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Changes in subseasonal temperature variability are linked with the altered probability of 8 

weather extremes and have important impacts on society and ecological systems. Earlier 9 

studies based on observations up to 2014 have shown a general decrease in subseasonal 10 

temperature variability over Northern Hemisphere extratropical land. However, these 11 

changes have been confined to specific regions and seasons, have limited statistical 12 

significance, and human influence is yet to be determined. Here we show using up-to-date 13 

observations and climate model simulations that a human fingerprint, or pattern, of change 14 

in subseasonal variability has recently emerged over the Northern Hemisphere extratropics.  15 

The fingerprint features decreased near-surface air temperature variability over land in the 16 

high-northern latitudes in autumn, further extending into mid-latitudes in winter. Using 17 

large ensembles of single-forcing model experiments, we attribute the pattern of reduced 18 

temperature variability primarily to increased anthropogenic greenhouse gas 19 

concentrations, with anthropogenic aerosols playing a secondary role. Our results reveal that 20 

human influence is now detectable in hemispheric-wide day-to-day temperature variability 21 
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and motivates research into the impacts of reduced temperature volatility on societal and 22 

ecological systems. 23 

Main 24 

While the human influence on time averaged temperature changes is unequivocal1, the influence 25 

on day-to-day (or week-to-week, and so on) temperature variability is less certain. Observations 26 

over recent decades show trends in subseasonal temperature variability that vary by region and 27 

season. Reductions in temperature variability have been observed over the northern high-latitudes 28 

in autumn2 and over North America in both winter3 and summer4, while increased variability has 29 

been observed over Eurasia during summer4. Human influence on temperature variability has yet 30 

to be determined, but is expected to depend on various processes including changes in thermal 31 

advection linked to altered background temperature gradients2,5–7, atmospheric circulation 32 

variability8, snow cover extent9, and soil moisture-temperature feedbacks10. 33 

Climate models forced with projected increases in greenhouse gas concentrations show a 34 

robust decrease in subseasonal temperature variability over the mid-to-high latitudes, during all 35 

seasons except summer2. This decrease in variability has been attributed in some studies to the 36 

reduction of temperature gradients associated with the faster warming of Arctic compared with 37 

lower latitudes2,5,7,11, also known as Arctic amplification. In contrast, other studies have argued 38 

that temperature variability in the mid-latitudes could increase due to Arctic-forced changes in 39 

atmospheric circulation variability12–14. It has also been suggested that models may not accurately 40 

capture these potential circulation responses to Arctic warming15, calling into question the 41 

projected decrease in temperature variability. 42 

In this study, we apply tried-and-tested formal detection methods to identify the human 43 

fingerprint of subseasonal temperature variability in observations over the 1979-2020 period. The 44 
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fingerprint is determined from the spatial pattern of the subseasonal temperature variability 45 

response to external forcing in large ensembles of simulations from two climate models. We find 46 

that the fingerprint has recently become detectable above internal variability in observations during 47 

autumn and winter. Using simulations that isolate individual climate drivers, we then attribute the 48 

observed reduction in temperature variability primarily to anthropogenic greenhouse gas 49 

emissions. 50 

Trends in subseasonal temperature variability 51 

We start by examining spatial maps of linear trends in subseasonal near-surface temperature 52 

variability over land from 1979-2020 in two reanalysis datasets (ERA5 and NCEP-DOE reanalysis 53 

2). The temperature variability is determined by calculating the standard deviation of daily 54 

temperature anomalies for each season, resulting in a 41-year time series at each grid point (see 55 

Methods). During autumn (September-October-November; SON), both reanalyses show 56 

statistically significant decreases over Northern Canada and Northern Eurasia (Fig 1a,c). In winter 57 

(December-January-February; DJF), the decreases in temperature variability extend further into to 58 

the mid-latitudes, covering most of North America and Eurasia (Fig 1b,d). The two reanalyses 59 

depict highly similar spatial patterns of trends, but the magnitude of the variability reduction is 60 

greater in the NCEP reanalysis. 61 

To check whether the trends seen in the reanalyses accurately reflect observed trends, we 62 

also examined trends from the Berkeley Earth daily gridded temperature data (Extended Data Fig. 63 

1). Over the common time period (data were only available up to winter 2018 for Berkeley Earth 64 

data), there is strong agreement in trends between gridded observations and reanalyses, particularly 65 
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with ERA5. This gives high confidence that the trends in the reanalyses faithfully capture observed 66 

changes. 67 

To test whether the trends could be externally forced (e.g. from increasing greenhouse gas 68 

concentrations in the atmosphere), we examine analogous trends in subseasonal temperature 69 

variability from model simulations with observed historical forcings over 1979-2005 and then 70 

projected forcings from 2006-2020. We use large ensembles of simulations from two Earth System 71 

Models (CanESM2 and CESM1) to test the robustness of the projected changes. Both models show 72 

ensemble-mean reductions in temperature variability over mid- and high-latitudes, in agreement 73 

with the reanalyses (Fig 1e-h). The modelled trends show a smoother spatial structure compared 74 

to reanalysis, which is expected because internal variability is averaged out when taking an 75 

ensemble mean. Both models show similar seasonality of trends compared to the reanalyses, with 76 

reduced variability largely confined to the high latitudes in autumn, but extending into the mid-77 

latitudes in winter. The similarity of the simulated trends (which consist of only the forced 78 

response) to observed trends (which consist of both a forced component and internal variability), 79 

suggests that the observed trends may reflect a forced response. In the next section, we will 80 

determine whether this forced trend seen in the models has emerged above the background internal 81 

variability in observations. 82 

In Extended Data Fig. 2, we show the subseasonal temperature variability trends, in 83 

reanalyses and models, in spring (March-April-May; MAM) and summer (June-July-August; JJA). 84 

Both simulated and observed trends are weaker in these seasons, but the models show reduced 85 

temperature variability over high latitudes during spring, and weakly increased temperature 86 

variability over the high latitudes in summer. Compared to autumn and winter, there is less 87 

consistency in the spatial pattern of the trends in temperature variability across the reanalyses, and 88 



5 
 

between the reanalyses and models. The weaker signals in spring and summer likely results from 89 

the different physical processes that drive changes temperature variability during these seasons. 90 

Because of these weaker trends in spring and summer, we will focus on autumn and winter for the 91 

rest of the analysis. 92 

Fingerprint analysis 93 

The strong similarity in the observed and simulated trend patterns motivates a fingerprint analysis 94 

to determine whether human influence is detectable in observations. We use standard 95 

fingerprinting methods that have been used to detect human influence on many aspects of the 96 

climate system (see Methods)16–18. First, we define the fingerprints to be the leading Empirical 97 

Orthogonal Function (EOF) from the ensemble-mean temperature variability anomalies (relative 98 

to climatology) of each of the two models. These are shown in the Extended Data Fig. 3, but are 99 

nearly identical in pattern to the linear trends shown Fig. 1e-h. Next, we calculate the signal time-100 

series, by projecting the temperature variability anomalies from the reanalyses and observations 101 

onto the model fingerprints. Figure 2 shows these signal time-series in autumn and winter, using 102 

the fingerprints defined from each model. In both autumn and winter, all signal time-series 103 

generally increase over the past 41 years, indicating growing similarity of observed anomalies to 104 

the model fingerprints. The different reanalyses and observations are in good agreement on the 105 

trend and interannual variability of the signal time-series, again providing confidence in robustness 106 

of the result.  107 

We next examine whether the signals of the fingerprint (from Fig. 2) have emerged above 108 

the background noise. We calculate signal-to-noise ratios by comparing the magnitude of trend in 109 

the signal time-series to the standard deviation of the magnitude of trends of the same length from 110 

time series containing only noise (see Methods). Figure 3 shows the signal-to-noise ratios, for 111 
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increasing trend length starting in 1979, calculated separately using the fingerprint from each 112 

model. In autumn, the observed signal-to-noise ratios became statistically significant (at the 5% 113 

level) between 2005 and 2007, depending on the observational/reanalysis product and model used 114 

to determine the fingerprint. Over the 1979 to 2019 period, the fingerprint is highly detectable in 115 

both reanalyses with signal-to-noise ratios ranging from 4.7 to 5.3. In winter, the time of detection 116 

has a stronger dependence on the observations and model used, with time of detection ranging 117 

from 2005 to 2018. However, regardless of the observations and model used, the signal-to-noise 118 

ratio is statistically significant for trends ending in 2020, with signal-to-noise ratios ranging from 119 

2.5 to 3.7. Also shown in Figure 3 are the signal-to-noise ratios from the individual realizations of 120 

the models. The observations and reanalyses fit within the ensemble range, indicating that the 121 

magnitudes of their changes are within the model spread. 122 

So far, our analysis has only examined the temperature variability over land because the 123 

reanalysis data over land is likely better constrained by observations, and because the daily 124 

observational data from Berkeley Earth only includes land stations. Keeping the uncertainty of the 125 

reanalysis data in mind, we found that signal-to-noise ratios are even higher if ocean regions are 126 

included in the analysis (Extended Data Fig. 4), because both the reanalyses and models show 127 

strong reductions in subseasonal temperature variability over high-latitude ocean regions near the 128 

sea ice edge (Extended Data Fig 5). 129 

Attribution to human influence 130 

We now use single-forcing large-ensemble experiments to attribute the externally forced response 131 

of subseasonal temperature variability to individual climate drivers. In response to only increased 132 

anthropogenic greenhouse gas concentrations, both models show reduced temperature variability 133 

(Fig 4a-d) similar to that in the historical experiment (pattern correlations range from 0.71 to 0.93, 134 
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depending on model and season), indicating that the anthropogenic greenhouse gases are the 135 

primary driver of the forced response. In autumn, both models also show reduced temperature 136 

variability in high latitudes in response to anthropogenic aerosol reductions over recent decades. 137 

The spatial pattern of the autumn response to aerosol forcing is similar to that to greenhouse gas 138 

forcing (pattern correlations of 0.50 and 0.75 in CanESM2 and CESM1 respectively), but with 139 

weaker magnitude. In winter, there is less consistency in the responses to aerosols between the two 140 

models, which partly explain the minor differences in the winter responses to historical forcing in 141 

the two models (Fig. 1f, h). 142 

Previous work has attributed reduced temperature variability in model projections to the 143 

decreased meridional temperature gradients associated with Arctic amplification2,5. This is 144 

supported by targeted modelling experiments forced with imposed sea ice loss and Arctic 145 

amplification in isolation7,11,19–22. Consistent with this interpretation, our simulations display 146 

seasonal-mean warming (Extended Data Fig. 6) and reduced meridional temperature gradients 147 

(Extended Data Fig. 7). In response to greenhouse gas forcing only, there is clear Arctic 148 

amplification and associated reduced meridional temperature gradients, which have similar spatial 149 

patterns to the reduced temperature variability. Furthermore, aerosol forcing has also caused 150 

amplified warming in the Arctic, leading to reduced meridional temperature gradients. Other 151 

processes such decreases in land-sea temperature gradients6 and decreases in snow cover extent9 152 

may also contribute to the decrease in temperature variability. 153 

Implications for future change 154 

There has been considerable disagreement, between model-based and observation-based 155 

studies, on the response of midlatitude circulation and winter temperature extremes to Arctic 156 

amplification15. However, we find a convergence between modelled and observed trends in 157 
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subseasonal winter temperature variability, increasing confidence in model projections. Consistent 158 

with previous investigations into the mechanisms2,5,7,11,19–22, we have shown that temperature 159 

variability is linked to changes in the large-scale meridional temperature gradients5, which are 160 

highly similar in observations and models. The human influence on atmospheric circulation 161 

variability, which is undetectable in observations23 and inconsistent between models24, likely plays 162 

a smaller role.  163 

Our results demonstrate that human influence on climate is now detectable in subseasonal 164 

temperature variability, not only in shifts in climate averages. The narrowing of the distribution of 165 

daily temperatures that we find implies that cold extremes are becoming less frequent and less 166 

severe at a faster rate than predicted by the shift in mean temperature; and conversely, hot extremes 167 

are becoming more frequent and more severe at a slower rate than predicted by a shift in the mean. 168 

However, changes in higher order moments of the temperature distribution8,25, such as skewness 169 

and kurtosis that were not examined here, could also contribute to frequency and severity of 170 

extremes. The reduced temperature variability we have detected over recent decades is expected 171 

to continue with ongoing greenhouse gas emissions2. Our work encourages investigation into the 172 

impacts of human-induced changes in temperature variability on society and ecosystems26–29.  173 
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Reanalysis and observations 242 

We use daily-mean near-surface (2-meter) temperature data from two reanalysis products: ERA5 243 

reanalysis30 and NCEP-DOE reanalysis 231. Data is used from March 1979 to February 2020, 244 

resulting in 41 years for each season. We also use gridded observations of daily near-surface 245 

temperature from Berkeley Earth32 from March 1979 to February 2018. The observations from 246 

Berkeley Earth were only available up to 2018, but we chose to use reanalysis data up to 2020 to 247 

include the latest data. 248 

Modelling experiments 249 

We use output from large-ensemble climate model experiments from two models: the Canadian 250 

Earth System Model version 2 (CanESM2)33,34 and the Community Earth System Model version 251 

1 (CESM1)35,36. For CanESM2, four experiments with different forcings were performed: all-252 

forcings (ALL), only anthropogenic aerosols (AER), only Natural forcings (NAT), and only 253 

stratospheric ozone forcings (OZ). Each experiment consists of 50 ensemble members with 254 

historical forcing from 1950 to 2005 and RCP8.5 forcing from 2006 to 2100. Historical emissions 255 

over 2006-2020 closely match the emissions from RCP8.537, justifying the comparison.  Each of 256 

the 50 ensemble members was initiated from a different initial condition, so differences between 257 

ensemble members arise only due to internal variability. The response to anthropogenic 258 

greenhouse forcing is determined as a residual from subtracting the ensemble-mean trends of the 259 

AER, NAT and OZ from the ALL simulations. This approach means that land use changes are 260 

included in the response to anthropogenic greenhouse forcing for the CanESM2 simulations. 261 

The CESM1 simulations consist of a 40-member all-forcing experiment, with historical 262 

forcing from 1920 2005 and RCP8.5 forcing from 2006 to 2100. The single forcing experiments 263 

from CESM1 were performed differently than those with CanESM2. These experiments were 264 
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identical to the CESM1 all forcing ensemble, except one forcing at a time was held fixed at 1920 265 

levels. Three such experiments were performed: a 20-member ensemble with fixed greenhouse 266 

gases, a 20-member ensemble with fixed industrial aerosols, and a 15-member ensemble with fixed 267 

biomass burning aerosols. The responses to individual forcings (Fig 4) were determined by 268 

subtracting the ensemble-mean of each of fixed forcing experiments from the ensemble mean of 269 

the all-forcing experiment. 270 

Temperature variability calculation 271 

All daily 2-meter temperatures from reanalysis, observations and models were first interpolated to 272 

a common 2°x 2° grid. We have confirmed that the results are insensitive to reasonable changes 273 

in the resolution that the analysis is performed on. Daily temperature anomalies were calculated 274 

by first subtracting the climatological (1979-2020) average temperature for each day and at each 275 

grid point. For model data, the climatological temperature was calculated separately for each 276 

ensemble member (not the ensemble mean) to be consistent with reanalysis and observations. 277 

Next, for each day and grid point, the linear trends over 1979-2020 period from the ensemble mean 278 

were removed. For reanalysis and observations, the mean of the two model’s ensemble means were 279 

removed. Nearly identical results were obtained using other methods, including removing the 280 

linear trends from the ensemble-mean from each individual model, and removing the linear trend 281 

from each individual ensemble member, or from observations, or from reanalyses. For the model 282 

data, nearly identical results were also obtained if the daily ensemble-means were removed. For 283 

each year and season, the standard deviations of the daily temperature anomalies were calculated. 284 

This results in 41-year time-series of the subseasonal temperature variability at each grid point and 285 

each season.  286 

Fingerprint and signal to noise calculations 287 
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We use standard fingerprint methods16–18 to determine whether the signal is detectable in 288 

observations. First, we calculate the ensemble average of subseasonal temperature variability for 289 

each of the all-forcing experiments. Next, we calculate anomalies of temperature variability by 290 

subtracting the climatological mean at each grid-point. We then define the fingerprint to be the 291 

leading empirical orthogonal function (EOF) of the anomalies over all land grid points over the 292 

30°-90°N latitude region for the 1979-2020 period. The results are not sensitive to the exact region 293 

chosen. The signal time-series are calculated by projecting the observed anomalies in temperature 294 

variability onto the fingerprint: 295 

S(t)=∑O(x,t)∙F(x)

Nx

x=1

 296 

Where S(t) is the signal time series, O(x,t) is the observed anomalies, F(x) is fingerprint, t 297 

represents the year,  x represents the grid-point and Nx the number of grid-points. Fields are 298 

appropriately area-weighted prior to calculations by multiplying each grid-point by the square root 299 

of the cosine of the latitude. 300 

The noise time-series are calculated by first subtracting the appropriate ensemble-mean of 301 

the temperature variability time-series from individual ensemble members of the ensemble 302 

(including all single forcing experiments). Next, each of these time-series are then projected onto 303 

the fingerprint, as was done for observed anomalies in the equation above. This results in 200 41-304 

year noise time-series for CanESM2 and 95 41-year noise time-series for CESM1. These noise 305 

time-series consist only of unforced internal variability. 306 

To calculate whether the observed trends are statistically significant, we calculate the 307 

signal-to-noise ratios. Here, the signal is defined as the magnitude of the linear trend of the 308 

observed signal time-series. The noise is defined as the standard deviation of the distribution of 309 
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linear trend magnitudes of the noise time-series of the same length as the signal. Signal-to-noise 310 

ratios are calculated as a function of increasing trend length for trends starting in 1979, with a 311 

minimum trend length of 15 years. We define statistical significance to be a signal-to-noise ratio 312 

of 1.645, which is the 5% significance threshold using a one-sided Students t-test. The time of 313 

detection is determined by the first year where the signal-to-noise ratio exceeds and subsequently 314 

remains above this level. 315 
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Figures 356 

 357 

Figure 1: Subseasonal near-surface temperature variability trends. Trends in subseasonal 358 

near-surface air temperature variability (°C/decade) in autumn (SON; a, c, e, g) and winter (DJF; 359 

b, d, f, h) over the 1979-2020 period. Trends are shown for ERA5 reanalysis (a, b) NCEP reanalysis 360 

(c, d), CanESM2 simulations (e, f) and CESM1 simulations (g, h). The stippling in a-d indicates 361 

trends that are statistically significant at the 5% level using a two-sided student’s t-test. 362 
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 363 

Figure 2: Signal time-series of the subseasonal temperature variability fingerprint. Signal 364 

time-series of the subseasonal temperature variability fingerprint in the ERA5 reanalysis (blue), 365 

NCEP reanalysis  (red) and Berkeley Earth observations (orange). Time series are shown for 366 

autumn (SON; a, c), winter (DJF; b, d) and for the fingerprint calculated from the CanESM2 367 

simulations (a, b) and CESM1 simulations (c, d). 368 
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 369 

Figure 3: Signal-to-noise ratios for increasing trend length. Signal-to-noise ratios as a function 370 

of trend length for trends starting in 1979/80, for the ERA5 reanalysis (blue), NCEP reanalysis 371 

(red) and Berkeley Earth observations (orange), and individual model realizations (grey). Signal-372 

to-noise ratios are shown for autumn (SON; a, c), winter (DJF; b, d) and for the fingerprint 373 

calculated from the CanESM2 simulations (a, b) and CESM1 simulations (c, d). The purple line 374 

indicates statistical significance at the 5% level. Note the different vertical axes in the different 375 

panels. 376 
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 377 

Figure 4: Drivers of subseasonal temperature variability trends. Trends in subseasonal near-378 

surface air temperature variability (°C/decade) in autumn (SON; a, c, e, g) and winter (DJF; b, d, 379 

f, h) over the 1979-2020 period from the single-forcing experiments. Trends are shown for 380 

anthropogenic greenhouse gas forcing (GHG; a-d), anthropogenic aerosol forcing (AER; e-h), in 381 

CanESM2 simulations (a, b, e, f) and CESM1 simulations (c, d, g, h).  382 
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Extended Data Figures 383 

 384 

Extended Data Figure 1: Subseasonal near-surface temperature variability trends in 385 

reanalysis and observations. Trends in subseasonal near-surface air temperature variability 386 

(°C/decade) in autumn (SON; a, c, e) and winter (DJF; b, d, f) over the 1979-2018 period. Trends 387 

are shown for ERA5 reanalysis (a, b) NCEP-DOE-reanalysis 2 (c, d), and Berkeley Earth 388 

observations (e, f). The stippling indicates trends that statistically significant at the 5% level using 389 

a two-sided student’s t-test. 390 

 391 
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 392 

Extended Data Figure 2: Subseasonal near-surface temperature variability trends in spring 393 

and summer. As in Fig 1, but for spring (MAM) and summer (JJA). 394 

  395 
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 396 

 397 

Extended Data Figure 3: Fingerprints of subseasonal temperature variability. The 398 

fingerprints of subseasonal temperature variability from CanESM2 (a, b) and CESM1 (c, d) for 399 

autumn (SON; a, c) and winter (DJF; b, d). 400 

 401 

 402 

Extended Data Figure 4: Signal-to-noise ratios for increasing trend length. As in Fig 3, but 403 

with grid-points over ocean included in the fingerprint. 404 
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 405 

 406 

Extended Data Figure 5: Subseasonal near-surface temperature variability trends. As in Fig 407 

1, but with grid points over ocean included. 408 

 409 

 410 
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 411 

Extended Data Figure 6: Seasonal-mean near-surface temperature trends. As in Fig 4, but 412 

for seasonal-mean temperature trends (°C/decade). 413 

 414 

 415 



27 
 

 416 

Extended Data Figure 7: Meridional temperature gradient trends.  As in Fig 4, but for 417 

meridional temperature gradient trends (°C 1000 km-1 decade-1). 418 


