
1

Dependent Task Offloading for Edge Computing
based on Deep Reinforcement Learning

Jin Wang, Jia Hu, Geyong Min, Wenhan Zhan, Albert Y. Zomaya, Fellow, IEEE, and Nektarios Georgalas

Abstract—Edge computing is an emerging promising computing paradigm that brings computation and storage resources to the
network edge, hence significantly reducing the service latency and network traffic. In edge computing, many applications are composed
of dependent tasks where the outputs of some are the inputs of others. How to offload these tasks to the network edge is a vital
and challenging problem which aims to determine the placement of each running task in order to maximize the Quality-of-Service
(QoS). Most of the existing studies either design heuristic algorithms that lack strong adaptivity or learning-based methods but without
considering the intrinsic task dependency. Different from the existing work, we propose an intelligent task offloading scheme leveraging
off-policy reinforcement learning empowered by a Sequence-to-Sequence (S2S) neural network, where the dependent tasks are
represented by a Directed Acyclic Graph (DAG). To improve the training efficiency, we combine a specific off-policy policy gradient
algorithm with a clipped surrogate objective. We then conduct extensive simulation experiments using heterogeneous applications
modelled by synthetic DAGs. The results demonstrate that: 1) our method converges fast and steadily in training; 2) it outperforms the
existing methods and approximates the optimal solution in latency and energy consumption under various scenarios.

Index Terms—Multi-access edge computing, task offloading, deep reinforcement learning, sequence to sequence neural networks.

F

1 INTRODUCTION

The rapid proliferation of smart user equipment (UE) like
smart home appliances and wearable devices has spurred
numerous innovative applications, such as augmented re-
ality (AR), virtual reality (VR), face recognition, and digital
healthcare. The increasing diversity and complexity of these
applications demand intensive computing resources. Al-
though new generations of UE possess intensive computing
power, they still suffer from high energy and time costs
when processing the resource-intensive applications. One
solution is to run these applications on the cloud. However,
it imposes huge traffic on the backhaul of mobile networks
and hinders real-time applications due to the long distance
between UE and cloud. To address these issues, Multi-access
Edge Computing (MEC) [1] was proposed to shift certain
computing and storage resources from the cloud to the
MEC hosts at the network edge (e.g., base stations, access
points, and edge routers) that is close to users. Hence, MEC
can effectively alleviate network congestion and reduce the
service latency for mobile users.

• Jin Wang, Jia Hu, and Geyong Min are with the Department of Computer
Science, University of Exeter, United Kingdom.
E-mail: {jw855, j.hu, g.min}@exeter.ac.uk

• Wenhan Zhan is with the School of Computer Science and Engeeneering,
University of Electronic Science and Technology of China, China.
E-mail: zhanwenhan@uestc.edu.cn

• Albert Y. Zomaya is with the School of Information Technologies, The
University of Sydney, Australia.
E-mail: albert.zomaya@sydney.edu.au

• Nektarios Georgalas is with Applied Research Department, British Tele-
com, United Kingdom.
E-mail: nektarios.georgalas@bt.com

• Code is available at https://github.com/linkpark/RLTaskOffloading
(Corresponding authors: Jia Hu and Geyong Min.)

One key technology in MEC is task offloading, which
enables UE to offload computation-intensive tasks of user
applications to MEC hosts, thus reducing latency and en-
ergy consumption at UE during the processing of the appli-
cation. In task offloading, we must decide whether a task
should be offloaded to an MEC host, depending on the task
profile (i.e., the required CPU cycles and input/output data
size) and the MEC environment. Many existing studies [2,
3, 4, 5, 6] developed heuristic or approximation algorithms,
since the above offloading problem is NP-hard. However,
they rely heavily on expert knowledge or accurate analytical
models. As a consequence, considerable human efforts and
expertise are required to tune these heuristics or analytical
models to adapt to new scenarios, which is time-consuming
and even unrealistic due to the increasing complexity of
applications and system architecture of MEC.

Deep Reinforcement Learning (DRL), which combines
Reinforcement Learning (RL) with Deep Neural Networks
(DNN), is a promising approach to achieve flexible and
adaptive task offloading without expert knowledge. DRL
learns an effective policy (i.e., a mapping from environment
states to actions) through interacting with the environment
so as to maximize numerical rewards. With the help of the
powerful representation ability of DNNs, DRL can effec-
tively solve complex decision-making problems with large
and high-dimensional state/action spaces. Recent break-
throughs in DRL have led to many successful applications
in a wide range of areas including gaming [7], robotics
[8], networking [9], etc. DRL has been adopted to handle
task offloading problems in MEC [9, 10, 11, 12]. However,
these methods assume the offloading tasks are independent
without considering the inherent dependency among tasks
of real-world applications. In practice, many applications
are composed of dependent tasks where the outputs of some
tasks are the inputs of others. Ignoring the task dependency

2

when making task offloading decisions will severely affect
the QoS of applications and waste the edge resources.

To fill this gap, we propose a new DRL-based Task Of-
floading (DRLTO) scheme leveraging off-policy RL empow-
ered by a Sequence-to-Sequence (S2S) neural network. The
DRLTO is able to reduce the latency of running applications
and the energy consumption at UE. In DRLTO, the task of-
floading problem is modelled as a Markov Decision Process
(MDP). Applications are represented by Directed Acyclic
Graphs (DAG), where vertices and edges denote tasks and
their dependency, respectively. To effectively extract the
key features of task dependency, an S2S neural network is
applied to represent the policy and value function of the
MDP. Specifically, the input of the S2S neural network is
the DAG represented by a sequence of embedding vectors,
while the output is the offloading plan for the DAG. To
improve the training efficiency, we combine an off-policy
DRL algorithm that includes a clipped surrogate objective
and an entropy bonus to stabilize the training, provide
better sample efficiency, and alleviate the issue of getting
stuck in local optima. The DRLTO learns to make efficient
offloading decisions through directly interacting with the
environment and only requires minimal expert knowledge.
The major contributions of this paper are summarized as
follows:

• We develop an original DRL-based task offloading
scheme, which leverages off-policy reinforcement learn-
ing with an S2S neural network to capture the intrinsic
task dependency of applications. An MDP is designed to
accurately model the dependent task offloading problem
with well-designed state space, action space, and reward
function.

• We design a new embedding method that encodes ver-
tices of the DAG representing an application to a sequence
of embeddings including both the task profiles and de-
pendency information. This method can convert the raw
DAG as the input of the S2S neural network without
information loss.

• We combine an S2S neural network with an attention
mechanism to capture the long-term dependency of the
input tasks. This S2S neural network can effectively ap-
proximate the policy and value function of the MDP
model for the dependent task offloading problem. To
effectively train the S2S neural network, we apply an
off-policy DRL algorithm with a clipped surrogate ob-
jective function and an entropy bonus. This algorithm
has a strong exploration ability and thus can prevent the
training from getting stuck in the local optima.

• Extensive simulation experiments were conducted using
the synthetic DAGs, covering a wide range of topologies,
task numbers, and data rates that correspond to the char-
acteristics of real-world applications. The performance
results show that our method outperforms advanced
heuristic baselines and can obtain near-optimal results
under dynamic MEC scenarios.

The rest of this paper is organized as follows. The prob-
lem formulation, energy model, and optimization target
are presented in Section 2. The details of the DRL-based
offloading scheme are described in Section 3. Simulation
results are presented and discussed in Section 4. The related

Source Copy

Pair generator Scaler

Scaler

Tiler

MotionSiFT

Feature merger

Descaler

Copy

Classify Display

Tiler

Face detect

Face merger

Descaler

Copy

Exit tasks

Fig. 1. An example of DAG for the gesture recognition application.

work is reviewed in Section 5. Finally, Section 6 concludes
the paper.

2 PROBLEM FORMULATION: TASK OFFLOADING

The section presents the formulation of the task offloading
problem. First, we give the details of the task offloading pro-
cess in MEC. Next, the energy model and the optimization
target used for task offloading are described.

In practice, many applications consist of multiple tasks
with general dependency, which should be considered when
making decisions on task offloading. For example, as shown
in Fig. 1, a gesture recognition application consists of multi-
ple dependent tasks [13]. Formally, let G = (T , E) denote a
DAG, where a vertex ti ∈ T and a directed edge e(ti, tj) ∈ E
represents a task ti and the dependency between ti and tj ,
respectively. A task can start to run only when all of its
predecessors are finished. The exit tasks are those without
subsequent tasks.

We consider a block fading channel, where the fading
coefficient remains unchanged (i.e., the transmission rate
is fixed) during the task offloading process. In general, the
MEC host runs multiple virtual machines (VMs) to process
the offloaded tasks. In this work, we consider that each
UE is associated with a dedicated VM providing provide
computing, communications and storage resources to the
UE as specified in many existing studies [14, 15]. Any task in
the DAG has two scheduling choices: offloaded to the MEC
host or run locally on the UE. If the task ti is offloaded, it has
three phases of execution: 1) sending phase: the UE sends ti to
the MEC host through a wireless channel. 2) executing phase:
the MEC host executes the received task ti. 3) receiving phase:
the MEC host returns the results to the UE. On the other
hand, if ti is locally executed, there is no data transmission
between the UE and MEC host. The local processor of the
UE directly processes the task when it is ready. For all
tasks in a DAG, let A1:n = [a1, a2, . . . , ai, . . . , an] denote an
offloading plan, where n represents the total task number
and ai represents the offloading decision of ti. Specially,
ai = 1 denotes that ti is offloaded to the MEC host,
otherwise, ai = 0 means that ti is scheduled to the local
processor.

3

Let Tul
i , Ts

i , and Tdl
i denote the latency of sending,

executing and receiving phase, respectively. Let Tl
i denote

the local execution latency for ti. Besides, fl and fs represent
the CPU clock speed of the UE and the VM in the MEC Host,
respectively. Rul denotes the uplink transmission rate while
Rdl denotes the downlink transmission rate. Let datasi and
datari represent the data size of the task ti that is offloaded
to the MEC host and the result received, respectively. We
denote the required CPU cycles for executing ti as Ci.
Therefore, all the above-defined latencies can be calculated
by using the following equations:

Tul
i = datasi/Rul, Ts

i = Ci/fs,

Tdl
i = datari/Rdl, Tl

i = Ci/fl.
(1)

We also assume the available time of the uplink wireless
channel, the MEC host, the downlink wireless channel, and
the local processor, as Mul

i , Ms
i , Mdl

i , Ml
i, respectively.

Given a scheduling plan A1:n, the available time of the re-
source depends on the finish time (FT) of the task scheduled
immediately before ti on that resource. If the task scheduled
immediately before ti does not utilize the resource, the
FT on that resource is set as 0. We next analyse the local
executing and remote offloading process in detail.

Local Executing: In this case, ti is scheduled to the local
processor. Note that ti can only start execution until all its
immediate predecessors are finished and the local processor
is available to run. Besides, the immediate predecessors of
ti can be either run on the MEC host or the local processor.
Therefore, the FT of task ti on the local processor, FTl

i, can
be defined as

FTl
i = max

{
Ml

i, max
j∈pre(ti)

{
FTl

j ,FTdl
j

}}
+ Tl

i,

Ml
i = max

{
Ml

i−1,FTl
i−1

}
.

(2)

where pre(ti) denotes the set of immediate predecessors of
ti. FTdl

j denotes the FT of transmitting a task tj over the
wireless downlink channel.

Remote Offloading: In this case, ti is offloaded to the MEC
host. As mentioned above, the offloading process for ti
includes three phases. In the sending phase, let FTul

j denote
the FT of transmitting the task tj over the wireless uplink
channel, where tj is an immediate predecessor of ti. If tj is
locally scheduled, ti can only start its sending phase after
tj has finished local execution. Otherwise, if tj is offloaded,
ti can only start sending after tj has completed its sending
phase. Therefore, the FT of task ti on the wireless uplink
channel can be calculated as:

FTul
i = max

{
Mul

i , max
j∈pred(ti)

{
FTl

j ,FTdl
j

}}
+ Tul

i ,

Mul
i = max

{
Mul

i−1,FTul
i−1

}
.

(3)

In the executing phase, three conditions must be met before
ti can start running on the MEC host. First, ti should finish
its sending phase. Second, all predecessors of ti should
finish executing. Third, the MEC host is available to run
the task. Therefore, the FT of ti on the MEC host, FTs

i , can
be calculated as

FTs
i = max

{
Ms

i ,max

{
FTul

i , max
j∈pred(ti)

FTs
j

}}
+ Ts

i ,

Ms
i = max

{
Ms

i−1,FTs
i−1
}
.

(4)

Similarly, we obtain the FT of task ti on the downlink
wireless channel, FTdl

i as

FTdl
i = max

{
Mdl

i ,FTs
i

}
+ Tdl

i ,

Mdl
i = max

{
Mdl

i−1,FTdl
i−1

}
.

(5)

Energy consumption of the UE is another important fac-
tor that we should consider in MEC. In general, the energy
consumption of an UE mainly consists of computation and
transmission cost. Executing task locally or offloading task
to the MEC host result in different energy costs.

When the task is locally executed, no transmission is
needed, thus the energy consumption is mainly contributed
by the computation process, which is defined as

El
i = ρfζl Tl

i, (6)

where ρfζl represents the computational power of the mo-
bile device. ρ is a power coefficient while ζ is a constant
(usually close to 3) [3].

When the task is offloaded, there is no computation
process on the local device, thus the energy consumption
is mainly contributed by wireless transmission, which is
defined as

Es
i = PTxTul

i + PRxTdl
i , (7)

where PTx and PRx are the sending and receiving power,
respectively.

Based on the above definitions, giving the offloading
plan, A1:n, of a DAG, the latency and energy consumption
can be calculated as

TcA1:n
= max

ti∈K

{
max{FTl

i,FTdl
i }
}
, (8)

EcA1:n
=

∑
ti∈T ,ai=1

Es
i +

∑
tj∈T ,aj=0

El
j , (9)

where K denotes the set of exit tasks.
QoS can be used to measure how good an offloading

plan is, considering both latency and energy consumption.
As in [16, 17], we use a similar definition of QoS as the
optimization objective, which is a weighted sum of the
normalized differences in latency and energy consumption
between the offloading plan and local execution:

JA1:n = λt
Tcl − TcA1:n

Tcl
+ λe

Ecl − EcA1:n

Ecl
, (10)

where Tcl and Ecl are the latency and energy consumption of
executing all tasks locally on the UE. λt and λe ∈ [0, 1] are
scalar weights. Eq. (10) represents a weighted sum approach
of a multi-objective optimization problem. The weighted-
sum approach is extensively used since it is generally ef-
fective and easy to implement. Besides, the weights reflect
the relative importance of energy and latency, which can
be set based on the user’s preference. For general DAGs,
the scheduling problem is NP-hard [18]. Therefore, it is
extremely hard to find the optimal offloading plan with
reasonable time complexity.

4

Offloading
Scheduler

Local
Processing

Unit

Task Graph
Pool

Offloading
Trainer

VM VM VM

MEC Computing Resources

…
…

UE Level

MEC Host

Edge Level Cloud Level

Cloud Servers

Fig. 2. The proposed DRL-based task offloading scheme.

3 THE DRLTO SCHEME

This section presents the proposed DRLTO in detail. We first
present the necessary background of DRL and S2S neural
network. Next, the overall design of the DRLTO architecture
is described. Finally, the offloading model, the S2S neural
network, and the training algorithm are presented in detail.

3.1 Background
Deep Reinforcement Learning: In general, the targeted
problem of RL is formulated as an MDP that is defined
by a 6-tuple (S,A,P,P0,R, γ), where S , A, P , and P0

denote the state space, action space, state transition prob-
ability matrix, and initial state distribution, respectively.
R means the reward function and γ ∈ (0, 1) repre-
sents the discount factor. Denote π(a|s) as the policy that
specifies the probability of taking action a given state
s. The trajectories sampled under the policy π are de-
noted as τπ = (s0, a0, r0, s1, a1, r1, ...), where s0 ∼ P0,
at ∼ π(·|st−1) and rt is the immediate reward at time
step t. The state value function of a state st under a
policy π, denoted as vπ(st), is the expected return when
starting in st and following π thereafter, which is defined
as vπ(st) = Eπ

[∑
k=0 γ

krt+k
∣∣ st]. Similarly, the state-

action value function, denoted as qπ(st, at), is the expected
return starting from st, taking the action at, and there-
after following policy π, which can be formally denoted
as qπ(st, at) = Eπ

[∑
k=0 γ

krt+k
∣∣ st, at]. The objective of

RL is to find a policy that maximizes the total return
G0 =

∑
s0
P0(s0)vπ(s0).

In general, the current methods for DRL include value-
based and policy-based methods. Value-based methods aim
to get the optimal value function of every state in the
environment: v∗π(s) = maxa qπ∗(s, a), where π∗ denotes the
optimal policy. A typical valued-based method is deep Q-
learning [19], which approximates the optimal value func-
tion by DNN (i.e., deep Q-network). However, deep Q-
learning indirectly obtains a deterministic policy through
updating the deep Q-network toward the one-step reward.
A drawback of this one-step updating rule is that obtain-
ing a reward only directly affects the value of the state-
action pair that led to the reward while the values of other
state-action pairs are indirectly affected by the updated Q-
network. This can result in a slow learning process [20].

In contrast to value-based methods, policy-based DRL di-
rectly parameterizes the policy with a DNN and updates
the policy network by performing gradient ascent on the
total return [21] rather than the one-step return, thus it can
achieve a faster convergence rate. However, when facing a
combinatorial optimization problem such as task offloading
in MEC, it has two main defects: 1) using Monte-Carlo
estimation can bring high variance leading to slow learning.
2) conventional policy gradient methods are data inefficient
and can get stuck in local optima [22]. To address the above
issues, we apply proximal policy optimization (PPO) [23]
that includes generalized advantage estimation (GAE) [24],
off-policy clipped surrogate objective, and an entropy bonus
to train the S2S neural network in this work. In particular,
GAE can substantially reduce the variance by introduc-
ing an exponentially weighted estimator of the advantage
function into the objective. The off-policy clipped surrogate
objective can stabilize the training and improve the sample
efficiency. Besides, adding the entropy bonus can further
enhance the exploration [23], thus alleviating the problem
of getting stuck in local minima.

Sequence-to-Sequence Neural Network: A typical S2S
neural network consists of an encoder and a decoder, where
the encoder and decoder are implemented by multi-layer
RNNs. The input sequence is fed into the encoder and the fi-
nal hidden state is output through forward propagation. The
decoder initializes its hidden state via the encoder’s output
state and outputs a target sequence. The original S2S neural
network [25] uses a fixed vector to encode the whole input
sequence, which can lead to serious information loss for
input sequences with long-term dependency. To cope with
this problem, the attention mechanism [26] was proposed. In
the attention mechanism, at each decoding step, a decoder
output depends on its previous output, previous hidden
state, and a context vector which is a weighted sum of the
encoder output. Introducing the context vector gives the
decoder a chance to “attend” important information from
the source input sequence. Some work [27, 28] extends the
S2S neural network to handle combinatorial optimisation
problems including Travelling Salesman Problem (TSP) and
Convex Hull. Inspired by the above work, we introduce the
S2S neural network in our method, since task offloading
in MEC is a typical combinatorial optimisation problem.
Specifically, the S2S neural network is used to approximate
both policy and value function of DRLTO, which can effec-
tively extract representative features from DAGs.

3.2 The DRLTO Design

The DRLTO can be integrated into an emerging MEC plat-
form defined by ETSI [1]. As shown in Fig. 2, the MEC
system consists of three levels: UE level, edge level, and
cloud level. UE level includes various user devices (such as
smartphones, tablets, vehicles) and software applications. In
edge level, each MEC host contains the computing, storage
and network resources for processing applications on its
virtual machines (VMs). In cloud level, cloud servers are
hired to process computation-intensive and resource hun-
gry jobs. The DRLTO scheme contains three major compo-
nents: offloading scheduler, task graph pool, and offloading
trainer. Each UE has an offloading scheduler, which makes

5

offloading decisions for user applications. Specifically, the
trained S2S neural network is included in the offloading
scheduler. The MEC host contains a task graph pool and
an offloading trainer, which are used to gather DAGs from
UE and conduct periodical training process, respectively.

The training for the S2S neural network is based on
periodically gathered DAGs. At the off-peak time (e.g. mid-
night), the offloading trainer runs the training procedure.
After training, the MEC host sends the parameters of the
trained S2S neural network back to UE. The UE can then
make the offloading decision via forward-propagation of
the trained S2S neural network. The MEC host executes the
offloaded tasks and returns the results to the UE. For those
locally executed tasks, the local processing unit of the UE
executes them when ready.

3.3 The Task Offloading Model
In order to adapt DRL to solve the task offloading problem,
we model the problem as an MDP, where the state space,
action space, and reward function of the MDP are defined
as follows.
• State Space: When scheduling the task ti, the state of

the MEC system depends on the scheduling results of
the previous tasks of ti (i.e., the partial offloading plan).
Hence, we define the state space as a combination of
the DAG information (including DAG topology and task
profiles) and the partial offloading plan. Formally, let G
denote the encoded DAG and A1:i denote the offloading
plan for the sequence of tasks from t1 to ti. The state space
is thus denoted as

S := {s|s = (G,A1:i)}. (11)

Specifically, G is comprised of a sequence of task em-
beddings. Each embedding consists of three elements:
1) a vector that includes an index of the task and the
estimated task costs Tl

i, Tul
i , Ts

i , and Tdl
i ; 2) a vector

of indices of immediate previous tasks; 3) a vector of
indices of immediate subsequent tasks. The length of
previous/subsequent task indices vector is limited to p
(p = 12 in our experiments). We pad the vector with -1,
in case the number of previous/subsequent tasks is less
than p. The embedding vectors are then fed into the S2S
neural network to obtain offloading plans.

• Action Space: A task could be either offloaded to an
MEC host or run locally on the UE. Let ai = 1 represent
offloading to an MEC host and ai = 0 represent local
execution for task ti. Therefore, the action space can be
defined as A := {1, 0}.

• Reward Function: The objective of our method is to
maximize the QoS. In order to reach this objective, we
define the reward function at each step as the estimated
increment of the QoS:

R(si, ai) = λt
T
c
l −∆Ti

Tcl
+ λe

E
c
l −∆Ei

Ecl
,

∆Ti = TcA1:i
− TcA1:i−1

,

∆Ei = EcA1:i
− EcA1:i−1

,

(12)

where T
c
l and E

c
l are the average latency and energy

consumption for a task in the DAG, which are given by
T
c
l = Tcl /n and E

c
l = Ecl /n, respectively.

!!

!!

!"

!"

!#

!#

!$

!$…

…

t! t" t# t$

+

!!

!!

!"

!"

!#

!#

!$

!$
…

#! #" #$%!……

Encoder

Task
embeddings

Context Vector "

Decoder

π(a!|'!)v(s!)
…

π(a%|'$)v(s%)

Fig. 3. Structure of the S2S neural network for DRLTO.

3.4 The S2S Neural Network for DRLTO

According to the definition of our MDP model, the offload-
ing problem can be converted to an S2S prediction problem
where the input is the sequence of task embeddings and
the output is a scheduling plan for those tasks. The policy
π(ai|G,A1:i−1) is denoted as the probability of selecting ac-
tion ai for task ti under the state s = (G,A1:i−1). Moreover,
π(A1:n|G) is the probability of having the offloading plan
A1:n given the graph G with n tasks. Applying the chain
rules of probability, we have

π(A1:n|G) =
n∏
i=1

π(ai|G,A1:i−1). (13)

To effectively approximate the policy defined in Eq. (13),
an S2S neural network is a good option. As shown in Fig.
3, we combine an S2S neural network with the attention
mechanism to approximate both the policy and the value
function of the DRLTO. Formally, denote the sequence of
task embeddings as t = [t1, t2, ...tn] and the function of en-
coder network as fenc, then the hidden state of the encoder
network can be obtained by:

ei = fenc(ei−1, ti; θenc), (14)

where ei is the hidden state for encoding step i and θenc
are the parameters of the encoder network. Let fdec be the
function of the decoder network. The hidden state of the
decoder network dj for decoding step j is calculated by:

dj = fdec(di−1, aj−1, cj ; θdec), (15)

where θdec are the parameters of the decoder network. cj
is the context vector of the attention mechanism, which
is defined by a weighted sum of the hidden states of the
encoder network:

cj =
n∑
i=1

αjiei. (16)

The weight αji of each hidden state of the encoder network,
ei, is computed by

αji =
efscore(dj−1,ei)∑n
k=1 e

fscore(dj−1,ek)
(17)

where the score function, fscore(dj−1, ei), is used to measure
how well the input of the encoder network at position i
matches the output of the decoder network at position j. In

6

this paper, we define the score function as a trainable neural
network as in the work [26].

The policy and value networks share most of the pa-
rameters (encoder and decoder) except for the top layer of
the decoder. For the policy neural network, we add a fully
connected layer on the output of the decoder, dj , and use
softmax function to convert the output into the distribution
over actions, π(aj |sj). For the value neural network, we add
another fully connected layer on dj and use the output to
represent the state value, v(sj). The shared parameters in
the S2S architecture are used to extract common features in
DAGs, therefore training the policy neural network that can
accelerate the training of the value neural network and vice
versa.

The offloading decision for each task is made by the
trained S2S neural network. Overall the steps for offloading
process are follows:

Step 1: A topological sorting is conducted to sort tasks of
the DAG according to the rank values of tasks by decreasing
order, which is defined as

rank(ti) =

{
To

i if ti ∈ K,
maxtj∈succ(ti)(rank(tj)) + To

i if ti /∈ K,
(18)

where succ(ti) represents the set of immediate successors of
ti and To

i = Tul
i + Ts

i + Tdl
i .

Step 2: Tasks are then embedded into a sequence of
vectors as the input of the encoder (the details of the
embedded vectors are presented in Section 3.3). Next, the
output sequence of the encoder will be used to calculate
the context vector. At the jth decoding step, the offloading
decision can be generated through aj = arg maxaj π(aj |sj).

Step 3: The UE and MEC host cooperatively finish
executing all tasks according to the offloading decisions.

3.5 The Training Process of the DRLTO

The training goal is to find an optimal policy so that the
accumulated reward is maximal, which is expressed as

max
θ
L(θ) = E

[
max
θ
πθ(A1:n|G)

n∑
t

R(st, at)

]
, (19)

where θ are the parameters of the S2S neural network, n
is the task number of the DAG, R(st, at) is the reward
function, st and at is the observed state and offloading
decision for the tth task, respectively.

To improve the performance and training efficiency, the
training target function is modified based on PPO [23],
which generates trajectories using the old policy πθold and
updates the current policy πθ whose initial value equals
πθold for several epochs. In order to avoid a large update
of the policy, PPO penalizes changes to the policy via a
clip function. The clipped target function for the S2S neural
network is given by

LC(θ) = E

[
n∑
t=1

min
(

prt(θ)Ât, clip(prt(θ), 1− ε, 1 + ε)Ât
)]
,

(20)

Algorithm 1: Off-policy Training for the S2S Neural
Network
1 Create two S2S neural networks with θold and θ for

the old policy πθold and target policy πθ with
randomly generated initial values.

2 θold ← θ
3 for i = 1, 2, ..., l do
4 /** Exploration stage **/
5 Collect set of trajectories Di on policy πθold .
6 for each trajectory τ ∈ Di do
7 Compute advantage estimates Â1, . . . , Ân

according to Eq. (24).
8 Compute the target state values

v̂π(s1), . . . , v̂π(sn) following the equation:
v̂π(st) =

∑n−t+1
k=0 γkrt+k.

9 Store advantage estimates and target state
values in Di.

10 /** Exploitation stage **/
11 for k = 1, 2, ...,m do
12 Optimize the target function LPPO w.r.t. θk

by taking minibatch SGD (via Adam) using
the sampled minibatches from Di.

13 Synchronise old and new parameters: θold ← θ.

where Ât is the estimator of the advantage function at time
step t and ε is a hyperparameter to control the clip range.
prt(θ) is the policy probability ratio that is given by

prt(θ) =
πθ(at|G,A1:t)

πθold(at|G,A1:t)
. (21)

The clip function clip(prt(θ), 1 − ε, 1 + ε) aims to limit the
value of prt(θ), which removes the incentive for moving
prt(θ) outside of the interval [1− ε, 1 + ε]. Finally, taking the
minimum of the clipped and unclipped objective restricts
the final objective as a lower bound on the unclipped
objective.

As discussed in the previous subsection, a shared pa-
rameter S2S neural network is crafted for both policy and
value function approximation. To train this neural network,
the clipped objective function and the value function loss
are integrated into the target function. Besides, adding an
entropy bonus can ensure efficient exploration. Following
the suggestion in work [23], we combine these terms and
obtain the following function as the final training target:

LPPO(θ) = E
[
LC(θ)− c1LVF(θ) + c2S[πθ](st)

]
, (22)

where c1 and c2 are coefficients, S denotes an entropy
bonus, and LVF is a squared-error loss between predicted
state values vπ(s) and target state values v̂π(s):

LVF(θ) = E

[
n∑
t=1

(vπ(st)− v̂π(st))
2

]
, (23)

where v̂π(st) =
∑n−t+1
k=0 γkrt+k.

Training the S2S neural network with RL is quite dif-
ferent from training DNN with RL, which can use transi-
tion segments (st, at, rt, st+1) for back propagation. When
training the S2S neural network, the entire trajectory should

7

TABLE 1
The Parameters of Simulation Environment

Notation Parameter Value
Rul, Rdl UL/DL Transmission Rate {3, 7, 11, 15, 19}

Mbps
fl CPU Clock Speed of UE 1 GHz
fs CPU Clock Speed of a VM in

MEC Host
4× 2.5 GHz

ζ, ρ Constants in Energy Model ζ = 3,
ρ = 1.25× 10−26

PTx Avg. Wireless Sending Power 1.258 W
PRx Avg. Wireless Receiving Power 1.181 W
fat Width of a DAG {0.3, 0.4, 0.5, 0.6, 0.7,

0.8}
density Density of Dependency of a DAG {0.3, 0.4, 0.5, 0.6, 0.7,

0.8}
ccr Comm. to Comp. Ratio of a DAG 0.3 to 0.5

datasi ,
datari

Sending/Receiving Data Size for
a Task

5 KB to 50 KB

C Required CPU Cycles for a Task 107 to 108

cycles/sec
p Length of Task Indices Vector 12

be divided into sequences which are then fed into the
network. For example, two components of trajectories are
firstly sampled from the environment, which are defined
by a scheduling plan A1:n and a sequence of state val-
ues [vπ(s1), vπ(s2), . . . , vπ(sn)] obtained from conducting
a forward propagation of the S2S neural network with
the tasks embedding sequence. Next, the reward sequences
[r1, r2, . . . , rn] can be obtained by applying the scheduling
plan to the environment. Furthermore, the TD-error term δ
at time step t can be calculated by δt = rt + γvπ(st+1) −
vπ(st). Finally, the generalized advantage estimator (GAE)
[24] is used to obtain the advantage function at time step t
as

Ât =
n−t+1∑
k=0

(γλ)k(δt+k), (24)

where λ (0 < λ < 1) is used to control the trade-off between
bias and variance.

The training algorithm is formally presented in Algo-
rithm 1. First, the sampling and updating neural networks
are initialized with the same parameters. In each loop,
the sampling neural network is used to sample a set of
trajectories which are stored in Di. Next, the sequence of
advantage estimates Â and the estimated state values v̂π
are calculated and stored in Di. Since then, Di consists
of the tasks embedding sequences [t1, t2, . . . , tn], sampled
scheduling plans A1:n, reward sequences [r1, r2, . . . , rn],
sampled state values sequences [vπ(s1), vπ(s2), . . . , vπ(sn)],
advantage estimates sequences [Â1, Â2, . . . , Ân], and esti-
mated state values sequences [v̂π(s1), v̂π(s2), . . . , v̂π(sn)].
At the exploitation stage, the updating neural network
is improved by conducting minibatch Stochastic Gradient
Descent (SGD) on Di with the target function defined in
Eq. (22) for m epochs. Adam is adopted as the optimization
method for its efficiency and stability.

4 RESULTS AND DISCUSSION

This section presents the experimental results and perfor-
mance evaluation of the DRLTO. We first present how to

TABLE 2
The Neural Network and Training Hyperparameters

Hyperparameter Value Hyperparameter Value
Encoder Layers 2 Encoder Layer Type Bi-LSTM

Encoder Hidden Units 256 Encoder Layer Norm. On
Decoder Layers 2 Decoder Layer Type LSTM

Decoder Hidden Units 256 Decoder Layer Norm. On
Learning Rate 10−4 Activation function Tanh

Optimization Method Adam Loss Coefficient c1 0.5
Discount Factor γ 0.99 Entropy Coefficient c2 0.01

Adv. Discount Factor λ 0.95 Clipping Constant ε 0.2
Batch Size 500

Low fat and density High fat and density

Fig. 4. The examples of synthetic DAGs from low fat and density to high
fat and density.

set the simulation environment and hyperparameters. Next,
the training results of the DRLTO are presented, including
the average reward, value loss, and policy loss. Finally,
we analyze the performance results of the DRLTO through
comparing it with eight existing algorithms.

4.1 Simulation Environment and Hyperparameters

In our simulation experiments, we consider that the UE is
in a small cell network with different transmission rates
dependent on the distance between the UE and MEC host.
The set of transmission rate is {3 Mbps, 7 Mbps, 11 Mbps, 15
Mbps, 19 Mbps}, which covers the most area of a cell from
a distal end to a proximal end. We set the constants in the
energy model ρ = 1.25 × 10−26 and ζ = 3 according to
[3]. The CPU clock speed of the UE fl is set to be 1 GHz.
We set the total computation capacity of the edge server as
10 GHz. Moreover, PTx and PRx are 1.258 W and 1.181 W,
respectively [3].

In MEC, user applications can be modelled as DAGs
with various topologies. For example, a data compression
application is composed of multiple tasks with linear depen-
dency, while face recognition and gesture capture applica-
tions involve more complex inner dependency among tasks
(as shown in Fig. 1). Our scheme aims to obtain an effective
offloading policy for general purpose, which can adapt to
any DAG topologies. To effectively train our DRL-based
algorithm, we need the information of task profiles and
dependency for many different mobile applications. The
current real datasets for mobile applications only contain
information of a very limited number of applications [13].
Therefore, we use a synthetic DAG generator [29] to gener-
ate various DAGs representing heterogeneous applications.
The properties of DAGs are controlled by several parame-

8

0 500 1000 1500 2000 2500 3000
Episodes

0.006

0.007

0.008

0.009

0.010

0.011

0.012
A

ve
ra

ge
 R

ew
ar

d

0 200 400 600 800 1000 1200 1400 1600
Episodes

0.00

0.02

0.04

0.06

0.08

0.10

P
ol

ic
y

lo
ss

0 500 1000 1500 2000 2500 3000
Episodes

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

V
al

ue
 lo

ss

Fig. 5. The values of average reward, policy loss, and value loss in the training process of the DRLTO.

ters including fat, density, and ccr. Here, fat is used to control
the width and the height of a DAG. density determines the
number of edges between two levels of a DAG. ccr denotes
the communication-to-computation ratio, which is the ratio
between the communication cost and the computation cost.
Using a simulator to generate synthetic DAGs has many
benefits. For example, it can fast generate a large number of
DAGs representing various mobile applications. In addition,
it is easy to control the features of generated DAGs by
tuning simulator parameters.

For the DAG generation, we randomly pick fat from
{0.3, 0.4, 0.5, 0.6, 0.7, 0.8}, density from {0.3, 0.4, 0.5, 0.6,
0.7, 0.8} and ccr from {0.3, 0.4, 0.5}. It is reasonable to set
ccr less than 0.5, since many emerging applications are
computation-intensive. Fig. 4 shows an example of DAG
topologies from low fat and density to high fat and density.
For the settings of task profile, the transmission data size of
a task is set between 5 KB and 50 KB. The required CPU
cycles for a task is set between 107 and 108 cycles/sec. The
task number n of the generated DAG ranges from 10 to
50 with a step size of 5. According to the above setting,
we randomly generate 500 graphs for each task number as
the training dataset and additional 100 graphs for each task
number as testing dataset. Specifically, the parameters of our
simulation environment are listed in Table 1.

The S2S neural network is implemented via Tensorflow.
Specifically, the encoder is set as a two-layer bi-directed
Long Short-Term Memory (LSTM) with 256 hidden units
while the decoder is set as a two-layer dynamic LSTM
also with 256 hidden units. Besides, the layer normaliza-
tion [30] is added for both encoder and decoder. During
the training process, the learning rate is set as 10−4, the
coefficients is set as c1 = 0.5, c2 = 0.01, and the batch
size is set as 500. Hyperparameters can affect the training
results and the convergence speed of DRLTO. We initially
set the hyperparameters according to [23], and then run grid
search on learning rate, batch size, discount factor, etc., to
find the optimal hyperparameters (given in Table 2) for our
algorithm. These hyperparameters have been applied to all
scenarios in our experiments.

4.2 Compared Algorithms

We compare the performance between the DRLTO and the
following eight existing algorithms:

• Optimal: The exhaustive search is applied to list all
possible solutions and find the optimal one with the
highest QoS.

• Local: All tasks of the DAG are run on the local proces-
sor.

• Remote: All tasks of the DAG are offloaded to the MEC
host.

• Random: Each task of the DAG is randomly assigned to
the local processor or the MEC host.

• Greedy: Each task of the DAG is greedily assigned
locally or remotely based on the estimated finish time
on the local processor and the MEC host.

• Round-Robin (RR): Tasks of the DAG are alternately
scheduled to the local processor and MEC host.

• HEFT-based: Tasks are firstly prioritized according to
Heterogeneous Earliest Finish Time (HEFT) as in [2, 31].
The prioritized tasks are then scheduled to the resource
with earliest estimated finish time.

• Double Deep-Q Network based Task Offloading (DDQNTO):
Tang et al. [10] combined LSTM, dueling deep Q-
network (DQN), and double-DQN techniques to han-
dle the task offloading problem without considering
the inner dependency. Specifically, we use the same
exploration-exploitation strategy as in the work [10] to
train the Q-networks.

4.3 Training Performance and Convergence
We first investigate the training overheads, convergence
property, and inference latency in our algorithm. In our
experiments, we set two different targets: latency-optimal
(LO) and energy-efficient (EE). The LO target aims at mini-
mizing the latency, thus we set λt = 1.0 and λe = 0.0. The
EE target aims to jointly optimize the latency and energy
consumption, so we set λt = λe = 0.5. We conduct the
training process for the DRLTO and record the average
reward, the policy loss (i.e., LC as defined in Eq. (20)), and
the value loss (i.e., LVF as defined in Eq. (23)). We train
DRLTO on our workstation with GeForce RTX 2080. Each
episode involves 40 mini-batch updates for the S2S neural
network with the time overheads around 30 s/episode. Fig.
5 depicts the training results with the LO target. We notice
that the average reward increases sharply at the beginning
and steadily grows after 500 episodes. Our experimental
results show that the training converges at around 1200
episodes. The total training overheads for a converged pol-
icy is around 10 hours. As the training dose not happen

9

TABLE 3
The comparison of the DRLTO and existing algorithms in terms of average latency (ms) of a DAG with different numbers of tasks (n).

N/A denotes cases unable to find optimum. LO and EE denote latency-optimal and energy-efficient targets, respectively.

n Optimal
(LO) Local Remote Random Greedy RR HEFT-based DDQNTO

(LO)
DDQNTO

(EE)
DRLTO

(LO)
DRLTO

(EE)
10 488.61 723.14 694.75 650.01 556.70 646.92 533.25 580.30 690.04 491.98 583.03
15 661.57 1053.44 991.49 915.54 780.73 886.51 743.20 836.01 987.36 673.28 804.57
20 851.71 1394.49 1322.87 1170.06 999.73 1134.41 958.82 1100.71 1317.71 880.89 1010.94
25 N/A 1796.05 1630.79 1430.03 1239.45 1395.91 1194.95 1349.15 1616.12 1054.31 1221.08
30 N/A 2154.71 1981.61 1727.75 1500.83 1692.38 1454.53 1629.57 1970.39 1297.08 1507.35
35 N/A 2463.69 2251.70 2043.32 1757.25 2025.92 1719.99 1906.46 2238.88 1530.58 1767.64
40 N/A 2910.47 2757.82 2360.31 1992.33 2246.18 1939.06 2286.65 2737.24 1757.42 2067.79
45 N/A 3182.15 2833.30 2442.66 2074.41 2323.27 2043.41 2365.28 2806.76 1781.23 2051.24
50 N/A 3662.96 3560.65 2897.15 2431.63 2754.37 2391.01 2948.88 3538.77 2200.68 2533.18

TABLE 4
The comparison of DRLTO and existing algorithms in terms of QoS (targeting at EE) with different numbers of tasks (n),

N/A denotes cases unable to find optimum. EE denotes energy-efficient target.

n Optimal
(EE) Local Remote Random Greedy RR HEFT-based DDQNTO

(EE)
DRLTO

(EE)
10 0.394 0 0.360 0.223 0.194 0.223 0.219 0.339 0.389
15 0.410 0 0.367 0.228 0.222 0.252 0.246 0.353 0.399
20 0.426 0 0.373 0.254 0.244 0.266 0.265 0.357 0.415
25 N/A 0 0.390 0.273 0.270 0.290 0.286 0.381 0.434
30 N/A 0 0.388 0.265 0.262 0.281 0.276 0.377 0.426
35 N/A 0 0.390 0.255 0.252 0.267 0.260 0.380 0.426
40 N/A 0 0.373 0.270 0.275 0.290 0.288 0.368 0.417
45 N/A 0 0.398 0.285 0.295 0.307 0.302 0.391 0.441
50 N/A 0 0.363 0.274 0.290 0.298 0.296 0.357 0.411

very frequently, the training overheads are acceptable. For
the training loss, both the value loss and the policy loss
approximate to zero after 500 episodes, which shows the
good convergence property of the DRLTO. After training,
we obtain two trained S2S neural networks, one of which
is used for the LO target and the other is used for the
EE target. Those trained networks will then be deployed
back to the UE. To evaluate the inference speed, we use
our laptop with CPU only (2.6 GHz 6-Core Intel Core i7)
to do the inference. We feed 100 DAGs with n = 15 to
the trained S2S neural networks for network inference. As a
result, the total inference latency is around 108 ms with 1.08
ms per DAG. Compared to the time overheads of offloading
tasks (as shown in Table 3), the inference overhead can
be neglect. Note that, we do not involve any inference
optimisation method to our trained model. However, many
existing works show that the inference speed can be further
improved on mobile devices. In the following sections, we
evaluate DRLTO among different scenarios.

4.4 Evaluation with Different Task Numbers
First, we investigate the latency, energy consumption, and
QoS of different offloading algorithms with varying num-
bers of tasks. In this case, we fix the transmission rate at
7 Mbps. When aiming at the LO target, we focus on the
latency. Table 3 lists the average latency of executing a
DAG with different numbers of tasks. The Optimal (LO) is
implemented using exhaustive search to find the optimal
solution. However, the Optimal (LO) has exponential time
complexity, thus it is unable to find optimum in a reasonable
amount of time when n ≥ 20. The Local and the Remote both
perform poorly in this scenario, which are even worse than

the Random. DDQNTO (LO) cannot learn effective policy,
which obtains higher average latency than the heretic search
algorithm HEFT-based. Compared to the existing algorithms,
DRLTO with the LO target significantly outperforms all
heuristic baselines (from the Local to the HEFT-based) and
the advanced DRL-based methods (i.e., DDQNTO). More-
over, DRLTO (LO) approximates the optimal solution when
n ≤ 20.

When aiming at the EE target, we jointly consider the
latency and energy consumption. The comparison results of
the energy consumption and QoS with different numbers
of tasks are presented in Fig. 6 and Table 4, respectively.
Offloading computation-intensive applications to the MEC
host can help reduce the energy consumption on UE, there-
fore the Remote achieves the lowest energy consumption.
However, the Remote has the highest latency as shown
in Table 3. DDQNTO (EE) learns offloading policies that
have similar energy consumption and latency as Remote
in all cases. It seems that DDQNTO (EE) fails to learn a
good trade-off between energy consumption and latency.
On the contrary, DRLTO with the EE target can learn the
optimal policy by taking both the latency and energy into
account. Comparing the results in Table 3 and Fig. 6, we
find that DRLTO with the EE target achieves the lowest
energy consumption bar Remote and DDQNTO (EE), while
it still obtains acceptable latencies (close to the Greedy).
Furthermore, Table 4 gives explicit results related to the QoS
of all evaluated algorithms. Obviously, the QoS of the Local
is always zero because we define QoS as a measurement
of the gain/loss of an algorithm compared to the Local.
Moreover, DRLTO with the EE target achieves the maximal
QoS compared to all baseline algorithms (i.e., from Local to

10

10 15 20 25 30 35 40 45 50
Task number

5

10

15

20
E

ne
rg

y
C

on
su

m
pt

io
n

(J
)

Local
Remote
Random
Greedy

Round-robin
HEFT-based
DDQNTO (EE)
DRLTO (EE)

Fig. 6. The comparison of the DRLTO and existing algorithms in terms
of average energy consumption (targeting at EE) with different numbers
of tasks. EE denotes energy-efficient target.

3Mbps 7Mbps 11Mbps 15Mbps 19Mbps
Transmission rate

0

500

1000

1500

2000

La
te

nc
y

(m
s)

Local
Remote
Random
Greedy
Round-robin
HEFT-based

DDQNTO (LO)
DDQNTO (EE)
DRLTO (LO)
DRLTO (EE)
Optimal (LO)

Fig. 7. The comparison of the DRLTO and existing algorithms in terms
of average latency with different transmission rates. LO and EE denote
latency-optimal and energy-efficient targets, respectively.

DDQNTO) and approximates the optimal solution.

4.5 Evaluation with Different Transmission Rates
Next, we evaluate the performance of the DRLTO with
different transmission rates. We first target at LO, and the
results are shown in Fig. 7. When the transmission rate is
low (meaning that the UE is far away from the MEC host),
offloading tasks to the MEC host will result in high latency.
On the contrary, if the transmission rate is high, offloading
tasks can significantly reduce the latency. An efficient al-
gorithm should automatically adapt its offloading policy to
various transmission rates. As shown in Fig. 7, DDQNTO
(LO) cannot learn effective policy, which achieves the worse
performance than HEFT-based when the transmission rate
increases from 3 Mbps to 15 Mbps. In contrast, DRLTO
(LO) has high adaptability, which outperforms all baseline
algorithms (i.e., from Local to DDQNTO) and approximates
the optimal solution with various transmission rates.

When the target is EE, we need take energy consumption
into consideration. Figs. 8 and 9 show the energy consump-
tions and QoS of various algorithms with different transmis-
sion rates, respectively. As expected, Remote consumes the

3Mbps 7Mbps 11Mbps 15Mbps 19Mbps
Transmission rate

1

2

3

4

5

6

7

E
ne

rg
y

C
on

su
m

pt
io

n
(J

)

Local
Remote
Random
Greedy

Round-robin
HEFT-based
DDQNTO (EE)
DRLTO (EE)

Fig. 8. The comparison of the DRLTO and existing algorithms in terms
of average energy consumption (targeting at EE) with different transmis-
sion rates. EE denotes energy-efficient target.

3Mbps 7Mbps 11Mbps 15Mbps 19Mbps
Transmission rate

0.4

0.2

0.0

0.2

0.4

0.6

0.8

Q
oS

Optimal (EE)
Local
Remote
Random
Greedy

Round-robin
HEFT-based
DDQNTO (EE)
DRLTO (EE)

Fig. 9. The comparison of the DRLTO and existing algorithms in terms
of QoS (targeting at EE) with different transmission rates. EE denotes
energy-efficient target.

least energy on UE since all tasks are run remotely. However,
the latency of the Remote could be high and unacceptable
under low or medium transmission rates. As shown in Fig.
9, the Remote, Random, and RR even achieve negative QoS
when the transmission rate is 3 Mbps, meaning that they are
worse than the local. DRLTO with the EE target achieves the
lowest energy consumption bar the Remote and DDQNTO
when transmission rate is greater or equal than 7 Mbps,
while it still leads to acceptable latencies. For example,
when the transmission rate is 7 Mbps, DRLTO with the EE
target obtains a similar latency as the Greedy but 50% less
energy consumption than the latter, while both DDQNTO
and Remote achieve the higher latency than Random. Fig.
9 demonstrates that the QoS of all algorithms (except the
Local) increases with the transmission rate. This is because
the communication cost declines as the transmission rate
grows, offloading tasks to remote servers can be beneficial.
In addition, DRLTO with the EE target obtains the maximal
QoS compared with all baselines and approximates the
optimal solution.

4.6 Evaluation with/without Dependency

11

…

t! t" t# t$…
Task
embeddings

…*(#!|&!),('!) *(#$|&$),('$)

Fig. 10. The neural network architecture without considering the depen-
dency among tasks.

0 200 400 600 800 1000 1200
Episode

900

1000

1100

1200

1300

1400

La
te

nc
y

(m
s)

DRLTO (with dependency)
DRLTO (without dependency)

Fig. 11. Evaluation results for DRLTO with/without dependency informa-
tion.

We embed the dependent information into the task em-
beddings and use the encoder network with the attention
mechanism to extract features from the task embedding.
In order to show how the dependent information influ-
ences the results. As shown in Fig. 10, we remove the
encoder network with attention mechanism from the S2S
neural network and directly input the task embeddings to
the decoder network. The output of the decoder network
remains the same (i.e., the policy and the value function).
More specifically, we remove the adjacent information from
the task embeddings. We then train this policy network on
the same training dataset as DRLTO targetting at LO and
use the same hyperparameters (i.e., learning rate, batch size,
and the number of gradient steps per episode). During the
training, we evaluate the trained policy at each episode on
the testing dataset with n = 15. Fig. 11 shows the evaluation
results. We find that the training process cannot converge
without considering the dependency information. Note that
DDQNTO proposed in [10] does not involve the depen-
dency information either. The above experiment results
show that DRLTO can learn better policies than DDQNTO
in all scenarios. Therefore, dependency information is one
of the crucial factors in achieving good performance.

5 RELATED WORK

The MEC offloading problem has attracted considerable
research interests. Mach et al. [32] gave a thorough survey
for offloading architecture and solutions in MEC systems.
Many existing studies assume the offloading tasks are in-
dependent. Chen et al. [4] focused on task offloading in
a software-defined ultra-dense network. They formulated
the task offloading problem as a mixed-integer non-linear
programming (MINLP) problem and solved it by decom-
posing the problem into two sub-problems. Dinh et al. [3]
aimed to minimize both latency and energy consumption
by jointly optimizing the task allocation decision and the
CPU frequency. They proposed two heuristic methods to
solve the offloading problem for the cases with both fixed
and elastic CPU frequency. Zeng et al. [33] formulated the
task offloading problem with joint consideration of task
scheduling and image placement as an MINLP problem,
and proposed a three-stage heuristic algorithm to solve it.
When considering the inner dependency of offloading tasks,
Lin et al. [2] represented mobile applications as task graphs
and proposed a heuristic-based algorithm to solve the task
offloading problem in MEC. Neto et al. [34] proposed a
user-level online offloading scheme for MEC, which makes
offloading decisions based on the estimation of energy
and execution time for the dependent tasks. These existing
solutions rely on hand-tuned heuristic or approximation
methods. However, turning heuristics for a given task of-
floading scenario is an expensive job that requires consid-
erable human expertise. Consequently, facing the dynamic
MEC scenarios, one might have to do this tuning repeatedly,
which is time-consuming and sometimes impractical. By
contrast, the proposed DRLTO learns an adaptive model by
interacting with the MEC environment, without relying on
hand-turned heuristics.

Recently, DRL-based methods have emerged in the solu-
tions to the MEC offloading problem [9, 10, 11, 12, 35, 36, 37].
Li et al. [35] proposed a deep Q-Learning based offloading
method to jointly optimize the offloading decision and com-
putational resource allocation. Chen et al. [36] considered an
ultra-dense network, where multiple base stations can be
selected for offloading. They also adopted deep Q-Learning
to obtain the offloading strategy. Dinh et al. [37] focused
on multi-user multi-edge-node task offloading problem by
using Q-learning in MEC. Zhan [9] et al. formulated the
task offloading problem as a partially observable Markov
decision process (POMDP) and applied a policy gradient
DRL-based approach to solve the problem. Zou et al. [12]
proposed a DRL-based offloading method by utilizing the
asynchronous advantage actor-critic algorithm, to reduce
the latency and energy consumption. Tang et al. [10] incor-
porated the LSTM, duelling DQN, and double DQN tech-
niques to solve the task offloading problem in MEC. All of
these studies assume that the offloading tasks are indepen-
dent. However, most of the real-world applications consist
of dependent tasks, ignoring the task dependency when
making offloading decisions can lead to severe performance
degradation. To address the above issue, our DRL-based
method considers the dependency among tasks through
using DAG models for user applications. Different from
our previous work [11], DRLTO develops a new learning

12

model with redefined state space and reward function to
optimise the QoS in terms of both the latency and energy
consumption. Moreover, this work conducts comprehensive
simulation experiments to show the convergence property,
latency, energy consumption, and QoS of the DRLTO in
dynamic MEC scenarios.

From the theoretical perspective, the offloading problem
in MEC systems can be seen as a combinatorial optimization
problem. Recent researches attempt to use deep learning-
based methods to solve such problems. For example, Pointer
Networks [27] are variants of attention-based S2S neural
networks. Pointer Networks use attention as a pointer to
select a member of the input sequence as the output. This
well-designed neural network fits one type of combinato-
rial optimization problem where the output elements are
selected from inputs, e.g., TSP. Kool et al. [28] adopted
attention layers rather than Pointer Networks as the policy
neural network for solving TSP. Dai et al. [38] provided
a different way to solve TSP with RL by using graph
embedding technology for learning an indirect policy. The
learned greedy policy behaves like a meta-algorithm that
incrementally constructs a solution. These studies aim at
solving classical combinatorial optimization problems such
as TSP, MaxCut, and Convex Hull with neural networks and
RL, which inspired us to integrate S2S architecture with RL
to solve the MEC offloading problem.

6 CONCLUSION AND FUTURE WORK

In this paper, we investigate the task offloading problem
in MEC considering task dependency, with the aim of
jointly optimizing the latency and energy consumption. To
effectively adapt to dynamic scenarios, we propose a new
offloading scheme that embeds DRL training and inference
procedures into the MEC system. Specifically, we model the
offloading problem as an MDP and combine an S2S neural
network to approximate both the policy and value function
of the MDP. An efficient policy gradient method is then
applied for training the S2S neural network. The training
results show that the DRLTO achieves excellent stability and
convergence with reasonable training and inference over-
heads. Through comparing with the existing state-of-the-art
heuristic and DRL-based algorithms, we demonstrate that
the DRLTO has strong adaptability among different MEC
scenarios and can obtain near-optimal solutions.

Our future work intends to solve task offloading prob-
lem with a shared resource allocation strategy (i.e., UEs
share a common resource pool on an MEC server and the
offloaded tasks will compete for the common resources).
One potential solution for the task offloading problem with
shared resources is to use multi-agent reinforcement learn-
ing [39]. Each UE in the MEC will be treated as an individual
agent and learns its own policy to achieve a common goal
(e.g., achieving the maximal total QoS for all involved UEs)
by collaborating with the other agents.

ACKNOWLEDGMENT
This work was partly supported by the EU Hori-
zon 2020 INITIATE project under the Grant Agreement
No.101008297.

REFERENCES

[1] D. Sabell, V. Sukhomlinov, L. Trang, S. Kekki, P. Paglierani,
R. Rossbach, X. Li, Y. Fang, D. Druta, F. Giust et al., “Developing
software for multi-access edge computing,” ETSI White Paper,
vol. 20, 2019.

[2] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with
dynamic voltage and frequency scaling for energy minimization
in the mobile cloud computing environment,” IEEE Transactions
on Services Computing, vol. 8, no. 2, pp. 175–186, 2015.

[3] T. Q. Dinh, J. Tang, Q. D. La, and T. Q. Quek, “Offloading in mobile
edge computing: Task allocation and computational frequency
scaling,” IEEE Transactions on Communications, vol. 65, no. 8, pp.
3571–3584, 2017.

[4] M. Chen and Y. Hao, “Task offloading for mobile edge computing
in software defined ultra-dense network,” IEEE Journal on Selected
Areas in Communications, vol. 36, no. 3, pp. 587–597, 2018.

[5] M. Du, Y. Wang, K. Ye, and C. Xu, “Algorithmics of cost-driven
computation offloading in the edge-cloud environment,” IEEE
Transactions on Computers, vol. 69, no. 10, pp. 1519–1532, 2020.

[6] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie, “Reward-oriented
task offloading under limited edge server power for multi-access
edge computing,” IEEE Internet of Things Journal, 2021.

[7] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai,
A. Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al.,
“A general reinforcement learning algorithm that masters chess,
shogi, and go through self-play,” Science, vol. 362, no. 6419, pp.
1140–1144, 2018.

[8] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep rein-
forcement learning,” in International Conference of Learning Repre-
sentations, ICLR, 2016.

[9] Y. Zhan, S. Guo, P. Li, and J. Zhang, “A deep reinforcement learn-
ing based offloading game in edge computing,” IEEE Transactions
on Computers, vol. 69, no. 6, pp. 883–893, 2020.

[10] M. Tang and V. W. Wong, “Deep reinforcement learning for task
offloading in mobile edge computing systems,” IEEE Transactions
on Mobile Computing, 2020.

[11] J. Wang, J. Hu, G. Min, W. Zhan, Q. Ni, and N. Georgalas,
“Computation offloading in multi-access edge computing using
a deep sequential model based on reinforcement learning,” IEEE
Communications Magazine, vol. 57, no. 5, pp. 64–69, 2019.

[12] J. Zou, T. Hao, C. Yu, and H. Jin, “A3c-do: A regional resource
scheduling framework based on deep reinforcement learning in
edge scenario,” IEEE Transactions on Computers, vol. 70, no. 2, pp.
228–239, 2021.

[13] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and
R. Govindan, “Odessa: enabling interactive perception applica-
tions on mobile devices,” in Proceedings of the 9th international
conference on Mobile systems, applications, and services. ACM, 2011,
pp. 43–56.

[14] X. Sun and N. Ansari, “Adaptive avatar handoff in the cloudlet
network,” IEEE Transactions on Cloud Computing, vol. 7, no. 3, pp.
664–676, 2019.

[15] C. Borcea, X. Ding, N. Gehani, R. Curtmola, M. A. Khan, and
H. Debnath, “Avatar: Mobile distributed computing in the cloud,”
in 2015 3rd IEEE International Conference on Mobile Cloud Computing,
Services, and Engineering. IEEE, 2015, pp. 151–156.

[16] W. Zhan, C. Luo, G. Min, C. Wang, Q. Zhu, and H. Duan,
“Mobility-aware multi-user offloading optimization for mobile
edge computing,” IEEE Transactions on Vehicular Technology, vol. 69,
no. 3, pp. 3341–3356, 2020.

[17] H. Cao and J. Cai, “Distributed multiuser computation offloading
for cloudlet-based mobile cloud computing: A game-theoretic
machine learning approach,” IEEE Transactions on Vehicular Tech-
nology, vol. 67, no. 1, pp. 752–764, 2017.

[18] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allo-
cating directed task graphs to multiprocessors,” ACM Computing
Surveys (CSUR), vol. 31, no. 4, pp. 406–471, 1999.

[19] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, p. 529, 2015.

[20] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” in International conference on machine learn-
ing, ICML. PMLR, 2016, pp. 1928–1937.

13

[21] R. J. Williams, “Simple statistical gradient-following algorithms
for connectionist reinforcement learning,” in Reinforcement Learn-
ing. Springer, 1992, pp. 5–32.

[22] A. Doerr, M. Volpp, M. Toussaint, T. Sebastian, and C. Daniel,
“Trajectory-based off-policy deep reinforcement learning,” in In-
ternational Conference on Machine Learning, ICML. PMLR, 2019,
pp. 1636–1645.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

[24] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage es-
timation,” in International Conference of Learning Representations,
ICLR, 2016.

[25] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence
learning with neural networks,” in Advances in Neural Information
Processing Systems, NIPS, 2014, pp. 3104–3112.

[26] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation
by jointly learning to align and translate,” in International Confer-
ence of Learning Representations, ICLR, 2015.

[27] O. Vinyals, M. Fortunato, and N. Jaitly, “Pointer networks,” in
Advances in Neural Information Processing Systems, NIPS, 2015, pp.
2692–2700.

[28] W. Kool and M. Welling, “Attention, learn to solve routing prob-
lems!” in International Conference of Learning Representations, ICLR,
2019.

[29] H. Arabnejad and J. G. Barbosa, “List scheduling algorithm for
heterogeneous systems by an optimistic cost table,” IEEE Transac-
tions on Parallel and Distributed Systems, vol. 25, no. 3, pp. 682–694,
2013.

[30] J. L. Ba, J. R. Kiros, and G. E. Hinton, “Layer normalization,” in
Advances in Neural Information Processing Systems, NIPS, 2016.

[31] H. Topcuoglu, S. Hariri, and M. Wu, “Performance-effective and
low-complexity task scheduling for heterogeneous computing,”
IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 3,
pp. 260–274, 2002.

[32] P. Mach and Z. Becvar, “Mobile edge computing: A survey on
architecture and computation offloading,” IEEE Communication
Survey & Tutorial, vol. 9, no. 3, pp. 1628–1656, 2017.

[33] D. Zeng, L. Gu, S. Guo, Z. Cheng, and S. Yu, “Joint optimization
of task scheduling and image placement in fog computing sup-
ported software-defined embedded system,” IEEE Transactions on
Computers, vol. 65, no. 12, pp. 3702–3712, 2016.

[34] J. L. D. Neto, S.-Y. Yu, D. F. Macedo, J. M. S. Nogueira, R. Langar,
and S. Secci, “Uloof: a user level online offloading framework for
mobile edge computing,” IEEE Transactions on Mobile Computing,
vol. 17, no. 11, pp. 2660–2674, 2018.

[35] J. Li, H. Gao, T. Lv, and Y. Lu, “Deep reinforcement learning
based computation offloading and resource allocation for mec,”
in Wireless Communications and Networking Conference, WCNC, 2018
IEEE. IEEE, 2018, pp. 1–6.

[36] X. Chen, H. Zhang, C. Wu, S. Mao, Y. Ji, and M. Bennis, “Opti-
mized computation offloading performance in virtual edge com-
puting systems via deep reinforcement learning,” IEEE Internet of
Things Journal, vol. 6, no. 3, pp. 4005–4018, 2018.

[37] T. Q. Dinh, Q. D. La, T. Q. Quek, and H. Shin, “Learning for com-
putation offloading in mobile edge computing,” IEEE Transactions
on Communications, vol. 66, no. 12, pp. 6353–6367, 2018.

[38] H. Dai, E. B. Khalil, Y. Zhang, B. Dilkina, and L. Song, “Learning
combinatorial optimization algorithms over graphs,” in Advances
in Neural Information Processing Systems, NIPS, 2017, pp. 6348–6358.

[39] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu,
A. Dudzik, J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev
et al., “Grandmaster level in starcraft ii using multi-agent rein-
forcement learning,” Nature, vol. 575, no. 7782, pp. 350–354, 2019.

Jin Wang received the BEng and MEng de-
grees in computer science from the University
of Electronic Science and Technology of China
(UESTC), Chengdu, China, in 2014 and 2017,
respectively. He is currently working toward the
PhD degree in computer science at the Uni-
versity of Exeter. His research interests include
deep reinforcement learning, applied machine
learning, cloud and edge computing, and com-
puter system optimization.

Jia Hu received the BEng and MEng degrees
in electronic engineering from the Huazhong
University of Science and Technology, China,
in 2006 and 2004, respectively, and the PhD
degree in computer science from the University
of Bradford, UK, in 2010. He is a senior lecturer
of computer science at the University of Exeter.
His research interests include edge-cloud com-
puting, resource optimization, applied machine
learning, and network security.

Geyong Min received the BSc degree in com-
puter science from the Huazhong University of
Science and Technology, China, in 1995, and
the PhD degree in computing science from the
University of Glasgow, United Kingdom, in 2003.
He is a professor of high performance computing
and networking with the Department of Com-
puter Science within the College of Engineering,
Mathematics and Physical Sciences at the Uni-
versity of Exeter, United Kingdom. His research
interests include computer networks, wireless

communications, parallel and distributed computing, ubiquitous comput-
ing, multimedia systems, modeling and performance engineering.

Wenhan Zhan is a Senior Experimentalist in
Computer Science at the University of Electronic
Science and Technology of China (UESTC),
Chengdu, China. He received his B.E., M.Sc.,
and Ph.D. degrees from UESTC, in 2010, 2013,
and 2020, respectively. From 2018 to 2019, he
worked as a Visiting Scholar in the Department
of Computer Science at the University of Ex-
eter, UK. His research interests mainly lie in Dis-
tributed System, Cloud Computing, Edge Com-
puting, and Artificial Intelligence.

Albert Y. Zomaya is currently the Chair Pro-
fessor of High Performance Computing & Net-
working in the School of Computer Science,
University of Sydney. He is also the Director of
the Centre for Distributed and High Performance
Computing which was established in late 2009.
Professor Zomaya was an Australian Research
Council Professorial Fellow during 2010-2014
and held the CISCO Systems Chair Professor
of Internetworking during the period 2002–2007
and also was Head of School for 2006–2007.

Nektarios Georgalas is a Principal Researcher
with the Applied Research department of British
Telecom. In his current role, he leads two collab-
orative research programmes with key BT part-
ners delivering innovations in the areas of cloud,
data centres, network virtualisation, smart cities,
IoT and mobility. During his career with BT, since
1998, he has managed numerous collaborative
and internal research projects in areas such as
network management, market-driven data man-
agement systems, policy-based management,

distributed information systems, SOA/Web services, model driven de-
sign and development of telecoms OSS, cloud and NFV. He is inven-
tor and co-inventor of 11 patents. He has also authored more than
60 papers in international journals and conferences. He has served
as general co-chair, programme cochair, programme committee and
keynote speaker or invited panelist in top international IEEE academic
and TMForum conferences.

