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A B S T R A C T

We consider wave forces on fixed porous cylinders with and without a solid inner cylinder and wave-induced
motions of floating cylinder with and without a porous outer cylinder. Comparisons between experimental
measurements and numerical predictions from an iterative boundary element method (BEM) model are
presented. The BEM model assumes that pressure drop across porous surface is proportional to the square
of the velocity through the surface. It is shown that the BEM model is able to accurately predict the nonlinear
variation of the forces with wave amplitude or motion amplitude. It is demonstrated that adding a porous
outer cylinder to a solid vertical cylinder leads to increased excitation force on the combined structure. For
floating cylinders adding a porous outer cylinder also leads to a corresponding increase in excitation force.
However, the porous outer cylinder provides a larger increase in the damping, resulting in reduced motion
response. Further numerical simulations indicate that placing the porous cylinder lower in the water column
can lead to increased damping without the corresponding increase in excitation forces. It is shown that for
low Keulegan Carpenter numbers, the damping coefficient for a porous cylinder is significantly higher than the
viscous damping on a solid cylinder. The results suggest that porous materials could be beneficial for motion
damping of floating structures.
1. Introduction

Porous materials are often used in marine structures to dissipate
wave energy and reduce wave heights around a structure. They have
been studied extensively in application to fixed and floating breakwa-
ters (Huang et al., 2011; Dai et al., 2018) and for motion damping of
marine structures (Molin and Legras, 1990; Downie et al., 2000a,b;
Molin, 2001; Tao and Dray, 2008; An and Faltinsen, 2012, 2013).
Porous plates and meshes are sometimes used for absorbing waves in
narrow flumes (Evans, 1990; Twu and Lin, 1991; Molin and Fourest,
1992) and to dissipate energy in tuned liquid dampers (Warnitchai and
Pinkaew, 1997; Tait et al., 2005; Love and Tait, 2010; Crowley and
Porter, 2012; Faltinsen et al., 2011; Molin and Remy, 2013, 2015).
The problem of calculating wave interaction with porous structures also
arises in for offshore aquaculture (Zhao et al., 2010b).

Given the range of applications of porous materials in offshore
engineering, there is a large volume of literature on modelling wave
interaction with porous structures. In potential flow models, the porous
material is usually modelled as a homogeneous surface where the flow
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through the surface is subject to a pressure drop as a function of flow
velocity and acceleration. The velocity terms represent dissipation of
energy across the porous surface and the acceleration terms represent
inertial effects due to the acceleration of the flow through the openings.
For thin porous materials, the energy dissipation is proportional to the
square of the velocity. However, in many studies the energy dissipation
is assumed to be linear in the velocity to simplify the analysis. This
approach was taken by Sollitt and Cross (1972) and was further
popularised by Chwang (1983) and Yu (1995), who defined a ‘porous-
effect’ parameter, to represent the linearised pressure loss across the
porous surface.

The assumption of a linear pressure loss has been adopted in many
studies of wave interaction with cylindrical structures. For example,
Wang and Ren (1994) used an eigenfunction method to derive analyt-
ical expressions for wave loads on a bottom-fixed cylinder surrounded
with a porous outer cylinder. Darwiche et al. (1994) studied a sim-
ilar system, mounted on a cylindrical breakwater. Williams and Li
(1998) considered wave interactions with a concentric porous cylinder
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mounted on a storage tank. Wave forces on a various types of floating
porous cylinder have been derived using an eigenfunction expansion
method (Williams et al., 2000; Zhao et al., 2010a; Ning et al., 2017).
Wave forces on arrays of porous cylinders have been examined by
various authors (Williams and Li, 2000; Li et al., 2004; Sankarbabu
et al., 2007; Park et al., 2010; Weng et al., 2016). Short-crested wave
interaction with porous cylinders has also been considered in several
studies (Song and Tao, 2007; Tao et al., 2009; Liu et al., 2012). The
boundary element method (BEM) has also been used to calculate wave
loads on porous cylinders (Dokken et al., 2017a; Ouled Housseine et al.,
2018; Mackay et al., 2018).

The list above is far from exhaustive, but illustrates the range
of studies on porous cylinders which adopt the assumption of linear
pressure loss. The limitation of the linear pressure-loss assumption is
that the dissipation coefficient must be estimated empirically, with
the coefficient depending on the geometry of the particular structure
and wave conditions (Li et al., 2006; Suh et al., 2011; Liu and Li,
2016). In particular, the linear model cannot replicate the nonlinear
variation of forces with wave amplitude or motion amplitude. Zhao
et al. (2010b) conducted experiments with truncated porous cylinders
of various porosities and measured excitation forces for the structure
held fixed in waves and radiation forces for forced motions. They
compared the measurements to predictions from a semi-analytic model
using a linear pressure loss law, where the linear dissipation parameter
was estimated as a function of wave steepness and porosity, based on
the solutions to the diffraction problem. They found that this gave good
agreement for excitation forces, but when the same coefficients were
used for the radiation problem, the derived added mass and damping
coefficients did not agree well with measurements. The reason for
this discrepancy is that the linear coefficient is a function of the flow
velocity on the structure as well as the porosity. Since the velocity
distribution on the structure changes in the radiation and diffraction
problems, the same linearised coefficients cannot be used for both
cases.

For the case of quadratic pressure loss, various models have been
proposed for the pressure loss coefficients that are dependent only
on the physical characteristics of the porous surface (porosity, hole
spacing, thickness), which are independent of the geometry of the
structure and flow velocity (see Molin (2011), Huang et al. (2011) for a
review). The quadratic pressure-loss model has been widely applied in
studies of two-dimensional (2D) fixed porous barriers (Mei et al., 1974;
Bennett et al., 1992; Fugazza and Natale, 1992; Molin and Fourest,
1992; Kriebel, 1992; Liu and Li, 2017; Kim, 1998; Mackay et al., 2019;
Mackay and Johanning, 2020; Vijay et al., 2020b,a). It has also been
used to examine the added mass and damping properties of porous
plates in forced motion (Molin, 2001; Molin et al., 2007; An and
Faltinsen, 2012, 2013). Molin (1989) considered the added mass and
damping of three-dimensional (3D) porous cylinders in forced motion
and assumed they were sufficiently submerged that free surface effects
could be ignored. Dokken et al. (2017b) proposed a 3D BEM model
with a quadratic pressure loss law, which can solve separately for the
radiation and diffraction problems.

A key difference in the case of quadratic pressure loss is that the
solutions to the radiation and diffraction problems cannot be super-
imposed to obtain the solution for body motions in waves, due to the
nonlinear pressure–velocity relations on the porous surface. Mackay
et al. (2021) proposed a BEM model which solves for the motion
response and wave forces on the body simultaneously, under the as-
sumption of quadratic pressure loss. Solutions for the radiation and
diffraction problems are obtained as special cases.

The iterative BEM approach for fixed 2D porous structures with
quadratic pressure loss has been compared to experimental data in
previous studies and shown to give good agreement of the nonlinear
variation of forces and reflected waves with wave height (Liu and Li,
2017; Mackay et al., 2019; Vijay et al., 2019). The approach has also
2

been shown to give reasonable predictions for the added mass and
damping coefficients of porous plates and discs under forced heave
motions (Molin et al., 2007; An and Faltinsen, 2013). However, there is
limited experimental data on wave forces on fixed 3D porous structures
or wave-induced motions of floating porous structures.

The motivation for the present study was to investigate the potential
of porous materials for reducing loads on fixed offshore structures
and reducing wave-induced motions of floating offshore structures.
Two simple cases were selected for studying these problems. Firstly,
a bottom-fixed porous cylinder, both with and without a solid inner
cylinder; and secondly, a similar floating system. The floating system
considered was a tension leg platform (TLP) support structure for a
floating offshore wind turbine, where the upper column of the TLP was
surrounded by a porous outer cylinder (Mackay et al., 2020).

In this work we compare the results of the model tests to numerical
predictions from the iterative BEM model described in Mackay et al.
(2021). A limitation of the present potential flow approach is that it
does not account for viscous effects away from the porous surface. For
floating structures with large motion amplitudes, viscous drag forces
also become important. To assess the impact of this, we also present
some comparisons of the damping on porous cylinders due to energy
dissipation across the porous surface with viscous damping on solid
cylinders derived in previous studies.

The paper is organised as follows. The mathematical formulation of
the problem is described in Section 2 and the experimental setups are
described in Section 3. Comparisons of the numerical and experimental
results presented in Section 4 for the fixed porous cylinders and Sec-
tion 5 for the floating porous cylinders (TLP model). Further numerical
results for porous cylinders away from the free surface are presented in
Section 6. Finally, conclusions are presented in Section 7.

2. Problem formulation

The structure is assumed to consist of a single solid body and a
porous surface bounding a volume of water connected to this body.
The geometry of the solid body and porous surface are arbitrary and
may be either submerged or surface-piercing. A sketch of the setup is
shown in Fig. 1, which shows a truncated cylinder with a solid inner
column and porous outer surface.

The thickness of the porous barrier and the spacing of the openings
are both assumed to be small relative to the incident wavelength,
so that the barrier can be treated as a homogeneous surface with a
pressure jump across it. The flow through the openings is not modelled
explicitly, but approximated using a model for the dissipative and
inertial effects as a function of the fluid velocity and acceleration. The
effects of the barrier thickness and spacing of the openings are assumed
to be captured by the model for the pressure drop across the porous
barrier.

The flow through the porous surface is subject to both viscous drag
and turbulent dissipation of energy. However, it is assumed that the
wakes are quickly homogenised into the flow within a short distance of
the porous surface. Away from the porous surface, the fluid is assumed
to be inviscid and incompressible, and its motion irrotational, so that
a velocity potential can be used to describe the fluid motion. The fluid
domain is divided into regions external and internal to the porous
boundary, denoted 𝐷𝐸 and 𝐷𝐼 , with the potentials in the exterior and
nterior domains denoted 𝛷𝐸 and 𝛷𝐼 . The surface of the solid body

is divided into two parts, an exterior solid surface, 𝑆𝐸 , and an interior
solid surface, 𝑆𝐼 . The porous surface is denoted 𝑆𝑃 . The normal vectors
to the body surfaces are defined to point out of the fluid domain on the
exterior of the porous surface and into the fluid domain on the interior
of the porous surface (see Fig. 1), so that the directions of the normal
vectors are continuous over the interior domain. The coordinate system

is defined with 𝑧 = 0 on the free surface and 𝑧 = −ℎ on the sea bed.
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Fig. 1. Sketch of definition of surfaces, normal vectors and internal and external fluid
domains.

2.1. Decomposition of potentials

The structure is subject to regular linear waves of amplitude 𝐴
and angular frequency 𝜔, propagating in a direction at an angle 𝛽
to the positive 𝑥-axis (i.e. 𝛽 = 0 corresponds to waves propagating
from negative to positive 𝑥). The structure is assumed to make 6-
DOF harmonic motions of amplitude 𝜉𝑗 , 𝑗 = 1,… , 6, corresponding to
surge, sway, heave, roll, pitch and yaw. Under these assumptions the
potentials in each domain can be written as

𝛷(𝐱, 𝑡)𝐸,𝐼 = Re
{

𝑒𝑖𝜔𝑡
𝑖𝑔𝐴
𝜔
𝜙𝐸,𝐼 (𝐱)

}

, (1)

where 𝑔 is the acceleration due to gravity, 𝐱 = (𝑥, 𝑦, 𝑧) is the position
vector and 𝜙𝐸,𝐼 (𝐱) is the non-dimensional complex amplitude of the
otential in each domain. The spatial component is decomposed as

𝐸,𝐼 = 𝜙0 + 𝜙
𝐸,𝐼
7 +

6
∑

𝑗=1

𝜉𝑗
𝐴
𝜙𝐸,𝐼𝑗 , (2)

where 𝜙0 is the incident wave potential, 𝜙𝐸,𝐼7 is the diffracted wave
potential and 𝜙𝐸,𝐼𝑗 , 𝑗 = 1,… , 6, are the radiated potentials for each
mode of motion. Note that 𝜙𝑗 is non-dimensional for 𝑗 = 1, 2, 3, but has
the dimension of length for 𝑗 = 4, 5, 6. However, the same formulation is
used for consistency of notation. The scattered wave potential is defined
as the sum of the diffracted and radiated potentials:

𝜙𝐸,𝐼𝑠 = 𝜙𝐸,𝐼7 +
6
∑

𝑗=1

𝜉𝑗
𝐴
𝜙𝐸,𝐼𝑗 . (3)

The potentials in each domain satisfy the Laplace equation, the lin-
earised free-surface condition and the no-flow condition on the seabed:

∇2𝜙𝐸,𝐼𝑗 = 0, 𝑗 = 0,… , 7, (4)

𝜕𝜙𝐸,𝐼𝑗

𝜕𝑧
= 𝐾𝜙𝐸,𝐼𝑗 , 𝑧 = 0, 𝑗 = 0,… , 7, (5)

𝜕𝜙𝐸,𝐼𝑗

𝜕𝑧
= 0, 𝑧 = −ℎ, 𝑗 = 0,… , 7, (6)

where 𝐾 = 𝜔2∕𝑔 is the infinite-depth wavenumber.
The incident wave potential is given by

𝜙0 = 𝑒(𝑘𝑧) exp(−𝑖𝑘(𝑥 cos 𝛽 + 𝑦 sin 𝛽)), (7)

here 𝛽 is the wave direction, 𝑘 is the finite-depth wavenumber,
3

efined as the positive real solution of 𝐾 = 𝑘 tanh(𝑘ℎ) and the function
(𝑘𝑧) is defined as

(𝑘𝑧) =

{ cosh(𝑘(𝑧+ℎ))
cosh(𝑘ℎ) in finite depth,

exp(𝑘𝑧) in infinite depth.
(8)

The radiated and diffracted potentials in the exterior domain satisfy a
radiation condition in the far-field

lim
𝑅→∞

√

𝑅

(

𝜕𝜙𝐸𝑗
𝜕𝑅

+ 𝑖𝑘𝜙𝐸𝑗

)

= 0, 𝑗 = 1,… , 7, (9)

where 𝑅 =
√

𝑥2 + 𝑦2. In the far-field, the radiated and diffracted
otentials can be expressed as

lim
𝑅→∞

𝜙𝐸𝑗 = (2𝜋𝑘𝑅)−1∕2𝑒(𝑘𝑧) exp (−𝑖(𝑘𝑅 + 𝜋∕4))𝐻𝑗 (𝜃), 𝑗 = 1,… , 7, (10)

here tan(𝜃) = 𝑦∕𝑥 and 𝐻𝑗 (𝜃) is the Kochin function, defined as

𝑗 (𝜃) =
𝑘

𝐷(𝑘ℎ) ∫𝑆𝐸∪𝑆𝑃

(

𝜕𝜙𝐸𝑗 (𝝃)

𝜕𝑛
− 𝜙𝐸𝑗 (𝝃)

𝜕
𝜕𝑛

)

𝜙∗
0(𝝃, 𝜃)d𝑆, (11)

and the star denotes the complex conjugate and the function 𝐷(𝑘ℎ) is
given by

𝐷(𝑘ℎ) = tanh(𝑘ℎ) + 𝑘ℎ
cosh2 𝑘ℎ

. (12)

2.2. Boundary conditions on solid surfaces

The normal vector to the body surface is denoted 𝐧 = (𝑛1, 𝑛2, 𝑛3)
nd the additional notation (𝑛4, 𝑛5, 𝑛6) = 𝐱 × 𝐧 is adopted. Using this

notation, the normal velocity of the boundary of the structure is given
by

𝑈𝑛 = Re

{

𝑒𝑖𝜔𝑡𝑖𝜔
6
∑

𝑗=1
𝜉𝑗𝑛𝑗

}

= Re
{

𝑒𝑖𝜔𝑡𝑖𝜔𝐴𝑢𝑛
}

, (13)

where 𝑢𝑛 is a non-dimensionalised velocity of the body surface, defined
by

𝑢𝑛 =
6
∑

𝑗=1

𝜉𝑗
𝐴
𝑛𝑗 . (14)

The boundary condition for the scattered potential on the solid surfaces
can therefore be written as

1
𝐾
𝜕𝜙𝐸,𝐼𝑠
𝜕𝑛

= 𝑛𝑠, on 𝑆𝐸 , 𝑆𝐼 , (15)

where 𝑛𝑠 is defined as

𝑛𝑠 = 𝑛7 + 𝑢𝑛 (16)

and

𝑛7 = − 1
𝐾
𝜕𝜙0
𝜕𝑛

. (17)

For fixed structures or for forced motion of a structure in still water,
the diffraction and radiation problems can be solved in isolation. In
these cases, the boundary conditions for the diffraction and radiation
potentials on the solid surfaces are

1
𝐾

𝜕𝜙𝐸,𝐼𝑗

𝜕𝑛
= 𝑛𝑗 , on 𝑆𝐸 , 𝑆𝐼 , 𝑗 = 1,… , 7. (18)

2.3. Boundary conditions on porous surfaces

The flow through the porous surface in the normal direction is
assumed to be continuous on either side of the boundary, so the
kinematic boundary condition on the porous surfaces is

𝜕𝜙𝐸𝑠
𝜕𝑛

=
𝜕𝜙𝐼𝑠
𝜕𝑛

, on 𝑆𝑃 . (19)

The velocity tangential to the porous surface can be discontinuous
on either side. The pressure drop, 𝛥𝑃 , across the porous boundary
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is assumed to be the sum of a quadratic drag term due to turbulent
dissipation and an inertial term due to acceleration of the flow through
the openings:

𝛥𝑃
𝜌

= 1
2
𝐶𝑓𝑊𝑛

|

|

𝑊𝑛
|

|

+ 𝐿
𝜕𝑊𝑛
𝜕𝑡

, (20)

here 𝜌 is the fluid density, 𝑊𝑛 is the fluid velocity through the porous
oundary in the normal direction (assumed to be the average velocity
lose to the porous boundary rather than the flow speed through the
penings), 𝐶𝑓 is a dimensionless porous friction coefficient and 𝐿 is an
nertial coefficient with the dimension of length. For the current prob-
ems, the porous surfaces are assumed thin, with small hole spacing,
o that the representative Keulegan–Carpenter (KC) numbers for the
scillatory flow through the porous barrier are large and the porous
riction coefficient 𝐶𝑓 can be assumed to take its steady flow values.

The fluid velocity through the porous boundary is the difference
etween the fluid velocity and boundary velocity, given by

𝑛 = 𝑉𝑛 − 𝑈𝑛 = Re
{

𝑒𝑖𝜔𝑡𝑖𝜔𝐴𝑤𝑛
}

, (21)

here 𝑉𝑛 is the velocity of the fluid in the direction normal to the body
urface. 𝑉𝑛 can be written as

𝑛 =
𝜕𝛷
𝜕𝑛

= Re
{

𝑒𝑖𝜔𝑡𝑖𝜔𝐴𝑣𝑛
}

, (22)

here 𝑣𝑛 is the non-dimensional amplitude of the velocity of the fluid
iven by

𝑛 =
1
𝐾
𝜕𝜙
𝜕𝑛
. (23)

e can therefore write

𝑛 = 𝑣𝑛 − 𝑢𝑛. (24)

he dynamic pressure is given by the linearised Bernoulli equation as

= −𝜌 𝜕𝛷
𝜕𝑡
. (25)

he time dependence in the quadratic term in (20) can be linearised
sing Lorenz’s principle of equivalent work:

𝑛
|

|

𝑊𝑛
|

|

≈ 8
3𝜋

(𝜔𝐴)2 |
|

𝑤𝑛||Re
{

𝑒𝑖𝜔𝑡𝑖𝑤𝑛
}

. (26)

ubstituting (25) and (26) into (20) gives

𝑛 = −𝑖𝜎
(

𝜙𝐸 − 𝜙𝐼
)

, (27)

here 𝜎 is a non-dimensional quadratic porosity coefficient given by

=
( 4
3𝜋
𝐶𝑓𝐾𝐴 |

|

𝑤𝑛|| + 𝑖𝐾𝐿
)−1

. (28)

q. (27) can be used to define dynamic boundary conditions on the
orous surface for the scattered potential in the combined radiation–
iffraction case, the diffraction potential in the fixed case or the radi-
tion potential for the forced motion case. For the scattered potential
e have
1
𝐾
𝜕𝜙𝑠
𝜕𝑛

= 𝑛𝑠 − 𝑖𝜎
(

𝜙𝐸𝑠 − 𝜙𝐼𝑠
)

, on 𝑆𝑃 . (29)

In the radiation problem, the same formulation can be used if we
assume 𝜉𝑗 is real and set 𝐴 = 𝜉𝑗 and 𝜙0 = 𝜙7 = 0. For both the diffraction
and radiation potentials the dynamic boundary condition on the porous
surface is
1
𝐾
𝜕𝜙𝑗
𝜕𝑛

= 𝑛𝑗 − 𝑖𝜎
(

𝜙𝐸𝑗 − 𝜙𝐼𝑗
)

, on 𝑆𝑃 , 𝑗 = 1,… , 7. (30)

2.4. Forces and moments from potential

The total hydrodynamic force (or moment) on the structure in the
𝑗th mode, 𝐹𝐻,𝑗 , is the sum of the force (or moment) on the internal and
external surfaces

𝐹𝐻,𝑗 = 𝜌𝑔𝐴
[

𝜙𝐸𝑛𝑗d𝑆 − 𝜙𝐼𝑛𝑗d𝑆
]

, 𝑗 = 1,… , 6. (31)
4

∫𝑆𝐸∪𝑆𝑃 ∫𝑆𝐼∪𝑆𝑃
Note that the surface normal vectors are pointing in the opposite
direction in the interior domain so the integral over the interior surfaces
has the opposite sign (see Fig. 1). Similarly, for the diffraction problem,
the excitation force (or moment) in the 𝑗th mode, 𝐹𝑗 , is given by

𝐹𝑗 = 𝜌𝑔𝐴
[

∫𝑆𝐸∪𝑆𝑃

(

𝜙𝐸0 + 𝜙𝐸7
)

𝑛𝑗d𝑆 − ∫𝑆𝐼∪𝑆𝑃

(

𝜙𝐼0 + 𝜙
𝐼
7
)

𝑛𝑗d𝑆
]

, 𝑗 = 1,… , 6.

(32)

For the radiation problem, the added mass, 𝑎𝑖𝑗 , and damping coeffi-
cients, 𝑏𝑖𝑗 , are defined by

2𝑎𝑖𝑗 − 𝑖𝜔𝑏𝑖𝑗 = 𝜌𝑔
[

∫𝑆𝐸∪𝑆𝑃
𝜙𝐸𝑗 𝑛𝑖d𝑆 − ∫𝑆𝐼∪𝑆𝑃

𝜙𝐼𝑗 𝑛𝑖d𝑆
]

. (33)

The diagonal components of the damping matrix can be expressed in
terms of the contributions from wave radiation and energy dissipation
across the porous surface (Mackay et al., 2021):

𝑏𝑗𝑗 = 𝑏𝑟𝑎𝑑𝑗𝑗 + 𝑏𝑝𝑜𝑟𝑗𝑗 (34)

here

𝑟𝑎𝑑
𝑗𝑗 = 𝜌𝜔 1

4𝜋
𝐷(𝑘ℎ)
𝐾2𝑘 ∫

2𝜋

0

|

|

|

𝐻𝑗 (𝜃)
|

|

|

2
d𝜃, (35)

𝑏𝑝𝑜𝑟𝑗𝑗 = 𝜌𝜔 4
3𝜋
𝐶𝑓 𝜉𝑗 ∫𝑆𝑃

|

|

𝑤𝑛||
3 d𝑆. (36)

.5. Viscous drag forces

Although the dissipation of energy across the porous surface is a
iscous effect, the resulting force is captured by the potential flow
odel through the parameterised pressure drop model (20). Through-

ut this paper we use the term ‘viscous drag’ to refer to forces due to
iscous effects which are not captured in the potential flow model. In
ection 4 it is shown that the measured forces on the fixed cylinders
re in good agreement with the excitation forces from the potential
low model, implying that viscous drag forces are not significant for
he range of conditions considered in the experiments. However, the
easured motion response of the TLP model for the cases with either no

uter cylinder or a solid outer cylinder exhibited a nonlinear variation
ith wave amplitude around the resonant frequency, implying that
iscous drag forces are important in these cases.

In addition to the forces due to the potential flow described in
ection 2.4, it is assumed that the surge motion is subject to a drag force
ue to viscous effects. In this case, for simplicity, the drag force is based
n the model surge velocity only, neglecting the velocity of the incident
nd diffracted waves. Since the drag force is most significant when the
AO is greater than one, this is likely to be a reasonable approximation.
he drag force is written as

𝑑 = 1
2𝜌𝐶𝑑 |𝑈1|𝑈1, (37)

here 𝑈1 = Re
{

𝑒𝑖𝜔𝑡𝑖𝜔𝜉1
}

is the surge velocity and  is the frontal
rea of the structure. It is assumed that viscous drag can be treated
eparately to the forces due to the potential flow, an assumption also
dopted in previous studies of porous structures (Molin et al., 2007; An
nd Faltinsen, 2013). To solve the equation of motion, a linearised drag
amping coefficient is defined using Lorenz’s principle of equivalent
ork, defined as
𝑑𝑟𝑎𝑔
11 = 4

3𝜋 𝜌𝜔𝐶𝑑 |𝜉1|. (38)

The drag coefficient for a solid circular cylinder in oscillatory flow
s a function of the Keulegan Carpenter number 𝐾𝐶 = |𝑈 |𝑇 ∕𝐷 and

the Stokes parameter 𝛽 = 𝐷2∕𝜈𝑇 , where 𝑈 = Re
{

𝑒𝑖𝜔𝑡𝑖𝜔𝜉
}

is the flow
velocity relative to the cylinder, 𝑇 = 2𝜋∕𝜔 is the oscillation period
and 𝐷 = 2𝑎 is the diameter of the cylinder. The KC number is the
ratio of the displacement of the undisturbed flow to the cylinder radius
𝐾𝐶 = 𝜋𝜉∕𝑎. Sumer and Fredsoe (2006) note several distinct flow
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regimes depending on the KC number. At low KC numbers the flow is
laminar and experimental measurements of 𝐶𝑑 (Bearman et al., 1985;
Sarpkaya, 1986) have been shown to be in good agreement with the
Stokes–Wang model (Stokes, 1851; Wang, 1968):

𝐶𝑑 ≈ 3𝜋5∕2

2𝛽1∕2𝐾𝐶
. (39)

As the KC number increases, instabilities in the flow develop leading
to the onset of Honji vortices and an increase in 𝐶𝑑 relative to the
Stokes–Wang model. As KC increases further, the flow separates and
vortices develop, which initially remain attached for intermediate KC
numbers and are shed at higher KC. For ∼ 2 < 𝐾𝐶 <∼ 10, Graham
(1980) found that 𝐶𝑑 ≈ 0.2𝐾𝐶 for circular cylinders. Bearman and
Russell (1996) proposed a composite of the Stokes–Wang model for low
KC and Graham’s model for intermediate KC, given by

𝐶𝑑 ≈ 3𝜋5∕2

2𝛽1∕2𝐾𝐶
+ 0.2𝐾𝐶. (40)

There is less information available on drag forces on porous cylin-
ers. The use of porous sheaths has been investigated for reducing
ortex shedding and vortex-induced vibration (VIV) from bluff bod-
es (Rashidi et al., 2016). Durhasan et al. (2019) used particle image
elocimetry (PIV) to study the vortex shedding mechanism of a cylinder
ith a porous outer sheath in steady flow conditions. They found that

or the range of conditions investigated, vortex formation in the wake
s reduced by the presence of the porous outer sheath. They also found
hat the drag coefficient of the combined cylinders, referred to the
iameter of the outer cylinder, is slightly lower than the drag coefficient
f a solid cylinder of the same diameter. Molin (1993) considered a
ylinder with a porous sheath in steady flow and estimated the drag
orce using a potential flow model with a quadratic pressure drop across
he porous sheath, similar to that used here. Molin’s model did not
ccount for viscous effects away from the porous boundary, so that the
rag force would be zero in the limiting cases of the sheath porosity
eing 𝜏 = 0 or 1 (where 𝜏 is the ratio of the area of openings to the
otal area of the sheath). Comparisons with experimental measurements
howed that this was a reasonable approximation for a sheath porosity
f 𝜏 = 0.36, but slightly over-predicts the drag for a porosity of 𝜏 = 0.2.

Most previous work on drag forces on porous cylinders has consid-
red the combined effect of drag from the flow through the porous
urface and other viscous effects. Moreover, previous studies have
onsidered steady flow. In absence of a model for how drag forces are
ffected by the presence of the porous outer cylinder in oscillatory flow,
or the TLP model we make the simplifying assumption that there is no
iscous drag on the porous cylinder and that drag on the solid inner
ylinder is unchanged by the addition of the porous outer cylinder. The
ationale for this is that, for the range of conditions considered, forces
ue to flow through the porous cylinder are more significant than other
iscous forces. This rationale is explored further in Section 6.1.

.6. Equation of motion

Due to the high stiffness of the mooring in the heave and pitch
irections, the TLP response is modelled as a one degree-of-freedom
DOF) system, with motion restricted to the surge direction. The mea-
urements in the tank confirmed that the pitch motion was minimal and
eave was directly coupled to surge, through the motion of the model
n an arc about the anchors. The surge–heave coupling is not captured
n the linearised frequency domain model. However, since the heave
otion is small, the assumption of a single DOF system is reasonable.
he equation of motion for the cases with no porous elements can then
e written

1 =
(

𝐶𝑚,11 − 𝜔2(𝑚 + 𝑎11) + 𝑖𝜔(𝑏11 + 𝑏
𝑑𝑟𝑎𝑔
11 )

)

𝜉1, (41)

where 𝑚 is the model mass and 𝐶𝑚,11 is the linearised mooring stiffness
5

in surge. The equation must be solved iteratively due to the dependence
of 𝑏𝑑𝑟𝑎𝑔11 on 𝜉1. As the radiation and diffraction problems cannot be
ecoupled for the cases with porous outer cylinders, the equation of
otion is written in terms of the total hydrodynamic force as

𝐻,1 =
(

𝐶𝑚,11 − 𝑚𝜔2 + 𝑖𝜔𝑏𝑑𝑟𝑎𝑔11

)

𝜉1. (42)

ince the total hydrodynamic force is nonlinearly dependent on the
ody motion, we solve for the motion response and wave forces on
he body simultaneously, so that the sum of the radiated and diffracted
otentials (i.e. the scattered potential) satisfies the porous boundary
ondition (29). This is discussed further in the next subsection.

.7. BEM solution

A BEM solution for the body motions and hydrodynamic forces was
resented in Mackay et al. (2021). The resultant system of equations
as coefficient matrices containing the porosity coefficient 𝜎, which
epends on the normalised fluid velocity through the porous surface
𝑛. The velocity 𝑤𝑛 is the difference between the fluid velocity and the
ody velocity, both of which are unknown. The system of equations
s solved iteratively in two loops, with the fluid velocity calculated in
he inner loop based on a first guess for the body velocity. The body
elocity is estimated in an outer loop, by finding the motion amplitude
1 which satisfies (42).

. Experimental setup

Experiments were conducted with two types of model. Various
ixed porous cylinders were tested at Dalian University of Technol-
gy (DUT). Subsequently, a floating system was tested both at DUT
nd the FloWave Ocean Energy Research Facility at the University of
dinburgh. The floating system comprised a TLP with a porous outer
ylinder. The experimental setup for the fixed porous cylinder tests is
escribed in Section 3.1 and the setup for the floating porous cylinder
ests is described in Section 3.2.

.1. Fixed cylinder models

Tests were conducted with various bottom-fixed vertical circular
ylinders, comprising a solid cylinder of outer diameter (OD) 250 mm
nd five porous cylinders. Three porous cylinders with OD 500 mm
ere tested with porosities 𝜏 = 0.1, 0.2 and 0.3, where the porosity is

defined as the ratio of the area of the openings to the total area of
porous surface. In addition, two porous cylinders with OD 375 and
750 mm and porosity 𝜏 = 0.2 were tested. The perforations in the
porous cylinders consisted of circular holes, radius 𝑟, arranged in a
regular square grid, of side length 𝑠, so that the porosity is given by
𝜏 = 𝜋𝑟2∕𝑠2. In the present tests the square size was fixed at 𝑠 = 25mm.
The thickness of the porous cylinders was 3 mm. The effect of sheet
thickness on wave forces was examined in Mackay et al. (2019) and
found to have negligible effect in comparison to the porosity.

The water depth at the model location was 1 m. The cylinders all
had heights of 1.7 m, with perforations rising to 1.5 m, so that the wave
run-up on the structure did not exceed the porous region. Photos of the
solid cylinder and one of the porous cylinders are shown in Fig. 2.

Tests were conducted in a wave flume at DUT of length 60 m and
width 4 m. A vertical dividing wall of length 13.2 m was installed
in the centre of the tank, to create two sections of width 3 m and
1 m. The cylinder models were installed in the wider section and tests
with flat porous sheets were conducted simultaneously in the narrower
section (see Mackay et al. (2019) for a discussion of the tests with
flat sheets). The cylinder models were located in centre of the test
section. The models were connected to load cells at top and bottom, to
measure horizontal force on the models. A raised section of tank floor
was created, so that the lower load cell could be located beneath the
raised floor. A schematic showing the layout of the flume, including the

dimensions of the raised section of the floor, is shown in Fig. 3.
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Fig. 2. Photos of fixed cylinder models in the empty tank. (a) Solid cylinder OD 250 mm. (b) Porous cylinder with OD 500 mm and porosity 𝜏 = 0.3.
Fig. 3. Schematic of experimental setup in DUT wave flume for fixed cylinder tests (not to scale).
Tests were conducted with various combinations of the solid and
porous cylinders, comprising tests with (a) the solid cylinder only,
(b) the porous cylinder only, and (c) the solid cylinder inside porous
cylinders. In the tests with the solid cylinder inside the porous cylinder,
the two cylinders were connected together and the combined force on
the inner and outer cylinder was measured. Tests were conducted in
regular waves, with 𝑘ℎ ∈ [0.61, 3.34] and 𝑘𝐴 ∈ [0.05, 0.20].

3.2. TLP model

The motivation for studying porous materials in the current work
was to investigate their use for motion damping of floating wind
turbines. A representative 3-leg TLP structure was selected, with di-
mensions similar to structures tested for the NREL reference turbine
design (Koo et al., 2012; Goupee et al., 2014). As the purpose of the
tests was to measure the influence of the porous outer cylinders on
the hydrodynamic response of the platform, the tests were simplified
by not including the aerodynamic or gyroscopic effects of the rotor or
the flexibility of the tower, so that the hydrodynamic effects could be
examined in isolation. The rotor and nacelle were represented using
an equivalent mass at the top of the tower, with the height of the
tower and mass of the rotor and nacelle based on the NREL 5 MW
turbine design (Jonkman et al., 2009). The dimensions of the model are
illustrated in Fig. 4(a) and the mass and volumetric properties are listed
6

in Table 1. The model was designed to gather data for validation of the
numerical method and is not intended to give optimised performance.
Both the inner cylinder and porous outer cylinders had a large, vertical
freeboard to reduce non-linearities and avoid over-topping. It is also
important to note that the model has been intentionally designed to
resonate in surge at a frequency which can be excited in the tank, so
that the influence of the porous outer cylinders could be measured.

The model was designed to be tested with changeable outer cylin-
ders with various diameters and porosities (see Fig. 4(b)). The outer
cylinders used had porosities of 𝜏 = 0, 0.15 and 0.3 (where the 𝜏 = 0
case is included for reference). The perforations in the porous cylinders
were arranged in a square grid, in the same way as for the fixed
cylinder tests, with a constant spacing of 𝑠 = 25mm between hole
centres. The outer cylinders had diameters of 222.8 mm and 302.4 mm,
giving an integer number of holes around the circumference. The ratios
of the diameters of the outer and inner cylinders are approximately
1.6 and 2.2 for the smaller and larger outer cylinders respectively.
The wall thickness for the porous cylinders used for the TLP was to
2 mm, reduced from 3 mm used for the fixed porous cylinder tests.
The reduction in thickness was required to achieve the correct mass.
Mackay et al. (2019) found that the force on fixed porous plates
with thicknesses between 3 mm and 10 mm was very similar, so the
difference in thickness between the fixed and floating porous cylinders
is not expected to have a significant impact on the results.
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Fig. 4. (a) Dimensions of TLP model (mm) with no outer cylinder. (b) Cross-section of TLP model, including porous outer cylinder.
Table 1
TLP model properties.
Draft [m] 0.60
Displaced volume [m3] 29.6 × 10−3

Mass [kg] 16.18
Vertical COG [m] 0.222
(relative to MWL, positive upwards)

To keep the total mass of the model constant between the various
configurations, the inner cylinder contained a changeable mass, shown
in Fig. 4(b), which could be varied to compensate for the changes in the
porosity and diameter of the outer cylinder. The masses were located
half way up the column to maintain a constant centre of gravity (COG).
The top plate connecting the outer cylinder to the inner cylinder was
also changeable, to allow for the different diameters of outer cylinder.
The masses of the three top plates (for the configurations with outer
cylinders with OD 222 and 302 mm, and the configuration with no
outer cylinder) were kept the same. In all seven configurations, the
total mass of the model was 16.18 kg and the COG was 222 mm
above the still water level. The pitch and roll moments of inertia
did vary between model configurations. However, since the moorings
had a high axial stiffness, there was very little motion in pitch and
roll, with a maximum of less than 1◦ in the most severe conditions
and generally much less than this. The difference in the moments of
inertia between configurations is therefore unlikely to influence the
comparisons between configurations.

The model was tested both at DUT and FloWave. The same flume
used for the fixed cylinder tests at DUT was used, but utilising the full
width of the flume, of 4 m and with a constant water depth of 1.2 m
along the flume. The mooring comprised three vertical lines of 2 mm
diameter Dyneema rope, attached to the ends of the legs and anchored
to the tank floor. The locations of the attachment and anchor points are
listed in Table 2. The mooring line tension was measured using inline
submersible load cells.
7

The horizontal restoring force for the model is the component of
the mooring tension acting in the horizontal direction. The restoring
force is nonlinear due to the model moving in an arc and the resultant
change in the buoyancy force with the horizontal displacement. The
linearised mooring stiffness is 𝐶𝑚,11 = 𝑇0∕𝐿0, where 𝐿0 is the length of
the mooring line, 𝑇0 = 𝜌𝑉 𝑔 − 𝑚𝑔 is the pretencion, 𝑉 is the displaced
volume and 𝑚 is the mass of the model. For the range of conditions
considered here, the linearised stiffness results in a good approximation
to the measured force (see Mackay et al. (2020) for further details).

The FloWave facility is a circular tank with a diameter of 25 m and
a water depth of 2 m, with 168 absorbing wave makers around the
circumference. To achieve the same mooring stiffness in the horizontal
direction, the mooring was attached to a rigid frame, with the anchor
pivot depth equal to that used in the tests at DUT.

For both the tests at DUT and FloWave, the model motions were
measured using 6DOF infrared motion capture systems. As the water
depth was different at the two sets of tests, we report the measured
motions as a function of 𝐾𝑎 rather than 𝑘ℎ, where 𝐾 = 𝜔2∕𝑔 is the
infinite depth wavenumber and 𝑎 = 0.07m is the radius of the upper
cylinder. The wave frequencies used were in the range 𝐾𝑎 ∈ [0.01, 0.20].
In contrast to the tests with the fixed cylinders, the wave amplitude, 𝐴,
was held constant with frequency, rather than the wave steepness, 𝑘𝐴.
This was because the main effects of interest for the TLP model occur
at low frequencies, so holding 𝑘𝐴 constant would lead to unrealistically
large wave heights at low frequencies. Regular waves with amplitudes
𝐴 = 0.02, 0.04 and 0.06 m were used in both sets of tests.

4. Results for fixed cylinders

The numerical and theoretical results presented in this section
assume that the water depth is constant at ℎ = 1m and the influence
of the sloped section of the floor is not modelled explicitly. For the
BEM calculations for the porous structures we have used Molin and
Fourest’s model for the porous friction coefficient (Molin and Fourest,
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Fig. 5. (a) TLP model with outer cylinder OD 222 mm and porosity 𝜏 = 0.15, installed in FloWave tank. (b) Close-up of mooring arrangement and mooring frame in FloWave,
configuration shown with solid outer cylinder OD 222 mm.
Table 2
TLP mooring line properties.

Water depth [m] 1.20
Attachment point radius [m] 0.567
Attachment point depth [m] 0.647
Anchor pivot depth [m] 1.158
Mooring line length (pivot–pivot) [m] 0.511
Linearised mooring stiffness in surge [N/m] 258
Water depth for DUT tests [m] 1.2
Water depth for FloWave testsa [m] 2.0

aModel anchored to raised frame at FloWave—see Fig. 5(b).

1992; Molin, 2011):

𝐶𝑓 = 1 − 𝜏
𝜇𝜏2

, (43)

where a fixed value of the discharge coefficient 𝜇 = 0.5 has been used
in this work. The inertial coefficient, 𝐿, is modelled using McIver’s
formulation (McIver, 1998) for the blockage coefficient of a circular
hole in a rectangular duct. Reformulating equations (32)–(35) in McIver
(1998) gives
𝐿
𝑠

≈ 0.3898𝜏 − 0.03239
√

𝜏 − 1.2415 + 0.8862
√

𝜏
, (44)

where 𝑠 is the hole spacing. This formulation is based on a long-wave
assumption, that the thickness of the porous surface is negligible in
comparison to the wavelength.

From (28) it is apparent that the ratio of drag to inertial forces on
the porous surface is given by

𝐹 𝑑𝑟𝑎𝑔

𝐹 𝑖𝑛𝑒𝑟𝑡𝑖𝑎𝑙
=

4𝐶𝑓
3𝜋𝐿

𝐴 |𝑤𝑛|. (45)

For the coefficient models used here, the fraction above is fixed for
a given value of 𝜏, with 4𝐶𝑓∕3𝜋𝐿 = (1.57, 0.61, 0.36) × 103 m−1 for
𝜏 = 0.1, 0.2, 0.3. The relative influence of inertial effects at different
wave frequencies is dependent on how 𝐴 and |𝑤𝑛| vary with frequency.
The variation of |𝑤𝑛| over the structure and the variation of this with
frequency is dependent on the particular structure. However, for the
present case, where we have held 𝑘𝐴 fixed with frequency, we can note
that 𝐴 decreases as 𝑘 increases, indicating that inertial effects of the
porous barrier may be more important at higher frequencies. The wave
8

amplitudes used in the tests were in the range 𝐴 ∈ [0.015m, 0.154m].
The magnitude of the normalised velocity through the porous cylinder,
|𝑤𝑛|, is 𝑂(1), so inertial effects of the porous surface will generally be
dominated by drag forces.

Throughout this section we denote the radius of the solid inner
cylinder as 𝑎 and the radius of the porous cylinders as 𝑏. The forces
are presented in non-dimensional form, normalised by 𝜌 𝑔 𝐴 𝑎ℎ. This
normalisation is used in all cases, including cases where the solid
cylinder is not present, so that the normalisation is consistent when
comparing results for porous cylinders with different diameters.

For consistency with the assumptions of the BEM model, the forces
measured in the tank tests have been processed to give the equivalent
sinusoidal amplitude, given by

|𝐹1| =
√

2Var(𝑓1(𝑡)), (46)

where 𝑓1(𝑡) is the measured horizontal force time series and Var(.)
denotes the variance. The section of the time series analysed was
defined to be the largest whole number of wave periods, starting after
the initial transient response has passed and ending before the reflected
waves arrive back from the beach.

4.1. Solid cylinder

Wave forces on solid vertical cylinders have been studied exten-
sively in the past. However, results for the solid cylinder are included
here for comparison with the results for the porous cylinders. Under
linear wave theory, the normalised horizontal excitation force on a
bottom-fixed solid vertical cylinder with circular cross section radius
𝑎, is given by MacCamy and Fuchs (1954)
𝐹1

𝜌𝑔𝐴𝑎ℎ
=

tanh(𝑘ℎ)
𝑘ℎ

4
𝑘𝑎𝐻 (1)′

1 (𝑘𝑎)
, (47)

where 𝐻 (1)
1 is the Hankel function of the first kind of order one and the

prime denotes differentiation with respect to the arguments.
Fig. 6 shows the nondimensional measured force amplitude against

𝑘ℎ for various values of wave steepness 𝑘𝐴, together with the theo-
retical linear force given by (47). The results generally agree well for
the range of conditions shown, and the non-linearity in the measured
wave force on the solid cylinder is not evident after processing the
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Fig. 6. Nondimensional amplitude of horizontal force on fixed solid cylinder from
linear theory (solid line) with measured forces for various wave steepness (diamonds).

measurements in this way. This indicates that the effect of nonlinear
components of the potential and viscous drag forces have a small
contribution to the total linearised force for the range of conditions
considered here. Since the porous cylinders used here have larger
diameters than the solid cylinder, the relative contribution of viscous
drag will be lower for the porous cylinders. Moreover, as discussed in
Section 2.5, drag coefficients are expected to be lower for the porous
cylinders. Therefore, neglecting viscous drag forces on the porous
cylinders will have a smaller influence than for the solid cylinders.

4.2. Porous cylinders

Fig. 7(a) shows the nondimensional force on the porous cylinder
with radius 𝑏 = ℎ∕4 against 𝑘ℎ for waves with steepness 𝑘𝐴 = 0.05
nd for porosities 𝜏 = 0.1, 0.2 and 0.3. The results from the BEM
odel capture the main effects of the cylinder porosity and wave

requency, with good agreement with the measured results in general.
he measurements at 𝑘ℎ = 0.82 and 𝑘ℎ = 1.3 are somewhat higher
han the results from the BEM model, with the discrepancy increasing
or the lower porosity cylinders. The measurements for the lower wave
requencies with 𝑘ℎ < 0.8 are consistently lower than the predictions
rom the BEM model. These trends are also evident in the results for
he solid cylinder, although to a lesser extent (see Fig. 6).

The discrepancies at these frequencies were consistent between tests
ith various cylinder diameters, porosities and wave steepness, as
iscussed further below. The effects were also visible in the tests with
lat porous sheets, which were conducted simultaneously, as discussed
n Mackay et al. (2019). It is suspected that the discrepancies at these
requencies are caused by the interaction of the incident and diffracted
aves with the raised section of the tank floor. Although the slope of

he front of the raised section is relatively shallow, with a gradient of
.4%, the entire feature is a similar length to the longer wavelengths
sed in the tests. The effect of the raised section of the floor was not
odelled explicitly in the BEM calculations, so these interaction effects
ill not be captured. The interaction of the incoming wave with the

aised floor will decrease at higher frequencies, as the wave motion
ecays more rapidly through the water column. This is consistent with
he experimental results, which agree better with the numerical results
t higher frequencies. It is unclear why the interference is larger for
he porous cylinders than the solid cylinders. This will be investigated
urther in future work. Simulations conducted using a computational
luid dynamics model of the same experimental setup, reported in Qiao
t al. (2021), showed excellent agreement with the BEM results. This
9

ives further weight to the conjecture that the disagreement between
he numerical and experimental results is due to uncertainties in the
xperimental results.

Fig. 7(b) shows the nondimensional force on cylinders with porosity
= 0.2 against 𝑘ℎ for waves with steepness 𝑘𝐴 = 0.05 and for

ylinder radii of 𝑏 = (3, 4, 6)ℎ∕16. The agreement between the BEM
odel and experimental measurements is good overall, with the BEM
odel able to replicate the variation of the force with 𝑘ℎ and 𝑏∕ℎ. The

discrepancies at the frequencies mentioned above are also evident in
this case.

Fig. 8 shows the nondimensional force on a cylinder with porosity
𝜏 = 0.2 and radius 𝑏 = ℎ∕4 against 𝑘ℎ for various steepness. In
contrast to the force on the solid cylinder, discussed in the previous
section, there is a significant influence of the wave steepness on the
normalised force. At 𝑘ℎ = 1.88 the normalised force increases from
0.98 for 𝑘𝐴 = 0.05 to 1.91 for 𝑘𝐴 = 0.2. In contrast, at 𝑘ℎ = 1.88
the measured variation of the normalised force with 𝑘𝐴 for the solid
cylinder is difficult to discern from the experimental uncertainty. The
BEM model accurately replicates the effect of the wave steepness on the
normalised force on the porous cylinder (notwithstanding the effects of
the raised floor, discussed above), indicating that the quadratic pressure
drop model accurately captures the large-scale effects of the porous
surface on the flow.

From (28) it can be seen that for a given frequency, a change in the
wave amplitude has the same effect on the normalised force as a change
in the porous friction coefficient 𝐶𝑓 . This is evident from the similarity
between Figs. 7(a) and 8, which display similar effects of changes in
𝑘𝐴 and 𝜏. However, it should be noted that the nonlinear relationship
etween 𝜏 and 𝐶𝑓 mean that changes in 𝜏 have a proportionally larger
ffect than changes in 𝑘𝐴 for the values shown here.

.3. Porous cylinder with solid inner cylinder

Fig. 9(a) shows the combined nondimensional force on porous
ylinders with a solid inner cylinder for a ratio of outer to inner radius
f 𝑏∕𝑎 = 2 and inner radius 𝑎 = ℎ∕8, plotted against 𝑘ℎ for waves

with steepness 𝑘𝐴 = 0.05 and for outer cylinder porosities 𝜏 = 0.1,
0.2, 0.3 and 1. The case with 𝜏 = 1 corresponds to the case with no
outer cylinder, and is included here for reference. In comparison to
the cases with no inner cylinder, shown in Fig. 7, the presence of the
inner cylinder causes a small reduction in the peak value of |𝐹1|. The
inner cylinder also results in an increase in the value of |𝐹1| at higher
frequencies.

Compared to the case with the inner cylinder only, adding a porous
outer cylinder significantly increases the load on the combined struc-
ture at lower frequencies. At higher frequencies the outer cylinder has
a smaller effect. The BEM model results generally agree well with the
measurements, although there is a small but consistent underestimation
of the force at higher frequencies which did not occur for the cases with
no inner cylinder.

Fig. 9(b) shows the effect of the outer cylinder diameter for fixed
porosity and wave steepness. The case with 𝑏∕𝑎 = 1 corresponds to
the case with no outer cylinder. The BEM model is able to capture the
variation of the force with the outer cylinder diameter in this case as
well.

5. Results for floating cylinders

The experiments at DUT used 13 wave frequencies and 3 wave
amplitudes and covered configurations with both outer cylinder diam-
eters. The tests at FloWave used 26 wave frequencies, but only 2 wave
amplitudes and only covered configurations with the smaller outer
cylinder. The experimental results have been analysed in a similar way
to the results for the fixed cylinders. The motion and wave amplitudes
are defined as

√

2 Var(𝑥(𝑡)), (48)
𝜉1 =
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Fig. 7. Nondimensional amplitude of horizontal force on fixed porous cylinder from BEM model (solid line) and measurements (diamonds). (a) For various cylinder porosities. (b)
For cylinders of various radii.
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Fig. 8. Nondimensional amplitude of horizontal force on fixed porous cylinder from
BEM model (solid line) and measurements (diamonds) for various wave steepness.

𝐴 =
√

2 Var(𝜂(𝑡)), (49)

where 𝑥(𝑡) is the surge motion time series and 𝜂(𝑡) is the surface
elevation time series, measured in the empty tank. In contrast to the
tests with fixed cylinders, the portion of the record analysed is the
quasi-steady state period, after the reflected waves had arrived back
from the beach. This is because in several cases, the initial transient
effect did not decay until after the reflected waves had arrived at the
model location. An analysis of the reflected waves for both sets of tests
is presented in Section 5.1.

As the focus of the present work is to examine the influence of the
porous outer cylinder on the motion response of a structure, the drag
coefficients for the solid structures are estimated empirically from the
experiments, as described in Section 5.2. Due to the complex shape of
the TLP, we make the simplifying assumption that the drag coefficient is
constant, with no dependence on the Keulegan–Carpenter (KC) number.

Although the excitation and radiation forces were not measured in
the tank, it is instructive to examine the numerical predictions of these
forces in order to explain the influence of the porous outer cylinder on
the model motions. Numerical predictions of radiation and diffraction
forces are discussed in Section 5.3. This also allows us to assess the
relative importance of damping due to wave radiation, dissipation of
10

energy across the porous surface and viscous drag. t
Throughout the section, results are presented in terms of the surge
response amplitude operator (RAO), defined as |𝜉1|∕𝐴. In contrast to
the results for fixed cylinders, results are plotted as a function of 𝐾𝑎,

here 𝑎 = 0.07m is the radius of the upper cylinder of the model. This
ariable is used on the abscissa rather than 𝑘ℎ, since the water depth
iffered in the two sets of tests. The variable 𝑏 is used to denote the
adius of the outer cylinder. The effects of the porosity of the outer
ylinder and the wave amplitude are discussed in Sections 5.4 and 5.5.

.1. Analysis of reflected waves

For both sets of tests, waves were measured in the empty tank
nd reflections were estimated using the three-probe least squares
ethod (Mansard and Funke, 1980). The reflection coefficients, 𝐶𝑟, for

the DUT flume and FloWave tank are shown in Fig. 10. The DUT flume
has a large reflection coefficient at lower frequencies of up to 0.4, but a
lower reflection at higher frequencies, since the beach is more efficient
for short wavelengths. In contrast, the reflection coefficient at FloWave
is relatively constant with frequency, with 𝐶𝑟 ≈ 10%. Given the different
reflection characteristics, the data from the DUT tests is expected to
be more reliable at high frequencies, and the data from FloWave is
expected to be more reliable at low frequencies.

5.2. Estimation of drag coefficients

The drag coefficient was estimated to give the best agreement
between the BEM model and the experimental results for tests with
either no outer cylinder or solid outer cylinders. For these cases the
numerical model used was a standard single-domain BEM model for
solid bodies, with no inner volume of water. This means that the results
for the cases with solid outer cylinder make the tacit assumption that
the entrained water between the inner and outer columns behaves
like a solid mass. This will not capture any sloshing effects of the
internal water. However, a comparison between the numerical and
experimental results indicated that this was a reasonable approximation
for the range of conditions considered.

Fig. 11 shows the surge RAOs for the tests with no outer cylinder
and tests with solid outer cylinders for various wave amplitudes. The
BEM results were calculated using a drag coefficient of 𝐶𝑑 = 1.2. The
greement is reasonable for the range of conditions shown. For the
ests in a water depth of 1.2 m, there is an increased response at low
requency in the experimental data which is not present in the numer-
cal predictions. It is suspected that this is due to uncertainties caused
y the increased wave reflections at low frequencies. The absence of

his effect in the measurements at the FloWave facility support this
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Fig. 9. Nondimensional amplitude of horizontal force on fixed porous cylinder with solid inner cylinder from BEM model (solid line) and measurements (diamonds). (a) For outer
cylinders of various porosities. (b) For outer cylinders of various radii.
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Fig. 10. Estimated reflection coefficients from regular wave tests in DUT (crosses) and
FloWave (circles) for various wave amplitudes.

hypothesis, as the reflections at low frequencies were lower in this case.
The RAOs estimated from the FloWave tests exhibit an oscillation with
𝐾𝑎, similar to the effect observed in the measured wave conditions
discussed in the previous section. This effect is therefore expected to
be a result of the reflections in the tank. Note that for 𝐾𝑎 > 0.1, the
frequency spacing of the regular wave tests was relatively coarse, so
the oscillatory behaviour of the RAO is not evident. In other tests in
irregular waves (not reported here), the oscillatory behaviour at high
frequencies was visible.

Aside from the effects discussed above, the frequency response and
amplitude is well-replicated by the numerical predictions. The non-
linearity in the mooring is small over range of motion considered
(see Mackay et al. (2020) for details). The use of the constant drag
coefficient is reasonably effective at replicating the measured RAOs
for the various outer cylinder diameters, wave conditions and water
depths.

5.3. Diffraction and radiation forces

Fig. 12 shows numerical predictions of the surge excitation force,
added mass and damping on the TLP model for the case with outer
cylinder radius 𝑏 = 0.111m and water depth ℎ = 1.2m and various outer
cylinder porosities. The cases with a solid outer cylinder (𝜏 = 0) and no
11
outer cylinder (𝜏 = 1) are also included for comparison. Note that the
diffraction and radiation problems have been solved separately using
a wave amplitude of 𝐴 = 0.02m and motion amplitude 𝜉1 = 0.02m
respectively. From (28) it is apparent that a change in either the wave
or motion amplitude has the same as effect on the normalised forces
as a change in the porous friction coefficient 𝐶𝑓 , so the results for
different cylinder porosities give an indication of how the diffraction
and radiation forces change with wave and motion amplitudes. The
excitation forces, added mass and damping coefficient are shown in
nondimensional form, with 𝑑 = 0.6m denoting the model draft and
𝑉 = 26.9 × 10−3 m3 denoting the model volume.

As the porosity of the outer cylinder tends to zero, the surge
excitation force tends towards the value for the case with a solid outer
cylinder. Conversely, as the porosity of the outer cylinder increases, the
excitation force tends towards the value for the case with a no outer
cylinder. For 𝜏 = 0.3, the excitation force is very close to the case with
no outer cylinder.

For the case with a solid outer cylinder, the mass of water entrained
between the inner and outer cylinders has been added to the added
mass calculated by the BEM model. This adjustment has been made for
consistency with the results for the cases with porous outer cylinders,
which already account for the effect of the entrained mass of water.
After this adjustment, it is evident that the effect of changing the
porosity of the outer cylinder is to move between the cases with a solid
outer cylinder and no outer cylinder. For the present case, there is very
little change in the added mass for an outer cylinder porosity of 𝜏 = 0.3.

The wave radiation damping and porous damping are shown in
igs. 12(c) and (d) respectively. Note that for the cases with no outer
ylinder and solid outer cylinders, the porous damping is zero. The
ave radiation damping is relatively low for the range of 𝐾𝑎 consid-

red, tending to zero as 𝐾𝑎 → 0. As with the excitation force and added
ass, the wave radiation damping for an outer cylinder porosity of
= 0.3 is very close to the value for no outer cylinder. In contrast,

he porous damping is significantly higher than the radiation damping
nd the normalised value is relatively constant with frequency. The
orous damping initially increases as the porosity increases from zero,
hen decreases again, with the case with 𝜏 = 0.1 leading to the highest
alues of 𝑏𝑝𝑜𝑟11 . In contrast to the other variables considered, there is still
significant influence of the outer cylinder with a porosity of 𝜏 = 0.3.

From Eqs. (36) and (38), the ratio of damping from flow through
orous surface to viscous drag damping is given by

𝑏𝑝𝑜𝑟11
𝑑𝑟𝑎𝑔 =

𝐶𝑓
𝐶

∫𝑆𝑃
|

|

𝑤𝑛||
3 d𝑆


. (50)
𝑏11 𝑑
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Fig. 11. Surge RAOs for configurations with no outer cylinder or solid outer cylinders, against 𝐾𝑎 for various wave amplitudes, from BEM model (solid lines) and measurements
(diamonds). Upper row: Tests in water depth ℎ = 1.2m. Lower row: Tests in water depth ℎ = 2m.
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In the present case, the frontal area of the model is taken as  =
0.157 m2 and the drag coefficient for the cases with no porous elements
was estimated at 𝐶𝑑 = 1.2 and was assumed constant with both
requency and amplitude. The porous friction coefficient 𝐶𝑓 is also
ssumed to be independent of flow conditions, which was shown to be
reasonable approximation for the case of fixed cylinders. The relative

mportance of viscous drag therefore depends on how the integral of
𝑤𝑛|

3 varies with frequency. From Fig. 12(d) it is apparent that the
ntegral of |𝑤𝑛|

3 is approximately constant with frequency. The value
f 𝐶𝑑 is likely to be reduced for the porous cylinders. However, taking
𝑑 = 1.2 as an upper bound, gives the ratio 𝑏𝑝𝑜𝑟11 ∕𝑏

𝑑𝑟𝑎𝑔
11 in the range 2.5 –

.5 for the configurations considered here. Since the porous damping is
everal times larger than the viscous damping, the errors resulting from
he assumption that viscous drag on the inner cylinder is unchanged
y the presence of the porous outer cylinder are likely to be relatively
mall.

.4. Effect of porous outer cylinders on motion response

Fig. 13 shows the effect of the porosity of the outer cylinder on the
otion response for tests in both water depths and with both outer

ylinder diameters. The results for 𝜏 = 1 correspond to the case with
o outer cylinder and the results for 𝜏 = 0 correspond to the case of
solid outer cylinder. The oscillatory behaviour in the experimental

esults from FloWave are evident here as well. The frequencies of the
scillations are consistent between the tests with different configura-
ions, with and without outer cylinders. This indicates that this is not a
esult of any fluid sloshing effects between the inner and outer cylinder,
12
r an effect of the porous wall. The oscillatory behaviour is not present
n the BEM results for any case. Since the case with no outer cylinder is
standard floating solid body problem, we would expect results from

inear hydrodynamic models to give reasonable results in this case.
he absence of the oscillatory behaviour in the BEM results therefore
uggests that the oscillatory behaviour is due to the effect of reflected
aves, present in the FloWave tank.

The inclusion of the solid outer cylinder shifts the resonant response
o a lower frequency due to the increase in added mass (including
he mass of entrained water between the inner and outer cylinders).
he peak response amplitude is also increased due to the reduced
adiation damping at lower frequencies. The larger diameter outer
ylinder causes a larger shift in the resonant frequency due to the larger
hange in mass. The effect of the outer cylinders is similar in both water
epths.

Increasing the porosity of the outer cylinder from 𝜏 = 0 to 𝜏 =
.3 leads to an increase in the frequency of the peak response and a
eduction in its amplitude. This is due to a reduction in the added mass
nd increase in the damping, discussed in the previous section. The
eak response increases when the porosity is increased from 𝜏 = 0.3
o 𝜏 = 1 (no outer cylinder). The porosity which leads to the lowest
eak response will, in general, be case-specific.

There is a reasonable qualitative agreement between the experi-
ental and numerical results. However, due to the effect of reflected
aves on the experimental results mean, there is some uncertainty in

he frequency and amplitude of the peak response. Nevertheless, the
EM model is able to predict the main effects measured in the tank.
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w

Fig. 12. Numerical predictions for the TLP model of (a) surge excitation force, (b) surge added mass, (c) surge radiation damping, and (d) surge porous damping. Results for case

ith outer cylinder radius 𝑏 = 0.111m, wave amplitude 𝐴 = 0.02m, motion amplitude 𝜉1 = 0.02m, and water depth ℎ = 1.2m.
5.5. Effect of wave amplitude on motion response

Fig. 14 shows the RAO from the BEM model and experiments for the
tests in water depth ℎ = 1.2m with outer cylinder radius 𝑏 = 0.111m
and porosity 𝜏 = 0.15. The results are qualitatively similar, with the
BEM model predicting a similar magnitude of effect, both around the
peak and at higher frequencies. However, due to the uncertainties in the
measurements due to wave reflections, there are differences between
the measured and predicted response at low frequencies. As the effect
of increasing the wave amplitude is the same as increasing the porous
friction coefficient, 𝐶𝑓 , the response at higher frequencies is reduced in
higher wave amplitudes, and there is a small increase in the response
at lower frequencies, due to the increase in added mass.

6. Further numerical results

The motivation for the present study was to investigate the use
of porous materials reduce either wave-induced loads or motions for
offshore structures. The results for both the fixed and floating cylinders
show that adding a porous outer cylinder increases the excitation forces
on the structure. However, the results for the TLP model indicated
that the increase in damping resulted in reduced motions, despite
the increased excitation force. It is therefore interesting to examine
whether the damping could be increased without an increase in the
excitation force, if the porous elements are placed lower in the water
column.

A limitation of the current numerical approach is that it does not
account for viscous effects away from the porous surface. To examine
how the porous damping compares to viscous damping on a solid
13
cylinder, we first consider the forces on a 2D porous cylinder in an
oscillatory flow.

6.1. Force on a 2D porous cylinder

Consider an infinitely long porous cylinder, with circular cross
section, radius 𝑎. We consider a 2D cross-section of the cylinder in a
harmonically oscillating flow in the 𝑥-direction, with angular frequency
𝜔 and amplitude 𝜉. We follow a similar approach to that described in
Section 2 and estimate the force on the cylinder using a potential flow
approach, with the dissipation across the porous wall of the cylinder
represented by the pressure drop model (20). In the present study, as
above, we assume inertial effects of flow through the porous wall are
negligible and set 𝐿 = 0. The same approach was taken by Molin (1993)
to estimate the drag force on a solid cylinder surrounded by a porous
sheath in steady flow. The use of a potential flow approach means that
the drag force will be zero when the porosity is zero (d’Alembert’s
paradox). The method is justified on pragmatic grounds, under the
assumption that for moderate porosities and low KC numbers, drag
from flow through the porous cylinder will dominate over drag from
viscous effects away from the porous cylinder wall.

As before, we consider the potential in the domains exterior and
interior to the porous cylinder and write the time-dependent potential
in polar coordinates as

𝛷𝐸,𝐼 (𝑟, 𝜃, 𝑡) = Re
{

𝜔𝜉𝑎𝜓(𝑟, 𝜃)𝐸,𝐼𝑒𝑖𝜔𝑡
}

, (51)
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Fig. 13. Effect of outer cylinder porosity on surge RAOs for wave amplitude 𝐴 = 0.02m and various combinations of water depth and outer cylinder radius. Left: BEM results.
Right: Experimental results.
where 𝜓𝐸,𝐼 (𝑟, 𝜃) is the non-dimensional spatial component of the po-
tential, given by

𝜓𝐸,𝐼 = 𝑟
𝑎
cos(𝜃) + 𝜙𝐸,𝐼 . (52)

It is assumed that the amplitude of the flow is small, so that the
velocity-squared terms in the Bernoulli equation can be neglected and
the dynamic pressure is given by (25). After a similar analysis to that
in Section 2.3, the dynamic boundary condition on the porous surface
14
can be written

4
3𝜋
𝐶𝑓

𝜉
𝑎
|𝑤𝑛|𝑤𝑛 = −𝑖(𝜙𝐸 − 𝜙𝐼 ), (53)

where 𝑤𝑛 is the non-dimensional normal velocity through the porous
boundary given by

𝑤 = cos(𝜃) + 𝑎
𝜕𝜙𝐸,𝐼

. (54)
𝑛 𝜕𝑟
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Fig. 14. Effect of wave amplitude on surge RAOs for ℎ = 1.2m and outer cylinder with radius 𝑏 = 0.111m and 𝜏 = 0.15. Left: BEM results. Right: Experimental results.
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The non-dimensional complex amplitude of the force per unit length,
𝑑, is given by

𝑓 =
𝐹1

𝜌𝜔2𝜉𝜋𝑎2𝑑
= 𝑖
𝜋 ∫

2𝜋

0
(𝜙𝐸 − 𝜙𝐼 ) cos(𝜃)𝑑𝜃

= − 4
3𝜋2

𝐶𝑓
𝜉
𝑎 ∫

2𝜋

0
|𝑤𝑛|𝑤𝑛 cos(𝜃)𝑑𝜃. (55)

The normalised added mass and damping coefficients per unit length
are therefore:

𝑎11
𝜌𝜋𝑎2𝑑

= Re {𝑓} , (56)

𝑏11
𝜔𝜌𝜋𝑎2𝑑

= Im {𝑓} . (57)

he coupled system of equations for 𝜙𝐸 and 𝜙𝐼 has been solved using
n iterative BEM model, similar to that described in Mackay and Johan-
ing (2020), Mackay et al. (2021). Molin (1989, 2011) also considered
he same problem, but applied an additional linearisation of the angular
ariation of the potential around the cylinder, and used this to derive
nalytical expressions for the added mass and damping coefficients.
he analytical expressions differ slightly from the solutions from the
EM model, giving lower added mass and a higher peak damping. The
olution from the BEM model is considered more accurate as it does
ot require linearisation of the angular variation of the potential.

Under the current assumptions, the forces on the cylinder are gov-
rned by the dynamic boundary condition (53), which depends only
n the porous friction coefficient 𝐶𝑓 and the amplitude to radius ratio
𝜉∕𝑎, or equivalently the KC number, but is independent of the fre-
quency. Therefore, for the present model, the added mass and damping
coefficients are dependent on 𝐶𝑓 and KC only.

Figs. 15(a) and (b) show the normalised added mass and damping
oefficients as a function of the porosity 𝜏, for 𝐾𝐶 = 1, 2, 4 and

8. The porous friction coefficient 𝐶𝑓 has been calculated using (43)
with 𝜇 = 0.5. The added mass coefficient decreases monotonically with
increasing porosity, from a value of 2 for a solid cylinder, to zero when
the porosity is one (i.e. no cylinder). The effect of increasing KC is
equivalent to increasing 𝐶𝑓 , i.e. the porous cylinder behaves more like
a solid cylinder as the oscillation amplitude increases.

In contrast, the damping coefficient is zero for the case of a solid
cylinder, due to the assumption of inviscid flow. The damping coef-
ficient increases to a maximum of around 0.9, then decreases back
towards zero as the porosity approaches one. The value of porosity
that gives the maximum damping is dependent on the KC number, with
the porosity that gives the maximum damping increasing with the KC
number.
15

o

Figs. 15(c) and (d) show the added mass and damping coefficients
as a function of KC number for various porosities. Both the added mass
and damping tend to zero as KC tends to zero. In reality, inertial effects
of flow through the porous wall will become more significant for low
KC numbers, so that the added mass will tend to some small positive
value rather than zero. For larger KC numbers the damping also tends
to zero, as the porous cylinder behaves more like a solid cylinder, for
which the damping is zero in inviscid flow. Molin and Legras (1990)
added a viscous force of the form 𝐹𝑑 = 𝜌𝐶𝑑𝑎𝑑|𝑈 |𝑈 to the force from
he potential model, to correct for neglecting viscous effects away
rom the porous wall. They found that this gave good agreement with
xperimental measurements of damping forces on porous cylinders.

To illustrate the relative magnitude of the damping on porous and
olid cylinders, we can re-write (38) as

𝑏𝑑𝑟𝑎𝑔11

𝜔𝜌𝜋𝑎2𝑑
= 8

3𝜋3
𝐶𝑑 𝐾𝐶. (58)

pproximating 𝐶𝑑 using (40) gives

𝑏𝑑𝑟𝑎𝑔11

𝜔𝜌𝜋𝑎2𝑑
≈ 2.26𝛽−1∕2 + 0.0172𝐾𝐶2, for 𝐾𝐶 < 10. (59)

he damping from (59) is shown in Fig. 15(d) for a value of 𝛽 = 1000.
he damping for the porous cylinders is significantly in excess of that
or the solid cylinder for lower KC numbers. For higher KC numbers, the
amping from the potential flow model tends to zero. It is expected that
n reality, the damping would tend towards that for the solid cylinder
t higher KC. However, Durhasan et al. (2019) found that the drag
oefficient of a solid cylinder with a porous shroud in steady flow
as slightly below that for a solid cylinder of the same diameter as

he porous shroud. We may therefore expect that the same may apply
or a fully porous cylinder in oscillatory flow. To quantify the actual
amping on a porous cylinder in oscillatory flow will require further
xperimental tests or numerical modelling which incorporates viscous
ffects.

.2. Truncated cylinder with porous lower section

In this section we investigate the effect of incorporating a porous
hamber into a vertical truncated cylinder. The cylinder has draft 𝑑
nd radius 𝑎 and is floating in infinite water depth. The lower section
f the cylinder is porous, with the height of the porous section equal
o 𝑑𝑝 and height of solid section equal to 𝑑𝑠 = 𝑑 − 𝑑𝑝. A sketch of the
eometry is shown in Fig. 16. To simplify the analysis and avoid making
ssumptions about the mass and mooring properties of the structure, we
onsider the diffraction and radiation cases only, rather than the case
f body motions in waves.
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Fig. 15. Non-dimensional surge added mass and damping coefficients for a 2D porous cylinder in oscillatory flow plotted against porosity for various porosities (upper plots) and
gainst KC number for various porosities (lower plots). Dashed line corresponds to viscous drag damping for a solid cylinder, calculated using (59) with 𝛽 = 1000.
Fig. 16. Dimensions of truncated cylinder with porous lower section.

In the current example we consider a draft to radius ratio of 𝑑∕𝑎 =
0 and a porous section of length ratio 𝑑𝑝 = 𝑑∕4. The wave amplitude
s set at 𝐴 = 𝑎. Pitch motions are assumed to be about the mean free
urface in the centre of the cylinder and the motion amplitudes are
ixed at 𝜉1 = 𝑎 and 𝜉5 = asin(𝑎∕𝑑), so that the displacement of the

bottom of the structure in the pitch mode is equal to 𝜉1.
16
Fig. 17 shows the surge and pitch excitation forces for various
porosities. The surge excitation force shows very little change from the
addition of the lower section, with a slight increase at low frequencies
when the lower section is solid. The lower chamber has more influence
on the pitch excitation force, with the solid lower cylinder giving
around 30% higher peak excitation force. As before, the excitation
forces for the porous cylinders are between the cases with 𝜏 = 0 and
𝜏 = 1.

The added mass and inertia are shown in Fig. 18. The mass and
moment of inertia of the entrained mass of water in the lower chamber
has been added to the values for the case with 𝜏 = 0. The lower chamber
significantly increases the added mass in both the surge and pitch
modes. Adding a solid lower chamber would have the effect of lowering
the natural frequency of the response compared to the case with no
lower chamber. Increasing the porosity of the lower chamber reduces
the added mass and would increase the natural frequency towards the
case with no lower chamber.

Fig. 19 shows the normalised surge and pitch damping and the con-
tributions from wave radiation and porous dissipation. For surge, the
peak radiation damping is approximately equal to the maximum porous
damping. However, the porous damping coefficient is approximately
constant with frequency, as for the case of the 2D porous cylinder. In
the present 3D case, the porous damping per unit length of the porous
section is slightly higher than in the 2D case, since the porous damping
here also includes a component due to flow through the bottom of the
porous section.

In contrast, the radiation damping in pitch is an order of magnitude
smaller than the porous damping. For comparison, the normalised pitch
viscous damping coefficient for a solid lower cylinder can be calculated
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Fig. 17. Non-dimensional surge and pitch excitation forces on the truncated porous cylinder with dimensions 𝑑∕𝑎 = 10, 𝑑𝑝 = 𝑑∕4 and wave amplitude 𝐴 = 𝑎.
Fig. 18. Non-dimensional surge added mass and pitch added inertia for the truncated porous cylinder with dimensions 𝑑∕𝑎 = 10, 𝑑𝑝 = 𝑑∕4 for motion amplitudes 𝜉1 = 𝑎 and
𝜉5 = sin−1(𝑎∕𝑑). See Fig. 17 for legend.
by integrating the viscous drag force over the length of the lower
section, to give

𝑏𝑑𝑟𝑎𝑔55

𝜌𝜔𝜋𝑎2𝑑3
= 2

3𝜋2
𝐶𝑑𝜉5

𝑑4 − 𝑑4𝑠
𝑎𝑑3

, (60)

here, for simplicity, it has been assumed that the drag coefficient is
onstant over the length of the lower section. For the present case,
here 𝐾𝐶 = 𝜋 at the bottom of the structure, we have 𝐶𝑑 ≈ 1 and

he normalised pitch viscous damping coefficient is

𝑏𝑑𝑟𝑎𝑔55

𝜌𝜔𝜋𝑎2𝑑3
≈ 0.05. (61)

The normalised pitch porous damping coefficients shown in Fig. 19 are
in the range 0.05–0.15, with porosities of 0.3 ≤ 𝜏 ≤ 0.5 all leading
to similar damping levels around 0.15. So in this case, using a porous
lower section could lead to higher damping than a lower solid section
for small motion amplitudes. At higher motion amplitudes the viscous
damping for the solid cylinder will increase and the porous damping
will decrease. However, given the limitations of the current numerical
approach discussed above, further studies will be required to quantify
the damping for the porous cylinders.
17
7. Conclusions

The comparisons with experimental measurements have shown that
the BEM model with a quadratic pressure drop across the porous surface
is able to accurately predict the excitation forces on fixed porous
cylinders both with and without a solid inner cylinder. The model is
able to capture the nonlinear variation of the force with the wave
amplitude. It was also demonstrated that the BEM model gives good
qualitative agreement with the motion response of the TLP model with
various porous outer cylinders.

The numerical investigations for the 2D porous cylinder indicated
that for low KC numbers the dissipation across the porous surface
leads to significantly higher damping than the viscous damping for a
solid cylinder. The increased damping provided by the porous cylinder
leads to a lower motion response for the TLP model. The numerical
method used in the present study does not account for viscous effects
away from the porous wall, so further studies are required to quantify
the damping at higher KC numbers. However, the current numerical
and experimental results indicate that for floating structures, including
porous elements lower in the water column could be beneficial for
reducing motion responses.

The numerical and experimental results showed that adding a
porous outer cylinder to a solid vertical cylinder leads to increased
excitation forces. Further investigation is needed to determine the load
characteristics if the porous section was directly integrated in the pile
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tructure, without increasing the physical dimensions. Structural and
ngineering considerations to achieve suitable solutions need to be
ssessed.
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