period of BS while satisfying

all hard and soft constraints. Any exam scheduled in these last periods will be removed

from the BL and the ML (Algorithm 3.2 lines 12–13), otherwise, in case an exam cannot be

scheduled at this stage, it is removed only from BL (line 21). The variables and methods

used in Algorithm 3.2 are explained in Tables 3.1 and 3.2.

3.3.3 Middle List

The Middle List (ML) contains all remaining exams that have not been scheduled by

Algorithms 3.1 and 3.2. The ML exam list is ordered depending on the number of the

remaining periods available, where the exams having the fewest number of available periods

in the timetable have the highest priority to be scheduled first in any period while satisfying

only the hard constraints.

The algorithm selects the periods randomly (Algorithm 3.3, line 2), giving the priority to

the previous selected periods in order to maximise the periods’ utilisation and keep the

diversity. The process stops when all the exams in the middle list are completely scheduled

to a feasible period, and a feasible solution is returned. However, if there is any exam in

this list which has no available period, i.e. it could not be assigned to any feasible period,

an infeasible solution is returned instead (Algorithm 3.3, line 34). Tables 3.1 and 3.2 give

an explanation of variables and methods used in Algorithm 3.3.

82

3. A New Initialisation Method for Examination Timetabling Heuristics

Algorithm 3.1 Pseudo-code of Front List (FL) heuristic.

Require: PS . The period spread number

Require: E . Exams to be scheduled

Require: R . Set of room lists, available each period

• Initialisation step

1: ↵ ; . Schedule of exams to rooms at periods

2: FS init FS(PS) . Front section length determined by PS

3: BS init BS(PS) . Back section length determined by PS

4: FL sort by conflict(E) . Front list contains exams ordered from front by

largest to smallest conflict, subject to meeting ‘after’ constraints.

5: BL sort by conflict(E) . Back list contains exams ordered, from back, by

largest to smallest conflict, subject to meeting ‘before’ constraints.

6: ML random sorting(E) . Middle list exams ordered randomly.

7: for all periods p do . For each period

8: R

p

 ascend sort(R
p

) . Order the available rooms by their capacities.

9: end for

• Schedule FL exams into Front Section periods (FS)

10: while FL is not empty do

11: isScheduled false

12: p 1 . Attempt to schedule from the first period (p) of FS until reaching the

last period of FS

13: while p  |FS| do
14: R

i

p

 first suitable room(R
p

,↵, FL1) . get first available room

15: if R

i

p

6= ; then . If it can be scheduled

16: if satisfies(FL1) = true then . Exam in first element of FL satisfies

all hard and soft constraints

17: ↵ schedule(↵, FL1, R
i

p

) . Schedule exam in FL1 at time period p

into room R

i

18: FL FL \ {FL1} . Delete exam FL1 from FL

19: BL BL \ {FL1} . Delete exam FL1 from BL

20: ML ML \ {FL1} . Delete exam FL1 from ML

21: isScheduled true

22: p 1

23: Break . The current exam is scheduled

24: end if

25: end if

26: p p+ 1

27: end while

28: if isScheduled false then

29: FL FL \ {FL1} . Del. exam FL1 from FL

30: end if

31: end while

32: return ↵

83

3. A New Initialisation Method for Examination Timetabling Heuristics

Algorithm 3.2 Pseudo-code of Back List (BL) heuristic.

Require: BL . Back list

Require: ML . Middle list

Require: ↵ . Current schedule state

Require: R . Set of room lists, available each period

1: for all periods p do . For each period

2: R

p

 ascend sort(R
p

) . Order the available rooms by their capacities.

3: end for

• Schedule BL exams into Back Section periods (BS)

4: while BL is not empty do

5: isScheduled false

6: p |BS| . Attempt to schedule from the last period (p) of BS until reaching the

first period of BS

7: while p � 1 do

8: R

i

p

 first suitable room(R
p

,↵, BL1) . get first available room

9: if R

i

p

6= ; then . If it can be scheduled, given the current state of S

10: if satisfies(BL1) = true then . Exam in first element of BL satisfies

all hard and soft constraints

11: ↵ schedule(↵, BL1, R
i

p

) . Schedule exam in BL1 at time period p

into room R

i

12: BL BL \ {BL1} . Del. exam BL1 from BL

13: ML BL \ {BL1} . Del. exam BL1 from ML

14: isScheduled true

15: Break . Exam is now scheduled

16: end if

17: end if

18: p p� 1 . inverse selecting

19: end while

20: if isScheduled false then

21: BL BL \ {BL1} . Del. exam BL1 from BL

22: end if

23: end while

24: return {↵,ML}

84

3. A New Initialisation Method for Examination Timetabling Heuristics

Algorithm 3.3 Pseudo-code of Middle List (ML) heuristic.

Require: ML . Middle list

Require: ↵ . Current schedule state

Require: R . Set of room lists, available each period

Require: PL list of all periods in the timetable.

• Schedule remaining exams

1: SPL ; . Initial empty selected periods list

2: rp random period(PL) . Get a random period

3: SPL SPL [{rp} . Add rp to SPL

4: for all periods p do . For each period

5: R

p

 ascend sort(R
p

) . Order rooms by size

6: end for

7: PL PL \ {rp} . Remove rp from PL

8: sp 1 . Index into SPL

9: while ML 6= ; do
10: isScheduled false

11: while sp  |SPL| do
12: if ML1 can be scheduled into SPL

sp

satisfying all the hard constraints into

the ith smallest room then ↵ schedule(↵,ML1, R
i

SPLsp
)

13: ML ML \ML1 . Remove exam from list

14: isScheduled true

15: goto line 19 . Exit loop as exam scheduled

16: end if

17: sp sp+ 1 . select the next period of SPL

18: end while . End scheduling ML1 in the SPL

19: if isScheduled = false then

20: temp PL . Temporary list

21: while temp 6= ; do
22: sp random element(temp)

23: if ML1 can be scheduled into sp satisfying all the hard constraints into the

ith smallest room then ↵ schedule(↵,ML1, R
i

tempsp
)

24: ML ML \ML1 . Remove from list

25: isScheduled true

26: SPL SPL [{temp

sp

}
27: PL PL \ {temp

sp

}
28: goto line 9 . Exit from loop

29: else

30: temp temp \ {temp

sp

}
31: end if

32: end while

33: end if

34: return infeasible solution

35: end while

36: return ↵

85

3. A New Initialisation Method for Examination Timetabling Heuristics

Variable Description

PS The period Spread number.

E Exam to be scheduled.

R Set of room lists, available each period.

↵ Schedule of exams to rooms at periods

FS Front section.

BS Back section.

FL

A list contains exams ordered from front by largest to

smallest conflict, subject to meeting ‘after’ constraints.

BL

A list contains exams ordered, from back, by largest to

smallest conflict, subject to meeting ‘before’ constraints.

ML Middle list exams ordered randomly.

p Period.

R

p

Available room in period.

PL List of all periods in the timetable.

SPL Initial empty selected periods list.

rp Get a random period.

temp Temporary list.

Table 3.1 List of variables used in Algorithm 3.1, Algorithm 3.2, and Algorithm 3.3.

Method Description

init FS(PS) Identify Front section length by PS.

init BS(PS) Identify Back section length by PS.

sort by conflict(E) Ordering exams from largest to smallest conflict.

random sorting(E) Ordering exams randomly.

ascend sort(R
p

) Order the available rooms in period by their capacities.

first suitable room Get first available room.

satisfies(FL1) Exam in first element of FL satisfies all hard and soft constraints.

schedule(↵, FL1, R
i

p

) Schedule exam in FL1 at time period p into room R

i.

satisfies(BL1) Exam in first element of BL satisfies all hard and soft constraints.

schedule(↵, BL1, R
i

p

) Schedule exam in BL1 at time period p into room R

i.

Table 3.2 List of methods used in Algorithm 3.1, Algorithm 3.2, and Algorithm 3.3.

3.4 Experimental Results and Comparison

The experiments were conducted over two examination timetabling problems, namely,

ITC 2007, and Yeditepe. The characteristic of each these datasets has been discussed

in Section 2.3 of Chapter 2. Our experiment has two phases. In the first phase, a set

of initial solutions is constructed by the proposed algorithm (devoted OBSI - Ordering-

Based Scheduling Initialisation) and the comparison methods are (LD - Largest De-

gree, LE - Largest Enrollment, LWD - Largest Weighted Degree, SD - Saturation De-

86

3. A New Initialisation Method for Examination Timetabling Heuristics

gree, and RD - Random Allocation). In the second phase, a basic evolutionary algo-

rithm (EA) uses the initial population provided by each of the considered methods to

start its (total) time-limited search. These are implemented in Java, with experiments

run on an Intel Core (TN) i5-6200U (CPU @ 2.30 GHz with 16 GB RAM) PC run-

ning Windows 7 Enterprise with 64-bit operating system. Source code is available at

https://github.com/alsuwaylimi/Initialisation-Method-Project.

3.4.1 Phase 1: Initialisation

The median results (out of 30 runs for each instance) on both datasets (ITC 2007 exami-

nation track and Yeditepe) are shown in Tables 3.3 and 3.4, respectively, including statis-

tical significance. We make appropriate p-value adjustment using the Holm-Bonferronio

method (Ludbrook, 1998), to adjust for increased family-wise error when multiple hypoth-

esis are tested on the same data.

The ITC 2007 results indicate that using our proposed OBSI strategy generally outper-

forms graph heuristics and random initialisation for initial solution quality. Additionally,

the graph heuristics and random initialisation fail to obtain feasible solutions for some

of the more di�cult instances. Furthermore, OBSI solutions tend to be more diverse in

performance, with total soft constraint costs often spread in a wider range than the com-

parison methods (as shown in Figures 3.3 and 3.4). Generating an initial population with

graph heuristics, on the other hand, tends to occur in a shorter time-frame compared with

the OBSI, albeit delivering lower quality solutions.

The results on the Yeditepe problems are provided in Table 3.4. This shows that the

OBSI strategy is able to generate feasible solutions for all instances in contrast to graph

heuristics and RD, which again cannot generate a feasible solution for some of the more

di�cult problem instances. Its performance is less striking than on the ITC 2007 datasets,

outperforming some graph heuristics in term of quality on some problems, but on others

it performs less well (see Figures 3.5 and 3.6).

Figures 3.7, 3.8, 3.9, 3.10, and 3.11 show the distribution of execution time in milliseconds

for the di↵erent initialisation approaches on both datasets. Generally speaking the OBSI

tends to be relatively faster on the Yeditepe problems (due to the fewer constraints), but

often slower on the ITC 2007 problems. Apart from the SD method, the other graph

heuristics fail for some instances of ITC 2007 and Yeditepe. Some particular problems

instances, such as Exam4 and Exam11 of ITC 2007 and YUE20012, YUE20021, and

YUE20032 of Yeditepe, have a large number of exams with high conflict density and few

available periods. This can lead to saturation cases where there are no valid periods

to schedule the next exam. The main reason for saturation cases occurring is where

subroutines schedule exams into periods while giving scheduling priority to exams having

largest degree (LD), largest weighted degree (LWD), or largest enrollment degree (LE). SD

prevents saturation cases arising by dynamically ordering exams depending on a number

of available periods and giving scheduling priority to exams which have the fewest number

of periods available. In addition, from Figures 3.12, 3.13, 3.14, and 3.15, we can identify

a positive relationship between execution time and cost value for the OBSI initialisation.

87

https://github.com/alsuwaylimi/Initialisation-Method-Project

3. A New Initialisation Method for Examination Timetabling Heuristics

O
B
S
I

L
D

LW
D

L
E

S
D

R
D

P
ro
b
le
m

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

In
st
an

ce
co
st

t
(m

s)
co
st

t
(m

s)
co
st

t
(m

s)
co
st

t
(m

s)
co
st

t
(m

s)
co
st

t
(m

s)

E
xa

m
1

2
7
9
8
7
.5

61
30

31
80

5.
5

34
08

30
66

6.
5

34
63

30
22

4.
5

2
2
6
9
.5

31
87

2.
5

77
14

39
63

0
13

04
63

E
xa

m
2

2
6
6
6
1

10
02

2.
5

38
97

4
6
9
7
3

40
83

8.
5

71
21

40
79

1
70

20
40

84
8

11
41

8.
5

15
05

14
.5

78
17

E
xa

m
3

7
2
7
1
3

23
09

5
10

21
58

12
62

0
10

18
74

.5
18

70
4

10
43

57
.5

19
34

4
10

06
57

32
73

6.
5

24
96

17
.5

9
3
9
3
.5

E
xa

m
4

5
0
1
3
9

1
2
6
3

-
-

-
-

-
-

51
34

6.
5

25
42

.5
-

-

E
xa

m
5

7
4
3
9
4
.5

11
82

9.
5

13
30

80
.5

71
63

13
03

33
71

06
13

39
10

7
1
0
3
.5

13
58

84
.5

18
15

0.
5

31
95

73
.5

45
97

5.
5

E
xa

m
6

5
0
1
9
0

6
2
4

53
11

5
68

6
52

19
0

32
84

5.
5

51
28

5
16

41
1

51
00

0
90

4
63

95
7.
5

41
34

7.
5

E
xa

m
7

4
9
2
5
3

25
23

2.
5

80
71

8.
5

11
01

1
77

99
3

10
83

4.
5

77
38

6
1
0
8
2
9

83
27

7
31

22
5.
5

64
21

2.
5

31
10

7.
5

E
xa

m
8

1
1
4
5
5
9

72
30

13
64

75
.5

31
04

14
57

34
.5

3
0
9
6

13
82

80
.5

31
98

13
40

43
.5

81
97

.5
-

-

E
xa

m
9

7
7
0
5
.5

14
8

84
54

.5
6
2

85
50

6
2

87
27

.5
6
2

89
98

.5
15

6
11

64
6

87
4.
5

E
xa

m
10

6
6
7
4
1

45
2

67
93

6.
5

16
5.
5

71
80

8
20

6
69

64
9

1
5
8

67
88

1
87

2.
5

12
75

59
.5

83
44

E
xa

m
11

2
1
8
2
2
7
.5

2
1
0
6
7
.5

21
92

67
.5

70
01

9.
5

-
-

-
-

22
35

52
.5

36
34

7
33

43
98

.5
86

44
4

E
xa

m
12

1
0
9
9
5
.5

45
2

12
32

7
51

87
12

74
8.
5

33
38

12
32

3
11

84
0

13
00

0.
5

2
1
8

13
27

7.
5

78
73

.5

Table 3.3 Median soft constraint cost results, and timings on the ITC 2007 dataset. The hyphen
symbol ‘-’ means the method cannot produce feasible solutions for the corresponding instance.
Bold is lowest median soft constraint cost result. Bold and underlined results are significantly
better than all others according to the Mann-Whitney U test with the Holm-Bonferroni correction
at the critical level (↵ = 0.05).

88

3. A New Initialisation Method for Examination Timetabling Heuristics

O
B
S
I

L
D

LW
D

L
E

S
D

R
D

P
ro
b
le
m

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

M
ed

ia
n

In
st
an

ce
co
st

t
(m

s)
co
st

t
(m

s)
co
st

t
(m

s)
co
st

t
(m

s)
co
st

t
(m

s)
co
st

t
(m

s)

Y
U
E
20

01
1

83
1

6
2

77
4.
5

14
8

76
4

16
3.
5

7
0
6
.5

53
7.
5

71
3

6
2

91
2

62
.5

Y
U
E
20

01
2

88
5

6
2

7
7
9

23
72

.5
-

-
-

-
79

9.
5

47
5.
5

88
6

10
57

.5

Y
U
E
20

01
3

64
15

65
15

6
3
.5

15
64

15
66

0
69

11

Y
U
E
20

02
1

86
5

11
6.
5

83
3.
5

23
81

.5
-

-
-

-
7
9
0
.5

47
3

14
99

.5
1
1
6

Y
U
E
20

02
2

10
93

.5
1
5
6

11
40

.5
20

98
11

12
.5

19
97

5.
5

1
0
5
7

51
76

8.
5

11
10

.5
17

1
12

35
.5

59
38

.5

Y
U
E
20

02
3

11
5

1
5

11
0.
5

50
.5

10
8

56
1
0
2
.5

46
.5

11
7.
5

39
11

6.
5

14
2.
5

Y
U
E
20

03
1

11
28

5.
5

1
2
4

33
06

79
7.
5

43
37

.5
55

4
34

74
53

4.
5

2
5
8
2

13
7

76
58

68
8.
5

Y
U
E
20

03
2

11
37

8
1
5
6

-
-

-
-

-
-

2
3
6
0
.5

19
7

-
-

Table 3.4 Yeditepe dataset results. Notation as in Table 3.3.

89

3. A New Initialisation Method for Examination Timetabling Heuristics

OBSI LD LWD LE SD RD

Initialisation strategies

2.5

3

3.5

4

C
o

s
t

v
a
lu

e

104

Exam1

OBSI LD LWD LE SD RD

Initialisation strategies

104

105

C
o

s
t

v
a
lu

e

Exam2

OBSI LD LWD LE SD RD

Initialisation strategies

0.5

1

1.5

2

2.5

C
o

s
t

v
a

lu
e

105

Exam3

OBSI LD LWD LE SD RD
Initialisation strategies

4

4.5

5

5.5

6

6.5

C
o

s
t

v
a

lu
e

104

Exam4

OBSI LD LWD LE SD RD
Initialisation strategies

105

C
o

s
t

v
a
lu

e

Exam5

OBSI LD LWD LE SD RD

Initialisation strategies

4

4.5

5

5.5

6

6.5

7

7.5

C
o

s
t

v
a

lu
e

104

Exam6

Figure 3.3 Boxplots of the soft constraint costs for all initialisation strategies performed on the
ITC 2007 problem instances 1–6, where OBSI: ordering-based scheduling initialisation, LD: largest
degree, LWD: largest weighted degree, LE: largest enrollment, SD: saturation degree and RD:
random. Y-axis on log scale.

90

3. A New Initialisation Method for Examination Timetabling Heuristics

OBSI LD LWD LE SD RD

Initialisation strategies

3

4

5

6

7

8

9

10

C
o

s
t

v
a
lu

e
104

Exam7

OBSI LD LWD LE SD RD

Initialisation strategies

0.8

1

1.2

1.4

1.6

1.8

2

2.2

C
o

s
t

v
a

lu
e

105

Exam8

OBSI LD LWD LE SD RD

Initialisation strategies

0.6

0.8

1

1.2

1.4

1.6

1.8

C
o

s
t

v
a

lu
e

104

Exam9

OBSI LD LWD LE SD RD

Initialisation strategies

4

6

8

10

12

14
C

o
s

t
v

a
lu

e

104

Exam10

OBSI LD LWD LE SD RD

Initialisation strategies

2

2.5

3

3.5

4

C
o

s
t

v
a
lu

e

105

Exam11

OBSI LD LWD LE SD RD
Initialisation strategies

0.8

1

1.2

1.4

1.6

1.8

C
o

s
t

v
a

lu
e

104

Exam12

Figure 3.4 Boxplots of the soft constraint costs for all initialisation strategies performed on the
ITC 2007 problem instances 7–12. Notation as in Figure 3.3

91

3. A New Initialisation Method for Examination Timetabling Heuristics

OBSI LD LWD LE SD RD
Initialisation strategies

103

C
o

s
t

v
a
lu

e

YUE20011

OBSI LD LWD LE SD RD
Initialisation strategies

103

C
o

s
t

v
a

lu
e

YUE20012

OBSI LD LWD LE SD RD
Initialisation strategies

40

50

60

70

80

90

100

C
o

s
t

v
a

lu
e

YUE20013

OBSI LD LWD LE SD RD

Initialisation strategies

1000

1500

2000

2500

3000
C

o
s

t
v

a
lu

e
YUE20021

OBSI LD LWD LE SD RD

Initialisation strategies

103

C
o

s
t

v
a

lu
e

YUE20022

OBSI LD LWD LE SD RD

Initialisation strategies

70

80

90

100

110

120

130

140

150

C
o

s
t

v
a

lu
e

YUE20023

Figure 3.5 Boxplots of the soft constraint costs for all initialisation strategies performed on the
Yeditepe problem instances 1–6. Notation as in Figure 3.3. Y-axis on log scale.

92

3. A New Initialisation Method for Examination Timetabling Heuristics

OBSI LD LWD LE SD RD

Initialisation strategies

104

C
o

s
t

v
a
lu

e

YUE20031

OBSI LD LWD LE SD RD

Initialisation strategies

104

C
o

s
t

v
a

lu
e

YUE20032

Figure 3.6 Boxplots of the soft constraint costs for all initialisation strategies performed on the
Yeditepe problem instances 7–8. Notation as in Figure 3.3. Y-axis on log scale.

OBSI LD LWD LE SD RD

Initialisation strategies

104

105

E
x

e
c

u
ti

o
n

 T
im

e

Exam1

OBSI LD LWD LE SD RD

Initialisation strategies

5000

10000

15000

E
x

e
c

u
ti

o
n

 T
im

e

Exam2

OBSI LD LWD LE SD RD

Initialisation strategies

104

105

E
x
e

c
u

ti
o

n
 T

im
e

Exam3

OBSI LD LWD LE SD RD

Initialisation strategies

103

E
x

e
c

u
ti

o
n

 T
im

e

Exam4

Figure 3.7 Boxplots of the log execution time in milliseconds for all initialisation strategies on the
ITC 2007 problem instances 1–4. Notation as in Figure 3.3.

93

3. A New Initialisation Method for Examination Timetabling Heuristics

OBSI LD LWD LE SD RD

Initialisation strategies

104

105

E
x
e
c
u

ti
o

n
 T

im
e

Exam5

OBSI LD LWD LE SD RD

Initialisation strategies

103

104

105

E
x

e
c

u
ti

o
n

 T
im

e

Exam6

OBSI LD LWD LE SD RD

Initialisation strategies

104

105

E
x
e

c
u

ti
o

n
 T

im
e

Exam7

OBSI LD LWD LE SD RD

Initialisation strategies

3000

4000

5000

6000

7000

8000

9000
E

x
e

c
u

ti
o

n
 T

im
e

Exam8

OBSI LD LWD LE SD RD

Initialisation strategies

102

103

E
x
e

c
u

ti
o

n
 T

im
e

Exam9

OBSI LD LWD LE SD RD

Initialisation strategies

103

104

E
x

e
c

u
ti

o
n

 T
im

e

Exam10

Figure 3.8 Boxplots of the log execution time in milliseconds for all initialisation strategies on the
ITC 2007 problem instances 5–10. Notation as in Figure 3.3.

94

3. A New Initialisation Method for Examination Timetabling Heuristics

OBSI LD LWD LE SD RD

Initialisation strategies

105

E
x
e
c
u

ti
o

n
 T

im
e

Exam11

OBSI LD LWD LE SD RD

Initialisation strategies

102

103

104

E
x

e
c

u
ti

o
n

 T
im

e

Exam12

Figure 3.9 Boxplots of the log execution time in milliseconds for all initialisation strategies on the
ITC 2007 problem instances 11–12. Notation as in Figure 3.3.

OBSI LD LWD LE SD RD

Initialisation stratgies

102

103

E
x
e

c
u

ti
o

n
 T

im
e

YUE20011

OBSI LD LWD LE SD RD

Initialisation stratgies

102

103

104

E
x

e
c

u
ti

o
n

 T
im

e

YUE20012

OBSI LD LWD LE SD RD

Initialisation stratgies

101

102

E
x

e
c

u
ti

o
n

 T
im

e

YUE20013

OBSI LD LWD LE SD RD

Initialisation stratgies

0

5000

10000

15000

20000

E
x

e
c

u
ti

o
n

 T
im

e

YUE20021

Figure 3.10 Boxplots of the log execution time of all initialisation strategies on the Yeditepe problem
instances 1–4. Notation as in Figure 3.7.

95

3. A New Initialisation Method for Examination Timetabling Heuristics

OBSI LD LWD LE SD RD
Initialisation stratgies

103

104

105

E
x
e
c
u

ti
o

n
 T

im
e

YUE20022

OBSI LD LWD LE SD RD
Initialisation stratgies

101

102

E
x

e
c

u
ti

o
n

 T
im

e

YUE20023

OBSI LD LWD LE SD RD

Initialisation stratgies

102

103

E
x

e
c

u
ti

o
n

 T
im

e

YUE20031

OBSI LD LWD LE SD RD

Initialisation stratgies

200

400

600

800

1000

E
x

e
c

u
ti

o
n

 T
im

e

YUE20032

Figure 3.11 Boxplots of the log execution time of all initialisation strategies on the Yeditepe problem
instances 5–8. Notation as in Figure 3.7.

96

3. A New Initialisation Method for Examination Timetabling Heuristics

2.5 3 3.5 4

Cost value 10
4

10
3

10
4

10
5

10
6

E
x
e
c
u

ti
o

n
 T

im
e

Exam1

OBSI

LD

LWD

LE

SD

RD

10
4

10
5

Cost value

6000

8000

10000

12000

14000

E
x
e
c
u

ti
o

n
 T

im
e

Exam2

1 1.5 2 2.5

Cost value 10
5

10
4

10
5

E
x
e
c
u

ti
o

n
 T

im
e

Exam3

4 4.5 5 5.5 6 6.5

Cost value 10
4

10
3

10
4

E
x

e
c

u
ti

o
n

 T
im

e

Exam4

0.5 1 1.5 2 2.5 3

Cost value 10
5

10
4

10
5

E
x
e
c
u

ti
o

n
 T

im
e

Exam5

4.5 5 5.5 6 6.5 7 7.5

Cost value 10
4

10
2

10
3

10
4

10
5

E
x

e
c

u
ti

o
n

 T
im

e

Exam6

Figure 3.12 The scatter plot with cost values and execution time amounts for all initialisation
strategies performed on ITC 2007 instances 1–6.

97

3. A New Initialisation Method for Examination Timetabling Heuristics

4 5 6 7 8 9

Cost value 10
4

10
3

10
4

10
5

10
6

E
x
e
c
u

ti
o

n
 T

im
e

Exam7

0.8 1 1.2 1.4 1.6 1.8 2

Cost value 10
5

3000

4000

5000

6000

7000

8000

9000

E
x

e
c

u
ti

o
n

 T
im

e

Exam8

0.6 0.8 1 1.2 1.4 1.6

Cost value 10
4

10
1

10
2

10
3

10
4

E
x

e
c

u
ti

o
n

 T
im

e

Exam9

4 6 8 10 12 14

Cost value 10
4

10
2

10
3

10
4

10
5

E
x

e
c

u
ti

o
n

 T
im

e

Exam10

2 2.5 3 3.5

Cost value 10
5

10
4

10
5

10
6

E
x
e
c
u

ti
o

n
 T

im
e

Exam11

1 1.2 1.4 1.6 1.8

Cost value 10
4

10
2

10
3

10
4

10
5

E
x

e
c

u
ti

o
n

 T
im

e

Exam12

OBSI

LD

LWD

LE

SD

RD

Figure 3.13 The scatter plot with cost values and execution time amounts for all initialisation
strategies performed on the ITC 2007 problem instances 7–12.

98

3. A New Initialisation Method for Examination Timetabling Heuristics

10
3

10
4

Cost value

10
1

10
2

10
3

E
x
e
c
u

ti
o

n
 T

im
e

YUE20011 OBSI

LD

LWD

LE

SD

RD

10
3

10
4

Cost value

10
2

10
3

10
4

E
x
e
c
u

ti
o

n
 T

im
e

YUE20012

40 50 60 70 80 90

Cost value

10
1

10
2

E
x
e
c
u

ti
o

n
 T

im
e

YUE20013

1000 1500 2000 25003000

Cost value

10
1

10
2

10
3

10
4

E
x
e
c
u

ti
o

n
 T

im
e

YUE20021

10
3

10
4

Cost value

10
2

10
3

10
4

10
5

10
6

E
x
e
c
u

ti
o

n
 T

im
e

YUE20022

80 100 120 140

Cost value

10
1

10
2

10
3

E
x
e
c
u

ti
o

n
 T

im
e

YUE20023

Figure 3.14 The scatter plot with cost values and execution time amounts for all initialisation
strategies performed on the Yeditepe problem instances 1–6.

99

3. A New Initialisation Method for Examination Timetabling Heuristics

10
3

10
4

Cost value

10
2

10
3

10
4

E
x
e
c
u

ti
o

n
 T

im
e

YUE20031

10
3

10
4

Cost value

10
2

10
3

E
x

e
c

u
ti

o
n

 T
im

e

YUE20032 OBSI

LD

LWD

LE

SD

RD

Figure 3.15 The scatter plot with cost values and execution time amounts for all initialisation
strategies performed on the Yeditepe problem instances 7–8.

3.4.2 Phase 2: Optimisation

An EA was implemented following the approach of Beligiannis et al. (2008) (which eschews

crossover) to quantify the e↵ectiveness of the initialisation on subsequent meta-heuristic

performance. We utilise the initial solutions that have been constructed in phase 1 by

the OBSI, as well as other initialisation methods, and use these to determine the start

populations of the EA. The EA population size is 40. Total run time (initialisation plus

optimisation) is capped at 8 minutes.

Each child solution in the population for every generation (iteration) is generated by

applying a combination of both light and heavy mutation (Burke et al., 1995c). Light

mutation chooses a number of exams randomly from any period in the timetable and

attempts to reschedule them at any other period while satisfying all hard constraints.

The heavy mutation is performed by disturbing all the exams in one or more periods

in the timetable. The periods to be disturbed are determined by the procedure from

Burke et al. (1995c). After applying the two mutation operators at any time to every

parent population member, the subsequent generation’s parent population is populated

by performing roulette wheel selection on the combined parent and child set.

Results indicate that the OBSI strategy gives not only relatively high quality solutions

compared to other initialisation approaches, but that these solutions are e↵ective for seed-

ing an e�cient population-based search. The results for most problem instances using

OBSI result in a final solution surpassing the quality of runs using other initialisation

strategies (see Tables 3.5 and 3.6 for the results of the ITC 2007 and Yeditepe problems

respectively).

100

3. A New Initialisation Method for Examination Timetabling Heuristics

P
ro
b
le
m

O
B
S
I

L
D

LW
D

L
E

S
D

R
D

In
st
an

ce
M
ed
ia
n

M
A
D

M
ed
ia
n

M
A
D

M
ed
ia
n

M
A
D

M
ed
ia
n

M
A
D

M
ed
ia
n

M
A
D

M
ed
ia
n

M
A
D

E
xa

m
1

1
2
9
5
5

50
9.
5

16
80

2
58
0.
5

15
92
0.
5

18
9

15
73
9

13
6

15
50
8.
5

35
0.
5

15
73
1

17
8.
5

E
xa

m
2

2
2
2
8
.5

27
3.
5

54
50

.5
53
2

39
61

20
4.
5

39
42
.5

63
.5

39
04

11
2

38
23

13
2.
5

E
xa

m
3

1
7
4
4
2
.5

82
.5

27
45

7.
5

10
0

27
36
4.
5

57
.5

28
16
6

41
0.
5

27
96
3

10
8.
5

32
17
4.
5

14
59
.5

E
xa

m
4

2
4
3
4
5
.5

51
0

-
-

-
-

-
-

32
66
4.
5

95
7

-
-

E
xa

m
5

7
1
1
3
.5

24
0.
5

24
57
4.
5

18
67
.5

18
24
5

32
6.
5

16
83
1

81
.5

16
79
4.
5

61
0.
5

17
74
3.
5

12
4.
5

E
xa

m
6

2
9
3
1
0

12
32

14
2.
5

47
.5

32
52
0

20
0

31
70
0

12
0

31
56
7.
5

10
2.
5

31
81
2.
5

10
5

E
xa

m
7

1
8
4
6
0
.5

12
39

86
0.
5

11
90
.5

35
72
6

12
9.
5

35
89
3.
5

55
4

34
58
7.
5

32
6

32
94
1

23
0

E
xa

m
8

1
5
8
3
7
.5

19
0

20
07
7

96
5.
5

18
09
7.
5

46
3.
5

17
49
0

91
.5

17
35
8.
5

25
9

-
-

E
xa

m
9

1
5
3
0
.5

34
.5

20
95
.5

57
20
39
.5

18
20
20
.5

43
.5

19
73
.5

22
.5

20
06
.5

37
.5

E
xa

m
10

1
5
2
1
9

44
6

17
94
8.
5

16
5

17
66
9

55
17
50
9.
5

14
6

17
62
0

14
8.
5

17
50
2.
5

13
3

E
xa

m
11

5
4
5
9
4
.5

59
3.
5

87
94

0
43
22

-
-

-
-

79
34
6

47
2.
5

89
33
5.
5

38
55

E
xa

m
12

6
3
4
0
.5

79
.5

75
43

95
.5

75
87

13
3

75
02

82
74
58
.5

10
7

76
50

18
2

Table 3.5 Median best solution cost EA results over 30 runs and Median Absolute Deviation (MAD)
after 8 minutes (per run) — ITC2007 problems. Notation as in Table 3.3.

101

3. A New Initialisation Method for Examination Timetabling Heuristics

P
ro
b
le
m

O
B
S
I

L
D

LW
D

L
E

S
D

R
D

In
st
an

ce
M
ed

ia
n

M
A
D

M
ed

ia
n

M
A
D

M
ed

ia
n

M
A
D

M
ed

ia
n

M
A
D

M
ed

ia
n

M
A
D

M
ed

ia
n

M
A
D

Y
U
E
20

01
1

1
1
2

7.
5

25
7

15
24

0
13

24
1

9.
5

23
1.
5

14
24

6.
5

5.
5

Y
U
E
20

01
2

2
1
9

18
35

5.
5

10
-

-
-

-
37

5
7

36
4.
5

10
.5

Y
U
E
20

01
3

4
1

7.
5

55
.5

5
56

6
54

10
56

8
59

7

Y
U
E
20

02
1

1
8
1

14
.5

38
2.
5

11
-

-
-

-
37

4.
5

12
36

4
13

Y
U
E
20

02
2

3
4
1
.5

34
.5

56
8.
5

21
.5

54
2.
5

5.
5

55
1.
5

11
.5

56
1.
5

11
.5

56
3

15

Y
U
E
20

02
3

7
1
.5

6
10

0.
5

8.
5

98
12

92
.5

13
.5

10
7.
5

12
10

7
10

.5

Y
U
E
20

03
1

3
2
7
.5

18
58

7.
5

11
.5

56
9

21
.5

56
4

12
54

1.
5

24
57

0
9.
5

Y
U
E
20

03
2

6
4
7

21
.5

-
-

-
-

-
-

88
8

13
.5

-
-

Table 3.6 Median best solution cost EA results over 30 runs and Median Absolute Deviation (MAD)
after 8 minutes (per run) — Yeditepe problems. Notation as in Table 3.3.

102

3. A New Initialisation Method for Examination Timetabling Heuristics

In addition, I now further expand the discussion on why and how much the proposed OBSI

contributes to better scheduling results. One of the critical factors in the development of

meta-heuristic approaches is the connectivity of the search space. This is largely defined

by the initialisation method used and can significantly impact the quality of solutions

obtained. As shown by several studies, a good initial solution can help to obtain better

final solutions (Burke and Newall, 2003, 2004; Gogos et al., 2012). If the search technique

starts from location(s) in the search space that is highly connected within good regions, it

helps the search technique to yield final high-quality results. However, the global optimum

will be di�cult to reach if the technique starts searching from an area (i.e. a bad region)

that is isolated from the global optimum. Therefore, the reliance on the initial solution

becomes significant for the success of the improvement approach (Burke et al., 2010a).

In the case of the examination timetabling problem, this problem has a large, complex,

and constrained search space. The main contribution of the proposed initialisation method

is to guide the search technique to start optimisations from promising areas (i.e. those

having fewer soft constraint violations) in the search space. In contrast, there are many

initialisation methods commonly used in this problem, such as random initialisation. The

possibility of constructing an infeasible solution is high due to hard constraints violations.

Moreover, the algorithm often starts searching in a bad region of the search space as all

soft constraints are neglected during the construction phase. Consequently, the quality of

obtaining a feasible solution is often low.

The OBSI initialises with the Front List, including all the examinations with a specific

ordering. Unscheduled examinations that cannot be assigned to any period in the first

section still have a higher possibility of getting valid periods in other sections to be sched-

uled. This typically avoids getting stuck during the construction process. Thus, the OBSI

can guarantee to generate high-quality solutions across all problem instances of considered

datasets as shown in Tables 3.3 and 3.4. On the other hand, from Table 3.7, we observe

that using the random initialisation may produce a feasible solution in some problem in-

stances. However, infeasible (i.e. incomplete) examination timetables can be obtained as

the case in Exam 4 and Exam 8 since it gives priority of adding examinations to peri-

ods sequentially, and that can lead to the methods to be stuck in some steps during the

process of building the exam timetable due to hard constraints violations. Furthermore,

the random initialisation is unable to return a solution that is equivalently good to the

proposed initialisation method.

Table 3.7 shows the comparison of the initialisation and improvement approach (i.e. EA)

with the OBSI as well as RD. We extract the results obtained by the OBSI and RD from

Tables 3.3 and 3.5 in order to easily quantify the e↵ectiveness of the OBSI compared

to RD on the final scheduling results. The results clearly show that the OBSI have

performed significantly better than the RD. Before proceeding to the improvement phase,

for instance, the median cost for the OBSI in Exam 1 of the ITC 2007 was 27987.5, and

after applying the improvement approach, the result shows a remarkable increase in the

solution quality where the median cost became 12955. While the median cost for the RD

in the same problem instance was 39630, and then the median cost was decreased to a

value more than the OBSI, which is 15731. This revealed that the EA performed badly

103

3. A New Initialisation Method for Examination Timetabling Heuristics

in comparison, as shown in Table 3.7 when starting from solutions constructed by the

RD. However, the situation changed the performance of the EA when using the OBSI.

Therefore, the greatest benefit of this method (i.e. OBSI) is the initialising of solutions

in ‘good’ areas of design space where it greatly increased the performance of the EA and

final solutions quality in most problem instances.

Problem

Instance

OBSI RD

Initialisation Optimisation Initialisation Optimisation

Exam1 27987.5 12955 39630 15731

Exam2 26661 2228.5 150514.5 3823

Exam3 72713 17442.5 249617.5 32174.5

Exam4 50139 24345.5 - -

Exam5 74394.5 7113.5 319573.5 17743.5

Exam6 50190 29310 63957.5 31812.5

Exam7 49253 18460.5 64212.5 32941

Exam8 114559 15837.5 - -

Exam9 7705.5 1530.5 11646 2006.5

Exam10 66741 15219 127559.5 17502.5

Exam11 218227.5 54594.5 334398.5 98335.5

Exam12 10995.5 6340.5 13277.5 7650

Table 3.7 Comparison between the results obtained from OBSI and RD in initialisation and opti-
misation phases. The hyphen symbol ‘-’ means the method cannot produce feasible solutions for
the corresponding problem instance.

With regards to the computing time, the one notable disadvantage to the proposed OBSI

described is that it takes a considerable larger computational time on large problem in-

stances of the ITC 2007, which can be as much as graph colouring heuristics (as shown

in Tables 3.3 and 3.4). However, the OBSI is capable of saving a considerable amount

of time to reach high-quality solutions compared to the RD. As such, the time to gener-

ate the feasible examination timetable is not a significant issue for real-world timetabling

problems, as the examination timetable is often only taken once or twice a year where it

is usually carried out one to two months before the examinations take place.

3.5 Analysis of Results

3.5.1 Statistical Test Method

We analyse our results by conducting statistical tests, as shown in Tables 3.3, 3.4, 3.5,

and 3.6 using the Mann-Whitney U test (Mann and Whitney, 1947) (also referred to as

Mann–Whitney Wilcoxon test (Wilcoxon, 1950)) followed by the Holm-Bonferroni method

to compensate for multiple hypothesis testing.

104

3. A New Initialisation Method for Examination Timetabling Heuristics

3.5.2 Statistical Analysis

For the statistical analysis, the Mann-Whitney U test was performed first, followed by

the Holm-Bonferroni method as a post hoc method for obtaining the adjusted p-value for

each comparison between a control method (i.e. the OBSI method is considered the best

performing method) in the initialisation phase and the rest (Holm, 1979; Gaetano, 2018).

The aim of the post-hoc method is to verify if significant di↵erences were detected and

to show results are significantly better than all others. Tables 3.8 and 3.9 present the

adjusted (Mann-Whitney U test) p-value and the further results of the post-hoc methods

(Holm-Bonferroni test) on the ITC 2007 and Yeditepe datasets, respectively.

For most instances of the ITC 2007 dataset (as shown in Table 3.8), it can be observed

that the p-value and Holm’s p-value correction for any results between two approaches (i.e.

the control approach (OBSI approach) and another approach) are significantly di↵erent

(SIG) which indicates that the corrected p-value is below the critical level (↵ = 0.05).

Whereas for instances from Yeditepe dataset, the p-value for the observed results in Table

3.9 is more than 0.05, indicating that the di↵erence between the results is not statistically

significant (p � ↵).

The Mann-Whitney U-test was also used to identify di↵erences between results when EA

was incorporated with the OBSI and other methods (i.e. LD, LWD, LE, SD, and RD)

in phase 2. A post-hoc test (Holm–Bonferroni method) were also performed for multiple

comparison correction and comparing di↵erences among these observed results. Tables

3.10 and 3.11 present the adjusted (Mann-Whitney U test) p-value and the further results

of the post-hoc methods (Holm-Bonferroni test) on the ITC 2007 and Yeditepe datasets,

respectively. According to these results, statistically significant di↵erences were found in

this phase.

105

3. A New Initialisation Method for Examination Timetabling Heuristics

3.5.2.1 Phase 1: Initialisation

Exam1 Exam2

OBSI vs. p-value P.Holm Outcome OBSI vs. p-value P.Holm Outcome

LD 1.03E-02 0.0106 SIG LD 1.46E-10 4.3929E-10 SIG

LWD 2.20E-03 0.0084 SIG LWD 2.60E-08 5.203E-08 SIG

LE 2.10E-03 0.0084 SIG LE 3.52E-07 3.5201E-07 SIG

SD 8.99E-11 3.59736E-10 SIG SD 5.30E-03 0.0106 SIG

RD 3.02E-11 1.50995E-10 SIG RD 3.02E-11 1.50995E-10 SIG

Exam3 Exam4

OBSI vs. p-value P.Holm Outcome OBSI vs. p-value P.Holm Outcome

LD 2.44E-09 9.7544E-09 SIG LD - - -

LWD 1.01E-08 2.021E-08 SIG LWD - - -

LE 31.56E-08 2.021E-08 SIG LE - - -

SD 6.52E-09 1.95549E-08 SIG SD 2.28E-01 0.2282 NON SIG

RD 3.02E-11 1.50995E-10 SIG RD - - -

Exam5 Exam6

OBSI vs. p-value P.Holm Outcome OBSI vs. p-value P.Holm Outcome

LD 1.46E-10 4.3929E-10 SIG LD 1.56E-02 0.0624 NON SIG

LWD 2.60E-08 5.203E-08 SIG LWD 5.75E-02 0.1725 NON SIG

LE 3.52E-07 3.5201E-07 SIG LE 3.56E-01 0.711 NON SIG

SD 5.30E-03 0.0106 SIG SD 4.64E-01 0.711 NON SIG

RD 3.02E-11 1.50995E-10 SIG RD 9.92E-11 4.9593E-10 SIG

Exam7 Exam8

OBSI vs. p-value P.Holm Outcome OBSI vs. p-value P.Holm Outcome

LD 2.92E-09 1.1686E-08 SIG LD 2.60E-03 0.0052 SIG

LWD 3.20E-09 1.1686E-08 SIG LWD 2.01E-04 0.00080232 SIG

LE 4.18E-09 1.1686E-08 SIG LE 6.91E-04 0.00207375 SIG

SD 4.64E-01 0.711 SIG SD 8.30E-03 0.0083 SIG

RD 2.88E-06 0.000002879 SIG RD - - -

Exam9 Exam10

OBSI vs. p-value P.Holm Outcome OBSI vs. p-value P.Holm Outcome

LD 3.26E-02 0.0326 SIG LD 8.42E-01 1 NON SIG

LWD 8.70E-03 0.0174 SIG LWD 4.73E-01 1.000 NON SIG

LE 1.20E-03 0.0048 SIG LE 7.28E-01 1.000 NON SIG

SD 5.10E-03 0.0153 SIG SD 6.95E-01 1.000 NON SIG

RD 2.37E-10 1.18575E-09 SIG RD 3.02E-11 1.50995E-10 SIG

Exam11 Exam12

OBSI vs. p-value P.Holm Outcome OBSI vs. p-value P.Holm Outcome

LD 7.73E-01 1.000 NON SIG LD 4.60E-03 0.0138 SIG

LWD - - - LWD 5.00E-03 0.0138 SIG

LE - - - LE 1.70E-02 0.017 SIG

SD 8.30E-01 1 NON SIG SD 1.20E-03 0.0048 SIG

RD 3.69E-11 1.10691E-10 SIG RD 1.78E-04 0.0008918 SIG

SIG : the corrected p-value of rank j is significant, p < ↵

NON SIG : the corrected p-value is not significant, p � ↵

Table 3.8 Adjusted (Mann-Whitney U Test) p-values on the ITC 2007 datasets. The hyphen
symbol ‘-’ means the method cannot produce feasible solutions for the corresponding problem
instance.

106

3. A New Initialisation Method for Examination Timetabling Heuristics

YUE20011 YUE20012

LE vs. p-value P.Holm Outcome LD vs. p-value P.Holm Outcome

OBSI 3.00E-11 1.49765E-10 SIG OBSI 2.98E-11 2.98E-11 SIG

LD 3.20E-03 0.0128 SIG SD 8.29E-05 8.29E-05 SIG

SD 1.83E-02 0.0549 NON SIG RD 4.70E-03 4.70E-03 SIG

RD 5.06E-01 1.000 NON SIG LE - - -

LWD 5.39E-01 1 NON SIG LWD - - -

YUE20013 YUE20021

LWD vs. p-value P.Holm Outcome SD vs. p-value P.Holm Outcome

OBSI 1.13E-06 5.6345E-06 SIG OBSI 3.00E-11 9.003E-11 SIG

RD 2.51E-01 1.000 NON SIG RD 1.62E-01 0.3244 NON SIG

SD 6.20E-01 1.000 NON SIG LD 0.169 0.3244 NON SIG

LD 9.65E-01 1.000 NON SIG LE - - -

LE 9.76E-01 1 NON SIG SD - - -

YUE20022 YUE20023

LE vs. p-value P.Holm Outcome LE vs. p-value P.Holm Outcome

OBSI 2.99E-11 1.49675E-10 SIG OBSI 3.15E-06 0.000015755 SIG

LWD 4.50E-03 0.018 SIG RD 5.10E-03 0.0204 SIG

LD 3.70E-02 0.111 NON SIG SD 5.27E-02 0.1581 NON SIG

RD 6.33E-02 0.1266 NON SIG LD 2.40E-01 0.4792 NON SIG

SD 1.49E-01 0.149 NON SIG LWD 2.49E-01 0.4792 NON SIG

YUE20031 YUE20032

SD vs. p-value P.Holm Outcome SD vs. p-value P.Holm Outcome

OBSI 2.96E-11 1.479E-10 SIG OBSI 3.00E-11 3.0047E-11 SIG

LD 7.58E-08 3.03364E-07 SIG LD - - -

RD 1.20E-05 0.000036096 SIG RD - - -

LWD 1.30E-03 0.0026 SIG LWD - - -

LE 1.18E-02 0.0118 SIG LE - - -

Table 3.9 Adjusted (Mann-Whitney U Test) p-values on the Yeditepe datasets. Notation as in
Table 3.8

107

3. A New Initialisation Method for Examination Timetabling Heuristics

3.5.2.2 Phase 2: Optimisation

Exam1 Exam2

OBSI + EA vs. p-value P.Holm Outcome p-value P.Holm Outcome

LD + EA 3.01E-11 1.50425E-10 SIG 3.01E-11 1.50425E-10 SIG

LWD + EA 3.01E-11 1.50425E-10 SIG 8.12E-11 1.50425E-10 SIG

LE + EA 3.01E-11 1.50425E-10 SIG 3.01E-11 1.50425E-10 SIG

SD + EA 3.01E-11 1.50425E-10 SIG 3.01E-11 1.50425E-10 SIG

RD + EA 3.01E-11 1.50425E-10 SIG 3.01E-11 1.50425E-10 SIG

Exam3 Exam4

OBSI vs. p-value P.Holm Outcome p-value P.Holm Outcome

LD + EA 3.01E-11 1.4827E-10 SIG - - -

LWD + EA 3.00E-11 1.4827E-10 SIG - - -

LE + EA 3.00E-11 1.4827E-10 SIG - - -

SD + EA 2.97E-11 1.4827E-10 SIG 3.01E-11 3.0123E-11 SIG

RD + EA 2.98E-11 1.4827E-10 SIG - - -

Exam5 Exam6

OBSI vs. p-value P.Holm Outcome p-value P.Holm Outcome

LD + EA 3.00E-11 1.4958E-10 SIG 2.98E-11 1.4911E-10 SIG

LWD + EA 3.00E-11 1.4958E-10 SIG 3.00E-11 1.4911E-10 SIG

LE + EA 2.99E-11 1.4958E-10 SIG 2.99E-11 1.4911E-10 SIG

SD + EA 3.00E-11 1.4958E-10 SIG 2.99E-11 1.4911E-10 SIG

RD + EA 3.00E-11 1.4958E-10 SIG 2.99E-11 1.4911E-10 SIG

Exam7 Exam8

OBSI vs. p-value P.Holm Outcome p-value P.Holm Outcome

LD + EA 3.00E-11 1.49955E-10 SIG 3.00E-11 1.19964E-10 SIG

LWD + EA 3.00E-11 1.49955E-10 SIG 3.00E-11 1.19964E-10 SIG

LE + EA 3.00E-11 1.49955E-10 SIG 8.93E-11 1.7869E-10 SIG

SD + EA 3.00E-11 1.49955E-10 SIG 1.60E-10 1.7869E-10 SIG

RD + EA 3.00E-11 1.49955E-10 SIG - - -

Exam9 Exam10

OBSI vs. p-value P.Holm Outcome p-value P.Holm Outcome

LD + EA 3.01E-11 1.5052E-10 SIG 3.02E-11 1.5071E-10 SIG

LWD + EA 3.01E-11 1.5052E-10 SIG 3.02E-11 1.5071E-10 SIG

LE + EA 3.02E-11 1.5052E-10 SIG 3.02E-11 1.5071E-10 SIG

SD + EA 3.02E-11 1.5052E-10 SIG 3.01E-11 1.5071E-10 SIG

RD + EA 3.02E-11 1.5052E-10 SIG 3.02E-11 1.5071E-10 SIG

Exam11 Exam12

OBSI vs. p-value P.Holm Outcome p-value P.Holm Outcome

LD + EA 3.02E-11 9.0597E-11 SIG 3.01E-11 1.50425E-10 SIG

LWD + EA - - - 3.01E-11 1.50425E-10 SIG

LE + EA - - - 3.01E-11 1.50425E-10 SIG

SD + EA 3.02E-11 9.0597E-11 SIG 3.01E-11 1.50425E-10 SIG

RD + EA 3.02E-11 9.0597E-11 SIG 3.01E-11 1.50425E-10 SIG

Table 3.10 Adjusted (Mann-Whitney U Test) p-values on the ITC 2007 datasets. Notation as in
Table 3.8

108

3. A New Initialisation Method for Examination Timetabling Heuristics

YUE20011 YUE20012

OBSI + EA vs. p-value P.Holm Outcome p-value P.Holm Outcome

LD + EA 3.00E-11 1.49485E-10 SIG 2.10E-03 0.0054 SIG

LWD + EA 1.71E-01 0.3428 NON SIG - - -

LE + EA 5.70E-03 0.0285 SIG - - -

SD + EA 2.24E-02 0.0896 NON SIG 1.80E-03 0.0054 SIG

RD + EA 8.94E-01 0.8941 SIG 4.92E-01 0.4917 NON SIG

YUE20013 YUE20021

OBSI vs. p-value P.Holm Outcome p-value P.Holm Outcome

LD + EA 3.01E-11 1.4827E-10 SIG 3.01E-11 9.003E-11 SIG

LWD + EA 3.00E-11 1.4827E-10 SIG - - -

LE + EA 3.00E-11 1.4827E-10 SIG - - -

SD + EA 2.97E-11 1.4827E-10 SIG 3.00E-11 9.003E-11 SIG

RD + EA 2.98E-11 1.4827E-10 SIG 3.00E-11 9.003E-11 SIG

YUE20022 YUE20023

OBSI vs. p-value P.Holm Outcome p-value P.Holm Outcome

LD + EA 3.00E-11 1.4939E-10 SIG 4.70E-09 1.87976E-08 SIG

LWD + EA 3.00E-11 1.4939E-10 SIG 4.79E-08 1.32705E-07 SIG

LE + EA 2.99E-11 1.4939E-10 SIG 3.15E-06 0.000003151 SIG

SD + EA 2.99E-11 1.4939E-10 SIG 4.42E-08 1.32705E-07 SIG

RD + EA 3.00E-11 1.4939E-10 SIG 6.02E-10 3.0092E-09 SIG

YUE20031 YUE20032

OBSI + EA vs. p-value P.Holm Outcome p-value P.Holm Outcome

LD + EA 3.00E-11 1.49955E-10 SIG - - -

LWD + EA 3.00E-11 1.49955E-10 SIG - - -

LE + EA 3.00E-11 1.49955E-10 SIG - - -

SD + EA 3.00E-11 1.49955E-10 SIG 3.00E-11 3.0047E-11 SIG

RD + EA 3.00E-11 1.49955E-10 SIG - - -

Table 3.11 Adjusted (Mann-Whitney U Test) p-values on the Yeditepe datasets. Notation as in
Table 3.8

3.6 Summary

This chapter has presented a detailed description of a new strategy for constructing initial

examination timetables. A number of initialisation approaches (i.e. di↵erent graph colour-

ing heuristics and random initialisation) have been presented in this chapter. Comparing

with other popular initialisation strategies, our results demonstrate that this strategy sta-

tistically outperforms graph heuristic and random approaches on nearly all of the ITC

2007 benchmark instances for both quality and diversity and also on some of Yeditepe

benchmark instances for quality. Furthermore, incorporation within a simple EA has

demonstrated the advantage that using OBSI to generate an initial population of high

quality and diverse solutions provides in the final timetables returned post optimisation.

This is for the same total time cost (initialisation time plus optimisation time).

In the next section, we present an new approach to improve solutions where the proposed

initialisation method is used in the construction phase.

109

Chapter 4

An Exam Specialised Genetic

Algorithm for Examination

Timetabling Problem

4.1 Introduction

This chapter proposes a novel Genetic Algorithm (GA) variant. The new variant is called

the Exam Specialised Genetic Algorithm (ESGA) and aims to solve the examination

timetabling problem. A variety of novel methods and operators are applied to the GA

to tackle particular problems of timetabling. These operators attempt to prevent various

types of violation, including directed, as well as undirected mutations, which are applied

to examinations or periods.

The chapter describes several mutation types that are applied to certain individuals under

specific circumstances. These include new methods that aim to avoid early convergence

and to control the size of mutations and the probability of a mutation being applied. This

can allow an appropriate balance to be achieved between exploration and exploitation.

To ensure a fair comparison, both the proposed algorithm and the Basic GA use the OBSI

method to generate the initial population. Three popular benchmark sets are used for the

testing, and we also compare to an extensive range of published results.

The chapter is structured as follows. Section 4.2 discusses applying GAs to examination

timetabling problems. Examination solution representation is given in Section 4.3. Pro-

posed modifications to the basic GA are presented in Section 4.4. Section 4.5 describes the

enhanced roulette wheel selection strategy. Section 4.6 presents the proposed algorithm,

and Section 4.7 presents and discusses the experimental results. The chapter ends with

the summary in Section 4.8.

110

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

4.2 Genetic Algorithm for Examination Timetabling

A recent survey of GAs for solving examination timetabling problems was conducted by

Adnan et al. (2018). This survey showed GAs’ ability to solve optimisation problems and

that they perform well in examination timetabling problem. In the work presented in this

chapter, GAs are chosen to solve examination timetabling problems, since they are known

for their validity (Pelikan, 2010; Sani and Yabo, 2016) in solving complex combinatorial

problems. Moreover, GAs have the ability and flexibility to search in complicated, large

spaces (Montana et al., 1998). Ross et al. (1994), Dhande et al. (2012), and Adnan

et al. (2018) considered GAs as one of the most forceful tools in solving exam timetabling

problems. In addition to that, GAs are characterised by being adaptive search algorithms

(Juang et al., 2007). Corne et al. (1993), Corne et al. (1994b), Paechter et al. (1994), and

Burke et al. (1994a) have also used GAs to solve the problems of examination timetabling.

However, they revealed that conventional GAs need to be enhanced if they are to generate

good solutions to the examination timetabling problem. Furthermore, the e↵ectiveness of

a GA is highly dependent on the changes made to its parameters. Therefore, a GA needs

often intelligent settings to be provided to its parameters such as population size, crossover

rate, mutation rate and type, the number of generations, and selection operators.

Figure 4.1 shows an example of a GA for solving examination timetabling problems. At

the initialisation of the algorithm, a conflict matrix (Burke and Newall, 1999) is created.

This N by N matrix is utilised with the aim of enabling competent conflict checking. For

generating the initial population, a number of graph colouring heuristics are used. Then,

the fitness function, which sums up all violations of all constraints, evaluates the overall

quality of each individual in the initial population. In order for the algorithm to function

e↵ectively, the selection operator must randomly select parents from the population, but

in such a way that better parents have a higher probability of being chosen (this is called

evolutionary pressure). In this approach, it is anticipated that, on average, a child will

have a higher quality, and that, after entering the population and replacing a less desirable

solution, the population’s overall quality will improve. Subsequently, the crossover and

mutation operators are applied to the selected solution (chromosome). Crossover occurs

when genetic information is exchanged between two randomly chosen partners, resulting in

one or more o↵spring with chromosomes that are unique from their parents. The mutation

is the process of changing allele values in a chromosome at random in order to produce

genetic variety. Thereafter, if an o↵spring is infeasible, a repair procedure is used on the

o↵spring to remove duplicate examinations and assign missing examinations at random to

restore the o↵spring’s feasibility. Finally, the best o↵spring are selected after revaluating

each one. The process is repeated until a termination condition is satisfied or a certain

number of generations has been attained.

Based on this, an exam specialised genetic algorithm is proposed in this chapter to solve

the examination timetabling problem. As such solutions are often modified using a repair

function, which might influence the algorithm’s performance (Osaba et al., 2014; Norgren

and Jonasson, 2016). Various sets of mutations are introduced by the proposed method

(violation directed, blind, heavy, light), as well as new operators and strategies to explore

111

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Start

Initialise Population

Fitness Evaluation

Stopping

Condition

End

Selection

Crossover

Mutation

Is

offspring

feasible?

Repair Function

No

NoYes

Output the best

exam timetable

Yes

Generate Conflict Matrix

G
e

n
e

tic
 O

p
e

r
a

to
r
s

Figure 4.1 An example of GA for solving examination timetabling problem.

the solution space e↵ectively and exploit it e�ciently so that high quality solutions are

produced. The crossover operator is eliminated since it caused premature convergence,

which is unavoidable in this domain, i.e. individuals are inclined to be similar. Also,

infeasible solutions are often generated in a highly constrained combinatorial optimisation

problem like the examination timetabling problem. Therefore, a repair function is required

to fix the infeasible solutions, which in turn increases the execution time significantly. On

the other hand, a mutation is a tiny change to an individual that takes much less time

than a crossover operator (De Giovanni et al., 2013). Beligiannis et al. (2008) proposed

an algorithm to create feasible and e�cient timetables for high schools in Greece and to

show that mutation is su�cient to provide new good solutions for population evolution

and that the crossover operator does not provide a satisfactory contribution, and it adds

an excessive amount of complexity and time delay. Their experimental results were better

if a crossover was not used since it led to very slow convergence (and sometimes even

not to convergence) and also changed the location where the search took place because it

applied very large steps in the search space due to the large number of changes in each

chromosome. Ross et al. (1994) suggested just employing the mutation operator to create

o↵spring solutions for addressing timetabling problems in their institutions. Their method

outperformed a genetic algorithm that used a uniform crossover operator, according to

their test data. According to Reeves and Wright (1995), modest steps in the search space

112

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

should be taken. Using a crossover operator, clearly, does not do this. As a result, it was

decided that crossover would not be used. Finally, an evolutionary algorithm (based solely

on mutation and survivor selection functions) is more e↵ective than a standard genetic

algorithm in solving combinatorial optimisation problems, according to the results of the

experiments of Osaba et al. (2013).

4.3 Examination Solution Representation

Each examination timetable is represented as a chromosome, and its exams are the genes.

According to the literature, there are two methods to represent exam timetables in a GA:

direct and indirect representation. In a “direct” representation (Adamidis and Arapakis,

1999), all event attributes (day, period, room, etc.) are explicitly encoded as a vector of

positive integer numbers. As a result, the GA must decide on all timetable parameters

and o↵er a complete and constraint-free schedule in these circumstances. This approach

leads to a huge search space in which solutions that satisfy all hard constraints appear to

be like finding needles in a haystack. Therefore, by this representation, it could produce

infeasible solutions (Rothlauf, 2002; Algethami et al., 2016) that require a repair function,

which is often computationally costly in examination timetable problems and could have

an impact on the algorithm’s performance (Osaba et al., 2014; Norgren and Jonasson,

2016).

To simplify the direct representation even further, a list of the numbers is created of a

certain length. This represents the exams to be arranged or scheduled, where each of the

elements is between 1 and p (representing the available number of periods). Interpreting

this chromosome is as follows: when the nth number on the list is p, exam e is then

scheduled or planned to take place at period p. The chromosome [8,11,6,1,2,5,1,2,3,6], for

instance, represents a specific candidate solution, where exam1 occurs at period8, exam2

occurs at period11, and so on.

[3,7,9,2,1,10,4,5,8,11] represents a di↵erent chromosome. A certain point (i.e. crossover

point) is chosen randomly, let’s say 3, and a crossover is performed to produce two children,

as illustrated in Figure 4.2. This evolutionary cycle is repeated many times until an ideal

timetable can be located or until a specific maximum number of generations is reached.

The mutation operator alters the features of copy of a current “parent” as illustrated in

Figure 4.3. After this mutation, exam8, which occurs at period2 will be at period5. After

the genetic operators (crossover in addition to mutation), a repair algorithm is utilised

with the aim of repairing an infeasible solution, which aims at fixing any non-feasible

timetables that are produced in this process.

113

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Parent Chromosome 1:
Exam

8
Parent Chromosome 2:
Exam

11 6 21 5 1 2 63
1 2 3 4 5 6 7 8 9 10

3 7 9 12 10 4 5 118
1 2 3 4 5 6 7 8 9 10

8 11 6 12 10 4 5 118
1 2 3 4 5 6 7 8 9 10

3 7 6 21 5 1 2 63
1 2 3 4 5 6 7 8 9 10

Child Chromosome 1:
Exam

Child Chromosome 2:
Exam

Figure 4.2 Representation and Crossover Parent.

Parent Chromosome 1:
Exam

8
Child Chromosome 2:
Exam

11 6 21 5 1 2 63
1 2 3 4 5 6 7 8 9 10

8 11 6 21 5 1 5 63
1 2 3 4 5 6 7 8 9 10

Figure 4.3 The Mutation Parent.

In “indirect” representations (Paechter et al., 1996), the encoded solution (chromosome)

often comprises an ordered list of events that are inserted into the timetable using a prede-

termined technique (or “timetable builder”). While monitoring the problem’s restrictions,

the timetable builder can utilize any mix of heuristics and local search to insert events

into the timetable. Indirect representation for the ESGA implementation of this study is

employed via optimised data structures that preserve all the essential input information

in every solution in such a way that the algorithm verifies that all of the hard restrictions

have been met before performing any type of mutation. This eliminates the need for the

ESGA to do repairs. In general, compared to basic direct methods, using an indirect rep-

resentation of the timetable considerably increases the e�ciency of timetable generation

(Paechter et al., 1994).

There are numerous encodings for the same problem, such as directly encoding a candi-

date solution or indirectly encoding parameters/features for a constructive algorithm that

generates a candidate solution. In addition to the features listed above, it is simple and

easy to estimate mutation e↵ects in the direct representation. Moreover, chromosomal

interpretation is quick (resulting in faster fitness evaluation). In contrast, the indirect

representation frequently involves the use of a constructive algorithm to easily exploit do-

114

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

main knowledge — (e.g., in the constructive heuristic), it is also capable of significantly

reducing the size of the search space but with slow interpretation as well as the possibil-

ity of encoding away undesirable features, and finally, its neighbourhoods are extremely

rugged (Brabazon and O’Neill, 2006). However, according to the findings of Brabazon

and O’Neill (2006), problem-specific knowledge should be included in the representation

of solutions to the scheduling problem, and the chromosomal representation should be

natural. It should contain all relevant details and be directly connected to the original

problem.

Figure 4.4 shows the implemented indirect representation in this thesis. Regarding the

software implementation, the solution can be constructed through the creation of a list

of periods as ‘objects’ that comprises further room objects, which in turn contain exam

objects. Each of the object types possesses its individual properties, which are utilised for

checking hard, as well as soft constraints before the rescheduling of the examinations in

any of the examination rooms for a specific period. For instance, when the algorithm aims

to reschedule a specific exam in a specific period, the exam’s duration property has to be

compared against the period’s duration property to fulfil the period duration’s constraint.

Another example is that when rescheduling an exam that has an ‘after’ constraint like

exam2 after exam1 in a new period, the proposed algorithm checks whether exam1 exists

in the exam list property of any period before that period. This representation enables us

to implement the ESGA and prevents us from using a repair algorithm that needs a high

computing cost to regenerate feasible solutions, particularly when more constrained ITC

2007 datasets are used.

Room#0 exam4	,	exam1	,	exam3

exam37

exam8	,	exam6	

Room#1
...

Room#N

Room#0 exam10	,	exam25	,	exam22

exam7	,	exam2	,	exam8

exam77	,	exam21	

Room#1
...

Room#N

Room#0 exam20

exam26	,	exam44	

exam18	,	exam60	,	exam42	,	examN

Room#1
...

Room#N

PeriodsList

Pe
ri
od
#0

Pe
ri
od
#1

Pe
ri
od
#N

.

.

.
...

...

...

...

Figure 4.4 Chromosome representing a solution.

115

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

4.4 Proposed Modifications to the Basic Genetic Algorithm

This work mainly involves tackling the traditional genetic algorithm’s drawbacks when

trying to solve the examination timetable problems by proposing specific modifications to

the basic GA. In that regard, this work includes the following objectives:

1. To test a GA-based optimiser on the ITC 2007 and Yeditepe benchmark sets for the

first time (as far as the author is aware). See Tables 2.15, 2.16, and 2.17 in Chapter

2.

2. To design new mutation operators so that an e↵ective balance is achieved between

exploration and exploitation in this application domain.

3. To adapt several parameters such as mutation probability and mutation size, which

are relative to the number of periods and/or the number of exams in a given timetable

to make all the mutation operators suitable and applicable to any timetable. In

this work, the selection of the parameter values, mutation probability values and

mutation size values were carried out based on experimental tuning studies, whereby

a reasonable balance is considered between the solution quality and the computation

time.

4. To propose a probabilistic selection technique in order to prevent the solutions from

being too similar after many generations (premature convergence).

5. To eliminate the crossover phase, which substantially increases the execution time of

the genetic algorithm that is applied to the examination timetable problem, without

improving the results (following the work of Ross et al. (1994), Burke et al. (1995c),

Reeves and Wright (1995), Beligiannis et al. (2008), and Osaba et al. (2013)).

6. To introduce optimised data structures to represent the solution in such a way that

the algorithm is able to check that all the hard constraints are satisfied before ap-

plying any type of mutation. This enables the ESGA to obviate need for a repair

function, which is often computationally expensive in examination timetable prob-

lems.

7. To utilise room resources e↵ectively and e�ciently by regularly reordering all the

rooms of any period according to the available seats at any time an examination

is scheduled in a specific period. In this way, the process of rescheduling aims at

timetabling the examinations in the room with the least number of available seats

first, then the room with the highest number of the available seats, and so forth.

There are two phases in this overall approach. In the first phase, the focus is placed on

the evolving timetables. These timetables meet hard constraints. In the second phase,

meanwhile, the focus is on improving the timetables generated in the first phase by min-

imising the soft constraint values. Also, each timetable can be characterised as a list,

which comprises the available periods in a specific exam session. Each period comprises

the predefined room list, which involves as many exams as possible based on fulfilling the

116

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

constraints that are stipulated, as well as the rooms’ capacities. The following subsections

describe the two phases of the proposed algorithm in detail.

4.4.1 Phase 1: Initialisation

The Ordering-Based Scheduling Initialisation (OBSI) is implemented in this phase to gen-

erate a feasible construction of the initial population (Alsuwaylimi and Fieldsend, 2019).

This phase mainly focuses on producing timetables that fulfil hard constraints, while at-

tempting also to minimise the cost of the soft constraints. The ESGA invokes the OBSI

method n times with the aim of creating an initial population of size n for the second

phase. The results (out of 30 runs for each instance) on both datasets (ITC 2007 exam-

ination track and Yeditepe) are shown in Section 3.4 in Chapter 3, respectively. Section

5.2.1 in Chapter 5 provides the experimental results of the proposed OBSI of the Toronto

datasets.

4.4.2 Phase 2: Optimisation

As previously mentioned, the optimisation phase aims mainly to minimise the violation

cost of the feasible timetables’ soft constraints, which are constructed in the first phase.

During this phase, the modified genetic algorithm (i.e. the proposed ESGA) works on

refining the initial population over a set number of generations by means of the newly

introduced mutation operators. The key advantage of mutation is that it opens up new

spaces to be explored. It also involves jumping in the solution space, which can be bene-

ficial. The key disadvantage, however, is that the randomness of the variation it creates

may decrease the fitness of a specific solution rather than increase it.

The focus of the process of refinement is to reduce the timetables’ soft constraint costs.

In this work, the proposed mutation operators are di↵erent from each other in terms of:

• The solutions to which they will be applied. In other words, some mutation opera-

tors are applied to specific solutions, whereas other operators are applied to all the

solutions, and each solution in the population has its own mutation probability value

for each type of mutation operator. The mutation probability value of each solution

is determined by its cost/fitness value.

• Whether they are classified as exploration components or exploitation components

(in order to establish a balance between exploration and exploitation).

• The level at which they are applied (some mutations are performed on exams, and

others are performed on periods). At the exam level, the mutation operators attempt

to change the period and room of one or more selected exams taken from one or more

periods. At the period level, they attempt to change the period and room of all the

exams (i.e. change for all possible) of one or more selected periods.

• Guided and unguided. In other words, mutation operators explore and exploit the

search space using unguided strategies and guided strategies, i.e. violation directed

and blind (random) strategies. These mutation strategies can be applied to the

exams’ level and periods’ level.

117

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

• Mutation size (heavy mutation and light mutation). In other words, how many ex-

ams or periods will be mutated in a single mutation? From our earlier preliminary

experiments, we derived considerably good formulas for each proposed mutation,

where it has been determined the 4th and 5th roots in some formulas (as shown in

the following subsections) in order to provide appropriate values for the probability

of selecting exams or periods to be mutated and the maximum size of all di↵er-

ent mutations proposed in this chapter. Thus, these values attempt to produce an

appropriate balance to be achieved between exploration and exploitation. The fol-

lowing subsections present the formulas and the details of the sizes of the proposed

mutations.

• Repeated or single application. Some mutation operators are repeatedly applied

to selected solution(s) many times to generate new and various solutions, whereas

others are applied to selected solution(s) just once.

The aim of all the proposed mutation operators is to change the period, and the room for

the selected exam(s), and all of them check that all the hard constraints are met before

rescheduling the selected exam(s) in the new selected period and room. This means that

there is no need to use the repair function. All the mutation operators create a copy for

each selected solution before applying mutation. When applying any type of mutation

to a solution copy, all the chosen exams to be rescheduled are added to a list called the

MutationList. If the selected exam has a coincidence hard constraint, the set of exams

that coincide with this selected exam are also added to the same MutationList by using

Check Coincidence algorithm. The pseudo-code of the Check Coincidence algorithm is

given in Algorithm 4.1.

Algorithm 4.1 Pseudo-code of Check Coincidence.

Require: Sol . Selected solution (timetable) to be mutated.

Require: eList . A list containing the exam to be mutated.

1: if coin constraint(eList) = true then . If eList has coincidence hard constraint.

2: eList

coin exams get coin exams(eList) . Get all exams coincidence with eList.

3: eList eList [eList

coin exams

. Add all exams that coincide with eList.

4: end if

5: return eList

When the MutationList becomes empty, this means that the mutation operation has suc-

ceeded and the mutated solution copy (child) will be added to the o↵spring pool. Other-

wise, if there are exams remaining in the MutationList, and there are no periods that can

be used to schedule these exams, the solution copy is discarded. Further, that mutation

will not be reapplied to that solution so that an infinite loop is avoided, and it will also

not attempt to replace that solution with a new solution, i.e. it will not recompense the

current solution with a new solution. All the mutation operators employ a function named

Rollback, which is called immediately after adding each exam to the MutationList. This

function removes any chosen exam from the Exam List property of its original period,

removes it from its original room, recalculates the capacity of the room, and checks if

118

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

the removed exam has the room exclusive constraint in order to change the value of the

exclusive property of its original room to be non-exclusive. Its original room, therefore,

becomes available for any other exam(s) later. The pseudo-code of the Rollback function

is detailed in Algorithm 4.2.

Algorithm 4.2 Pseudo-code of Rollback.

Require: Sol . A selected solution (timetable) to be mutated.

Require: MutL . Mutation List consists of a list of exams to be mutated.

1: PL getAllExams in period(Sol) . A list of exams taken from each period.

2: RL getAllExams in room(Sol) . A list of exams taken from each room.

3: for each room in RL do

4: R

seats

 capacity(RL

i

) . Get capacity of each room in RL.

5: end for

6: MutL

Size

 size(MutL) . Number of exams in MutL.

7: Size 0 . Counter is set to zero.

8: while Size MutL

Size

do

9: PL PL \{MutL

i

} . Delete the exam from the exam list of its current period.

10: RL RL \{MutL

i

} . Delete the exam from the exam list of its current room.

11: R

seats

 R

seats

+ capacity(MutL

i

) . Recalculate the available seats of its

current room.

12: if is exclusive(MutL

i

) = true then . If the exam has room exclusive

constraint.

13: R

exclusive

 false . To remake the room available other exam(s).

14: end if

15: Size Size� 1 . Move to the next exam at MutL.

16: end while

17: return Sol

All the proposed mutation operators invoke a method named Rescheduling, which is re-

sponsible for making random changes to the period and room for all the exams in a given

MutationList. The method, in turn, calls the Assignment algorithm that is in charge

of assigning a period and a room for each exam in the MutationList. If all the exams

in the given MutationList are rescheduled, the Rescheduling algorithm returns/becomes

true; otherwise, it returns false. The pseudo-codes of Assignment and Rescheduling is

illustrated in Algorithms 4.3 and 4.4, respectively.

119

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Algorithm 4.3 Pseudo-code of Assignment.

Require: Sol . A selected solution (timetable) to be mutated.

Require: temp . A temporary list with all periods.

Require: eList . A list containing the exam to be mutated.

1: while temp 6= ; do
2: p random element(temp) . Select a period from temp randomly.

3: R

p

 getAllRooms in period(p) . A list of rooms available in period p.

4: eList

size

 size(eList) . Number of exams in eList.

5: Size 0 . Counter is set to zero.

6: while Size  eList

size

do

7: R

p

 ascend sort(R
p

) . Sort the rooms of period p based on recent capacity.

8: isScheduled false

9: for all rooms R
p

do

10: if eList
i

can be scheduled into R

pj

of p satisfying the hard constraints then

11: Sol schedule(Sol, eList
i

, p, R

pj

). Schedule eList

i

at R
j

of period p.

12: isScheduled true

13: Size Size� 1 . Move to the next exam at eList.

14: Break . The current exam is now scheduled.

15: end if

16: end for

17: if isScheduled false then . Unsuccessful scheduling of elist.

18: temp temp \ {p} . Remove the period from temp list.

19: end if

20: end while

21: if temp 6= ; then
22: return false . Unsuccessful scheduling of MutL.

23: end if

24: end while

25: return true . Successful scheduling of MutL.

120

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Algorithm 4.4 Pseudo-code of the Rescheduling.

Require: Sol . A selected solution (timetable) to be mutated.

Require: MutL . A list of exams to be mutated.

Require: O↵s . A list containing new solutions by applying this mutation.

1: PL get AllPeriods(Sol) . A list of all periods in the solution (timetable).

2: while MutL 6= ; do
3: eList ; . Initial empty selected exams list.

4: eList random exam(MutL) . Add a random exam from MutL to eList.

5: eList check coincidence(eList) . See Algorithm 4.1

6: temp ; . Empty Temporary Periods list.

7: temp PL . Add all periods to Temporary Periods list.

8: isScheduled false

9: if assignment(Sol, temp, eList) ture then . See Algorithm 4.3

10: MutL MutL \ {eList} . Remove exam from List.

11: isScheduled true

12: else

13: Break . The current exam is now scheduled.

14: end if

15: end while

16: if isScheduled true then . Unsuccessful scheduling of elist.

17: O↵s O↵s [Sol . Add the successful mutated solution to the o↵spring list.

18: end if

19: return O↵s . Successful scheduling of MutL.

4.4.2.1 Moderate Mutation

The moderate mutation (MM) operator is applied to half of the solutions in the population,

with each solution being selected using the roulette wheel selection operator based on its

cost value. The moderate mutation size is determined by Equation (4.2), i.e. the number

of genes examinations (genes) that will be mutated, is a random number in the space [1,

Max], with Max given from Equation (4.1):

Max = d 5

p
np ⇤ nee (4.1)

Size
moderate

= random(Max) + 1 (4.2)

Where np is the number of periods in the timetable, and ne is the number of exams in the

timetable. When the number of periods and exams in a given schedule increases, the size of

the solution space expands exponentially. As a result, these numbers are taken into account

in order to make the mutation size relevant to the domain size. Therefore, moderate

mutations might blend recombinative evolutionary algorithms’ explorative search ability

with local search methods’ exploitive search ability, and the final solution can be located

121

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

in fewer generations. The mutation size tuning experiments were carried out on a number

of instances with diverse characteristics from all datasets. The 5th root was chosen in

order to keep the maximum number of potential mutations to a manageable level. In

addition, we noticed through experiments that determining the 5th root can produce a

reasonable maximum size of the MM on small and large problem instances. For instance,

pur83 instance is the largest problem instance of the Toronto benchmark, where it has

2419 students and 42 periods. By applying the 5th root after multiplying 2419 (i.e. the

number of students) by 42 (i.e.the number of periods), the maximum mutation size of

MM is 11 in this problem, which is considered the largest size would be obtained for

the MM among the considered datasets in this chapter. However, this size is reasonably

appropriate to concentrate the search in a localised region and seek to discover new space.

Therefore, the mutation is advantageous as intensification and diversification are balanced,

new spaces are discovered, and a moderate degree of genetic variation is produced, i.e. a

reasonable diversity is generated in the population. The pseudo-code of the proposed

moderate mutation is given in Algorithm 4.5.

Algorithm 4.5 Pseudo-code of the proposed MM mutation.

Require: Pop . Current population.

1: O↵s ; . A list consists of new solutions by applying this mutation.

2: Size size(Pop)/2 . Number of solutions to be mutated.

3: while Size 6= ; do
4: T roulette wheel selection(Pop) . Select an solution (timetable) to be

mutated.

5: Sol copy(T) . Create a solution copy under consideration.

6: np getNumber periods(Sol) . Number of periods of Sol.

7: ne getNumber exams(Sol) . Number of exams of Sol.

8: MutL ; . Empty the list exams of mutation.

9: Max | 5

p
np ⇤ ne| . Maximum number reached by random.

10: Mut

size

 random(Max) + 1 . Determine the size of mutation.

11: while Mut

size

6= 0 do

12: eList random exam(Sol) . Get a random exam from the solution.

13: MutL MutL [check coincidence(eList) . See Algorithm 4.1

14: Mut

size

 Mut

size

� 1

15: end while . Terminate adding exams to be mutated.

16: Sol rollback(Sol,MutL) . See Algorithm 4.2

17: O↵s O↵s [rescheduling(Sol,MutL,O↵s) . See Algorithm 4.4

18: Size Size� 1

19: end while

20: return O↵s

122

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

4.4.2.2 Period Based Mutation

The existence of a kind of mutation that makes sudden and large jumps in the solution

space becomes necessary. This goal can be achieved with Period-Based Mutation (PBM).

It can also help with a broad search for suitable locations. The search can be directed

towards areas of the solution space with a feasible timetable using this mutation operator.

It randomly selects several periods of any selected solution and attempts to reschedule each

exam in any selected period into another period to satisfy all the hard constraints. The

PBM aims to mutate all the solutions in the current population with a probability that is

inversely equivalent to their cost value. In order to calculate the selection probability of

each solution, the PBM first ranks all the solutions in the current population ascendingly

based on their cost value from best to worst by setting an index of sr for each solution,

where the best cost value (i.e. the lowest cost value) is sr = 1, and the worst is sr =

population size. Next, it calculates the selection probability value sp using the formula in

Equation (4.3).

sp =
sr

Popsize

(4.3)

Where sr is the solution rank in the population and Popsize is the population size.

The pseudo-code of the proposed PBM is given in Algorithm 4.6. After assigning the

probability of selection for each solution, the PBM generates a random number between

0 and 1 for each solution. If its selection probability is larger than the generated number,

this solution is selected to be mutated; otherwise, it is ignored. According to Equation

(4.3), the lower the rank is, the more likely it is mutated. Since this mutation creates

a high degree of genetic variation, it is preferable for the best solutions in the current

population to have a lower probability of being mutated by this mutation operator. The

number of periods np to be disturbed is determined by Equation (4.4).

mp = random(d 4

p
npe) + 1 (4.4)

The above equation was determined empirically, where np is the number of all the periods

in the given timetable (solution), and mp is the number of periods to be mutated. As

previously stated, the more periods in a timetable, the larger the search space. So, the

mutation size must be suitable and applicable to any timetable, in which an acceptable

balance between solution quality and computing time is taken into account. The 4th root

was chosen in order to limit the number of possible mutations to a reasonable quantity and

make more sudden jumps in the solution space while maintaining an appropriate balance

between solution quality and processing time.

123

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Algorithm 4.6 Pseudo-code of the proposed PBM mutation.

Require: Pop . Current population.

1: O↵s ; . A list consists of new solutions by applying this mutation.

2: Size size(Pop) . Number of solutions in the population.

3: SL ascend rank(Pop) . Solutions List ordered by their cost values.

4: rank 1

5: while rank  Size do

6: sp rank/Size . Calculate the selection probability of SL.

7: if sp > random(1) then . random(1) returns a value between 0 and 1.

8: Sol copy(SL
rank

) . Create a solution copy under consideration.

9: np getNumber periods(Sol) . Number of periods of Sol.

10: MutL ; . Empty the list exams of mutation.

11: Mut

size

 random(| 4

p
np|+ 1) . Determine the size of mutation.

12: while Mut

size

6= 0 do

13: p random period(Sol) . Get a random period from Sol.

14: MutL MutL [{p
exams

} . Add all exams in the period to the

MutationList.

15: Sol rollback(Sol,MutL) . See Algorithm 4.2

16: Mut

size

 Mut

size

� 1

17: end while . Terminate adding exams to be mutated.

18: O↵s O↵s [rescheduling(Sol,MutL,O↵s) . See Algorithm 4.4

19: end if

20: rank rank + 1

21: end while

22: return O↵s

4.4.2.3 Deep Mutation

Deep Mutation (DM) is considered to be a violation directed strategy (guided mutation),

which aims to change the period and room of most of the exams that cause violations to

the soft constraints. In other words, the DM calculates soft constraint violations (penalty

values) using Equation (4.5) for each exam in a given timetable (solution) depending on

the period and room of the exam is currently scheduled in. Next, the DM ranks all the

exams in the solution based on their penalty value with most of the exams that cause

violations having a rank value of 1. The DM is, therefore, biased toward working on the

exams with higher ranks (the greatest violations). The aim of this ranking is to define

a range (starting from the first exam in the rank until a predefined rank value, which is

determined experimentally by Equation (4.6)). Therefore, the number of exams ne that

can be selected and be mutated is determined randomly between lower limit (i.e. can be

1 as the least number of exams to be mutated) and upper limit (i.e. the largest number

of exams to be mutated is ne = random(Upper limit) + 1) of this range. The aim of

this ranking and range is to force the mutation to take place with this range of exams, in

order to rearrange these exams into better periods to produce a good-quality timetable

(solution).

124

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

c =
kX

i=1

w

i

⇤ pe
i

(4.5)

Where c is the soft constraints cost of a given exam, pe
i

is a penalty value imposed to the

violation of a specific constraint, and w

i

an attached weight.

Upper limit = d 5

p
nee+ random(d 4

p
nee) (4.6)

Where ne is the number of exams in a given timetable. Lastly, the selection probability sp

of each solution can be calculated by means of Equation (4.7). The high fitness solutions

possess a high probability of being selected.

sp =
Popszie� sr

Popsize

(4.7)

DM is also biased toward working on the solutions of the highest (i.e. worst) fitness value

in the population. This mutation aims to equip the ESGA with an additional exploitative

search. This means that better solutions are more likely to be obtained. The pseudo-code

of the proposed DM mutation is given in Algorithm 4.7.

125

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Algorithm 4.7 Pseudo-code of the proposed DM mutation.

Require: Pop . Current population.

1: O↵s ; . A list consists of new solutions by applying this mutation.

2: Size size(Pop) . Number of solutions in the population.

3: SL ascend rank(Pop) . Solution List ordered by their cost values.

4: rank 1

5: while rank  Size do

6: sp (Size� rank)/Size . Calculate the selection probability of SL.

7: if sp > random(1) then . random(1) returns a value between 0 and 1.

8: Sol copy(SL
rank

) . Create a solution copy under consideration.

9: Sol descend rank exams(Sol) . Rank all exams descending by their

penalties.

10: np getNumber periods(Sol) . Number of periods of Sol.

11: ne getNumber exams(Sol) . Number of exams of Sol.

12: Range | 5

p
ne|+ random(| 4

p
ne|) . Range is determined by the exams no.

13: MutL ; . Empty the list exams of mutation.

14: Mut

size

 | 5

p
np|+ random(| 4

p
np|) . Determine the size of mutation.

15: while Mut

size

6= 0 do

16: eList random exam in range(Sol) . A random exam in the provided

range.

17: MutL MutL [check coincidence(eList) . See Algorithm 4.1

18: Mut

size

 Mut

size

� 1

19: end while . Terminate adding exams to be mutated.

20: Sol rollback(Sol,MutL) . See Algorithm 4.2

21: O↵s O↵s [rescheduling(Sol,MutL,O↵s) . See Algorithm 4.4

22: end if

23: rank rank + 1

24: end while

25: return O↵s

4.4.2.4 Period Based Deep Mutation

Period Based Deep Mutation (PBDM) operates in the same way as DM in terms of ranking,

selecting the range, and the solution selection probability with a minor di↵erence. The

PBDM mutation is forced to take place on whole periods. The periods are ranked based on

the extent to which these periods violate the soft constraints. For any period, the PBDM

calculates the penalty value of each exam that is scheduled in that period. Next, it sums

all these exams’ penalty values and assigns them to this period. This process is repeated

for all the periods in the solution. A selecting rank is defined using Equation (4.8) and

this ranking aims to define a range (beginning with the first period in the rank and ending

with a predetermined rank value, as established experimentally by Equation (4.8)). As a

result, the number of periods np that can be chosen and mutated is determined randomly

between the lower limit (i.e. 1, the smallest number of periods to be mutated) and the

upper limit (i.e. the greatest number of periods to be mutated).

126

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Upper limit = d 5

p
npe+ random(d 4

p
npe) (4.8)

Where np is the number of periods in a specific timetable. All the exams in the selected

periods are removed and added to the MutationList.

Algorithm 4.8 Pseudo-code of the proposed PBDM mutation.

Require: Pop . Current population.

1: O↵s ; . A list consists of new solutions by applying this mutation.

2: Size size(Pop) . Number of solutions in the population.

3: SL ascend rank(Pop) . Solution List ordered by their cost values.

4: rank 1

5: while rank  Size do

6: sp (Size� rank)/Size . Calculate the selection probability of SL.

7: if sp > random(1) then . random(1) returns a value between 0 and 1.

8: Sol copy(SL
rank

) . Create a solution copy under consideration.

9: Sol descend rank periods(Sol) . Rank all periods in the solution

descending by their penalties.

10: np getNumber periods(Sol) . Number of periods of Sol.

11: Range | 5

p
np|+ random(| 4

p
np|) . Range is determined by the periods no.

12: MutL ; . Empty the list exams of mutation.

13: Mut

size

 | 5

p
np|+ random(| 4

p
np|) . Determine the size of mutation.

14: while Mut

size

6= 0 do

15: p random period in range(Sol) . A random period in the provided

range.

16: MutL MutL [{p
exams

}. Add all exams in the period to MutationList.

17: Mut

size

 Mut

size

� 1

18: end while . Terminate adding periods to be mutated.

19: Sol rollback(Sol,MutL) . See Algorithm 4.2

20: O↵s O↵s [rescheduling(Sol,MutL,O↵s) . See Algorithm 4.4

21: end if

22: rank rank + 1

23: end while

24: return O↵s

4.4.2.5 Heavy Mutation

Heavy mutation (HM) is similar to the MM mutation in most aspects except for the

mutation size, which is larger, based on Equation (4.9); and the selection probability sp of

the solutions, based on Equation (4.10), which we empirically found that the proper size

of this mutation and the selection probability that can increase the likelihood of selecting

worse solutions as opposed to better solutions. By improving the solutions with the worse

fitness, the HM endeavours to maintain the population diversity. The pseudo-code of the

proposed HM mutation is given in Algorithm 4.9.

127

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Size
heavy

= d 5

p
np ⇤ nee+ 1 (4.9)

sp =
sr

Popsize

(4.10)

Algorithm 4.9 Pseudo-code of the proposed HM mutation.

Require: Pop . Current population.

1: O↵s ; . A list consists of new solutions by applying this mutation.

2: Size size(Pop) . Number of solutions in the population.

3: SL ascend rank(Pop) . Solution List ordered by their cost values.

4: rank 1

5: while rank  Size do

6: sp (rank/Size) . Calculate the selection probability of SL.

7: if sp > random(1) then . if P is larger than the generated number( 0 and  1),

SL

rank

will be mutated.

8: Sol copy(SL
rank

) . Create a solution copy under consideration.

9: MutL ; . Empty the list exams of mutation.

10: np getNumber periods(Sol) . Number of periods of Sol.

11: ne getNumber exams(Sol) . Number of exams of Sol.

12: Mut

size

 | 5

p
np ⇤ ne|+ random(| 5

p
np ⇤ ne|) . Select the size of mutation

randomly based on numbers of periods and exams.

13: while Mut

size

6= 0 do

14: eList random exam(Sol) . Get a random exam from Sol.

15: MutL MutL [check coincidence(eList) . See Algorithm 4.1

16: Mut

size

 Mut

size

� 1

17: end while . Terminate adding exams to be mutated in the MutationList.

18: Sol rollback(Sol,MutL) . See Algorithm 4.2

19: O↵s O↵s [rescheduling(Sol,MutL,O↵s) . See Algorithm 4.4

20: end if

21: rank rank + 1

22: end while

23: return O↵s

The mutation operators applied in this work complement each other. In other words,

each one has a distinct purpose and is applied to specific solutions to enable e↵ective and

e�cient exploration and exploitation, particularly in the absence of a crossover operator.

The proposed mutation operators are applied to each generation in the following order (

Moderate, Period Based, Deep, Period Based Deep, Heavy, Light, and Elite Light). All

o↵spring yielded by applying each one is added to a pool, as depicted in Equation (4.6).

Therefore, some solutions may be selected many times to be mutated by di↵erent mutation

operators and each time, a di↵erent one can be produced.

128

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

4.4.2.6 Light Mutation

In Light Mutation (LM), a small number of exams N are randomly removed from the

timetable, as empirically given in Equation (4.11). Next, the removed exams are resched-

uled to legal periods. In contrast to HM, LM aims to exploit better quality solutions.

Thus, LM increases the likelihood of selection solutions with better fitness values based

on Equation (4.7). It seeks to enhance the neighbourhood search utilising one or more

local changes in the current solution. It also aims to equip the ESGA with reasonable ex-

ploitation by means of creating at least slightly better-quality solutions. The pseudo-code

of the proposed LM mutation is given in Algorithm 4.10.

Size
light

= random(3) + 1 (4.11)

Algorithm 4.10 Pseudo-code of the proposed LM mutation.

Require: Pop . Current population.

1: O↵s ; . A list consists of new solutions by applying this mutation.

2: Size size(Pop) . Number of solutions in the population.

3: SL ascend rank(Pop) . Solution List ordered by their cost values.

4: rank 1

5: while rank  Size do

6: sp (Size� rank/Size) . Calculate the selection probability of SL.

7: if sp > random(1) then . Random(1) returns a value between 0 and 1.

8: Sol copy(SL
rank

) . Create a solution copy under consideration.

9: MutL ; . Empty the list exams of mutation.

10: Mut

size

 (random(3) + 1) . The mutation size will be within 1 and 4.

11: while Mut

size

6= 0 do

12: eList random exam(Sol) . Get a random exam from Sol.

13: MutL MutL [check coincidence(eList) . See Algorithm 4.1

14: Mut

size

 Mut

size

� 1

15: end while . Terminate adding exams to be mutated.

16: Sol rollback(Sol,MutL) . See Algorithm 4.2

17: O↵s O↵s [rescheduling(Sol,MutL,O↵s) . See Algorithm 4.4

18: end if

19: rank rank + 1

20: end while

21: return O↵s

4.4.2.7 Elite Light Mutation

Elite Light Mutation (ELM) is similar to the LMMutation, but attempts to improve higher

quality solutions iteratively. Consequently, the ELM is performed on the best solutions in

the current population, with the amount of elitism being equal to half the population size.

Thus, with sixteen solutions in total the amount of elitism is eight solutions (highly fit)

to deal with the absence of a crossover operator. The selection probability sp of the elite

129

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

solutions is given in Equation (4.7). For the diversity to be reasonable in the population,

the ELM will be run many times for each of the solutions in the elite selection. rn is given

in Equation (4.12). The pseudo-code of the proposed ELM mutation is given in Algorithm

4.11.

rn = dPopsize/4e (4.12)

Algorithm 4.11 Pseudo-code of the proposed ELM mutation.

Require: Pop . Current population.

1: O↵s ; . A list consists of new solutions by applying this mutation.

2: Elite select best solution(Pop) . Select the best 8 solutions in this population.

3: Size size(Pop) . Number of solutions in the population.

4: SL ascend rank(Elite) . Solution List ordered by their cost values.

5: Elite

size

 size(Elite) . Number of solutions in the Elite.

6: rank 1

7: recurring (Size/4) . Determine recurring mutation.

8: while rank  Elite

size

do

9: sp (Size� rank)/Size . Calculate the selection probability of SL.

10: while recurring 6= 0 do

11: if sp > random(1) then . Random(1) returns a value between 0 and 1.

12: Sol copy(SL
rank

) . Create a solution copy under consideration.

13: MutL ; . Empty the list exams of mutation.

14: Mut

size

 (random(3) + 1) . The mutation size will be within 1 and 4.

15: while Mut

size

6= 0 do

16: eList random exam(Sol) . Get a random exam from Sol.

17: MutL MutL [check coincidence(eList) . See Algorithm 4.1

18: Mut

size

 Mut

size

� 1

19: end while . Terminate adding exams to be mutated.

20: Sol rollback(Sol,MutL) . See Algorithm 4.2

21: O↵s O↵s [rescheduling(Sol,MutL,O↵s) . See Algorithm 4.4

22: end if

23: end while

24: rank rank + 1

25: end while

26: return O↵s

4.5 Enhanced Roulette Wheel Selection Strategy

Many works found in the literature have been employed conventional and modified roulette

wheel selection methods within GA (e.g. Al Jadaan et al. (2008) and Kumar et al. (2012)).

Al Jadaan et al. (2008) proposed a ranked based roulette wheel selection. Each solution

(i.e. individual) was assigned a rank based on its fitness value in which the highest rank has

a high chance to be selected. However, this selection mechanism cannot ensure diversity

130

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

(i.e. lack of solution diversity) and prevent premature convergence. Thus, in this thesis,

the proposed selection strategy, which we name Enhanced Roulette Wheel (ERW)

selection strategy, uses the “id” for each solution assigned in the first phase by the proposed

ESGA to disallow similar individuals from joining the population.

Once the ESGA has applied all the mutation operators, the o↵spring pool will contain

all the new solutions. The cost value of these might be better or might be worse than

their parents’ cost values, and the total of solutions can exceed the original size of the

population. The proposed selection strategy employs the roulette wheel to build the next

generation but if the roulette wheel selection operator is used without these ids, one exact

copy of each solution will be produced in the next generation. In the proposed solution,

therefore, the roulette wheel is invoked many times based on the population size; when

any solution is selected to be added to the pool of the next generation, it is added to

the pool of the next generation and its id retrieved in order to remove all the remaining

solutions in the o↵spring pool that have the same id to stop duplicate solutions and thus

accelerate the selection process for the existing solutions.

4.6 Proposed Exam Specialised Genetic Algorithm

All the steps and processes that have been described above can be put together in an

algorithm. The proposed algorithm first generates 50 initial solutions using the OBSI

method, then it selects the best sixteen of these solutions based on their cost values.

A fairly small population is selected because of the relatively high computing cost to

generate feasible solutions, particularly when the more constrained ITC 2007 datasets are

used. Next, the proposed method assigns di↵erent “ids” for each solution, to be used later

by the enhanced roulette wheel selection. Then, all the mutation operators, as well as

the selection of the population are performed for several generations until a termination

criterion is fulfilled.

After all the mutation operators have been applied, the o↵spring pool will contain all the

new solutions. Next, all the solutions in the o↵spring pool are ranked by the proposed

algorithm based on cost values. Then, the best 50% are selected and added to the next

population (i.e. half of the next population contains the best individuals from the pre-

vious population). The remaining solutions in the new population are selected using the

improved roulette wheel selection approach. The algorithmic flow of the proposed ESGA

is shown in Figure 4.5, while the pseudo-code is given in Algorithm 4.12.

131

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Algorithm 4.12 Pseudo-code of the Exam Specialised Genetic Algorithm (ESGA).

1: Pop initialise 50 solutions by OBSI . See Algorithms 3.1, 3.2, and 3.3

2: evaluate(Pop) . Evaluate population.

3: Pop select 16 solutions(Pop) . Population list.

4: Pop assign IDs(Pop) . Assign unique ID to each solution (0 until 15).

5: O↵s ; . A list contains the solutions of the next population.

6: Elitism ; . A list contains the best 8 solution of the current population.

7: t 0 . Iteration number.

8: while (Stopping condition is not achieved) do

9: O↵s O↵s [MM(Pop) . Add MM solutions, See Algorithm 4.5

10: O↵s O↵s [PM(Pop) . Add PM solutions, See Algorithm 4.6

11: O↵s O↵s [DM(Pop) . Add DM solutions, See Algorithm 4.7

12: O↵s O↵s [PBDM(Pop) . Add PBDM solutions, See Algorithm 4.8

13: O↵s O↵s [HM(Pop) . Add HM solutions, See Algorithm 4.9

14: O↵s O↵s [LM(Pop) . Add LM solutions, See Algorithm 4.10

15: O↵s O↵s [ELM(Pop) . Add ELM solutions, See Algorithm 4.11

16: evaluate(O↵s) . Evaluate all O↵spring.

17: O↵s O↵s [Pop . Add the current population to O↵spring list.

18: Elitism select best 8(O↵s) . Select the best 8 solutions.

19: if (Stopping condition is achieved) then

20: Output the best exam timetables

21: Break . Terminate the process if the condition is reached.

22: end if

23: Pop ; . Empty the Population list.

24: Pop Elitism [solutions by ERW(O↵s) . Next population.

25: Elitism ; . Empty the Elitism list.

26: O↵s ; . Empty the O↵spring list.

27: t t+ 1 . Next iteration

28: end while

Crossover operator is not utilised in this work, despite being regarded as a key aspect of

GAs. This is because it can change the parents of a high fitness function to the extent that

they no longer spatially fit in the more constrained problem (Osaba et al., 2013). Regarding

the runtime and based on the experimentation conducted, using blind crossover operators

in GAs significantly increases the technique’s execution time without any improvements

in the results (Osaba et al., 2013). Meanwhile, a function that makes small leaps in the

solution space is required for a more thorough search. This goal can be accomplished with

the mutation function, and it can also aid in the search for potential regions (Eiben and

Schippers, 1998; Wong et al., 2003). Since each generation generates a vast number of

solutions by applying numerous mutations, the best approaches in terms of e�ciency and

e�cacy, such as Binary Search for searching elements (Knuth, 1973) and Quicksort for

sorting elements (Cormen et al., 2009) are included in the evolution function to minimise

the execution time to estimate the fitness of each o↵spring.

132

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Offspring

Start

Initialise 50 feasible
solutions by OBSI method

Select the best 16 solutions based
on cost value, and assign

unique id's for each solution.

MM

PM

DM

PBDM

HM

LM

ELM

Mutation Operators

Select parents
 using ERW method

Select the best 8
solutions from the

population

Evaluate all offspring

Combine all parents
from the current

population
and offspring

Parents & Offsprings Pool

Select the Elite
(the best 8 solutions)

Stopping
condition

Output the best
exam timetables

End

Return the Elite to the population,
along with the remaining

solutions (by their ids) selected
via ERW method

Yes

No

Population

Next iteration

Evaluate individuals

Figure 4.5 Flowchart of the proposed ESGA.

4.7 Experimental Results and Discussion

This section illustrates the experimental results of the proposed approach on the Toronto,

ITC 2007, and Yeditepe benchmark datasets. Experimental environment and parameter

settings are given in Sections 4.7.1 and 4.7.2, respectively. Section 4.7.3 presents the best-

known approaches reported in the literature for solving the Toronto, the ITC 2007, and

Yeditepe datasets. The results are presented in Sections 4.7.4 and 4.7.5 below. In section

4.7.4, a comparison is also conducted between di↵erent versions of the GA using the same

three datasets. In Section 4.7.5, meanwhile, the results are compared with those achieved

by the top five performing algorithms in the ITC 2007 competition, based on the ITC 2007

datasets. Also, in Section 4.7.5 a comparison is conducted with the results achieved by

a selection of state-of-the-art methods on the Toronto, the ITC 2007 and Yeditepe. The

133

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

characteristics of each of these datasets have been discussed in Section 2.3 of Chapter 2.

4.7.1 Experimental Environment

The algorithm proposed in this study was applied by utilising the Java programming

language. The simulations were completed a PC running Windows 7 Enterprise with a

64-bit operating system and an Intel Core (TN) i5-6200U (CPU@2.30 GHz with 16 GB

RAM).

4.7.2 Parameter Settings

Several preliminary experiments were conducted so that the most appropriate values could

be obtained for the number of iterations, the size of the population, the size of the elite

pool, the probability of selecting solutions for each mutation operator, and the extent of

mutation for each mutation operator. The experiments were based on the average result

from a total of thirty runs on ITC 2007 and Yeditepe where the algorithm running time

was limited to 392 seconds per run (i.e. in accordance with the rules of the ITC 2007

competition).

For the Toronto problem instances, a comparison was conducted between a basic GA and

the ESGA where each algorithm was run thirty times, with a set number of generations

acting as a termination criterion for each run. The algorithm performed best with 1,000

iterations, the population size of sixteen and an elite pool of eight. The values of the

remaining parameters varied based on the solution cost value and the type of mutation

operator (see Section 4.4.2). In the ESGA comparison with the state-of-the-art approaches,

the algorithm was capped at 10800 seconds and run ten times on each problem instance

as the execution time of all approaches considered was not enforced by a fix time limit

(Leite et al., 2018). This is because there is no such benchmark timing (as this case for

the ITC 2007 problem) to attempt on the Toronto problems.

4.7.3 Reported ‘best’ Results of the Benchmark Sets

This section analyses and exhibits the results of applying the approach to Toronto bench-

mark datasets. The best results obtained from the ESGA approach are taken from each

problem instance in order to compare with other results reported in the literature. Au-

thors’ name concatenated with publishing year will be used for the proposed approaches

name.

4.7.3.1 Reported ‘best’ Results of the Toronto Benchmarks

CarterEtAl96 -(Carter et al., 1996): the authors introduced the Toronto Benchmark (as

discussed in Section 2.5.1 in Chapter 2) and investigated two di↵erent objectives. The

first objective aims to generate a feasible examination timetable in the minimum number

of periods—the second objective aims to spacing out the exams for the same student. In

this work, it has been incorporated sequential heuristics such as Largest Degree (LD),

Largest Weighted Degree (LWD), Saturation Degree (SD), and Colour Degree (CD) with

clique initialisation and a backtracking procedure to construct the solutions. The idea

134

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

is that the backtracking procedure is applied when it is di�cult to accommodate any

exam into the periods due to earlier assigned exams (i.e. exams that have conflicts with

the current examination). In addition, the size of the clique plays an e↵ective role to

determine the number of periods needed for the problem (i.e. the size of the largest clique

defines the least number of periods required). The proposed approach was tested on all

instances of real problems (i.e. the Toronto Benchmark sets) and random problems. The

experimental results showed that sequential heuristics with backtracking were capable of

reducing the number of periods required in the final examination timetable compared to

these heuristics without backtracking. Furthermore, the combination of a backtracking

procedure with SD was able to generate reasonably good quality examination timetables

in a short computational time.

Yang&Petrovic04 -(Yang and Petrovic, 2005): a hyper-heuristic approach merged with

case-based reasoning was applied in order to select graph heuristics for creating a feasible

initial solution. Then, a great deluge algorithm was utilised to enhance the solution. The

authors use a hyper-heuristic to explore the search space of heuristics in replacement of

searching for direct solutions. Their approach was applied to the Toronto problems, and

obtained the best results in the literature for several problem instances at this time.

Eley07 -(Eley, 2007): the author implemented an ant algorithm and incorporated the

ant systems and the max-min ant systems with two randomised strategies in order to

find the pheromone trail and the constructive heuristic. Several parameters needed to be

considered during the implementation such the evaporation rate, the weighting factors and

the number of cycles, in order to make sure that the proposed algorithm worked e�ciently.

The proposed approach was tested on the Toronto benchmark sets, and obtained results

were competitive with the best published approaches.

CaramiaEtAl08 -(Caramia et al., 2008): the authors implemented a hybrid approach

to tackle capacitated and uncapacitated examination timetabling problems. This study

attempted to generate high-quality exam timetable with small length (i.e. the minimum

number of periods). The scheduling process started with a greedy scheduler by attempting

to assigning examinations into the least number of periods as well as conflict-free slots.

The approach also allocates exams by placing those with the highest conflicts first in

order to identify the number of periods (i.e. the length of the timetable) and ensure that

all exam to be scheduled. Once the process has been completed, hill climbing employed

as penalty-decreaser. It was used to minimise the number of periods and maximise the

quality of timetable. The process continues until there is no more improvement. At this

stage, hill climbing was applied as a penalty trader. This approach was tested on the

Toronto and Nottingham benchmark sets. The results showed that this approach could

easily produce high-quality solutions and were superior to many best-known published

approaches in the literature.

Burke&Bykov08 -(Burke and Bykov, 2008): A late acceptance strategy was proposed by

Burke and Bykov (2008), which was a new variant of hill climbing. They investigated the

performance of the proposed method by applying it to uncapacitated exam timetabling

problem (i.e. the Toronto benchmark sets). Although it is categorised as an iterative

135

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

search method, it depends on more sophisticated move acceptance mechanism. A new

candidate solution is compared to some solutions that obtain from prior iterations. A list

is created and stores the cost function values of accepted solution from each iteration.

During the searching iterations, a neighbouring solution with a better or equal cost value

is accepted in the list.

BurkeEtAl10 -(Burke et al., 2010b): the authors proposed a variable neighbourhood

search (VNS) incorporated within a Genetic Algorithm. In this work, di↵erent neigh-

bourhood structures such as descent-ascent, biased VNS, and problem-specific neighbour-

hoods were investigated. Also, various initialisation strategies (i.e. greedy and a random

construction technique) were applied. Although the proposed approach was capable of

obtaining a high quality solution for one instance of the Toronto problem, it requires a

relatively large amount of computation time.

Pillay&Banzhaf10 -(Pillay and Banzhaf, 2010): the use of genetic algorithms (GAs) is

presented in Pillay and Banzhaf (2010) for solving the examination timetabling problem.

The algorithm was considered as a two-phased approach. In the first phase, generating

feasible solutions for constructing the initial population was conducted by GAs. During the

second phase, GAs also utilised the generated feasible solutions from the previous phase

and attempted to minimise the cost of the soft constraint. They used domain-specific

knowledge in the form of heuristics to guide the evolutionary process. The e↵ectiveness

of this approach was verified on the Toronto benchmark sets.

DemeesterEtAl12 -(Demeester et al., 2012): the authors employed a hyper-heuristic

based approach to resolve three timetabling problems, including the Toronto and the

ITC 2007 problems, in addition to the KAHO Sint–Lieven (Ghent, Belgium) timetabling

problem. The authors applied a construction, as well as an improvement approach. How-

ever, the construction algorithm, which is used for the ITC 2007 benchmark set, cannot

guarantee feasible solutions. If no feasible solution is obtained, the algorithm continues

with the improvement phase. Also, extra correcting actions were performed to eliminate

infeasibilities.

Abdullah&Alzaqebah13 -(Abdullah and Alzaqebah, 2013): the authors presented a

hybridisation approach which combined a modified bees algorithms with local search al-

gorithms (i.e. simulated annealing, late acceptance hill-climbing). In order to exploit and

fully explore the entire search space, they used three selection strategies (i.e. disruptive,

tournament, and raking) and a self-adaptive technique. The aim of the selection strategies

is to improve the diversity of the population, while the self-adaptive method was used for

monitoring the neighbourhood search and preventing the algorithm from getting stuck in

a local optimum. The approach was tested on thirteen problem instances of the Toronto

and eight problem instances of the ITC 2007 benchmark sets.

Alzaqebah&Abdullah14 -(Alzaqebah and Abdullah, 2014): An adaptive artificial bee

colony was proposed and combined with a late-acceptance hill-climbing algorithm to solve

the examination timetabling problem. This proposed method was applied to Toronto, as

well as the ITC 2007 benchmark sets.

136

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Alzaqebah&Abdullah15 -(Alzaqebah and Abdullah, 2015): in this research, two hy-

bridisations were conducted using bee colony optimisation algorithm in both of them. The

first hybrid couples bee colony optimisation (BCO) algorithm with a hill-climbing algo-

rithm by using the late acceptance strategies and the second hybrid couples BCO with

simulated annealing. In comparison with others, the first hybrid achieves the best results

for both datasets (the Toronto and the ITC 2007).

FongEtAl15 -(Fong et al., 2015): a hybrid swarm-based algorithm to academic timetabling

is proposed. The algorithm used in di↵erent university timetabling, namely the exami-

nation timetabling and the course timetabling and tested on the Toronto and the Socha

benchmark sets respectively.

LeiteEtAl16 -(Leite et al., 2016): the proposed approach implemented a memetic al-

gorithm so-called “Shu✏ed Complex Evolution Algorithm” in which the population is

organised into complexes (sets) that are evolved individually by using local search opera-

tors and recombination. Diversity of population was kept by using various recombination

operators and applying a special mechanism to update solution.

MuklasonEtAl17 -(Muklason et al., 2017): the authors proposed a multi-phase approach

in order to solve the Toronto, the ITC 2007, and the Yeditepe problems and find good

solutions that could match student preferences. This approach consists of three phases.

In phase 1, an initial feasible solution was produced by an adaptive heuristic ordering

approach. Improving the quality of the initial solution and attempting to achieve fairness

in the optimised solutions were conducted by a selection hyper-heuristic in phase 2 and

phase 3, respectively.

LeiteEtAl18 -(Leite et al., 2018): in this study, a cellular memetic algorithm was pro-

posed which incorporated a cellular evolutionary algorithm with threshold acceptance local

search to tackle the examination timetabling problem. The approach was evaluated on

the Toronto and ITC 2007 problems. Experimental results showed that the approach was

able to improve on four out thirteen problem instances of the Toronto set and improve on

three out twelve of the ITC 2007 problem.

MandalEtAl20 -(Mandal et al., 2020): the authors proposed partial graph heuristic

orderings with a modified great deluge algorithm (PGH-mGD) for tackling capacitated and

uncapacitated examination timetabling problems. The proposed approach used di↵erent

graph heuristic ordering in the constructive phase in order to generate feasible exam

timetables, while modified great deluge algorithm was utilised in phase 2 (i.e. improvement

phase) to improve the obtained timetables. The proposed PGH-mGD partially timetables

a set of exams that are selected based on graph heuristic orderings as well as a parameter

which called “exam assignment value v”. Then, a modified GD algorithm was employed to

improves these selected exams. The process of scheduling continues to allocate the next set

of selected exams and repeats until all exams have been scheduled. Moreover, the proposed

PGH-mGD was tested on the Toronto and the ITC 2007 benchmark sets and compared

with traditional graph heuristic orderings with a modified great deluge algorithm (TGH-

mGD) as well as related state-of-the-art approaches. Experimental results illustrated that

137

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

the proposed PGH-mGD was capable of producing high-quality exam timetables which

were competitive with those of the approaches published in the literature.

4.7.3.2 Reported ‘best’ Results of the ITC 2007 Benchmarks

For each track in the 2nd International Timetabling Competition (ITC 2007), a set of

five finalists was chosen based on the quality of the submitted solutions (Mccollum et al.,

2010; Leite et al., 2018). The five finalists of the examination track of the competition

are listed below, along with more recently developed optimisers that have been applied to

this problem suite.

• 1st Place - Tomáš Müller (Müller09).

• 2nd Place - Christos Gogos, Panayiotis Alefragis, and Efthymios Housos (GogosE-

tAl08).

• 3rd Place - Mitsunori Atsuta, Koji Nonobe, and Toshihide Ibaraki (AtsutaEtAl08).

• 4th Place - Geo↵rey De Smet (De Smet08).

• 5th Place - Nelishia Pillay (Pillay08).

Müller09 -(Müller, 2008): Müller’s approach was applied with the aim of solving the three

problems that were established by the ITC 2007 competition. To solve the problems, he

preferred a hybrid approach, which is organised in a two-phase algorithm. In the first

phase, the Iterative Forward Search (IFS) algorithm (Müller, 2005) was employed, so

that feasible solutions, as well as Conflict-based Statistics, are obtained (Müller et al.,

2004) in order that the IFS is prevented from looping. The second phase involves using

multiple optimisation algorithms. The algorithms were applied in the following order:

Hill Climbing (HC)(Russell and Norvig, 2010), Great Deluge (GD) (Dueck, 1993), and

optionally Simulated Annealing (SA) (Skiundefinedcim and Golden, 1983).

GogosEtAl08 -(Gogos et al., 2008): Like Müller’s approach, Gogos et al.’s approach is

an approach that involves two phases. The first phase commences with a pre-processing

stage. In this stage, hidden dependencies between the exams are checked to accelerate the

optimisation phase. A construction stage occurs after the first stage. The second stage

uses a meta-heuristic called Greedy Randomised Adaptive Search Procedure (GRASP). In

this phase, optimisation methods can be applied in the following order: HC, SA, Integer

Programming (the Branch and Bound procedure), finishing with the so-called Shaking

Stage, which can only be applied according to certain conditions. This Shaking Stage

shakes the current solution to create a similarly good solution that is given to SA. This

stage aims at forcing SA to restart with solutions that are more promising and generate

better results.

AtsutaEtAl08 -(Atsuta et al., 2008): Atsuta et al. won third place on the Examination

Timetabling track, as well as second places on other tracks, with a similar approach for

all of them. The used approach involves applying a constraint satisfaction problem-solver,

which adopts a hybridisation of TS, as well as Iterated Local Search.

138

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

De Smet08 -(De Smet, 2008): De Smet’s approach di↵ers from other approaches because

he did not use a problem-specific heuristic, which is known, to find a feasible solution.

Instead, he used the Drool’s rule engine called the drools-solver (Drools, 2020). The drools-

solver involves a combination of optimisation heuristics, in addition to meta-heuristics

with a score calculation that is very e�cient. The score of the solution is the sum of the

constraints’ weight, which is being broken. After a feasible solution is found, De Smet

used a local search algorithm, i.e. Tabu Search (TS) to enhance the obtained solutions

utilising the drools-solver.

Pillay08 -(Pillay, 2008): A two-phase algorithm variant was proposed by Pillay by using

a Developmental Approach based on Cell Biology. The goal involves forming a well-

developed organism by a creation process of a cell and proceeding with the cell division

and cell interaction, as well as cell migration. Based on this approach, each of the cells

signifies a period. The first phase involves the process of creating the first cell and cell

division, as well as cell interaction, while the second phase involves cell migration.

In addition, there are further approaches that have been applied to the ITC 2007 bench-

mark set, which were proposed after the 2007 competition and reported the best-known

results. We now briefly describe each approach in turn of the competitive methods we

have identified in the literature.

McCollumEtAl09 -(McCollum et al., 2009): the authors applied an adaptive ordering

heuristic to construct solutions, followed by applying the Great Deluge meta-heuristic

(extended version). The approach was tested on the exam timetabling problems from ITC

2007. It was confirmed as an e↵ective approach where the best results for 5 out of the 8

problem instances were obtained.

DemeesterEtAl12 -(Demeester et al., 2012): see Section 4.7.3.1.

GogosEtAl12 -(Gogos et al., 2012): the authors proposed an enhanced algorithm version.

The authors claimed that the enhanced behaviour is due to more sophisticated process

flow, early detection of plateaus, added heuristics, as well as optimised data structures,

which achieve the exploration of a much larger number of Kempe Chain moves.

Alzaqebah&Abdullah14 -(Alzaqebah and Abdullah, 2014): see Section 4.7.3.1.

Alzaqebah&Abdullah15 -(Alzaqebah and Abdullah, 2015): see Section 4.7.3.1.

BattistuttaEtAl17 -(Battistutta et al., 2017): a single-stage procedure was proposed

by Battistutta et al. based on the SA approach for the ITC 2007’s ETP. Based on this

method, non-feasible solutions are included in the search space, dealing with appropriate

penalties. A statistically-principled experimental analysis is conducted to investigate the

parameter selection e↵ect. Then, a feature-based parameter tuning is performed.

MuklasonEtAl17 -(Muklason et al., 2017): see Section 4.7.3.1.

LeiteEtAl18 -(Leite et al., 2018): see Section 4.7.3.1.

Rajah&Pillay19 - More recently, the Structure-Based Partial Solution Search (SBPSS)

139

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

was proposed by Rajah and Pillay (2019) and improved on the best results of ITC 2007

Examination track. The SBPSS is a multi-point search approach that aims to solve this

problem incrementally. Solutions are initialised partially, and at each generation, one

solution component is selected randomly and added to each partial solution continuously.

This process stops when all solution components are completely added to the solutions.

MandalEtAl20 - see Section 4.7.3.1

4.7.3.3 Reported ‘best’ Results of the Yeditepe Benchmarks

All approaches (i.e. Muklason17, Muller’s approach, and several hyper-heuristic strategies

from (Muklason, 2017)) applied in the Yeditepe problem and used in comparison with the

proposed ESGA have been discussed in Section 2.5.2 in Chapter 2.

4.7.4 Comparison with the Basic Genetic Algorithm

This section provides the results obtained by the ESGA described in Section 4.6. The

results of this work were compared with those of the basic GA explained in Section 2.8.6

in Chapter 2. To obtain the results in this work, each algorithm was run thirty times on

each dataset (Toronto, ITC 2007 and Yeditepe).

Table 4.1 illustrates the results obtained when the basic and exam specialised GA were

applied to the Toronto, ITC 2007 and Yeditepe datasets, respectively. The Table shows

the lowest values, the highest values, the average soft constraint costs, and their standard

deviation. In this study, the worst algorithm gets the highest value, whereas the best

solution on a given instance gets the lowest value (i.e. the algorithm with the overall

lowest value can be considered as the best performing algorithm). f

min

denotes the best

solution value (minimum penalty) over thirty executions, f
avg

is the average and f

max

the

worst solution value, while � denotes the standard deviation.

In order to make a fair comparison between the exam specialised and the basic GA, the

former also used the OBSI method to create the initial population. Based on Table 4.2,

it can be noticed that, as expected, the exam specialised GA outperformed the basic one

on each problem instance of the Toronto, the ITC 2007 and the Yeditepe datasets.

140

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Dataset
Problem GA ESGA

Instance f

min

f

max

f

avg

� Max

time(sec) f

min

f

max

f

avg

� Max

time(sec)

car91 5.90 7.15 6.50 0.42 2268 5.21 6.10 5.57 0.27 2480

car92 5.05 6.21 5.73 0.32 2485 4.10 5.04 4.50 0.27 2540

ear83 35.10 37.99 36.47 0.74 2548 33.47 35.59 34.25 0.64 2577

hec92 10.76 11.43 11.05 0.20 1375 10.34 11.10 10.67 0.22 1497

T
O
R
O
N
T
O kfu93 13.52 14.16 13.88 0.20 2288 13.11 14.07 13.40 0.28 3197

lse91 11.48 13.24 12.32 0.51 2063 10.11 11.99 10.88 0.58 2048

pur93 5.08 5.95 5.60 0.23 2826 4.55 5.48 5.00 0.28 2876

rye92 10.01 11.04 10.58 0.30 1995 9.30 10.56 10.11 0.38 2010

sta83 158.22 159.54 158.81 0.41 486 157.80 158.52 158.18 0.17 512

tre92 9.16 10.55 9.78 0.43 1642 8.67 9.60 9.09 0.26 1676

uta92 3.52 4.19 3.86 0.21 4118 3.39 3.97 3.62 0.18 4171

ute92 25.10 26.28 25.75 0.33 1215 24.75 25.70 25.08 0.21 1234

yor83 37.47 39.91 38.50 0.83 2016 36.24 37.35 36.96 0.35 2038

Exam1 10213 16491 12001.83 1557.17 8068 12533 9552.03 977.85

Exam2 704 1754 1031.06 251.31 528 1385 772.48 195.62

Exam3 17420 23905 19585.83 1791.65 11845 17689 13743.70 1234.30

Exam4 28576 52204 35470.64 5073.10 18574 31844 23281.16 2821.74

IT
C

20
07 Exam5 6361 14904 8736.90 1948.70 4325 9687 6032.22 1271.92

Exam6 35441 47728 39238.74 2900.45 392 26226 34841 28926.58 1747.23 392

Exam7 18491 31424 22296.70 3014.16 11649 20425 14259.41 2153.04

Exam8 20702 39514 26870.29 4323.04 10351 20547 13169.41 2352.78

Exam9 1731 4675 2665.83 890.21 1142 3132 1787.41 442.02

Exam10 21706 29119 24280.16 1669.23 12589 15724 13581.45 774.70

Exam11 49062 73260 56785.06 5144.58 35815 52014 41081.51 4266.67

Exam12 7812 11250 8705.96 805.31 5468 7762 6128.03 640.56

YUE20011 82 167 125.46 20.15 64 102 82.56 11.60

YUE20012 180 286 250.73 21.34 129 190 153.96 18.84

Y
E
D
IT

E
P
E YUE20013 38 47 41.16 2.01 29 34 31.03 1.70

YUE20021 165 208 178.76 10.82 392 83 153 151.23 18.65 392

YUE20022 236 380 315.7 42.75 167 250 215.36 25.54

YUE20023 99 105 101.23 1.20 55 62 58.16 1.93

YUE20031 266 386 330 32.05 192 264 230.33 22.98

YUE20032 627 810 720.5 57.40 438 518 490.06 23.31

Table 4.1 Results of a basic GA and ESGA on the Toronto, the ITC 2007, and the Yeditepe
problem instances are obtained after 30 runs. The best values are shown in bold.

Table 4.2 shows the improvement factor between the basic and exam specialised GA. This

was calculated by working out the di↵erence between the average values obtained for each

of the basic and exam specialised GA (across all instances), and this was then divided by

the decrease in the average value of the basic GA and multiplied by 100. Obviously, these

results can be considered as better results based on Table 4.2.

A Mann-Whitney U-test was carried out between the basic GA with the ESGA, for which

the p-value for each problem instance in the Toronto, the ITC 2007, and the Yeditepe

datasets is provided in Table 4.2. For all datasets, the p-value for the results of the two

approaches is less than 0.05, indicating a statistically significant di↵erence between the

results. All problem results show statistically significant di↵erence.

141

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Problem GA ESGA Improvement

Dataset Instance f

avg

f

avg

Factor (%) p-value

car91 6.50 5.57 14.31 6.72E-10

car92 5.73 4.50 21.47 3.02E-11

ear83 36.47 34.25 6.09 1.21E-10

hec92 11.05 10.67 3.56 3.81E-07
T
O
R
O
N
T
O kfu93 13.88 13.40 3.46 3.01E-11

lse91 12.32 10.88 11.04 3.47E-10

pur93 5.60 5.00 10.71 1.86E-09

rye92 10.58 10.11 4.44 1.75E-05

sta83 158.81 158.18 0.40 7.77E-09

tre92 9.78 9.09 7.06 5.09E-08

uta92 3.86 3.62 6.22 1.04E-04

ute92 25.75 25.08 2.6 1.41E-09

yor83 38.50 36.96 4.17 3.02E-11

Exam1 12001.83 9552.03 20.41 4.34E-09

Exam2 1031.06 772.48 25.08 4.19E-05

Exam3 19585.83 13743.70 29.83 1.70E-11

Exam4 35470.64 23281.16 34.36 3.67E-11

IT
C

20
07 Exam5 8736.90 6032.22 30.95 4.33E-08

Exam6 39238.74 28926.58 26.28 1.40E-11

Exam7 22296.70 14259.41 36.04 4.88E-11

Exam8 26870.29 13169.41 50.98 1.40E-11

Exam9 2665.83 1787.41 32.95 2.26E-05

Exam10 24280.16 13581.45 44.06 1.40E-11

Exam11 56785.06 41081.51 27.65 3.03E-11

Exam12 8705.96 6128.03 29.61 1.40E-11

YUE20011 125.46 82.56 34.19 3.93E-10

YUE20012 250.73 153.96 38.59 4.03E-11

Y
E
D
IT

E
P
E YUE20013 41.16 31.03 24.61 2.31E-11

YUE20021 178.76 115.23 35.53 2.98E-11

YUE20022 315.70 215.36 31.78 1.94E-10

YUE20023 101.23 42.55 57.97 2.18E-11

YUE20031 330 230.33 30.20 3.00E-11

YUE20032 720.50 490.06 31.98 3.01E-11

Table 4.2 Improvement factor (percentage) between the results on the Toronto, the ITC 2007, and
Yeditepe benchmark sets of ESGA with the basic GA.

142

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

Problem ESGA

Instance f

min

f

max

f

avg

�

car91 4.64 5.34 5.0 0.26

car92 3.84 4.66 4.2 0.27

ear83 32.24 32.89 32.5 0.22

hec92 10.12 11.03 10.56 0.33

kfu93 12.92 13.55 13.17 0.23

lse91 9.90 11.91 10.57 0.75

pur93 4.33 4.87 4.57 0.20

rye92 7.67 9.24 8.5 0.60

sta83 157.26 158.16 157.62 0.31

tre92 7.72 9.15 8.33 0.51

uta92 3.11 3.56 3.39 0.36

ute92 25.26 28.1 26.83 1.16

yor83 35.70 36.62 36.18 0.31

Table 4.3 Results of the ESGA on the Toronto benchmark set are obtained after ten runs with a
fix time limit (10800 seconds).

4.7.5 Comparison with the State-of-the-Art Approaches

As has been previously mentioned in section 4.7.2, two experiments were conducted with

the proposed ESGA on the Toronto benchmark set. The ESGA was implemented after

utilising the initial solutions that were constructed using the OBSI method in phase 1.

Table 4.3 shows the minimum, maximum, average and standard deviation over ten runs

with a fixed time limit (Max time) on each problem instance, where total run time (opti-

misation) was capped at three hours. Table 4.5 shows the running times for the proposed

approach and all approaches considered. Also in this section, a selection of the best algo-

rithms from the literature as listed above (in Subsection 4.7.3.1) are compared against our

proposed ESGA approach. For each problem instance of the Toronto, the ITC 2007, the

Yeditepe benchmark sets, all of the considered approaches are ranked according to their

cost values (as shown in Table 4.4, Table 4.6, and Table 4.7).

To calculate the ranking (RK) and the average ranking (AVG RK), let us consider total

pr approaches are compared for g given problem instances with respect to their lowest

‘best’ results. For a given problem instance, each approach of g is given ordinal value V

o

in which 1  V

o

 pr and 1  V  g. This value denotes the ranking of the corresponding

problem instance. For the AVG RK, we sum all V
o

values for each approach for g problem

instances and calculates the AVG value. All of the approaches are ranked based on their

AVG RK values.

4.7.5.1 Toronto Dataset

Table 4.4 presents a comparison between the proposed ESGA and these algorithms on the

Toronto datasets, with the columns showing the lowest cost value (i.e. best cost) for each

considered algorithm and RK and AVG RK.

143

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

From Table 4.4, it can be observed that we have been fully capable of obtaining conflict-free

solutions for all of the thirteen problem instances of the Toronto problem. Our proposed

approach outperforms Pillay&Banzhaf10 (Pillay and Banzhaf, 2010) and CarterEtAl96

(Carter et al., 1996), and Eley07 (Eley, 2007) in all problem instances. Also, the proposed

ESGA produces better results than the approach by FongEtAl15 (Fong et al., 2015) except

for sta83 and uta92. For one problem instance (i.e. ear83), our approach has achieved best

results comparing to other approaches except the approach proposed by CaramiaEtAl08

(Caramia et al., 2008), and the third-best results for rye92, the fourth-best results for

uta92, and the fifth-best results for instances lse91, pur93, and tre92. Therefore, It can also

be verified that the proposed ESGA attains competitive costs on the Toronto benchmark

set, an overall comparison shows that we are not able to beat any of the best results in

the literature. Nevertheless, we are still able to produce su�ciently good solutions for

all problem instances of the Toronto, and the comparison also shows that our results are

competitive, thus proving the e�ciency of the ESGA.

144

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

P
ro
b
le
m

In
st
an

ce
A
V
G

A
p
p
ro
ac
h

M
ca
r9
1

ca
r9
2

ea
r8
3

h
ec
92

kf
u
93

ls
e9
1

p
u
r9
3

ry
e9
2

st
a8

3
tr
e9
2

u
ta
92

u
te
92

yo
r8
3

R
K

C
ar
te
rE

tA
l9
6
(C

ar
te
r
et

al
.,
19

96
)

f

m
i
n

7.
10

6.
20

36
.4
0

10
.8
0

14
.0
0

10
.5
0

3.
90

7.
30

16
1.
50

9.
60

3.
50

25
.8
0

41
.7
0

14
R
K

17
17

15
13

14
11

2
2

17
17

14
15

17

Y
an

g&
P
et
ro
vi
c0
4
(Y

an
g
an

d
P
et
ro
vi
c,

20
05

)
f

m
i
n

4.
50

3.
93

33
.7
1

10
.8
3

13
.8
2

10
.3
5

-
8.
53

15
8.
35

7.
92

3.
14

25
.3
9

36
.5
3

13
R
K

4
9

13
14

13
9

-
8

16
9

8
14

13

E
le
y0

7
(E

le
y,

20
07

)
f

m
i
n

5.
20

4.
30

36
.8
0

11
.1
0

14
.5
0

11
.3
0

4.
60

9.
80

15
7.
30

8.
60

3.
50

26
.4
0

39
.4
0

17
R
K

14
14

17
16

17
17

7
15

13
14

14
16

16

C
ar
am

ia
E
tA

l0
8
(C

ar
am

ia
et

al
.,
20

08
)

f

m
i
n

6.
60

6.
00

2
9
.3
0

9
.2
0

13
.8
0

9
.6
0

3
.7
0

6
.8
0

15
8.
20

9.
40

3.
50

2
4
.4
0

36
.2
0

10
R
K

16
16

1
1

12
1

1
1

15
16

14
1

11

B
u
rk
e&

B
yk

ov
08

(B
u
rk
e
an

d
B
yk

ov
,
20

08
)

f

m
i
n

4.
58

3.
81

32
.6
5

10
.0
6

1
2
.8
1

9.
86

4.
53

7.
93

15
7.
03

7.
72

3.
16

24
.7
9

34
.7
8

4
R
K

6
4

7
5

1
4

6
5

2
3

9
4

4

B
u
rk
eE

tA
l1
0
(B

u
rk
e
et

al
.,
20

10
b
)

f

m
i
n

4.
90

4.
10

33
.2
0

10
.3
0

13
.2
0

10
.4
0

-
-

1
5
6
.9
0

8.
30

3.
30

24
.9
0

36
.3
0

8
R
K

12
12

9
7

6
10

-
-

1
12

12
6

12

P
il
la
y&

B
an

zh
af
10

(P
il
la
y
an

d
B
an

zh
af
,
20

10
)

f

m
i
n

4.
92

4.
22

35
.8
7

11
.5
0

14
.3
7

10
.8
9

4.
65

9.
30

15
7.
81

8.
38

3.
35

27
.2
4

39
.3
3

16
R
K

13
13

14
17

16
15

8
13

14
13

13
17

15

D
em

ee
st
er
E
tA

l1
2
(D

em
ee
st
er

et
al
.,
20

12
)

f

m
i
n

4.
52

3.
78

32
.4
9

10
.0
3

12
.9
0

10
.0
4

5.
67

8.
05

15
7.
03

7.
69

3.
13

24
.7
7

34
.6
4

3
R
K

5
3

5
2

4
6

10
7

2
2

5
2

3

A
b
d
u
ll
ah

&
A
lz
aq

eb
ah

13
(A

b
d
u
ll
ah

an
d
A
lz
aq

eb
ah

,
20

13
)

f

m
i
n

4.
76

3.
94

33
.6
1

10
.5
6

13
.4
4

10
.8
7

-
8.
81

15
7.
09

7.
94

3.
27

25
.3
6

35
.7
4

12
R
K

10
10

12
12

9
14

-
9

10
10

10
13

9

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

14
(A

lz
aq

eb
ah

an
d
A
b
d
u
ll
ah

,
20

14
)

f

m
i
n

4.
62

4.
00

33
.1
4

10
.4
3

13
.5
9

10
.7
5

-
9.
17

15
7.
06

8.
00

3.
27

25
.1
6

35
.5
8

11
R
K

8
11

8
10

10
13

-
12

7
11

10
8

7

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

15
(A

lz
aq

eb
ah

an
d
A
b
d
u
ll
ah

,
20

15
)

f

m
i
n

4.
38

3.
88

33
.3
4

10
.3
9

13
.2
3

10
.5
2

-
8.
92

15
7.
06

7.
89

3.
13

25
.1
2

35
.4
9

7
R
K

2
7

10
9

7
12

-
10

7
8

5
7

6

F
on

gE
tA

l1
5
(F
on

g
et

al
.,
20

15
)

f

m
i
n

4.
79

3.
89

33
.4
3

10
.4
9

13
.7
2

10
.2
9

-
-

15
7.
07

7.
86

3.
10

25
.3
3

36
.1
2

9
R
K

11
8

11
11

11
8

-
-

9
7

3
12

10

L
ei
te
E
tA

l1
6
(L

ei
te

et
al
.,
20

16
)

f

m
i
n

4.
41

3.
75

32
.6
2

10
.0
3

12
.8
8

9.
85

4.
10

7.
98

15
7.
03

7.
75

3.
08

24
.7
8

3
4
.4
4

2
R
K

3
2

6
2

3
3

3
6

2
6

2
3

1

M
u
kl
as
on

E
tA

l1
7
(M

u
kl
as
on

et
al
.,
20

17
)

f

m
i
n

5.
30

4.
51

36
.7
3

10
.9
1

14
.3
6

11
.0
2

5.
03

9.
01

15
7.
12

8.
75

3.
60

25
.2
0

38
.0
3

15
R
K

15
15

16
15

15
16

9
11

11
15

17
9

14

L
ei
te
E
tA

l1
8
(L

ei
te

et
al
.,
20

18
)

f

m
i
n

4
.3
1

3
.6
8

32
.4
8

10
.0
3

1
2
.8
1

9.
78

4.
14

7.
89

15
7.
03

7
.6
6

3
.0
1

24
.8
0

34
.4
5

1
R
K

1
1

3
2

1
2

4
4

2
1

1
5

2

M
an

d
al
E
tA

l2
0
(M

an
d
al

et
al
.,
20

20
)

f

m
i
n

4.
58

3.
82

32
.4
8

10
.3
2

13
.3
4

10
.2
4

-
9.
79

15
7.
03

7.
72

3.
13

25
.2
8

35
.4
6

5
R
K

6
5

3
8

8
7

-
14

2
3

5
11

5

P
ro
p
os
ed

E
S
G
A

f

m
i
n

4.
64

3.
84

32
.2
4

10
.1
2

12
.9
2

9.
90

4.
33

7.
67

15
7.
26

7.
72

3.
11

25
.2
6

35
.7
0

6
R
K

9
6

2
6

5
5

5
3

12
3

4
10

8

Table 4.4 Comparison ‘best’ results of the proposed approach with reported ‘best’ results of various
state-of-the-art approaches on the Toronto benchmark set. In the measure column ‘M’, (fmin)
presents the best solution value (minimum penalties and the row ‘R’ is rank. The comparison is
made between the best soft constraints cost of each approach. The best solutions are in boldface.
(-) indicates that a feasible solution could not be obtained, or the following datasets were not
tested.

145

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

R
u
n
n
in
g
ti
m
es

(s
)
fo
r
T
or
on

to
b
en
ch
m
ar
k
se
ts
.

A
p
p
ro
ac
h

ca
r9
1

ca
r9
2

ea
r8
3

h
ec
92

kf
u
93

ls
e9
1

p
u
r9
3

ry
e9
2

st
a8
3

tr
e9
2

u
ta
92

u
te
92

yo
r8
3

C
ar
te
rE

tA
l9
6

20
.7

47
24
.7

7.
4

12
0

48
2
1
7
2
9
.4

50
7.
2

5.
7

10
7.
4

66
4.
3

9.
1

17
4.
5

Y
an

g&
P
et
ro
vi
c0
4

2
7
7
3
.2

15
18

11
35
.2

10
93
.8

21
52
.8

17
29
.2

-
13
81
.8

73
9.
8

18
16
.2

18
90

74
5.
8

15
91
.2

E
le
y0

7
1
6
2
0
0

1
6
2
0
0

1
6
2
0
0

18
1
6
2
0
0

1
6
2
0
0

1
6
2
0
0

1
6
2
0
0

1
6
2
0
0

1
6
2
0
0

1
6
2
0
0

1
6
2
0
0

1
6
2
0
0

C
ar
am

ia
E
tA

l0
8

17
2

11
20

30
0

48
32
0

44
6

1
2
0
4
2

45
2

30
43
0

20
46

20
45
2

B
u
rk
e&

B
yk

ov
08

66
4.
8

60
4.
2

45
0

58
9.
8

88
2

64
0.
8

74
7

90
1.
2

58
6.
8

60
7.
8

80
5.
2

52
8

52
8

B
u
rk
eE

tA
l1
0

54
00

54
00

12
0

12
0

12
0

12
0

-
-

12
0

12
0

54
00

12
0

12
0

P
il
la
y&

B
an

zh
af
10

58
80

42
60

75
1

45
1

31
68

28
63

1
1
3
7
6
0

43
20

46
9

11
21

36
39

66
3

55
2

D
em

ee
st
er
E
tA

l1
2

4
3
2
0
0

4
3
2
0
0

4
3
2
0
0

4
3
2
0
0

4
3
2
0
0

4
3
2
0
0

4
3
2
0
0

4
3
2
0
0

36
00

4
3
2
0
0

4
3
2
0
0

4
3
2
0
0

4
3
2
0
0

A
b
d
u
ll
ah

&
A
lz
aq

eb
ah

13
**

**
**

**
**

**
-

**
**

**
**

**
**

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

14
96
00

96
00

30
0

30
0

30
0

30
0

-
30
0

30
0

30
0

96
00

30
0

30
0

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

15
96
00

96
00

60
0

60
0

60
0

60
0

-
60
0

60
0

60
0

96
00

60
0

60
0

F
on

gE
tA

l1
5

3
3
1
2
0

3
1
2
6
0

2
3
4
6
0

1
3
8
6
0

2
1
9
0
0

1
5
2
4
0

-
-

10
68
0

2
4
8
4
0

3
5
2
8
0

1
2
6
0
0

2
5
2
0
0

L
ei
te
E
tA

l1
6

8
6
4
0
0

8
6
4
0
0

8
6
4
0
0

8
6
4
0
0

8
6
4
0
0

8
6
4
0
0

1
7
2
8
0
0

8
6
4
0
0

8
6
4
0
0

8
6
4
0
0

8
6
4
0
0

8
6
4
0
0

8
6
4
0
0

M
u
kl
as
on

E
tA

l1
7

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

L
ei
te
E
tA

l1
8

1
7
2
8
0
0

1
7
2
8
0
0

8
6
4
0
0

8
6
4
0
0

8
6
4
0
0

8
6
4
0
0

1
7
2
8
0
0

8
6
4
0
0

8
6
4
0
0

8
6
4
0
0

1
7
2
8
0
0

8
6
4
0
0

8
6
4
0
0

M
an

ad
al
E
tA

l2
0

36
00

36
00

36
00

36
00

36
00

36
00

36
00

36
00

36
00

36
00

36
00

36
00

36
00

P
ro
p
os
ed

E
S
G
A

10
80
0

10
80
0

10
80
0

10
80
0

10
80
0

10
80
0

10
80
0

10
80
0

10
80
0

10
80
0

10
80
0

10
80
0

10
80
0

Table 4.5 Running times (in seconds t(s)) for the Toronto benchmark set. (**) indicates that the
authors did not report the algorithm execution time, and (-) means that the algorithm was not
able to obtain a feasible solution.

4.7.5.2 ITC 2007 Dataset

According to Table 4.6 and in relation to the ITC 2007, the experimental results from

our proposed algorithm are compared with those of the top five performing algorithms in

the ITC 2007 contest, as well as some other more up-to-date approaches. These results,

however, cannot be regarded as competitive with Müller09’s approach, which was the

winner of the ITC 2007 competition. On the other hand, Müller09’s approach did not

perform well for the hidden instances such as Exam10, Exam11, and Exam12. Based on

Table 4.6, most of the best results were beaten by the BattistuttaEtAl17, LeiteEtAl18,

146

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

and Rajah&Pillay19 algorithms, with some of these results exceeding those of Müller09

(Müller, 2008). Furthermore, in a number of datasets, the developed method could reach,

and even beat most contestants. It can be noticed that the highest scoring datasets, i.e.

those with the worst results, are those with additional exam
coincident

hard constraints.

While our proposed approach does not outperform other state-of-the-art approaches, it is

comparable to them. It can be observed from Table 4.6, however, that with one particular

problem instance (i.e. Exam 10) our proposed algorithm is able to return a solution beating

Müller’s approach as well as other best-known solutions. It is, therefore, anticipated that

further improvements in the algorithm will address its limitations to make it still more

competitive the best of the current approaches.

4.7.5.3 Yeditepe Dataset

As for the Yeditepe dataset, the comparison between our results and recently-reported

results from the literature is given in Table 4.7 since there is a lack of prior experimental

results for this dataset. We compared our results with the results obtained from optimising

the standard objective function of Muklason17’s approach, and with results generated from

Müller09’s solver (Müller, 2008). Although MuklasonEtAl17’s approach outperformed

Müller09’s approach, our proposed ESGA outperforms both those approaches for two out

of the eight problem instances in this dataset. The results also indicate that our proposed

approach is able to obtain better results compared to the other state-of-the-art approaches.

Further, from Table 4.7, it can be observed that the SA-GD-HH algorithm outperforms

the SR-GD-HH and RL-GD-HH algorithms. SR-XGD-HH is comparable with SA-XGD-

HH when combining the strategies of low-level heuristic selection with the extended great

deluge algorithm rather than the standard great deluge. In addition to, when combining

the strategies of low-level heuristic selection strategies with the modified extended great

deluge algorithm, it can be noticed that SR-MXGD-HH outperforms SA-MXGD-HH and

RL-MXGD-HH. An overall comparison with the best-known results, however, showed that

the approach in this work is an e�cient approach in comparison with other approaches.

In several datasets, the introduced method reached the level set by most contestants and

achieved another best result in the YUE20023 instance.

147

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

P
ro
b
le
m

In
st
an

ce
A
V
G

A
p
p
ro
ac
h

M
E
xa

m
1

E
xa

m
2

E
xa

m
3

E
xa

m
4

E
xa

m
5

E
xa

m
6

E
xa

m
7

E
xa

m
8

E
xa

m
9

E
xa

m
10

E
xa

m
11

E
xa

m
12

R
K

M
ü
ll
er
09

(M
ü
ll
er
,
20

08
)

f

m
i
n

43
70

40
0

10
04

9
18

14
1

29
88

26
58

5
42

13
77

42
10

30
16

68
2

34
12

9
55

35
9

R
K

3
2

6
11

5
10

5
5

4
11

5
8

G
og

os
E
tA

l0
8
(G

og
os

et
al
.,
20

08
)

f

m
i
n

59
05

10
08

13
77

1
18

67
4

41
39

27
64

0
65

72
10

52
1

11
59

-
43

88
8

-
15

R
K

10
15

13
13

12
14

14
14

8
-

10
-

A
ts
u
ta
E
tA

l0
8
(M

cc
ol
lu
m

et
al
.,
20

10
)

f

m
i
n

80
06

34
70

17
66

9
22

55
9

46
38

29
15

5
10

47
3

14
31

7
17

37
15

08
5

-
52

64
16

R
K

15
17

15
14

15
16

15
15

12
9

-
4

D
e
S
m
et
08

(D
e
S
m
et
,
20

08
)

f

m
i
n

66
70

62
3

-
-

38
47

27
81

5
54

20
-

12
88

14
77

8
-

-
10

R
K

13
13

-
-

11
15

9
-

11
8

-
-

P
il
la
y0

8
(P

il
la
y,

20
08

)
f

m
i
n

12
03

5
28

86
15

91
7

23
58

2
68

60
32

25
0

17
66

6
15

59
2

20
55

17
72

4
40

53
5

63
10

17
R
K

17
16

14
15

17
17

17
16

13
12

9
11

M
cC

ol
lu
m
E
tA

l0
9
(M

cC
ol
lu
m

et
al
.,
20

09
)

f

m
i
n

46
33

40
5

90
64

15
66

3
30

42
2
5
8
8
0

40
37

74
61

10
71

14
37

4
29

18
0

56
93

5
R
K

4
4

4
5

6
3

3
2

6
6

4
10

D
em

E
tA

l1
2(
D
em

ee
st
er

et
al
.,
20

12
)

f

m
i
n

60
60

51
5

23
58

0
-

48
55

27
60

5
60

65
90

38
11

84
15

56
1

-
54

83
12

R
K

11
9

16
-

16
13

13
11

9
10

-
7

G
og

E
tA

l1
2
(G

og
os

et
al
.,
20

12
)

f

m
i
n

47
75

3
8
5

89
96

16
20

4
29

29
25

74
0

40
87

77
77

-
-

-
-

2
R
K

5
1

3
7

4
2

4
5

-
-

-
-

B
yk

ov
&
P
et
ro
vi
c1
3
(B

yk
ov

an
d
P
et
ro
vi
c,

20
13

)
f

m
i
n

40
08

40
4

8
0
1
2

1
3
1
3
2

2
5
8
2

25
44

8
38

93
6
9
4
4

9
4
9

12
98

5
2
5
1
9
4

51
81

1
R
K

2
3

1
1

1
1

2
1

1
2

1
3

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

14
(A

lz
aq

eb
ah

an
d
A
b
d
u
ll
ah

,
20

14
)

f

m
i
n

53
28

.0
0

51
2

10
17

8
16

46
5

36
24

26
24

0
45

62
80

98
-

-
-

-
7.
5

R
K

8
8

7
10

8
9

7
7

-
-

-
-

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

15
(A

lz
aq

eb
ah

an
d
A
b
d
u
ll
ah

,
20

15
)

f

m
i
n

51
54

42
0

10
18

2
15

71
6

33
50

26
16

0
42

71
79

22
-

-
-

-
4

R
K

6
7

8
6

7
7

6
6

-
-

-
-

B
at
ti
st
u
tt
aE

tA
l1
7(
B
at
ti
st
u
tt
a
et

al
.,
20

17
)

f

m
i
n

3
9
2
6
.9
6

40
7.
72

88
49

.4
6

15
61

7.
82

28
49

26
08

1.
35

3
6
6
1
.6
4

77
29

.4
6

99
1.
57

13
99

9.
56

27
78

1.
5

55
50

.2
3

R
K

1
6

2
4

3
6

1
3

2
5

2
9

M
u
kl
as
on

E
tA

l1
7(
M
u
kl
as
on

et
al
.,
20

17
)

f

m
i
n

68
56

63
2

11
65

9
16

32
5

38
37

27
37

0
55

28
97

98
12

46
14

55
6

36
81

0
53

00
14

R
K

14
14

9
9

10
12

12
12

10
7

7
5

L
ei
te
E
tA

l1
8
(L

ei
te

et
al
.,
20

18
)

f

m
i
n

62
07

53
5.
00

13
02

2
14

30
2

38
29

26
71

0
55

08
87

16
10

30
13

89
4

39
78

3
51

42
11

R
K

12
11

12
3

9
11

11
10

3
4

8
2

R
a
ja
h
&
P
il
la
y1

9
(R

a
ja
h
an

d
P
il
la
y,

20
19

)
f

m
i
n

51
92

54
6

91
09

14
07

3
28

25
26

03
0

46
97

85
70

10
44

13
35

2
28

18
1

5
1
3
8

6
R
K

7
12

5
2

2
5

8
9

5
3

3
1

M
an

d
al
E
tA

l2
0
(M

an
d
al

et
al
.,
20

20
)

f

m
i
n

53
28

40
7

11
69

2
16

20
4

43
00

25
88

0
55

07
82

38
-

-
-

-
7.
5

R
K

8
5

10
7

13
3

10
8

-
-

-
-

P
ro
p
os
ed

E
S
G
A

f

m
i
n

80
68

52
8

11
84

5
18

57
4

43
25

26
22

6
11

64
9

10
35

1
11

42
1
2
5
8
9

35
81

5
54

68
13

R
K

16
10

11
12

14
8

16
13

7
1

6
6

Table 4.6 Comparison ‘best’ results of the proposed approach with reported ‘best’ results of the
ITC 2007 finalists and more recent approaches applied to the ITC 2007 benchmark set. Notation
as in Table 4.4

148

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

P
ro
b
le
m

In
st
an

ce
A
V
G

A
p
p
ro
ac
h

M
Y
U
E
20
01
1

Y
U
E
20
01
2

Y
U
E
20
01
3

Y
U
E
20
02
1

Y
U
E
20
02
2

Y
U
E
20
02
3

Y
U
E
20
03
1

Y
U
E
20
03
2

R
K

M
ü
ll
er
09

(M
ü
ll
er
,
20
08
)

f

m
i
n

62
12
5

2
9

70
17
0

70
22
3

44
0

9
R
K

7
7

1
6

8
12

9
9

M
u
kl
as
on

E
tA

l1
7
(M

u
kl
as
on

et
al
.,
20
17
)

f

m
i
n

56
12
2

2
9

76
16
2

56
14
3

43
4

6
R
K

6
6

1
7

5
2

3
7

S
R
-G

D
-H

H
(M

u
kl
as
on

,
20
17
)

f

m
i
n

88
12
6

2
9

97
15
0

56
18
6

3
6
2

7
R
K

11
8

1
9

3
2

7
1

R
L
-G

D
-H

H
(M

u
kl
as
on

,
20
17
)

f

m
i
n

69
15
2

45
14
3

28
1

59
27
4

65
0

11
R
K

10
10

12
12

11
9

10
11

S
A
-G

D
-H

H
(M

u
kl
as
on

,
20
17
)

f

m
i
n

49
9
8

2
9

4
6

13
3

56
1
2
1

37
0

1
R
K

2
1

1
1

2
2

1
3

S
R
-X

G
D
-H

H
(M

u
kl
as
on

,
20
17
)

f

m
i
n

50
10
9

2
9

64
17
0

56
12
4

40
5

3.
5

R
K

3
2

1
5

8
2

2
6

R
L
-X

G
D
-H

H
(M

u
kl
as
on

,
20
17
)

f

m
i
n

63
16
1

33
10
1

23
3

61
27
9

64
8

10
R
K

8
11

11
10

10
10

11
10

S
A
-X

G
D
-H

H
(M

u
kl
as
on

,
20
17
)

f

m
i
n

55
11
3

2
9

51
16
3

56
14
6

37
7

3.
5

R
K

5
4

1
3

6
2

4
4

S
R
-M

X
G
D
-H

H
(M

u
kl
as
on

,
20
17
)

f

m
i
n

4
8

10
7

2
9

49
1
2
5

56
14
8

3
6
2

2
R
K

1
3

1
2

1
2

5
1

R
L
-M

X
G
D
-H

H
(M

u
kl
as
on

,
20
17
)

f

m
i
n

11
0

21
3

30
12
6

31
1

65
34
5

68
5

12
R
K

12
12

10
11

12
11

12
12

S
A
-M

X
G
D
-H

H
(M

u
kl
as
on

,
20
17
)

f

m
i
n

50
11
7

2
9

55
15
6

56
16
1

40
0

5
R
K

3
5

1
4

4
2

6
5

P
ro
p
os
ed

E
S
G
A

f

m
i
n

64
12
9

2
9

83
16
7

5
5

19
2

43
8

8
R
K

9
9

1
8

7
1

8
8

Table 4.7 Comparison ‘best’ results of the proposed ESGA approach with reported ‘best’ results
of state-of-the-art approaches for Yeditepe dataset. Notation as in Table 4.4.

149

4. An Exam Specialised Genetic Algorithm for Examination Timetabling Problem

4.8 Summary

Various real-world timetabling problems have been investigated by many researchers. Ge-

netic algorithms are very commonly used to tackle these problems. In this chapter, various

variators, including directed and random mutations, varied sizes of mutations, solution-

oriented mutations, as well as selection operators were introduced, while the crossover

phase was omitted. In the experiments conducted for this study, the proposed GA yielded

better results than the basic GA across all problem instances on the Toronto, ITC 2007,

and Yeditepe datasets. The proposed mutation operators e�ciently and e↵ectively ex-

ploited and explored the solutions to create a high-quality solution. The proposed solution

selection keeps the population diversified by preventing similar individuals from joining

the population during the replacement process. Furthermore, the crossover phase was

omitted in this work since it was found to increase the execution time of the GA signifi-

cantly, without any improvements in the results of the examination timetabling problem.

It is, therefore, crucial to assert that the operators in this work can also be utilised in GAs

to solve other types of timetabling problems and/or other types of problems of constraint

satisfaction like the timetabling of a high school course, nurse rostering or the classroom

assignments.

In the following chapter, we will use the approach proposed in Chapter 3 (i.e. OBSI plus

OBSI combined with the EA) to solve an additional examination timetabling problem,

namely, the Toronto benchmark set and employ a multi-objective comparison scheme

based on (uncertain) Pareto dominance in order to analyse published exam timetabling

approaches on the Toronto benchmark sets and identify the (probabilistic) Pareto set of

optimisers.

150

Chapter 5

A Novel Multi-objective

Framework to Analyse 25 years of

Exam Timetable Optimisation

Work presented in this chapter is currently under review at the Journal of the Information

Sciences.

5.1 Introduction

In this chapter we identify a number of issues with the common comparison between

published works on popular exam timetabling benchmarks in the literature. An uncertain

Pareto analysis approach is proposed and developed to compare published work, which

compensates for uncertainties in their e↵ective computational budget, and represents the

trade-o↵ between optimisation time and solution quality. The aim is to compare and

contrast results spanning the last 25 years of exam timetable optimisation in order to

identify the Pareto set of optimisers – i.e. those that can reasonably be considered the

‘best’ for each problem, given the data available.

The popular Toronto and ITC 2007 benchmarks have been briefly described in Section 2.5

in Chapter 2. The following section analyses and highlights the best-known approaches

reported in the literature for solving the Toronto and the ITC 2007 benchmark sets.

Section 5.3 outlines the fundamental problems when comparing published algorithm per-

formance on exam timetabling benchmarks from the literature. Section 5.4 describes a

multi-objective analysis of the results that can address some of the issues identified in Sec-

tion 5.3, and presents a comparison of published results of 16 di↵erent algorithms using

it. The chapter ends with the summary in Section 5.5.

151

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

5.2 Reported ‘best’ Results from the Literature over Time

The examination timetabling problem is regarded as a minimisation problem where the

objective formulation for this problem seeks to satisfy all hard constraints and minimise

violations with regard to soft constraints (which can, therefore, be cast as a cost or loss

minimisation task). As such, the algorithm which returns a solution with the overall

lowest soft constraint violation value, subject to satisfying the hard constraints, can be

considered as the ‘best’ performing algorithm.

Various optimisers have been developed over the last 25 years for the exam timetabling

task, and between them have obtained several best-known results on the Toronto and the

ITC 2007 benchmark instances. These are listed in Section 5.2.1 and Section 5.2.2 respec-

tively and described in Section 4.7.3 in Chapter 4. The best-published results (i.e. the

minimum cost solution values found) and the mean results for each considered optimiser

on the Toronto benchmark set are presented in Table 5.1. Moreover, Table 5.2 presents

the ITC 2007 results of the five finalists of the examination track of the along with more

recently developed optimisers that have been applied to this problem suite and fulfilled

the ITC 2007 rules. Authors’ name concatenated with publishing year are used to label

the various approaches. Additionally, the running times (in seconds) of theses optimisers

for the Toronto and ITC 2007 benchmark sets are reported in Table 5.3 and Table 5.4.

5.2.1 Reported ‘best’ Results of the Toronto Benchmarks

• CarterEtAl96 (Carter et al., 1996).

• Yang&Petrovic04 (Yang and Petrovic, 2005).

• Eley07 (Eley, 2007).

• CaramiaEtAl08 (Caramia et al., 2008).

• Burke&Bykov08 (Burke and Bykov, 2008).

• BurkeEtAl10 (Burke et al., 2010b).

• Pillay&Banzhaf10 (Pillay and Banzhaf, 2010).

• DemeesterEtAl12 (Demeester et al., 2012).

• Abdullah&Alzaqebah13 (Abdullah and Alzaqebah, 2013).

• Alzaqebah&Abdullah14 (Alzaqebah and Abdullah, 2014).

• Alzaqebah&Abdullah15 (Alzaqebah and Abdullah, 2015).

• FongEtAl15 (Fong et al., 2015).

• LeiteEtAl16 (Leite et al., 2016).

• MuklasonEtAl17 (Muklason et al., 2017).

152

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

• LeiteEtAl18 (Leite et al., 2018).

• Alsuwaylimi&Fieldsend19 (Alsuwaylimi and Fieldsend, 2019): We also use OBSI1,

see Chapter 3.

5.2.2 Reported ‘best’ Results of the ITC 2007 Benchmarks

• Müller09 (Müller, 2008).

• GogosEtAl08 (Gogos et al., 2008).

• AtsutaEtAl08 (Atsuta et al., 2008).

• De Smet08 (De Smet, 2008).

• Pillay08 (Pillay, 2008).

• McCollumEtAl09 (McCollum et al., 2009).

• DemeesterEtAl12 (Demeester et al., 2012).

• GogosEtAl12 (Gogos et al., 2012).

• Alzaqebah&Abdullah14 (Alzaqebah and Abdullah, 2014).

• Alzaqebah&Abdullah15 (Alzaqebah and Abdullah, 2015).

• BattistuttaEtAl17 (Battistutta et al., 2017).

• MuklasonEtAl17 (Muklason et al., 2017).

• LeiteEtAl18 (Leite et al., 2018).

• Alsuwaylimi&Fieldsend19 (Alsuwaylimi and Fieldsend, 2019).

5.3 Problems with Comparing Results from the Literature

There are a number of issues when comparing algorithm performances published in the

literature for these tasks:

1. algorithms have been run for di↵erent lengths of time, often with performance only

reported for the solution returned at the end of the time allocated;

2. algorithms in di↵erent works have been run on di↵erent machines (with di↵erent pro-

cessor speeds, memory speeds, cache sizes, operating systems, languages, compilation

optimisations, etc.), so even where the wall-clock time reported is the same/similar,

the e↵ective CPU time could still vary greatly;

3. algorithms have been run for a di↵erent number of repeated runs, from which the

best found across these repeats is reported.

1

Raw data available from https://github.com/alsuwaylimi/OBSI_method_toronto.

153

https://github.com/alsuwaylimi/OBSI_method_toronto.

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

A
p
p
ro
ac
h

M
ca
r9
1

ca
r9
2

ea
r8
3

h
ec
92

kf
u
93

ls
e9
1

p
u
r9
3

ry
e9
2

st
a8
3

tr
e9
2

u
ta
92

u
te
92

yo
r8
3

C
ar
te
rE

tA
l9
6

(b
)

7.
10

6.
20

36
.4
0

10
.8
0

14
.0
0

10
.5
0

3.
90

7.
30

16
1.
50

9.
60

3.
50

25
.8
0

41
.7
0

(m
)

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

Y
an

g&
P
et
ro
vi
c0
4

(b
)

4.
50

3.
93

33
.7
1

10
.8
3

13
.8
2

10
.3
5

-
8.
53

15
8.
35

7.
92

3.
14

25
.3
9

36
.5
3

(m
)

4.
53

3.
99

34
.8
7

11
.3
6

14
.3
5

10
.8
7

-
8.
79

15
8.
02

8.
10

3.
20

26
.1
0

36
.8
8

E
le
y0

7
(b
)

5.
20

4.
30

36
.8
0

11
.1
0

14
.5
0

11
.3
0

4.
60

9.
80

15
7.
30

8.
60

3.
50

26
.4
0

39
.4
0

(m
)

5.
10

4.
40

38
.3
0

11
.4
0

14
.9
0

11
.7
0

4.
60

10
.0
0

15
7.
50

8.
70

3.
50

27
.0
0

40
.4
0

C
ar
am

ia
E
tA

l0
8

(b
)

6.
60

6.
00

29
.3
0

9.
20

13
.8
0

9.
60

3.
70

6.
80

15
8.
20

9.
40

3.
50

24
.4
0

36
.2
0

(m
)

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

B
u
rk
e&

B
yk

ov
08

(b
)

4.
58

3.
81

32
.6
5

10
.0
6

12
.8
1

9.
86

4.
53

7.
93

15
7.
03

7.
72

3.
16

24
.7
9

34
.7
8

(m
)

4.
68

3.
92

32
.9
1

10
.2
2

13
.0
2

10
.1
4

4.
71

8.
06

15
7.
05

7.
89

3.
26

24
.8
2

35
.1
6

B
u
rk
eE

tA
l1
0

(b
)

4.
90

4.
10

33
.2
0

10
.3
0

13
.2
0

10
.4
0

-
-

15
6.
90

8.
30

3.
30

24
.9
0

36
.3
0

(m
)

**
*

**
*

**
*

**
*

**
*

**
*

-
-

**
*

**
*

**
*

**
*

**
*

P
il
la
y&

B
an

zh
af
10

(b
)

4.
92

4.
22

35
.8
7

11
.5
0

14
.3
7

10
.8
9

4.
65

9.
30

15
7.
81

8.
38

3.
35

27
.2
4

39
.3
3

(m
)

5.
05

4.
28

36
.4
9

11
.6
9

14
.4
2

10
.9
5

4.
70

9.
41

15
8.
07

8.
45

3.
39

27
.4
5

39
.7
4

D
em

ee
st
er
E
tA

l1
2

(b
)

4.
52

3.
78

32
.4
9

10
.0
3

12
.9
0

10
.0
4

5.
67

8.
05

15
7.
03

7.
69

3.
13

24
.7
7

34
.6
4

(m
)

4.
64

3.
86

32
.6
9

10
.0
6

13
.2
4

10
.2
1

5.
75

8.
20

15
7.
05

7.
79

3.
17

24
.8
8

34
.8
3

A
b
d
u
ll
ah

&
A
lz
aq

eb
ah

13
(b
)

4.
76

3.
94

33
.6
1

10
.5
6

13
.4
4

10
.8
7

-
8.
81

15
7.
09

7.
94

3.
27

25
.3
6

35
.7
4

(m
)

4.
96

4.
16

34
.4
4

10
.7
6

13
.9
3

11
.3
4

-
9.
20

15
7.
22

8.
30

3.
45

25
.7
5

36
.7
1

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

14
(b
)

4.
62

4.
00

33
.1
4

10
.4
3

13
.5
9

10
.7
5

-
9.
17

15
7.
06

8.
00

3.
27

25
.1
6

35
.5
8

(m
)

4.
74

4.
08

33
.7
2

10
.5
9

13
.8
6

11
.0
0

-
9.
54

15
7.
16

8.
14

3.
33

25
.3
7

36
.3
2

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

15
(b
)

4.
38

3.
88

33
.3
4

10
.3
9

13
.2
3

10
.5
2

-
8.
92

15
7.
06

7.
89

3.
13

25
.1
2

35
.4
9

(m
)

4.
52

4.
09

33
.6
6

10
.9
0

13
.4
6

10
.8
2

-
9.
26

15
7.
16

8.
09

3.
23

25
.3
3

35
.6
9

F
on

gE
tA

l1
5

(b
)

4.
79

3.
89

33
.4
3

10
.4
9

13
.7
2

10
.2
9

-
-

15
7.
07

7.
86

3.
10

25
.3
3

36
.1
2

(m
)

4.
85

4.
27

34
.4
8

10
.6
1

13
.7
6

10
.3
9

-
-

15
7.
37

8.
04

3.
31

26
.0
4

36
.6
7

L
ei
te
E
tA

l1
6

(b
)

4.
41

3.
75

32
.6
2

10
.0
3

12
.8
8

9.
85

4.
10

7.
98

15
7.
03

7.
75

3.
08

24
.7
8

34
.4
4

(m
)

4.
45

3.
77

32
.6
9

10
.0
6

13
.0
0

9.
93

4.
17

8.
06

15
7.
03

7.
80

3.
15

24
.8
1

34
.7
3

M
u
kl
as
on

E
tA

l1
7

(b
)

5.
30

4.
51

36
.7
3

10
.9
1

14
.3
6

11
.0
2

5.
03

9.
01

15
7.
12

8.
75

3.
60

25
.2
0

38
.0
3

(m
)

5.
44

4.
66

38
.2
7

11
.4
3

15
.0
8

12
.0
0

5.
20

9.
53

15
7.
39

9.
19

3.
72

26
.3
9

39
.5
6

L
ei
te
E
tA

l1
8

(b
)

4.
31

3.
68

32
.4
8

10
.0
3

12
.8
1

9.
78

4.
14

7.
89

15
7.
03

7.
66

3.
01

24
.8
0

34
.4
5

(m
)

4.
39

3.
72

32
.6
1

10
.0
5

12
.8
3

9.
81

4.
18

7.
93

15
7.
03

7.
70

3.
04

24
.8
3

34
.6
3

A
ls
uw

ay
li
m
i&

F
ie
ld
se
n
d
19
:

(b
)

7.
31

6.
75

41
.5
4

12
.1
1

14
.3
8

13
.7
8

6.
75

11
.2
5

16
0.
40

11
.9
9

4.
27

26
.7
5

45
.1
9

O
B
S
I

(m
)

8.
38

7.
13

44
.6
5

14
.4
6

16
.7
2

16
.3
0

8.
63

13
.8
8

16
3.
62

12
.7
8

4.
69

28
.9
7

49
.5
2

O
B
S
I
+

E
A

(b
)

5.
24

4.
42

36
.3
1

11
.1
4

13
.1
7

11
.5
1

4.
45

9.
66

15
8.
16

9.
58

3.
29

25
.8
9

37
.7
1

(m
)

5.
55

4.
63

38
.1
8

11
.6
3

13
.3
9

12
.0
2

4.
72

10
.1
3

15
8.
76

10
.0
2

3.
57

26
.1
1

38
.4
9

Table 5.1 Reported results of various state-of-the-art approaches on the Toronto benchmark set. In
the measure column ‘M’, (b) presents the best solution values reported over the multiple runs for
an approach (minimum penalties) and the row (m) is the mean results. (-) indicates that a feasible
solution could not be obtained, or the following datasets were not tested. In the row marked with
(***), the authors did not report the mean results.

Issues 1 and 2 mean there is no common yardstick in order to fairly compare algorithm

performance. Indeed, as we can see from Tables 5.3 and 5.4, some algorithms are run for

an order-of-magnitude (or more) run time than others that they subsequently compare

themselves to. For ITC 2007, we are fortunate, as there is an application provided by the

154

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

A
p
p
ro
ac
h

M
E
xa

m
1

E
xa

m
2

E
xa

m
3

E
xa

m
4

E
xa

m
5

E
xa

m
6

E
xa

m
7

E
xa

m
8

E
xa

m
9

E
xa

m
10

E
xa

m
11

E
xa

m
12

M
ü
ll
er
09

(b
)

43
70

40
0

10
04
9

18
14
1

29
88

26
58
5

42
13

77
42

10
30

16
68
2

34
12
9

55
35

(m
)

45
74

41
4

10
78
9.
16

21
63
9

33
20
.7

27
80
8.
5

43
96
.3

79
50
.3

10
85
.2

18
58
0.
9

34
12
9

64
03
.2

G
og
os
E
tA

l0
8

(b
)

59
05

10
08

13
77
1

18
67
4

41
39

27
64
0

65
72

10
52
1

11
59

-
43
88
8

-
(m

)
60
64

10
48
.6

14
13
3.
5

20
66
6.
6

42
29
.1

28
07
7.
5

67
59
.5

10
80
9

12
03
.8
75

-
49
86
1.
3

-

A
ts
u
ta
E
tA

l0
8

(b
)

80
06

34
70

17
66
9

22
55
9

46
38

29
15
5

10
47
3

14
31
7

17
37

15
08
5

-
52
64

(m
)

90
83
.9
0

36
69
.4

19
36
7.
4

26
34
6.
8

49
20
.3

29
93
5

11
00
4.
33

14
86
9.
9

19
35
.6

15
57
9.
8

-
55
41
.9

D
e
S
m
et
08

(b
)

66
70

62
3

-
-

38
47

27
81
5

54
20

-
12
88

14
77
8

-
-

(m
)

66
70
.8
0

62
3

-
-

38
58
.4

28
15
5

54
32
.3

-
12
88

14
77
8

-
-

P
il
la
y0

8
(b
)

12
03
5

28
86

15
91
7

23
58
2

68
60

32
25
0

17
66
6

15
59
2

20
55

17
72
4

40
53
5

63
10

(m
)

12
81
9.
20

39
25
.8

19
81
2.
1

25
72
8.
8

11
17
6

34
02
8.
88

19
66
9.
3

16
72
0.
7

22
77

20
33
2.
6

44
27
7.
1

71
79

M
cC

ol
lu
m
E
tA

l0
9

(b
)

46
33

40
5

90
64

15
66
3

30
42

25
88
0

40
37

74
61

10
71

14
37
4

29
18
0

56
93

(m
)

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

**
*

D
em

ee
st
er
E
tA

l1
2

(b
)

60
60

51
5

23
58
0

-
48
55

27
60
5

60
65

90
38

11
84

15
56
1

-
54
83

(m
)

63
30
.2
0

61
2.
5

23
58
0

-
53
23

28
57
8.
13

62
50

92
60
.9

12
55
.9

16
11
3.
33

-
58
29
.1
4

G
og
os
E
tA

l1
2

(b
)

47
75

38
5

89
96

16
20
4

29
29

25
74
0

40
87

77
77

-
-

-
-

(m
)

50
32

40
4

94
84

19
60
7

31
58

26
31
0

43
52

80
98

-
-

-
-

A
lz
aq

eb
ah

&
(b
)

53
28

51
2

10
17
8

16
46
5

36
24

26
24
0

45
62

80
98

-
-

-
-

A
b
d
u
ll
ah

14
(m

)
55
17
.3
0

53
7.
9

10
32
4.
9

16
58
9.
1

36
31
.9

26
27
5

45
92
.4

83
28
.8

-
-

-
-

A
lz
aq

eb
ah

&
(b
)

51
54

42
0

10
18
2

15
71
6

33
50

26
16
0

42
71

79
22

-
-

-
-

A
b
d
u
ll
ah

15
(m

)
52
27
.8
1

45
7.
55

10
42
1.
64

16
10
8.
27

34
43
.7
2

26
24
7.
27

44
15

82
25
.8
1

-
-

-
-

B
at
ti
st
u
tt
aE

tA
l1
7

(b
)

39
26
.9
6

40
7.
72

88
49
.4
6

15
61
7.
82

28
49

26
08
1.
35

36
61
.6
4

77
29
.4
6

99
1.
57

13
99
9.
56

27
78
1.
5

55
50
.2

(m
)

39
00
.3
0

40
0.
5

81
45
.4

13
86
8.
8

28
04
.1

25
92
9.
5

36
43
.3

76
80
.3

99
7.
6

13
35
3.
3

25
20
4

57
45
.6

M
u
kl
as
on

E
tA

l1
7

(b
)

68
56

63
2

11
65
9

16
32
5

38
37

27
37
0

55
28

97
98

12
46

14
55
6

36
81
0

53
00

(m
)

71
46

72
0

12
57
4

18
87
4

41
57

28
44
0

60
06

10
27
2

13
20

15
21
8

40
75
2

55
77

L
ei
te
E
tA

l1
8

(b
)

62
07

53
5

13
02
2

14
30
2

38
29

26
71
0

55
08

87
16

10
30

13
89
4

39
78
3

51
42

(m
)

64
78
.2
0

57
2.
90

13
68
0.
50

15
49
3.
70

41
55
.6
0

26
87
3

58
44
.4
0

89
42
.3
0

10
80
.3
0

14
20
8.
70

43
58
5.
80

52
49

A
ls
uw

ay
li
m
i&

(b
)

22
10
9

22
48
5

64
08
9

43
59
9

40
01
2

41
10
5

43
01
4

92
88
7

51
87

50
30
8

16
35
90

83
36

F
ie
ld
se
n
d
19
:
O
B
S
I

(m
)

27
55
8.
60

28
85
9.
26

75
95
0

51
20
0.
4

68
41
8.
1

50
06
9.
33

53
60
6.
6

11
83
09
.2
3

77
11

69
73
7.
33

21
98
94
.9
3

11
62
0.
8

O
B
S
I
+

E
A

(b
)

12
05
5

17
05

17
12
2

23
15
4

67
32

26
42
0

17
75
5

15
02
2

13
61

13
65
8

45
21
2

61
86

(m
)

13
09
2.
66

22
76
.6
6

17
48
2.
7

24
49
2.
86

70
95

29
23
9.
5

18
49
1.
03

15
82
3.
2

15
28
.5

14
95
7.
73

52
99
8.
81

63
57

Table 5.2 Reported results of the ITC 2007 finalists and more recent approaches applied to the
ITC 2007 benchmark set. Notation as in Table 5.1

155

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

competition organisers that participants can run, in order to stipulate the time for their

particular machine to attempt to mitigate points 1 and 2. However, this is not the case for

other benchmark sets like Toronto. Point 3 means that where algorithms are compared

on the ‘best’ solution found over multiple repetitions (as opposed to the average) then

simply increasing the number of repetitions of a stochastic optimiser, will improve the

expected value of the observed best performance (see Table 5.5 for the various number of

repetitions employed by di↵erent works). At the limit of repeated runs, any algorithm

with an initialisation or variation capability that spans the space will return the global

optima under the best found over multiple runs criteria.

Given points 1–3 above, comparisons in the literature relying on values from other pub-

lished works are either unfair (due to allocated compute time di↵erences), or are subject

to bias e↵ects. It is di�cult to reasonably conclude that algorithm A is better than al-

gorithm B, if the comparison is based on markedly di↵erent compute budgets and/or a

substantially di↵erent number of chances to acquire the better cost score.

The question then arises, can we usefully extract any information from prior published

results to apply a putative ranking on published performance, and contrast new results to

these? Point 3 is di�cult to mitigate for the best-returned value, as we do not have ready

access to the distribution of costs for particular problems, and therefore the expected

improvement due to repeated runs is di�cult to model, bar via estimation approaches.

However, we can retrospectively attempt to mitigate for points 1 and 2. This is possi-

ble through the additional information obtained from results published on the ITC 2007

benchmark. Furthermore, where additional moments are provided in papers (e.g. stan-

dard deviation and variance), the standard error in the approximation of the expectation

from the mean can be derived.

Due to the aforementioned timing application distributed with ITC 2007 problems (Mc-

collum et al., 2010), we have access to the range of times employed by researchers on

this problem set (see Tables 5.3 and 5.4). The times used have been allocated based on

the competition tool’s evaluation of the computation power of the device used to run the

evaluated optimiser. This time budget is allocated by the tool so that all algorithms are

e↵ectively judged using the same computational budget. In the published works considered

here, the fastest machine was allocated 276 seconds and the slowest machine 546 seconds.

For some of the publications reporting ITC 2007 results and times, we also have access

to the times the author(s) ran their approaches for on other problems (e.g. Toronto). We

can, therefore, use the time range on ITC 2007, to generate an uncertainty bound on the

e↵ective (normalised) time for other problems. A diagrammatic representation including

temporal information is shown in Figure 5.1. We emphasis that the second fastest ma-

chine and the slowest machine both were employed by di↵erent research teams in 2012,

so regressing to the publication year alone is not su�cient to accurately determine the

likely computing capability used for those works that do not have corresponding ITC 2007

results.

As mentioned above, the second issue in comparison in this field is that comparisons are

conducted even if there is a variation of the computational abilities between approaches

156

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

R
u
n
n
in
g
ti
m
es

(s
)
fo
r
T
or
on

to
b
en

ch
m
ar
k
se
ts
.

A
p
p
ro
ac
h

ca
r9
1

ca
r9
2

ea
r8
3

h
ec
92

kf
u
93

ls
e9
1

p
u
r9
3

ry
e9
2

st
a8

3
tr
e9
2

u
ta
92

u
te
92

yo
r8
3

C
ar
te
rE

tA
l9
6

20
.7

47
24

.7
7.
4

12
0

48
21

72
9.
4

50
7.
2

5.
7

10
7.
4

66
4.
3

9.
1

17
4.
5

Y
an

g&
P
et
ro
vi
c0
4

27
73

.2
15

18
11

35
.2

10
93

.8
21

52
.8

17
29

.2
-

13
81

.8
73

9.
8

18
16

.2
18

90
74

5.
8

15
91

.2
E
le
y0

7
16

20
0

16
20

0
16

20
0

18
16

20
0

16
20

0
16

20
0

16
20

0
16

20
0

16
20

0
16

20
0

16
20

0
16

20
0

C
ar
am

ia
E
tA

l0
8

17
2

11
20

30
0

48
32

0
44

6
12

04
2

45
2

30
43

0
20

46
20

45
2

B
u
rk
e&

B
yk

ov
08

66
4.
8

60
4.
2

45
0

58
9.
8

88
2

64
0.
8

74
7

90
1.
2

58
6.
8

60
7.
8

80
5.
2

52
8

52
8

B
u
rk
eE

tA
l1
0

54
00

54
00

12
0

12
0

12
0

12
0

-
-

12
0

12
0

54
00

12
0

12
0

P
il
la
y&

B
an

zh
af
10

58
80

42
60

75
1

45
1

31
68

28
63

11
37

60
43

20
46

9
11

21
36

39
66

3
55

2
D
em

ee
st
er
E
tA

l1
2

43
20

0
43

20
0

43
20

0
43

20
0

43
20

0
43

20
0

43
20

0
43

20
0

36
00

43
20

0
43

20
0

43
20

0
43

20
0

A
b
d
u
ll
ah

&
A
lz
aq

eb
ah

13
**

**
**

**
**

**
-

**
**

**
**

**
**

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

14
96

00
96

00
30

0
30

0
30

0
30

0
-

30
0

30
0

30
0

96
00

30
0

30
0

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

15
96

00
96

00
60

0
60

0
60

0
60

0
-

60
0

60
0

60
0

96
00

60
0

60
0

F
on

gE
tA

l1
5

33
12

0
31

26
0

23
46

0
13

86
0

21
90

0
15

24
0

-
-

10
68

0
24

84
0

35
28

0
12

60
0

25
20

0
L
ei
te
E
tA

l1
6

86
40

0
86

40
0

86
40

0
86

40
0

86
40

0
86

40
0

17
28

00
86

40
0

86
40

0
86

40
0

86
40

0
86

40
0

86
40

0
M
u
kl
as
on

E
tA

l1
7

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

L
ei
te
E
tA

l1
8

17
28

00
17

28
00

86
40

0
86

40
0

86
40

0
86

40
0

17
28

00
86

40
0

86
40

0
86

40
0

17
28

00
86

40
0

86
40

0
A
ls
uw

ay
li
m
i&

F
ie
ld
se
n
d
19

:
O
B
S
I

11
.0
2

5.
41

12
.0
5

8.
16

42
.4
7

53
.5
6

16
7.
97

74
.2
4

0.
12

60
.5
2

14
7.
2

4.
21

70
.3
2

O
B
S
I
+

E
A

23
02

23
28

24
83

13
47

77
8

18
6

28
24

97
8

46
8

16
18

21
13

12
03

45
7

Table 5.3 Running times (in seconds t(s)) for the Toronto benchmark set. (**) indicates that the
authors did not report the algorithm execution time, and (-) means that the algorithm was not
able to obtain a feasible solution.

considered. Thus, we noticed that most recent studies of solving the Toronto problem still

consider any approach reported in the literature that obtained several best-known results

even though its computational ability is quite out of date. This is because the best-known

results reported for each problem instance in this dataset are still very competitive results

to currently reported approaches. Hence, there is broadly a concern on the fairness of

the comparison taking out in the literature right now. However, we actually address this

157

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

R
u
n
n
in
g
ti
m
es

(s
)
fo
r
IT

C
20

07
b
en

ch
m
ar
k
se
ts
.

A
p
p
ro
ac
h

E
xa

m
1

E
xa

m
2

E
xa

m
3

E
xa

m
4

E
xa

m
5

E
xa

m
6

E
xa

m
7

E
xa

m
8

E
xa

m
9

E
xa

m
10

E
xa

m
11

E
xa

m
12

M
ü
ll
er
09

**
**

**
**

**
**

**
**

**
**

**
**

G
og

os
E
tA

l0
8

42
2

42
2

42
2

42
2

42
2

42
2

42
2

42
2

42
2

-
42

2
-

A
ts
u
ta
E
tA

l0
8

**
**

**
**

**
**

**
**

**
**

-
**

D
e
S
m
et
08

**
**

-
-

**
**

**
-

**
**

-
-

P
il
la
y0

8
49

5
49

5
49

5
49

5
49

5
49

5
49

5
49

5
49

5
49

5
49

5
49

5
M
cC

ol
lu
m
E
tA

l0
9

**
**

**
**

**
**

**
**

**
**

**
**

D
em

ee
st
er
E
tA

l1
2

30
0

30
0

30
0

-
30

0
30

0
30

0
30

0
30

0
30

0
-

30
0

G
og

os
E
tA

l1
2

54
6

54
6

54
6

54
6

54
6

54
6

54
6

54
6

54
6

54
6

54
6

54
6

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

14
46

0
46

0
46

0
46

0
46

0
46

0
46

0
46

0
-

-
-

-
A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

15
46

0
46

0
46

0
46

0
46

0
46

0
46

0
46

0
-

-
-

-
B
at
ti
st
u
tt
aE

tA
l1
7

32
4

32
4

32
4

32
4

32
4

32
4

32
4

32
4

32
4

32
4

32
4

32
4

M
u
kl
as
on

E
tA

l1
7

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

36
0

L
ei
te
E
tA

l1
8

27
6

27
6

27
6

27
6

27
6

27
6

27
6

27
6

27
6

27
6

27
6

27
6

A
ls
uw

ay
li
m
i&

F
ie
ld
se
n
d
19

:
O
B
S
I

6.
3

10
.0
2

23
.1
3

1.
48

11
.9
9

0.
73

25
.3
2

7.
45

0.
18

0.
50

20
.9
8

0.
53

O
B
S
I
+

E
A

39
2

39
2

39
2

39
2

39
2

39
2

39
2

39
2

39
2

39
2

39
2

39
2

Table 5.4 Running times (in seconds t(s)) for the ITC 2007 benchmark set. Notation as detailed
in caption of Table 5.3.

explicitly compensating for the variation in timing that has as identified being experienced

in the historical papers. We found that they are competitive with many of the state-of-

the-art approaches, which should not be precluded from consideration.

158

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

Repetitions
Algorithm Toronto ITC 2007 Reference

CarterEtAl96 10 - (Carter et al., 1996)
Yang&Petrovic04 5 - (Yang and Petrovic, 2005)

Eley07 20 - (Eley, 2007)
Müller09 - 10 (Müller, 2008)

GogosEtAl08 - 10 (Gogos et al., 2008)
AtsutaEtAl08 - 10 (Atsuta et al., 2008)
De Smet08 - 10 (De Smet, 2008)
Pillay08 - 10 (Pillay, 2008)

CaramiaEtAl08 12 - (Caramia et al., 2008)
Burke&Bykov08 20 - (Burke and Bykov, 2008)
McCollumEtAl09 - 51 (McCollum et al., 2009)
BurkeEtAl10 100 - (Burke et al., 2010b)

Pillay&Banzhaf10 10 - (Pillay and Banzhaf, 2010)
DemeesterEtAl12 10 10 (Demeester et al., 2012)
GogosEtAl12 - 100 (Gogos et al., 2012)

Abdullah&Alzaqebah13 10 - (Abdullah and Alzaqebah, 2013)
Alzaqebah&Abdullah14 11 11 (Alzaqebah and Abdullah, 2014)
Alzaqebah&Abdullah15 10 10 (Alzaqebah and Abdullah, 2015)

FongEtAl15 30 - (Fong et al., 2015)
LeiteEtAl16 5 - (Leite et al., 2016)

BattistuttaEtAl17 - 10 (Battistutta et al., 2017)
MuklasonEtAl17 21 21 (Muklason et al., 2017)

LeiteEtAl18 10 10 (Leite et al., 2018)
Alsuwaylimi&Fieldsend19 30 30 (Alsuwaylimi and Fieldsend, 2019)

Table 5.5 Number of repetitions for approaches that have been applied to the Toronto and the ITC
2007 benchmark sets. (-) indicates that algorithm was not applied to the corresponding benchmark
set.

5.4 Uncertain Multi-Objective Analysis of Published

Results

To facilitate putting an order (rank) on the published algorithm performances. We will

employ a bi-objective comparison scheme based on (uncertain) Pareto dominance. If we

consider the deterministic case of Pareto dominance first, algorithm x can be said to

be better than (i.e. dominate) algorithm y if it returns an equal or better solution in

an equal or faster time than algorithm y, but the performance on both criteria are not

simultaneously equal. I.e. x � y i↵ f

c

(x)  f

c

(y) ^ t(x) < t(y), or f
c

(x) < f

c

(y) ^ t(x) 
t(y), where t(x) returns the time taken by x to achieve the cost being compared under

f

c

(). If we consider the illustration in the left-hand panel of Figure 5.2, we can see that

b � c, and b � d, but b ⌃ a and a ⌃ b. In this situation, a and b are said non-dominated

and given the same (highest) rank: b finds a solution with a lower cost than a, but takes

twice as long to return its solution.

The right-hand panel of Figure 5.2 illustrates the situation we find ourselves in this study,

with bounded uncertainty on the time due to the di↵erent relative performance of the

machines used. As the uncertainty is of a bounded form, rather than with infinite tails

(e.g. a Gaussian), we can still ascribe a dominance relation with certainty when we consider

the bound extremes (Teich, 2001). Let us denote by t

l

(x) the lower bound of the time

taken by algorithm x and t

u

(x) the upper bound of the time taken. As there is no

159

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

276 2018

(Leite et al., 2018)

300 2012

(Demeester et al., 2012)

324 2017

(Battistutta et al., 2017)

360 2017

(Muklason et al., 2017)

392 2019

(Alsuwaylimi and Fieldsend, 2019)

422 2008

(Gogos et al., 2008)

460 2014

(Alzaqebah and Abdullah, 2014)

460 2015

(Alzaqebah and Abdullah, 2015)

495 2008

(Pillay, 2008)

546 2012

(Gogos et al., 2012)

Figure 5.1 Times (s) employed on ITC 2007 benchmark datasets (as assigned by competition
software tool) are shown inside the nodes. These are sorted from fastest (top of diagram) to
slowest (bottom of diagram) and labelled by reference number and year of publication. Note for
(Alsuwaylimi and Fieldsend, 2019) this is the time for OBSI+EA, as the initialisation by itself
(OBSI) takes significantly under the budget assigned (which is the same budget as OBSI + EA,
as experiments were conducted on the same machine).

time

cost

a)

a

b

c

d

time

cost

b)

a

b

c

d

Figure 5.2 Illustration of uncertain multi-objective algorithm comparison. (a) Deterministic com-
parison. Algorithm b dominates algorithms c and d (it is faster and gives better solutions), and
is mutually non-dominated with a (which returns a worse solution, but is much quicker). The
uncertain Pareto set in this case is {a, b}. (b) Comparison using uncertainty bound on timings.
Although b is still seen to dominate d, we cannot be certain that it dominates c due to the un-
certainty over the relative e↵ective timings (indicated by the width of the horizontal bars going
through the respective operating points). The uncertain Pareto set in this case is {a, b, c}.

uncertainty on the solution cost returned, we can say with confidence that x is better than

y i↵ f

c

(x)  f

c

(y) ^ t

u

(x) < t

l

(y), or f
c

(x) < f

c

(y) ^ t

u

(x)  t

l

(y). The next question is

obvious: how can we determine the functions t
u

and t

l

?

160

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

Let us first identify the lowest and highest recorded times on ITC 2007 from the literature,

which we label l and u. Now, for an algorithm x applied to e.g. a Toronto problem, with

a reported time of t(x), we can calculate its lowest e↵ective time as t
l

(x) = t(x)l/u (which

corresponds to the assumption that the results came from running the optimiser on a

machine with a capability equivalent to the fastest machine used by those publishing ITC

2007 results) and its highest e↵ective time as t

u

(x) = t(x)u/l (which corresponds to the

assumption that the reported works were run on a machine with a capability equivalent to

the slowest machine used in ITC 2007 works). Where a research group has applied their

algorithm to both ITC 2007 and, e.g. Toronto in the same paper, (and they have reported

their ITC 2007 allocated time), r, we can narrow the uncertainty bands further for the

reported Toronto problems. Specifically, t

l

(x) = t(x)r/u and t

u

(x) = t(x)u/r. These

calculations allow us to identify a reasonable approximation to the uncertain Pareto set of

algorithms from the literature, with respect to each exam scheduling problem which there

are reported results on. This representation explicitly compensates for the uncertainty in

the e↵ective (machine-normalised) timings.

There is a chance that some works have used machines outside of the envelope of capabili-

ties of works applied to the ITC 2007 suite, but we do not have any additional information

to guide a further widening of the tolerances applied. Furthermore, by applying a hard

boundary at the limits, we are treating the uncertainty estimate that we do have in the

most conservative way possible. An alternative approach would be to use the di↵erent

times recorded in Figure 5.1 to approximate a distribution on times, and exploit that to

assign a soft domination probability rather than rely solely on the bounds, but we have

insu�cient data to do this robustly.

Using the approach detailed above, we can plot in the 2D solution cost/time space the per-

formance (and corresponding uncertainty) of all the algorithms considered, for the Toronto

problem instances on best performance, and (for those that report it) mean performance.

Using this, we may identify the uncertain Pareto set of algorithm solutions — denoted P,

which e�ciently trade-o↵s solution performance and time to return solution. Note that in

all these past works, we have only a single point estimate of performance, but can infer

the uncertainty band around this point.

Figures 5.3–5.4 shows the uncertain Pareto front, and dominated algorithms, for the 15

published approaches we consider that were evaluated on the Toronto benchmark on the

best results reported. Figures 5.5–5.6 shows the uncertain Pareto front, and dominated

algorithms, for the same algorithms on the mean results reported (note this is a subset

of the algorithms shown in Figures 5.3–5.4, due to a number not reporting the mean).2

Uncertain Pareto set members are highlighted in red on their uncertain timing bars. A

number of interesting properties are immediately identifiable. Firstly, the relative position

of algorithms in these scatter plots is not consistent across problems — even on the timings

axis (for some problems an algorithm will be run for a longer period of time than another,

and on other problems this is reversed). Likewise, the relative cost positions change

2

Most works reporting the mean also reported the standard deviation, so we could represent the uncer-

tainty in the expected cost performance via vertical bars in these plots — but we do not know if the

run data are actually symmetrically distributed, or Normal.

161

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

between problems, and the relative positioning of algorithms on the same problem under

best performance analysis is also often at variation with the relative mean performance

positioning. Even when taking into consideration the uncertainty over timings it is clear

that some algorithms are better than others on particular problems. However, there are

between 3 and 10 approaches on each problem which are incomparable under an uncertain

Pareto analysis for best performance, and between 6 and 9 for the corresponding mean

performance analysis.

Best cost Mean cost

Times % Times # Times % Times

Approach in P in P in P in P
CarterEtAl96 12 92 - -

Yang&Petrovic04 5 38 6 46

Eley07 1 8 2 15

Burke&Bykov08 10 77 13 100

CaramiaEtAl08 12 92 - -

BurkeEtAl10 7 54 - -

Pillay&Banzhaf10 1 8 4 31

DemeesterEtAl12 3 23 6 46

Alzaqebah&Abdullah14 4 31 9 69

Alzaqebah&Abdullah15 5 38 10 77

FongEtAl15 1 8 1 8

LeiteEtAl16 3 23 11 85

MuklasonEtAl17 5 38 12 92

LeiteEtAl18 5 38 12 92

Alsuwaylimi&Fieldsend19 (OBSI) 13 100 13 100

Alsuwaylimi&Fieldsend19 (OBSI+EA) 9 69 9 69

Table 5.6 Number and percentage of times based on the best and the mean costs for each above
algorithm appears in uncertain Pareto set of optimal algorithm. A ‘-’ indicates the authors did
not report the mean costs.

If we consider the number of times an algorithm appears in the top-ranked group of non-

dominated approaches (i.e. P) across the Toronto problem instances, we can identify two

di↵erent global rankings of approaches for best and mean performance, which is shown in

Table 5.6. There is some degree of correlation between the two rankings, but they are not

identical. At the extreme, if we consider the approach of Leite et al. (2016), it is in the

best cost based uncertain Pareto front for Toronto 3 out of 13 problems, but the mean

cost based uncertain Pareto front for Toronto 11 out of 13 problems.

162

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

100 102 104 106

Time (seconds)

4

4.5

5

5.5

6

6.5

7

7.5

B
e

s
t

c
o

s
t

car91

100 102 104 106

Time (seconds)

3.5

4

4.5

5

5.5

6

6.5

7

B
e

s
t

c
o

s
t

car92

100 102 104 106

Time (seconds)

28

30

32

34

36

38

40

42

B
e

s
t

c
o

s
t

ear83

100 102 104 106

Time (seconds)

9

9.5

10

10.5

11

11.5

12

12.5

B
e

s
t

c
o

s
t

hec92

102 104 106

Time (seconds)

12.5

13

13.5

14

14.5

B
e
s
t

c
o

s
t

kfu93

102 104 106

Time (seconds)

9

10

11

12

13

14

B
e

s
t

c
o

s
t

lse91

102 104 106

Time (seconds)

3.5

4

4.5

5

5.5

6

6.5

7

B
e

s
t

c
o

s
t

pur93

Alsuwaylimi&Fieldsend19(OBSI)

Alsuwaylimi&Fieldsend19(OBSI+EA)

CarterEtAl96

CaramiaEtAl08

Burke&Bykov08

DemeesterEtAl12

LeiteEtAl16

LeiteEtAl18

Alzaqebah&Abdullah14

Alzaqebah&Abdullah15

BurkeEtAl10

Eley07

Yang&Petrovic04

Pillay&Banzhaf10

MuklasonEtAl17

FongEtAl15

Figure 5.3 Uncertain Pareto fronts of published algorithm results (the best cost over multiple
runs) on the Toronto problem instances 1–7. Horizontal uncertain timing bar coloured red for
uncertain Pareto front members (i.e. P).

163

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

102 104 106

Time (seconds)

6

7

8

9

10

11

12

B
e

s
t

c
o

s
t

rye92

10-2 100 102 104 106

Time (seconds)

156

157

158

159

160

161

162

B
e

s
t

c
o

s
t

sta83

102 104 106

Time (seconds)

7

8

9

10

11

12

B
e

s
t

c
o

s
t

tre92

102 104 106

Time (seconds)

3

3.2

3.4

3.6

3.8

4

4.2

4.4

B
e

s
t

c
o

s
t

uta92

100 102 104 106

Time (seconds)

24

24.5

25

25.5

26

26.5

27

27.5

B
e
s
t

c
o

s
t

ute92

102 104 106

Time (seconds)

34

36

38

40

42

44

46

B
e

s
t

c
o

s
t

yor83

Alsuwaylimi&Fieldsend19(OBSI)

Alsuwaylimi&Fieldsend19(OBSI+EA)

CarterEtAl96

CaramiaEtAl08

Burke&Bykov08

DemeesterEtAl12

LeiteEtAl16

LeiteEtAl18

Alzaqebah&Abdullah14

Alzaqebah&Abdullah15

BurkeEtAl10

Eley07

Yang&Petrovic04

Pillay&Banzhaf10

MuklasonEtAl17

FongEtAl15

Figure 5.4 Uncertain Pareto fronts of published algorithm results (the best cost over multiple
runs) on the Toronto problem instances 8–13. Horizontal uncertain timing bar coloured red for
uncertain Pareto front members (i.e. P).

164

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

100 102 104 106

Time (seconds)

4

5

6

7

8

9

M
e
a
n

 c
o

s
t

car91

100 102 104 106

Time (seconds)

3.5

4

4.5

5

5.5

6

6.5

7

7.5

M
e
a
n

 c
o

s
t

car92

100 102 104 106

Time (seconds)

32

34

36

38

40

42

44

46

M
e

a
n

 c
o

s
t

ear83

100 102 104 106

Time (seconds)

10

11

12

13

14

15

M
e

a
n

 c
o

s
t

hec92

102 104 106

Time (seconds)

12

13

14

15

16

17

M
e

a
n

 c
o

s
t

kfu93

102 104 106

Time (seconds)

9

10

11

12

13

14

15

16

17

M
e

a
n

 c
o

s
t

lse91

102 104 106

Time (seconds)

4

5

6

7

8

9

M
e
a
n

 c
o

s
t

pur93

Alsuwaylimi&Fieldsend19(OBSI)

Alsuwaylimi&Fieldsend19(OBSI+EA)

Burke&Bykov08

Pillay&Banzhaf10

DemEtAl12

LeiteEtAl16

MuklasonEtAl17

LeiteEtAl18

Alzaqebah&Abdullah14

Alzaqebah&Abdullah15

Eley07

Yang&Petrovic04

FongEtAl15

Figure 5.5 Uncertain Pareto fronts of published algorithm results (the mean cost over multiple
runs) on the Toronto problem instances 1–7. Horizontal uncertain timing bar coloured red for
uncertain Pareto front members (i.e. P).

165

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

102 104 106

Time (seconds)

7

8

9

10

11

12

13

14

M
e

a
n

 c
o

s
t

rye92

10-2 100 102 104 106

Time (seconds)

157

158

159

160

161

162

163

164

M
e

a
n

 c
o

s
t

sta83

102 104 106

Time (seconds)

7

8

9

10

11

12

13

M
e

a
n

 c
o

s
t

tre92

102 104 106

Time (seconds)

3

3.5

4

4.5

5

M
e

a
n

 c
o

s
t

uta92

100 102 104 106

Time (seconds)

24

25

26

27

28

29

M
e

a
n

 c
o

s
t

ute92

102 104 106

Time (seconds)

35

40

45

50

M
e

a
n

 c
o

s
t

yor83

Alsuwaylimi&Fieldsend19(OBSI)

Alsuwaylimi&Fieldsend19(OBSI+EA)

Burke&Bykov08

Pillay&Banzhaf10

DemEtAl12

LeiteEtAl16

MuklasonEtAl17

LeiteEtAl18

Alzaqebah&Abdullah14

Alzaqebah&Abdullah15

Eley07

Yang&Petrovic04

FongEtAl15

Figure 5.6 Uncertain Pareto fronts of published algorithm results (the mean cost over multiple
runs) on the Toronto problem instances 8–13. Horizontal uncertain timing bar coloured red for
uncertain Pareto front members (i.e. P).

166

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

It is also interesting to note that there is no algorithm from this collection — which spans

more than two decades of research and development — which is not in the uncertain

optimum set for at least one problem instance, under both best and mean performance

criteria. That is, all algorithms considered are competitive (or incomparable) on at least

one of the problems — and a few of the approaches are competitive/incomparable on

many. This could suggest that even in this narrow application domain, there may still be

no free lunch (Wolpert and Macready, 1997).

The analysis above does not preclude that a particular algorithm x which has found a

better solution than y, albeit in twice the time, might not find a better solution than y

if it was run for half the time — and therefore, in reality, dominate it. However, we only

have access to single performance combinations for these published works. This leads us

on to one of the key points leading from this analysis. Ideally an anytime performance

approach should be employed (Grass and Zilberstein, 1996; Zilberstein, 1996; Dean and

Boddy, 1988), as used in other optimisation comparison areas (Shih and Liu, 1995; Zhang

et al., 2003; Dubois-Lacoste et al., 2015; Nguyen et al., 2016). Using such an approach

would result in performance curves. Corresponding uncertainty bounds on timings could

also be applied if algorithms are not run on the same machine when can still compare

them. However, as of yet, this approach appears not to have gained traction in the exam

timetabling community.

As well as problem-level comparison and benchmark-wide Pareto set memberships ranking,

I now also provide a benchmark-wide pair-wise uncertain dominance comparison between

algorithms tested on thirteen problem instances of the Toronto dataset in Table 5.7 with

the discussion:

The first row cells in Table 5.7 includes algorithms, and the first column cells also consist

of the same algorithms. The other cells consist of two values: the first value is the count

of the number of problem instances in benchmark sets in which the algorithm in the row

certainly dominated another algorithm in the column. The second value represents the

count of the number of problem instances where the algorithm in the column certainly

dominated the algorithm in the row. Therefore, for example, the value between algorithms

a and b is 3/5 means the algorithm a dominated the algorithm b in three problem instances.

The algorithm a was also dominated by the algorithm b in five problem instances. For a

given value of 0/0, it indicates that none of them dominated the other.

Benchmark-wide pair-wise comparisons were conducted on the same sixteen algorithms

that were used to apply pair-wise instance-level comparisons. The comparisons showed

that Alzaqebah&Abdullah14 dominated Yang&Petrovic04 four times (i.e. four prob-

lem instances), while Yang&Petrovic04 dominated Alzaqebah&Abdullah14 in three dif-

ferent problem instances. Moreover, Alsuwaylimi&Fieldsend19 (OBSI+EA) dominated

Pillay&Banzhaf10 in two problem instances, whereas Pillay&Banzhaf10 could not dom-

inate Alsuwaylimi&Fieldsend19 (OBSI+EA) in any problem instances. Elay07 also was

dominated in twelve problem instances by Burke&Bykov08. In addition, LeiteEtAl16 and

LeiteEtAl18 were not able to dominate any other algorithms. Unlike LeiteEtAl16 and

LeiteEtAl18, Alsuwaylimi&Fieldsend19 (OBSI) overwhelmed all other algorithms. Fur-

167

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

thermore, CaramiaEtAl08 was capable of beating all algorithms for all problem instances

except Alsuwaylimi&Fieldsend19 (OBSI) and CarterEtAl96. Conversely, Eley07 was dom-

inated by others except for LeiteEtAl16 and LeiteEtAl18.

The last column cells in Table 5.7 contains two values: the first one indicates the total

number of times the algorithm in a row defeats the other algorithms, and the second one

refers to the total number of times the algorithm in a row is defeated by others. As shown

in the last column, CaramiaEtAl08 and BurkeEtAl10 have the highest figure in terms of

the number of times they dominated the other algorithms. However, CaramiaEtAl08 was

defeated only once (i.e. by MuklasonEtAl17), whilst BurkeEtAl10 was prevailed eight

times (i.e. algorithms) across di↵erent instances. Therefore, the comparisons showed that

CaramiaEtAl08 is far superior (in terms of the results’ quality and the time it takes to

compute them) to the other algorithms. Furthermore, we found significant variances in the

overall performance comparisons regarding pair-wise instance-level and benchmark-wide

pair-wise comparisons. In other words, it is not necessary for the top algorithm in the

benchmark-wide pair-wise comparison to being among the top algorithms in the pair-wise

instance-level comparison.

5.5 Summary

Exam scheduling is a common problem encountered in educational institutions and is an

active area of optimisation research. Over four decades, much research in this area has been

undertaken. This has covered both formulating and modeling examination timetabling

problems, and developing domain specific optimisation approaches. Based on the nature

of the exam timetabling problem, the exact constraints to satisfy my vary from problem

instance to another, a↵ecting what is desired in an exam timetable solution. This chapter

has presented a detailed description of two widely used benchmark datasets — the Toronto

and ITC 2007 datasets. We have also presented the most successful approaches which

have been applied to both these popular benchmarks in the last two decades. We compare

these works with respect to their published results, however these data have been directly

obtained from corresponding articles (as implementations were often not available). As

such, the running times refer to various platforms, di↵erent implementation languages,

compilation optimisations, where the e↵ect of these factors is uncertain. Such issues

are widespread when comparing algorithms performance solely in terms of performance

obtained at a certain run-time. Other statistical issues also arise in the field, where

comparison between approaches is often conducted depending on only on the extreme

value obtained over a non-standard number of repetitions. In the ITC 2007, the time

limit is determined by a benchmarking tool provided from the ITC 2007 competition

organisers, however there is no such benchmark timing attempt for the works published

on the Toronto problems. As such, the results of published works are often compared

even when the studies have significantly di↵erent generation circumstances, such as wall-

clock time and employed compute capability, and di↵erent repetitions used to generate

the extreme performance value. We have derived an analysis that mitigates for timing

and capability e↵ects based on (bounded) uncertain Pareto dominance, and have shown

that for all published optimiser works considered there is at least one problem instance

168

5. A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation

A
lg
o
ri
th

m

CarterEtAl96

Yang&Petrovic04

Eley07

Burke&Bykov08

CaramiaEtAl08

BurkeEtAl10

Pillay&Banzhaf10

DemeesterEtAl12

Alzaqebah&Abdullah14

Alzaqebah&Abdullah15

FongEtAl15

LeiteEtAl16

MuklasonEtAl17

LeiteEtAl18

OBSI

OBSI+EA

T
o
ta

l

C
ar
te
rE

tA
l9
6

—
1/

0
6/

0
0/

0
0/

0
0/

0
6/

0
1/

0
1/

0
1/

0
0/

0
2/

0
4/

0
2/

0
0/

1
2/

0
26

/1

Y
an

g&
P
et
ro
vi
c0
4

0/
1

—
10

/0
0/

0
0/

4
0/

6
0/

0
1/

0
3/

4
0/

3
1/

0
0/

0
0/

0
0/

0
0/

0
0/

0
15

/1
8

E
le
y0

7
0/

6
0/

10
—

0/
12

0/
7

0/
7

2/
6

1/
1

0/
8

0/
8

0/
1

0/
0

0/
7

0/
0

0/
1

1/
6

4/
80

B
u
rk
e&

B
yk

ov
08

0/
0

0/
0

12
/0

—
0/

2
3/

1
6/

0
5/

0
3/

0
1/

0
10

/0
4/

0
0/

0
3/

0
0/

0
1/

0
48

/3

C
ar
am

ia
E
tA

l0
8

0/
0

4/
0

7/
0

2/
0

—
1/

0
6/

0
6/

0
2/

0
2/

0
4/

0
6/

0
2/

1
6/

0
0/

0
3/

0
51

/1

B
u
rk
eE

tA
l1
0

0/
0

6/
0

7/
0

1/
3

0/
1

—
6/

0
1/

0
5/

0
6/

0
5/

0
1/

0
8/

0
1/

0
0/

0
4/

0
51

/8

P
il
la
y&

B
an

zh
af
10

0/
6

0/
0

6/
2

0/
6

0/
6

0/
6

—
0/

0
0/

4
0/

3
0/

0
0/

0
0/

2
0/

0
0/

1
0/

2
6/

38

D
em

ee
st
er
E
tA

l1
2

0/
1

0/
1

1/
1

0/
5

0/
6

0/
1

0/
0

—
0/

0
0/

2
0/

0
1/

0
0/

1
3/

0
0/

0
0/

1
5/

19

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

14
0/

1
4/

3
8/

0
0/

3
0/

2
0/

5
4/

0
0/

0
—

0/
0

6/
0

0/
0

0/
0

0/
0

0/
0

4/
0

26
/1

4

A
lz
aq

eb
ah

&
A
b
d
u
ll
ah

15
0/

1
3/

0
8/

0
0/

1
0/

2
0/

6
3/

0
2/

0
0/

0
—

8/
0

1/
0

0/
0

0/
0

0/
0

2/
0

27
/1

0

F
on

gE
tA

l1
5

0/
0

0/
1

1/
0

0/
10

0/
4

0/
5

0/
0

0/
0

0/
6

0/
8

—
0/

0
0/

1
0/

0
0/

0
0/

1
1/

36

L
ei
te
E
tA

l1
6

0/
2

0/
0

0/
0

0/
4

0/
6

0/
1

0/
0

0/
1

0/
0

0/
1

0/
0

—
0/

0
0/

0
0/

0
0/

0
0/

15

M
u
kl
as
on

E
tA

l1
7

0/
4

0/
0

7/
0

0/
0

1/
2

0/
8

2/
0

1/
0

0/
0

0/
0

1/
0

0/
0

—
0/

0
0/

0
3/

0
15

/1
4

L
ei
te
E
tA

l1
8

0/
2

0/
0

0/
0

0/
3

0/
6

0/
1

0/
0

0/
3

0/
0

0/
0

0/
0

0/
0

0/
0

—
0/

0
0/

0
0/

15

O
B
S
I

1/
0

0/
0

1/
0

0/
0

0/
0

0/
0

1/
0

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

0/
0

—
0/

0
3/

0

O
B
S
I+

E
A

0/
2

0/
0

6/
1

0/
1

0/
3

0/
4

2/
0

1/
0

0/
4

0/
2

1/
0

0/
0

0/
3

0/
0

0/
0

—
10

/2
0

Table 5.7 Benchmark-wide pair-wise uncertain dominance comparison between the algorithms on
the Toronto benchmark sets.

where we cannot be certain it is not among the optimal set of algorithms, i.e. those which

most e↵ectively trade-o↵ solution performance for speed of solution return. The recent

OBSI approach is in the uncertain Pareto set for all problem instances, however as this

is a smart initialisation rather than optimisation approach this membership is primarily

derived by being much faster than all of the competitors. Nevertheless, it is also seen to

directly dominate some optimisers on a few problems also, and the OBSI+EA optimiser

variant is in the set of optimal trade-o↵ solutions for over two-thirds of the problems

considered. The next chapter provides a summary of all the work reported in this thesis

and some suggestions for future development.

169

Chapter 6

Conclusions and Future Work

6.1 Introduction

This chapter presents a summary of the research work that has been conducted in this

thesis. The proposed approaches (i.e. the OBSI method and the ESGA) for constructing

and tackling uncapacitated and capacitated examination timetabling problems are briefly

presented in Section 6.2. In this same section, the proposed multi-objective approach

to analyses published results is summarised, along with the comparison with previously-

published algorithms. Potential avenues for future work are highlighted in Section 6.3.

6.2 Research Summary

The main contribution of Chapter 3 was to present a new initialisation method (i.e. the

Ordering-Based Scheduling Initialisation (OBSI)) to construct solutions for examination

timetabling problems. We tested the proposed initialisation approach on capacitated ex-

amination timetabling problem instances (ITC 2007 examination track (McCollum et al.,

2007) and Yeditepe (Parkes and Ozcan, 2010)) and compared the obtained results with

popular initialisation approaches from this domain. This showed that the OBSI method

is competitive with other initialisation approaches reported in the literature. The pro-

posed method manages three interacting lists of exams (i.e. Front List, Middle List, and

Back List) to allocate exams into three corresponding sections of the timetable (i.e. Front

section, Middle Section, and Back Section). These lists are arranged and processed in

a step-wise fashion in order to construct a good satisfaction of both hard and soft con-

straints, particularly the expand constraints, which involve the “two exams in a row” and

“two exams in a day” constraints. The goal of this research is to develop an initialisation

method in which all solutions are feasible, and also the most challenging and highly-

constrained exams are scheduled in the most appropriate periods. However, constructing

an initial exam timetable while taking into account its quality is expensive and ardu-

ous. Thus, most approaches exclusively dedicated to examination timetabling problems

have employed other strategies such as squeaky wheel optimisation (Joslin and Clements,

1999), graph colouring heuristics (Burke and Newall, 2004), and decomposition techniques

170

6. Conclusions and Future Work

(Qu and Burke, 2007) to produce only feasible solutions in the construction phase. This

motivated the attempt in this work to create a method that would focus on producing

timetables that fulfil hard constraints and minimise the cost of the soft constraints.

The proposed method was compared to the most commonly-used graph colouring heuris-

tics in exam timetabling (namely, largest degree, largest weighted degree, largest enrolment

and saturation degree) as well as to random schedule allocation. Most studies on examina-

tion timetabling problems have applied graph colouring heuristics, depending on ordering

strategies in the first phase in order to construct initial feasible timetables. However,

these studies have not considered the quality of the initial timetables, rather than at-

tempting to produce feasible solutions initially and then improving the quality of these in

the second phase. The experimental results revealed that the proposed method e↵ectively

constructed a feasible solution for all problem instances from the two di↵erent datasets.

More specifically, it outperformed graph colouring heuristics and random approaches on

nearly all of the ITC 2007 benchmark instances for both quality and diversity, as well

as some of the Yeditepe benchmark instances for quality. In order to improve the initial

feasible solutions and compare the e↵ectiveness of the proposed method with other meth-

ods, all of these methods were incorporated within a simple evolutionary algorithm (EA)

using the same parameter settings and objective function. This comparison indicated that

the incorporation of the proposed method within the EA not only resulted in relatively

high-quality solutions compared to other initialisation approaches but that these solutions

were e↵ective for seeding an e�cient population-based search. Furthermore, most problem

instances using the initial OBSI outcome to generate initial solutions surpassed the quality

of runs using other initialisation strategies, and this was achieved for the same total time

cost (initialisation time plus optimisation time).

Chapter 4 proposed a novel Genetic Algorithm, with a range of novel parameters and

operators to tackle particular examination timetabling problems. This new variant is

called the Exam Specialised Genetic Algorithm (ESGA). The operators involve varied

types of operation, which are applied to examinations or periods. Several mutation types

(i.e. MM, PBM, DM, PBDM, HM, LM, and ELM) are applied to certain individuals under

certain circumstances. These include new parameters that aim to achieve a successful

balance between exploration and exploitation by preventing premature convergence and

controlling the size of the mutation and the probability that the mutation will be applied.

This proposed algorithm, along with a basic GA, uses the OBSI method with the aim

of generating the first population so that fair comparisons are conducted. The Toronto,

ITC 2007, and Yeditepe benchmark sets were used for comparison with the Basic GA.

The findings revealed that the ESGA achieved the best average fitness for all the problem

instances of the datasets and that it required more execution time. A comparison was

also conducted between the ESGA results for the three datasets and those of other state-

of-the-art approaches. Furthermore, the results of this work were also compared with

the top five performing algorithms in the ITC 2007 competition. It was found that the

improved approach reached and beat most contestants. Regarding the Yeditepe dataset,

the proposed algorithm results were compared with the results of state-of-the-art methods.

This showed that the proposed approach is as e�cient as other approaches, reaching the

171

6. Conclusions and Future Work

level of most of those alternative algorithms in most problem instances and obtaining a

new best result for the YUE20023 instance.

Chapter 5 highlights several issues that arise when comparing the performance of published

algorithms on common examination timetabling benchmarks. These are often compared

even when they have significantly di↵erent generation circumstances, such as wall-clock

time and the computation capability employed. We have derived an uncertain Pareto

analysis approach that mitigates for timing and capability e↵ects based on (bounded)

uncertain Pareto dominance, and show that for all the published optimisation works con-

sidered, there is at least one problem instance where we cannot be certain that is not

among the optimal set of algorithms trading-o↵ solution cost for speed of solution return.

We have observed that under the uncertain Pareto analysis all approaches considered

provide a competitive (non-dominated) performance on at least one problem instance

from the Toronto benchmark: even in this narrow application domain, there appears to

be “no free lunch”. However, there is a great variation between optimisers in terms of the

number of problems in which their performance is non-dominated.

6.3 Future Work

This thesis has presented several new approaches for tackling the problem of university

examination timetabling, generating competitive results compared with other examples

in the literature for the main benchmark problem instances. It is challenging to gener-

alise a methodology for solving the examination timetabling problem, however, because

restrictions (i.e. constraints) vary significantly from one institution to another. In order to

enhance the e�ciency of the proposed approaches, several suggestions can be considered

in future work. Several of these are identified below.

6.3.1 Improving the Investigated Approaches

As seen in Chapter 3, this work has focused on applying a new initialisation strategy

(OBSI) to generate initial solutions for the ITC 2007 and Yeditepe benchmark sets. The

proposed OBSI was compared against other initialisation strategies (i.e. several graph

colouring heuristics and the random schedule allocation method), and additionally, the

e↵ectiveness of the proposed approach, and other approaches, were also compared by

incorporating them in turn in a simple evolutionary algorithm. Each solution constructed

by the proposed OBSI has been represented in a way that simulates reality (indirect

representation); therefore the solution consists of a list of periods available in exam session,

where each period contains a predefined list of the rooms that will include as many exams

as possible depending on the satisfaction of the stipulated constraints and their capacities.

Also in Chapter 3, it can be noted that generating an initial solution with the four graph

colouring heuristics can be achieved more quickly than with the OBSI, albeit delivering

lower quality solutions. The drawback of the proposed OBSI, therefore, is that it requires

significantly higher computational time to construct an initial population (particularly for

the ITC 2007 datasets). This is because when the proposed OBSI attempts to schedule

172

6. Conclusions and Future Work

an exam into a period, the duration property of the exam is compared with the duration

property of the period in order to satisfy the period duration constraint, and this process

adds computational time. While in real-world examination timetabling problems, the

time taken to generate the examination timetables is often not critical, in the timetabling

literature, the methods are required to produce good results with fast execution times. It

would be interesting to see if this proposed algorithm obtains results very quickly, taking

into account the quality and diversity. E�ciency time could be realised by identifying a

pre-determined mechanism that aims to satisfy the period duration constraint in which

it determines an appropriate list (i.e. FL, BL, and ML) for each exam before assigning

the exam into the list. With this mechanism, each exam would consist of a list of valid

periods from the corresponding section (i.e. FS or BS or MS) that must be greater than

or equal to the duration of the exam. The revised OBSI would then attempt to schedule

an exam in a period from that valid list.

6.3.2 Anytime Analysis

An anytime algorithm is defined as an algorithm that has the capability to return solu-

tions to a specific problem whenever it is interrupted (Dean and Boddy, 1988). This is

in contrast with traditional algorithms which do not guarantee solutions until a certain

stopping criterion is met. Moreover, this concept always o↵ers a trade-o↵ between solution

quality and execution time.

The work in Chapter 5 underpins the need for the use of anytime analysis in the area of

exam timetable optimisation going forward (which has already gained traction in other

optimisation areas) (Shih and Liu, 1995; Zhang et al., 2003; Dubois-Lacoste et al., 2015;

Nguyen et al., 2016) – as this would allow a performance curve to be traced out for each

algorithm, and therefore may identify a much smaller set of high performance algorithms.

Although, even in this situation, an uncertain performance curve analysis would need to

be employed to compensate for uncertainties in compute capabilities, alongside the error

in the estimation of expected performance. We also assert that using the best result found

over multiple runs rather than the average is a poor choice — particularly when there is no

fixed number of repetitions mandated. Compounding this is the fact that the distribution

form of a heuristic algorithm’s performance is commonly not known, and indeed for many

distributions there is no known unbiased estimator for the maximum or minimum in any

respect (D’Eramo et al., 2016).

6.3.3 Hybridisation

The findings in Chapter 3 showed the advantage of using OBSI to generate an initial

population of high quality and diverse solutions lies in the quality of the final timetables

returned. Accordingly, the quality of final examination timetables is determined by the

quality of the initial examination timetables. The limitation of this work is that the

performance of the proposed OBSI is only evaluated by incorporating it within a simple

EA. It would be very interesting to integrate this new approach into some recently proposed

state-of-the-art timetabling meta-heuristics. We expect that such an integration would

produce outcomes that would be even more competitive with other results published in

173

6. Conclusions and Future Work

the literature. Furthermore, the examination timetables generated by the proposed OBSI

(as shown in chapter 3) could be further improved by implementing many meta-heuristic

algorithms. It may be worth investigating this when the algorithms start from the same

seeded solutions. The objective would be to select the meta-heuristic that would obtain

the best improvement.

The proposed approach investigated in Chapter 4 is open for hybridisation with some local

search techniques. Hybridisations of GA with local search techniques could lead to further

improvements. The objective would be to find a local search algorithm that can work and

increase the speed of the proposed GA. Future work could also study hill-climbing methods

(Qu et al., 2009b; Rahim et al., 2013).

6.3.4 Parameter Tuning

It is known that parameter tuning is a very e↵ective way to enhance many of the techniques

discussed in this thesis. Chapter 4 o↵ered an intensive empirical investigation of parameter

tuning. Several preliminary experiments were conducted in order to determine appropriate

values for parameters, such as the number of iterations, the size of the population, the

size of the elite pool, the probability of a solution being selected for mutation and the size

of the mutation supplied by each mutation operator. The limitation of this work is that

a tailor-made approach for getting good parameter settings was needed for the proposed

GA in order to produce high-quality and competitive solutions for all problem instances

tested in the experiments. Future research work could investigate an adaptation approach

and automated parameter tuning strategy.

6.3.5 Many-objective Optimisation Problem Formulation and Applying

Many-objective Optimisation Approaches

As discussed in Section 2.11 in Chapter 2, many meta-heuristic methods that have utilised

to tackle the examination timetabling problem as a single objective optimisation problem

have also been extended for use with multi-objective problems (Muklason, 2017; Coello

et al., 2007). Although some previous studies have sought to employ multi-objective

meta-heuristics in examination timetabling problems, these have mainly been conducted

on uncapacitated examination timetabling problems (i.e. the Toronto dataset) (Côté et al.,

2005), with only a very few investigating multi-objective approaches to the capacitated

ITC 2007 dataset (e.g. (Muklason et al., 2017)). It would be worthwhile to investigate how

multi-objectivisation and the use of many-objective optimisation approaches can improve

the search performance and the quality of the solutions found for the ITC 2007 problem

while minimising violations of soft constraints. This could be done by casting the ITC

2007 as many-objective optimisation problem and considering all its soft constraints (i.e

seven soft constraints) as objectives in this problem (i.e. C

2R, C2D, CPS , CNMD, CFL,

C

R, and C

P) and attempting to minimise the violations in parallel.

174

Bibliography

Aarts, E. and Korst, J. (1989). Simulated annealing and boltzmann machines: a stochastic

approach to combinatorial optimization and neural computing, 1989. Great Britain:

John Wiley & Sons.

Ab Malik, A. M., Ayob, M., and Hamdan, A. R. (2009). Iterated two-stage multi-

neighbourhood tabu search approach for examination timetabling problem. In Data

Mining and Optimization, 2009. DMO’09. 2nd Conference on, pages 141–148. IEEE.

Ab Malik, A. M., Othman, A. K., Ayob, M., and Hamdan, A. R. (2011). Hybrid integrated

two-stage multi-neighbourhood tabu search-emcq technique for examination timetabling

problem. In Data Mining and Optimization (DMO), 2011 3rd Conference on, pages

232–236. IEEE.

Abdul-Rahman, S., Abdullah, S. S. S., and Benjamin, A. M. (2017a). A nonlinear heuristic

modifier for constructing examination timetable. Journal of Theoretical and Applied

Information Technology, 95:5642–5653.

Abdul-Rahman, S., Benjamin, A. M., Faizal, O. M., Ramli, R., u Mahamud, K.-R., and

Abdul Jabbar, W. K. (2017b). Designing and implementation a web-based architecture

for an examination timetabling system. Journal of Engineering and Applied Sciences,

12:7299–7305.

Abdul-Rahman, S., Burke, E. K., Bargiela, A., McCollum, B., and Özcan, E. (2014a).

A constructive approach to examination timetabling based on adaptive decomposition

and ordering. Annals of Operations Research, 218(1):3–21.

Abdul-Rahman, S., Burke, E. K., Bargiela, A., McCollum, B., and Özcan, E. (2014b).

A constructive approach to examination timetabling based on adaptive decomposition

and ordering. Annals of Operations Research, 218(1):3–21.

Abdul-Rahman, S., Sobri, N. S., Omar, M. F., Benjamin, A. M., and Ramli, R. (2014).

Graph coloring heuristics for solving examination timetabling problem at Universiti

Utara Malaysia. In American Institute of Physics Conference Series, volume 1635 of

American Institute of Physics Conference Series, pages 491–496.

Abdullah, S., Ahmadi, S., Burke, E. K., and Dror, M. (2007a). Investigating ahuja–

175

Bibliography

orlin’s large neighbourhood search approach for examination timetabling. OR Spectrum,

29(2):351–372.

Abdullah, S., Ahmadi, S., Burke, E. K., Dror, M., and McCollum, B. (2007b). A

tabu-based large neighbourhood search methodology for the capacitated examination

timetabling problem. Journal of the Operational Research Society, 58(11):1494–1502.

Abdullah, S. and Alzaqebah, M. (2013). A hybrid self-adaptive bees algorithm for exam-

ination timetabling problems. Applied Soft Computing, 13(8):3608–3620.

Abdullah, S., Burke, E. K., and McCollum, B. (2005). An investigation of variable neigh-

bourhood search for university course timetabling. In Kendall, G., Lei, L., and Pinedo,

M., editors, In proceedings of the 2nd Multidisciplinary International Conference on

Scheduling : Theory and Applications (MISTA 2005), 18 -21 July 2005, New York,

USA, pages 413–427. Paper.

Abdullah, S. and Turabieh, H. (2012). On the use of multi neighbourhood structures

within a tabu-based memetic approach to university timetabling problems. Information

Sciences, 191:146–168.

Abdullah, S., Turabieh, H., and McCollum, B. (2009). A hybridization of electromagnetic-

like mechanism and great deluge for examination timetabling problems. In Blesa, M. J.,

Blum, C., Di Gaspero, L., Roli, A., Sampels, M., and Schaerf, A., editors, Hybrid

Metaheuristics, pages 60–72, Berlin, Heidelberg. Springer Berlin Heidelberg.

Abido, M. A. (2002). Optimal power flow using tabu search algorithm. Electric Power

Components and Systems, 30(5):469–483.

Abuhamdah, A. and Ayob, M. (2010a). Adaptive randomized descent algorithm for solving

course timetabling problems. International Journal of Physical Sciences, 5(16):2516–

2522.

Abuhamdah, A. and Ayob, M. (2010b). Average late acceptance randomized descent

algorithm for solving course timetabling problems. In Information Technology (ITSim),

2010 International Symposium in, volume 2, pages 748–753. IEEE.

Adamidis, P. and Arapakis, P. (1999). Evolutionary algorithms in lecture timetabling.

In Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No.

99TH8406), volume 2, pages 1145–1151 Vol. 2.

Adnan, F. A., Ab Saad, S., Yahya, Z. R., and Wan Muhamad, W. Z. A. (2018). Genetic

algorithm method in examination timetabling problem: A survey. In Yacob, N. A.,

Mohd Noor, N. A., Mohd Yunus, N. Y., Lob Yussof, R., and Zakaria, S. A. K. Y., editors,

Regional Conference on Science, Technology and Social Sciences (RCSTSS 2016), pages

901–907, Singapore. Springer, Singapore.

Ahandani, M. A. and Vakil-Baghmisheh, M.-T. (2011). Examination timetabling using a

hill climbing with combined neighbourhood structure. Computer and Knowledge Engi-

neering (ICCKE). 2011 1st International eConference on, pages 13–14.

176

Bibliography

Al-Betar, M. A., Khader, A. T., and Doush, I. A. (2014). Memetic techniques for exami-

nation timetabling. Annals of Operations Research, 218(1):23–50.

Al Jadaan, O., Rajamani, L., and Rao, C. (2008). Improved selection operator for ga.

Journal of Theoretical & Applied Information Technology, 4(4).

Al-Yakoob, S. M., Sherali, H. D., and Al-Jazzaf, M. (2010). A mixed-integer mathematical

modeling approach to exam timetabling. Computational Management Science, 7(1):19–

46.

Aladağ, Ç. and Hocaoğlu, G. (2007). A tabu search algorithm to solve a course timetabling

problem. Hacettepe Journal of Mathematics and Statistics Volume, 36(1):53–64.

Aldeeb, B., Al-Betar, M., Abdelmajeed, A., Younes, M., Alkenani, M., Alomoush, W.,

Alissa, K., and Alqahtani, M. (2019). A comprehensive review of uncapacitated uni-

versity examination timetabling problem. International Journal of Applied Engineering

Research, 14:4524–4547.

Aldeeb, B. A., Md Norwawi, N., Al-Betar, M. A., and Jali, M. Z. (2015). Intelligent

examination timetabling system using hybrid intelligent water drops algorithm. In 5th

International Conference on Computing and Informatics (ICOCI) 2015.

Aldeeb, B. A., Norwawi, N. M., Al-Betar, M. A., and Jali, M. Z. B. (2014). Solving

university examination timetabling problem using intelligent water drops algorithm.

In International Conference on Swarm, Evolutionary, and Memetic Computing, pages

187–200. Springer.

Algethami, H., Pinheiro, R. L., and Landa-Silva, D. (2016). A genetic algorithm for a

workforce scheduling and routing problem. In 2016 IEEE Congress on Evolutionary

Computation (CEC), pages 927–934. IEEE.

Alsuwaylimi, A. and Fieldsend, J. (2019). A new initialisation method for examination

timetabling heuristics. In 2019 IEEE Symposium Series on Computational Intelligence

(SSCI), pages 1636–1643.

Altıntas, C., Asta, S., Ozcan, E., and Yigit, T. (2014). A self-generating memetic algo-

rithm for examination timetabling. In 10th International Conference of the Practice and

Theory of Automated Timetabling.

Alvarez-Valdes, R., Crespo, E., and Tamarit, J. M. (2002). Design and implementation of a

course scheduling system using tabu search. European Journal of Operational Research,

137(3):512–523.

Alves, S. S., Oliveira, S. A., and Neto, A. R. R. (2017). A recursive genetic algorithm-

based approach for educational timetabling problems. In Designing with Computational

Intelligence, pages 161–175. Springer.

Alzaqebah, M. and Abdullah, S. (2011). Hybrid artificial bee colony search algorithm

177

Bibliography

based on disruptive selection for examination timetabling problems. In International

Conference on Combinatorial Optimization and Applications, pages 31–45. Springer.

Alzaqebah, M. and Abdullah, S. (2014). An adaptive artificial bee colony and late-

acceptance hill-climbing algorithm for examination timetabling. Journal of Scheduling,

17(3):249–262.

Alzaqebah, M. and Abdullah, S. (2015). Hybrid bee colony optimization for examination

timetabling problems. Computers & Operations Research, 54(C):142–154.

Amaral, P. and Pais, T. C. (2016). Compromise ratio with weighting functions in a tabu

search multi-criteria approach to examination timetabling. Computers & Operations

Research, 72:160–174.

Ansari, A. and Bakar, A. A. (2014). A comparative study of three artificial intelligence

techniques: Genetic algorithm, neural network, and fuzzy logic, on scheduling prob-

lem. In 2014 4th International Conference on Artificial Intelligence with Applications

in Engineering and Technology, pages 31–36. IEEE.

Appleby, J. S., Blake, D. V., and Newman, E. A. (1961). Techniques for Producing School

Timetables on a Computer and their Application to other Scheduling Problems. The

Computer Journal, 3(4):237–245.

ARANI, T. and Lotfi, V. (1989). A three phased approach to final exam scheduling. IIE

Transactions, 21(1):86–96.

Asmuni, H. (2008). Fuzzy methodologies for automated university timetabling solution

construction and evaluation. PhD thesis, University of Nottingham.

Asmuni, H., Burke, E. K., and Garibaldi, J. M. (2005a). Fuzzy multiple heuristic or-

dering for course timetabling. In Proceedings of the 5th United Kingdom workshop on

computational intelligence (UKCI 2005), pages 302–309.

Asmuni, H., Burke, E. K., Garibaldi, J. M., and McCollum, B. (2005b). Fuzzy multiple

heuristic orderings for examination timetabling. In Burke, E. and Trick, M., editors,

Practice and Theory of Automated Timetabling V, pages 334–353, Berlin, Heidelberg.

Springer Berlin Heidelberg.

Asmuni, H., Burke, E. K., Garibaldi, J. M., and McCollum, B. (2006). A novel fuzzy ap-

proach to evaluate the quality of examination timetabling. In International Conference

on the Practice and Theory of Automated Timetabling, pages 327–346. Springer.

Asmuni, H., Burke, E. K., Garibaldi, J. M., McCollum, B., and Parkes, A. J. (2009).

An investigation of fuzzy multiple heuristic orderings in the construction of university

examination timetables. Computers & Operations Research, 36(4):981–1001.

Atsuta, M., Nonobe, K., and Ibaraki, T. (2008). ITC-2007 Track2: an approach using

general CSP solver. In Proceedings of the 7th International conference on the Practice

and Theory of Automated Timetabling (PATAT 2008), pages 19–22, Montreal, Canada.

178

Bibliography

Auf’m Hofe, H. M. (2001). Solving rostering tasks by generic methods for constraint

optimization. International Journal of Foundations of Computer Science, 12(05):671–

693.

Avanthay, C., Hertz, A., and Zu↵erey, N. (2003). A variable neighborhood search for

graph coloring. European Journal of Operational Research, 151(2):379–388.

Aycan, E. and Ayav, T. (2009). Solving the course scheduling problem using simulated

annealing. In Advance Computing Conference, 2009. IACC 2009. IEEE International,

pages 462–466. IEEE.

Ayob, M., Abdullah, S., and Malik, A. (2007a). A practical examination timetabling

problem at the universiti kebangsaan malaysia. International Journal of Computer

Science and Network Security, 7(9):198–204.

Ayob, M., Malik, A. M. A., Abdullah, S., Hamdan, A. R., Kendall, G., and Qu, R. (2007b).

Solving a practical examination timetabling problem: A case study. In Gervasi, O. and

Gavrilova, M. L., editors, Computational Science and Its Applications – ICCSA 2007,

pages 611–624, Berlin, Heidelberg. Springer Berlin Heidelberg.

Azimi, Z. N. (2005). Hybrid heuristics for examination timetabling problem. Applied

Mathematics and Computation, 163(2):705–733.

Babaei, H., Karimpour, J., and Hadidi, A. (2015a). A survey of approaches for university

course timetabling problem. Computers & Industrial Engineering, 86:43–59. Appli-

cations of Computational Intelligence and Fuzzy Logic to Manufacturing and Service

Systems.

Babaei, H., Karimpour, J., and Hadidi, A. (2015b). A survey of approaches for university

course timetabling problem. Computers & Industrial Engineering, 86:43–59.

Bai, R., Burke, E. K., Gendreau, M., and Kendall, G. (2007). A simulated annealing

hyper-heuristic: Adaptive heuristic selection for di↵erent vehicle routing problems. In

Proc. of the 3rd Multidisciplinary Int. Conf. on Scheduling: Theory and Applications,

Paris, France, August, pages 28–31.

Balakrishnan, N. (1991). Examination scheduling: a computerized application. Omega,

19(1):37–41.

Bardadym, V. A. (1995). Computer-aided school and university timetabling: The

new wave. In International Conference on the Practice and Theory of Automated

Timetabling, pages 22–45. Springer.

Battistutta, M., Schaerf, A., and Urli, T. (2017). Feature-based tuning of single-stage

simulated annealing for examination timetabling. Annals of Operations Research,

252(2):239–254.

Beheshti, Z. and Shamsuddin, S. M. (2013). A review of population-based meta-heuristic

179

Bibliography

algorithm. International Journal of Advances in Soft Computing and Its Applications,

5:1–35.

Behrooz, F., Mariun, N., Marhaban, M. H., Mohd Radzi, M. A., and Ramli, A. R. (2018).

Review of control techniques for hvac systems—nonlinearity approaches based on fuzzy

cognitive maps. Energies, 11(3).

Beligiannis, G. N., Moschopoulos, C. N., Kaperonis, G. P., and Likothanassis, S. D. (2008).

Applying evolutionary computation to the school timetabling problem: The greek case.

Computers & Operations Research, 35(4):1265–1280.

Bellio, R., Ceschia, S., Di Gaspero, L., and Schaerf, A. (2021). Two-stage multi-

neighborhood simulated annealing for uncapacitated examination timetabling. Com-

puters & Operations Research, 132:105300.

Bilgin, B., Özcan, E., and Korkmaz, E. E. (2006). An experimental study on hyper-

heuristics and exam timetabling. In International Conference on the Practice and The-

ory of Automated Timetabling, pages 394–412. Springer.

Birbil, Ş. İ. and Fang, S.-C. (2003). An electromagnetism-like mechanism for global opti-

mization. Journal of global optimization, 25(3):263–282.

Blickle, T. and Thiele, L. (1995). A mathematical analysis of tournament selection. In

Proceedings of the 6th International Conference on Genetic Algorithms, page 9–16, San

Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Blum, C., Correia, S., Dorigo, M., Paechter, B., Rossi-Doria, O., and Snoek, M. (2002a).

A ga evolving instructions for a timetable builder. In Burke, E. and De Causmaecker,

P., editors, Proceedings of the 4th International Conference on the Practice and Theory

of Automated Timetabling (PATAT 2002), pages 120–123. KaHo Sint-Lieven. Imported

from HMI.

Blum, C., Puchinger, J., Raidl, G. R., and Roli, A. (2011). Hybrid metaheuristics in

combinatorial optimization: A survey. Applied Soft Computing, 11(6):4135–4151.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimization: Overview

and conceptual comparison. CM Computing Surveys (CSUR), 35(3):268–308.

Blum, C. and Roli, A. (2008). Hybrid Metaheuristics: An Introduction, pages 1–30.

Springer Berlin Heidelberg, Berlin, Heidelberg.

Blum, C., Sampels, M., and Zlochin, M. (2002b). On a particularity in model-based search.

In Proceedings of the 4th Annual Conference on Genetic and Evolutionary Computation,

pages 35–42. Morgan Kaufmann Publishers Inc.

Boizumault, P., Delon, Y., and Peridy, L. (1996). Constraint logic programming for

examination timetabling. The Journal of Logic Programming, 26(2):217–233.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm intelligence : from natural

180

Bibliography

to artificial systems. Santa Fe Institute studies in the sciences of complexity. Oxford

University Press, New York.

Bonutti, A., De Cesco, F., Di Gaspero, L., and Schaerf, A. (2012). Benchmarking

curriculum-based course timetabling: formulations, data formats, instances, validation,

visualization, and results. Annals of Operations Research, 194(1):59–70.

Bosch, R. and Trick, M. (2005). Integer Programming, pages 69–95. Springer US, Boston,

MA.

Bou✏et, J. P. and Nègre, S. (1996). Three methods used to solve an examination

timetable problem. In Burke, E. and Ross, P., editors, Practice and Theory of Au-

tomated Timetabling, pages 325–344, Berlin, Heidelberg. Springer Berlin Heidelberg.

Brabazon, A. and O’Neill, M. (2006). Biologically inspired algorithms for financial mod-

elling. Springer Science & Business Media.

Brailsford, S. C., Potts, C. N., and Smith, B. M. (1999). Constraint satisfaction problems:

Algorithms and applications. European Journal of Operational Research, 119(3):557–

581.

Brélaz, D. (1979). New methods to color the vertices of a graph. Communications of the

ACM, 22(4):251–256.

Brélaz, D. (1979). New methods to color the vertices of a graph. Communications of the

ACM.

Broder, S. (1964). Final examination scheduling. Commun. ACM, 7(8):494–498.

Btissam, D. and Abounacer, R. (2017). Multi-objective examination timetabling problem:

Modeling and resolution using a based "-constraint method. IJCSNS, 17(4):192.

Bullnheimer, B. (1997). An examination scheduling model to maximize students’ study

time. In International Conference on the Practice and Theory of Automated Timetabling,

pages 78–91. Springer.

Bulut, H., Ergüt, M., Asil, V., and Bokor, R. H. (2004). Numerical solution of a viscous

incompressible flow problem through an orifice by adomian decomposition method. Ap-

plied Mathematics and Computation, 153(3):733–741.

Burke, E., Bykov, Y., Newall, J., and Petrović, S. (2003a). A time-predefined approach

to course timetabling. Yugoslav Journal of Operations Research, 13(2):139–151.

Burke, E., Bykov, Y., Newall, J., and Petrovic, S. (2004a). A time-predefined local search

approach to exam timetabling problems. IIE Transactions, 36(6):509–528.

Burke, E., Bykov, Y., and Petrovic, S. (2001). A multicriteria approach to examination

timetabling. In Burke, E. and Erben, W., editors, Practice and Theory of Automated

Timetabling III, pages 118–131, Berlin, Heidelberg. Springer Berlin Heidelberg.

181

Bibliography

Burke, E. and Carter, M. (1998). Practice and Theory of Automated Timetabling II:

Second International Conference, PATAT’97, Toronto, Canada, August 20-22, 1997,

Selected Papers, volume 2. Springer Science & Business Media.

Burke, E., De Causmaecker, P., Petrovic, S., and Berghe, G. V. (2003b). Variable neighbor-

hood search for nurse rostering problems. In Metaheuristics: computer decision-making,

pages 153–172. Springer.

Burke, E., De Werra, D., and Kingston, J. (2004b). Applications to timetabling. In Gross,

J. and Yellen, J., editors, Handbook of graph theory, pages 445–474. Chapman Hall/CRC

Press.

Burke, E., Eckersley, A., McCollum, B., Petrovic, S., and Qu, R. (2010a). Hybrid vari-

able neighbourhood approaches to university exam timetabling. European Journal of

Operational Research, 206(1):46–53.

Burke, E., Eckersley, A., McCollum, B., Petrovic, S., and Qu, R. (2010b). Hybrid vari-

able neighbourhood approaches to university exam timetabling. European Journal of

Operational Research, 206(1):46–53.

Burke, E., Elliman, D., Ford, P., and Weare, R. (1996). Examination timetabling in

british universities: A survey. In Burke, E. and Ross, P., editors, Practice and Theory

of Automated Timetabling, pages 76–90, Berlin, Heidelberg. Springer Berlin Heidelberg.

Burke, E., Elliman, D., and Weare, R. (1995a). Specialised recombinative operators for

timetabling problems. In Fogarty, T. C., editor, Evolutionary Computing, pages 75–85,

Berlin, Heidelberg. Springer Berlin Heidelberg.

Burke, E. and Erben, W. (2003). Practice and Theory of Automated Timetabling III:

Third International Conference, PATAT 2000 Konstanz, Germany, August 16-18, 2000

Selected Papers, volume 2079. Springer.

Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and Schulenburg, S. (2003c). Hyper-

heuristics: An emerging direction in modern search technology. In Handbook of meta-

heuristics, pages 457–474. Springer.

Burke, E. and Newall, J. (1997). Investigating the benefits of utilising problem specific

heuristics within a memetic timetabling algorithm. Workin Paper NOTTCS-TR-97-6,

dept. of Computer Science, University of Nottingham, UK.

Burke, E. and Trick, M. (2005). Practice and Theory of Automated Timetabling V: 5th

International Conference, PATAT 2004, Pittsburgh, PA, USA, August 18-20, 2004,

Revised Selected Papers, volume 3616. Springer.

Burke, E. K. and Bykov, Y. (2006). Solving exam timetabling problems with the flex-

deluge algorithm. In Proceedings of PATAT, volume 2006, pages 370–372. Citeseer.

Burke, E. K. and Bykov, Y. (2008). A late acceptance strategy in hill-climbing for exam-

ination timetabling problems. In Proceedings of the 7th International conference on the

182

Bibliography

Practice and Theory of Automated Timetabling (PATAT 2008), pages 1–7, Montreal,

Canada.

Burke, E. K. and Bykov, Y. (2016). An adaptive flex-deluge approach to university exam

timetabling. INFORMS Journal on Computing, 28(4):781–794.

Burke, E. K. and Bykov, Y. (2017). The late acceptance hill-climbing heuristic. European

Journal of Operational Research, 258(1):70–78.

Burke, E. K., De Causmaecker, P., Berghe, G. V., and Van Landeghem, H. (2004c). The

state of the art of nurse rostering. Journal of Scheduling, 7(6):441–499.

Burke, E. K., Elliman, D., and Weare, R. (1994a). A genetic algorithm based university

timetabling system. In Proceedings of the 2nd east-west international conference on

computer technologies in education, volume 1, pages 35–40.

Burke, E. K., Elliman, D., and Weare, R. F. (1995b). A hybrid genetic algorithm for

highly constrained timetabling problems. In Eshelman, L. J., editor, Proceedings of the

6th International Conference on Genetic Algorithms, Pittsburgh, PA, USA, July 15-19,

1995, pages 605–610. Morgan Kaufmann.

Burke, E. K., Elliman, D. G., and Weare, R. (1994b). A university timetabling system

based on graph colouring and constraint manipulation. Journal of Research on Com-

puting in Education, 27(1):1–18.

Burke, E. K. and Erben, W. (2001). Practice and Theory of Automated Timetabling III.

Springer, Berlin, Heidelberg.

Burke, E. K., Gendreau, M., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Qu, R.

(2013). Hyper-heuristics: a survey of the state of the art. Journal of the Operational

Research Society, 64(12):1695–1724.

Burke, E. K., Gustafson, S., and Kendall, G. (2004d). Diversity in genetic programming:

an analysis of measures and correlation with fitness. IEEE Transactions on Evolutionary

Computation, 8(1):47–62.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Ozcan, E., and Qu, R. (2009). A

survey of hyper-heuristics. Computer Science Technical Report No. NOTTCS-TR-SUB-

0906241418-2747, School of Computer Science and Information Technology, University

of Nottingham.

Burke, E. K., Hyde, M., Kendall, G., Ochoa, G., Özcan, E., and Woodward, J. R. (2010c).

A Classification of Hyper-heuristic Approaches, pages 449–468. Springer US, Boston,

MA.

Burke, E. K., Kendall, G., et al. (2005a). Search methodologies. Springer.

Burke, E. K., Kendall, G., Mısır, M., and Özcan, E. (2012a). Monte carlo hyper-heuristics

for examination timetabling. Annals of Operations Research, 196(1):73–90.

183

Bibliography

Burke, E. K., Kendall, G., and Soubeiga, E. (2003d). A tabu-search hyperheuristic for

timetabling and rostering. Journal of heuristics, 9(6):451–470.

Burke, E. K., McCollum, B., McMullan, P., and Parkes, A. J. (2008). Multi-objective

aspects of the examination timetabling competition track. In Proceedings of PATAT,

pages 3119–3126. Citeseer.

Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., and Qu, R. (2007). A graph-based

hyper-heuristic for educational timetabling problems. European Journal of Operational

Research, 176(1):177 – 192.

Burke, E. K. and Newall, J. P. (1999). A multistage evolutionary algorithm for the

timetable problem. IEEE transactions on evolutionary computation, 3(1):63–74.

Burke, E. K. and Newall, J. P. (2003). Enhancing timetable solutions with local search

methods. In Burke, E. and De Causmaecker, P., editors, Practice and Theory of Auto-

mated Timetabling IV, pages 195–206, Berlin, Heidelberg. Springer Berlin Heidelberg.

Burke, E. K. and Newall, J. P. (2004). Solving examination timetabling problems through

adaption of heuristic orderings. Annals of Operations Research, 129(1-4):107–134.

Burke, E. K., Newall, J. P., and Weare, R. F. (1995c). A memetic algorithm for university

exam timetabling. In international conference on the practice and theory of automated

timetabling, pages 241–250. Springer.

Burke, E. K., Newall, J. P., and Weare, R. F. (1998a). Initialization strategies and diversity

in evolutionary timetabling. Evolutionary computation, 6(1):81–103.

Burke, E. K., Newall, J. P., and Weare, R. F. (1998b). A simple heuristically guided

search for the timetable problem. In Proceedings of the International ICSC Symposium

on Engineering of Intelligent Systems, ICSC Academic Press, Nottingham.

Burke, E. K. and Petrovic, S. (2002). Recent research directions in automated timetabling.

European Journal of Operational Research, 140(2):266–280.

Burke, E. K., Petrovic, S., and Qu, R. (2006). Case-based heuristic selection for

timetabling problems. Journal of Scheduling, 9(2):115–132.

Burke, E. K., Pham, N., Qu, R., and Yellen, J. (2012b). Linear combinations of heuristics

for examination timetabling. Annals of Operations Research, 194(1):89–109.

Burke, E. K., Qu, R., and Soghier, A. (2014). Adaptive selection of heuristics for improving

exam timetables. Annals of Operations Research, 218(1):129–145.

Burke, E. K., Silva, J. D. L., and Soubeiga, E. (2005b). Multi-objective hyper-heuristic

approaches for space allocation and timetabling. In Metaheuristics: Progress as Real

Problem Solvers, pages 129–158. Springer.

Burke, E. K. and Silva, J. L. (2005). The design of memetic algorithms for scheduling

184

Bibliography

and timetabling problems. In Recent Advances in Memetic Algorithms, pages 289–311.

Springer.

Bykov, Y. and Petrovic, S. (2013). An initial study of a novel step counting hill climb-

ing heuristic applied to timetabling problems. In Proceedings of 6th Multidisciplinary

International Scheduling Conference (MISTA 2013).

Bykov, Y. and Petrovic, S. (2016). A step counting hill climbing algorithm applied to

university examination timetabling. Journal of Scheduling, 19(4):479–492.

Caldeira, J. and Rosa, A. C. (1997). School timetabling using genetic search. Proceedings of

the 2nd International Conference on the Practice and Theory of Automated Timetabling,

Toronto, pages 115–122.

Cantu-Paz, E. (1999). Designing E�cient and Accurate Parallel Genetic Algorithms (Par-

allel Algorithms). PhD thesis, University of Illinois at Urbana-Champaign, USA.

Caramia, M., Dell’Olmo, P., and Italiano, G. F. (2001). New algorithms for examination

timetabling. In Näher, S. and Wagner, D., editors, Algorithm Engineering, pages 230–

241, Berlin, Heidelberg. Springer Berlin Heidelberg.

Caramia, M., Dell’Olmo, P., and Italiano, G. F. (2008). Novel local-search-based ap-

proaches to university examination timetabling. INFORMS Journal on Computing,

20(1):86–99.

Carter, M. (1983). A decomposition algorithm for practical timetabling problems. Depart-

ment of Industrial Engineering, University of Toronto.

Carter, M. (2001). Timetabling. Encyclopedia of operations research and management

science, pages 833–836.

Carter, M. W. (1986). A survey of practical applications of examination timetabling

algorithms. Operations Research, 34(2):193–202.

Carter, M. W. and Johnson, D. (2001). Extended clique initialisation in examination

timetabling. Journal of the operational research society, 52(5):538–544.

Carter, M. W. and Laporte, G. (1996). Recent developments in practical examination

timetabling. In Burke, E. and Ross, P., editors, Practice and Theory of Automated

Timetabling, pages 1–21, Berlin, Heidelberg. Springer Berlin Heidelberg.

Carter, M. W., Laporte, G., and Chinneck, J. W. (1994). A general examination scheduling

system. Interfaces, 24(3):109–120.

Carter, M. W., Laporte, G., and Lee, S. Y. (1996). Examination timetabling: Algorithmic

strategies and applications. Journal of the Operational Research Society, 47(3):373–383.

Casey, S. and Thompson, J. (2002). Grasping the examination scheduling problem. In

International Conference on the Practice and Theory of Automated Timetabling, pages

232–244. Springer.

185

Bibliography

Černỳ, V. (1985). Thermodynamical approach to the traveling salesman problem: An

e�cient simulation algorithm. Journal of optimization theory and applications, 45(1):41–

51.

Chen, X. and Bushnell, M. (1996). E�cient Branch and Bound Search with Application

to Computer-Aided Design, volume 4. Kluwer Academic Publishers.

Cheong, C., Tan, K., and Veeravalli, B. (2009). A multi-objective evolutionary algorithm

for examination timetabling. Journal of Scheduling, 12:121–146.

Cheong, C. Y., Tan, K. C., and Veeravalli, B. (2007). Solving the exam timetabling prob-

lem via a multi-objective evolutionary algorithm-a more general approach. In Computa-

tional Intelligence in Scheduling, 2007. SCIS’07. IEEE Symposium on, pages 165–172.

IEEE.

Cheraitia, M. and Haddadi, S. (2016). Simulated annealing for the uncapacitated exam

scheduling problem. International Journal of Metaheuristics, 5(2):156–170.

Cheraitia, M., Haddadi, S., and Salhi, A. (2017). Hybridizing plant propagation and local

search for uncapacitated exam scheduling problems. International Journal of of Services

and Operations Management.

Chu, S.-C., Chen, Y.-T., and Ho, J.-H. (2006). Timetable scheduling using particle swarm

optimization. In Innovative Computing, Information and Control, 2006. ICICIC’06.

First International Conference on, volume 3, pages 324–327. IEEE.

Clerc, M. (2008). Initialisations for particle swarm optimisation. Online at http://clerc.

maurice. free. fr/pso.

Clerc, M. and Kennedy, J. (2002). The particle swarm-explosion, stability, and convergence

in a multidimensional complex space. IEEE transactions on Evolutionary Computation,

6(1):58–73.

Coello, C., Veldhuizen, D., and Lamont, G. (2007). Evolutionary Algorithms for Solving

Multi-Objective Problems. Springer.

Cole, A. (1964). The preparation of examination timetables using a small-store computer.

The Computer Journal, 7(2):117–121.

Colijn, A. W. and Layfield, C. (1995). Conflict reduction in examination schedules. In

1995). Proceedings of the 1st International Conference on the Practice and Theory of

Automated Timetabling. 30th Aug-1st Sep, pages 297–307.

Colorni, A., Dorigo, M., and Maniezzo, V. (1991). Genetic algorithms and highly con-

strained problems: The time-table case. In Schwefel, H.-P. and Männer, R., editors,

Parallel Problem Solving from Nature, pages 55–59, Berlin, Heidelberg. Springer Berlin

Heidelberg.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of

186

Bibliography

the Third Annual ACM Symposium on Theory of Computing, STOC ’71, page 151–158,

New York, NY, USA. Association for Computing Machinery.

Cooper, T. B. and Kingston, J. H. (1995). The complexity of timetable construction prob-

lems. In International Conference on the Practice and Theory of Automated Timetabling,

pages 281–295. Springer.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to

Algorithms, Third Edition. The MIT Press, 3rd edition.

Corne, D., Fang, H.-L., Mellish, C. S., and Corne, D. (1993). Solving the modular exam

scheduling problem with genetic algorithms. Department of Artificial Intelligence, Uni-

versity of Edinburgh.

Corne, D. and Ross, P. (1995a). Peckish initialisation strategies for evolutionary

timetabling. In International Conference on the Practice and Theory of Automated

Timetabling, pages 227–240. Springer.

Corne, D. and Ross, P. (1995b). Some combinatorial landscapes on which a genetic al-

gorithm outperforms other stochastic iterative methods. In AISB Workshop on Evolu-

tionary Computing, pages 1–13. Springer.

Corne, D., Ross, P., and Fang, H.-L. (1994a). Evolutionary timetabling: Practice,

prospects and work in progress. In In Proceedings of the UK Planning and Schedul-

ing SIG Workshop, Strathclyde.

Corne, D., Ross, P., and Fang, H.-L. (1994b). Fast practical evolutionary timetabling. In

AISB Workshop on Evolutionary Computing, pages 250–263. Springer.

Corne, D. W., Jerram, N. R., Knowles, J. D., and Oates, M. J. (2001). Pesa-ii: Region-

based selection in evolutionary multiobjective optimization. In Proceedings of the

3rd Annual Conference on Genetic and Evolutionary Computation, GECCO’01, page

283–290, San Francisco, CA, USA. Morgan Kaufmann Publishers Inc.

Corne, D. W., Knowles, J. D., and Oates, M. J. (2000). The pareto envelope-based selec-

tion algorithm for multiobjective optimization. In Schoenauer, M., Deb, K., Rudolph,

G., Yao, X., Lutton, E., Merelo, J. J., and Schwefel, H.-P., editors, Parallel Problem

Solving from Nature PPSN VI, pages 839–848, Berlin, Heidelberg. Springer Berlin Hei-

delberg.

Corr, P. H., McCollum, B., McGreevy, M., and McMullan, P. (2006a). A new neural net-

work based construction heuristic for the examination timetabling problem. In Parallel

Problem Solving from Nature-PPSN IX, pages 392–401. Springer.

Corr, P. H., McCollum, B., McGreevy, M. A. J., and McMullan, P. (2006b). A new

neural network based construction heuristic for the examination timetabling problem.

In Runarsson, T. P., Beyer, H.-G., Burke, E., Merelo-Guervós, J. J., Whitley, L. D.,

and Yao, X., editors, Parallel Problem Solving from Nature - PPSN IX, pages 392–401,

Berlin, Heidelberg. Springer Berlin Heidelberg.

187

Bibliography

Costa, D. (1994). A tabu search algorithm for computing an operational timetable. Eu-

ropean Journal of Operational Research, 76(1):98–110.

Costa, D. and Hertz, A. (1997). Ants can colour graphs. Journal of the operational research

society, 48(3):295–305.

Côté, P., Wong, T., and Sabourin, R. (2005). A hybrid multi-objective evolutionary

algorithm for the uncapacitated exam proximity problem. In Burke, E. and Trick,

M., editors, Practice and Theory of Automated Timetabling V, pages 294–312, Berlin,

Heidelberg. Springer Berlin Heidelberg.

Cowling, P., Kendall, G., and Soubeiga, E. (2000). A hyperheuristic approach to scheduling

a sales summit. In International Conference on the Practice and Theory of Automated

Timetabling, pages 176–190. Springer.

David, P. (1998). A constraint-based approach for examination timetabling using local re-

pair techniques. In Burke, E. and Carter, M., editors, Practice and Theory of Automated

Timetabling II, pages 169–186, Berlin, Heidelberg. Springer Berlin Heidelberg.

Davis, L. (1991). Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York.

De Causmaecker, P., Demeester, P., and Berghe, G. V. (2009). A decomposed meta-

heuristic approach for a real-world university timetabling problem. European Journal

of Operational Research, 195(1):307–318.

De Giovanni, L., Massi, G., and Pezzella, F. (2013). An adaptive genetic algorithm for

large-size open stack problems. International Journal of Production Research, 51(3):682–

697.

De Smet, G. (2008). ITC2007-examination track. In Practice and Theory of Automated

Timetabling (PATAT 2008), Montreal, pages 19–22.

de Werra, D. (1985). An introduction to timetabling. European Journal of Operational

Research, 19(2):151–162.

de Werra, D. (1997). The combinatorics of timetabling. European Journal of Operational

Research, 96(3):504 – 513.

Dean, T. and Boddy, M. (1988). An analysis of time-dependent planning. In Proceedings

of the Seventh AAAI National Conference on Artificial Intelligence, volume 88, page

49–54. AAAI Press.

Deb, K. and Deb, K. (2014). Multi-objective Optimization, pages 403–449. Springer US,

Boston, MA.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002). A fast and elitist multiob-

jective genetic algorithm: Nsga-ii. IEEE Transactions on Evolutionary Computation,

6(2):182–197.

Demeester, P., Bilgin, B., Causmaecker, P., and Berghe, G. (2012). A hyperheuristic

188

Bibliography

approach to examination timetabling problems: Benchmarks and a new problem from

practice. Journal of Scheduling, 15(1):83–103.

Deng, G.-F. and Lin, W.-T. (2011). Ant colony optimization-based algorithm for airline

crew scheduling problem. Expert Systems with Applications, 38(5):5787–5793.

D’Eramo, C., Nuara, A., and Restelli, M. (2016). Estimating the maximum expected value

through gaussian approximation. In Proceedings of the 33rd International Conference on

International Conference on Machine Learning - Volume 48, ICML’16, page 1032–1040.

JMLR.org.

Dhande, A., Ladhake, S., and Dhande, S. (2012). Genetic algoritham- an e↵ective ap-

proach to solve real application problem. International Journal of Advanced Research

in Computer Science and Software Engineering, 2.

Di Gaspero, L. (2002). Recolour, shake and kick: A recipe for the examination timetabling

problem. In Proceedings of the fourth international conference on the practice and theory

of automated timetabling, Gent, Belgium, pages 404–407.

Di Gaspero, L., McCollum, B., and Schaerf, A. (2007). The second international

timetabling competition (itc-2007): Curriculum-based course timetabling (track 3).

Technical report, Citeseer.

Di Gaspero, L. and Schaerf, A. (2000). Tabu search techniques for examination

timetabling. In International Conference on the Practice and Theory of Automated

Timetabling, pages 104–117. Springer.

Dong, T., Qi, X., Zhang, Q., Li, W., and Xiong, L. (2019). Overview on vision-based

3d object recognition methods. In Zhao, Y., Barnes, N., Chen, B., Westermann, R.,

Kong, X., and Lin, C., editors, Image and Graphics, pages 243–254, Cham. Springer

International Publishing.

Dorigo, M., Birattari, M., and Stutzle, T. (2006). Ant colony optimization. IEEE compu-

tational intelligence magazine, 1(4):28–39.

Dorigo, M. and Blum, C. (2005). Ant colony optimization theory: A survey. Theoretical

Computer Science, 344(2):243 – 278.

Dorigo, M., Maniezzo, V., Colorni, A., Dorigo, M., Dorigo, M., Maniezzo, V., Maniezzo,

V., Colorni, A., and Colorni, A. (1991). Positive feedback as a search strategy. Technical

report, Technical Report No. 91-016, Politecnico di Milano, Italy.

Dowsland, K., Pugh, N., and Thompson, J. (2002). Examination timetabling with ants

(abstract). In Proceedings of the 4th International Conference on the Practice and

Theory of Automated Timetabling (PATAT2002), pages 397 – 399.

Dowsland, K. A. and Thompson, J. M. (2005). Ant colony optimization for the examina-

tion scheduling problem. Journal of the Operational Research Society, 56(4):426–438.

189

Bibliography

Dowsland, K. A. and Thompson, J. M. (2012). Simulated annealing. In Handbook of

natural computing, pages 1623–1655. Springer.

Dozier, G., Bowen, J., and Bahler, D. (1994). Solving small and large scale constraint

satisfaction problems using a heuristic-based microgenetic algorithm. In Evolutionary

Computation, 1994. IEEE World Congress on Computational Intelligence., Proceedings

of the First IEEE Conference on, pages 306–311. IEEE.

Dréo, J., Pétrowski, A., Siarry, P., and Taillard, E. (2006). Metaheuristics for hard opti-

mization: methods and case studies. Springer Science & Business Media.

Drools, T. (2020). Drools planner user guide.

Duan, Q., Gupta, V. K., and Sorooshian, S. (1993). Shu✏ed complex evolution approach

for e↵ective and e�cient global minimization. Journal of optimization theory and ap-

plications, 76(3):501–521.

Dubois-Lacoste, J., López-Ibáñez, M., and Stützle, T. (2015). Anytime pareto local search.

European Journal of Operational Research, 243(2):369–385.

Dueck, G. (1993). New optimization heuristics: The great deluge algorithm and the

record-to-record travel. Journal of Computational Physics, 104(1):86 – 92.

Duong, T.-A. and Lam, K.-H. (2004). Combining constraint programming and simulated

annealing on university exam timetabling. In RIVF, pages 205–210. Citeseer.

Easton, K., Nemhauser, G., and Trick, M. (2004). Sports scheduling. In Leung, J. Y.,

editor, Handbook of Scheduling: Algorithms, Models, and Performance Analysis, pages

1–17, Boca Raton, Florida. Chapman and Hall/CRC.

Eiben, A. E. and Schippers, C. A. (1998). On evolutionary exploration and exploitation.

Fundamenta Informaticae, 35:35–50.

El-Sherbiny, M. M., Zeineldin, R. A., and El-Dhshan, A. M. (2015). Genetic algorithm

for solving course timetable problems. International Journal of Computer Applications,

124(10).

Eley, M. (2007). Ant algorithms for the exam timetabling problem. In Burke, E. K. and

Rudová, H., editors, Practice and Theory of Automated Timetabling VI, pages 364–382,

Berlin, Heidelberg. Springer Berlin Heidelberg.

Epitropakis, M. G. and Burke, E. K. (2018). Hyper-heuristics. Handbook of Heuristics,

pages 1–57.

Erben, W. (2000). A grouping genetic algorithm for graph colouring and exam timetabling.

In International Conference on the Practice and Theory of Automated Timetabling,

pages 132–156. Springer.

Erben, W. and Keppler, J. (1995). A genetic algorithm solving a weekly course-timetabling

190

Bibliography

problem. In International Conference on the Practice and Theory of Automated

Timetabling, pages 198–211. Springer.

Ergül, A. (1995). Ga-based examination scheduling experience at middle east techni-

cal university. In International Conference on the Practice and Theory of Automated

Timetabling, pages 212–226. Springer.

Fang, H.-L. (1994). Genetic algorithms in timetabling and scheduling. PhD thesis, Uni-

versity of Edinburgh.

Feng, X., Lee, Y., and Moon, I. (2017). An integer program and a hybrid genetic algorithm

for the university timetabling problem. Optimization Methods and Software, 32(3):625–

649.

Fernandes, C., Caldeira, J. a. P., Melicio, F., and Rosa, A. (1999a). Evolutionary algorithm

for school timetabling. In Proceedings of the 1st Annual Conference on Genetic and

Evolutionary Computation - Volume 2, GECCO’99, page 1777, San Francisco, CA,

USA. Morgan Kaufmann Publishers Inc.

Fernandes, C., Caldeira, J. a. P., Melicio, F., and Rosa, A. (1999b). High school weekly

timetabling by evolutionary algorithms. In Proceedings of the 1999 ACM Symposium

on Applied Computing, SAC ’99, page 344–350, New York, NY, USA. Association for

Computing Machinery.

Festa, P. (2014). A brief introduction to exact, approximation, and heuristic algorithms

for solving hard combinatorial optimization problems. In 2014 16th International Con-

ference on Transparent Optical Networks (ICTON), pages 1–20.

Fidanova, S., Roeva, O., and Luque, G. (2019). Ant Colony Optimization Algorithm for

Workforce Planning: Influence of the Algorithm Parameters, pages 119–128. Springer

International Publishing, Cham.

Fleszar, K. and Hindi, K. S. (2004). Solving the resource-constrained project scheduling

problem by a variable neighbourhood search. European Journal of Operational Research,

155(2):402–413.

Fong, C. W., Asmuni, H., and McCollum, B. (2015). A hybrid swarm-based approach to

university timetabling. IEEE Transactions on Evolutionary Computation, 19(6):870–

884.

Fonseca, C. M. M. d. (1995). Multiobjective genetic algorithms with application to control

engineering problems. PhD thesis, University of She�eld.

Fouskakis, D. and Draper, D. (2002). Stochastic optimization: a review. International

Statistical Review, 70(3):315–349.

Foxley, E. and Lockyer, K. (1968). The construction of examination timetables by com-

puter. The Computer Journal, 11(3):264–268.

191

Bibliography

Frausto-Soĺıs, J. and Alonso-Pecina, F. (2008). A hybrid simulated annealing-tabu search

algorithm for post enrollment course timetabling. In Proceeding of the 7th International

Conference on the Practice and Theory of Automated Timetabling PATAT, volume 8.

Frausto-Solis, J., Mora-Vargas, J., Larre, M., and Luis Gomez-Ramos, J. (2006). A new

genetic algorithm for the university timetablingproblem using forced diversity. WSEAS

Transactions on Systems, 5(10):2398–2403.

Freuder, E. C. and Wallace, M. (2005). Constraint Programming, pages 239–272. Springer

US, Boston, MA.

Gaetano, J. (2018). Holm-bonferroni sequential correction: An excel calculator (1.3).

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman, United States.

Garey, M. R., Johnson, D. S., and Stockmeyer, L. (1974). Some simplified np-complete

problems. In Proceedings of the sixth annual ACM symposium on Theory of computing,

pages 47–63. ACM.

Garza-Santisteban, F., Amaya, I., Cruz-Duarte, J., Ortiz-Bayliss, J. C., Özcan, E., and

Terashima-Maŕın, H. (2020). Exploring problem state transformations to enhance hyper-

heuristics for the job-shop scheduling problem. In 2020 IEEE Congress on Evolutionary

Computation (CEC), pages 1–8.

Gashgari, R., Alhashimi, L., Obaid, R., and Palaniswamy, T. (2018). A survey on exam

scheduling techniques. In 1st International Conference on Computer Applications and

Information Security, ICCAIS 2018, pages 1–5.

Ghatei, S., Khajei, R., Maman, M., and Meybodi, M. (2012). A modified pso using great

deluge algorithm for optimization. Journal of Basic and Applied Scientific Research,

2:1362–1367.

Glover, F. (1986). Future paths for integer programming and links to artificial intelligence.

Computers & operations research, 13(5):533–549.

Glover, F. (1989). Tabu search - part i. ORSA Journal on computing, 1(3):190–206.

Glover, F. W. and Laguna, M. (1993). Tabu search. In (Ed.), C. R., editor, Modern

Heuristic Techniques for Combinatorial Optimization, pages 60–150, Oxford. Blackwell

Publishers.

Glover, F. W. and Laguna, M. (1997). Tabu Search Tabu Search, volume 408. Kluwer

Academic Publishers, Boston, 1 edition.

Gogos, C., Alefragis, P., and Housos, E. (2008). A multi-staged algorithmic process for the

solution of the examination timetabling problem. Practice and Theory of Automated

Timetabling (PATAT 2008), Montreal, pages 19–22.

Gogos, C., Alefragis, P., and Housos, E. (2012). An improved multi-staged algorithmic

192

Bibliography

process for the solution of the examination timetabling problem. Annals of Operations

Research, 194(1):203–221.

Gogos, C., Goulas, G., Alefragis, P., and Housos, E. (2009). Pursuit of better results for the

examination timetabling problem using grid resources. In Computational Intelligence

in Scheduling, 2009. CI-Sched’09. IEEE Symposium on, pages 48–53. IEEE.

Gogos, C., Goulas, G., Alefragis, P., Kolonias, V., and Housos, E. (2010). Distributed

scatter search for the examination timetabling problem. In PATAT 2010 Proceedings of

the 8th International Conference on the Practice and Theory of Automated Timetabling.

Gonsalves, T. and Oishi, R. (2015). Artificial immune algorithm for exams timetable.

Journal of Information Sciences and Computing Technologies, 4(2):287–296.

Gotlieb, C. C. (1962). The construction of class-teacher time-tables. In IFIP Congress,

pages 73–77.

Grass, J. and Zilberstein, S. (1996). Anytime algorithm development tools. SIGART Bull.,

7(2):20–27.

Guliashki, V., Toshev, H., and Korsemov, C. (2009). Survey of evolutionary algorithms

used in multiobjective optimization. Problems of engineering cybernetics and robotics,

60(1):42–54.

Guntsch, M. and Middendorf, M. (2002). A population based approach for aco. In Cagnoni,

S., Gottlieb, J., Hart, E., Middendorf, M., and Raidl, G. R., editors, Applications of

Evolutionary Computing, pages 72–81, Berlin, Heidelberg. Springer Berlin Heidelberg.

Hansen, P. and Mladenović, N. (2001). Variable neighborhood search: Principles and

applications. European journal of operational research, 130(3):449–467.

Hart, W. E., Krasnogor, N., and Smith, J. E. (2004). Recent Advances in Memetic Algo-

rithms, volume 166. Springer, Berlin, Heidelberg.

Haykin, S. (1999). A comprehensive foundation: Neural networks.

Hertz, A. (1991). Tabu search for large scale timetabling problems. European Journal of

Operational Research, 54(1):39–47.

Holland, J. H. (1992). Adaptation in natural and artificial systems: an introductory anal-

ysis with applications to biology, control, and artificial intelligence. MIT press.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian

journal of statistics.

Hoos, H. H. and Stützle, T. (2004). Stochastic local search: Foundations and applications.

Elsevier.

Innet, S. (2013). A noval approach of genetic algorithm for solving examination timetabling

193

Bibliography

problems: A case study of thai universities. In Communications and Information Tech-

nologies (ISCIT), 2013 13th International Symposium on, pages 233–237. IEEE.

Ishak, S., Lee, L., and Ibragimov, G. (2016). Hybrid genetic algorithm for university

examination timetabling problem. MALAYSIAN JOURNAL OF MATHEMATICAL

SCIENCES, 10(2):145–178.

Islam, T., Shahriar, Z., Perves, M. A., and Hasan, M. (2016). University timetable gener-

ator using tabu search. Journal of Computer and Communications, 4(16):28.

Jaddi, N. S. and Abdullah, S. (2013). An interactive rough set attribute reduction using

great deluge algorithm. In Zaman, H. B., Robinson, P., Olivier, P., Shih, T. K., and

Velastin, S., editors, Advances in Visual Informatics, pages 285–299, Cham. Springer

International Publishing.

Jansson, C. and Knüppel, O. (1995). A branch and bound algorithm for bound constrained

optimization problems without derivatives. Journal of Global Optimization, 7(3):297–

331.

Jat, S. N. and Yang, S. (2008). A memetic algorithm for the university course timetabling

problem. In Tools with Artificial Intelligence, 2008. ICTAI’08. 20th IEEE International

Conference on, volume 1, pages 427–433. IEEE.

Jat, S. N. and Yang, S. (2011). A hybrid genetic algorithm and tabu search approach for

post enrolment course timetabling. Journal of Scheduling, 14(6):617–637.

Jha, S. K. (2014). Exam timetabling problem using genetic algorithm. International

Journal of Research in Engineering and Technology, 3(5):649–654.

Johnson, D. (1990). Timetabling university examinations. Journal of the Operational

Research Society, 41(1):39–47.

Joslin, D. E. and Clements, D. P. (1999). ’squeaky wheel’ optimization. Journal of

Artificial Intelligence Research, 10:353–373.

Juang, Y.-S., Lin, S.-S., and Kao, H.-P. (2007). An adaptive scheduling system with genetic

algorithms for arranging employee training programs. Expert Systems with Applications,

33(3):642–651.

June, T. L., Obit, J. H., Leau, Y.-B., and Bolongkikit, J. (2019a). Implementation of

constraint programming and simulated annealing for examination timetabling problem.

In Computational Science and Technology, pages 175–184. Springer.

June, T. L., Obit, J. H., Leau, Y. B., and Bolongkikit, J. (2019b). Implementation of

constraint programming and simulated annealing for examination timetabling problem.

In Lecture Notes in Electrical Engineering, volume 481, pages 175–183. Springer, Sin-

gapore.

Kahar, M. and Kendall, G. (2010). The examination timetabling problem at Universiti

194

Bibliography

Malaysia Pahang: Comparison of a constructive heuristic with an existing software

solution. European Journal of Operational Research, 207(2):557–565.

Kanit, R., Ozkan, O., and Gunduz, M. (2009). E↵ects of project size and resource con-

straints on project duration through priority rule-base heuristics. Artificial Intelligence

Review, 32(1):115–123.

Karp, R. M. (1972). Reducibility among Combinatorial Problems, pages 85–103. Springer

US, Boston, MA.

Kendall, G. and Hussin, N. M. (2005a). An investigation of a tabu-search-based hyper-

heuristic for examination timetabling. In Kendall, G., Burke, E. K., Petrovic, S., and

Gendreau, M., editors, Multidisciplinary Scheduling: Theory and Applications, pages

309–328, Boston, MA. Springer US.

Kendall, G. and Hussin, N. M. (2005b). A tabu search hyper-heuristic approach to the

examination timetabling problem at the mara university of technology. In Burke, E. and

Trick, M., editors, Practice and Theory of Automated Timetabling V, pages 270–293,

Berlin, Heidelberg. Springer Berlin Heidelberg.

Kendall, G. and Li, J. (2008). Combining examinations to accelerate timetable construc-

tion. In Proceedings of The 7th International Conference on the Practice and Theory of

Automated Timetabling, Montreal.

Khader, A. T., Belaton, B., et al. (2011). A practical rough sets analysis in real-world

examination timetabling problem instances. In Computer Networks and Intelligent Com-

puting, pages 21–30. Springer.

Khair, A. F., Makhtar, M., Mazlan, M., Mohamed, M. A., and Rahman, M. N. A. (2018).

Solving examination timetabling problem in unisza using ant colony optimization. In-

ternational Journal of Engineering & Technology, 7(2.15):132–135.

Khair, A. F., Makhtar, M., Mazlan, M., Mohamed, M. A., and Rahman, M. N. A.

(2019). An ant colony algorithm for universiti sultan zainal abidin examination

timetabling problem. Indonesian Journal of Electrical Engineering and Computer Sci-

ence, 13(1):191–198.

Kirkpatrick, S., Gelatt, C. D., Vecchi, M. P., et al. (1983). Optimization by simulated

annealing. science, 220(4598):671–680.

Knowles, J. D. and Corne, D. W. (2000). Approximating the nondominated front using

the pareto archived evolution strategy. Evolutionary Computation, 8(2):149–172.

Knuth, D. E. (1973). The Art of Computer Programming, Volume III: Sorting and Search-

ing. Addison-Wesley.

Kochetov, Y. (2016). Formulation space search approach for the teacher/class timetabling

problem. Yugoslav Journal of Operations Research, 18(1).

195

Bibliography

Konak, A., Coit, D. W., and Smith, A. E. (2006). Multi-objective optimization using

genetic algorithms: A tutorial. Reliability Engineering & System Safety, 91(9):992–

1007. Special Issue - Genetic Algorithms and Reliability.

Kristiansen, S. and Stidsen, T. (2013). A Comprehensive Study of Educational Timetabling

- a Survey. Number 8.2013 in DTUManagement Engineering Report. DTUManagement

Engineering.

Kumar, R. et al. (2012). Blending roulette wheel selection & rank selection in genetic

algorithms. International Journal of Machine Learning and Computing, 2(4):365–370.

Kusumawardani, D., Muklason, A., and Supoyo, V. A. (2019). Examination timetabling

automation and optimization using greedy-simulated annealing hyper-heuristics algo-

rithm. In 2019 12th International Conference on Information & Communication Tech-

nology and System (ICTS), pages 1–6. IEEE.

Laporte, G. and Desroches, S. (1984). Examination timetabling by computer. Computers

and Operations Research, 11(4):351–360.

Le Huédé, F., Grabisch, M., Labreuche, C., and Savéant, P. (2006). Mcs—a new algo-

rithm for multicriteria optimisation in constraint programming. Annals of Operations

Research, 147(1):143–174.

Leake, D. B. (1996). Case-Based Reasoning: Experiences, Lessons & Future Directions.

MIT Press, Cambridge, Massachusetts, United States, 1st edition.

Lei, Y. and Shi, J. (2017). A nnia scheme for timetabling problems. Journal of Optimiza-

tion, 2017.

Leite, N., Fernandes, C. M., Meĺıcio, F., and Rosa, A. C. (2018). A cellular memetic

algorithm for the examination timetabling problem. Computers & Operations Research,

94:118 – 138.

Leite, N., Meĺıcio, F., and Rosa, A. C. (2016). A shu✏ed complex evolution algorithm

for the examination timetabling problem. In Merelo, J. J., Rosa, A., Cadenas, J. M.,

Dourado, A., Madani, K., and Filipe, J., editors, Computational Intelligence, pages

151–168, Cham. Springer International Publishing.

Leite, N., Meĺıcio, F., and Rosa, A. C. (2019a). A fast simulated annealing algorithm for

the examination timetabling problem. Expert Systems with Applications, 122:137–151.

Leite, N., Meĺıcio, F., and Rosa, A. C. (2019b). A fast simulated annealing algorithm for

the examination timetabling problem. Expert Systems with Applications, 122:137 – 151.

Lewis, R. (2008). A survey of metaheuristic-based techniques for university timetabling

problems. OR Spectrum, 30:167–190.

Lewis, R. (2012). A time-dependent metaheuristic algorithm for post enrolment-based

course timetabling. Annals of Operations Research, 194(1):273–289.

196

Bibliography

Lewis, R. and Paechter, B. (2004). New crossover operators for timetabling with evolution-

ary algorithms. In 5th International Conference on Recent Advances in Soft Computing,

Nottingham, UK, volume 5, pages 189–195.

Lewis, R. and Paechter, B. (2005). Application of the grouping genetic algorithm to

university course timetabling. In European Conference on Evolutionary Computation in

Combinatorial Optimization, pages 144–153. Springer.

Lewis, R., Paechter, B., and Mccollum, B. (2007). Post enrolment based course

timetabling: A description of the problem model used for track two of the second

international timetabling competition. Cardi↵ University, Cardi↵ Business School, Ac-

counting and Finance Section, Cardi↵ Accounting and Finance Working Papers.

Lewis, R. and Thompson, J. (2011). On the application of graph colouring techniques in

round-robin sports scheduling. Computers & Operations Research, 38(1):190–204.

Li, J., Bai, R., Shen, Y., and Qu, R. (2015). Search with evolutionary ruin and stochastic

rebuild: A theoretic framework and a case study on exam timetabling. European Journal

of Operational Research, 242(3):798–806.

Li, J. and Kwan, R. S. (2003). A fuzzy genetic algorithm for driver scheduling. Euro-

pean Journal of Operational Research, 147(2):334–344. Fuzzy Sets in Scheduling and

Planning.

Ludbrook, J. (1998). Multiple comparison procedures updated. Clinical and Experimental

Pharmacology and Physiology, 25(12):1032–1037.

Luke, S. (2009). Essentials of metaheuristics, volume 113. Lulu Raleigh.

Lutuksin, T. and Pongcharoen, P. (2010). Best-worst ant colony system parameter in-

vestigation by using experimental design and analysis for course timetabling problem.

In Computer and Network Technology (ICCNT), 2010 Second International Conference

on, pages 467–471. IEEE.

Maaranen, H., Miettinen, K., and Mäkelä, M. (2004). Quasi-random initial population for

genetic algorithms. Computers & Mathematics with Applications, 47(12):1885–1895.

Malim, M. R., Khader, A. T., and Mustafa, A. (2006). Artificial immune algorithms for

university timetabling. In Proceedings of the 6th international conference on practice

and theory of automated timetabling, pages 234–245. Brno, Czech Republic.

Mandal, A. K. and Kahar, M. (2015). Solving examination timetabling problem using par-

tial exam assignment with hill climbing search. In 2015 IEEE Symposium on Computer

Applications & Industrial Electronics (ISCAIE), pages 84–89. IEEE.

Mandal, A. K., Kahar, M. N. M., and Kendall, G. (2020). Addressing examination

timetabling problem using a partial exams approach in constructive and improvement.

Computation, 8(2):46.

197

Bibliography

Mann, H. B. and Whitney, D. R. (1947). On a test of whether one of two random variables

is stochastically larger than the other. The Annals of Mathematical Statistics.

Marie-Sainte, S. L. (2017). A new hybrid particle swarm optimization algorithm for real-

world university examination timetabling problem. 2017 Computing Conference, pages

157–163.

Martins, S. L. and Ribeiro, C. C. (2006). Metaheuristics and Applications to Optimisation

Problems in Telecommunications, pages 103–128. Springer US, Boston, MA.

Massoodian, S. and Esteki, A. (2008). A hybrid genetic algorithm for curriculum based

course timetabling. In 7th International Conference on the Practice and Theory of

Automated Timetabling, PATAT 2008.

Mavrovouniotis, M. (2013). Ant colony optimization with immigrants schemes for the

dynamic travelling salesman problem with tra�c factors. Applied Soft Computing,

13:4023–4037.

Mavrovouniotis, M. and Yang, S. (2013). Adapting the pheromone evaporation rate in dy-

namic routing problems. In Esparcia-Alcázar, A. I., editor, Applications of Evolutionary

Computation, pages 606–615, Berlin, Heidelberg. Springer Berlin Heidelberg.

McCollum, B. (2007). A perspective on bridging the gap between theory and practice in

university timetabling. In Burke, E. K. and Rudová, H., editors, Practice and Theory of

Automated Timetabling VI, pages 3–23, Berlin, Heidelberg. Springer Berlin Heidelberg.

McCollum, B., Ahmadi, S., and Barone, R. (2003). Perturbation based hyper-heuristic for

examination timetabling problems. In The 1st Multidisciplinary International Confer-

ence on Scheduling: Theory and Applications (MISTA), ; Conference date: 01-08-2003

Through 01-08-2003, pages 155–171.

McCollum, B., McMullan, M., Burke, E., Parkes, A., and Qu, R. (2007). The second

international timetabling competition: examination timetabling track (technical re-

port:qub/ieee/tech/itc2007/exam/v4.0/17). Electrical Engineering and Computer Sci-

ence, Queens University, Belfast, UK, September.

Mccollum, B., McMullan, P., Paechter, B., Lewis, R., Schaerf, A., Di Gaspero, L., Parkes,

A., Qu, R., and Burke, E. (2010). Setting the research agenda in automated timetabling:

The second international timetabling competition. INFORMS Journal on Computing,

22:120–130.

McCollum, B., McMullan, P., Parkes, A., Burke, E., and Qu, R. (2012a). A new model for

automated examination timetabling. Annals of Operations Research, 194(1):291–315.

McCollum, B., McMullan, P., Parkes, A. J., Burke, E. K., and Abdullah, S. (2009). An

extended great deluge approach to the examination timetabling problem. Proceedings

of the 4th Multidisciplinary International Scheduling: Theory and Applications 2009

(MISTA 2009), pages 424–434.

198

Bibliography

McCollum, B., McMullan, P., Parkes, A. J., Burke, E. K., and Qu, R. (2012b). A

new model for automated examination timetabling. Annals of Operations Research,

194(1):291–315.

McMullan, P. (2007). An extended implementation of the great deluge algorithm for course

timetabling. In Shi, Y., van Albada, G. D., Dongarra, J., and Sloot, P. M. A., editors,

Computational Science – ICCS 2007, pages 538–545, Berlin, Heidelberg. Springer Berlin

Heidelberg.

Mehta, N. (1982). Computer-based examination management system. Journal of Educa-

tional Technology Systems, 11(2):185–198.

Mehta, N. K. (1981). The application of a graph coloring method to an examination

scheduling problem. Interfaces, 11(5):57–65.

Meĺıcio, F., Caldeira, J. P., and Rosa, A. (2004). Two neighbourhood approaches to the

timetabling problem. Proceedings of the practice and theory of automated timetabling

(PATAT’04), pages 267–282.

Merlot, L. T. G., Boland, N., Hughes, B. D., and Stuckey, P. J. (2003). A hybrid algorithm

for the examination timetabling problem. In Burke, E. and De Causmaecker, P., editors,

Practice and Theory of Automated Timetabling IV, pages 207–231, Berlin, Heidelberg.

Springer Berlin Heidelberg.

Mitchell, M. (1998). An introduction to genetic algorithms. MIT press.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers &

operations research, 24(11):1097–1100.

Mohammed, M. A., Ghani, M. K. A., Mostafa, O. I. O. S. A., Ahmad, M. S., Ibrahim,

D. A., and Burhanuddin, M. (2017). A review of genetic algorithm application in exami-

nation timetabling problem. Journal of Engineering and Applied Sciences, 12(20):5166–

5181.

Mohmad Kahar, M. and Kendall, G. (2015). A great deluge algorithm for a real-world ex-

amination timetabling problem. Journal of the Operational Research Society, 66(1):116–

133.

Momani, S. and Odibat, Z. (2006). Analytical solution of a time-fractional navier–stokes

equation by adomian decomposition method. Applied Mathematics and Computation,

177(2):488–494.

Montana, D., Brinn, M., Moore, S., and Bidwell, G. (1998). Genetic algorithms for

complex, real-time scheduling. In Systems, Man, and Cybernetics, 1998. 1998 IEEE

International Conference on, volume 3, pages 2213–2218. IEEE.

Mühlenthaler, M. (2015). Fairness in academic course timetabling. In Fairness in Academic

Course Timetabling, pages 75–105. Springer.

199

Bibliography

Muklason, A. (2017). Hyper-heuristics and fairness in examination timetabling problems.

PhD thesis, University of Nottingham.

Muklason, A., Parkes, A. J., Özcan, E., McCollum, B., and McMullan, P. (2017). Fairness

in examination timetabling: Student preferences and extended formulations. Applied

Soft Computing, 55:302 – 318.

Müller, T. (2005). Constraint-based timetabling. PhD thesis, Charles University in

Prague,Faculty of Mathematics and Physics.

Müller, T. (2008). Itc2007 solver description: A hybrid approach. Annals of Operations

Research, 172:429–446.

Müller, T., Barták, R., Rudová, H., et al. (2004). Conflict-based statistics. In J. Gottlieb,

D. Landa Silva, N. Musliu, and E. Soubeiga, editors, EU/ME Workshop on Design and

Evaluation of Advanced Hybrid Meta-Heuristics. University of Nottingham.

Müller, T., Rudová, H., and Müllerová, Z. (2018). University course timetabling and In-

ternational Timetabling Competition 2019. In Burke, E. K., Di Gaspero, L., McCollum,

B., Musliu, N., and Özcan, E., editors, Proceedings of the 12th International Conference

on the Practice and Theory of Automated Timetabling (PATAT-2018), pages 5–31.

Mumford, C. L. (2010). A multiobjective framework for heavily constrained examination

timetabling problems. Annals of Operations Research, 180(1):3–31.

Mushi, A. R. (2006). Tabu search heuristic for university course timetabling problem.

African Journal of Science and Technology, 7(1):34–40.

Mutingi, M. and Mbohwa, C. (2017). Multi-criterion examination timetabling: A fuzzy

grouping genetic algorithm approach. In Grouping Genetic Algorithms, pages 161–182.

Springer.

Myszkowski, P. B. and Norberciak, M. (2003). Evolutionary algorithms for timetable

problems. In Annales UMCS, Sectio Informatica. Citeseer.

Nahas, N., Khatab, A., Ait-Kadi, D., and Nourelfath, M. (2008). Extended great deluge

algorithm for the imperfect preventive maintenance optimization of multi-state systems.

Reliability Engineering & System Safety, 93(11):1658–1672.

Nalepa, J. and Blocho, M. (2016). Adaptive memetic algorithm for minimizing distance

in the vehicle routing problem with time windows. Soft Computing, 20(6):2309–2327.

Naseem, S. and Shengxiang, J. (2009). A guided search genetic algorithm for the university

course timetabling problem. Multidisciplinary International Conference on Scheduling

: Theory and Applications (MISTA 2009).

Neri, F. and Cotta, C. (2012). Memetic algorithms and memetic computing optimization:

A literature review. Swarm and Evolutionary Computation, 2:1–14.

Nguyen, P. T. M., Passow, B. N., and Yang, Y. (2016). Improving anytime behavior

200

Bibliography

for tra�c signal control optimization based on NSGA-II and local search. In 2016

International Joint Conference on Neural Networks (IJCNN), pages 4611–4618. IEEE.

Norgren, E. and Jonasson, J. (2016). Investigating a genetic algorithm-simulated annealing

hybrid applied to university course timetabling problem: A comparative study between

simulated annealing initialized with genetic algorithm, genetic algorithm and simulated

annealing.

Nurcahyadi, T. and Blum, C. (2021). Adding negative learning to ant colony optimization:

A comprehensive study. Mathematics, 9(4).

Obaid, O. I., Ahmad, M., Mostafa, S. A., and Mohammed, M. A. (2012). Comparing per-

formance of genetic algorithm with varying crossover in solving examination timetabling

problem. J. Emerg. Trends Comput. Inf. Sci, 3(10):1427–1434.

Osaba, E., Carballedo, R., Diaz, F., Onieva, E., De La Iglesia, I., and Perallos, A. (2014).

Crossover versus mutation: a comparative analysis of the evolutionary strategy of ge-

netic algorithms applied to combinatorial optimization problems. The Scientific World

Journal, 2014.

Osaba, E., Carballedo, R., Dı́az, F., and Perallos, A. (2013). Analysis of the suitability

of using blind crossover operators in genetic algorithms for solving routing problems.

In 2013 IEEE 8th International Symposium on Applied Computational Intelligence and

Informatics (SACI), pages 17–22. IEEE.

Osman, I. H. and Laporte, G. (1996). Metaheuristics: A bibliography. Annals of Opera-

tions Research, 63:513–623.

Othman, N. S. and Mashhod, F. (2012). Graph colouring and clustering heuristic approach

for minimizing examination duration: A case study. IBIMA Business Review, 2012:1.

OuYang, Y. and Chen, Y. (2010). Research on automated timetabling algorithm for

make-up examination and final clear examination. In Computer Science and Education

(ICCSE), 2010 5th International Conference on, pages 570–573. IEEE.

Özcan, E., Burke, E. K., Di Gaspero, L., McCollum, B., and Schaerf, A. (2019). The

practice and theory of automated timetabling (2016). Annals of Operations Research,

275(1):1–2.

Özcan, E., Parkes, A. J., and Alkan, A. (2012). The interleaved constructive memetic

algorithm and its application to timetabling. Computers & Operations Research,

39(10):2310–2322.

Paechter, B., Cumming, A., Luchian, H., and Petriuc, M. (1994). Two solutions to the

general timetable problem using evolutionary methods. In Proceedings of the First IEEE

Conference on Evolutionary Computation. IEEE World Congress on Computational

Intelligence, pages 300–305. IEEE.

Paechter, B., Cumming, A., Norman, M. G., and Luchian, H. (1996). Extensions to a

201

Bibliography

memetic timetabling system. In Burke, E. and Ross, P., editors, Practice and Theory of

Automated Timetabling, pages 251–265, Berlin, Heidelberg. Springer Berlin Heidelberg.

Paechter, B., Gambardella, L. M., and Rossi-Doria, O. (2002). International timetabling

competition, web page. URL: http://www. idsia. ch/Files/ttcomp2002.

Pais, T. C. and Amaral, P. (2012). Managing the tabu list length using a fuzzy inference

system: an application to examination timetabling. Annals of Operations Research,

194(1):341–363.

Pais, T. C. and Burke, E. (2010). Choquet integral for combining heuristic values for

exam timetabling problem. In Proceedings of the 8ˆth International Conference on the

Practice and Theory of Automated Timetabling, (PATAT 2010), pages 305–320.

Paquete, L. and Stützle, T. (2002). An experimental investigation of iterated local search

for coloring graphs. In Workshops on Applications of Evolutionary Computation, pages

122–131. Springer.

Paquete, L. F. and Fonseca, C. M. (2001). A study of examination timetabling with multi-

objective evolutionary algorithms. In Proceedings of the 4th Metaheuristics International

Conference (MIC 2001), pages 149–154.

Parkes, A. J. and Ozcan, E. (2010). Properties of yeditepe examination timetabling bench-

mark instances. In Proceedings of the 8th International Conference on the Practice and

Theory of Automated Timetabling, pages 531–534.

Peck, J. E. L. and Williams, M. R. (1966). Algorithm 286: Examination scheduling.

Communications of the ACM, 9(6):433–434.

Pei, W., Huayu, G., Zheqi, Z., and Meibo, L. (2019). A novel hybrid firefly algorithm

for global optimization. In 2019 IEEE 4th International Conference on Computer and

Communication Systems (ICCCS), pages 164–168.

Pelikan, M. (2010). Genetic algorithms. Wiley Encyclopedia of Operations Research and

Management Science.

Pérez, J. A. M., Moreno-Vega, J. M., and Martın, I. R. (2003). Variable neighborhood

tabu search and its application to the median cycle problem. European Journal of

Operational Research, 151(2):365–378.

Pérez-Peló, S., Sánchez-Oro, J., and Duarte, A. (2019). Detecting weak points in networks

using variable neighborhood search. In Sifaleras, A., Salhi, S., and Brimberg, J., editors,

Variable Neighborhood Search, pages 141–151, Cham. Springer International Publishing.

Petrovic, S. and Burke, E. (2004). University timetabling. handbook of scheduling: Algo-

rithms, models and performance analysis, chapter 45.

Petrovic, S. and Bykov, Y. (2002). A multiobjective optimisation technique for exam

timetabling based on trajectories. In PATAT, pages 181–194. Springer.

202

Bibliography

Petrovic, S., Patel, V., and Young, Y. (2005). University timetabling with fuzzy con-

straints. practice and theory of automated timetabling v. Lecture Notes in Computer

Science, 3616.

Petrovski, A., Brownlee, A., and McCall, J. (2005). Statistical optimisation and tuning

of ga factors. In 2005 IEEE Congress on Evolutionary Computation, volume 1, pages

758–764.

Pillay, N. (2008). A developmental approach to the examination timetabling problem.

Practice and Theory of Automated Timetabling (PATAT 2008), pages 19–22.

Pillay, N. (2012). Evolving hyper-heuristics for the uncapacitated examination timetabling

problem. Journal of the Operational Research Society, 63(1):47–58.

Pillay, N. and Banzhaf, W. (2010). An informed genetic algorithm for the examination

timetabling problem. Applied Soft Computing, 10(2):457–467.

Pillay, N. and Özcan, E. (2019). Automated generation of constructive ordering heuristics

for educational timetabling. Annals of Operations Research, 275(1):181–208.

Pongcharoen, P., Promtet, W., Yenradee, P., and Hicks, C. (2008). Stochastic optimisation

timetabling tool for university course scheduling. International Journal of Production

Economics, 112(2):903–918.

Porto-Pazos, A. B., Veiguela, N., Mesejo, P., Navarrete, M., Alvarellos, A., Ibáñez, O.,

Pazos, A., and Araque, A. (2011). Artificial astrocytes improve neural network perfor-

mance. PloS one, 6(4):e19109.

Post, G., Di Gaspero, L., Kingston, J. H., McCollum, B., and Schaerf, A. (2016). The third

international timetabling competition. Annals of Operations Research, 239(1):69–75.

Prida Romero, B. (1982). Examination scheduling in a large engineering school: A

computer-assisted participative procedure. Interfaces, 12(2):17–24.

Qu, R. and Burke, E. K. (2007). Adaptive decomposition and construction for examination

timetabling problems. Proceedings of the 3rd Multidisciplinary International Scheduling:

Theory and Applications, pages 418–425.

Qu, R. and Burke, E. K. (2009). Hybridizations within a graph-based hyper-heuristic

framework for university timetabling problems. Journal of the Operational Research

Society.

Qu, R., Burke, E. K., and McCollum, B. (2009a). Adaptive automated construction of

hybrid heuristics for exam timetabling and graph colouring problems. European Journal

of Operational Research, 198(2):392–404.

Qu, R., Burke, E. K., McCollum, B., Merlot, L. T. G., and Lee, S. Y. (2009b). A survey of

search methodologies and automated system development for examination timetabling.

Journal of Scheduling, 12:55–89.

203

Bibliography

Raghavjee, R. and Pillay, N. (2013). A study of genetic algorithms to solve the school

timetabling problem. In Castro, F., Gelbukh, A., and González, M., editors, Advances

in Soft Computing and Its Applications, pages 64–80, Berlin, Heidelberg. Springer Berlin

Heidelberg.

Rahim, S. K. N. A., Bargiela, A., and Qu, R. (2013). Hill climbing versus genetic algo-

rithm optimization in solving the examination timetabling problem. In ICORES 2013 -

Proceedings of the 2nd International Conference on Operations Research and Enterprise

Systems, pages 43–52.

Rahman, S. A., Bargiela, A., Burke, E. K., Özcan, E., and McCollum, B. (2009). Construc-

tion of examination timetables based on ordering heuristics. In 2009 24th International

Symposium on Computer and Information Sciences, ISCIS 2009, pages 680–685.

Rahnamayan, S., Tizhoosh, H. R., and Salama, M. M. (2007). Quasi-oppositional di↵eren-

tial evolution. In 2007 IEEE Congress on Evolutionary Computation, pages 2229–2236.

Raidl, G. R., Puchinger, J., and Blum, C. (2010). Metaheuristic hybrids. In Handbook of

metaheuristics, pages 469–496. Springer.

Rajah, C. and Pillay, N. (2019). A structure-based partial solution search for the ex-

amination timetabling problem. In 2019 IEEE Congress on Evolutionary Computation

(CEC), pages 81–86. IEEE.

Redl, T. A. (2009). On using graph coloring to create university timetables with essential

and preferential conditions. In Advances in Marketing, Management and Finances, Pro-

ceedings of the 3rd International Conference on Management, Marketing and Finances

(International Conference on Computational and Information Sciences, pages 162–167.

Reeves, C. R. and Wright, C. C. (1995). Epistasis in genetic algorithms: An experimental

design perspective. In Proc. of the 6th International Conference on Genetic Algorithms,

(pp 217–224, pages 217–224. Morgan Kaufmann.

Reis, L. P. and Oliveira, E. (1999). Constraint logic programming using set variables for

solving timetabling problems. In 12th international conference on applications of Prolog.

Ross, P., Corne, D., and Fang, H.-L. (1994). Improving evolutionary timetabling with

delta evaluation and directed mutation. In Davidor, Y., Schwefel, H.-P., and Männer,

R., editors, Parallel Problem Solving from Nature — PPSN III, pages 556–565, Berlin,

Heidelberg. Springer Berlin Heidelberg.

Ross, P., Corne, D., and Terashima-Maŕın, H. (1995). The phase-transition niche for

evolutionary algorithms in timetabling. In International Conference on the Practice

and Theory of Automated Timetabling, pages 309–324. Springer.

Ross, P., Hart, E., and Corne, D. (1997). Some observations about ga-based exam

timetabling. In International Conference on the Practice and Theory of Automated

Timetabling, pages 115–129. Springer.

204

Bibliography

Ross, P., Hart, E., and Corne, D. (2003). Genetic algorithms and timetabling. In Advances

in evolutionary computing, pages 755–771. Springer.

Ross, P., Maŕın-Blázquez, J. G., and Hart, E. (2004). Hyper-heuristics applied to class and

exam timetabling problems. In Evolutionary Computation, 2004. CEC2004. Congress

on, volume 2, pages 1691–1698. IEEE.

Rossi-Doria, O., Blum, C., Knowles, J., Sampels, M., Socha, K., and Paechter, B. (2002).

A local search for the timetabling problem. In Proceedings of the 4th International

Conference on the Practice and Theory of Automated Timetabling, PATAT, pages 124–

127.

Rothlauf, F. (2002). Representations for Genetic and Evolutionary Algorithms, pages

9–30. Physica-Verlag HD, Heidelberg.

Rozaimee, A., Shafee, A. N., Hadi, N. A. A., and Mohamed, M. A. (2017). A framework

for university’s final exam timetable allocation using genetic algorithm. World Applied

Sciences Journal, 35(7):1210–1215.

Rudolph, G. (1994). Convergence of non-elitist strategies. In Proceedings of the First IEEE

Conference on Evolutionary Computation. IEEE World Congress on Computational

Intelligence, pages 63–66 vol.1.

Rudová, H. and Murray, K. (2002). University course timetabling with soft constraints. In

International Conference on the Practice and Theory of Automated Timetabling, pages

310–328. Springer.

Russell, S. and Norvig, P. (2010). Artificial Intelligence: A Modern Approach. Prentice

Hall Press, 3rd edition.

Sabar, N. R. and Ayob, M. (2009). Examination timetabling using scatter search hyper-

heuristic. In Data Mining and Optimization, 2009. DMO’09. 2nd Conference on, pages

127–131. IEEE.

Sabar, N. R., Ayob, M., and Kendall, G. (2009a). Tabu exponential monte-carlo with

counter heuristic for examination timetabling. In Computational Intelligence in Schedul-

ing, 2009. CI-Sched’09. IEEE Symposium on, pages 90–94. IEEE.

Sabar, N. R., Ayob, M., Kendall, G., and Qu, R. (2009b). Roulette wheel graph colouring

for solving examination timetabling problems. In International Conference on Combi-

natorial Optimization and Applications, pages 463–470. Springer.

Sabar, N. R., Ayob, M., Qu, R., and Kendall, G. (2012). A graph coloring constructive

hyper-heuristic for examination timetabling problems. Applied Intelligence, 37(1):1–11.

Saharan, S. and Kumar, R. (2016). Graph coloring based optimized algorithm for resource

utilization in examination scheduling. Applied Mathematics & Information Sciences,

10(3):1193–1201.

205

Bibliography

Sani, H. and Yabo, M. (2016). Solving timetabling problems using genetic algorithm

technique. International Journal of Computer Applications, 134(15).

Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review,

13(2):87–127.

Schaerf, A. and Di Gaspero, L. (2001). Local search techniques for educational timetabling

problems. In Proceedings of the 6th International Symposium on Operations Research

in Slovenia (SOR-01).

Selim, S. Z. and Alsultan, K. (1991). A simulated annealing algorithm for the clustering

problem. Pattern Recognition, 24(10):1003–1008.

Selvi, V. and Umarani, R. (2010). Comparative analysis of ant colony and particle swarm

optimization techniques. International Journal of Computer Applications, 5:1–6.

Shaker, K. and Abdullah, S. (2009). Incorporating great deluge approach with kempe

chain neighbourhood structure for curriculum-based course timetabling problems. In

2009 2nd Conference on Data Mining and Optimization, DMO 2009, pages 149–153.

Sheibani, K. (2002). An evolutionary approach for the examination timetabling problems.

In 2002). Proceedings of the 4th International Conference on Practice and Theory of

Automated Timetabling. 21st-23rd August, pages 387–396. Citeseer.

Shih, W.-K. and Liu, J. W. (1995). Algorithms for scheduling imprecise computations

with timing constraints to minimize maximum error. IEEE Transactions on Computers,

44(3):466–471.

Sigl, B., Golub, M., and Mornar, V. (2003). Solving timetable scheduling problem using

genetic algorithms. In Information Technology Interfaces, 2003. ITI 2003. Proceedings

of the 25th International Conference on, pages 519–524. IEEE.

Silva, J. D. L., Burke, E. K., and Petrovic, S. (2004). An introduction to multiobjec-

tive metaheuristics for scheduling and timetabling. Metaheuristics for multiobjective

optimisation, pages 91–129.

Sin, E. S. and Kham, N. S. M. (2012). Hyper heuristic based on great deluge and its

variants for exam timetabling problem. International Journal of Artificial Intelligence

& Applications, 3(1):149.

Skiundefinedcim, C. C. and Golden, B. L. (1983). Optimization by simulated annealing:

A preliminary computational study for the tsp. In Proceedings of the 15th Conference

on Winter Simulation - Volume 2, WSC ’83, page 523–535. IEEE Press.

Socha, K., Sampels, M., and Manfrin, M. (2003). Ant algorithms for the university course

timetabling problem with regard to the state-of-the-art. In Applications of Evolutionary

Computing, pages 334–345, Berlin, Heidelberg. Springer Berlin Heidelberg.

Soghier, A. (2012). Novel hyper-heuristic approaches in exam timetabling. The University

of Nottingham.

206

Bibliography

Soria-Alcaraz, J. A., Ochoa, G., Swan, J., Carpio, M., Puga, H., and Burke, E. K. (2014).

E↵ective learning hyper-heuristics for the course timetabling problem. European Journal

of Operational Research, 238(1):77–86.

Soria-Alcaraz, J. A., Özcan, E., Swan, J., Kendall, G., and Carpio, M. (2016). Iterated

local search using an add and delete hyper-heuristic for university course timetabling.

Applied Soft Computing, 40:581–593.

Soria-Alcaraz Jorge, A., Mart́ın, C., Héctor, P., and Sotelo-Figueroa Marco, A. (2012).

Application of a parallel computational approach in the design methodology for the

course timetabling problem. In PATAT 2012 - Proceedings of the 9th International

Conference on the Practice and Theory of Automated Timetabling.

Stefansson, H., Sigmarsdottir, S., Jensson, P., and Shah, N. (2011). Discrete and con-

tinuous time representations and mathematical models for large production scheduling

problems: A case study from the pharmaceutical industry. European Journal of Opera-

tional Research, 215(2):383–392.

Sultan, A. B. M., Mahmod, R., Sulaiman, M. N., Bakar, M., et al. (2008). Selecting quality

initial random seed for metaheuristic approaches: a case of timetabling problem. Int J

Comput Internet Manag, 16(1):8.

Sumathi, S., Hamsapriya, T., and Surekha, P. (2008). Evolutionary intelligence: an in-

troduction to theory and applications with Matlab. Springer Science & Business Media.

Sutar, S. R. and Bichkar, R. S. (2012). University timetabling based on hard constraints

using genetic algorithm. International Journal of Computer Applications, 42(15):1–7.

Talbi, E.-G. (2009). Metaheuristics: from design to implementation. John Wiley & Sons,

Ltd.

Tam, V. and Ting, D. (2003). Combining the min-conflicts and look-forward heuristics to

e↵ectively solve a set of hard university timetabling problems. In Tools with Artificial

Intelligence, 2003. Proceedings. 15th IEEE International Conference on, pages 492–496.

IEEE.

Tan, K. C., Khor, E. F., Lee, T. H., and Sathikannan, R. (2003). An evolutionary algorithm

with advanced goal and priority specification for multi-objective optimization. Journal

of Artificial Intelligence Research, 18:183–215.

Teich, J. (2001). Pareto-front exploration with uncertain objectives. In Zitzler, E., Thiele,

L., Deb, K., Coello Coello, C. A., and Corne, D., editors, Evolutionary Multi-Criterion

Optimization, pages 314–328, Berlin, Heidelberg. Springer Berlin Heidelberg.

Tein, L. H. and Ramli, R. (2010). Recent advancements of nurse scheduling models and

a potential path. In Proc. 6th IMT-GT Conference on Mathematics, Statistics and its

Applications (ICMSA 2010), pages 395–409.

207

Bibliography

Teodorović, D. and Lučić, P. (1998). A fuzzy set theory approach to the aircrew rostering

problem. Fuzzy Sets and Systems, 95(3):261–271.

Teoh, C. K., Wibowo, A., and Ngadiman, M. S. (2015). Review of state of the art

for metaheuristic techniques in academic scheduling problems. Artificial Intelligence

Review, 44(1):1–21.

Terashima-Maŕın, H. (1998). Combinations of GAs and CSP strategies for solving exami-

nation timetabling problems. PhD thesis, Instituto Tecnológico y de Estudios Superiores

de Monterrey.

Terashima-Maŕın, H., Ross, P., and Valenzuela-Rendón, M. (1999a). Application of the

hardness theory when solving the timetabling problem with genetic algorithms. In Evo-

lutionary Computation, 1999. CEC 99. Proceedings of the 1999 Congress on, volume 1,

pages 604–611. IEEE.

Terashima-Maŕın, H., Ross, P., and Valenzuela-Rendón, M. (1999b). Evolution of con-

straint satisfaction strategies in examination timetabling. In Proceedings of the 1st An-

nual Conference on Genetic and Evolutionary Computation-Volume 1, pages 635–642.

Morgan Kaufmann Publishers Inc.

Thomas, J. J., Khader, A. T., Belaton, B., and Ken, C. C. (2012). Integrated problem

solving steering framework on clash reconciliation strategies for university examination

timetabling problem. In International Conference on Neural Information Processing,

pages 297–304. Springer.

Thomas, J. J., Khader, A. T., Belaton, B., and Leow, A. (2011). Exploration of rough

sets analysis in real-world examination timetabling problem instances. In International

Conference in Swarm Intelligence, pages 173–182. Springer.

Thompson, J. and Dowsland, K. A. (1996a). General cooling schedules for a simulated

annealing based timetabling system. In Burke, E. and Ross, P., editors, Practice and

Theory of Automated Timetabling, pages 345–363, Berlin, Heidelberg. Springer Berlin

Heidelberg.

Thompson, J. M. and Dowsland, K. A. (1996b). Variants of simulated annealing for the

examination timetabling problem. Annals of Operations research, 63(1):105–128.

Thompson, J. M. and Dowsland, K. A. (1998). A robust simulated annealing based

examination timetabling system. Computers & Operations Research, 25(7-8):637–648.

Ting, T. O., Yang, X.-S., Cheng, S., and Huang, K. (2015). Hybrid Metaheuristic Al-

gorithms: Past, Present, and Future, pages 71–83. Springer International Publishing,

Cham.

Trick, M. A. (2011). Sports Scheduling, pages 489–508. Springer New York, New York,

NY.

Tuga, M., Berretta, R., and Mendes, A. (2007). A hybrid simulated annealing with

208

Bibliography

kempe chain neighborhood for the university timetabling problem. In 2007 International

Conference on Computer and Information Science, pages 400–405, Los Alamitos, CA,

USA. IEEE Computer Society.

Turabieh, H. and Abdullah, S. (2011a). A hybrid fish swarm optimisation algorithm for

solving examination timetabling problems. In International Conference on Learning

and Intelligent Optimization, pages 539–551. Springer.

Turabieh, H. and Abdullah, S. (2011b). An integrated hybrid approach to the examination

timetabling problem. Omega, 39(6):598–607.

Ülker, Ö., Özcan, E., and Korkmaz, E. E. (2006). Linear linkage encoding in grouping

problems: applications on graph coloring and timetabling. In International Conference

on the Practice and Theory of Automated Timetabling, pages 347–363. Springer.

Umbarkar, A. J. and Sheth, P. D. (2015). Crossover operators in genetic algorithms: a

review. ICTACT journal on soft computing, 6(1).

Van Bulck, D., Goossens, D., Belien, J., and Davari, M. (2021). The fifth international

timetabling competition (itc 2021): Sports timetabling. In MathSport International

2021, pages 117–122. University of Reading.

Črepinšek, M., Liu, S.-H., and Mernik, M. (2013). Exploration and exploitation in evolu-

tionary algorithms: A survey. ACM computing surveys (CSUR), 45(3).

Voß, S., Martello, S., Osman, I. H., and Roucairol, C. (2012). Meta-heuristics: Advances

and trends in local search paradigms for optimization. Springer Science & Business

Media.

Wazwaz, A.-M. (2005). Adomian decomposition method for a reliable treatment of the

emden–fowler equation. Applied Mathematics and Computation, 161(2):543–560.

Weitz, R. and Lakshminarayanan, S. (1997). An empirical comparison of heuristic and

graph theoretic methods for creating maximally diverse groups, vlsi design, and exam

scheduling. Omega, 25(4):473–482.

Welsh, D. J. A. and Powell, M. B. (1967). An upper bound for the chromatic number of a

graph and its application to timetabling problems. The Computer Journal, 10(1):85–86.

White, G. M. and Xie, B. S. (2000). Examination timetables and tabu search with longer-

term memory. In International Conference on the Practice and Theory of Automated

Timetabling, pages 85–103. Springer.

Whitley, D. et al. (1995). Genetic algorithms and neural networks. Genetic algorithms in

engineering and computer science, 3:191–201.

Wilcoxon, F. (1950). Some rapid approximate statistical procedures. Annals of the New

York Academy of Sciences.

Wilke, P. and Ostler, J. (2008). Solving the school timetabling problem using tabu search,

209

Bibliography

simulated annealing, genetic and branch & bound algorithms. In Burke Edmund, G. M.,

editor, PATAT 2008 Proceedings of the 7th International Conference on the Practice and

Theory of Automated Timetabling, pages 1–4.

Wolpert, D. H. and Macready, W. G. (1997). No free lunch theorems for optimization.

IEEE Transactions on Evolutionary Computation, 1(1):67–82.

Wong, T., Bigras, P., and De Kelper, B. (2005). A multi-neighborhood and multi-operator

strategy for the uncapacitated exam proximity problem. In 2005 IEEE International

Conference on Systems, Man and Cybernetics, volume 4, pages 3810–3816. IEEE.

Wong, T., Cote, P., and Gely, P. (2002). Final exam timetabling: a practical approach.

In IEEE CCECE2002. Canadian Conference on Electrical and Computer Engineering.

Conference Proceedings (Cat. No.02CH37373), volume 2, pages 726–731.

Wong, T., Côté, P., and Sabourin, R. (2004). A hybrid moea for the capacitated exam

proximity problem. In Evolutionary Computation, 2004. CEC2004. Congress on, vol-

ume 2, pages 1495–1501. IEEE.

Wong, Y.-Y., Lee, K.-H., Leung, K.-S., and Ho, C.-W. (2003). A novel approach in

parameter adaptation and diversity maintenance for genetic algorithms. Soft Computing,

7(8):506–515.

Wood, D. (1968). A system for computing university examination timetables. The Com-

puter Journal, 11(1):41–47.

Wren, A. (1996). Scheduling, timetabling and rostering — a special relationship? In

Burke, E. and Ross, P., editors, Practice and Theory of Automated Timetabling, pages

46–75, Berlin, Heidelberg. Springer Berlin Heidelberg.

Yang, S. and Jat, S. N. (2011). Genetic algorithms with guided and local search strategies

for university course timetabling. IEEE Transactions on Systems, Man, and Cybernet-

ics, Part C (Applications and Reviews), 41(1):93–106.

Yang, X.-s. (2010). Nature-Inspired Metaheuristic Algorithms. Luniver Press.

Yang, Y. and Petrovic, S. (2005). A novel similarity measure for heuristic selection in

examination timetabling. In Burke, E. and Trick, M., editors, Practice and Theory of

Automated Timetabling V, pages 247–269, Berlin, Heidelberg. Springer Berlin Heidel-

berg.

Zadeh, L. (1975). The concept of a linguistic variable and its application to approximate

reasoning—i,ii, and iii. Information Sciences, 8;8;9(3):199–249;301–357;43–80.

Zadeh, L. A. (1965). Fuzzy sets. Information and control, 8(3):338–353.

Zhang, J. (2011). Comparative study of several intelligent algorithms for knapsack prob-

lem. Procedia Environmental Sciences, 11:163–168. 2011 2nd International Conference

on Challenges in Environmental Science and Computer Engineering (CESCE 2011).

210

Bibliography

Zhang, W., Xing, Z., Wang, G., and Wittenburg, L. (2003). An analysis and application

of distributed constraint satisfaction and optimization algorithms in sensor networks. In

Proceedings of the Second International Joint Conference on Autonomous Agents and

Multi-agent Systems, volume 2, pages 185–192.

Zhong, J.-H., Shen, M., Zhang, J., Chung, H. S.-H., Shi, Y.-H., and Li, Y. (2013). A di↵er-

ential evolution algorithm with dual populations for solving periodic railway timetable

scheduling problem. IEEE Transactions on Evolutionary Computation, 17(4):512–527.

Zilberstein, S. (1996). Using anytime algorithms in intelligent systems. AI magazine,

17(3):73–73.

Zimmermann, H.-J. (1996). Fuzzy Set Theory—and Its Applications (3rd Ed.). Kluwer

Academic Publishers, USA.

Zitzler, E., Laumanns, M., and Thiele, L. (2001). Spea2: Improving the strength pareto

evolutionary algorithm. TIK-Report, 103.

Zitzler, E. and Thiele, L. (1998). An evolutionary algorithm for multiobjective optimiza-

tion: the strength pareto approach. TIK-Report, 43.

Zolfaghari, S. and Liang, M. (1999). Jointly solving the group scheduling and machining

speed selection problems: A hybrid tabu search and simulated annealing approach.

International Journal of Production Research, 37(10):2377–2397.

211

	List of tables
	List of figures
	List of algorithms
	Nomenclature and Abbreviations
	Introduction
	Background and Motivation
	Research Objectives
	Research Contributions
	List of Publications
	Overview of the Thesis

	Background and Literature Review
	Introduction
	Overview of Educational Timetabling Problems
	University Timetabling Problems
	University Examination Timetabling Problems

	Benchmark Examination Timetabling Datasets
	University of Toronto Dataset
	International Timetabling Competition 2007 Dataset
	University of Yeditepe Dataset
	Other Benchmark Examination Timetabling Datasets

	Algorithmic Techniques for the University Examination Timetabling
	Exact Techniques
	Constructive Heuristic Techniques
	Graph Colouring Heuristics
	Fuzzy-based Techniques
	Decomposition Techniques
	Neural Networks

	Meta-heuristics and Improvement Heuristic Techniques
	Hill-Climbing
	Tabu Search
	Simulated Annealing
	Variable Neighbourhood Search
	Great Deluge Algorithm
	Genetic Algorithms
	Ant Colony Optimisation
	Memetic Algorithms

	Hybrid Meta-heuristics
	Hyper-heuristics
	Multi-objective Techniques

	State-of-the-Art Meta-heuristics for the Examination Timetabling
	Approaches Applied to the Uncapacitated Examination Timetabling
	Approaches Applied to the Capacitated Examination Timetabling

	Significant Challenges in the Examination Timetabling Literature
	Summary

	A New Initialisation Method for Examination Timetabling Heuristics
	Introduction
	Initialisation for Examination Timetabling Problems
	Largest Degree
	Largest Weighted Degree
	Largest Enrollment First
	Saturation Degree
	Random Schedule Allocation

	Proposed Initialisation Approach
	Front List
	Back List
	Middle List

	Experimental Results and Comparison
	Phase 1: Initialisation
	Phase 2: Optimisation

	Analysis of Results
	Statistical Test Method
	Statistical Analysis
	Phase 1: Initialisation
	Phase 2: Optimisation

	Summary

	An Exam Specialised Genetic Algorithm for Examination Timetabling Problem
	Introduction
	Genetic Algorithm for Examination Timetabling
	Examination Solution Representation
	Proposed Modifications to the Basic Genetic Algorithm
	Phase 1: Initialisation
	Phase 2: Optimisation
	Moderate Mutation
	Period Based Mutation
	Deep Mutation
	Period Based Deep Mutation
	Heavy Mutation
	Light Mutation
	Elite Light Mutation

	Enhanced Roulette Wheel Selection Strategy
	Proposed Exam Specialised Genetic Algorithm
	Experimental Results and Discussion
	Experimental Environment
	Parameter Settings
	Reported ‘best’ Results of the Benchmark Sets
	Reported ‘best’ Results of the Toronto Benchmarks
	Reported ‘best’ Results of the ITC 2007 Benchmarks
	Reported ‘best’ Results of the Yeditepe Benchmarks

	Comparison with the Basic Genetic Algorithm
	Comparison with the State-of-the-Art Approaches
	Toronto Dataset
	ITC 2007 Dataset
	Yeditepe Dataset

	Summary

	A Novel Multi-objective Framework to Analyse 25 years of Exam Timetable Optimisation
	Introduction
	Reported `best' Results from the Literature over Time
	Reported `best' Results of the Toronto Benchmarks
	Reported `best' Results of the ITC 2007 Benchmarks

	Problems with Comparing Results from the Literature
	Uncertain Multi-Objective Analysis of Published Results
	Summary

	Conclusions and Future Work
	Introduction
	Research Summary
	Future Work
	Improving the Investigated Approaches
	Anytime Analysis
	Hybridisation
	Parameter Tuning
	Many-objective Optimisation Problem Formulation and Applying Many-objective Optimisation Approaches

	Bibliography

