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Abstract

The ability of people to work underpins most economic outcomes. Using data
from the nationally representative India Human Development Survey (IHDS-II),
with pre-scheduling of interview locations ensuring plausibly random assignment
of temperature treatment to respondent, we evidence the impact of short-term
(within-month) high temperatures on self-evaluated ability to work, and how that
impact depends on individual living conditions. Other things equal a hot day
(one in which maximum daytime temperature exceeds 37.7◦C (100◦F)) increases
inability to work across the month by about 7%, or 1/20th of a day. Electricity
to the home and cooler ownership have important but partial protective effects,
we find no such evidence for piped water supply. Keywords: Temperature,
effective labor supply, climate impacts, climate resilience, mitigation.
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1 Introduction

The extent to which high outdoor temperatures impact the ability to work - and how far
those impacts can be mitigated by appropriate use of technology - are central building
blocks in understanding the link from climate to individual and societal economic
outcomes.1

Important recent research has explored some of the links between temperature and
economic performance at various levels including individual (Graff Zivin and Neidell
(2014)), plant (Zhang et al. (2018)) and jurisdiction (Dell et al. (2012), Deryugina
and Hsiang (2014)). In a highly cited paper Dell et al. (2012), for example, show
that high annualized temperatures negatively impact both output levels and rates
of output growth at national level. Hsiang (2010) relates hot days in a year to an-
nualized measures of value added in various economic sectors in 28 Caribbean and
Central American countries, and speculates on the potentially important role played
by compromised labor productivity as a mechanism.

A long-standing strand of research in ergonomics relates the temperature to which
an individual is contemporaneously exposed to various measures of productivity and
performance, including that of employees and students. As early as 1946 research
showed that telegraph operators made more mistakes in high temperatures (Mackworth
(1946)). Parsons (2007) provides a good introduction to some of this earlier research
and Pilcher et al. (2002) a meta-analytic review of the ergonomics literature.

The contribution closest to ours in spirit is Somanathan et al. (2021) who find
mixed effects of short-term outdoor temperature on recorded absence in a series of
case studies. Weekly heat increases absence slightly in eight workshops belonging to a
garment manufacturer in Delhi and among 198 workers at a single iron rail production
plant in Bhilhai.2 However they find no such effect among 147 workers in three weaving
workshops in Gujarat. Outdoor temperature also reduces productivity of those workers
who are in attendance across most settings. Studying garment factories in Bangalore,
Adhvaryu et al. (2020) find that the installation of LED lights in a workshop - which

1The background against which we conduct our research is a world in which both average tem-
peratures, and frequency of very hot days, are expected to increase (Rohini et al. (2016), Stern et al.
(2006)). According to the Hadley (HadCM3) climate model, for example, under a business-as-usual
scenario the number of days when daily average temperature in India exceeds 95 degrees Fahrenheit
will increase from five in the period 1957 to 2000 to seventy-five in an average year between 2075 and
2100. The ability of people to work underpins most of what we study in economics - from production,
to consumption, to government revenue, and all of the things that flow from those.

2The evidence from the garment setting are somewhat weak, with significance in the main linear
specification obtained at the 10% level. The main focus of their paper is on worker productivity at
the intensive margin (i.e. once a worker is at the workplace), and consistent with previous studies
they find such effects in most of the workplaces that they study. As they working with administrative
data derived from the employer they do not speak to how temperature-sensitivity varies with living
circumstances.

2



in addition to providing light also generates less heat than the compact fluorescent
lamps that they replace - raises productivity on hot days.

While delivering numerous insights Somanathan et al. (2021), like other contribu-
tions, observe only a comparatively small sample of workers, engaged in a narrowly
defined set of work tasks in a small number of work locations, settings chosen on avail-
ability of data and an employer willing to share. The extent to which insights can
be extrapolated from the patchwork of niche settings to the broader economy is un-
clear. One important attempt to develop understanding across the broader workforce
Graff Zivin and Neidell (2014) use diary-based data from the US unusual heat can
reduce hours worked, particularly in outdoor occupations.

In this paper we take this line of inquiry forward, examining the self-evaluated
ability to work of a large sample of workers dispersed across a very wide set of types
of occupations and locations.

Our measure of inability to work is derived from the India Human Development
Survey (IHDS-II). The IHDS-II, a collaboration between the University of Maryland
and the National Council of Applied Economic Research (NCAER) in New Delhi, is a
nationally representative survey of 42,152 households in 1503 villages and 971 urban
neighborhoods dispersed widely across India. The survey asks detailed questions about
household members and their living conditions. Respondents that work are employed
or self-employed in a wide array of jobs.

The question from which we derive our independent variable asks respondents to
report on how many of the 30 days prior to date of interview they were “unable to work
or carry out normal duties”. We relate the answer to what we know about temperature
in the vicinity of the respondent’s home address in that same 30 day period. Obviously
there is no single “correct way” to capture heat exposure over a month in a single or
small number of regressors. We use several including frequency of ‘hot days’, defined
to be a day in which the maximum temperature reached 37.7◦C (which equals 100◦F),
the moving average of daily maximum temperatures, and counts of the number of days
in which maximum temperature falls into each of a series of bins 5◦C in width.3

The 59,621 workers in our central sample experience between them 466,757 hot
days, defined against the 37.7◦C threshold, in the 30 day windows before their re-
spective interviews. While this is around 8.4 days on average there is much variation

3While the multiple bins approach provides more dimension in terms of main results we prefer
the count of hot days for reasons of tractability and the ease with which it allows us to conduct the
various subsample analyses that constitute the second half of the paper. It should come as little
surprise that the various measures of heat are strongly positively correlated. In robustness exercises
we also report results based on; (a) alternative definitions of a hot day (higher and lower thresholds)
and, (b) the Heat Index, and algorithm developed by the US National Weather Service that combines
temperature and humidity into a single number that captures the impact of heat on the human body.
Further discussion of heat metrics in our setting will be presented later.
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between individuals across both space and time. Controlling for location and time of
year, random assignment of temperature treatment to respondent is implied by the
fieldwork approach. We additionally report results that confirm that treatment is not
related systematically to numerous observable household or individual characteristics.
In our base specifications we find that (1) a hot day causes a roughly 7% increase in
inability to work; (2) other things equal the effect is more pronounced in older workers
and females, (3) while the effects vary across type of employment, with largest effects in
construction, which involves predominantly outdoor and physically-demanding work,
we still find evidence suggestive of an effect on office-based jobs.

The nationally-representative character of the sample surveyed allows us to explore
heterogeneity of effect not just across job categories, but also geographically, something
not possible in a case study. We find that the effect of an additional hot day is largest
in typically cooler locations, and find no significant impact in places where such hot
days are common, consistent with worker adaptation to local climate. However, the
effects are observed in places subject to each of three of the major climate zones,
namely Arid, Humid and Subtropical, pointing to a broad geographic basis for the
effect found in the whole sample.

A second important advantage of our setting is that we have very detailed in-
formation about the conditions in which individual respondents live.4 While some
studies (including Somanathan et al. (2021), Adhvaryu et al (2020)) explore the role
that cooling technology in the workplace might play in moderating the temperature-
productivity and temperature-labor supply relations, the IHDS-II data allows us to
generate what we believe to be the first systematic evidence on the protective role
of conditions at home. We find that a household being connected to the electricity
grid has an important causal role in reducing its susceptibility to heat, as does owner-
ship of cooling technology. Surprisingly we find no evidence that the quality of water
supply to the house playing a significant mitigative role. This sort of evidence is im-
portant in assessing the contribution of public investment in domestic water and power
infrastructure in India and elsewhere to enhanced climate-resilience.

Before proceeding to the empirical analysis it is worth thinking explicitly about
how we should interpret the results. The outcome variable, a self-assessment by each
respondent of the frequency with which they were unable to perform normal duties
over a period, is a novel one. One advantage to this is that the interviewee who
physically attended work, or went to his self-owned workshop, but still felt unable
to achieve much meaningful, is able to express that. However the ‘normal duties’
element provides a challenge in interpretation. Is the productivity during a day when

4It is plausible that inability to work through physiological, for example through illness or loss of
sleep, is particularly sensitive to living conditions.
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a respondent does not perform normal duties reduced to zero? By 50%? Or by some
other percentage? in this sense the deliberately open-ended nature of the question
IHDS-II poses is both a strength and a weakness, compared to conventional metrics,
for example a dichotomous measure of physical absence as recorded in a personnel
file. That it is different, however, provides another way in which the results here can
complement research using other, for example administrative, measures.

The remainder of the paper is laid out as follows. In Section 2 we outline data
sources and methods. Section 3 presents our central results. Section 4 lays out re-
sults relating to the protective effects of electricity, water and air-cooling. Section 5
reports the results of a variety of robustness tests and falsification exercises. Section
6 concludes.

2 Data

Our central analysis links data on number of days an individual was unable to work
with what we know about weather conditions at the location of each individual on the
date in question.

2.1 India Human Development Survey

Our main data comes from the India Human Development Survey-II (IHDS-II) in
2011-12, which covers 204,569 individuals living in 42,152 households located in 1,503
villages and 971 urban neighborhoods spread across India. The IHDS includes eco-
nomic, social, and health modules and has been used by researchers to explore topics
such as human capital accumulation (Azam et al. (2013)), maternal effects of socio-
economic status (Mohanty and Gebremedhin (2018)) and the nutritional effects of
migration (Atkin (2016)).

For a detailed description of the sampling and interview methods the reader is
encouraged to consult Data Sharing for Demographic Research (DSDR).5 The sample
is designed to be nationally representative along a number of dimensions (geographic,
religious, ethnolinguistic, etc.). Households are selected according to standardized
sampling criteria within a randomly-selected set of villages and urban neighborhoods.
The interviews are conducted by researchers from the National Council of Applied
Economic Research (NCAER) and the University of Maryland. The quality of data
is high by standard metrics (Wang et al. (2014)). Travel schedules between of the
interview teams between locations are planned in advance and the order of interviews

5A data guide on IHDS-II can be found at https://www.icpsr.umich.edu/icpsrweb/content/
DSDR/idhs-II-data-guide.html.
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within village or urban neighborhood is randomized. Interviews were conducted by a
number of enumeration teams between January 2011 and December 2012, with most
in the later year.

Our dependent variable throughout is the number of days in the past 30 days that
an individual reports being unable to work or carry out normal duties prior to the
date of interview (Question 8.11 on Page 11 on questionnaire). 97.7% of respondents
provided an answer to this question. Anyone with no response recorded was dropped.
In column 1 of Table A.1 we show that we are unable to reject the null hypothesis
that absence of response is uncorrelated with the temperature variable.

The usual caution with regard to self-reported data applies. It is likely that respon-
dents vary in how they interpret “unable to work”. Provided the way in which they
interpret the question is not itself sensitive to the treatment (temperature) then the
measurement error introduced by this is unlikely to bias estimates. Insofar as any re-
spondents regard ‘normal duties’ as dependent on temperature, for example somebody
whose normal duties require cool conditions, this could complicate inference. Later in
the paper we conduct an exercise that probes the extent to which this is a substantive
problem.

Note that our is different from absence, which we regard as a strength. The inter-
viewee who attended work, or went to his self-owned workshop, but still felt unable to
achieve anything meaningful, is able to express that. A further point to note is that
the dependent variable is measured over a 30 day period. One advantage of this is
that it allows us to absorb most within-month lagged effects. If some hot days cause a
subject to be unable to work not just contemporaneously but for a few days after the
temperature cools, our measure will pick that up, provided the effect does not spill
out of the 30 day window.

The database contains date of interview and location of each household at district
level which enable us to merge the IHDS-II data with weather information. As our
focus is on work we also dropped subjects who have as primary activity status retired,
housework, student or unemployed. We exclude a tiny number of respondents who
had an interview that was not completed on a single day. The final data consists of
59,621 ‘working’ individuals.

The IHDS-II is a rich source of controls. For each individuals we collect age, gender,
highest education level, religion and type of work. At household-level we know number
of household members, and have metrics for income and assets that allow us to control
for economic circumstances. In addition we know about household access to water and
the reliability of supply, whether the household is connected to mains electricity and
if so the hours per day, and ownership of cooling technology. Throughout the paper
we use the provided survey weights to make the sample nationally representative.
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2.2 Weather

The spatial and temporal coverage of ground-based meteorological stations in India is
inadequate for our purposes. We follow Schlenker and Lobell (2010), Schlenker and
Roberts (2009), Auffhammer et al. (2013) and others and use reanalysis data from
the ERA-Interim archive. This is collated by researchers at the European Centre
for Medium-Term Weather Forecasting (ECMWF). Concretely we collect the ERA-
Interim calendar daily maximum temperature, minimum temperature, precipitation,
relative humidity and solar radiation data for each cell in a 1◦ x 1◦ latitude-longitude
grid for each day from 1 January 2011 to 31 December 2012 (this is the spatial level
at which this data is presented).

We do not know the exact home address of a respondent but, rather, the district in
which they live. Districts are the jurisdictional sub-subdivision in India. The country
is divided into 29 states each of which is divided into about 25 districts (723 districts
in totla). District boundaries do not correspond to the latitudinal-longitudinal grid
cells. To generate weather variables for each district, we construct an inverse-distance
weighted average of all the weather grid points within 20-miles of the centroid of that
district. On this basis we construct a district-by-day panel of maximum temperature,
precipitation, average wind speed, solar radiation and relative humidity.

As noted we use three main ways to capture monthly heat exposure at a location.
(1) The number of days in district d in the 30 days prior to interview date t that
were hot, i.e. daily maximum temperature exceeded 37.7◦C (which equals 100◦F).
This follows Deschênes and Greenstone (2011), Cohen and Dechezleprêtre (2021) and
others. (2) The 30 day mean of recorded daily maximum temperatures. (3) The count
of days in the 30 day window that daily maximum temperature fell into each of a series
of ‘bins’. Summary statistics are presented in Table 1. Figure 1 shows the variation
in treatment across respondents.

2.3 Methods

In exploring the relation between temperature and inability to work we will adopt
three main approaches. Our main specifications incorporate a comprehensive suite of
fixed effects.

First, we estimate the following:

yitd = β0 + β1temptd +Wtdβ2 + Ziβ3 +Hiβ4 + Fiβ4 + Ψtd + θt + εitd (1)

where yitd is number of days that individual i living in district d reported being
unable to work in the 30 days prior to interview date t.
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With a count variable as dependent variable we estimate using the Poisson Pseudo-
Maximum Likelihood (PPML) regression with high-dimensional fixed effects model
developed for application in Stata by Correia et al. (2020). This method refines Poisson
estimation for settings that include multiple high-dimensional fixed effects.

The dependent variable includes frequent zero values - around 80% of total re-
sponses - people reporting no days in the previous 30 when they were unable to work.
As a robustness exercise we estimate the preferred specification using the zero-inflated-
Poisson (ZIP) model and find that it delivers qualitatively similar results, though
somewhat larger implied effect sizes.

The variable of interest is the measure of temperature that following Deschênes
and Greenstone (2011) and Cohen and Dechezleprêtre (2021) is constructed as the
number of days in the treatment window, the 30 days prior to interview date t, that
the maximum temperature exceeded 37.7◦C (equals 100◦F). As such temptd is a count
variable that takes an integer value between zero and 30 inclusive. β1 is our coefficient
of interest.

To allow for the possibility that dimensions of weather other than temperature
might impact ability to work we include a vector of non-temperature weather controls,
Wtd. It contains average daily precipitation, wind speed, solar radiation and relative
humidity in the same 30 day period.

The count temperature measure that we use also has many zero values. In other
words respondents who had been treated to no hot days in the 30 prior to interview.
While our main results are estimated on the whole sample, we re-estimate the preferred
specification on the ‘intensive margin’, by which we mean only those respondents
treated by at least 1 hot day in the treatment window.

Zi contains a set of controls for individual respondent characteristics. In particular
age, gender, highest education level and religion.

The vector Hi includes controls for household characteristics, in particular the
number of household members, and whether the household has access to electricity
and piped water.

The vector Fi contains controls for household financial status, specifically for house-
hold income and for wealth (total household assets).

The equation also includes spatial and temporal fixed effects. Ψtd contains district-
by-month fixed effects that absorb time-varying differences in the dependent variable
common across households within a district. For example, local holidays. The vector
θt includes year fixed effects to control for any trends common across states that might
exist in the data.

εitd is the error term. In our preferred specification standard errors are clustered by
district to account for spatial correlation within districts, consistent with Abadie et al.
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(2017). Later in the paper we establish that our preferred approach is conservative and
that inference is qualitatively robust to a variety of other ways of calculating standard
errors, including methods that adjust explicitly for spatial correlation.

Second, we estimate equation (1) but with the temperature regressor replaced by
the mean of the daily high temperatures obtained in the 30 day window prior to
interview.

Third, following Burgess et al. (2017) and others we conduct a non-parametric
exercise. We estimate the following flexible model using PPML:

yitd = β0 +
7∑

j=1

βjtemptd +Wtdβ2 + Ziβ3 +Hiβ4 + Fiβ4 + Ψtd + θt + ηs + εitd (2)

where the variable tempitd denotes the number of days in district d in the 30 days
prior to interview date t that the daily maximum temperature fell in the jth of of
seven temperature ‘bins’. The bottom and top bins capture days on which maximum
temperature was less than 15◦C and more than 40◦C respectively, with the five bins in-
between each of width 5◦C. We then estimate separate coefficients βj for each of these
temperature bins using the bin for temperatures between 20 to 25◦C as the reference
category.

Throughout the analysis the identifying assumption underpinning causal inference
is that having controlled for location and time fixed effects, the realized value of the
temperature regressor is subject to variation that is as good as random.

With respect to locational sorting, it is sensible to think that location is endogenous
- where individuals choose to live may depend on local climate. For example, an
individual who knows themselves to be particularly susceptible to heat might choose
to live in a place where hot days occur less frequently.6 However, that our design
exploits variations in realized temperatures conditional on location, means that this
margin of adjustment is already accounted for. What we identify are the impacts of
temperature after any such locational adjustment is accounted for. In other words, if
everyone in our sample has relocated to a place where the distribution of temperature
that suits their particular preferences and characteristics, our analysis then explores
whether there remains an effect of high temperature realizations after such locational
adaptation.

6Jessoe et al. (2018) are among the studies that show how extreme heat can induce both internal
(rural to urban) and international migration, in their case among Mexicans.
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3 Results

3.1 Main

The main, whole-sample results are reported in Tables 2 through 4.
Table 2 uses as temperature regressor the count of hot days. Column 1 reports the

sparsest specification including state, year and district-month fixed effects. The esti-
mated coefficient on the temperature regressor is 0.064, which is statistically significant
at a level much higher than 1%.

Moving right-wards across the table we include, in turn, controls for individual
characteristics (column 2); individual and household characteristics (column 3); in-
dividual, household and financial characteristics (column 4). The inclusions have no
substantive impact on the value our coefficient of interest, though the precision of the
estimates is improved.

In column 5 we return to the sparse specification but include the vector of non-
temperature weather covariates. Again results are not overly disturbed.

In column 6 we include all of the controls above in addition to a vector of type of job
FEs. The later will capture systematic variation in inability to work across different
types of work. There are 54 job descriptors in the IHDS-II (for example: nurse, shop-
worker etc.). Data from the survey is incomplete with regard to job for about 20,000
respondents such that column 6 is estimated on a correspondingly smaller sample.
The overall effect of including these controls is to decrease the estimated coefficient of
interest but only slightly.

Column 7 is the preferred specification in this table. It is the same as that in
column 6 but excludes the type of job controls. The designation of this specification
as the preferred is pragmatic, since it allows us to return to the full sample of 59,621
without the coefficient estimate of interest being much disturbed. While retaining
sample size is not crucial for the purposes of this table, much of the rest of the paper
reports various sub-sample exercises, and maintaining the larger sample will allow us
maintain power within smaller sub-categories.

The coefficient in column 7 is 0.071, significant at a level much higher than 1%.
The outcome variable and explanatory variable of interest are defined over the window
of 30 days before interview. One extra day increases days of inability to work by 7.3%,
since exp(0.071) = 1.073. The mean number of days unable to work in the estimating
sample is 0.63 such that one extra hot day implies an increase of 0.046 days.

Column 8 of Table 2 reports the outcome of re-estimating the preferred specification
at the intensive margin, by which we mean only on respondents who had been treated
by at least one hot day. The estimated coefficient is larger in value than that estimated
on the whole sample, at 0.093.
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The results in Table 2 rely on Pseudo Poisson estimation using techniques devel-
oped by Correia et al. (2020) to accommodate high-dimensional fixed effects. For
completeness in Table A.2 we re-estimate the preferred specification using OLS, neg-
ative binomial and zero-inflated Poisson (ZIP) methods. As can be seen results are
qualitatively robust.

Table 3 reports the same set of specifications as Table 2 but with the count of
hot days replaced by a simple 30 day mean of daily maximum temperatures. This
alternative temperature metric follows Park et al. (2020), for example, who use this
(calculated over a year) metric for cumulative heat exposure. Results are consistent
in sign and significance with Table 2, though significance at conventional levels is
not quite achieved in the restricted sample in column 6. The estimated coefficient in
column 7 implies that a 1◦C increase in average daily maximum across the 30 day
window causes a 13.3% increase in days unable to work (since exp(0.125) = 1.133),
which corresponds to 0.71 days for the mean respondent.

Table 4 summarizes analogous specifications but relates to Equation 2, incorporat-
ing temperature as the count of days in which maximum temperature fell into each
of a series of bins as regressors (20 to 25◦C as reference category). The pattern of
coefficients is consistent across columns. The coefficients from column 6 and presented
graphically in Figure 2. The close-to-linear trend is confirmed. This validates our focus
on the linear case in most of the paper. There is suggestive visual evidence pointing
to ‘flattening out’ of the effect towards the right-hand side of Figure 2, though that
evidence is weak, with little mass of data in the < 15◦C bin delivering a very wide
confidence interval.7

The various results here reflect that there is no single “best” way to measure and
incorporate heat exposure in an analysis like this. It is unsurprising that all of the
various measures are strongly correlated, and the results presented in Tables 2 through
4 complement one another. We prefer the simple count of hot days - which binarizes
each day to either being hot or not - as it facilitates the various subsample analyses
which constitute the rest of the paper. Naturally the multiple-bins approach just
presented gives more nuanced main results, but is less tractable for future purposes.
As such among the results in these three tables the specification in column 7 of Table
2 is the preferred.

7Furthermore, inserting a tempitd−squared variable into an otherwise unchanged Equation 1 de-
livers a very small and statistically insignificant associated coefficient and disturbs other coefficients
only minutely. Results of this exercise are not reported.
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3.2 Geography

India is a large country with diverse local climates, so respondents vary in the weather
conditions that they usually experience. All of our specifications include district fixed
effects, as such we control for any time invariant characteristics of a respondent’s
location, including climate. However, one advantage of using a large-scale survey
conducted across a widely-dispersed set of locations is that it allows us to probe how
effects vary according to typical local conditions.

We do this in two different ways, reporting the results in Table 5.
First we divide the sample into locations that vary into how unusual hot days, as

per our, are. More precisely we count the number of such days across a 36 month
period (January 2010 through December 2012). Columns ) through 4 in Table 5
summarize the main coefficients derived from estimating the preferred specification
but on subsamples. Column 5 estimates on interviews executed at locations where hot
days are comparatively common, more than 100 per annum. Column 4 where there
are 60 to 100, which contains most of the sample, and column 2 those places where
hot days are rarer (20 to 60 per annum).

The sample sizes vary substantially across the columns, so care is needed in in-
terpretation, but it can be seen that the estimated coefficient is largest in column 2,
smallest and far short of statistical significance at conventional levels in column 4. An
extra hot day in the month at a location in column 2 increases number of days unable
to work by 32.7%, whereas in column 3 that number is 6.4%.

These results suggest a degree of adaptation in the population.
To complement this we allocate respondent locations according to which of the four

major climate zones they fall into, namely Arid, Montana, Humid and Subtropical.
Columns 5 through 8 in Table 5 report the results of estimating the preferred speci-
fication on subsamples drawn from each of the climate zones in sequence. As can be
seen we find significant positive effects in each case, except for Montana. The latter
result should not be over-interpreted given the small share of the population of India,
and hence the IHDS sample, live under such a climate. The former results show that
the phenomenon studied in this paper - the heat sensitivity of ability to work - has a
broad geographical base across the varying local climates that Indian people inhabit.

3.3 Age

Previous research points to the impact of high temperatures on mortality (Deschênes
and Greenstone (2011) and Deschenes (2018)), morbidity (Barreca and Shimshack
(2012) and Liss et al. (2017)), mental function (Dai et al. (2016)) being greater on
older adults. Here we explore whether the effect of hot days on inability to work is
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similarly sensitive to age.
To do this we divide our sample into three bins, designed to contain workers who

are young (under 20 years), prime-age (20 to 60 years) and old (older than 60 years).8

Column 2 in Table 6 reports the result of re-estimating the preferred specification
but with the addition of regressors interacting the temperature variable with dum-
mies taking the value 1 if a respondent falls into each age category bin. The middle
bin is the omitted category. The coefficient estimate on the bin containing older re-
spondents, 0.023***, points to older workers being substantially more sensitive to hot
temperatures in terms of self-reported ability to work.

3.4 Sex

Previous research also points to the impact of high temperatures on mortality (Desch-
enes (2018)), morbidity (Barreca and Shimshack (2012)), mental function (Heyes and
Saberian (2019)) being greater on females than males.

In addition note that our outcome variable will pick-up a variety of reasons for
inability to work. While that includes directs impact on the respondent him or herself
we conjecture that another important mechanism might work via needs of a dependent
child. If a child is unable to attend school (say because of temperature-induced sick-
ness) and requires supervision at home it is plausibly the mother who is more likely
to be unable to work in order to respond to that familial need.

To probe this in our setting we re-estimate the preferred specification but adding
a regressor interacting the temperature variable with a a dummy that takes the value
1 if the respondent is female, zero otherwise. The result of this exercise is reported
in column 3 in Table 6. It can be seen that the coefficient on the interaction term is
positive and significant at a level higher than 1%. Being female increases the treatment
effect by around a third.

3.5 Workplace

We explore how heat effects ability to work varies across job category and/or work
task. We do this by adding to the preferred specification, one at a time, a series of
regressors that interact the temperature measure with dummies that take the value 1
if the job of a respondent falls into a particular category, zero otherwise.

IHDS provides fine-grained information on job types in 99 categories. For the pur-
poses of constructing adequately-populated subsamples these divisions are too narrow.

8Recall that throughout the study we are limiting attention to respondents with jobs, so while the
first sub-sample does include some children (under 18, the age of majority in India) these are largely
young adults.
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We construct three broader categories that we call “construction” (to include job titles
such as construction laborer, carpenter, plumbers, stone cutter, etc.), “agriculture” and
“office” (clerical assistant, office administrator, etc.). Our categories are not exhaustive,
containing 24,332 (58.3% of those who report job title).

Columns 4 and 5 in Table 6 report the results of the interaction exercise with respect
to respondents who work in agriculture and construction respectively. These frequently
imply work that is both outdoor and physically-demanding in character. Column 6
isolates respondents in work tasks characterized as “office”. Perhaps surprisingly the
coefficient is small and not statistically significant, such that we find no evidence that
respondents who work in agriculture are any more or less sensitive to heat than non-
agricultural respondents. However, consistent with expectations, respondents working
in construction are significantly more sensitive, and those in office-based jobs signifi-
cantly less sensitive than the wider sample.

Columns 7 and 8 report two further exercises. While the primary mechanisms that
we have in mind linking extreme heat to self-evaluated ability to work are physiological
in character, it is also possible that some of the effect could driven either by, (a) some
work tasks require electricity for their execution, and extreme heat makes electricity
shortage more likely or, (b) heat causing there to be less work to be available. While
nothing in the data allows us to assess these directly we consider two sub-groups of
worker who may provide suggestive evidence for against such causal channels. First,
we construct a set of job types that we judge unlikely to require electricity to execute
(drivers, trawler-men, etc..) and define a dummy variable that takes the value 1 if
the respondent works in one of those jobs, zero otherwise. Second, to investigate (b),
we construct a set of jobs that we judge work supply to be unlikely to be reduced in
event of heat (typists, mail delivery workers, etc..). We then re-estimate the preferred
specification but adding a regressor that interacts the temperature measure with each
of these dummy variables in turn. The categories that we construct contain 3,652 and
3,987 respondents respectively. The coefficients on each interaction term can be seen
to be very small in value and in neither case come close to statistical significance at
conventional levels, providing no evidence in favour of these alternative mechanisms.
We acknowledge however that we are unable to pin down mechanisms persuasively in
our setting, and leave that for future research.

The substantial differences in effect size between categories points to sharply dif-
ferent effects of hot weather on effective supply of work in different sectors and work
tasks.
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4 Climate-resilience: The protective effects of elec-

tricity, cooling and water

While the central ambition of climate policy remains to influence the path of climate
(for example, reducing the rate of increase of average temperatures and extremely hot
days in places like India), a second strand is focussed on adaptation. Key to policy
formulation is understanding measures that increase resilience in the face of evolving
weather patterns (Barreca et al. (2016)). This is particularly important in poorer
countries, where the health and other impacts of increasing frequency of hot days is
expected to be most pronounced (Hansen et al. (2012)).

A major strength of our setting is that we know a lot about the living conditions
of individual respondents. We exploit this here. Some existing studies explore the
role of protective technology, such as air-conditioning, in the workplace itself, but
none (to the best of our knowledge) had the data needed to examine the role of home
circumstances. As such are results complement earlier research that look, for example,
at absence at workplace level where nothing is known about the home conditions of
the worker population (Somanathan et al. (2021)).

Having presented evidence of the effects of hot weather on self-reported inability
to work, in the rest of the paper we explore the extent to which those effects are
moderated by: (a) a household having access to electricity (and, if so, whether the
quality of that electricity); (b) ownership of cooling technology and, (c) quality of
water supply.

Of course, household living circumstances are not generally randomly assigned, so
care is needed in interpreting correlations. However we offer supplementary analyses
that will reinforce (cautious) causal interpretation.

We explore these adaptation questions in a series of exercises. In each we add to
the preferred specification a regressor that interacts the temperature variable with a
binary variable capturing one of the adaptation measures above. The results of these
are collated in Table 7.

4.1 Electricity

Household access to electricity is frequently regarded as an important outcome of
economic development (Reiss and White (2005)). Access has been shown to af-
fect household-level economic outcomes (Khandker et al. (2013), Burlig and Preonas
(2016)), proneness to infection (Barron and Torero (2017)) and other health outcomes
(Spalding-Fecher (2005)), health attitudes (Manning et al. (2015)), study habits and
educational outcomes for children (Khandker et al. (2013) and Barron and Torero
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(2017)), media consumption and social attitudes (Lee et al. (2020)), amongst other
things.

With regard to climate change, electricity-access has been argued to offer significant
protective effects to household health (Barbier (2014)). This might work through
diverse channels. One obvious is through its allowing the use of cooling technology.
In a well-known study using decadal, state-level data, Barreca et al. (2016) find that
penetration of air-cooling technology predicts long-term decline in the temperature-
mortality relationship in the United States across the course of the twentieth century.
Electricity also allows for effective refrigeration of food, medicines, etc.. in hot climates.

The IHDS-II reports whether the home of each respondent is connected to the
electricity grid. About 14% of our sample was not connected, with that percentage
much higher outside urban areas.

In column 2 of Table 7 the binary adaptation variable takes the value 1 if the re-
spondent lives in a household with electricity connection. The negative and significant
coefficient on the interaction term, -0.017**, implies an important protective effect of
connection.

The main challenge to causal inference here is that electricity connection is not
randomly-assigned. In particular, we might expect access to electricity to be greater
for ‘better off’ households - those with higher income and/or assets - implying that
what we are picking up here is the protective effect of being well-off rather than the
effect of electricity connection per se. The primary defence against spurious attribution
is the inclusion of financial controls, and the detailed nature of IHDS-II allows us to
include fine-grained household controls for income and wealth. However, to address
residual concerns that the controls do not adequately isolate electricity-connection
from financial circumstances we conduct an additional exercise. Following Graff Zivin
and Neidell (2012), Currie and Stabile (2006) and others we repeat the regression
reported in column 2 (and each subsequent regression reported in this Section) in
Appendix Table 3 but dropping altogether the vector of financial controls. If we have
failed to control adequately for financial circumstances in our main specification we
would expect dropping this vector to disturb substantially the estimated coefficient on
the temperature variable. Although we remain cautious in causal interpretation, that
the estimated coefficient on the interaction term is no different in Appendix Table A.3
to that in Table 7 is consistent with our having isolated the causal protective role of
connection.

In economically-advanced countries a household being connected to the grid implies
that it has more or less continuous access to electricity. This is not true in India, and
most other low and middle-income countries, where reliability is a significant challenge
and the quality of supply even to those households with a connection can be highly
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variable. Consistency of supply has been shown to have significant effects on outcomes
such as non-agricultural household income (Samad and Zhang (2016), Chakravorty
et al. (2014)) and infant health (Lewis (2018)). India has invested heavily in recent
years in improving supply quality, not just grid coverage (Chakravorty et al. (2014)),
partly with the ambition of increasing the climate-resilience of the economy.

For each household in the IHDS, in addition to knowing whether the household has
connection to the grid, we have a self-reported estimate of quality, captured by how
many hours in a typical day electricity is available. The binary adaptation variable in
the specification in column 3 takes the value 1 if the household in which the respondent
resides benefits from electricity supply for at least 12 hours per day (our designation
of good quality electricity), zero otherwise. The negative and significant coefficient
on the interaction term in column 3 points again to electricity in the home having an
important protective benefit.

4.2 Cooling

Much emphasis has been put on the role that cooling equipment might play in protect-
ing individuals and populations against various impacts of high temperature including
morbidity (O’Neill et al. (2009)), mortality (Barreca et al. (2016)), learning (Park
et al. (2020)) and student exam performance (Park (2017)). Barreca et al. (2016)),
for example, show that state-by-decade rates of air-conditioning penetration in the
US predict the decline in the excess mortality caused by hot days. We explore the
analogous question, but with inability to work as the outcome interest.

In the period of this study (and today) in India technological protection against
heat typically involves installation of an air cooler rather than an air conditioner. Air
coolers pump air through water, reducing temperature via evaporative cooling, while
air-conditioning uses refrigerants to absorb heat. Air coolers are typically cheaper and
easier to maintain. In our sample only 1,241 (1.92%) of respondents report ownership
of an air conditioner (typically apartment-dwellers in the major cities) whereas that
number is 10,730 (16.57%) for air cooler.9 Given the small number of individuals with
air conditioning we amalgamate those who have air coolers or air conditioners (or
both) into a single sub-sample (‘cooling’).

For the purpose of column 4 in Table 7 the binary adaptation variable takes the
value 1 if the household reports owning an air cooler or air conditioner, zero otherwise.
The coefficient on the interaction term, -0.008** points to a statistically significant but

9The variation in ownership is important to us in developing results. This contrasts with the near-
universality of air-conditioning in the US. Almost 90% of US homes are treated by air-conditioning,
and in the hotter states (Florida, Arizona, etc.) that number is close to 100% (Isaac and Van Vuuren
(2009)).
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fairly small protective benefit of ownership. Column 5 repeats this exercise, but with
the triple interaction between ownership of the treatment variable, cooling technology
and location of the household in a hot location (defined as one of the locations in the
sample that had a greater than median number of hot days over the 36 month period
starting January 2010). The coefficient on that interaction is very similar in size to
that in column 4.

Ownership of air cooling technology is clearly not randomly assigned, so care is
needed in making causal claims.10 That coefficient estimates are robust qualitatively
when the whole suite of financial controls are dropped from these regressions (see
Table A.3) assuages concerns that we have failed to control with sufficient precision
for household financial circumstances and reinforces cautious causal interpretation.

In summary we find important mitigative benefit from cooling technology, and also
reiterate that the technology observed in this setting is likely much less advanced than
state-of-the-art air-conditioning typically found in, for example, the United States.

4.3 Water

Finally we explore the role of water supply in protecting individuals and households
against the impacts of extreme temperature. Improving water supply has been a main-
stay of development policy for decades (Hunter et al. (2010)). In India an estimated
550 billion USD was spent on enhancing water supply infrastructure between 2006
and 2018, an important motivation for which was as an investment in building climate
resilience (Larsen et al. (2016)).

The IHDS-II provides detailed household-level information on water in two different
ways: (a) the primary source of water for each household (this is presented in nine
categories, but we are going to focus on those with and without the ‘gold standard’
of piped water supply of the sort almost universal in high income countries); (b) the
answer (yes/no) by the respondent when asked whether he or she regards water supply
to the household as ‘normally adequate’.

Column 6 and 7 of Table 7 summarize the results of two separate exercises relating
to water.

First, we divide respondents according to the main source of water for the household
in which they live. In particular we divide those who have piped water as their main
source from those that do not (the latter use wells, collect rainwater, water from rivers,
etc.). The sample splits roughly 41% to 59% between these two categories. The binary

10Davis and Gertler (2015) represents perhaps the most careful empirical analysis of the air-
conditioning adoption decision. They use micro-data from Mexico to show how purchase of air-
conditioners is sensitive to local temperature distributions. The effects we identify should be in-
terpreted as already accounting for households having made cooling equipment ownership decisions
appropriate to their own setting, including typical local climate.
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adaptation variable embedded in the interaction term in column 6 in Table 7 takes the
value 1 if the water source of the household is piped, zero otherwise.

For the specification in column 7 we divide the sample according to whether the
respondents self-evaluate their household as having, in general “adequate” water supply.
The response is binary (yes/no) and subjective. No priming or guidance is given to
respondents as to what ‘adequacy’ should be taken to mean. That 48,878 respond yes
implies that many (indeed most) without piped water regard their supply as adequate,
for example. The binary adaptation variable in this column takes the value 1 if the
response is yes, no otherwise.

Though the signs of the estimated coefficient values in columns 6 and 7 are negative
they do not achieve statistical significance, so we fail to find evidence of a protective
benefit of piped water access or self-evaluated water quality.

5 Robustness

In this section we report on several robustness checks and falsification exercises. The
appendix contains a number of additional robustness results.

5.1 Alternative heat metrics

In executing this study a number of modeling decisions were made. One important
decision had regard to the most appropriate way to specify the temperature variable
which has served as our treatment variable of interest. As that single variable is tasked
with capturing the temperature across a 30 day period its design is a challenge. With
our focus on extreme heat, at the location of each respondent we considered counts of
hot and not hot days in the 30 days prior to interview. The average of daily maximum
temperatures over the 30 day window was used as an alternative. The former approach
follows closely the methods used by Graff Zivin et al. (2018), Blakeslee and Fishman
(2018) and Carleton and Hsiang (2016) in their investigations of monthly or quarterly
level temperature effects. The latter closer to, for examples, Ranson (2014) and Park
et al. (2020), who characterize monthly-average temperature effects.

In columns 3 and 4 in Table 8 we repeat the count variant exercise (Table 2 of our
main results) but using alternative thresholds to define a hot day. In column 3 a day
is defined as hot if the maximum temperature at any point on that day exceeds 35◦C
(95◦F), in column 4 if it exceeds 40.5◦C (105◦F). In aggregate our sample of 59,621
individuals experienced on average 5.68 and 3.82 of such days, respectively, in the 30
day window prior to interview. The results as they compare to the central specification
are as would be expected. When our definition of a hot day is less (more) demanding,
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the implied effect on inability to work is correspondingly smaller (bigger).
The role of humidity, in addition to temperature, on various outcomes has been

noted in the literature (for example, Baylis (2020) and Heyes and Saberian (2019)).
While we control for humidity at the location of interview a suspicion might remain
that we have failed properly to capture the independent effects of temperature and
air water content. To probe this we conduct a further exercise in which we assign
days to bins based not on dry-bulb air temperature but on daily heat index (HI). The
heat index combines air temperature and relative humidity according to a non-linear
equation developed by the US National Weather Service such as to capture human
perception of heat.11 The HI measure that we develop is a count of the number of
days in the 30 days before interview that the HI at the location of interview reached
100◦. Reported in column 5 the estimated coefficient implies an impact of a hot day so
defined increasing inability to work by 15.8%. Note that this coefficient is not directly
comparable to the others in this table, though reassuringly sign and significance are
consistent.

Read as a whole the results in this table, and others that we have conducted but not
reported, point to a significant and substantial positive relation between temperature
and inability to work, which is not conditional on the particular metric for temperature
adopted.

5.2 Additional exercises

Table 9 reports the results of several additional exercises, based again on the preferred
count variant of the analysis.

Large states In column 2 we report estimating the preferred specification on the
5 largest states by contribution to sample (Uttar Pradesh, Madhya Pradesh, Maha-
rashtra, Karnataka and Rajasthan). With the exception of Karnataka these are more
northerly states and supply around 42% of sample. The estimated coefficient here
remains positive and strongly significant despite the much smaller sample size. The
estimated coefficient is larger than that derived from the whole sample, though not
significantly so.

Urban-rural Around a third of Indians are urban dwellers (31.2% in the 2011
census) and that is mirrored in our sample (30.9% urban). Columns 3 and 4 in Table
9 summarize the results of running our preferred specification on the urban and rural
subsamples respectively.

11For example, a temperature of 90◦F combined with 70% relative humidity delivers a heat index
of 105. A temperature of 98◦F combined with a relative humidity 40% also delivers a heat index of
105, implying that according to this metric the ‘feeling’ of heat would be deemed equal under those
two combinations. It is similar in intent to Humidex, a trade-marked metric developed in Canada
and used there and elsewhere.
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North-South Columns 5 and 6 report the results of estimating the preferred
specification on respondents who live in states that lie wholly to the North or wholly
to the South of the Tropic of Cancer, which cuts the country roughly in half in terms
of surface area. The estimated coefficient is similar across columns, pointing to the
effect identified having a broad-based geography.

Outliers In column 7 we investigate the role of outliers by re-estimating the pre-
ferred specification but excluding respondents associated with the top and bottom
deciles of treatment (in other words the hottest and coldest deciles) from the estimat-
ing sample. The result is little disturbed making consistent with our main estimate
not driven overly driven by outliers or extreme values.

Winter extremes Though the most populous areas of India are hot for all or
most of the year, an additional concern could be that results are driven by unusually
hot days occurring in cooler times of year. To explore this in column 8 of Table 9
we re-estimate the specification in column 1 but excluding the 20.1% of respondents
whose interviews fell during the winter months (December, January or February) with
no discernible impact on results.

Dependent variable ceiling The dependent variable asked interviewees to self-
report the number of days they were unable to work in the 30 days before interview. We
might be concerned about the role of the 6,852 (10.9% of sample) for whom response
was 30. These might be long- to medium-term disabled, for example, for whom no
temperature realization could have delivered an answer different from 30. To address
this in column 9 we re-estimate the preferred specification but excluding those. Again,
inference is not meaningfully disturbed, though the coefficient now has slightly different
interpretation, namely the marginal effect of an extra hot day on number of days unable
to work conditional on being in that subset of subjects who were able to work on at
least one day in the past month.

5.3 Rain

A potential challenge in a study of this sort is disentangling the role of temperature
from precipitation. Either might have direct impacts on ability to work (for example
through challenges to travel) and both can influence frequency of illness. Indeed in
our setting, where the most prevalent type of low-level morbidity is diarrhea, the
confounding role of precipitation could be pronounced (Singh et al. (2001) and Vargas
et al. (2004)).

While we control for precipitation in all of our specifications (and established in
Tables 2 through 4 that dropping the whole vector of non-temperature weather controls
did not substantially change our central results) in this section we further test the

21



possibility that we are spuriously attributing rain effects to temperature.
We do this by placing respondents into six bins according to the amount of precip-

itation experienced at their location in the 30 days before interview. If there were an
important confounding influence of precipitation beyond what our controls are picking
up, we would expect to see different estimated coefficients on the temperature variable
in (say) very wet versus very dry months.

The results of this exercise are reported in Table A.4. The key thing is to observe is
not that estimated coefficients are positive and significant in each subsample but rather
that the estimates are very consistent across columns. This includes those 29,232
respondents for which precipitation in the 30 days before interview was essentially
zero (less than half a millimetre). In other words, and recalling that the rain control
is included in almost all earlier regressions, the implied effect of high temperature is
roughly the same when the period in question has been wet as when it has been dry
suggesting no important confounding effect of precipitation on our inference.

5.4 Alternative standard errors

Our central results included standard errors clustered at district level. We believe this
to be the most natural approach, for reasons already noted, and somewhat conser-
vative. Furthermore, given that the temperature variable was constructed at district
level is consistent with the advice of Abadie et al. (2017) that the preferred level of
clustering is primarily a study design issue and should be chosen to correspond to the
level at which the treatment variable is assigned.

Notwithstanding this we consider four alternative approaches to calculating stan-
dard errors that some readers might prefer, in each case applied to our whole sam-
ple estimates. These include alternative location and time clusters and Eicker-White
heteroskedasticity-consistent standard errors. Columns 8 and 9 report Conley standard
errors with cut-offs at 15 miles and 250 miles. Conley standard errors are commonly
used to account for spatial correlation, that is adjust for the potential dependence
between respondents based on spatial proximity.

The results of these exercises are reported in Table A.5. Better than 1% significance
is maintained regardless of the approach adopted. The preferred approach (column 1)
delivers standard errors that are larger than those in seven of the eight other columns,
consistent with our inference with regard to statistical significance being conservative.

5.5 Placebos

Placebo exercises are a popular test of design (Hartman and Hidalgo (2018)). If when
we replace the independent variable of interest series with a placebo series that we
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know to be miss-assigned or irrelevant and still obtain significant results then we can
infer miss-specification.

We conduct three different such tests. The placebo series in each case are (a)
temperature at location of respondent 100 days after date of interview (falsely-assigned
date); (b) temperature at location of respondent 100 days before date of interview
(falsely-assigned date); (c) temperature on date of interview but at the location of
the respondent in the sample most distant from the respondent in question (falsely-
assigned location). The first of these two are commonly-employed in the literature on
the effects of daily variations in pollution or heat on diverse outcomes (e.g. Ebenstein
et al. (2016) and Rivers et al. (2020)) while in a geographically-large country like India
(c) is arguably a more compelling option (e.g. Archsmith et al. (2018) and Heyes et al.
(2016)).

The results of these exercises are reported in Table A.6. The estimated coefficients
on the placebo temperature variable are much smaller than that from the non-placebo
estimation and in no case come close to statistical significance at conventional levels.

6 Conclusions

The frequency of very hot days - in India and elsewhere - is projected to increase
substantially over the next 50 years (Stern et al. (2006) and Barnett et al. (2005)).
Extreme temperature can impact individuals and economies through diverse channels.
In our research we have focussed on identifying a causal link from hot days to self-
evaluated inability to work.

The results are stark. Though we present a variety of specifications the consistent
message is that a day on which the maximum temperature reached 100◦F, not a
particularly unusual event in most of India, increases self-reported inability to work
substantially. In our preferred specification one extra hot day in the 30 day period
increases inability to work across the same period by about 7% or 1/20th of a day.
Our measure means that this captures both the contemporaneous effect as well as an
within-month spillover effects on other days. The results prove resilient when exposed
to a wide battery of robustness tests and falsification exercises.

Two great advantages of our setting are; (1) we have a large sample of respondents,
constructed by IHDS-II to be representative along several important dimensions, work-
ing in a very wide set of different occupations in different locations and observed across
different times of the year. (2) We know a lot about the living circumstances of in-
dividual respondents allowing us to explore the protective effects of elements of those
circumstances, allowing us to probe in some detail how climate resiliency is influenced
by home environment. The results extend to a more aggregate level the recent work
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of Somanathan et al. (2021) who report mixed evidence on shorter-term heat and
absenteeism in a series of case studies.

We are also the first to be able to talk about mitigation with respect to this outcome
variable and with respect to the living circumstances of the workers in question. We
find evidence of important protective effects of electricity connection and ownership of
air-cooling appliances, though not from mains water connection.

Two final points.
First, the nature of the outcome variable based, as it is, on a self-report. We have

already observed that respondents will undoubtedly have interpreted this question in
different ways. In terms of estimation this is not a significant hurdle provided that
interpretation is not itself sensitive to the temperature treatment. Rather it implies
that stated response is a noisy but unbiased proxy for the true inability, reducing
precision of our estimates. We regard it as a strength that the data is not an admin-
istrative count of absence. Many in our sample are self- or informally-employed and
are given scope to report not being able to work effectively even though present in the
workplace. The 30 day measure also allows for intra-month lags, for example if heat
on one day makes inability to work more likely the following.

Second, the analysis is not able to speak to the effect of heat-waves. Our central
temperature metric is a count of the number of hot days in a 30 day window. That
captures nothing about the pattern of heat within the window. Recent popular em-
phasis on heatwaves might suggest that five consecutive 100 degree F days could be
more potent than would be the case if those five days were dispersed in time. Our
analysis does not pick that up, though we are probing this issue in related research in
another setting.

At the same time as being cautious not to over-interpret the results, we also should
not under-play their potential importance. The ability of people to work underpins
most of what we study in economics - from production, to consumption to government
revenue, and all of the things that flow onwards from those. How changing temperature
patterns might change that ability is an important step in understanding the climate-
economy link, and remains an important topic for further research.
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Table 1: Summary Statistics

Mean Std. Dev.
Number of days unable to work 0.630 2.766

Zero unable to work day (%) 80.661 -

Number of hot days 7.168 10.721
Zero hot day (%) 42.460 -

Wind speed (km/h) 2.804 1.043

Precipitation (mm) 4.202 8.658

Solar radiation (W/m2) 19.612 4.773

Relative humidity (%) 0.526 0.222

Income (Million rupees) 0.145 0.247

Assets (Million rupees) 15.408 6.480

Number of persons in household 5.615 2.730

Water availability (%) 92.340 26.600

Electricity availability (%) 88.020 32.475

Age (Year) 39.340 14.032

Highest education (Year) 8.490 4.980

Female (%) 21.181 -

Hindu (%) 81.970 -

Muslim (%) 11.661 -

Sikh (%) 2.381 -

Notes: All proportions use the household weights provided by the IHDS.
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Table 2: Main results - Count of hot days

(1) (2) (3) (4) (5) (6) (7) (8)
No Individual Household Financial Weather Type of job Preferred Preferred

controls controls controls controls controls controls (count) (Intensive
margin)

Temperature 0.064∗∗∗ 0.061∗∗∗ 0.063∗∗∗ 0.064∗∗∗ 0.076∗∗∗ 0.059∗∗ 0.071∗∗∗ 0.093∗∗∗

(0.017) (0.017) (0.017) (0.017) (0.022) (0.024) (0.021) (0.027)
Observations 59,621 59,621 59,621 59,621 59,621 39,883 59,621 25,314

Individual controls N Y Y Y N Y Y Y
Household controls N N Y Y N Y Y Y
Financial controls N N N Y N Y Y Y
Weather controls N N N N Y Y Y Y
Job FEs N N N N N Y N N
Year FEs Y Y Y Y Y Y Y Y
District-month FEs Y Y Y Y Y Y Y Y

Notes: Dependent variable is number of days that a worker has been unable to work in 30 days prior to the interview date. Temperature
is count of hot days in 30 days prior to the interview date. Individual controls include age, highest education level, religion and gender.
Household controls are number of persons in a household, water and electricity availability. Financial controls are household total income
and assets. Weather covariates include wind speed, precipitation, solar radiation and humidity. All weather covariates are 30-day average.
All regressions include year and district-month. Each specification contains controls as indicated. Column 8 runs our preferred specifica-
tion on workers that experienced at least 1 hot day in 30 days prior to interview date. Standard errors clustered on district in parentheses.
∗ significant at 10% ∗∗ significant at 5% ∗∗∗ significant at 1%.

Table 3: Main results - Average daily maximum temperature

(1) (2) (3) (4) (5) (6) (7)
No Individual Household Financial Weather Type of job Preferred

controls controls controls controls controls controls

Temperature 0.100∗∗∗ 0.088∗∗∗ 0.088∗∗∗ 0.100∗∗∗ 0.156∗∗∗ 0.066 0.125∗∗

(0.030) (0.028) (0.027) (0.030) (0.050) (0.057) (0.049)
Observations 59,621 59,621 59,621 59,621 59,621 39,883 59,621

Individual controls N Y Y Y N Y Y
Household controls N N Y Y N Y Y
Financial controls N N N Y N Y Y
Weather controls N N N N Y Y
Job FEs N N N N N Y N
Year FEs Y Y Y Y Y Y Y
District-month FEs Y Y Y Y Y Y Y

Notes: Dependent variable is number of days that a worker has been unable to work in 30 days prior to the interview date.
Temperature is 30-day average of daily maximum temperature. Standard errors clustered on district in parentheses. See
notes to Table 2 for full list of controls. Each specification contains controls as indicated. ∗ significant at 10% ∗∗ significant
at 5% ∗∗∗ significant at 1%.
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Table 4: Main results - Days binned by maximum temperature

(1) (2) (3) (4) (5) (6) (7)
No Individual Household Financial Weather Type of job Preferred

controls controls controls controls controls controls
Maximum temp <15 -0.006 -0.021 -0.020 -0.006 -0.014 0.108∗ -0.028

(0.027) (0.025) (0.025) (0.027) (0.035) (0.063) (0.032)

15≤ Max temp <20 0.001 -0.000 0.002 0.001 -0.008 0.009 -0.001
(0.026) (0.026) (0.028) (0.026) (0.028) (0.022) (0.029)

20≤ Max temp <25 - - - - - - -
- - - - - - -

25≤ Max temp <30 0.006 0.003 0.009 0.006 0.010 0.007 0.015
(0.014) (0.014) (0.014) (0.014) (0.014) (0.014) (0.013)

30≤ Max temp <35 0.026∗ 0.020 0.020 0.026∗ 0.022 0.008 0.018
(0.014) (0.014) (0.013) (0.014) (0.016) (0.018) (0.015)

35≤ Max temp <40 0.034∗ 0.027 0.032∗ 0.034∗ 0.040∗∗ 0.021 0.034∗

(0.018) (0.019) (0.019) (0.018) (0.019) (0.022) (0.019)

40≤ Max temp 0.056∗∗∗ 0.050∗∗∗ 0.053∗∗∗ 0.056∗∗∗ 0.071∗∗∗ 0.042 0.062∗∗

(0.018) (0.017) (0.017) (0.018) (0.026) (0.030) (0.027)
Observations 59,621 59,621 59,621 59,621 59,621 39,883 59,621

Individual controls N Y Y Y N Y Y
Household controls N N Y Y N Y Y
Financial controls N N N Y N Y Y
Weather controls N N N N Y Y Y
Job FEs N N N N N Y N
Year FEs Y Y Y Y Y Y Y
District-month FEs Y Y Y Y Y Y Y

Notes: Dependent variable is number of days that a worker has been unable to work in 30 days prior to the interview date. Tem-
perature variables are count of hot days in each of the corresponding bins. Reference category is the 20 to 25 ◦C bin. Standard
errors clustered on district in parentheses. See notes to Table 2 for full list of controls. Each specification contains controls as
indicated. ∗ significant at 10% ∗∗ significant at 5% ∗∗∗ significant at 1%.
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Table 5: Geography

(1) (2) (3) (4) (5) (6) (7) (8)
Count of hot days (2010-2012) Climate zone

Preferred 20-60 60-100 +100 Arid Montana Humid Subtropical
Temperature 0.071∗∗∗ 0.283∗∗∗ 0.062∗∗ 0.045 0.080∗∗∗ -0.117 0.162∗∗ 0.081∗

(0.021) (0.066) (0.026) (0.047) (0.027) (0.086) (0.063) (0.042)
Observations 59,621 5,927 35,916 7,258 15,676 3,722 15,990 11,469

Notes: Dependent variable is number of days that a worker has been unable to work in 30 days prior to the interview date.
Standard errors clustered on district in parentheses. See notes to Table 2 for full list of controls. Column 1 coincides with col-
umn 7 from Table 2, our preferred specification. Columns 2, 3 and 4 run our preferred specification on subsample of districts
that their annual number of hot days from 2010 to 2012 are between 20 to 60, 60 to 100 and more than 100. Columns 5, 6,
7 and 8 run our preferred specification on states that are located in arid, Montana, humid and subtropical climate zones. ∗

significant at 10% ∗∗ significant at 5% ∗∗∗ significant at 1%.
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Table 6: Heterogeneity

Type of work
(1) (2) (3) (4) (5) (6) (7) (8)

Preferred Age Sex Agriculture Construction Office Electricity Unique task
Temperature 0.071∗∗∗ 0.068∗∗∗ 0.064∗∗∗ 0.059∗∗ 0.061∗∗∗ 0.057∗∗ 0.059∗∗ 0.059∗∗

(0.021) (0.021) (0.021) (0.023) (0.023) (0.023) (0.023) (0.023)

Age (<20) × Temp - -0.011 - - - - - -
- (0.009) - - - - - -

Age (>60) × Temp - 0.023∗∗∗ - - - - - -
- (0.009) - - - - - -

Female × Temp - - 0.017∗∗∗ - - - - -
- - (0.004) - - - -

Agriculture × Temp - - - -0.005 - - - -
- - - (0.004) - - - -

Construction × Temp - - - - 0.013∗∗ - - -
- - - - (0.005) - -

Office × Temp - - - - - -0.018∗∗ - -
- - - - - (0.008) - -

No electricity × Temp - - - - - - -0.001 -
- - - - - - (0.007) -

Unique task × Temp - - - - - - - -0.006
- - - - - - - (0.009)

Observations 59,621 59,621 59,621 39,883 39,883 39,883 39,883 39,883
Individual controls Y Y Y Y Y Y Y Y
Household controls Y Y Y Y Y Y Y Y
Financial controls Y Y Y Y Y Y Y Y
Weather controls Y Y Y Y Y Y Y Y
Job FEs N N N N N N N N
Year FEs Y Y Y Y Y Y Y Y
District-month FEs Y Y Y Y Y Y Y Y
Interaction terms N Age Female Agriculture Construction Office No electricity Unique task

Notes: Dependent variable is number of days that a worker has been unable to work in 30 days prior to the interview date. Column 1 coincides
with column 7 from Table 2, our preferred specification. See notes to Table 2 for full list of controls. In each column, interaction terms are the
specified dummy (which is 1 if respondent characteristics falls into that category, zero otherwise) times count of hot days. Standard errors clustered
on district in parentheses. ∗ significant at 10% ∗∗ significant at 5% ∗∗∗ significant at 1%.
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Table 7: Adaptation

Electricity Cooling Water
(1) (2) (3) (4) (5) (6) (7)

Preferred Connection Quality Ownership Ownership Piped Quality
Temperature 0.071∗∗∗ 0.081∗∗∗ 0.073∗∗∗ 0.071∗∗∗ 0.060∗∗∗ 0.067∗∗∗ 0.081∗∗∗

(0.021) (0.023) (0.022) (0.021) (0.017) (0.021) (0.022)

Electricity × Temp - -0.017∗∗ - - - - -
- (0.008) - - - - -

Electricity quality × Temp - - -0.010∗ - - - -
- - (0.006) - - - -

Cooling × Temp - - - -0.008∗ - - -
- - - (0.004) - - -

Hot × Cooling × Temp - - - - -0.009∗∗ - -
- - - - (0.005) - -

Piped water × Temp - - - - - -0.004 -
- - - - - (0.005) -

Adequate water × Temp - - - - - - -0.011
- - - - - - (0.008)

Observations 59,621 59,621 59,621 59,621 59,621 59,621 59,621
Individual controls Y Y Y Y Y Y Y
Household controls Y Y Y Y Y Y Y
Financial controls Y Y Y Y Y Y Y
Weather controls Y Y Y Y Y Y Y
Job FEs N N N N N N N
Year FEs Y Y Y Y Y Y Y
District-month FEs Y Y Y Y Y Y Y
Interaction terms N Electricity Hours per day Cooling Hot × Cooling Piped Adequate

Notes: Dependent variable is number of days that a worker has been unable to work in 30 days prior to the interview date. Column 1 coincides with
column 7 from Table 2, our preferred specification. See notes to Table 2 for full list of controls. In each column, the interaction term is the specified
dummy times count of hot days. Dummies are defined as follows: Column 2 an indicator that takes value 1 for electricity connection, zero otherwise.
Column 3 an indicator that takes value 1 if the household has electricity supply at least 12 hours per day, zero otherwise. Column 4 an indicator that
takes value 1 if the household reports ownership of an air conditioner or air cooler, zero otherwise. Column 5 cooling ownership indicator times a dummy
that takes value 1 if count of hot days is on average more than 76 (median), zero otherwise. Column 6 an indicator that takes value 1 if household has
piped water. Column 7 an indicator that takes value 1 if household has normally adequate water supply, zero otherwise. ∗ significant at 10% ∗∗ significant
at 5% ∗∗∗ significant at 1%.
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Table 8: Alternative heat metrics

(1) (2) (3) (4) (5)
Preferred Preferred >95 >105 Heat
(count) (average) Index

Temperature 0.071∗∗∗ 0.125∗∗ 0.068∗∗∗ 0.090∗∗∗ -
(0.021) (0.049) (0.035) (0.026) -

HI - - - - 0.146∗∗∗

- - - - (0.038)
Observation 59,621 59,621 59,621 59,621 59,621

Notes: Dependent variable is number of days that a worker has been unable to
work in 30 days prior to the interview date. Standard errors clustered on district
in parentheses. See notes to Table 2 for full list of controls. Column 1 coincides
with column 7 from Table 2, our preferred specification. Column 4 repeats col-
umn 7 from Table 3. Column 3 and 4 estimate the preferred specification replac-
ing temperature with count of hot days when maximum temperature exceeds 95
and 105◦F. Column 5 replaces temperature with heat index. ∗ significant at 10%
∗∗ significant at 5% ∗∗∗ significant at 1%.
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Figures
Figure 1: Variation in treatment

Notes: The upper panel of this figure plots counts of hot days in 30 days prior to the interview date,
excluding zero. The second panel depicts density of 30 days average daily maximum temperature.The
lower panel plots average number of respondents in each temperature bin for the period of 2011-2012.
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Figure 2: Nonlinear estimates

Notes: This figure shows estimated impact of temperature on inability to work relative to a day
when maximum daily temperature is between 20 to 25◦C. The solid line reports 7 coefficient estimates
with circle markers being the effect of a single day in each of the corresponding bins, relative to the
effect of a day between 20 to 25◦C. Dash line represents 95% confidence interval based on standard
errors clustered on district. Regression includes individual, household, financial and weather controls.
Year and district-month dummies are included in the regression. All weather covariates are 30 day
average. See notes to Table 2 for full list of controls.
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A Appendix

Table A.1: Randomization test

(1) (2) (3) (4) (5) (6) (7) (8) (9)
No response Income Assets Number of Sex Electricity Electricity Water Cooling

persons quality quality ownership
Temperature 0.005 -5863.579 -0.192 0.096 -0.000 -0.000 0.128 0.000 0.011∗∗

(0.008) (3640.078) (0.917) (0.060) (0.000) (0.000) (0.161) (0.000) (0.005)
Observation 62,071 59,621 59,621 59,621 59,621 59,621 59,621 59,621 59,621

Notes: Standard errors clustered on district in parentheses. See notes to Table 2 for full list of controls. All regressions have the same speci-
fication as our preferred but with different outcome variable in each column. The outcome variable in column 1 is a dummy that takes value
1 if the respondent does not provide an answer to the question of our interest, zero otherwise. Households income is the outcome variable in
column 2. Column 3 estimates the effect of temperature on households total assets. Column 4 estimates the effect of temperature on the num-
ber of persons in a household. In column 5 the outcome variable is a dummy that takes value 1 if the respondent is a female, zero otherwise.
In column 6 the outcome variable is an indicator for household’s electricity connection. In column 7 the outcome variable is a dummy taking
value 1 if the household has more than 12 hours electricity connection per day, zero otherwise. In column 8 the outcome variable is a dummy
that takes value 1 if the household has adequate water supply, zero otherwise. In column 9, the outcome variable is an indicator for household’s
cooling (AC or cooler) ownership. ∗ significant at 10% ∗∗ significant at 5% ∗∗∗ significant at 1%.
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Table A.2: Alternative estimation

(1) (2) (3) (4)
Preferred OLS Negative Zero-inflated

binomial poisson
Temperature 0.071∗∗∗ 0.008∗∗∗ 0.080∗∗∗ 0.149∗∗∗

(0.021) (0.002) (0.025) (0.032)
Observation 59,621 59,621 59,621 59,621

Notes: Dependent variable is number of days that a worker has been unable
to work in 30 days prior to the interview date. Standard errors clustered
on district in parentheses. See notes to Table 2 for full list of controls. Col-
umn 1 coincides with column 7 from Table 2, our preferred specification.
In columns 2, 3 and 4 we re-estimate preferred specification using OLS,
negative binomial and zero-inflated Poisson methods. ∗ significant at 10%
∗∗ significant at 5% ∗∗∗ significant at 1%.
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Table A.3: Adaptation: No financial controls

Electricity Cooling Water
(1) (2) (3) (4) (5) (6) (7)

Preferred Connection Quality Ownership Ownership Piped Quality
Temperature 0.071∗∗∗ 0.090∗∗∗ 0.075∗∗∗ 0.075∗∗∗ 0.064∗∗∗ 0.070∗∗∗ 0.085∗∗∗

(0.021) (0.022) (0.022) (0.021) (0.017) (0.022) (0.022)

Electricity × Temp - -0.017∗∗ - - - - -
- (0.008) - - - - -

Electricity quality × Temp - - -0.001 - - - -
- - (0.006) - - - -

Cooling × Temp - - - -0.015∗∗∗ - - -
- - - (0.004) - - -

Hot × Cooling × Temp - - - - -0.016∗∗∗ - -
- - - - (0.005) - -

Piped water × Temp - - - - - -0.006 -
- - - - - (0.007) -

Adequate water × Temp - - - - - - -0.012
- - - - - - (0.008)

Observations 59,621 59,621 59,621 59,621 59,621 59,621 59,621
Individual controls Y Y Y Y Y Y Y
Household controls Y Y Y Y Y Y Y
Financial controls N N N N N N N
Weather controls Y Y Y Y Y Y Y
Job FEs N N N N N N N
Year FEs Y Y Y Y Y Y Y
District-month FEs Y Y Y Y Y Y Y
Interaction terms N Electricity Hours per day Cooling Hot × Cooling Piped Adequate

Notes: Dependent variable is number of days that a working individual has been unable to work in 30 days prior to the interview date. This table repeats
the same exercise as Table 7 but excludes financial controls.
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Table A.4: Rain

(1) (2) (3) (4) (5) (6) (7)
Preferred <0.5 <1 <2 <3 <4 <5

Temperature 0.071∗∗∗ 0.081∗∗∗ 0.083∗∗∗ 0.090∗∗∗ 0.084∗∗∗ 0.083∗∗∗ 0.078∗∗∗

(0.021) (0.025) (0.026) (0.026) (0.026) (0.025) (0.025)
Observations 59,621 29,232 33,786 39,076 41,806 43,800 44,990

Notes: Dependent variable is number of days that a working individual has been unable to work in 30
days prior to the interview date. Standard errors clustered on district in parentheses. See notes to Table
2 for full list of controls. Column 1 coincides with column 7 from Table 2, our preferred specification.
Column 2 through 7 estimate the preferred specification on respondents whose average of precipitation
in 30 days prior the interview date is less than 0.5 mm, 1 mm, 2 mm, 3 mm, 4 mm and 5 mm. ∗ signif-
icant at 10% ∗∗ significant at 5% ∗∗∗ significant at 1%.
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Table A.5: Alternative standard errors

(1) (2) (3) (4) (5) (6) (7) (8) (9)
District District State and District and Climate zone Year-month Eicker-White Conley Conley
preferred and date year year and month 15 mi 250 mi

Temperature 0.071∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.071∗∗∗ 0.071∗∗∗

(0.021) (0.021) (0.003) (0.002) (0.011) (0.008) (0.016) (0.016) (0.020)
Observation 59,621 59,621 59,621 59,621 59,621 59,621 59,621 59,621 59,621

Notes: Dependent variable is number of days that a working individual has been unable to work in 30 days prior to the interview date. See notes to
Table 2 for full list of controls. Column 1 coincides with column 7 from Table 2, our preferred specification. Standard errors in parentheses are two-way
clustered on district and date in column 2, state and year in column 3, district and year in column 4 and climate zone and month in column 5. Stan-
dard errors in parentheses are clustered on year-month in column 6. Eicker-White standard errors reported in parentheses in column 7. Conley robust
standard error with 15 and 250 miles distance cut-off and 5 days lag are in columns 8 and 9. ∗ significant at 10% ∗∗ significant at 5% ∗∗∗ significant at 1%.
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Table A.6: Placebos

(1) (2) (3) (4)
Base +100 days -100 days Furthest

Temperature 0.071∗∗∗ 0.000 0.009 0.044
(0.021) (0.008) (0.006) (0.059)

Observation 59,621 59,621 59,621 59,621

Notes: Dependent variable is number of days that a working individual has been
unable to work in 30 days prior to the interview date. Standard errors clustered
on district in parentheses. See notes to Table 2 for full list of controls. Column 1
coincides with column 7 from Table 2, our preferred specification. Columns 2 and
3 falsely-assign temperature from 100 days after and before interview date. Col-
umn 4 assigns temperature farthest from the district of a working individual. ∗

significant at 10% ∗∗ significant at 5% ∗∗∗ significant at 1%.
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