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Abstract：Compared with uniform structures, functionally graded lattice structures can control 

mechanical properties through varying structures and their volume fraction. In this study, a three-

period minimal curved surface method was used to generate functional lattice structure with linear 

or quadratic function (LF or QF) gradient strategy in the forming direction, and the samples were 

fabricated by selective laser melting (SLM) using the Ti-6Al-4V metal powder. The mechanical 

properties, deformation behaviors, and energy absorption performance of graded lattice structures, 

LF and QF I-Wrapped Package (IW-P) lattice structures were systematically investigated through 

experiment and finite element analysis (FEA). Based on the experimental and numerical simulation 

results, the LF lattice structure shows higher elastic modules and yield strength during small strain 

period. And the merits of performance increased layer-by-layer under large strain. Additionally, the 

simulation results based on Johnson-Cook and failure model show that this model can reflect 

structural compression deformation behavior and mechanical performance prediction. Furthermore, 

the elastic modulus of LF lattice structure is higher than uniform lattice structures by nearly 61.52% 

under the same lattice volume fraction. Comparing to other lattice structures, the LF or QF lattice 

structures have better support performance under small strain and stronger energy absorption 

capacity under large strain with the same volume fraction, respectively, which shows superior 

potential to be applied to manufacture protective devices or vibration damping devices. 

Keywords：Functional graded structure; Triply periodic minimal surface; SLM; Finite element 

analysis; Compression behavior; Energy absorbing. 
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Nomenclature 

t* Matrix phase region 

L Length of a lattice unit 

a TPMS function periodicities 

𝜌∗ the volume fraction 

n, m, A, B, C, 

D1, D2, D3, D4, D5 
Johnson-Cook model constants of TC4 

σS Equivalent stress 

εe Equivalent plastic strain 

εp Equivalent plastic strain rate 

ε0 Reference equivalent plastic strain rate 

T Temperature during manufacturing 

εf Fracture strain 

σ* Stress triaxiality 

W Energy absorption per lattice unit volume 

σ Stress 

ε Strain 

εd Maximum strain at the onset of the densification stage 

LF Linear function 

QF Quadratic function 

SLM Selective laser melting 

IW-P I-Wrapped Package 

FEA Finite element analysis 

FGS Function graded structures 

TPMS Triply periodic minimal surfaces 

AM Additive Manufacturing 

IW-P FGS I-Wrapped Package Function graded structure 

LF IW-P Linear Function I-Wrapped Package 

QF IW-P Quadratic Function I-Wrapped Package 

1 Introduction 

As is known to all, those conflicts which are key challenges for the enhancement of the 

mechanical performance of structures restricted by a series of contradictions among different 

properties can be easily solved in nature [1]. Inspired by the structures of wheat awn and softwood 

branches [2], turtle rib [3], shark denticle [4], bamboo [5], sponge [6] and other natural structures, 

many scientific research teams have been trying to find an optimal method from nature to achieve 

higher performance requirements [7-10]. For instance, natural sponges are highly functional living 

systems with macroporous, open cellular, low-density assemblies of cells. And the typical features 

of sponges are of interest for technical applications when combined with other significant properties, 

such as biomedical applications [11], thermal insulation [12], sound adsorption [13], cancer 



vaccines [14], catalyst carriers [15] and functional materials [16]. Function graded structures (FGS) 

is one of the design methods derived from nature, and has been widely used in various fields, such 

as heat dissipating [17, 18], energy absorption [19-21], optoelectronic and thermoelectric [22], 

biomedical prosthetic device [23-27], machinery and equipment application [28, 29].  

Although the idea of graded materials was firstly used by Japanese engineering to reduce 

thermal stress from the high temperature of the metal and ceramic interfaces [30], these materials 

have been used to control deformation, pressure and wear with time passing by. According to the 

performance of gradient materials in different working environment or functional requirements, 

gradient materials can be further divided into functionally gradient materials and functionally 

gradient structures, which are not new as there are series of examples in human body parts, such as 

bones, skin and specific dental crowns [31]. At present, the research contents of functional gradient 

structure mainly include design method, performance research, manufacturability and application 

for special requirement. Among them, functional design method is a more advantageous design 

method since it can govern the morphological parameters such as pore size and volume fraction of 

lattice structures. In addition to the function driven design method [32], some scholars have also 

been attempting to design the FGS through designing CAD model [33] and biological reverse [34]. 

FGS, based on additive manufacturing (AM), have the characteristics of free design; so they are 

being increasingly employed to reduce the weight of load-bearing components without sacrificing 

their intend functionality [35]. Furthermore, the manufacturing of high strength or high functional 

components are presented, using a new technique based on considerably long twist drills [36]. 

Components made with this technique can achieve lightweight and better stress distribution in 

comparison with welding or bolted parts with the same weight. Meanwhile, a method is presented 

using the replica of a small structure in two or three orders of magnitude, aiming to manufacture 

parts with minimum weight and the required mechanical properties [37]. Gershon Elber proposes a 

method and algorithms for the construction of micro-structures which would lead to a high degree 

of precision [38]. On the other hand, many performances of lattice structures have been discussed, 

such as statics [32, 39-41], dynamics and fatigue characteristics [42]. In view of the tremendous 

advantages of FGS, many research teams strive to improve and develop their production methods 

for expanding the field of application of FGS aiming to meet the requirement of fourth industrial 

revolution.  



Currently, as a function-driven design method, triply periodic minimal surfaces (TPMS) are 

mathematically defined structures that repeat in three dimensions with zero mean curvatures and 

large surface areas, which can be easy found in nature [43]. Among these, this mathematical 

approach is characterized by a cubic symmetry and has interconnected internal void regions. These 

characteristics are beneficial for the design lightweight scaffolds, where the designer can specify 

the volume fraction and stiffness of the structure, and also for functional graded structure [44]. In 

recent years, AM methods have been put in place in order to make significant impact on the 

development of FGS and replace the conventional metal production model using sophisticated layer-

layer-size machinery [31]. Various current works have been explored in TPMS lattice structures 

based on AM technology. A study of the primitive TPMS scaffold made by AM showed higher 

ultimate stress, more total energy absorption per unit volume and higher energy efficiency, which 

means the widespread application of comparatively high allowable stress in the future [39, 41, 45]. 

The same work analyzed the elastic properties and yield stress states of the structure through the 

FEA method. In another work, cell size gradient porous scaffolds based on TPMS are becoming an 

attractive candidate for bone grafts [46]. Other studies analyzed the energy absorbed during 

compressive loading from three types of TPMS made of Ti alloy: Gyroid, Diamond, and Primitive 

[39, 41, 46, 47].  

In spite of these, there are still different FGS with different materials or structures being put 

forward to meet the performance requirements of different workplaces, making huge contributions 

to the application of FGS, such as the lattice structure with variable volume fraction [39, 47], the 

gradient lattice structure with variable unit cell size [33, 39] and Multi-material gradient structure 

[48]. Moreover, the mathematical modelling, the prediction and determination of mechanical 

properties and the analytical models of FGS mechanics are especially essential for the future 

direction [31]. To acquire a lattice structure with better carrying capacity and energy absorption, a 

new lattice gradient strategy based on TPMS was proposed in this paper. In order to verify this 

gradient strategy, a uniform lattice structure, a density gradient lattice, LF and QF lattice structures 

with the same volume fraction were designed. Furthermore, the mechanical properties obtained 

from experimental and numerical simulation data of these four lattice structures were compared, 

which involved deformation behaviors, energy absorption performance and failure mechanisms of 

the uniform IW-P, I-Wrapped Package Function graded structure (IW-P FGS), linear function I-



Wrapped Package (LF IW-P) and quadratic function I-Wrapped Package (QF IW-P) fabricated by 

AM with Ti-6Al-4V. To the best knowledge of us, the design of supporting structures is critical for 

SLM [49]. Owning to TPMS lattice structures have the property of self-supporting, the 

characteristics of supporting structure will not be introduced in detail, which belongs to the category 

of manufacturability and is not the focus of the paper. In this article, the samples with the volume 

fraction of 20% were fabricated by SLM technology, including uniform lattice structure, lattice 

structure along the Z-axis gradient, lattice structure with the Z-axis linear gradient and quadratic 

function gradient. The morphological characteristics, mechanical properties, and energy absorption 

capability of the fabricated lattice structures were investigated. Through the quasi-static 

compression experiment and FEA with the Johnson-Cook plasticity model and damage model, the 

mechanical properties and energy absorption characteristics of the lattice structure have been studied 

in detail. 

2 Materials and methodology 

2.1 Design of graded I-WP lattice structures 

The network based I-WP structure can be mathematically defined by TPMS equations using 

implicit methods. The I-WP lattice structure is generated from the following mathematical 

functions: 

𝑆𝑊(𝑥, 𝑦, 𝑧) = cos(2𝑎𝑥) + cos(2𝑎𝑦) + cos(2𝑎𝑧) + 𝑘[cos(𝑎𝑥) cos(𝑎𝑦) + cos(𝑎𝑦) cos(𝑎𝑧) +

cos(𝑎𝑧) cos(𝑎𝑥)] ≤ 𝑡∗             (1) 

where the parameter t* is the width of the matrix phase region. And, the parameter a is the 

TPMS function periodicities to control the unit size in x, y and z directions, which is defined by: 

a = 2𝜋
𝐿⁄                                 (2) 

where L is the length of a lattice unit in x, y and z direction.  

The volume fraction 𝑑∗ of the unit cell of network based I-WP structure is defined by the 

following: 

𝑑∗ = ∭(𝑆𝑊(𝑥, 𝑦, 𝑧) ≤ 𝑡∗) ⋂(|𝑥| ≤ 𝐿 2⁄ ) ⋂(|𝑦| ≤ 𝐿 2⁄ ) ⋂(|𝑧| ≤ 𝐿 2⁄ )𝑑𝑥𝑑𝑦𝑑𝑧 𝐿3⁄     (3) 

Then, networks I-WP lattice structures with predefined volume fraction (𝜌∗) were generated 

to develop the relationship between the volume fraction (𝜌∗) and 𝑡∗, as shown in Fig. 1. 
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Fig. 1 The functional relationship between 𝑡∗ and 𝜌∗ of network based I-WP structures 

In this study, the design samples had an overall dimension of 20mm×20mm×20mm 

corresponding to 4×4×4 lattice unit along each direction, which was generated by setting the 

parameters a= π/2 and x, y, z∈[0,20]. Both lattice structures were achieved with an average volume 

fraction of 20%. For the uniform IW-P lattice structure, the 𝑡∗ = 2.169, which is shown in Fig. 2(a). 

As shown in Fig. 2(b), the volume fraction of graded IW-P model changes from 10% to 30% in z 

direction through setting the parameter by Eq. (4). For the LF IW-P lattice structures, the volume 

fraction was setting 20% by changing the cell size of unit cells through Eq. (5). And for the QF IW-

P lattice structure, the volume fraction was setting 20% through changing the size of unit cells in 

the forming direction by Eq. (6). The CAD models were performed by a MATLAB code to generate 

the STL files and processed in Magics software. 

𝑡∗(𝑧) = 0.043123𝑧 + 1.597                      (4) 

𝑡∗ = 0.008333𝑧 + 2                            (5) 

𝑡∗ = 0.001𝑧2 + 0.00125𝑧 + 2                    (6) 



  

Fig. 2 Three-dimensional models of four lattice structures: 

(a) Uniform IW-P; (b) Graded IW-P; (c) LF IW-P and (d) QF IW-P lattice structures 

2.2 Materials and manufacture 

2.2.1 Materials 

The scanning electron microscope (SEM) micrographs of the commercial TC4 powder used in 

this study are demonstrated in Fig. 3. The SEM micrograph shows a nearly spherical shape with 

smooth surfaces (Fig. 3(a)), leading to a good flowability for SLM process. A narrow particle size 

distribution was confirmed by laser light diffraction, as shown in Fig. 3(b). All of these features 

provide a guarantee for precision shaping. The particle size exhibited a narrow distribution between 

25.0 μm and 52.3 μm with an average diameter of 35.4 μm. 

200μm 20μm

(a)                                       (b) 

Fig. 3 (a) SEM micrograph and (b) particle size distribution of TC4 powder 

2.2.2 Manufacture 

The experimental samples of each TPMS lattice structure were manufactured by SLM facility. 



The used processing parameters were as follows: laser power of 175 W, laser beam diameter of 0.1 

mm, layer thickness of 0.03 mm, hatch spacing of 0.1 mm and scanning speed of 1250 mm/s. The 

laser melting process occurs in an argon gas environment with an 𝑂2 content less than 0.1% and 

the building substrate heating temperature was maintained at 35℃. Then, the fabricated samples 

were removed from base plate by wire electrical discharge machining. The graded lattice structures 

were built with the same processing parameters and the manufactured samples are shown in Fig. 6. 

2.3 Finite element modelling 

Simulation and computer-aided engineering methodologies play a significant role in modeling 

AM design processes by predicting the functional performance of porous structure. So far, the vast 

majority of research in this area has focused on finite element analysis (FEA) which are widely used 

for many simulation of lattice structures [50, 51], bone screwing process [52], tool deflection [53], 

AISI316H stainless steel [54]. Current high-end commercial tools based on finite element method 

e.g. ANASYS, ABAQUS, MSC Nastran provide solutions for structural optimization problems or 

FEA through their dedicated modules. Nevertheless, the inherent problems associated with mesh-

based design frameworks like mesh distortion arising from large shape variations and inconsistent 

geometry description for design and analysis models forced researchers to modify existing 

framework or create more powerful numerical techniques. To relieve these effect, various 

approaches have been presented which include design parametrization technique, filtering and 

regulation approaches, traction technique, mesh morphing and adaptive mesh refinement [55].  

2.3.1 Finite element mesh construction and convergence 

According to the mesh shape, the finite element can be divided into two-dimensional network 

and three-dimensional network. And, the three-dimensional network includes tetrahedron, pyramid, 

triangular prism and hexahedron. Most of the traditional lattice structures are generated by CAD 

software, which uses pre-processing software or finite element software for mesh generation. 

However, the quality of the mesh generated is poor and the simulation results are quite different 

from the experimental. Therefore, hexahedron introduced above-mentioned was used for mesh 

generation of the TPMS lattice structures. Aiming to predict the deformation behaviors and 

mechanical properties of these lattice structures, the FEA was carried out using ABAQUS/explicit 



2019. Both element types of the Uniform, Graded, LF and QF lattice structure models are linear 

hexahedron meshes (C3D8R) which were generated by specifying the coordinates of nodal points 

in MATLAB R2016a [56], with the whole size of each FE model setting to 20mm×20mm×20mm 

showed in Fig. 4. Then, the upper plate moved downward in the direction of the red arrow, and the 

bottom plate stayed still, which is indicated by a brown straight. Additionally, convergence studies 

with a range of mesh numbers were conducted to gain a satisfactory mesh size, as shown in Fig. 5, 

and roughly 2480000 hexahedral elements were produced for each model. 
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Fig. 4 The FE models of hexahedral meshes: 

(a) Uniform IW-P (with 20% volume fraction) based FE model; (b) the boundary condition in FEA 

 

Fig. 5 Convergence of stress-strain curves corresponding to the three mesh numbers for the W20 structure 

2.3.2 Johnson-Cook finite element analytical models 

Johnson-Cook plastic and damage models, which are usually used to research the dynamic 



mechanical response of materials [57], were implemented into FEA to precisely simulate the plastic 

deformation and failure behaviors of the lattice samples. According to the model, the yield stress 

can be expressed as follows: 

𝜎𝑆 = [𝐴 + 𝐵(𝜀𝑒)𝑛] ∙ [1 + 𝐶𝑙𝑛(𝜀𝑝 𝜀0⁄ )] ∙ [1 − 𝑇𝑚]           (7) 

where, A, B, C, n and m are the model constants based on the flow stress data gained from 

mechanical tests. n is the strain hardening exponent, and m is the temperature exponent. 𝜎𝑆 is the 

equivalent stress, 𝜀𝑒 is the equivalent plastic strain, 𝜀𝑝 is the equivalent plastic strain rate, 𝜀0 is 

the reference equivalent plastic strain rate, T is the temperature during manufacturing.  

Aiming to evaluate the fracture behavior of the lattice structure, the Johnson-Cook damage 

model was used, which is expressed as [56]: 

𝜀𝑓 = [𝐷1 + 𝐷2𝑒𝑥𝑝(𝐷3𝜎∗)] ∙ [1 + 𝐷4𝑙𝑛(𝜀�̇� 𝜀0̇⁄ )] ∙ [1 + 𝐷5𝑇𝑚]      (8) 

where, ε𝑓 is the fracture strain, 𝐷1, 𝐷2 and 𝐷3, are damage constant parameters related to 

the relationships between failure strain rate and temperature, 𝐷4 and 𝐷5 are constants determined 

by strain rate and temperature, respectively, and σ is stress triaxiality defined as the ratio of 

hydrostatic stress and the equivalent stress. Given that the experiments were performed under the 

constant strain rate at room temperature, and consequently, 𝐶, 𝑚, 𝐷4 and 𝐷5 were ignored. These 

mentioned parameters of Johnson-Cook models with TC4 referred to previous researches [56, 58], 

as shown in Table 1. All simulations were performed on an Intel(R) Xeon(R) Silver 4112 CPU 

@2.60GHz 2.59GHz with 64GB RAM. 

Table 1 Johnson-Cook model constants of TC4 

A(MPa) B(MPa) n D1 D2 D3 

1567 952 0.4 -0.09 0.25 -0.5 

2.3.3 Compressive experimental procedures 

Uniaxial compression tests were conducted with a universal mechanical testing machine 

equipped with a 100 kN load cell. And the constant stressing rate was set as 1 mm/min, accompanied 

by a video camera recording the deformation behaviors for each sample. To reduce errors, Uniform 

IW-P, Graded IW-P, LF IW-P and QF IW-P lattice structures were tested in triplicate. Then frames 

of videos correlated with strain were extracted to exhibit their failure behaviors. The stress-strain 



curve was the experimental result obtained under normal atmospheric condition. 

3 Results and discussion 

3.1 Structural characteristics  

The SLM-processed lattice samples are shown in Fig. 6, and the Uniform IW-P, Graded IW-P, 

LF IW-P and QF IW-P structures were found to have a continuous graded thickness that conformed 

to the design, which was consistent with the design ones, as shown in Fig. 6. In terms of actual 

quality and geometric dimensions, there will be a certain error between the manufactured samples 

and the design values, just as described in other documents [59]. Herein, the size and quality of the 

manufactured samples of the uniform IW-P lattice structure were given, as shown in Table 2. As 

seen in Table 2, the dimensions along x and y directions in SLM-built samples were higher than in 

the designed samples, which keep up with other early experimental studies [58]. It is patently 

obvious from Table 2 that the measured mass of lattice samples was a little higher than the designed 

mass, which is principally generated by the partially-melted powder particles on the lattice surfaces, 

discovered in the high magnification SEM micro graph in Fig. 7. Moreover, it is noteworthy that 

the disparity between manufactured mass and designed mass was also influenced by the grade in 

the lattice [60], the accuracy of STL models [61], and the porosities of built samples [62]. However, 

these are not the focus of this paper. 

 

Fig. 6 The as-built TC4 lattice samples 

(a)QF IW-P; (b) LF IW-P; (c) Graded IW-P; (d) Uniform IW-P 



 

Fig. 7 SEM morphology of uniform IW-P structure’s surface 

Table 2 Measured characteristics of uniform IW-P lattice samples 

Samples 

Measured dimensions 

𝑋 × 𝑌 × 𝑍 (mm3) 

Measures mass(g) Designed mass(g) 

Uniform IW-P 20.10 mm×20.18 mm×19.83 mm 7.8161 7.08 

3.2 Compressive deformation mechanism 

To acquire mechanical properties of the lattice structure intuitively and qualitatively, the 

compression research of these lattice structures was studied. In this section, the experimental 

compression response curves and compression deformation of lattice structures are mainly 

discussed, which would provide research data for posterior dissection of bearing capacity and energy 

absorption characteristics. 

The stress-strain curves of the experiment and numerical simulation were compared in Fig. 8. 

From that, there are three stages in the deformation of the lattice structure, including the linear 

elastic stage, the elastic-plastic stage and the densification stage in all curves, which are identical to 

previous researches [63]. Stresses of all the curves increase with the strain increased in the initial of 

compression and then drop rapidly, which depend on the types of material, and significantly differ 

from those plastic materials whose stress plateaus exhibit long plateaus without large stress drops, 

such as Cu-Cr-Zr [40]. 



 

(a) Uniform IW-P                    (b) Graded IW-P 

 

(c) LF IW-P               (d) QF IW-P 

Fig. 8 Simulation and experimental curve comparison of four lattice structures 

As shown in Fig. 8(a), the stress-strain curve of simulation for uniform IW-P structure 

demonstrated that the peak of the experimental is ahead of the simulation result from the second 

peak, and then the deviation between experiment and simulation narrowed gradually with at post-

yield stage. Eventually, the maximum stress of the compression experimental result is 41% higher 

than the initial peak stress of the simulation analysis result with the same trend, as shown in Fig. 3, 

which is a beneficial result for predicting the deformation response at the post-yield stage. 

Nonetheless, the elastic modulus was lower than that in the experimental and the yield stress was 

higher, as shown in Table 3. This deviation was mainly due to the difference in volume fraction 

between simulation model and as-manufactured samples, especially caused by the shape precision 

of the simulation model and the voxel-based hexahedron meshes. 

For the graded IW-P samples, following the initial peak stress, a significant drop in stress values 

was surveyed in Fig. 8(b), due to the simulation of structural fracture by using the Johnson-Cook 

damage model. Then, followed a linear elastic strain stage where the slope of the stress-strain line 



determined the elastic modulus of this lattice structure. Thereafter, the stress-strain curves entered 

the post-yield regions, and it is noted that with every 5% to 10% increase in strain, there is an 

alternating phenomenon of peaks and valleys due to brittle collapse and overloading. The variation 

trend of the stress-strain cure showed a good agreement with that of the experiment. Nevertheless, 

there is a larger deviation between the simulation results and the experimental results, which is 

related to the different amounts of tiny fractures of uniform IW-P samples that flew out during the 

process of compression simulation and experiment, as shown in Fig. 11. This would lead to stress 

variation owing to the different volume fraction of the remained structures. Additionally, these 

differences could be exaggerated along with the accumulative layer-by-layer fracture. 

The failure form of the LF IW-P structure was described in Fig. 8(c). And the simulation stress-

strain curve of the lattice structure with the linear function gradient strategy in the building direction 

maintains a good corresponding relationship with the experimental results. Particularly, the peak 

stress is 33.2% higher than the simulated analysis with a certain strain of 0.1, and the LF structure 

shows a form of destruction layer-by-layer from bottom to top with increasing the strain. However, 

the stress peak of layer-by-layer is lower than the peak value of the simulation, which could be 

explained by the factors such as materials properties and flying debris, as shown in Fig. 9. 

Specifically, the material parameters in the Johnson-Cook model are based on the forging material, 

which is different from the ones of the sample formed by SLM. At the same time, the amount of 

material debris that failed during the simulation compression process is not consistent with the 

actual compression process. As shown in Fig. 8(d), the stress-strain curve of the QF lattice structure 

simulation maintains a good trend with the experimental strain-stress, which has a similar trend to 

the LF structure in Fig. 8(c) due to having the same type of gradient structure. 

 

Fig. 9 Schematic diagram of LF IW-P lattice structure simulation analysis fragments 

Mechanical properties of lattice structures could be intuitively and qualitatively examined 



through deconstructing the compression response. In order to further analyze and compare the 

mechanical properties of the four designed structures with the same volume fraction, the stress-

strain curves of Uniform, Graded, LF and QF lattice structures are demonstrated in Fig. 10. From 

that, the mechanical properties of LF IW-P are consistent with that of QF IW-P lattice structure. For 

example, the compressive strengths of the two structures are 54.80 MPa and 54.33 MPa respectively, 

which are slightly different from each other. On the other hand, the strain corresponding to the 

compaction of the two structures is almost at 0.8, which is caused by the same gradient change 

strategy in the forming direction based on TPMS. In the strain range of ε=0.1-0.7, both structures 

show a zigzag curve, which owns to the brittle material properties of TC4. It is observed that the 

peak value of the line-lattice structure is slightly higher than that of the QF IW-P structure in the 

first half of the yield stage (ε=0.1-0.2). This is because the gradual change from the bottom to the 

top in a linear function and a quadratic function, respectively, and the top face of the quadratic lattice 

structure has larger pores.  

    

Fig. 10 The comparison with experimental results of lattice structure:  

partial enlarged view (left) and compression curve (right) 

It is worth noting that, compared with the uniform lattice structure, the gradient lattice structure 

with a linear function of forming direction has better mechanical properties. For example, the 

compressive strength of the LF IW-P lattice structure is 4.6% higher than that of the uniform lattice 

structure. Furthermore, the LF lattice structure maintains a relatively stable mechanical property of 

50 MPa and the uniform lattice structure floats at about 35 MPa in the strain range of 0-0.5. 

Compared with lattice structures with volume fraction from 10% (top) to 30% (bottom), lattice 

structures with linear function gradient change in forming direction have better mechanical 



properties within the range of 0-0.3 strain. However, the stress of LF lattice structure is obviously 

lower than that of QF lattice structure at the value of strain 0.5, which indicates that the former 

lattice structure has more stable mechanical properties than that of latter lattice structure, and it has 

a good reference value in the application of lattice structure design.  

Table 3 Comparison of compressive strength and stress drop coefficient of four lattice structures 

Structure type 

First peak (MPa) First bottom (MPa) 

Sim Exp Sim Exp 

Uniform Structure 37.10 52.35 20.13 20.30 

Graded Structure 24.61 32.96 8.61 12.93 

LF Structure 40.57 54.05 5.37 11.44 

QF Structure 41.52 54.45 7.18 6.87 

As exhibited in Fig. 11, the difference among these four types of structural failure could be 

noted. For instance, X-shaped destruction bands would appear during the compression process of 

uniform IW-P structure in the entire structure with a certain amount of strain (ε=0.2). Nevertheless, 

during the compression experiment, the structure showed shear failure in the direction of 45°, which 

is consistent with the previous research [64]. Furthermore, its stress-strain curve shows jagged 

fluctuations, not as smooth as matrix material [33]. On the other hand, different from the failure 

form of the uniform lattice structure, the other three structures show the form of layer-by-layer 

destruction. Among them, the gradient lattice structure is gradually destroyed from the top of the 

entire structure, the other two structures appear to be destroyed layer by layer from bottom to top. 

Specially, the trend of gradient structure is more obviously damaged by layer-layer with a certain 

amount of strain (ε=0.2), which is consistent with uniform structure. However, the remaining 

structures tend to show a failure when the strain was 0.1, furthermore, the form of destruction 

becoming clearer until the strain turns 0.2, as shown in Fig. 11. 
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Fig. 11 Compression deformation process of simulation and experiment: 

(a) Uniform IW-P; (b) Graded IW-P; (c) LF IW-P;(d) QF IW-P 

With the compression experiment or simulation, a lot of debris (such as the small black dots in the 

simulation analysis diagram) were produced by the gradual destruction of the structure, which could 

further explain the phenomenon of sawtooth-like fluctuations in the stress-strain curve, as shown in Fig. 

8(a). During the deformation process, the low volume fraction region at the top is destroyed first, and 

then developed to the surrounding region, while the high-volume fraction area remained not damaged, 

which could be explained by the stiffness changes in different volume regions, as shown in Fig. 8(b). 

From the screenshots of the simulation analysis, LF IW-P and QF IW-P structures tend obvious tendency 

of layer-by-layer failure with a certain strain (ε=0.1), which is a better agreement with the results of the 

experiment, as shown in Fig. 10 and Fig. 11. 

3.3 Mechanical properties: modulus and strength 

The elastic modulus and yield strength of the lattice structure are the main indicators to measure 

the carting capacity of the lattice structure. To evaluate the related mechanical properties of the 

designed structure, quantitative analysis and comparison of modulus and strength are explored, as 

shown in Table 4. Depending on the minimal surface design method, the lattice structures 

mentioned-above show a great difference due to different gradient strategies. As described in Fig. 

11, the stress-train curves of the four lattice structures are investigated by compression tests, which 

shows a good agreement with simulation. Hereinafter, the corresponding mechanical parameters in 



the experiments of each lattice structure were gained and listed in Table 4 by calculating modulus 

and the strength. 

It is not difficult to find from Table 4 that the elastic modulus and yield strength of the line and 

second lattice structures are larger, which shows that they have better resistance to external forces 

and stronger protection under small deformation. Especially, the structure with a linear function 

gradient in the forming direction is 61.52% higher than the uniform lattice mechanism under the 

same volume fraction. Therefore, a lattice structure with linear function gradient change in the 

building direction may have better mechanical properties by changing the volume fraction, 

compared with the uniform lattice structures. 

Table 4 Comparison of mechanical properties of four lattice structures in experiments 

Lattice structure 

Elastic modulus (MPa) Yield strength (MPa) 

Sim Exp Sim Exp 

Uniform Structure 1002.44 1089.48 32.42 40.72 

Graded Structure 1048.86 1028.57 23.53 28.56 

LF Structure 1350.70 1501.65 37.71 48.37 

QF Structure 1578.24 1653.89 38.87 52.41 

3.4 Energy absorption under compression deformation 

Due to its high porosity, lattice structure has the characteristics of lightweight and energy 

absorption. Therefore, it is always used in protective devices since energy would be absorbed during 

deformation. According to ISO 13314:2011, the energy absorption of those lattice structure was 

evaluated. The calculation equation of energy absorption is expressed as follows: 

𝑊 = ∫ 𝜎(𝜀)
𝜀𝑑

0
𝑑𝜀                           (9) 

Herein, W is the energy absorption per lattice unit volume which is defined as the area enclosed 

by the stress-strain curves and 𝑥-axis, as shown in Fig. 12. And the σ and ε represent effective stress 

and strain of the lattice structure respectively, and 𝜀𝑑 is the maximum strain at the onset of the 

densification stage. The results are outlined in Table 5. It can be found that the graded lattice 

structure absorbed a higher amount of energy as compared to the uniform lattice with the same 

volume fraction (20%), which agrees with the results from the literature [41]. Hereinafter, only 50% 



of the calculated value is selected for energy absorption, which is consistent with the calculation 

methods of other documents [41]. By integrating each strain position, the energy absorption curve 

of the lattice structures under different strains was acquired, as shown in Fig. 13. 

 

Fig. 12 Schematic diagram of energy description 
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Fig. 13 Energy absorption curves of the lattice structures 

It can be clearly seen from Fig. 13 that the LF lattice structure has an energy absorption capacity 

equivalent to that of the uniform lattice structure. However, the gradient lattice structure has the 

lowest energy absorption capacity during a certain strain (ε=0-0.25). During the second half of the 

compression experiment, the graded lattice structure performs more strongly the energy absorption 

capacity (ε=0.25-0.5). On the other hand, during the first half of the strain (ε=0-0.2), the QF lattice 

structure has a higher energy absorption capacity than the gradient structure.  



Table 5 Energy absorption property of lattice samples 

Properties 

Uniform Graded LF QF 

Exp Sim Exp Sim Exp Sim Exp Sim 

W(MJ/m3) 14.67 13.72 20.34 18.45 13.49 14.55 16.39 15.74 

As shown in Table 5, the errors of energy absorption for the lattice structures (uniform lattice, 

gradient lattice, LF and QF) during simulation and compression experiment are 7.28%, 10.08%, 

1.82% and 3.75% respectively. Specifically, the energy absorption of the QF lattice structure is 10.94% 

higher than that of the uniform lattice structure in the compression experiment. Furthermore, the 

energy absorption of QF lattice structure is 14.72% higher than that of uniform lattice structure 

depending on the simulation results. 

Furthermore, the lattice structure with the linear function gradient strategy in the manufacturing 

direction has the energy absorption capacity of the strain power function, which shows consistent 

performance with the uniform lattice structure. Nevertheless, the lattice structure adopting the 

quadratic function gradient strategy in the forming direction has almost the same energy absorption 

capacity as the lattice structure applying the gradual volume fraction in the fabricating direction, 

which provides a variety of design solutions for engineers and technicians in the field of lightweight 

applications. 

4 Conclusion 

In this work, the uniform, graded, LF and QF IW-P lattice structures based on TPMS were 

fabricated via SLM with TC4 power and unit cell size of 4 mm. Additionally, the samples had the 

same volume fraction of 20%. Furthermore, their mechanical properties, compression deformation 

behaviors and energy absorption properties have been experimentally and numerically investigated. 

The main conclusions are as follows: 

(1) Compared with Uniform and Graded IW-P lattice structures, LF and QF IW-P lattice structures 

showed higher elastic modulus and yield strength with the same volume fraction. The deformation 

behaviors of Graded, LF and QF IW-P lattice structures occurred a brittle layer-by-layer collapse; 

nevertheless, the Uniform IW-P lattice structure was destroyed in the direction of 45°. 

(2) The plastic deformation and layer-by-layer failure of four lattice structures mentioned-above 

were simulated with the introduced Johnson-Cook and damage models, and the deformation 



mechanism was consistent with experimental results. Hereafter, the method of predicting the 

mechanical properties (especially in yield strength, compressive strength and energy absorption) of 

the lattice structure is a constructive guide for the structural designer. 

(3) In view of the total energy absorption, Uniform and QF lattice structures have a higher 

absorption ability than Graded and LF lattice structures. Specifically, the energy absorption of 

Graded and QF structures increased along with the power function of the strain, whereas LF and 

Uniform structures occurred almost linear growth. This phenomenon illustrates the effectiveness 

and rationality of the gradient design method proposed in the article.  

In conclusion, a novel lattice gradient strategy based on TPMS is proposed to obtain lattice 

structures with better load-carrying capacity and energy absorption. The LF and QF lattice structures 

based on the gradient strategy have higher elastic modulus and yield strength. Furthermore, this 

gradient strategy achieves the previous expected goal and provides a better choice for energy 

absorption under small strain, such helmet, energy buffer device and so on. On this point, the 

mechanical properties of I-WP lattice structure have been analyzed before [64], but the gradient 

strategy mentioned in this paper is proposed for the first time. Additionally, this study only focuses 

on the design method of lattice structures and the mechanical properties. With the demand for 

lightweight in the manufacturing, aerospace and automotive fields, the basic principles behind the 

design of the lattice structure, the design method of the lattice structure, and its lightweight 

application will be the focus of future research. 
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