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a b s t r a c t

Traditionally, human microbiology has been strongly built on the laboratory focused culture of microbes
isolated from human specimens in patients with acute or chronic infection. These approaches primarily
view human disease through the lens of a single species and its relevant clinical setting however such
approaches fail to account for the surrounding environment and wide microbial diversity that exists
in vivo. Given the emergence of next generation sequencing technologies and advancing bioinformatic
pipelines, researchers now have unprecedented capabilities to characterise the human microbiome in
terms of its taxonomy, function, antibiotic resistance and even bacteriophages. Despite this, an analysis
of microbial communities has largely been restricted to ordination, ecological measures, and discriminant
taxa analysis. This is predominantly due to a lack of suitable computational tools to facilitate microbiome
analytics. In this review, we first evaluate the key concerns related to the inherent structure of micro-
biome datasets which include its compositionality and batch effects. We describe the available and
emerging analytical techniques including integrative analysis, machine learning, microbial association
networks, topological data analysis (TDA) and mathematical modelling. We also present how these meth-
ods may translate to clinical settings including tools for implementation. Mathematical based analytics
for microbiome analysis represents a promising avenue for clinical translation across a range of acute
and chronic disease states.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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1. Introduction

1.1. The human microbiome and its role in health and disease

The human microbiome represents a complex and dynamic
ecosystem, now established as an important clinical correlate of
health and disease [1]. With increasing characterization of the
microbiome, our understanding of microbial pathogenesis has pro-
gressed exponentially, evolving from focused analysis of individual
pathogens to a more holistic analysis incorporating ecological con-
cepts such as diversity, community, and species interaction [2]. The
human microbiome is primarily composed of bacteria, viruses and
fungi, all of which dynamically interact in a complex manner
necessitating multi-dimensional analytic approaches. Such
approaches must adapt iteratively as we gain deeper insight into
novel aspects of the microbiome’s functionality [3–6]. The devel-
opment of analytical pipelines and mathematical models is there-
fore critical as it permits deeper exploration of the microbiome
towards better clinical insight and potential translation [5,7]. Lev-
eraging upon seminal studies in the gut, human microbiome stud-
ies now include multiple anatomic sites and major scientific
initiatives such as the human microbiome project have provided
a strong base from which the field has evolved [1,3]. Our existence
as ‘holobionts’, composed of human and microbial cells is now
clearly established and many physiological processes associate
with microbiome composition including digestion, immune regu-
lation and detoxification [1]. Given the increasing appreciation of
the centrality of microbes to critical human functions, it is unsur-
prising that illness and disease is accompanied by significant shifts
in microbial composition [8]. Next-generation sequencing (NGS) to
derive microbiomes is therefore being increasingly applied across
medical disciplines in large observational studies, endophenotyp-
ing efforts and clinical trials. Interrogating the generated data
requires a careful application of appropriate analytical techniques,
and mathematical-based microbiome analytics has emerged as an
important means to uncover important signals that may possess
potential for clinical translation.

1.2. Next-Generation Sequencing (NGS): Targeted amplicon &
metagenomics

Due to the rapid advances in microbial DNA sequencing, our
understanding of the human microbiome has rapidly shifted from
a microbe-centric, culture-based approach (requiring a priori
assumptions about the type of sample or disease under investiga-
tion) to a less biased pathogen-agnostic NGS approach using a vari-
ety of sequencing techniques. Most studies employ targeted
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amplicon sequencing of the 16S ribosomal RNA gene, one that
allows a taxonomic identification of bacteria [9] (Fig. 1A). By corol-
lary, targeting conserved elements of the fungal ribosome, the
internally transcribed spacer region (ITS), the fungal microbiome
(the mycobiome) can be evaluated, while the analysis of the vir-
ome has been challenging and less well defined [10,11]. The cur-
rent microbiome literature remains heavily biased toward
characterisation of the bacteriome, although there is an increasing
awareness of the significance for both fungal and viral kingdoms in
determining overall composition and function, including the
potential for intra-kingdom interaction necessitating integrated
analysis [6,10–12]. Whole-genome shotgun (WGS) metagenomics
provides a less biased and more holistic alternative to targeted
amplicon sequencing and is being increasingly employed in micro-
biome research (Fig. 1A). While less biased and less susceptible to
PCR-associated background contamination, metagenomics is cap-
able of functional profiling although does provide challenges for
low biomass samples or samples containing high levels of back-
ground human DNA (Fig. 1B). Lower abundance organisms includ-
ing fungi may be underrepresented or potentially undetected by
metagenomics despite serving important biological roles. Here,
application of tailored sample preparation methods or blended
WGS-target amplicon sequencing approaches may be required to
accurately capture true microbial composition. Pacific Biosciences
Single Molecule Real Time (SMRT) and Nanopore sequencing pro-
tocols further represent ongoing areas of research which promise
to bring improvements including full length 16S rRNA gene
sequencing and strain-level genomic comparisons but await appli-
cation in large-scale clinical studies [13–15]. A further important
consideration is the analysis of RNA over DNA (meta-
transcriptomics) which better reflects metabolically active
microbes and identifies RNA viruses [16,17]. Notwithstanding such
considerations, and the potential pitfalls inherent to the data engi-
neering phase (reviewed in depth elsewhere [9]), the main output
of microbiome sequencing workflows remains a set of individual
compositional microbiome profiles that serve as a starting point
for downstream analysis (Fig. 1B).

1.3. The compositional challenge of microbiome data

In 1897, a classic paper by Karl Pearson indicated the dangers of
computing correlations between ratios (xiy) with common denomi-

nators [18]. This paper implied that correlation analysis of compo-

sitions x1
y ;

x2
y ; � � � ; xny

� �
, where the ratios (xiy) are subjected to a sum-

constraint
Pn

i
xi
y ¼ constant; may lead to spurious correlations

when there are actually none. Components of a composition are



Fig. 1. Overview of the analytical approaches to microbiome data. (A) Microbiome community samples can be assessed by (1) whole genome shotgun metagenomics: where
the whole DNA content is sequenced or (2) Targeted amplicon sequencing: where a targeted region (i.e. 16S in bacteria or ITS in fungi) is amplified by polymerase chain
reaction (PCR) followed by sequencing. (B) The derived sequences are next mapped to reference databases to yield taxonomic, anti-microbial resistance or functional profiles
of the microbiome (whole genome shotgun metagenomics) or taxonomic profile (targeted amplicon sequencing). Derived microbiome profiles suffer from compositionality,
high-dimensionality, over-dispersion, sparsity, and batch effects. (C) Various computational approaches for microbiome analytics can be leveraged including integrative
microbiome analysis, machine learning, microbial association analysis, topological data analysis and mathematical modelling.
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called its parts, and due to its sum-constraint, these samples exist
in a mathematical simplex i.e. a 3-part composition resides in a tri-
angle, 4-part in a tetrahedron and so on for higher-dimensional
simplexes (see Section 2.4). For example, the relative abundance
of n microbial species in a biological sample resides in a n-
dimensional simplex space as opposed to an n-dimensional Eucli-
dean space. Most statistical models assume independence between
features which does not hold true for compositional data due to its
inherent dependency between features. Conventional multivariate
data analysis techniques including the Pearson/Spearman correla-
tions, Euclidean distance and multivariate comparisons were
developed for data that reside in a Euclidean space and hence
not applicable to compositional data. Historically, confusion sur-
rounds compositional data analysis and improper statistical meth-
ods have been applied [19]. To address this problem, the
Compositional Data Analysis (CoDA) framework was initiated by
Aitchison in the 1980s and was based on the theory of log-ratios
[19]. This framework has now further extended to include rigorous
statistical approaches to analyse compositional datasets [20].

Microbiome datasets derived from next-generation sequencing
(NGS) inherit its technical and analytical limitations. In particular,
the issue of ‘‘normalization” requires consideration given con-
straints of sequencing capacity i.e., the total number of read counts
in a single NGS run. Further, beyond a certain point, the number of
reads (or read depth) obtained is irrelevant as it is derived from a
random sample of size-selected DNA fragments bound to a
sequencing flow cell in accordance with their relative molarity,
thus rendering microbiome datasets compositional. Furthermore,
each sample does not usually contain exactly the same number
of sequence reads and this is attributed to differences in sequenc-
ing platforms, experimental difficulties in loading the exact molar
amounts of the sequencing libraries and random variation. Hence,
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microbiome datasets only contain information on their underlying
proportions and are often represented as relative abundance, nor-
malized read counts or rarified prior to analysis. Rarefaction
involves subsampling of the obtained read counts to a common
read depth, however its use is questioned as it leads to loss of
potentially useful information [21]. Apart from the statistical com-
plications of microbiome datasets due to their compositionality,
the problem is further compounded by high dimensionality and
sparsity, as the microbiome comprises several types of microbes
and large zero values (Fig. 1B. Hence, studies that use traditional
methods to normalize microbiome data, rather than CoDA based
methods, may miss important clinical insight due to suboptimal
data normalization protocol. For instance, the centered log ratio
(CLR) transformation is often used in CoDA based analysis for
microbiomes. Given the count vector of ‘D’ taxa’s in a sample
x ¼ x1; x2; � � � ; xD½ �, the CLR transformation of the sample is defined

as, xclr ¼ log x1
G xð Þ

� �
; log x2

G xð Þ

� �
; � � � ; log xD

G xð Þ

� �h i
, where G xð Þ is the geo-

metric mean of x. The clr- transformed values are scale-invariant,
i.e. the same ratio is expected to be obtained in a sample with
few read counts or with many read counts, only the precision of
the estimate is affected [20].

Compositional methods themselves however also suffer from
loss-of-scale issues, and therefore efforts toward absolute quantifi-
cation such as ‘spike in’ approaches have been employed. This
involves the addition of exogenous pre-determined microbial
material, that act as an internal control, to derive the absolute
abundance of a microbe by ‘back-normalization’ which mitigates
the compositionality of microbiome datasets. These methods how-
ever remain under-utilized and largely dependent on the exoge-
neous additive material. Interestingly, recent work describes the
use of a cell-based multi-kingdom spike-in method (MK-
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SpikeSeq) to derive absolute abundance, and applies conventional
mathematical modelling techniques (see Section 2.5) to derive pre-
cise community dynamics of the microbial ecosystem, otherwise
not possible using compositional datasets [22].
1.4. Batch effects and the microbiome

Batch effects represent unwanted variation in data caused by
factors unrelated to the one of interest, for instance variable exper-
iment times, handlers and reagent lots [23]. Such unwanted effects
are endemic in high-throughput methods such as NGS that remain
limited by factors such as sequencer capacity, multiple handlers,
sample collection, storage or bioinformatic pipelines. Correcting
for such effects is imperative, as they otherwise obscure true bio-
logical phenomena, reduce statistical power, reproducibility, gen-
eralizability or even potentially create artefactual effects [23].
Several Batch Effect Correction Algorithms (BECA) exist but their
effectiveness is poorly understood and if inappropriately imple-
mented may lead to loss of biological variation and inflate false
positive and false negative rates [24].

Currently, BECAs for microbiome datasets are under-developed
and largely derived from gene-expression analysis [25,26]. Batch
effects in microbiome data are usually managed by first transform-
ing the dataset using log transformation approaches such as the
Centered Log Ratio (CLR) to account for compositionality and spar-
sity, followed by standard batch correction methods such as Com-
Bat, Batch Mean Centering (BMC) and Surrogate Variable Analysis
(SVA), if their assumptions are satisfied [25]. Specifically, for
case-control microbiome studies, model-free percentile normaliza-
tion methods may be implemented for batch effect correction [26].
Limitations to the currently available microbiome batch correction
strategies include the often erroneous assumption that a data
transformation alone will satisfy the strong assumptions of batch
correction methodologies [25]. Additionally, batch-correcting
datasets with different microbial community proportions and
other imbalances may result in a misestimation of batch-
associated variances [27]. To avoid errors due to misassumptions
of data normality, non-parametric or distribution-free methods
with the ability to accommodate microbiome data characteristics
are required. Ideally, such methods must be both effective and pre-
cise in targeting batch effects while preserving biological variation
[28]. Furthermore, they should be able to cope with batch effects
across microbiome studies without being restricted to one type
of experimental design (e.g., case–control studies for percentile
normalization). Importantly, batch effect-resistant methods such
as Similarity Network Fusion (SNF), which mitigate batch effects
between -omic datasets (including microbiomes) by creating -
omic specific similarity networks prior to merging (see Sec-
tion 2.1.1) will likely become increasingly relevant in future work
and should be considered when developing new analytical
methodologies for microbiome analysis.
2. Emerging computational methods for microbiome analytics

2.1. Integrative analysis

Owing to the rapid progress in NGS, we are now able to identify
a pool of microbes from human specimens and characterise their
taxonomical, functional and resistome profiles [29] (Fig. 1B.
Beyond bacteria, fungi, viruses, and their corresponding bacterio-
phages all represent important components of the human micro-
biome however most work to date has largely focused on
bacteriomes [29]. The key reasons for such bias include a lack of
strong reference databases for the viral and fungal kingdoms but
also a lack of integrative strategies and computational pipelines
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to holistically assess intra-kingdom microbiomes. In addition,
microbes rarely exist in isolation and usually form complex, inter-
active, interkingdom communities that encompass the human
holobiont [8]. Consequently, a holistic integrative ‘multi-biome’
approach is most appropriate to accurately represent the true
physiological in vivo state and gain a greater understanding of
any underlying disease pathology.

The development of integrative microbiome analytics has been
slow and its progress largely dependent on established integrative
-omics methodologies as applied to genomic, transcriptomic, pro-
teomic, epigenomic and metabolomic data [6]. Although micro-
biome datasets are comparable to other omics, the integration of
multi-biome datasets using appropriate analytical methods must
be carefully considered before implementation, as such analyses
may be influenced by artefacts of the ‘omics’ technologies itself.
The following sections discuss multi-omics integration methodolo-
gies that may be applied to microbiome data.

2.1.1. Similarity network Fusion (SNF)
Similarity Network Fusion (SNF) is a network-based multi-omic

data integration method that has been successfully applied to
microbiomes [12]. For each respective omic dataset, SNF first cre-
ates a similarity network using an appropriate measure of similar-
ity. This is next followed by normalization of cross-network
similarity scores for individual datasets before merging to create
an integrated network that can be applied clinically. Integrated ‘pa-
tient networks’ can then be assessed to classify or identify clini-
cally relevant subgroups based holistically on integrated ‘multi-
omic’ data [6]. SNF provides increased cluster robustness and accu-
racy, down-weights ’noise’ and increases statistical power to detect
rarer subgroups from relatively small cohorts. It handles heteroge-
neous and missing data well however has limitations including its
assumption of equal weights (to each integrated dataset) and use
of a single similarity metric to capture what is likely complex bio-
logical phenomena. Several more recent SNF based methods have
been developed to address the various limitations of traditional
SNF [6]. Recent work from our group has developed and applied
weighted Similarity Network Fusion (wSNF), a method that allows
‘weightage’ of each individual dataset used in the integration pro-
cess. We applied wSNF to integrate bacterial, viral and fungal
microbiomes in bronchiectasis which resulted in the identification
of clinically relevant ‘high-risk’ patient groups with increased pre-
cision as compared to use of single kingdom microbiome datasets
[12]. This work serves to underscore the advantage of microbiome
data integration in deriving clinically meaningful insights as
opposed to single kingdom views of the microbiome.

2.1.2. Data integration analysis for Biomarker discovery using latent
cOmponents (DIABLO)

DIABLO is a supervised multi-omics integration strategy devel-
oped as part of the mixOmics framework [30]. This supervised
integrative approach is based on the Generalized Canonical Corre-
lation Analysis that aims to maximize correlations between low-
dimensional projections of the input multi-omics datasets. DIABLO
improves this by accounting for sparsity of the omics’ dataset, a
feature particularly relevant to microbiome data and additionally
supervises these low-dimensional projections to explain categori-
cal outcomes of interest. Specifically, DIABLO employs discrimi-
nant analysis to identify co-expressed or co-related omics
features across datasets that may explain the outcome of interest.
Importantly, DIABLO assumes linearity, provides no information on
causality, and captures only linear relationships which may not
hold true in the context of microbiomes. DIABLO also cannot
account directly for batch effects that arise across included data-
sets due to inherent differences in the experimental platforms
and analytical pipelines used for each respective dataset [31].
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DIABLO has been successfully applied to integrate gut microbiomes
with metabolomics, clinical data and microbial function, and this
increases classification accuracy compared to singular data analy-
sis, serving to further highlight the analytical gains derived from
data integration approaches [32].

2.1.3. Multi-Omics Factor analysis (MOFA)
Multi-Omics Factor Analysis (MOFA) represents an un-

supervised statistical framework for multi-omics data integration
including microbiomes [33]. MOFA can be considered a generaliza-
tion of Principal Component Analysis (PCA) that assesses multiple
omics datasets as the primary input, with the aim to identify com-
mon latent low-dimensional representation of the data. MOFA cap-
tures common variation across the various datasets and highlights
contributions through feature weights. Important limitations of
MOFA include the inability to appropriately capture non-linear
relationships and the assumption of independence between fea-
tures, which in particular may not hold true for microbiomes as
microbes exists in communities [34]. MOFA has been employed
to integrate bacterial, viral, and fungal components of the intesti-
nal microbiome in critically ill patients with and without sepsis,
prior to and following antibiotic exposure. These analyses reveal
a modulation of gut microbiomes that involve interkingdom inter-
actions, where overgrowth of potentially invasive viral and fungal
organisms is driven by changes to the bacteriome [33].

2.2. Machine learning and microbiomes

Machine Learning (ML) is a class of algorithms that mimic
human learning by detecting patterns in data. ML algorithms pre-
dict and make decisions without being explicitly programmed but
instead use the patterns learnt from the ‘‘training data”. The use
and development of ML algorithms is rapidly accelerating with
emerging applications across multiple domains including the prac-
tice of medicine. ML methodologies can be categorized into two
schemes: (1) supervised and (2) unsupervised. Supervised algo-
rithms learn patterns that map the presented input data to the
desired output, given by ‘labelled data’, using a priori identified fea-
tures for classification and/or regression. In contrast, unsupervised
algorithms are only presented with input data and no labelled data,
leaving it to find patterns or discover groups in the input dataset
which includes clustering. Therefore, a general ML workflow
involves (1) data preparation, (2) feature selection, (3) choosing a
ML model, (4) training the model, (5) model evaluation, (6) param-
eter tuning and (7) model testing. As applied to microbiome data-
sets, ML techniques can have far-reaching benefits for host-trait or
disease prediction including risk stratification [35]. The use of ML
methods for microbiome-based prediction and classification has
been investigated in several studies, with some developing their
own framework including DeepMicro, MetaML, Phy-PMFRI, mAML
and PopPhy-CNN [36–39]. Machine learning based models have
been extensively applied to large-scale microbiome studies with
varied applications including the prediction of habitual diet, dis-
ease sub-phenotyping and in the identification of ‘enterotypes’
through clustering and bio-marker identification, for instance link-
ing visceral fat to gut microbial composition [40–42].

2.2.1. DeepMicro
DeepMicro represents a ML framework for microbiome-based

prediction. This framework first represents high-dimensional
microbiome datasets into low-dimensional latent space followed
by implementation of ML models. DeepMicro provides algorithms
for dimension reduction such as principal component analysis
(PCA), random projection and ‘Auto Encoders’: a class of un-
supervised deep learning algorithms capable of learning represen-
tation in terms of latent features and with the potential to capture
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non-linearities [36]. Following this, DeepMicro provides the user
options to implement ML algorithms such Random Forest, Support
Vector Machine and Multi-Layer Perceptron algorithms for predic-
tions based on the learned latent representation of the dataset. This
framework also employs a thorough k-fold cross-validation
scheme for hyper-parameter optimization. It has been established
(using five different diseased microbiome datasets) that DeepMi-
cro outperforms other ML frameworks for disease prediction, while
significantly reducing dimensionality and training time by 8- to
30-fold suggesting value for microbiome analytics [36].

Critically, however, there are at present only few ML-based
microbiome studies that have produced direct clinical translation
[35,43]. There are several reasons to explain this: a lack of quality
data or sufficient sample size, inadvertent fitting of confounders,
lack of generalizable models (i.e. the model does not work beyond
the training data) or explainability (i.e. the model cannot be mined
for clinical insight), an under-representation of healthy individuals
(or non-representativeness in the training set) and heterogeneity
of disease phenotypes (hidden sub-labels are present and may con-
found proper learning), all of which are further complicated by the
compositionality and high dimensionality of the underlying data-
sets. Such limitations may be partially addressed by implementing
appropriate data preparatory steps to account for compositionality,
batch effects and confounders [44,45]. Further, intelligent feature
engineering by combining other techniques such as microbial asso-
ciation networks, mathematical modelling or topological data
analysis all hold promise in providing better resolution and robust-
ness for these ML models. Importantly, there remains an unmet
need for explainable ML models that support researchers under-
standing of the underlying biological phenomenon rather than
the current provision of only accurately predicting disease classes
[46]. Novel and emerging methods including alignment-free (i.e.
taxonomy free) approaches that can be leveraged from metage-
nomic datasets are being increasingly explored and will likely be
a focus of future ML applications in the translational space avoid-
ing the bias of current taxonomy-driven approaches [47,48].

2.3. Microbial association analysis

Most biological conditions cannot be attributed to an individual
organism but rather a specific microbial signature, consisting of
multiple microbes that illustrate the complex underlying ecology
that includes microbial interactions [12,22,33]. Network science
is therefore recognized as an important technique, for the analysis
of complex systems such as that of human microbiomes. Many
fundamental discoveries and applications utilize network theory
at their core. This includes the Google search algorithm, the discov-
ery of emergent phase transition in material science and the inven-
tion of reference models for the internet [49]. In the context of
human microbiomes, network science is used to construct micro-
bial association networks [50]. Increasingly, a significant number
of methods are being developed for improved microbial network
analysis, where microbial clades are represented as nodes and
edges (between them) determine associations [51]. A summary
of several emerging methods for microbial network inference are
detailed below.

2.3.1. Co-occurrence network analysis including renormalization and
bootstrap (CoNet)

CoNet is an ensemble-based network inference algorithm pro-
ducing a weighted undirected graph developed specifically for
microbiome datasets [52]. The algorithm uses multiple similarity
measures such spearman, kendall and pearson correlations, Kull-
back–Leibler divergence and bray-curtis similarity to identify con-
sensus microbial similarity networks. Importantly, spurious
correlations due to compositionality is accounted for by bootstrap-
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ping and renormalization approaches (ReBoot) [53]. The algorithm
is available as a Cytoscape plugin and therefore lends itself to
implementation for individuals familiar with the Cytoscape suite
of functions [52]. CoNet has successfully identified interactions
between microbial species in interstitial fibrosis, and is also among
pathobionts associated with cancer cachexia [54,55]. Implementa-
tion of CoNet with general boosted linear models offers direction-
ality to these microbial associations hinting at causal direction,
however, does not establish accurate causality and/or causative
mechanisms [53].
2.3.2. Sparse inverse covariance estimation for ecological association
inference (SPIEC-EASI)

Spiec-Easi leverages the concept of conditional independence to
identify underlying undirected microbial networks by assuming
sparsity and estimating the invertible covariance matrix. It
employs data transformations developed for compositional data
to account for compositionality. Graph creation can be performed
by two methods: sparse neighbourhood (which creates a graph
node-by-node) and inverse covariance selection (that creates the
entire graph) [56]. Finally, stability-based model selection is con-
ducted to infer optimal sparsity of the derived microbial network
[56]. Spiec-Easi has been successfully applied to identify cross-
kingdom interactions between bacteria and fungi, and to identify
key species and assess the topological properties of microbial asso-
ciation networks in antibiotic treated mice [57,58].
2.3.3. Microbial dynamic systems inference engine (MDSINE)
MDSINE is a suite of algorithms using microbiome time series

data to infer dynamic system models, which in turn, extrapolate
the directed weighted microbial association networks and associ-
ated perturbation effect networks [59]. The algorithm takes in
two inputs: a temporal microbial abundance and temporal micro-
bial biomass represented for instance by universal 16S rRNA quan-
titative PCR. This technique accounts for compositionality by
estimating non-compositional microbial growth concentrations
and their temporal changes using the input datasets. Derived data
is then used to infer the parameters of the dynamic system, such as
generalized Lotka Volterra models (section 2.5.1). These parame-
ters are then used to infer microbial association networks [59].
MDSINE, in murine Clostridium difficile infection models, has been
used to determine causal interactions, microbial dynamics, predict
stable subcommunities, and to identify microbes most crucial to
the integrity of the community under perturbation [59].

Identifying causal relationships between different taxa, includ-
ing those between the microbiome and other -omics, such as
metabolites, remains crucial for understanding the biological
mechanisms underlying host-microbe interactions. Clinical trans-
lation of microbiome analysis therefore requires the biological
mechanisms of interaction between host and microbe to be well
understood, essential to make reliable predictions medically and
to explore appropriate intervention strategies that have a micro-
bial focus. Experimental methods are therefore most optimal,
effective and accurate for establishing such causal relationships
[51]. Nevertheless, network inference methodology that generates
directed networks using longitudinal datasets such as MDSINE, LSA
(Local Similarity Analysis) and TIME (Temporal Insights into Micro-
bial Ecology) can reliably infer causal relationships between taxa
[51]. Furthermore, mathematical modelling techniques (Sec-
tion 2.5) such as genome-scale metabolic modelling along with
flux balance analysis may reveal causal interactions between
microbes and their hosts [60,61]. These techniques coupled to
multi-omics may be used to examine the dynamics of the modelled
system in addition to inferring relationships between taxa and
their omic-features [62–64]. Advanced analytical methods such
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as these may then be used to shortlist for instance key relation-
ships for subsequent experimental validation.

Important limitations of such network analysis however
include dependence of microbial association networks on sampling
resolution, limitations of sequence read analysis and the inability
to distinguish live, dead, or dormant cells, although the latter
may be accounted for by use of RNA sequencing techniques [50].
Concerns with the interpretability of the output networks remain
an important challenge for those using such analysis [50].

2.4. Topological data analysis (TDA) models for microbiomes

Assessment of key microbial taxa is performed by assessing
their interaction with other microbes within a community. Micro-
bial association analysis results in microbial networks of interact-
ing taxa (or nodes). Studying and quantifying these structures
and associated patterns of the network using graph measurements
remains important to identify key components (taxa) of the micro-
bial network. Graph measurements such as degree, stress central-
ity and betweenness centrality have all been used and shown to
have potential clinical translatability and significance [12,65]. In
view of the potential clinical utility observed from studying net-
work structures, the field of computational topology, concerned
with the study of shape and connectivity, holds significant poten-
tial to advance current microbiome analytics.

Topological data analysis (TDA), a widely-used dimensionality
reduction and featurization approach is used to study the ‘‘shape
of data” using models and methods from computational, combina-
torial and algebraic topology [66]. Since high dimensional data
cannot be directly visualized, TDA may be leveraged to infer topo-
logical aspects. TDA methodologies are therefore based on (1) data
representation with topological models, including simplicial com-
plexes and hypergraphs and (2) data characterization with topo-
logical invariants, including Betti number and Euler
characteristics among others. A key feature of TDA is to generalize
graphs and networks to simplicial complexes. Physically, edges in
networks (or graphs) characterize pair-wise interactions, while
complexes, key components of a simplicial complex, characterize
higher-dimensional interactions, such as many-body interactions
(Fig. 1C). Given the success of network theory in its application
to medicine and biology, simplicial complexes and their measures
represent a promising avenue for translational research and clini-
cal application. Another key concept in TDA analysis remains
topological-invariant, which is a topological measurement that is
invariant under continuous deformation. Topological invariant
measures represent the most intrinsic and fundamental properties
of structures. Among all topological invariants, the most commonly
used is the Betti number, which ranks homology groups. Geomet-
rically, dimensionally different Betti numbers represent different
homology generators, including their connected components such
as loops, circles and holes [66]. Persistent homology is therefore a
key model in TDA, providing a bridge between geometry and topol-
ogy, and in study of the ‘‘birth” and ‘‘death” of homology genera-
tors during a filtration process. Mathematically, the persistence
of homology generators encode the geometric information of
structures. TDA may derive new insights and deepen our current
understanding of microbiome data although the only TDA algo-
rithm applied thus far to microbiome research is Mapper, an
approach that aims to uncover and visualize the topological prop-
erties of microbiomes [67–70].

Mapper is a computational method for extracting simple
descriptions of high dimensional datasets in the form of simplicial
complexes. Mapper transforms high-dimensional microbiome pro-
files into simplicial complexes that reflects geometric aspects i.e.,
microbiome variation across samples. Network nodes represent a
set of samples with similar microbiome profiles and links describe
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the intersection of samples between two or more nodes. Mapper
accomplishes this in three distinct steps: (1) dimension reduction,
(2) covering, and (3) clustering. Dimension reduction is performed
by projecting high-dimensional data points (representing micro-
biome profiles) to a low-dimensional space using user-defined
functions called ‘filter’ functions. Filter functions can also be
referred to as ‘lenses’ because the selection of such functions
potentially reveal different aspects of the dataset. For example,
Shannon diversity and Berger-Parker dominance indices act as ‘fil-
ter’ functions that represent the sample based on its taxonomic
diversity and taxonomic dominance as views, which are not neces-
sarily the same. Upon reducing dimension, Mapper divides this
low-dimensional space into several covers of equal size overlap-
ping with one another. Covers in this space capture local neigh-
bourhoods of data, and the overlap connects these
neighbourhoods to capture global structure. Finally, Mapper
implements clustering on the pull-back of each cover, to group
samples with similar microbiome profiles. This step is critical to
retain the original distance information of the high-dimensional
microbiome profile as information concerning original distances
between samples may be potentially lost after dimension reduc-
tion. For example, two samples that are far apart in high-
dimensional space (i.e. dissimilar in microbiome profile) might
be projected as close neighbours in the low-dimensional space
(e.g., due to similar diversity values). The simplicial complex is
then generated such that each node represents a cluster, and a link
is then drawn between nodes if they share common samples
within their clusters.

The adoption of TDA based techniques (such as Mapper) to
microbiome datasets has now led to frameworks such as tmap
which recently illustrates superiority in detecting non-linearities
in data, for instance in enterotype analysis, driver species identifi-
cation, and microbiome-wide association analysis in conjunction
host metadata [70]. Mapper has been successfully used to uncover
state transitions in human gut microbiomes and asthma endotypes
based on microbiome profiles [67–69]. Mapper importantly out-
performs PCA and PCoA in distinguishing patient characteristics
based on microbiome profiles [71].

2.5. Mathematical modelling of the microbiome

Most microbial association analyses can identify significant
dependency between microbes within the microbiome however
such dependencies cannot predict ‘causality’ and a system’s future
behaviour. Despite this, the identification of such dependency may
be used to build dynamic mathematical models of the microbial
community that may be used to assess causality, i.e. the effects
of its different components on one another and make predictions
about its behaviour. In addition, mathematical models are con-
structed based on the understanding and/or assumptions of the
system’s mechanisms, hence, are invaluable in studying a system’s
behaviour to changes in its parameters and/or validating assumed
mechanisms through experimentation. The power of explainabil-
ity; inherent to mathematical models can also be used as a comple-
mentary strategy along with data analysis, that aims to extract
information from data for clinical application. However, thus far,
few studies have attempted to apply such modelling techniques
to microbial communities [62]. Within a mathematical model,
the modelling units themselves represent the most basic interact-
ing entities of the overall system; for instance, taxa (or microbial
species), individual cells, functional guilds, or the overall commu-
nity. The choice of unit dictates model resolution, the subsequent
simulated dynamics and defines the potential frameworks that
may be employed for analysis. These include the following frame-
works: (1) supra-organismal; (2) population-based; (3) heteroge-
nous and/or (4) integrative [62].
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2.5.1. Lotka Volterra models
The commonest modelling approach employed in microbiome

research remains population-based models such as the generalized
Lotka Volterra Models (gLV). These methods study population
dynamics of the modelling units and assumes homogeneity of
internal states across the individual microbes within each popula-
tion. Such pairwise models describe potential relationships
between ‘n’ species (or taxa) using ordinary differential equations
to track their population growth dynamics i.e.:

dsi
dt

¼ si li þ
Xn

j¼1
aijxj

� �
; j ¼ 1; � � � ;n

where si represents species (or taxon) abundance, ‘li’ its growth
rate and ‘aij’ the interaction strength between species (or taxa) ‘i’
and ‘j’. Although this model is widely used and relatively easy to
implement, it (1) requires an absolute quantification of abundance
to account for compositionality, (2) assumes the additive influence
of fitness from pairwise interactions, and (3) does not provide any
understanding of chemical intermediates [72]. Alternative mod-
elling techniques of finer model resolution may partially address
some of these limitations such as mechanistic modelling, that offers
insight into chemical intermediaries between microbes, stochio-
metric modelling which offers mechanistic insight and composi-
tional Lotka-Volterra models, that allows modelling on
compositional data [62,73]. In addition, thermodynamic models,
evolutionary game theory models and integrative modelling strate-
gies may all be potentially useful in clinical microbiomics as they
each integrate various other modelling strategies of different reso-
lutions thereby potentially overcoming the inherent weaknesses
when only a single approach is used [62].

Generalized Lotka Volterra models have been used to predict
gut microbial dynamics in preterm infants accounting for environ-
mental perturbations and revealing microbial blooms [22]. Jones
et al. applied gLV models in antibiotic-induced C. difficile infection
to evaluate microbial dynamics and proposes mathematical
model-motivated experiments [74]. Mathematical modelling tech-
niques including community metabolic modelling have been lever-
aged to derive metabolic networks in the gut and when applied to
type 2 diabetes reveals unique network structures that render a
significant metabolic influence in vivo [75]. To successfully apply
mathematical modelling to microbiome analytics, the appropriate
choice of model to use is key. Selection should be driven by the
intended objective and follow Occam’s razor principle i.e. to use
the simplest credible model given the biological question under
investigation. Such models are characterised by fewest parameters
thereby reducing the complexity of the model structure and hence
the probability of over-fitting. Available tools such as Akiake Infor-
mation Criterion (AIC) and Bayesian Information Criterion (BIC)
can also systematically and quantitatively compare between mod-
els. The mathematical modelling of microbiomes is likely to be an
area of significant development for potential clinical translation
over the coming years as it allows an understanding of microbial
associations under specific conditions, predicts dynamics under
fresh conditions and models the outcomes when microbial com-
munities are controlled to perform clinically advantageous
functions.
3. Summary and outlook

In this review, various emerging mathematical approaches to
microbiome analytics have been outlined while emphasizing their
potential application in clinical translation (Table 1). Each
approach has its strengths however general challenges inherent
to microbiome data need to be acknowledged and addressed
including compositionality and batch effects. While community



Table 1
Table summarizing open-source tools and software available for the methods described in this manuscript.

Method Tools/Softwares available

Compositional Data Analysis ‘compositions’ – a R package [76]
‘propr’ – a R package [77]
‘CoDa Pack’ – a multiplatform standalone software [78]

Similarity Network Fusion (SNF) ‘SNFtool’ – a R package [79]
‘Integrative Microbiomics’ – a webtool for integration of microbiomes [80]

Data Integration Analysis for Biomarker discovery using Latent cOmponents (DIABLO) Part of ‘mixOmics’ – a R package [81]
Multi-Omics Factor Analysis (MOFA) ‘MOFA2’ – a R package [82]
DeepMicro ‘DeepMicro’ – a python package [83]
Co-occurrence network analysis including renormalization and bootstrap (CoNet) ‘CoNet’ – a cytoscape app [84]
Sparse inverse covariance estimation for ecological association inference (SPIEC-EASI) ‘SpeicEasi’ – a R package [85]
Microbial dynamic systems inference engine (MDSINE) ‘mdsine’ – available as standalone and MATLAB library [86]
Mapper ‘Kepler Mapper’ – a python package [87]
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ecological techniques including ordination (Principal Coordinate
Analysis), diversity, dominance analysis and discriminant taxa
analysis such as Indicator species analysis, Similarity Percentages
(SIMPER) and Linear discriminant analysis Effect Size (LEfSe) are
all commonly employed in microbiome research, a clear need for
more advanced models and analytical techniques is now required
to match the complexity and rapid development of available NGS
approaches. Additionally, current microbiome studies are largely
observational and descriptive in nature and there is a clear need
for rigorous mathematical and analytical approaches to attain a
more precise understanding of the role of microbiomes in human
disease. Realizing the underlying biological mechanisms of micro-
bial dynamics, dysbiosis and its interaction with the host is critical
for clinical translatability. Considering this, novel yet rigorous
mathematical approaches will be necessary to meet the demands
to better understand, shortlist ‘causal relationships’ and subse-
quently engineer microbial communities to impact clinical medi-
cine. It is likeliest that a combination of the presented
techniques, applied in an appropriate setting holds significant
potential for clinical translation, however, such analytical
approaches must be validated in rigorous experimental models
to provide confidence in practical applications that may include
the engineering of individual species to manipulate a community
or as microbial biomarkers in specific disease-states.
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