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SUMMARY
Many viruses cause both lytic infections, where they release viral particles, and dormant infections, where
they await future opportunities to reactivate.1 The benefits of each transmission mode depend on the density
of susceptible hosts in the environment.2–4 Some viruses infecting bacteria use molecular signaling to
respond plastically to changes in host availability.5 These viruses produce a signal during lytic infection
and regulate, based on the signal concentration in the environment, the probability with which they switch
to causing dormant infections.5,6 We present an analytical framework to examine the adaptive significance
of plasticity in viral life-history traits in fluctuating environments. Our model generalizes and extends previous
theory7 and predicts that host density fluctuations should select for plasticity in entering lysogeny as well as
virus reactivation once signal concentrations decline. Using Bacillus subtilis and its phage phi3T, we exper-
imentally confirm the prediction that phages use signal tomake informed decisions over prophage induction.
We also demonstrate that lysogens produce signaling molecules and that signal is degraded by hosts in a
density-dependent manner. Declining signal concentrations therefore potentially indicate the presence of
uninfected hosts and trigger prophage induction. Finally, we find that conflict over the responses of lysoge-
nization and reactivation to signal is resolved through the evolution of different response thresholds for each
trait. Collectively, these findings deepen our understanding of the ways viruses use molecular communica-
tion to regulate their infection strategies, which can be leveraged to manipulate host and phage population
dynamics in natural environments.
RESULTS AND DISCUSSION

When susceptible hosts are plentiful, lytic phage replication max-

imizes thespreadof thevirus through thehostpopulation,whereas

lysogeny allows continued replication at each cell division, even in

the complete absence of available hosts.8–10 The ability to switch

between these different infection strategies should therefore be

favored when host availability fluctuates, as is, for example, the

case over the course of a phage epidemic due to host lysis.1–3Ba-

cillus phages encoding the arbitrium system respond tomolecular

signals produced during recent infections, switching from lytic to

lysogenic replication when the likelihood of finding and success-

fully infecting another susceptible host is diminished. To examine

analytically when this signaling-dependent plasticity in the lysis-

lysogeny decision is adaptive, we constructed a mathematical

model for the dynamics of a temperate phage that produces and

responds to signaling peptides. We use this model to establish

when temperate phages should evolve to respond to changes in

signal concentration, and whether they should not only regulate

the transition from lysis to lysogeny but also the transition from

lysogeny to lysis (prophage induction).11

First, we generated an epidemiological model (see STAR

Methods for details) of a well-mixed bacterial population made
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up of susceptible cells, lysogenic cells, and free virus particles.

Our model assumes that the influx of susceptible cells may

vary with time, and we allow lysogenization and reactivation

rates to be functions of the concentration of arbitrium in the envi-

ronment. This model thus tracks the densities of bacteria (unin-

fected and lysogens), phages (free phage and lysogens), and

signal concentrations. We then use this framework to under-

stand and predict how the response of phages to arbitrium sig-

nals will evolve. Specifically, we determine the fate of viral mu-

tants with altered lysogeny or prophage induction in response

to changes in signal concentration in a fluctuating environment.

This evolutionary analysis shows that the selection for themutant

varies with the availability of susceptible cells in the environment

(see STAR Methods for details). Crucially, we show that the di-

rection of selection for lysogeny and for reactivation is governed

by the difference between the time-varying reproductive values

of the virus in the different states of its life cycle (as a prophage

in a lysogen or as a virus particle): when the reproductive value of

a prophage is higher than the reproductive value of B virus par-

ticles (where B is the burst size of the virus), lysogeny is favored

and reactivation is disfavored. This simple and intuitive condition

can be used to recover the results of earlier theoretical analysis in

constant environments.10 But this condition is particularly useful
vember 22, 2021 ª 2021 The Authors. Published by Elsevier Inc. 1
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Figure 1. Coevolutionary stable strategies for reactivation and

lysogenization

In a theoretical evolutionary model (see STAR Methods for details), fluctuating

concentrations of signaling peptide select for plasticity in both lysogeny and

reactivation. The joint evolution of these two traits is expected to yield very

different reaction norms with arbitrium concentration. See also Figures S1–S3.
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to examine the evolution of the virus in fluctuating environ-

ments.12 In agreement with a previous model,7 this analysis

confirms that plasticity in lysogenization induction in response

to increases in arbitrium signal concentrations can be adaptive

but only when there is fluctuation in host availability in the envi-

ronment. Crucially, our theory also predicts that it can be adap-

tive for phage to evolve plasticity in prophage induction in

response to decreases in arbitrium signal concentrations but

again only when host availability in the environment fluctuates

(see STAR Methods for details).

Given that the model predicts that two traits of the phage,

lysogenization and prophage induction, would evolve jointly in

response to arbitrium signaling, we analyzed the ultimate coevo-

lutionary outcomes between these traits (see STAR Methods

for details). This analysis shows that, in a stable coevolutionary

outcome, prophage induction and lysogenization respond in

opposite ways to arbitrium, and, crucially, the threshold concen-

tration of arbitrium that triggers induction is much lower than the

one that triggers lysogenization (Figure 1). The evolution of dia-

metrically different response thresholds allows phages in either

state to switch modes of transmission only when it is most ad-

vantageous: infectious phage particles avoid lysogenization at

the low signal concentrations experienced when susceptible

hosts are likely still available, while prophages avoid induction

when signal indicates a high risk of not finding a new host. In

addition, the evolution of distinct arbitrium concentration thresh-

olds at which these transitions occur ensures that lysogens are

stably maintained across a broader range of arbitrium

concentrations.

To experimentally test the model prediction that prophage re-

activation is regulated by arbitrium signaling, we first measured

prophage induction in the presence or absence of synthetic

signal from Bacillus subtilis strain 168 lysogenized with phage

phi3T, which is one of the best studied models of the arbitrium

signaling system.5,6,13,14 We cultured phi3T lysogens in LB or

LB supplementedwith synthetic signaling peptide and quantified

prophage reactivation. We found that prophage reactivation was

significantly reduced in lysogens exposed to synthetic signal

relative to those that were not (F1,10 = 104.9; p % 0.0001;
2 Current Biology 31, 1–6, November 22, 2021
Figure 2A). We hypothesized that the genes responsible for regu-

lating prophage induction in response to arbitrium signaling

would be the same as those responsible for the regulation of

lysogenization in response to arbitrium. The phi3T arbitrium sys-

tem is composed of 3 genes: aimR encodes the signal receptor

that activates aimX expression in its signal-free form; aimP en-

codes the signal; and aimX encodes a non-coding RNA that sup-

presses lysogeny.5,6,13 To test our hypothesis, we first repeated

the same experiment using phi3TAimR-N202A lysogens, which

carry a single amino acid substitution in the signal receptor

(aimR) that makes it unable to respond to signal.14 We found

that addition of signaling peptide caused no significant reduction

in phi3TaimR-N202A lysogens (F1,10 = 0.5656; p = 0.469; Figure 2A).

These results demonstrate that prophage induction is respon-

sive to the presence of signaling peptides as predicted by our

model and that the aimR protein is responsible for signal detec-

tion in the prophage state.

To test for the involvement of the other arbitrium genes, we

generated all possible single-deletion mutants and a triple-dele-

tion mutant and compared reactivation of mutant prophages

to wild-type (WT) phi3T lysogens. We found deletion of the

signaling system or its constituent parts had a significant impact

on prophage reactivation relative toWT phi3T (F4,25 = 116.9; p%

0.0001; Figure 2B). Deletion of aimR, the peptide receptor, and

aimX, the negative regulator of lysogeny, reduced reactivation

from the prophage state relative to phi3T, as did deleting the

entire signaling system. Interestingly, deleting aimP, the signal

peptide producer, increased prophage reactivation relative to

phi3T, suggesting that signaling peptide may be produced by ly-

sogens and this may influence prophage reactivation. These ob-

servations are consistent with the previously described roles of

aimR, aimP, and aimX in regulating the transition from lytic to

lysogenic replication,5,6,13 with aimX acting as the negative regu-

lator of lysogeny. To further corroborate this result, we tested

whether aimX expression drives reactivation and lysis in the pro-

phage state using ectopic expression of aimX from the bacterial

host. We found that inducing aimX expression from the host

significantly increased prophage reactivation relative to unin-

duced hosts (F1,10 = 268.6; p% 0.0001; Figure 2C). Collectively,

these results demonstrate that the arbitrium signaling genes,

aimPRX, not only play a role in lysogenization but also in the pro-

phage reactivation process.

Our model also predicts that phage should evolve different

response thresholds for lysogenization and prophage induction

(Figure 1). To experimentally test how signal concentrations

shape the lysis-lysogeny decision during infection, we resus-

pended log-phase Bacillus subtilis cells in LB media supple-

mented with synthetic signaling peptide ranging from 0 nM to

500 nM and quantified lysogen formation following infection

with a non-signal-producing phagemutant to exclude signal pro-

duction by the phage as a confounding factor. Consistent with

earlier work,5 we found that signal concentration significantly

impacted lysogen formation (F6,21 = 10.55; p = 1.57 3 10�5)

and that this was driven by significant increases in lysogen for-

mation at 250 nM (t = 4.997; p = 6.03 3 10�5) and 500 nM

(t = 4.497; p = 0.0002) concentrations of signaling peptide

(Figure 3A). Next, we quantified prophage reactivation from

non-signal-producing lysogens in LB media supplemented with

between 0 nM and 500 nM of signaling peptide. We found that



Figure 2. The arbitrium system modulates prophage reactivation

(A) Plaque-forming units (PFUs) produced by prophage reactivation from phi3T (wild-type) and phi3TaimR-N202A (signal non-responder) lysogens in the presence

(1,000 nM) or absence of signaling molecules (12 h growth in LB).

(B) phi3T receptor (DaimR), signal production (aimR), lysogeny regulator (DaimX), and arbitrium system (DaimRPX) deletion mutants (18 h growth in LB in the

absence of synthetic signal).

(C) phi3TDaimP (signal non-producer) lysogens of hosts carrying the aimX gene under the control of a xylose promoter in LB containing 0% xylose (uninduced) or

0.2% xylose (induced). n = 6 in all treatments. Error bars represent standard error.
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increasing signal concentration decreases prophage reactiva-

tion (F6,35 = 226.8; p% 2.23 10�16) and that even 5 nM of signal

peptide was enough to significantly decrease prophage reacti-

vation (t = �19.23; p % 2 3 10�16; Figure 3B). Together, these

results support the predictions of our model, demonstrating

that high concentrations of signaling peptide promote the switch

to lysogeny during lytic infection and that prophages only revert

back to lytic replication at very low concentrations of signal.

Our model predicts, and our experimental work confirms, that

prophage reactivation is responsive to the presence of signaling

peptides. Yet what information is provided by the signal is un-

clear and will depend on the dynamics of signal production

and decay.15 In the model, we assumed that infected cells pro-

duce signal during both lytic5 and lysogenic replication and

that signal decay is dependent on the total host density. Under

those assumptions, the net signal concentration provides amea-

sure of the epidemiological status of the population. Consistent

with those ideas, we observed that deletion of aimP, the signal

peptide producer, increased prophage reactivation relative to

phi3T, suggesting that signaling peptide may be produced by

lysogens and this may influence prophage reactivation (Fig-

ure 2B). To test this hypothesis, we quantified prophage induc-

tion in lysogens grown in the spent media from unlysogenized
BEST7003 cultures and phi3T and phi3TDaimP lysogens (Fig-

ure 4A). We found that spent media from phi3T lysogens signif-

icantly reduced prophage reactivation relative to spent media

from uninfected BEST7003 (t = �5.21; p = 0.0006), whereas

prophage induction in spent media from signal non-producer

phi3TDaimP was not significantly different (t = 0.728; p =

0.484). As these lysogens differed only in the presence or

absence of the signal peptide producer gene aimP, these results

suggest that lysogenic as well as lytic5 infections contribute to

signal production.

To explore the durability of the signaling peptide, we quantified

signal decay across different environmental conditions. We sup-

plemented LB media with 1,000 nM signaling peptide and quan-

tified signal concentration over time in the absence of bacteria.

We found no significant decrease in signal concentration over

72 h (F1,7 = 5.4833 10�28; p = 1; Figure S4A). These data corrob-

orate previous anecdotal evidence that signal is durable and

suggest that the signaling peptide is unlikely to act solely as an

indicator of recent infections.5 To investigate whether signal

can be decayed by the activity of hosts, we grew Bacillus subtilis

in LB media supplemented with signaling peptide to 1,000 nM

and quantified the signal concentration of spent media extracted

after 18 h of growth. To explore potential mechanisms of signal
Figure 3. Infection and prophage signal re-

sponses

(A) Lysogen formation from BEST7003 cultured in

LB with increasing concentrations of signaling

peptide and infected with phi3TDaimP(spc) at

MOI = 0.1 (40-min infection, n = 4).

(B) PFUs produced by prophage reactivation from

phi3TDaimP(spc) (signal negative) lysogens

cultured in LB with increasing concentrations of

signaling peptide (8 h growth, n = 6). Error

bars represent standard error.

Current Biology 31, 1–6, November 22, 2021 3



Figure 4. Signal production, durability, and decay

(A) Prophage induction in spent media of uninfected BEST7003, phi3TDaimP lysogens, and phi3T lysogens (n = 4).

(B) The durability of signaling peptides was quantified under different conditions: spent media of Bacillus subtilis BEST7003 extracted from early (3 h) low-density

(�0.3) cultures and late (8 h) high-density (�1.8) cultures, supplemented with signaling peptide to 1,000 nM and incubated for 12 h. Signal decay was calculated

by comparing initial and final signal concentrations. Signal concentrations were calculated using BEST7003:RPXgfp (a signal reporter containing the phi3T

AimR-AimP-AimX locus genetically fused to a fluorescent reporter gene) and a calibration curve constructed using spent media supplemented with known

concentrations of signaling peptide (n = 4; see STAR Methods for details). Error bars represent standard error.

(C) Conceptual model of lysis and lysogeny and prophage induction as a function of signal production and decay. Lysogenic and lytic infections5 produce signal

that is decayed at high cell densities. At high lysogen densities, constitutive signal production maintains the prophage state. An influx of susceptible cells, or

invasion of a susceptible population, rapidly decays signal, triggering prophage induction. Subsequent lytic infections remove susceptible hosts from the

population, increasing signal concentrations and triggering the switch to lysogeny.

See also Figures S4A and S4B.
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degradation, we used both the Bacillus subtilis strain 3610 and

the isogenic 3610DoppD mutant, which carries a loss-of-func-

tion mutation in the oligopeptide permease ABC transporter

that is responsible for internalizing the signaling peptide.16 We

found that both strains decayed the signal and that there was

no significant difference in the decay caused by either strain

(F1,4 = 0.03552; p = 0.8597; Figure S4B). These results do not

rule out the possibility that signal peptides are decayed intracel-

lularly but suggest that extracellular decay does occur.

To determine whether signal can be decayed by secreted

extracellular products, we extracted spent media from Bacillus

subtilis after 3 h (relatively low density) and after 8 h growth (rela-

tively high density) in LBmedia and quantified signal degradation

caused by the spent media. We found that high-density spent

media caused significant signal decay (t = �12.111; degree

of freedom [df] = 3; p = 0.0012), whereas spent media from

low-density cultures did not (t = �1.2244; df = 3; p = 0.3082;

Figure 4B). These results confirm that the signaling peptide pro-

duced by phi3T is decayed by extracellular products produced

by its Bacillus subtilis host and that decay is host density

dependent.

Our model predicts that prophages should avoid induction

when signal is present, as lysis is only advantageous when sus-

ceptible hosts are available. The production of signaling pep-

tide by lysogens and the decay of signal at high host densities

provides a potential mechanism by which prophages can

gauge whether they are surrounded by susceptible or lysoge-

nized hosts and adjust their transmission strategy accordingly.

Although the mechanism of signal decay remains to be deter-

mined, it is possible that this is caused by secreted proteases

that are produced by Bacillus subtilis. A major serine protease,

and a metalloprotease, encoded by the apr and npr genes,

respectively, have been reported to account for �95% of its
4 Current Biology 31, 1–6, November 22, 2021
extracellular protease activity.17 These secreted products are

both indirectly regulated by the comX quorum-sensing system

and are capable of degrading signaling peptides.18,19 Due to

their indirect regulation by the comX quorum-sensing system,

extracellular proteases are produced and secreted mostly at

high cell densities.18,19 Our data suggest that, if lysogenized

cells make up a minority of a dense host population, signal con-

centrations will rapidly decline, triggering prophage reactiva-

tion. Conversely, constitutive signal production by lysogens

may prevent reactivation when prophages are surrounded by

already lysogenized hosts. In this way, prophage induction

would be limited to conditions that correlate with the availability

of high densities of susceptible hosts (Figure 4C). Evidence that

dormant viruses and other mobile genetic elements infer infor-

mation on host availability from their environment is becoming

increasingly common: multiple temperate phages are known to

monitor their hosts’ quorum-sensing systems in order to opti-

mize their lysis-lysogeny decisions,20–24 while the integrative

and conjugative element ICEBs1 of Bacillus also uses its own

Rap/Phr signaling system to limit excision and transfer until

the host is surrounded by a high density of cells lacking

ICEBs1.25

We have shown, theoretically and experimentally, that

temperate phages use the arbitrium molecular signaling system

to optimize both lysis-lysogeny and prophage induction deci-

sions. By responding to the concentration of signal in the envi-

ronment, and using different response thresholds for lysogeny

and reactivation, they are able to choose the transmission strat-

egy that maximizes the number of new infections in a given envi-

ronment. Our results add to growing evidence that temperate

viruses use biotic and abiotic cues to modulate their infection

strategies and that this plasticity is evolutionarily beneficial in un-

certain environments.
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Data and code availability
Data have been deposited at the Dryad data repository and are publicly available as of the date of publication. DOIs are listed in the

Key resources table.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Bacillus subtilis 168, BEST7003, 3610 and 3610DoppD were obtained from the Bacillus Genetic Stock Centre (BGSC). All phage

used in this study are derivatives of the wild-type phi3T, also obtained from the BGSC. phi3TDaimP(spc) (a mutant replacing the

aimP gene with a spectinomycin resistance cassette5), Bacillus subtilis BEST7003:aimX (strain expressing aimX under the control

of a xylose promoter5), and Bacillus subtilis BEST7003:RPXgfp (a signal reporter containing the phi3T AimR-AimP-AimX locus

genetically fused to a fluorescent reporter gene (gfp) and inserted into the amyE locus) were obtained from Rotem Sorek at the

Weizmann Institute of Science. All infections were carried out LB media. Strains were cultured in either 6ml of LB media in a

30ml glass universal vial or 1.5ml of LB media in a 24-well plate at 37�C and shaking at 200rpm. Antibiotics were used as follows

unless otherwise stated: kanamycin (5 mg/mL) and spectinomycin (100mg/mL). All bacterial and bacteriophage strains used are

listed in the Key resources table.

METHOD DETAILS

Epidemiological Model
We model the epidemiological dynamics of a well-mixed population of bacteria infected by a temperate phage to track the density

of susceptible cells, SðtÞ, lysogenic cells, LðtÞ, and free virus particles VðtÞ (see Table S1 for the list of dynamical variables and

parameters of the model). We assume there is a temporally variable influx qðtÞ of susceptible cells in the bacterial population.

Both susceptible and lysogenic cells have a per-capita birth rate rð1 � kNðtÞÞ, where NðtÞ=SðtÞ+ LðtÞ is the total density of the

bacterial population and k measures intraspecific competition. Susceptible and lysogenic cells have a per-capita death rate d.

Free virus particles adsorb to bacterial cells at rate a and they suscessfully infect susceptible cells with probability b. Successful

infection may either result in lysogenisation of the cell with probability f, or, with probability 1� f, to lysis. Upon lysis, B virus

particles are produced and virus particles have a per-capita death rate dV . Lysogenic bacteria may also produce virus particles

when the prophage reactivates at rate a and induces lysis. This yields the following dynamical equations (we drop dependence to

time below for readability):

_S = q+ rSð1� kNÞ � ðabV + dÞS
_L = rLð1� kNÞ+ abfVS� ða + dÞL
_V = abð1�fÞBVS+aBL� ðaN + dV ÞV
Crucially we allow the lysogenisation and reactivation rates to be functions of the concentration A of arbitrium in the environment

(fðAÞ and aðAÞ, respectively). Arbitrium is produced upon phage lysis at rate pV and by lysogens at rate pL. Arbitrium degrades at

a constant rate dA but also because of the uptake by bacterial cells in the environment, which yields:

_A = pVabVS+pLL� ðdA + dNÞA
Let us assume that the influx of susceptible cells is constant: qðtÞ = q0. The condition for a resident virus (with phenotypic traits

fð0Þ and að0Þ) to generate an epidemic can be derived from the calculation of the basic reproductive ratio R0 using the next-gen-

eration matrix method.2,27 Note that arbitrium is absent at this early stage of the epidemic because the concentration of arbitrium

builds up only after the successful emergence of the virus. The parasite life-cycle can be decomposed into the production of new

lysogenic bacteria (matrix F) and a matrix that captures all the other terms including mortality and transition to the free virus stage

(matrix V ):

F =

 
rð1� kS0Þ abfð0ÞS0

að0ÞB abð1� fð0ÞÞBS0

!

V =

 
að0Þ+d 0
0 aS0 +dV

!
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where S0 = ðr�d +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðr � dÞ2 + 4rkq0

q
Þ=2rk is the equilibrium density of susceptible bacteria before the introduction of the virus. The

matrix F gives the rates at which new individuals appear in the provirus or in the free virus stages. Thematrix V gives the rate at which

these individuals die. The basic reproduction ratio is the spectral radius of FV�1 which yields:

FV�1 =

 
X Zfð0Þ
YB Zð1� fð0ÞÞB

!

with:

X =
rð1� kS0Þ
að0Þ+d

Y =
að0Þ

að0Þ+d

Z =
abS0

aS0 +dV

The basic reproduction rate of the virus is:

R0 =
�
T +

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 � 4D

p �.
2

with T and D are the trace and determinant of FV�1. There are other ways to partition the transitions between classes and alternative

derivation of R0 can help disentangle the relative contribution of horizontal and vertical transmission rates of the virus3,8,9.

The above expression of R0 can be readily used to find that R0 > 1 (i.e., virus can generate an epidemic in a fully naive population)

when T � D > 1 which also yields:

abS0

aS0 +dV

>
1

fð0Þ+ ð1� fð0ÞÞ að0Þ
að0Þ+d�rð1�kS0Þ

Fluctuations in the environment can affect the ability of pathogens to invade fully naive populations28–30. In the absence of pathogens,

the host populations will settle on a periodic attractor. A full analysis of the stability of this disease-free attractor is beyond the scope

of this paper. In the remainder of this analysis, we assume that, after successful invasion of the pathogen, the host-pathogen inter-

action reaches an endemic attractor characterized by periodic fluctuations, and we ask how these fluctuations may affect the evo-

lution of pathogen traits.

Evolutionary Model
To understand and predict life-history evolution we need to determine the fate of viral mutations that affect the shape of the functions

(i.e., reaction norms) fðAÞ and aðAÞ. We thus have to determine the growth rate of a mutant after its appearance in a viral population

dominated by a wild-type genotype. Since the virus may appear in two distinct states, a prophage in lysogenic bacteria (L) or a virion

outside the cell (V ), we can use the following matrix to describe the dynamics of the mutant12:

Rm =

 
rð1� kNÞ � ðamðAÞ+dÞ abfmðAÞS
amðAÞB abð1� fmðAÞÞBS� ðaN+dVÞ

!

where the coefficients rij of the matrix Rm refer to the transition between a mutant virus in state i to a new state j. These transitions

depend on the birth and death rates of the bacteria but also on virus life-history strategies (lysogenisation and reactivation).

The selection on the mutant at time t is determined by the instantaneous selection gradient10,12:

SðtÞ =
X
i

X
j

viðtÞvrijðtÞ
vzm

����
zm = z

fjðtÞ

where viðtÞ is the individual reproductive value of a virus in class i and fjðtÞ is the frequency of the virus in class j. In other words, this

gradient measures the influence of a variation of the life-history trait zm induced by the mutation on one component of fitness (rij)

weighted by the ‘‘quantity’’ of the virus in class j and the ‘‘quality’’ of class i. This instantaneous selection gradient can help us to un-

derstand the fluctuations of selection in temporally variable environments and thus to study the evolution of viral plasticity.

The dynamics of class frequencies is given by:

_fL = fLðtÞðrð1� kNÞ� ðaðAÞ + dÞÞ+ fVðtÞabfðAÞS� rðtÞfLðtÞ

_fV = fLðtÞaðAÞB+ fVðtÞðabð1�fðAÞÞBS�ðaN + dV ÞÞ � rðtÞfVðtÞ
where rðtÞ = P

i

P
j

rijðtÞfjðtÞ.
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Similarly, the dynamics of individual reproductive values is given by:

_vL = � vLðtÞðrð1� kNÞ� ðaðAÞ + dÞÞ � vVðtÞaðAÞB+ rðtÞvLðtÞ
_vV = � vLðtÞabfðAÞS� vVðtÞðabð1�fðAÞÞBS�ðaN + dV ÞÞ+ rðtÞvV ðtÞ
Evolution of lysogenisation
Selection on lysogenisation is driven by the following gradient of selection (where z is the evolving trait that can affect the lysogeni-

sation rate f):

Sf;zðtÞ = ðvLðtÞ�BvV ðtÞÞvfmðAÞ
vzm

����
zm = z

abSðtÞfVðtÞ

In other words, selection for lysogenisation may vary with time and the direction of selection is governed by the difference between

the reproductive value vLðtÞ of a prophage and the reproductive value vVðtÞ of each of the B virions produced upon lysis. Figure S1

shows the temporal dynamics of the densities of the bacteria, the density of virus particles and the concentration of arbitrium. It is

important to note that the concentration of arbitrium increases when the density of susceptible cells start to drop. In other words, in

these conditions the concentration of arbitrium is carrying an indirect information regarding the diminution of the availability of sus-

ceptible cells. This is important information that can be used by the virus to optimize the timing of the switch driving the lysis-lysogeny

decision.

The long-term evolution of the shape of the reaction norm fðAÞ is driven by the integral of this instantaneous selection gradient over
a period of the fluctuation of the environment:

Sf;z = Sf;zðtÞ
where X = 1

T

Rt +T

t

XðtÞdt is the average over one period (T ) of the fluctuation of the environment.

Moving forward in the analysis of the evolution of lysogenisation requires an explicit function fmðAÞ and we use:

fmðAÞ = f0mð1�pmÞ+pmFmðAÞ
with

FmðAÞ = fmax

��
1 + e�lfðAðtÞ�AfÞ�

This function allows us to consider lysogenisation as a fixed strategy f0 when p= 0 (no plasticity) or as a conditional function (plastic

trait) where fmax is the maximal value of FmðAÞ, Af is the value of A where FmðAÞ=fmax=2 and lf is the slope of the function FmðAÞ
when A = Af.

Let us first consider the evolution of a fixed lysogenisation strategy (when p = 0) in a constant environment. When the influx of sus-

ceptible bacteria does not vary with time the selection on the trait f0 is given by Sf;f0
:

Sf;f0
fðbvL � bvVBÞab bSbf V

The sign of Sf;f0
is governed by the sign of ðbvL � bvVBÞ, where the hat symbol refers to the value of the dynamical variables at this

endemic equilibrium. We thus need to determine the reproductive values at this endemic equilibrium.

If R0 > 1 the system reaches an endemic equilibrium where rðtÞ= 0 and all the dynamical variables are fixed. The frequencies and

the reproductive values are also fixed and we can use _vL = 0 to show:

ðbvL � bvVBÞ =
�
r
�
1� k bN��d

� bvL

a
� bA�

In other words the sign of bvL � bvVB is given by the sign of rð1 � k bNÞ� d.

Since _S= 0 we know that:

r
�
1� k bN��d = ab bV � q0

.bS
The above expression means that if q0 = 0 then bvL � bvVB > 0. In other words, selection favors mutations that increase the rate of ly-

sogenisation toward a maximal value of f. Hence we recover the result of Wahl et al.10 who showed that evolution toward an inter-

mediate level of lysogeny (i.e., evolutionary stable f < 1) requires an influx of susceptible hosts. In our model we find that this influx of

susceptible cells has to be higher than a threshold: q0 > ab bV bS.
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Could an evolutionary stable fixed strategy be invaded by a plastic strategy? To answer this question we examine the situation

where we start from a situation where p= 0 and we want to know if a mutant with a higher value of p could invade. Using the

same fmðAÞ function defined above we show that:

Sf;pfðbvL � bvVBÞ
�
Fm

� bA��f0
�
�

where f0
� is the evolutionary stable lysogenisation ratewhenp = 0. If the virus adopts this evolutionary stable strategy and 0 < f0

� < 1

the individual reproductive values of the virus will verify bvL � bvVB= 0 and, consequently, Sf;p = 0. In other words, in a constant environ-

ment, if the virus has evolved toward the fixedevolutionary stable lysogenisation strategy there is no selection for plasticity. However,we

will see in thenext section thatamutation thataffectsplasticitycan invade thefixedevolutionarystable lysogenisationstrategybecausea

conditional strategy allows the virus to better cope with the periodic fluctuations of the environment.

In a fluctuating environment, we need to compute numerically the selection gradient Sf;f0
ðtÞ given above. In the absence of plas-

ticity (p = 0Þ the evolution of a fixed lysogenisation strategy f�
0 verifies the following condition:

CSf;f0
ðtÞD = CðvLðtÞ�BvV ðtÞÞabSðtÞfVðtÞD= 0

Can a mutant with a higher value of p invade? The selection gradient on the trait p is equal to:

CSf;pðtÞD = CðvLðtÞ�BvVðtÞÞabSðtÞfV ðtÞ
�
FmðAÞ�f�

0

�
D

Using CSf;f0
ðtÞD= 0 this selection gradient reduces to:

CSf;pðtÞD = CovðXfðtÞ;FmðAÞÞ
where:

XfðtÞ = ðvLðtÞ�BvVðtÞÞabSðtÞfV ðtÞ
In other words, selection for plasticity is governed by the sign of the covariance between the quantities XfðtÞ and FmðAÞ. Plasticity will

be selected for if the functions FmðAÞ can track the fluctuations of XfðtÞ and generate a positive covariance between XfðtÞ and FmðAÞ.
In particular we show that evolutionary stable plastic strategies typically evolve a positive value of lf, the slope of the function FmðAÞ
when FmðAÞ=fmax=2 (Figure S2). Figure S2 also shows that the evolutionary stable plastic strategy (whenwe allowAf to evolve freely)

can invade the fixed evolutionary stable strategy.

Evolution of reactivation
Similarly, the selection on reactivation is driven by the following gradient of selection (where z is the evolving trait that can affect the

reactivation rate a):

Sa;zðtÞ = ðBvV ðtÞ� vLðtÞÞvamðAÞ
vzm

����
zm = z

fLðtÞ

In other words, selection for reactivation may vary with time and the direction of selection is governed by the difference between the

reproductive value vVðtÞ of each of the B virions produced upon lysis and vLðtÞ the reproductive value of a prophage (note the oppo-

site sign between Sf;zðtÞ and Sa;zðtÞ). The long-term evolution of the shape of the reaction norm aðAÞ is driven by the integral of this

instantaneous selection gradient over a period of the fluctuation of the environment:

Sa;z = CSa;zðtÞD
Moving forward in the analysis of the evolution of reactivation requires an explicit function amðAÞ and we use:

amðAÞ = a0mð1�pmÞ+pmGmðAÞ
with

GmðAÞ = amax

��
1 + e�laðAðtÞ�AaÞ�

This function allows us to consider lysogenisation as a fixed strategy a0 when p= 0 (no plasticity) or as a conditional function (plastic

trait) where amax is the maximal value of GmðAÞ, Aa is the value of A where GmðAÞ=amax=2 and la is the slope of the function GmðAÞ
when A = Aa.

Let us first consider the evolution of a fixed lysogenisation strategy (when p = 0) in a constant environment. When the influx of sus-

ceptible bacteria does not vary with time the selection on the trait a0 is given by:

Sa;a0fðbvVB� bvLÞbf L
The sign of Sa;a0

is driven by the sign of ðbvVB � bvLÞ, where the hat symbol refers to the value of the dynamical variables at this endemic

equilibrium. We thus need to determine the reproductive values at this endemic equilibrium.
Current Biology 31, 1–6.e1–e7, November 22, 2021 e5



ll
OPEN ACCESS

Please cite this article in press as: Bruce et al., Regulation of prophage induction and lysogenization by phage communication systems, Current
Biology (2021), https://doi.org/10.1016/j.cub.2021.08.073

Report
Following the same argument as above for the evolution of lysogenisation we know that if q0 = 0 then bvVB� bvL < 0. In other words,

selection favors mutations that decrease the rate of reactivation a. In our model, we find that this influx of susceptible cells has to be

higher than a threshold for reactivation to evolve: q0 > ab bV bS.
Could an evolutionary stable fixed strategy be invaded by a plastic strategy? To answer this question we examine the situation

where we start from a situation where p= 0 and we want to know if a mutant with a higher value of p could invade. Using the

same amðAÞ function defined above we show that:

Sa;a0fðbvVB� bvLÞ
�
Gm

� bA��a0
�
�

where a0
� is the evolutionary stable lysogenisation ratewhenp = 0. If the virus adopts this evolutionary stable strategy and 0 < a0

� < 1

the individual reproductive values of the virus will verify bvVB� bvL = 0 and consequently Sa;p = 0. In other words, in a constant environ-

ment, if the virus has evolved toward the fixed evolutionary stable reactivation strategy there is no selection for plasticity. However, as

pointed out above for the evolution of lysogenisation, we will see in the next section that a mutation that affects plasticity can invade

the fixed evolutionary stable reactivation strategy because a conditional strategy allows the virus to better cope with the periodic fluc-

tuations of the environment.

In a fluctuating environment, we need to compute numerically the selection gradient Sa;a0
ðtÞ given above. In the absence of plas-

ticity (p = 0Þ the evolution of a fixed reactivation strategy a0
� verifies the following condition:

CSa;a0ðtÞD = CðBvVðtÞ� vLðtÞÞfLðtÞD= 0

Can a mutant with a higher value of p invade? The selection gradient on the trait p is equal to:

CSa;pðtÞD = ðBvV ðtÞ� vLðtÞÞfLðtÞ
�
GmðAÞ�a�

0

�
Using CSa;a0

ðtÞD= 0 this selection gradient reduces to:

CSa;pðtÞD = CovðXaðtÞ;GmðAÞÞ
where:

XaðtÞ = ðBvV ðtÞ� vLðtÞÞfLðtÞ
In other words, selection for plasticity is governed by the sign of the covariance between the quantities XaðtÞ andGmðAÞ. Plasticity will

be selected for if the functionsGmðAÞ can track the fluctuations of XaðtÞ and generate a positive covariance between XaðtÞ andGmðAÞ.
In particular we show that evolutionary stable plastic strategies typically evolve a negative value of la, the slope of the functionGmðAÞ
when GmðAÞ=amax=2 (Figure S2). Figure S2 also shows that the evolutionary stable plastic strategy (when we allow Aa to evolve

freely) can invade the fixed evolutionary stable strategy a0
�.

Coevolution of lysogenisation and reactivation
Lysogenisation and reactivation are expected to evolve jointly to respond to a fluctuation in arbitrium and the selection gradients

Sf;zðtÞ and Sa;zðtÞ can be used to identify the ultimate coevolutionary outcomes between these two plastic traits. Figure S3 shows

the direction of selection when both Af and Aa are allowed to coevolve. This figure allows us to identify a coevolutionary strategy

(the black dot) where Af
� > Aa

� (see also Figure 1).

Experimental Methods
Construction of phage deletion mutants

Phi3T deletionmutantswere constructed using thepJOE8999 vector, which contains a single guideRNAsequence and cas9under the

control of amannose-inducible promoter31. sgRNA targeting the region to be deletedwere ligated into the BsaI digested vector (Table

S2). 750bp flanking regions of each deletion were introduced into the sfiI-digested vector using NEBuilder HiFi DNA AssemblyMaster

Mix (Table S2). The resulting constructs were transformed into E.coli DH5a cells for amplification before transformation into Bacillus

subtilis 168 harboring a phi3T lysogen to generate the desired deletionmutants32. Cells were screened using PCR to identify cells con-

taining the deletion. For construction of phi3TaimR-N202A, a gBlock of the phi3T aimR genewith residue 202mutated fromasparagine to

alanine, and a 750bp flanking region were introduced to the vector as described above. Themutation from asparagine to alanine abol-

ishes the signal peptide-binding capacity of the receptor but does not interfere with its ability to activate aimX expression.

Prophage reactivation

To quantify prophage reactivation, we picked individual colonies of lysogens into 6ml of LBmedia and incubated shaking overnight at

37�C and 200rpm. Overnight cultures of lysogens were washed 4x in 1xM9 salts to remove phage and resuspended in fresh LB me-

dia. They were diluted to �4x105 cells/mL in LB media or LB media containing various signaling peptide concentrations and incu-

bated for 8 or 18 hours at 37�C and 200rpm. 100ml of culture was sampled into chloroform and centrifuged for 10min at 3500 g.

Small-drop plaque assayswere used to calculate sample PFU/mL. Log-phase cultures of BEST7003:aimXweremixedwith LBmedia

supplemented with 0.2% xylose, 0.1mMMnCl2, 5mMMgCl2 and 0.75% agar, and added to LB agar plates containing 0.1mMMnCl2
and 5mM MgCl2. Phage-containing supernatant was serially diluted and 10ml spotted onto bacterial lawns. Plates were incubated

overnight at 37�C and the number of PFU/mL calculated.
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For testing the effects of aimX expression on prophage reactivation, Bacillus subtilis BEST7003:aimX was lysogenised with

phi3TDaimP. Conditions were as described above but lysogens cultures were diluted to �4x105 cells/mL in LB media (uninduced)

or LB media supplemented with 0.2% xylose (induced).

Lysogen formation

To quantify lysogen formation at different signal concentrations, we diluted overnight cultures ofBacillus subtilisBEST7003 1:100 into

6ml LB media and incubated until they reached and OD600 of�0.2. Cultures were diluted to�4x105 cells/mL in LB media containing

0.1mMMnCl2, 5mMMgCl2 and concentrations of signaling peptide ranging from 0nM to 500nM. In order to ensure native signal pro-

duction did not interfere with signal concentrations in the media, samples were infected with Phi3TDaimP(spc), a mutant carrying a

spectinomycin resistance cassette in place of the aimP gene. Hosts were infected to an MOI of 0.1 and incubated for 40 minutes at

37�C to allow for phage absorption and expression of the spectinomycin resistance cassette. Samples were serially diluted and

plated onto LB agar containing 100mg/mL spectinomycin to quantify lysogens/mL.

Quantification of Signal Decay

We used the signal reporter strain BEST7003:RPXgfp, a gift from Rotem Sorek, to quantify the concentration of signaling peptide in a

given media. The signal reporter contains the phi3T AimR-AimP-AimX locus genetically fused to a fluorescent reporter gene (gfp)

which has been inserted into the host amyE locus, and when grown in media containing signaling peptide, expresses GFP in a con-

centration-dependent manner. Maximum fluorescence is observed in the absence of signal and is gradually repressed as the con-

centration of signaling peptide increases. The signal concentration in a given media was quantified by comparison with a calibration

curve of spent media supplementedwith known signal peptide concentrations. To ensure the calibration and unknown samples differ

only in the signal peptide concentration, and to account for the effect of spent media on the reporter, calibration curve spent medium

was always obtained in parallel experiments using the same growth conditions but lacking signal peptide. Percentage signal decay

was calculated as ((T0 Signal Concentration – Tx Signal Concentration)/ T0 Signal Concentration))*100.

To quantify signal decay in LB media, we incubated 10ml of LB media at a signal concentration of 1000nM in 15ml falcon tubes at

37�C. For calibration curve spent media, we incubated LB media without signal under the same conditions. After 24hrs, 48hrs or

72hrs, we mixed sample media 1:1 with fresh LB. To construct a calibration curve, known concentrations of signaling peptide

were added to the calibration curve spent media and mixed 1:1 with fresh LB. Washed overnight cultures of BEST7003:RPXgfp

were diluted 1:100 into the sample and calibration curve spent medium, and OD600 and GFP fluorescence (488 nm excitation/

518 nm emission) were quantified over 7 hours at 37�C in a BioTek plate reader. A quadratic model was fitted to stationary-phase

(6hr) fluorescence values of the calibration curve and the signal concentration of unknown samples calculated.

Toquantifysignaldecay in thepresenceofhost cells,wepicked individualcoloniesofBacillus subtilis3610and3610DoppD into6mlLB

media and incubated them overnight at 37�C and 200rpm. Overnight cultures of each strain were washed 3x in 1xM9 salts and resus-

pended in fresh LB. They were diluted to�4x105 cells/mL in LB containing 1000nM of signaling peptide and incubated for 18 hours at

37�Cand200rpm.For calibrationcurve spentmedia, culturingconditionswere identical exceptcellswerecultured inLB lackingsignaling

peptide.After 18hours,we removedcells bypassingcultures througha0.22mmfilter and removed largemolecules andcellular debris by

passing spent media through a 3kDa filter. Known concentrations of signaling peptide were then added to the calibration curve spent

media, the media were mixed with the signal reporter as outlined above, and signal concentrations calculated from calibration curves.

To quantify signal decay by secreted extracellular products, we picked individual colonies ofBacillus subtilisBEST7003 into 6ml LB

media and incubated them overnight at 37�C and 200rpm. Overnight cultures were washed 3x in 1xM9 salts and resuspended

in fresh LB. Theywere diluted to�4x105 cells/mL and incubated at 37�Cand 200rpm. After 3 hours (relatively low-density) and 8 hours

(relatively high density) we removed cells by centrifuging (3500 g, 10 m) and passing cultures through a 0.22mm filter. We supple-

mented low density and high density spent media to 1000nM with signaling peptide and incubated the media at 37�C for 12 hours.

For calibration curve spent media, we incubated the media for 12 hours without signaling peptide. We passed both the sample and

calibration curve media through a 3kDa filter to remove any proteases and prevent further signal degradation and known concentra-

tions of signaling peptide were added to the calibration curve spent media. These media were mixed with the signal reporter as out-

lined above, and signal concentrations calculated from calibration curves.

Prophage signal production

To test for signal production by prophage, we picked individual colonies of phi3T and phi3TDaimP lysogens of BEST7003, and un-

infected BEST7003, into 6ml of LB media and incubated shaking overnight at 37�C and 200rpm. Overnight cultures were washed 4x

in 1xM9 salts and resuspended in fresh LB media. They were diluted to �1x106 cells/mL in LB media and incubated for 2 hours at

37�C and 200rpm. After 2 hours we removed cells by centrifuging (3500 g, 10min) and passing cultures through a 0.22mmfilter before

passing spent media through a 3kDa filter to remove cellular debris and large metabolites. Spent media was mixed 1:1 with fresh LB,

and overnight cultures of phi3TDaimP lysogens washed 4x in 1xM9 salts were added to �4x105 cells/mL. Lysogen cultures were

incubated for 8 hours at 37�C and 200rpm before 100ml of culture was sampled into chloroform and centrifuged for 10 m at 3500

g. Small-drop plaque assays were performed as described above and prophage induction calculated as PFU/mL.

QUANTIFICATION AND STATISTICAL ANALYSIS

We carried out all statistical analyses in the R statistical environment26 (v3.3.3, http://www.R-project.org). Except where stated, we

carried out standard analyses (T-Test, Linear models, etc.) assuming normal errors.
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Figure S1: Epidemiological dynamics and dynamics of reproductive values – related to 
Figure 1. 
In (A) we plot the temporal dynamics of the densities of susceptible cells (in black), 
lysogenized cells (blue), virus particles (red) and arbitrium concentration (orange). In this 
scenario we allow 𝜃 to fluctuate periodically as a square wave between 𝜃!"# = 0 (for 80% of 
the period) and 𝜃!$% = 30 (for 20% of the period) with a period 𝑇 = 40. The time points 
where 𝜃(𝑡) = 𝜃!$% are indicated with the gray shading. In (B) we plot the temporal 
dynamics of 𝑣&(𝑡) − 𝐵𝑣'(𝑡) which drives the evolution of plasticity. Note that the 
concentration of arbitrium increases when the density of susceptible cells starts to drop. Other 
parameter values: 𝑟 = 1, 𝑎 = 0.1, 𝑏 = 0.1, 𝜅 = 0.01, 𝑑 = 0.01, 𝐵 = 20, 𝑑' = 0.1, 𝑑( =
10, 𝛿 = 0.1, 𝜋' = 5, 𝜋& = 0.1, 𝑝 = 0,	𝜙)∗ = 0.026, 𝛼)∗ = 0.003. 
 
 
  



 
 

 
Figure S2: Evolution of plastic lysogenisation (panels A and B) and plastic reactivation 
(panels C and D)  – related to Figure 1.  
We used the gradient of selection (10) to identify the evolutionary stable plastic strategy 
(when 𝑝 = 1) for the trait 𝐴+ which refers to the threshold value of the arbitrium 
concentration above which lysogenisation is triggered (𝐴+∗ = 9.66). In (A) we plot the 
evolutionary stable plastic lysogenisation strategy as a function of arbitrium concentration. In 
(B) we show that a mutant which adopts some plasticity (𝑝! = 0.1) can invade a resident 
strategy that adopts an evolutionary stable strategy with no plasticity (𝑝 = 0,	𝜙)∗ = 0.026, 
𝛼)∗ = 0.003). We used the gradient of selection (18) to identify the evolutionary stable 
plastic strategy (when 𝑝 = 1) for the trait 𝐴, which refers to the threshold value of the 
arbitrium concentration below which reactivation of the prophage is triggered (𝐴,∗ = 4.38). 
In (C) we plot the evolutionary stable plastic reactivation strategy as a function of arbitrium 
concentration. In (D) we show that a mutant which adopts some plasticity (𝑝! = 0.1) can 
invade a resident strategy that adopts an evolutionary stable strategy with no plasticity (𝑝 =
0,	𝜙)∗ = 0.026, 𝛼)∗ = 0.003). Note that even if the mutant is selected over one period of the 
fluctuation, its frequency may transiently drop when the instantaneous gradient of selection is 
negative. In this scenario we allow 𝜃 to fluctuate periodically as a square wave between 
𝜃!"# = 0 (for 80% of the period) and 𝜃!$% = 30 (for 20% of the period) with a period 𝑇 =
40. The dashed line is the frequency of the mutant at time 𝑡 = 500. Other parameter values: 
𝑟 = 1, 𝑎 = 0.1, 𝑏 = 0.1, 𝜅 = 0.01, 𝑑 = 0.01, 𝐵 = 20, 𝑑' = 0.1, 𝑑( = 10, 𝛿 = 0.1, 𝜋' = 5, 
𝜋& = 0.1, 𝜙!$% = 1, 𝜆+ = 2, 𝛼!$% = 0.02, 𝜆, = −2, 𝐴, = 2. 
 
 
 
 
 
 
 
 



 
 

 
 

 
 

 

 

 

 

 
Figure S3: Coevolution of plastic lysogenisation and reactivation strategies – related to 
Figure 1. 
We used the gradients of selection (10) and (18) to identify the coevolutionary stable plastic 
strategy (black dot) when 𝑝 = 1 for the traits 𝐴+ and 𝐴, (𝐴+∗ = 12.6 and 𝐴,∗ = 7.5, see also 
Figure 1 in the main text). In this scenario we allow 𝜃 to fluctuate periodically as a square 
wave between 𝜃!"# = 0 (for 80% of the period) and 𝜃!$% = 40 (for 20% of the period) with 
a period 𝑇 = 60. Other parameter values: 𝑟 = 0, 𝑎 = 0.1, 𝑏 = 0.1, 𝜅 = 0.01, 𝑑 = 0.01, 𝐵 =
20, 𝑑' = 0.1, 𝑑( = 10, 𝛿 = 0.1, 𝜋' = 5, 𝜋& = 0.1, 𝜙!$% = 1, 𝜆+ = 2, 𝛼!$% = 0.02, 𝜆, =
−2. 



 

 

Figure S4.  Signal Decay – related to figure 4. 
(A) LB media supplemented with signalling peptide (1000nM) was incubated in the absence 
of bacterial cells at 37C and signal decay quantified after 24, 48 and 72 hours (n=3). (B) LB 
media supplemented with signalling peptide (1000nM) was incubated with Bacillus subtilis 
3610 or 3610∆oppD (a mutant unable to internalise signalling peptide) and decay quantified 
from spent media after 18 hours (n=3). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 
Dynamical variables 

and parameters Definitions 

𝑆(𝑡) and 𝐿(𝑡) density of susceptible and lysogenic bacteria 
𝑁(𝑡) = 𝑆(𝑡) + 𝐿(𝑡) 

𝑉(𝑡) density of virus particles 

𝐴(𝑡) concentration of arbirtrium 

𝜃(𝑡) influx of susceptible bacteria 

𝑟 growth rate of bacterial cells 

𝑣𝑉(𝑡) and 𝑣𝐿(𝑡) 
individual reproductive values of the virus in the free virus particle 

stage (V) or in the lysogenic stage (L) 

𝜅 density-dependent coefficient  

𝑑 mortality rate of bacterial cells 

𝐵 viral burst size 

𝑎 adsorption constant 

𝑏 probability of infection after adsorption 

𝜙 
probability of lysogenisation  

(may be a function of arbitrium concentration) 

α 
rate of reactivation 

(may be a function of arbitrium concentration)  

𝑑#  mortality rate of virus particles 

𝜋#  and 𝜋$  production rate of arbitrium trough lysis and lysogeny  

𝑑% degradation rate of arbitrium 

𝛿 degradation rate of arbitrium by bacterial cells  

𝒮&,((𝑡) 
instantaneous gradient of selection on a mutation that affects the 

parameter 𝑌 which governs the life-history trait 𝑋 
 

Table S1: Main parameters and dynamical variables of the model – related to STAR 
methods 



 

 

Identifier Oligo Source Function 
∆P_up_F 5'-ctcactatagggtcgacggccaacgtttcaaatgcaatgctgatg-3' IDT phi3T∆aimP Upstream Flanking Region 
∆P_up_R 5'-ttcaattatttaactaaatagagataaggtttaataattcaag-3' IDT phi3T∆aimP Upstream Flanking Region 

∆P_dwn_F 5'-atctctatttagttaaataattgaataggtaatacataatactatc-3' IDT 
phi3T∆aimP Downstream Flanking 
Region 

∆P_dwn_R 5'-atttcttaatctagaaaggccttattctttttattttcctcagtataatatttattg-3' IDT 
phi3T∆aimP Downstream Flanking 
Region 

∆R_up_F 5'-ctcactatagggtcgacggccaacgtgaatcgtcaaaaattgtatag-3' IDT phi3T∆aimR Upstream Flanking Region 
∆R_up_R 5'-aatttgtcaaacttaatcctcattgtgcataattg-3' IDT phi3T∆aimR Upstream Flanking Region 

∆R_dwn_F 5'-caatgaggattaagtttgacaaatttgaaaggag-3' IDT 
phi3T∆aimR Downstream Flanking 
Region 

∆R_dwn_R 5'-atttcttaatctagaaaggccttatatatgaagattaacacgagtaaag-3' IDT 
phi3T∆aimR Downstream Flanking 
Region 

∆RPX_up_F 5'-ctcactatagggtcgacggccaacgtgaatcgtcaaaaattgtatag-3' IDT 
phi3T∆aimRPX Upstream Flanking 
Region 

∆RPX_up_R 5'-ttatttttattctttaatcctcattgtgcataattg-3' IDT 
phi3T∆aimRPX Upstream Flanking 
Region 

∆RPX_dwn_F 5'-aatgaggattaaagaataaaaataaaattaattattgcataatc-3' IDT 
phi3T∆aimRPX Downstream Flanking 
Region 

∆RPX_dwn_R 5'-atttcttaatctagaaaggccttataccaatcagtatcttgcttaaag-3' IDT 
phi3T∆aimRPX Downstream Flanking 
Region 

phi3TAimR-N202A 
_up_F 5'-ctcactatagggtcgacggccaacgtaaagaaaacaaatagagaagtg-3' IDT 

phi3TAimR-N202A Upstream Flanking 
Region 

phi3TAimR-N202A 
_up_R 5'-tgattccctaatagcatcatttaaactgatttc-3' IDT 

phi3TAimR-N202A Upstream Flanking 
Region 

phi3TAimR-N202A 
_gBlock_F 5'-tttaaatgatgctattagggaatcagggaaatg-3' IDT phi3TAimR-N202A gBlock 
phi3TAimR-N202A 
_gBlock_R 

5'-atttcttaatctagaaaggccttatctaaatagagataaggtttaataattcaag-
3' IDT phi3TAimR-N202A gBlock 

∆X_up_F 5'-ctcactatagggtcgacggccaacgaaaatagcctacttgaagc-3' IDT phi3T∆aimX Upstream Flanking Region 
∆X_up_R 5'-ttatttttattctttaagcaccacgaattgc-3' IDT phi3T∆aimX Upstream Flanking Region 

∆X_dwn_F 5'-cgtggtgcttaaagaataaaaataaaattaattattgcataatc-3' IDT 
phi3T∆aimX Downstream Flanking 
Region 

∆X_dwn_R 5'-atttcttaatctagaaaggccttataccaatcagtatcttgcttaaag-3' IDT 
phi3T∆aimX Downstream Flanking 
Region 

sg_Phi3T_aimP_F 5'-tacgTTTTGGTTTAGTAATTCTTA-3' IDT aimP sgRNA 
sg_Phi3T_aimP_R 5'-aaacTAAGAATTACTAAACCAAAA-3' IDT aimP sgRNA 
sg_Phi3T_aimR_F 5'-tacgAATTTGATGATTTACCCGAA-3' IDT aimR sgRNA 
sg_Phi3T_aimR_R 5'-aaacTTCGGGTAAATCATCAAATT-3' IDT aimR sgRNA 
sg_Phi3T_aimX_F 5'-tacgCAATTCAATAATTGCTCAAG-3' IDT aimX sgRNA 
sg_Phi3T_aimX_R 5'-aaacCTTGAGCAATTATTGAATTG-3' IDT aimX sgRNA 

 
Table S2: Oligos – related to STAR methods 
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