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ABSTRACT 

Wastewater surveillance has been widely implemented for monitoring of SARS-CoV-2 

during the global COVID-19 pandemic, and near-to-source monitoring is of particular 

interest for outbreak management in discrete populations. However, variation in population 

size poses a challenge to the interpretation and use of wastewater SARS-CoV-2 data. This is 

especially important for near-to-source sites that are subject to significant daily variability in 

upstream populations. Focusing on a university campus in England, this study investigates 

methods to account for variation in upstream populations at a site with highly transient 

footfall and provides a better understanding of the impact of variable populations on the 

SARS-CoV-2 trends provided by wastewater-based epidemiology. The potential for 

complementary data to help direct response activities within the near-to-source population is 

also explored, and potential concerns arising due to the presence of heavily diluted samples 

during wet weather are addressed. Using wastewater biomarkers, it is demonstrated that 

population normalisation can reveal significant differences between days where SARS-CoV-

2 concentrations are very similar. Confidence in the trends identified is strongest when 

samples are collected during dry weather periods; however, wet weather samples can still 

provide valuable information. It is also shown that building-level occupancy estimates based 

on complementary data aids identification of potential sources of SARS-CoV-2, and can 

enable targeted actions to be taken to identify and manage potential sources of pathogen 

transmission in localised communities. 

Keywords: COVID-19, near-to-source, normalisation, SARS-CoV-2, wastewater-based 

epidemiology 

1. INTRODUCTION 

Wastewater-based epidemiology (WBE) is a promising tool for complementary surveillance 

of infectious diseases and provision of early warning of disease outbreaks (Sims and 

Kasprzyk-Hordern 2020), and has received considerable interest during the global COVID-19 

pandemic (e.g. Bivins et al. 2020,  Gonzalez et al. 2020, Polo et al. 2020). Since a significant 

proportion of individuals infected with the severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2) shed the virus’ ribonucleic acid (RNA) in their faeces (Medema et al. 2020), 

SARS-CoV-2 RNA concentrations in wastewater can be used to provide an indicator of the 

disease prevalence without relying on clinical testing data. Wastewater networks can, thus, be 

viewed as an extension to the gut for the population using the upstream systems. This is 

beneficial as wastewater surveillance is independent from people voluntarily participating in 

testing (a testing bias towards symptomatic individuals, testing reluctance and cultural or 

demographic factors may result in underrepresentation of the infected in clinical test data), 

and it can also enable detection several days before cases are reported (Medema et al. 2020). 

To date, SARS-CoV-2 related wastewater surveillance projects have been implemented in at 

least 54 countries, covering more than 2,000 different sites (University of California 2021). 

The European Union has recognised WBE as a tool to address emerging and future public 
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health issues (European Commission 2020), and Member States have been mandated to 

engage with the development of the European Sewage Sentinel System for SARS-CoV-2, 

which will provide systematic surveillance of SARS-CoV-2 and its variants in EU 

wastewaters (Gawlik et al. 2021). In England, WBE for SARS-CoV-2 surveillance, led by the 

Joint Biosecurity Centre and Defra Group under the Environmental Monitoring for Health 

Protection programme (EMHP), covers in excess of 500 sites as of June 2021. 

Wastewater samples are commonly collected at sewage treatment works (STWs), thereby 

providing an indicator of SARS-CoV-2 prevalence across the entire STW catchment – in the 

Netherlands, for example, samples are taken daily at every STW in the country and analysed 

for presence of SARS-CoV-2 (Dutch Water Sector, 2020). However, in-network or near-to-

source sampling can provide greater resolution and, potentially, additional insights: If the 

population upstream of the sampling point is smaller, then better targeted actions can be 

taken to address and mitigate any outbreak detected by monitoring of the wastewater. 

Application of wastewater surveillance at a building scale, for example, can aid management 

of outbreaks in discrete populations, and may be beneficial in high risk settings such as 

schools, prisons and critical points in the food supply chain (Wade et al. 2020). 

Near-to-source wastewater monitoring, employed at a hospital building, was able to detect a 

single asymptomatic individual among as many as 400 residents (Karthikeyan et al. 2021). 

The same study also found that trends in the number of cases could be successfully captured, 

with a strong correlation between the wastewater SARS-CoV-2 concentration (gene copies 

(gc)/l) and the number of active COVID-19 patients identified. 

However, challenges remain in the interpretation and use of wastewater SARS-CoV-2 data as 

an indicator of prevalence – one of which is the impact of variation in the upstream 

population size. The importance of accounting for fluctuating population sizes in WBE has 

previously been highlighted and investigated in the context of applications such as illicit drug 

monitoring (Been et al. 2014). However, in wastewater SARS-CoV-2 monitoring, the value 

considered as an indicator of prevalence is still typically reported as a concentration (gc/l) 

(i.e. not normalised with respect to population like prevalence values) (e.g. Karthikeyan et al. 

2021, Saththasivam et al. 2021, Prado et al. 2021), or even just a binary presence or absence 

of SARS-CoV-2 RNA (e.g. Gibas et al. 2021). Using concentration as an indicator of 

prevalence may be reasonable for monitoring efforts at a city-scale (i.e. those at a STW) 

when the population size and wastewater dilution are relatively static, as a constant average 

SARS-CoV-2 load per capita would then correspond to a constant SARS-CoV-2 

concentration (assuming constant wastewater production per capita). It is not valid, however, 

when population is highly variable and/or there are significant dilution events, since a 

constant average SARS-CoV-2 load per capita would then yield a variable SARS-CoV-2 

concentration. This is illustrated in Figure 1, which shows the theoretical relationship 

between SARS-CoV-2 concentration, SARS-CoV-2 load per capita, population size and 

baseflow (i.e. flow not attributed directly to the population), based on a mass balance 

approach and assuming a per capita wastewater production of 150 l/d (further details in the 

Supplementary Information). 
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Figure 1. Relationship between SARS-CoV-2 concentration and daily load per capita for 

different populations and base flows 

The impacts of variable population are likely to be exacerbated when interpreting the results 

for near-to-source sites, since population movement will not be averaged out to the same 

extent that it is at the STW level. This is especially important for near-to-source sites that are 

subject to significant daily variability in upstream population (for example due to a lack of 

activity at weekends or outside of academic term time at educational sites), and approaches 

are required to ensure that the effects of variable populations are not overlooked. 

The first aim of this study, therefore, is to investigate methods by which the effects of 

variation in the upstream population at a highly dynamic near-to-source site can be accounted 

for, and to build a better understanding of the impact of highly variable populations at a near-

to-source site on the insights into SARS-CoV-2 prevalence from WBE. Ammoniacal nitrogen 

(NH3-N) and orthophosphate (PO4
3-) in the wastewater are considered as potential indicators 

of population dynamics and for population normalisation. The work presented here is 

specifically focused on a university campus case study, where footfall varies considerably 

throughout the year (especially during periods of lockdown), and where knowledge of 

COVID-19 prevalence provided by WBE has significant potential to target actions to identify 

positive cases and reduce transmission between the university and the wider community.  

Whilst near-to-source surveillance captures wastewater from a smaller and better-defined 

population than monitoring at a STW level, the pool of potential candidates for the source of 

any SARS-CoV-2 detected may still be large. The university monitored in this study, for 

example, currently has approximately 20,900 students based at the campus and over 4,300 

staff members. As such, the insights provided by WBE would be of greater assistance to 

campus managers if the potential source(s) could be narrowed down further, e.g. to the most 

probable building or buildings on site, so that better targeted actions may be taken. The 

second aim of this study, therefore, is to investigate the potential of complementary data to 

help direct response activities to the most appropriate locations within the site from which 

wastewater is collected. This is achieved with the use of toilet flush data, collated at 

washroom and building levels, which provide information on the major sources of 

wastewater at the time of SARS-CoV-2 detection and the relative activity levels at different 

locations on the campus. 

Lastly, this study identifies samples collected during wet and dry weather periods to enable 

exploration of the impact of wet weather periods on wastewater SARS-CoV-2 concentrations 

and population normalisation. This aims to establish the value of wastewater monitoring in 



wet versus dry periods, and address potential concerns arising due to the presence of heavily 

diluted samples during wet weather. 

It is intended that the results of this study will give improved confidence in the SARS-CoV-2 

trends observed in wastewater from near-to-source sampling sites, and will enable better 

targeted actions to identify and manage potential sources of pathogenic transmission in 

localised communities. 

2. METHODS 

2.1. Case study site selection 

The University of Exeter’s Streatham Campus was monitored as a near-to-source pilot as part 

of the UK National Surveillance Programme. Wastewater samples were collected in three 

locations at the university: Two were downstream of student residential accommodation, and 

one downstream of the main campus (consisting of multiple academic, administrative and 

social buildings). This study focuses on the main campus monitoring site. The results are 

expected to be of particular benefit here, since the number of people on campus is much more 

variable than in accommodation blocks (due to working patterns and lecture scheduling, for 

example), and population normalisation will thus have greater impact on the understanding of 

prevalence. The maximum size of the potential upstream population is also considerably 

larger, given that a large proportion of the university’s 25,000 students and staff will have 

access to the main campus buildings (although not at the same time), whereas only a small 

proportion will be associated with individual accommodation sites. As such, any insights 

provided by this study that enable the potential source of SARS-CoV-2 detected in the 

wastewater to be narrowed down further will be much more valuable for the larger, main 

campus site. 

Furthermore, whilst the university does hold data on the number of students and staff that 

have tested positive for SARS-CoV-2, there are no data on the total number of students and 

staff using the campus each day (or whether those that have tested positive have actually been 

on the main campus site on a given day) and, thus, prevalence cannot be calculated from 

existing sources of information. 

2.2. SARS-CoV-2 population normalisation 

The daily wastewater SARS-CoV-2 load per capita (Ld, gc/capita/day) (i.e. a value that is 

comparable with prevalence) can be calculated using Eq. 1, where Cd is the SARS-CoV-2 

concentration (gc/l), Qd is the daily flow rate (l/day), and Nd is the population size (in this 

case, the number of individuals using the university campus).  

𝐿𝑑 =
𝐶𝑑𝑄𝑑
𝑁𝑑

 Eq. 1 

However, the population size on any given day is unknown and must, therefore, be estimated 

if this equation is to be used.  

There are multiple potential approaches to population estimation. In WBE, biomarkers 

(substances excreted by humans) that have homogeneous excretion throughout a community 

at low variance can be used as indicators of population size (Choi et al. 2018). These include, 

for example, creatinine and coprostanol (Daughton 2012), and the cross-assembly phage 

(crAssphage) (Wu et al. 2021). Water quality parameters, such as biochemical oxygen 
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demand (BOD), chemical oxygen demand (COD), total phosphorus (TP), total nitrogen (TN) 

and ammonia or ammonium, may also be considered as population biomarkers (Xagoraraki 

and O’Brien 2019, Nuijs et al. 2011): Been et al. (2014), for example, used measured 

ammonium concentrations in conjunction with the expected daily per capita ammonium 

discharge to estimate population size for the purposes of illicit drug monitoring, and Rico et 

al. (2017) generated population estimates based on TN, TP, BOD and COD and typical daily 

per capita discharges for each parameter. 

Provided that daily flow rate (Qd, l/day) and biomarker concentration (Xd, mg/l) data is 

available for a historical period with known population (Nd), the daily discharge per capita of 

a biomarker (x, mg/capita/day) can be estimated using Eq. 2, and the population on any given 

day using Eq. 3.  

𝑥 = (
𝑋𝑑𝑄𝑑
𝑁𝑑

) Eq. 2 

𝑁𝑑 =
𝑋𝑑𝑄𝑑
𝑥

 
Eq. 3 

Once the daily discharge per capita of a specific biomarker is known, concentrations of a 

substance of interest (in this case, SARS-CoV-2 RNA) can then be population normalised 

using Eq. 4, without calculating the population size and without any ongoing requirement for 

flow rate data (based on substitution of Eq. 3 into Eq. 1): 

𝐿𝑑 =
𝐶𝑑𝑥

𝑋𝑑
 Eq. 4 

Where Ld is the daily per capita load of SARS-CoV-2 at day d (gc/capita/day) and Cd is the 

SARS-CoV-2 concentration in the wastewater at day d (gc/l). 

Population estimates may also be generated using non-wastewater data: Thomas et al. (2017) 

and Deville et al. (2014), for example, produced dynamic population estimates using mobile 

phone communication data. With respect to the case study site in particular, there is ongoing 

investigation into the potential use of wi-fi tracking for population monitoring under the 

‘Riba to Reality’ project (UKRI 2020); whilst there are no results available for use from this 

yet, it is a promising development. Additional data available for the case study site that may 

be indicative of population includes metered water and electricity supply and washroom-level 

flush counts. 

Each of these methodologies is subject to limitations, however, and there are some barriers to 

implementation in a near-to-source study, where it should be noted that not everyone on site 

will contribute to the wastewater collected since some visits may only be short. Whilst 

mobile phone-based population estimates have the advantage that they can account for people 

who spend only a short period of time in the monitored location, irrespective of whether they 

produce any wastewater, this may be a disadvantage in near-to-source WBE as the population 

estimate is likely to exceed the number of people that contribute to the wastewater being 

sampled, and thus result in an underestimate of SARS-CoV-2 gene copies per capita. To 

avoid this problem, a population normalisation methodology based on wastewater 

characteristics is considered more appropriate for a near-to-source site with a highly dynamic 

population. 
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For other non-wastewater indicators such as metered water, electricity supply and flush 

counts, data is only available for a subset of buildings on campus. As there is insufficient 

evidence that the occupancy dynamics of these buildings are representative of those of the 

whole campus, it is inappropriate to use these for population normalisation (although 

building-level population estimates may aid SARS-CoV-2 source identification, as discussed 

in Section 2.3). 

There are also potential disadvantages of using biomarkers in wastewater for population 

normalisation. For the case study site, ammoniacal nitrogen and orthophosphate 

concentrations are available, but it is recognised that nutrient concentrations will be affected 

by industry (Xagoraraki and O’Brien, 2019) and, where there is significant industrial input 

into the sewer network, this may lead to errors in population estimates (Nuijs et al. 2011). 

Other studies, however, have concluded that use of such nutrients is appropriate (e.g. Choi et 

al. 2018, Been et al. 2014), and Zheng et al. (2017) found population estimates based on 

ammonia-nitrogen to show good agreement with estimates provided by wastewater treatment 

plant operators with local knowledge. Furthermore, given that the focus of this study is a 

near-to-source site, and it is known with a high degree of certainty that there are no industrial 

inputs to the wastewater, these concerns are not considered a barrier in this study.  

A remaining issue with this approach is the need to calculate the daily biomarker load 

excreted per capita. Whilst previous studies have either estimated a site-specific value using 

historical data (e.g. Rico et al. 2017) or used published values from the literature (e.g. Nuijs 

et al. 2011), neither of these approaches is appropriate for this study. To calculate a site-

specific value, data is required from a period with known population; however, no 

wastewater data was collected at the case study site prior to the pandemic (when the campus 

could be assumed to be at full capacity, i.e. a known population size), and occupancy figures 

during the period of wastewater monitoring are unknown. Use of daily values from literature 

is also inappropriate since these are typically calculated at a STW level and thus capture 

discharge from every occupant over a full 24 hours, whereas campus users are only present 

for part of the day and their biomarker discharge will, therefore, be proportionately smaller. 

Based on Eq. 4, and given that the daily biomarker discharge per capita (x) is constant at a 

given site but cannot be calculated, this study calculates values that are proportional to the 

SARS-CoV-2 load per capita (gene copies per mg of biomarker) instead of the actual load per 

capita (gene copies per capita) (Eq. 5). These values are not comparable between sites; 

however, they are sufficient for understanding the effects of population normalisation on 

SARS-CoV-2 trends at a single site. Ammoniacal nitrogen and orthophosphate are both 

considered as potential biomarkers. 

𝐿𝑡 ∝
𝐶𝑑
𝑋𝑑

 Eq. 5 

2.3. Source identification 

As discussed in Section 2.2, supplementary data, including metered water supply, electricity 

supply and flush counts, are available for a subset of buildings on campus, and may be used 

to analyse occupancy dynamics within these buildings. Preliminary investigation shows very 

poor agreement between building-level population estimates based on metered water and 

electricity supply at the case study site (see Supplementary Information for example) – 
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potentially due to seasonal and other non-population-related influences – and, therefore, only 

flush counts are considered further. 

Given that flush count data relates directly to the production of wastewater, this information 

can be used to assess the relative contribution of different buildings to the wastewater 

sampled, and thus provide additional insights into the potential source(s) of any SARS-CoV-

2 RNA detected in the wastewater. 

It has previously been shown that the number of flushes per occupant varies by building 

(Melville-Shreeve et al. 2021); therefore, flush counts cannot be compared directly between 

buildings and instead are used to estimate the occupancy of each building on any given day. 

The maximum capacity of each building in which flush counts were monitored is shown in 

Figure 2, and it is assumed that on weekdays during the autumn term of 2019 (pre-pandemic) 

all buildings were operating at full capacity. The mean daily flush count per capita is then 

estimated for each building using Eq. 6, and building occupancies during the wastewater 

monitoring period are estimated using Eq. 7. 

𝑓𝑖 =
∑ 𝐹𝑖,𝑑𝑑∈𝑻

|𝑻|
 Eq. 6 

𝑃𝑖,𝑑 =
𝐹𝑖,𝑑
𝑓𝑖

 Eq. 7 

Where fi is the mean daily per capita flush count for building i, Fi,d is the total flush count for 

building i on day d, T denotes the set of term time days where building occupancy is assumed 

to equal building capacity, and Pi,d is the estimated population of building i on day d. 

This methodology is not used to estimate the total population of the campus on a daily basis 

for the purposes of population normalisation as only as subset of the buildings have flush 

counts monitored. As significant variability is found between buildings for the daily per 

capita flush counts and the population estimates (see Section 3.3), it is not considered 

appropriate to assume that the population dynamics for the monitored buildings are indicative 

of those for the whole campus. Based on flush count data, it is not possible to either eliminate 

or target any of the buildings that are not monitored as a potential source of any SARS-CoV-

2 detected in the wastewater; however, the population estimates provided can be used to 

prioritise/deprioritise each of the buildings with flush count data available in the search for 

the source of the SARS-CoV-2. A set of flush data for every toilet on campus would yield 

additional value as a future extension to this study. 

2.4. Wet and dry weather days 

Days are classified as wet weather or dry weather (or neither) based on Environment Agency 

rainfall data for the nearest rain gauge (station ID 45184, located approximately 4km from 

the case study site) (Environment Agency, 2021). A day is considered a dry weather day if no 

rainfall has been recorded on that day or in the previous six hours. A day is considered a wet 

weather day if the total rainfall for that day exceeds 2mm (with the threshold set based on the 

depth of rainfall expected to cause runoff from impervious surfaces (Ladson 2019)). Days 

that fall into neither category (i.e. have rainfall but less than 2mm, or have had rainfall in the 

preceding six hours) are not classified as either wet or dry. 

https://doi.org/10.2166/hydro.2021.103
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2.5. Data collection and handling 

This study incorporates both wastewater data and supplementary data relating to occupancy 

of the campus, and a schematic of the case study site illustrating the data collection locations 

is given in Figure 2. Wastewater samples were collected downstream of the academic, 

administrative and social buildings (wastewater from student residences on campus are not 

contributory), and they were analysed to provide concentrations of SARS-CoV-2, 

ammoniacal nitrogen and orthophosphate. Wastewater flow rate was measured at the same 

location. Flush counts were collected from five buildings, which have a combined occupancy 

of 4,346 at full capacity. 

Further detail on the data collection methodologies and data handling for each data type is 

provided in the following sections.  

 

Figure 2. Case study site schematic, illustrating sampling locations and wastewater flow 

from campus buildings. Surface drainage is omitted for clarity. 

2.5.1. Wastewater characteristics 

Methodologies for the SARS-CoV-2, ammoniacal nitrogen and orthophosphate data 

collection and processing are summarised below. Further details are available in Wade et al. 

(2020) and Hoffman et al. (2021). 

Composite wastewater samples were collected over a 24-hour period using autosamplers 

(100ml every 15 minutes); these were then retrieved and kept at 4°C to prevent degradation 

of RNA during transportation to a laboratory for analysis. Quantitative Polymerase Chain 

Reaction with a reverse transcriptase step (RT-qPCR) was used to quantify the N1 gene from 

the SARS-CoV-2 virus in the wastewater samples. This provides a measurement of the 

number of RNA copies in the sample, which is reported as gene copies per litre of wastewater 

sample collected. The practical limit of detection (LOD) is 40 gc/l. No adjustments for 

analytical efficiency are applied. 

Concentrations of ammoniacal nitrogen and orthophosphate were determined using 

colorimetric assays. In both cases, outliers (more than three standard deviations from the 

mean) are omitted from further analyses. These represent 0% of the ammoniacal nitrogen 

measurements and 1% of the orthophosphate measurements (two samples) in the analysis 

period. 

https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/940919/S0908_Wastewater_C19_monitoring_SAGE.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/979870/S1192_Current_environmental_monitoring_cannot_constrainthe_effectof_vaccines_onSARS-CoV-2_transmission_Report_for_SAGE.pdf


The level and velocity of wastewater in the sewer were monitored at two-minute intervals in 

the same location as collection of wastewater samples, and were used to calculate wastewater 

flow rate. To enable comparison with the wastewater constituent concentrations measured in 

the composite samples, flow data is resampled to provide daily values. 

2.5.2. Flush counts 

Flush monitoring systems were installed in washrooms at the University of Exeter, as 

described by Melville-Shreeve et al. (2021a, 2021b). These captured flush data for 

washrooms in six buildings, covering a total of 38 washrooms, and provided real time flush 

counts for 119 toilets (approximately 18% of toilets on campus). Wheelchair-accessible 

washrooms were omitted for operational reasons, but all other washrooms in the selected 

buildings were monitored. The selected buildings represent typical university department 

buildings. The monitoring system provided high resolution data, with either a ‘zero’ (no 

flush) or a ‘one’ (flush) recorded every minute for every toilet. 

In the case of any faults in the system, gaps may appear in the data and give the impression of 

a reduced daily flush count if not identified and accounted for. Therefore, for quality 

assurance purposes, daily data completeness (the total number of data points collected, 

expressed as a percentage of the expected number of data points for the time period) is 

evaluated at a washroom level. Since estimating flush counts for periods with insufficient 

completeness would provide results with unknown accuracy, all washrooms with less than 

90% data completeness during the wastewater monitoring period are omitted from further 

analysis. This leaves 22 washrooms, covering five buildings, as illustrated in Figure 2. 

Additionally, any day with less than 90% data completeness in any washroom is omitted 

from further analysis. No outliers (more than three standard deviations from the mean) are 

present in the total daily flush counts. 

Detailed data completeness results for individual washrooms are provided in the 

Supplementary Information (Figure S3), and days omitted from analyses due to insufficient 

site-level flush count data availability are identified in Figure 3, Section 2.6. 

Since flush counts are required to provide an indication of building occupancy, flushes 

attributable to cleaning are identified and removed from the daily building level totals (as 

these are not related to the building occupancy and do not contribute to SARs-CoV-2, 

ammoniacal nitrogen or orthophosphate measured in the wastewater). A washroom is 

assumed to have been cleaned if every toilet in the washroom has been flushed in a 15 minute 

period at least once during the day; the number of flushes attributed to cleaning (a maximum 

of one per toilet per day) is then subtracted from the total flush count. Further detail on the 

impact of flush count adjustments for cleaning is provided in the Supplementary Information. 

2.6. Data availability and key dates 

Wastewater SARS-CoV-2, ammoniacal nitrogen and orthophosphate data is available from 

11th November 2020, and sampling is ongoing. Calibrated wastewater flow rate data is 

available from the same date, up until 23rd March 2021. Within these periods, wastewater 

constituent data is typically available for six days a week, although sampling was reduced 

during the university’s Christmas break (12th December 2020 – 3rd January 2021), and flow 

rate data is available for every day. Flush data was collected from 1st July 2019 until 29th 

March 2021, although gaps are present where days have been omitted due to insufficient data 

completeness. 

https://iwaponline.com/jh/article/23/3/402/80256/Capturing-high-resolution-water-demand-data-in
https://www.mdpi.com/2073-4441/13/4/419/htm#B19-water-13-00419


The period 11th November 2020 to 29th March 2021, i.e. when both wastewater constituent 

and flush data is available, is selected for analysis of the impact of population dynamics and 

SARS-CoV-2 trends. Additional flush data from a period with assumed full occupancy 

(weekdays during the 2019 autumn term) is also used in the source identification, as detailed 

in Section 2.3.  

Figure 3 shows the availability of each data source over these two periods, with data gaps 

shown in red. Key dates within the wastewater monitoring period which may affect the 

population on campus are summarised in Table 1. 

 

Figure 3. Daily data availability after cleaning, a) during a period of expected full 

occupancy, and b) for the wastewater analysis period. Red indicates periods of missing data. 

Table 1. Key dates in the wastewater SARS-CoV-2 analysis period 

Date Description Abbreviation 

2nd December 2020 End of second national lockdown NL2-E 

11th December 2020 End of university term T-E 

24th December 2020 Start of university closure period CP-S 

1st January 2021 End of university closure period CP-E 

4th January 2021 Start of university term T-S 

6th January 2021 Start of third national lockdown NL3-S 

 

3. RESULTS AND DISCUSSION 

3.1. Population dynamics 

Population dynamics indicated by ammoniacal nitrogen and orthophosphate are analysed to 

check that they appear plausible and to confirm that these biomarkers are a reasonable basis 

for population normalisation for the case study site. 

Site-specific values for the daily discharge per capita of ammoniacal nitrogen and 

orthophosphate are unknown and cannot be calculated with the available information, and 

thus absolute population cannot be estimated. The total biomarker load is, however, 

proportional to population (based on Eq. 3) and can be used to illustrate population dynamics 

and trends. Daily loads of ammoniacal nitrogen and orthophosphate, each of which is 

expected to be proportional to the population on campus, are therefore shown in Figure 4. 



These are calculated using the measured wastewater flow rate and biomarker concentration 

(QdXd). 

 

Figure 4. Daily ammoniacal nitrogen and orthophosphate loads showing: a) change over 

time; and b) correlation. Key dates are indicated using abbreviations defined in Table 1. 

Figure 4a suggests that population is highly variable, whichever biomarker is considered. 

Two general patterns are observed: Firstly, a seven-day cycle, with daily biomarker loads 

typically low (<500,000 mg ammoniacal nitrogen or <200,000 mg orthophosphate) at 

weekends and higher during the week; and secondly, a longer term trend with levels dropping 

throughout December and rising through January. This matches what would be expected, 

since the main campus was not used for lectures at weekends and fewer staff would have 

been working. In December, the population on campus would be expected to drop towards, 

and following, the end of term (T-E in Figure 1) as students started to return home and 

lectures ceased. Few samples were taken during the Christmas closure period (CP-S to CP-

E), when the population on campus would have been close to zero, but where available the 

biomarker loads are typically representative of a low population. Population would then be 

expected to rise following the end of the Christmas closure period (CP-E) and start of term 

(T-S), although remain somewhat suppressed due to the start of the third national lockdown 

(NL3-S), and this is reflected in an increase in the weekday biomarker loads. 

The correlation between ammoniacal nitrogen and orthophosphate loads (Figure 4b) is strong 

but not perfect (Pearson correlation coefficient r = 0.792), indicating that the population 

estimates and population normalisation results yielded by each will differ. This may be 

attributed to variations in the per capita discharge of each biomarker and the potential 

presence of additional sources of either, or both, and is not unexpected given previous studies 

have also reported discrepancies between population estimates based on different wastewater 

constituents (e.g. Nuijs et al. 2011). Given that no population estimates from alternative 

sources are available for reference, it is not possible to determine whether ammoniacal 

nitrogen or orthophosphate provides a more accurate representation of population dynamics 

and, therefore, both are considered in the following normalisation (Section 3.2). 

If samples taken during periods of wet weather are omitted, the correlation increases 

marginally (r = 0.804), and if only samples taken on dry weather days are included, the 



correlation increases further (r = 0.917). This suggests that confidence in population 

estimates and population normalisation should be greatest during dry weather days; however, 

population normalisation is not restricted to these days since this would prevent normalisation 

of over 70% of samples, and there is still reasonable agreement between population estimates 

based on the different biomarker loads even on wet weather days (r = 0.758). 

Due to the topology and geology of the site (steep sandstone and mudstone), ingress to the 

sewer (infiltration of groundwater) is not expected to be a major contributor to the wastewater 

sampled; however, a similar study in an area with a high water table and a poorly maintained 

pipe network may yield different results due to the increased impact of wet weather periods.   

3.2. Impact of population normalisation on wastewater SARS-CoV-2 trends 

SARS-CoV-2 RNA concentrations measured in wastewater samples at the case study site 

over the period 11th November 2021 to 29th March 2021 are shown in Figure 5 (blue lines). 

Samples with a concentration below the LOD are displayed with a value of 20 gc/l so that 

general trends can be observed; this value is half the LOD and selected based on the 

assumption that all values below the LOD are equally probable. The concentrations in Figure 

5 show that there is only intermittent detection of SARS-CoV-2 during the monitoring period 

(13% of samples collected contain a detectable level of SARS-CoV-2), with the most 

frequent detection and the maximum concentration both occurring in December 2020. 

All SARS-CoV-2 RNA concentrations above the LOD are normalised with respect to 

ammoniacal nitrogen and orthophosphate, and shown with ‘+’ and ‘×’ symbols respectively 

in Figure 5, providing values that are expected to be directly proportional to the daily SARS-

CoV-2 load per capita. To aid comparison of relative magnitudes with different units, y-axes 

are scaled so that the maximum gc/l, gc/mg ammoniacal nitrogen and gc/mg orthophosphate 

(all on 15th November 2020) all appear at the same level, and similar for the minimum 

detected values (all on 16th March 2021). 

 

Figure 5. Wastewater SARS-CoV-2 concentrations and normalised values over the 

wastewater monitoring period. Wet weather days are indicated with a ‘◊’ symbol, and dry 

weather days with a ‘|’ (top axis). 

Figure 5 shows that population normalisation (whether based on ammoniacal nitrogen or 

orthophosphate) changes the picture of SARS-CoV-2 prevalence trends provided by the 

wastewater monitoring. The wastewater samples taken on 19th November 2020 and 10th 



January 2021, for example, have very similar SARS-CoV-2 RNA concentrations (1045 and 

1048 gc/l respectively), but there is significant difference in their normalised values: Based 

on these, the daily per capita load is shown to be 333 % (based on ammoniacal nitrogen for 

normalisation) or 644% (based on orthophosphate for normalisation) higher on 10th January 

than on 19th November. This compares with an increase of just 0.3% in concentration. 

Neither of these samples were taken on a wet weather day, so the change cannot be attributed 

to dilution effects. This suggests, therefore, that population normalisation can have significant 

impact on the understanding of the relative severity of peaks in SARS-CoV-2, and that the 

presence of similar SARS-CoV-2 RNA concentrations may give a false impression of similar 

levels of prevalence. 

This is supported by analysis of the rankings of the SARS-CoV-2 RNA concentrations and 

population normalised values. Whilst the rankings based on gc/mg ammoniacal nitrogen and 

gc/mg orthophosphate both have a strong correlation with the SARS-CoV-2 RNA 

concentration (Spearman’s rank correlation coefficients of  0.95 and 0.91 respectively), the 

sample on 10th January is an example of where population normalisation significantly 

changes the ranking (from 6th / 12 based on concentration, to 3rd based on gc/mg ammoniacal 

nitrogen or gc/mg orthophosphate) and may alter the importance placed on the measurement 

and any response actions that may be considered. 

A comparison of concentrations and population normalised values for all samples with a 

detectable level of SARS-CoV-2 is presented in Figure 6, illustrating more clearly the 

relationship between each metric and which measurements correspond to dry and wet 

weather days. In each case, linear lines of best fit and Pearson correlation coefficients shown 

are calculated based on the log10 values. 

 



Figure 6. Correlations between wastewater SARS-CoV-2 concentrations and normalised 

values. 

Figure 6 shows that, although strongly correlated, the SARS-CoV-2 concentration (gc/l) is 

perfectly linearly related to neither the gc/mg ammoniacal nitrogen (r = 0.899) nor the gc/mg 

orthophosphate (r = 0.914). This reinforces the assertion that population normalisation alters 

the SARS-CoV-2 prevalence trends provided by WBE, since the relative magnitude (with 

respect to the full data set) of all SARS-CoV-2 concentrations and normalised loads would be 

unaltered only if there is a perfect, linear relationship (r = 1) between SARS-CoV-2 

concentration and the load per unit mass of biomarker. Whilst it may appear that the 

difference in the trends is likely to be minor, due to the strong correlation, the difference 

between the linear best fit lines and the normalised values is in fact considerable (Root Mean 

Square Percentage Error (RMPSE) = 83.7% for SARS-CoV-2 gc/mg ammoniacal nitrogen, 

and RMSPE = 89.7% for SARS-CoV-2 gc/mg orthophosphate. 

Comparison of the two population normalised values (gc/mg ammoniacal nitrogen and gc/mg 

orthophosphate) shows that these exhibit a very strong correlation (r = 0.981), suggesting that 

both will provide a similar understanding of trends in daily per capita loads of SARS-CoV-2.  

Given that there is greater confidence in population normalisation using samples from dry 

weather days (Section 3.1), correlation coefficients are also calculated based on dry weather 

samples only. Again, these show there to be a very strong (nearly perfect) correlation 

between the two population normalised metrics (r = 0.997), and a weaker correlation between 

these and the SARS-CoV-2 RNA concentration (r = 0.930 and 0.952 for normalisation based 

on ammoniacal nitrogen and orthophosphate respectively). These correlation coefficients are 

based on only four samples (as this is the total number of samples with a SARS-CoV-2 

concentration above the LOD collected on dry weather days) and, therefore, the confidence 

intervals (detailed fully in the Supplementary Information, Table S1) are wider than for the 

correlation coefficients based on all samples. However, the correlation coefficients still 

support the conclusion that population normalisation alters the SARS-CoV-2 trends provided 

by WBE, as there is not a perfect linear relationship between SARS-CoV-2 concentration and 

SARS-CoV-2 normalised by either biomarker. They also support the suggestion that 

normalisation using either metric is similarly beneficial, as the correlation between SARS-

CoV-2 gc/mg ammoniacal nitrogen and gc/mg orthophosphate is very strong even when 

considering the full confidence interval (0.867 ≤ r ≤ 1.000 for a significance level of 0.05). 

3.3. Potential sources of SARS-CoV-2 

Estimated daily flush counts per occupant for each of the monitored buildings during the 

period of assumed full occupancy, as calculated using Eq. 6 and required to estimate dynamic 

building occupancies for SARS-CoV-2 source identification, are summarised in Table 2. The 

total flush counts during the assumed full occupancy period, from which these values are 

calculated, are provided in the Supplementary Information (Figure S4Error! Reference 

source not found.). The coefficients of variation indicate that there will be a high degree of 

certainty in population estimates based on the estimated flush count per occupant for 

Building C, and greatest uncertainty for Building A. The significant variability between 

buildings in the mean daily flush count per capita broadly matches the trends observed by 

Melville-Shreeve et al. (2021a) and may be explained by variation in what each building is 

used for. Buildings that are used for teaching (A, B, D and E), for example, may have a very 



high capacity but a relatively low occupancy duration for each individual, and thus a low 

mean number of flushes per occupant; conversely, each user of a building that is 

predominantly used for offices (C) may spend a longer period of time in the building and 

therefore contribute more flushes. However, any changes in building use as a result of the 

pandemic (such as a building with teaching space being used only for research) may 

contribute further uncertainty in the daily per capita flushes and associated occupancy 

estimates. 

Table 2. Daily per capita flush counts used to estimate dynamic population, calculated based 

on building capacities and flush counts during a full occupancy period 

Building 

Estimated number of flushes per occupant per day 

Mean Standard deviation 
Coefficient of 

variation 

A 0.336 0.101 0.30 

B 0.283 0.061 0.21 

C 2.033 0.172 0.08 

D 0.033 0.006 0.19 

E 0.578 0.113 0.20 

 

Building-level occupancy estimates during the wastewater monitoring period, based on total 

flush counts (available in the Supplementary Information, Figure S6Error! Reference 

source not found.) and the estimated number of flushes per occupant per day (Table 2) are 

provided in Figure 7. The estimated number of occupants in each building (Figure 7a) 

exhibits a clear weekly pattern, with near zero occupancy in all buildings at weekends. 

Similarly to the campus-level population trends indicated by the wastewater biomarker loads 

(Figure 4a), building occupancy drops throughout December, and is lowest between the start 

of the Christmas closure period (CP-S) and the following start of term (T-S). 

Figure 7b shows how occupants are distributed between the monitored buildings and, 

therefore, the relative contribution of each building to the wastewater monitored for SARS-

CoV-2. This is particularly insightful on days with low total occupancy numbers, showing for 

example that there are several days where occupants are detected only in Building C. Whilst 

this does not guarantee that there was no-one in the other monitored buildings, it does mean 

that nobody in them contributed to the wastewater being sampled, and thus these buildings 

can be eliminated when searching for the source of any SARS-CoV-2 detected in the 

wastewater on these days.  



 

Figure 7. Building occupancy estimates based on flush count data: a) Absolute occupancy; 

and b) Relative occupancy (fraction of total occupants in monitored buildings). 

To illustrate the potential benefit of these building-level occupancy estimates for SARS-CoV-

2 source identification, Figure 8 shows the wastewater SARS-CoV-2 metrics for the one-

month period in which detection was most frequent (and, thus, source identification is of 

greatest potential benefit) overlaid on corresponding occupancy estimates.  

 



 

Figure 8. Estimated occupancy of buildings with monitored flush counts and measures of 

site-level SARS-CoV-2 in wastewater during the period 11th November to 11th December 

2020, showing a) absolute occupancy; and b) relative occupancy. Wet weather days are 

indicated with a ‘◊’ symbol, and dry weather days with a ‘|’. 

On 15th November 2020, the highest wastewater SARS-CoV-2 levels seen at the university 

were recorded. Figure 8b shows that buildings A, B, and D can be removed as candidates for 

the source, since their estimated occupancy on this day was zero. Whilst there is uncertainty 

in most occupancy estimates due to variation in the building-specific daily flushes per capita 

values, there is greater certainty of any occupant that may have been present not contributing 

to the wastewater on days where the estimated occupancy is zero (i.e. zero flushes). However, 

it is noted that flush data was not captured at wheelchair-accessible washrooms, and thus the 

possibility of users of these buildings contributing to the wastewater cannot be absolutely 

ruled out.  

Furthermore, Figure 8a shows that the occupancy of all buildings with monitored flush counts 

were very low on this day. If it is assumed that the occupancy of these buildings is broadly 

representative of occupancy across the campus on this day, then this suggests that the actual 

number of people infected may also be very low, despite both the SARS-CoV-2 

concentration and the population normalised values being very high (since the smaller the 

population, the higher the per capita value resulting from a given SARS-CoV-2 load). 

On days where specific buildings cannot be eliminated based on a zero-occupancy estimate, 

building-level occupancy information may still aid efforts to trace the source of SARS-CoV-2 

detected by enabling identification of buildings with the greatest occupancy and greatest 

wastewater contribution. Figure 8b shows that on 11th November, for example, over 60% of 

the total occupants of five monitored buildings were in Building E – hence, there is greater 

probability of locating the infected individual(s) in this building, and this should be a higher 

priority for targeted testing if capacity is limited. 

3.4. Future opportunities 

Multiple opportunities are identified to add value to outputs set out in this study. Specifically, 

the installation of flush monitoring technology across all washrooms upstream of the 

autosampler could enable a more definitive set of conclusions to be drawn. Disaggregation of 

flush counts from male and female washrooms may also improve accuracy when assessing 

the relative contribution of occupants in different buildings to the wastewater sampled, due to 

the presence of (unmonitored) urinals in the male washrooms. 



In addition, from an operational perspective, additional autosamplers could be installed (but 

remain largely offline) at the outlet from each building. These could be sampled the day after 

a positive signal is observed in at the main campus enabling a single building to be pin-

pointed. Such measures could in turn enable patchwork closure of buildings when prevalence 

exceeds a pre-defined threshold, minimising disruption in future waves of a pandemic. 

4. CONCLUSIONS 

This study has investigated the use of ammoniacal nitrogen and orthophosphate for 

normalisation of SARS-CoV-2 detected in wastewater, to account for the impact of highly 

variable populations at a near-to-source monitoring site; evaluated the impact of population 

normalisation on the understanding of SARS-CoV-2 prevalence trends provided by the 

wastewater data; demonstrated how complementary (non-wastewater) data sources can help 

to inform a better targeted response; and explored the potential impact of wet weather periods 

on the results. Key findings include: 

• Population normalisation alters the trends in SARS-CoV-2 prevalence indicated by 

WBE and, in a near-to-source site with a highly variable population such as a 

university campus, it can reveal significant differences in prevalence between days 

where recorded SARS-CoV-2 concentrations are very similar. Population 

normalisation, therefore, is considered critical for providing a comprehensive 

understanding of the results from WBE when population size is highly variable. 

• Normalisation using either ammoniacal nitrogen or orthophosphate is similarly 

beneficial, with both providing a similar (but not identical) understanding of 

population dynamics and trends in population normalised SARS-CoV-2 in the 

wastewater. This indicates that multiple biomarkers that are of questionable reliability 

for population normalisation at a STW level due to their presence in industrial 

discharges can be appropriate for near-to-source studies. 

• Agreement between population estimates based on different biomarkers is greatest 

when wet weather days are omitted, indicating that confidence in the results of 

population normalisation should be greatest when the weather is dry. However, as 

there is still a reasonable level of agreement on wet days, these can still provide 

valuable information. 

• Use of flush count data to estimate the occupancy of different buildings in within the 

near-to-source site can enable priority locations for targeted testing to be identified 

when SARS-CoV-2 is detected in the wastewater. This is particularly beneficial on 

low occupancy days when no flushes are recorded in some buildings, so it is known 

with certainty that no occupants of these buildings contributed to the wastewater in 

which SARS-CoV-2 was detected. 

• Technically feasible strategies to further advance this study were set out. Such 

solutions focus on yet more granular data acquisition including a wider deployment of 

flush monitoring and short term autosampling being added at a building-level when 

the main campus data suggests increased prevalence. 

Lastly, it is noted that there were restrictions in place on mobility and/or student activities, 

along with guidance to ‘work from home where possible’, for the majority this study period, 

due to the COVID-19 pandemic. As such, the number of people using the main campus site 

(and the difference between high and low occupancy periods) was considerably lower than 



usual. For near-to-source sites with higher variability in population – and for the case study 

site as restrictions are lifted and the number of people using the campus increases – the 

importance of population normalisation is expected to be even greater. 
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Supplementary information 

RELATIONSHIP BETWEEN SARS-COV-2 CONCENTRATION AND DAILY LOAD 

PER CAPITA FOR DIFFERENT POPULATIONS AND BASE FLOWS 

The theoretical relationship between SARS-CoV-2 concentration (C, gc/l) and the daily 

SARS-CoV-2 per capita (L, gc/d/capita) is expressed as a function of the population (N), 

daily wastewater production per capita (q, l/d/capita) and the base flow in accordance (QB, 

l/d) with Eq. S1. The daily wastewater production per capita is assumed to be constant and 

the base flow consists of all wastewater that is not accounted for in the per capita production 

value (e.g. due to runoff, ingress and industrial discharges). LN is the total SARS-CoV-2 load 

per day (gc/d) and (Nq + QB) the total wastewater flow rate. 

𝐶 =
𝐿𝑁

𝑁𝑞 + 𝑄𝐵
 

Eq. S1 

 

RELATIVE POPULATION ESTIMATES BASED ON METERED WATER AND 

ELECTRICITY SUPPLY 

Relative population is estimated using a) water supply data and b) electricity supply data, 

based on the assumption that these values are linearly related to population and daily per 

capita usage is constant. Daily metered supply (Md) is assumed to exhibit the following 

relationship with population: 

𝑀𝑑 = 𝑁𝑑𝑚 +𝑚𝐵 
Eq. S2 

 

Where Nd is the population on day d, m is the metered supply per capita, and mB is the base 

supply (independent of population). 

The base supply is estimated using daily metered supply values from August 2020, based on 

the assumption that population is zero during this period. The metered supply per capita is 

then estimated using daily metered supply values from the second lockdown, based on the 

assumption that population is static during this period, and an assumed population of 1. This 

then enables estimation of dynamic population relative to the lockdown period (rather than 

absolute population). Example results for Building E are shown in Figure S1 and Figure S2, 

illustrating the poor agreement between the estimates and high uncertainty. 

 

Figure S1. Relative population estimates (mean and standard deviation) for Building E, 

based on metered water and electricity supply. 



 

Figure S2. Relationship between relative population estimates for Building E based on 

metered water and electricity supply. Error bars indicate standard deviation. 

DATA AVAILABLITY AND COMPLETENESS 

Flush data completeness at a washroom level (prior to omission of washrooms and/or days 

with insufficient completeness) is shown in Error! Reference source not found.. 



 

Figure S3. Raw flush data completeness at a washroom level 

FLUSH COUNTS ADJUSTED FOR CLEANING 

Total flush counts for each building during the wastewater monitoring period, before and 

after removal of flushes attributed to cleaning, are shown in Figure S4. The percentage of the 

total flush count attributed to cleaning in each building is summarised in Table S1. The total 

flush count across all buildings, after adjustment for cleaning, is shown in Figure S5 and 

Figure S6. 



 

Figure S4. Total and adjusted flush counts for buildings a) A; b) B; c) C; d) D; and e) E. 

Table S1. Percentage of total flush count during wastewater monitoring period attributed to 

cleaning in each building. 

Building Flushes attributed to cleaning 

A 23.1% 

B 10.7% 

C 14.0% 

D 20.1% 

E 12.1% 

 



 

Figure S5. Total adjusted flush counts across monitored buildings during assumed full 

occupancy period 

 

Figure S6. Total adjusted flush counts across monitored buildings during the wastewater 

monitoring period 



CORRELATIONS BETWEEN WASTEWATER METRICS 

Table S2. Summary of statistics related to the correlation between wastewater metrics. 

Confidence intervals are calculated using a significance level of 0.05. 

 
Parameter 1 

(log10) 

Parameter 2 

(log10) 

Number 

of 

samples 

Pearson 

correlation 

coefficient 

2-tailed 

p-value 

Confidence 

interval 

 Lower Upper 

A
ll

 s
am

p
le

s 

mg ammoniacal 

nitrogen / day 

mg 

orthophosphate / 

day 

95 0.792 0.0000 0.702 0.857 

SARS-CoV-2 gc/l 

SARS-CoV-2 

gc/mg 

ammoniacal 

nitrogen 

12 0.899 0.0001 0.672 0.972 

SARS-CoV-2 gc/l 

SARS-CoV-2 

gc/mg 

orthophosphate 

11 0.914 0.0001 0.696 0.978 

SARS-CoV-2 

gc/mg 

ammoniacal 

nitrogen 

SARS-CoV-2 

gc/mg 

orthophosphate 

11 0.981 0.0000 0.927 0.995 

D
ry

 w
ea

th
er

 s
am

p
le

s 
o

n
ly

 

mg ammoniacal 

nitrogen / day 

mg 

orthophosphate / 

day 

27 0.917 0.0000 0.824 0.962 

SARS-CoV-2 gc/l 

SARS-CoV-2 

gc/mg 

ammoniacal 

nitrogen 

4 0.930 0.0696 -0.290 0.999 

SARS-CoV-2 gc/l 

SARS-CoV-2 

gc/mg 

orthophosphate 

4 0.952 0.0484 -0.111 0.999 

SARS-CoV-2 

gc/mg 

ammoniacal 

nitrogen 

SARS-CoV-2 

gc/mg 

orthophosphate 

4 0.997 0.0028 0.867 1.000 

 


