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Abstract

Land surface models (LSM) represent a significant source of uncertainty in pre-
dictions of future climate. Many LSMs are unable to account for differences be-
tween plant carbon assimilation through photosynthesis, and plant carbon expen-
diture through autotrophic respiration and growth, as they do not comprehensively
represent labile non-structural carbohydrate (NSC) stores that allow asynchrony
between assimilation and expenditure to occur. This limits the ability of LSMs
to accurately capture seasonal and inter-annual variation of ecosystem carbon
fluxes in particular during periods of environmental stress.
This thesis discusses the current empirical understanding of NSC, and examines
previous representations of NSC storage and utilisation within LSMs. A simple
model of NSC designed to decouple plant carbon assimilation and expenditure
in LSMs and improve predictions of ecosystem carbon fluxes, is presented. The
model is tested at three scales and under varying climatic conditions. First, in
simulations across the Amazon rainforest, the model decouples respiration and
growth from photosynthesis, resulting in shifts in the seasonal cycle of total car-
bon expenditure. Then at a tropical drought experiment in Caxiuanã, Brazil, the
model allows more accurate predictions of carbon fluxes relative to a LSM that
does not represent NSC. Finally, at a global scale, the model is used to highlight
the potential importance of NSC in predictions of global terrestrial carbon uptake.
The thesis concludes by outlining possible developments for future work.
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Chapter 1

Introduction

1.1 The terrestrial carbon cycle

Forests cover nearly 4000 Mha (UN Food and Agriculture Organization Rome,
2015) of the worlds land surface and represent a significant sink of carbon from
the atmosphere. Between 1990 and 2007, forests sequestered an estimated 2.4
± 0.4 PgC each year (Pan et al., 2011), and since the start of the industrial era
in 1750 have absorbed roughly 25% of total anthropogenic carbon emissions
(IPCC, 2013). However, despite this uptake, and a similar sink into the oceans,
atmospheric CO2 concentrations have seen an approximately 40% increase since
the start of the industrial era (Stocker et al., 2013). Together with changes in the
concentrations of other green house gases such as methane (CH4) and nitrous
oxide (N2O), this change in atmospheric composition has resulted in significant
and observable shifts in the global climate. These shifts may have severe and
irreversible impacts on human society that will present significant challenges and
require long term adaptation from the human population (Stocker et al., 2013).
Understanding how the climate will continue to change in the future, and how the
most extreme impacts can be mitigated against is therefore crucial. The role that
forests play in the climate system is integral to this, and both an understanding of
their behaviour and accurate representations of their interactions with the atmo-
sphere in global climate models (GCMs) are required.

The observed uptake of carbon by terrestrial ecosystems over the industrial pe-
riod is attributed to a stimulation of photosynthesis by increasing atmospheric CO2

(Kimball et al., 1993; Friedlingstein et al., 1995; Amthor, 1995) and a lengthening
of the growing season in northern latitudes associated with changes in temper-
ature (Reichstein et al., 2013). However, whether this sink will continue in the
future is not clear. It has been suggested that CO2 fertilisation of photosynthesis
may saturate as CO2 levels rise further (Cao and Woodward, 1998; Körner, 2006).
Changes in temperature and precipitation patterns, as well as an increase in the
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frequency and severity of extreme disturbance events including droughts, fires,
wind storms and pest outbreaks, all associated with climate change, may also re-
duce carbon uptake and increase forest mortality. This may outweigh the effects
of CO2 fertilisation, even before it saturates, and result in an overall decrease, or
even a reversal of terrestrial carbon uptake in the future. Such a decline would
result in a significant increase in atmospheric CO2 concentrations and an accel-
eration of climate change.

The impact of climate change on forests in the future, and the extent to which
forests will continue to absorb carbon from the atmosphere is uncertain. GCMs
disagree not only on the magnitude of future terrestrial carbon uptake but also the
sign (Cox et al., 2000; Sitch et al., 2008; Hewitt et al., 2016; Arora et al., 2013).
Lovenduski and Bonan (2017) reported a standard deviation of 163PgC in pre-
dictions of the total accumulation (or loss) of carbon in the terrestrial biosphere
by the year 2100 amongst models from the 5th Coupled Model Inter-comparison
Project (CMIP5). For context, this is comparable to the total amount of carbon
estimated to have been absorbed into the land surface (165±70PgC) between
the years 1750 and 2014 (Le Quéré et al., 2015). While some of this uncertainty
stems from the spread of projections that occurs under varying future emission
scenarios, the majority (∼80%) has been attributed to differences in the structure
of the land surface model (LSM) component of GCMs (Lovenduski and Bonan,
2017), which are exacerbated by non-linearity and feedback loops that exist within
the climate system (Friedlingstein et al., 2001). For example, climate induced
losses of forest carbon in the Amazon rainforest, from increased temperatures
and drought stress, may result in significant increases in atmospheric CO2 con-
centrations (Cox et al., 2004). This could accelerate the effects of climate change,
causing further drying and warming across the Amazon and creating a positive
feedback loop that could see large and rapid losses of forest cover and cause
drastic changes to the global climate (Cox et al., 2000; Huntingford et al., 2004).
However, the nature and likelihood of this feedback, referred to as ‘Amazon die-
back’, is uncertain. Small differences in the sensitivity of the Amazon rainforest
to climate change amongst models can be the difference between the continued
absorption of CO2 and this severe die-back scenario. Hence, even small struc-
tural differences in the representation of plant behaviour in LSMs result in large
uncertainty in terrestrial carbon uptake. This uncertainty greatly limits the accu-
racy of future climate predictions (Huntingford et al., 2009) and so it is critical that
realistic and mechanistic representations of plant responses to climate change
are developed and incorporated into LSMs.

Carbon uptake by forests is controlled by the balance between plant photosyn-
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thesis and autotrophic respiration. Like most biochemical reactions, both fluxes
depend on temperature and are typically stimulated by warming. However, differ-
ences in the responses of the two fluxes to temperature may have a significant
impact on the net carbon balance of forests. Sharper increases in respiratory
demands relative to the stimulation of photosynthesis in response to increasing
temperature (Ryan, 1991) may mean that the net carbon uptake by plants is re-
duced if temperature increases with climate change. This mechanism was partly
responsible for the early predictions of Amazon die-back, as it contributed to a
reduction in net carbon uptake below the level required to balance losses from
litter-fall and disturbance (Cox et al., 2004). However, our understanding of these
processes stems largely from observations over the short-term and the behaviour
of photosynthesis and respiration in many GCMs is based upon these instanta-
neous responses to changes in temperature. Observations over the long-term
suggest that significant increases in plant respiration relative to photosynthesis
are not sustainable over long time-scales (Gifford, 1995; Saxe et al., 2001), and
there is an apparent consistency in the ratio of the two fluxes (Waring et al., 1998).
Short term responses of both photosynthesis and respiration are also dependent
on long-term temperature exposure, suggesting that plants have some ability to
acclimate to their environment (Atkin and Tjoelker, 2003; Berry and Bjorkman,
1980). However, the strength of this acclimation capability, in particular with re-
spect to respiration, is unclear and so the resilience of plants to rising temper-
atures is uncertain. This represents a significant uncertainty within predictions
of terrestrial carbon uptake and makes the likelihood of climate-induced tipping
points such as Amazon die-back difficult to determine (Lombardozzi et al., 2015).

A further source of uncertainty is the response of forests to a reduction in wa-
ter availability. Observations show that intense dry periods can reduce vege-
tation productivity and increase plant mortality, particularly in the tropics, over
both short-term (Phillips et al., 2009; Bastos et al., 2018; Luo et al., 2018; Gloor
et al., 2018) and multi-annual time-scales (Rowland et al., 2015; Meir et al., 2018;
Fisher et al., 2007; da Costa et al., 2010; Nepstad et al., 2007). When combined
with the effects of wildfires, insect infestations, and land-use change, drought can
cause tropical regions such as the Amazon basin to shift from a net sink to a net
source of carbon to the atmosphere (Gatti et al., 2014; Liu et al., 2017; Phillips
et al., 2009). What is less clear, however, is how forests will respond to increasing
drought length, severity and frequency. Large scale experimental drought stud-
ies (e.g. Meir et al., 2018) show that the responses of vegetation to drought are
not linear, meaning that our understanding of short-term responses cannot nec-
essarily be extrapolated to long-term ones (Rowland et al., 2018; Metcalfe et al.,
2010). Similarly, the response of forests to individual droughts may change if they
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are subjected to multiple droughts in quick succession (Anderegg et al., 2013,
2015, 2020). Both the frequency and severity of droughts are predicted to in-
crease across large parts of the globe as a result of climate change (Marengo
et al., 2018; Hartmann et al., 2013), but many large scale vegetation models
are currently unable to capture these types of responses correctly (Powell et al.,
2013). It is, therefore, vitally important that the response of forests to drought in
these models is improved, in particular across tropical regions where terrestrial
carbon storage is large (Pan et al., 2011).

1.2 Non-structural carbohydrates: An empirical per-

spective

1.2.1 Buffering supply and demand

Most LSMs assume that the sum of plant growth and respiration is equal to in-
stantaneous photosynthesis (Fatichi et al., 2014). Consequently at any given
time, the total rate of carbon utilisation by respiration and growth, referred to as
plant carbon expenditure (PCE), is equal to the gross rate of carbon accumulation
by photosynthesis, referred to as Gross Primary Productivity (GPP). However, in
reality growth and respiration are not so strictly coupled to photosynthesis and
plants regularly experience periods when the supply of carbon from photosynthe-
sis does not equal the demands of growth and respiration (Körner, 2003; Muller
et al., 2011). This asynchrony between supply and demand is facilitated by re-
serve pools of labile carbon known collectively as non-structural carbohydrates
(NSC) (Fig. 1.1). The NSC pool within a plant accumulates when photosynthe-
sis exceeds carbon demand and is drawn upon to sustain growth and respiration
when they are not supported by instantaneous photosynthetic assimilation (Hart-
mann and Trumbore, 2016; Dietze et al., 2014). NSCs therefore act as a buffer
against changes in productivity, allowing key functional processes to be main-
tained, even when photosynthetic accumulation is low. Deciduous trees, for ex-
ample, experience a much larger demand for carbon than can be supplied through
photosynthesis at the start of leaf flush when a new canopy must be grown. The
capacity of a NSC pool to buffer the impacts of reduced photosynthesis is also
particularly important during periods of environmental stress, which can lead to
reduced GPP over seasonal to multi-annual time-scales. During prolonged pe-
riods of stress, carbon utilisation rates can diverge significantly from photosyn-
thesis (Metcalfe et al., 2010; Doughty et al., 2015a,b) implying that plants rely
heavily on their NSC reserves during these periods. Without simulating NSC
storage LSMs remain unable to capture this asynchrony between GPP and PCE
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and so fail to correctly simulate forest level respiration and growth fluxes.

Figure 1.1: Carbon allocation in most land surface models (LSM) vs. a more
realistic system. Most LSMs use all assimilated carbon in a single timestep so
rate of utilisation (demand) is always equal to rate of photosynthesis (supply). In
reality, plants store labile carbon that allows instantaneous carbon utilisation to
diverge from instantaneous carbon assimilation.

1.2.2 NSC in drought

The ability to sustain respiration and growth when productivity is reduced has an
important role during periods of drought (Doughty et al., 2015b). Under low water
availability the transport of water from roots to other organs can be restricted
by both temporary stomatal closure and/or longer term damage to the xylem
through embolism (Martı́nez-Vilalta et al., 2014; Sperry and Love, 2015; Tyree
and Sperry, 1989). Xylem damage can lead to a drop in hydraulic conductance,
resulting in damage to plant tissue and increased risk of mortality (Rowland et al.,
2015; Anderegg and Anderegg, 2013; McDowell et al., 2008). Plants combat this
threat through control over the aperture of their stomata. Closing the stomata re-
duces water loss through transpiration and lowers the risk of xylem damage and
hydraulic failure. The trade-off to this strategy, however, is a reduction in produc-
tivity caused by a decrease in CO2 diffusion into the leaves. There is evidence
that plant growth may decline much earlier than photosynthesis in response to
drought, as cell turgor needed for cell expansion depends on water availability
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(Muller et al., 2011; Hsiao, 1973; Boyer, 1970). This decrease in carbon demand
from growth may actually result in an accumulation of NSC reserves during the
early stages of drought (Muller et al., 2011). However, as drought length and
water stress increase, the demand for carbon from respiratory processes may
exceed photosynthesis and NSC stores will be drawn upon (Hartmann and Trum-
bore, 2016). The ability of a plant to close its stomata and reduce the risk of
hydraulic failure is therefore reliant on its ability to store and utilise NSC.

In theory, if carbon demand exceeds supply over long periods of drought, NSC
reserves may become exhausted, causing essential elements of plant function to
fail, a process termed ‘carbon starvation’. Exactly what happens to a plant at this
point is not yet clear, and it is still debated whether NSC stores can actually be
fully depleted. It has been suggested, however, that carbon starvation may accel-
erate the effects of hydraulic failure and in some cases, itself lead directly to mor-
tality (Galiano et al., 2011; Adams et al., 2013). McDowell et al. (2008) proposed
a theoretical framework that links drought length and severity to carbon starvation
and hydraulic failure. It was hypothesised that the likelihood of death by hydraulic
failure increases with the intensity (quantified as the relative decrease in water
availability) of drought. In contrast the likelihood that carbon starvation would
lead to mortality was assumed to increase with drought duration, provided that
the intensity of drought is not sufficient to induce hydraulic failure (Fig. 1.2). This
framework has been criticised because of a lack of direct evidence of plants dying
due to exhausted NSC stores (Sala et al., 2010). Trees that die after being subject
to drought over even decadal time-scales have been found to still have significant
stores of NSC after death (Rowland et al., 2015). However, NSC utilisation and
hydraulic failure are tightly linked processes (Mitchell et al., 2013; Adams et al.,
2017; McDowell, 2011), not only because of their shared dependence on stomatal
conductance, but also due to the role that carbohydrates have in processes such
as osmoregulation (Morgan, 1984), phloem transport (Ryan and Asao, 2014) and
potentially in refilling of embolised xylem (Sevanto et al., 2014). The demand
for NSC by these non-metabolic processes may allow carbon starvation to occur
before reserves are completely exhausted (McDowell, 2011). Partial declines in
NSC may also exacerbate the risk of hydraulic failure as plants rely on concentra-
tion gradients of NSC and other compounds to maintain water flow (Signori-Müller
et al., 2021). A reduction in the ability to recover and repair damaged xylem asso-
ciated with depleted (but non-zero) NSC stores, may also increase the likelihood
of mortality by hydraulic failure and explain the observed NSC stores in many de-
ceased trees (McDowell, 2011; Mitchell et al., 2013). The relationship between
carbon starvation and hydraulic failure during drought is clearly complex, and the
role of NSC during drought likely extends beyond a simple buffering of carbon
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supply and demand. Recent developments in modelling plant hydraulics (Men-
cuccini et al., 2019; Eller et al., 2018, 2020; Sperry et al., 2017; Baker et al., 2008)
provide more accurate predictions of stomatal behaviour during drought, however,
these developments must also be accompanied by models of carbon storage in
order to effectively simulate the trade-off between hydraulic damage and produc-
tivity loss. Until such developments are made, predictions of plant mortality and
recovery in response to climate extremes such as drought will remain uncertain.

Figure 1.2: From McDowell et al. (2008): Theoretical relationship between the
duration and intensity of drought, and three hypothesized mechanisms underlying
mortality - carbon starvation, hydraulic failure and biotic attack.

1.3 Modelling non-structural carbohydrates

1.3.1 Satisfying a need for extra carbon

Despite their clear role in forest function, our current understanding of how NSCs
are produced, stored and used remains poor (Hartmann and Trumbore, 2016).
Absolute pool sizes are difficult to quantify (Quentin et al., 2015) and it is not
clear how NSC reserves are distributed and transported between different plant
organs under stress (Martı́nez-Vilalta et al., 2016; Sevanto et al., 2014). It is also
not clear whether NSC storage is the passive result of asynchrony between sup-
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ply and demand as described above, or whether plants also have the capacity to
actively regulate NSC stores at the expense of growth and respiration (Körner,
2003; Palacio et al., 2014; Wiley and Helliker, 2012).

Nonetheless, some representation of NSC is commonly required to achieve re-
alistic predictions of certain plant processes (Dietze et al., 2014). In particular
many LSMs represent some type of labile storage pool that supports leaf flush in
deciduous plants (e.g. a recent version of CLASS-CTEM, Asaadi et al. (2018);
ORCHIDEE, Krinner et al. (2005); CLM5, Lawrence et al. (2018); ED2, Medvigy
et al. (2009)). Without these stores of carbohydrate, leaf growth is often too slow
at the start of leaf-out, resulting in lags between predicted and observed peaks
of leaf area index (LAI). In the original CLASS-CTEM model (Melton and Arora,
2016), for example, GPP at the start of the growing season is based upon a ‘stor-
age LAI’, until the actual LAI is sufficiently large to continue leaf flush. However,
the rate of photosynthesis from this storage LAI is much slower than the reallo-
cation rate of NSC in the updated model, resulting in significantly longer leaf-out
periods (Asaadi et al., 2018). In some models this is the sole purpose of repre-
senting NSC. In ORCHIDEE (Krinner et al., 2005), for example, only deciduous
trees and grasses have NSC pools, and these pools are only drawn down at the
start of the growing season in order to attain reasonable leaf flushing rates. The
role of NSC in evergreen trees is not considered and for the majority of the year,
the NSC pool is dormant in seasonal trees. NSC certainly plays an important role
in the seasonal flushing of leaves in deciduous trees and it is entirely reasonable
to represent NSC in this way to improve simulated phenology. However, the role
of NSC is likely to be equally large throughout the remainder of the year in both
seasonal and evergreen plants, and especially during periods of environmental
stress. LSMs that represent NSC purely for phenological purposes will fail to
capture this role, which may be significant at a global scale.

1.3.2 Respiration and growth: sink versus source

1.3.2.1 Growth

Plant growth, in LSMs that do not represent NSC, is necessarily equal to the dif-
ference between photosynthesis and respiration, referred to as Net Primary Pro-
ductivity (NPP). When respiration exceeds photosynthesis (i.e. NPP<0), growth
rate is therefore negative, and the carbon demand of respiration is satisfied by
plant biomass. However, structural compounds within a plant, such as cellulose
and lignin are generally considered to be permanent, meaning that the carbon
within them cannot be remobilised and used for respiration. Some LSMs rec-
tify this problem by including a NSC pool that supports respiration when NPP is
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negative (e.g. ORCHIDEE, Krinner et al. (2005); JSBACH-CN, Parida (2011)),
allowing structural growth rates to remain positive. In JSBACH-CN, for exam-
ple, when NPP is negative the growth rates of the structural carbon pools are
set to zero and the excess carbon demand is drawn from a NSC pool. Impor-
tantly, however, when NPP is positive, the rate of structural plant growth is still
determined by NPP, as it would be in a LSM that does not simulate NSC. This
dependence of plant growth on carbon assimilation rate has become known as
‘source-limitation’, indicating the control that photosynthesis (the source of car-
bon) has on determining plant growth rates. Yet, it is becoming widely recognised
that plant growth is more commonly limited by other factors such as temperature,
nutrient and water availability, and substrate transfer rates within plants (Körner,
2003; Millard et al., 2007; Körner, 2015; Fatichi et al., 2014). Fatichi et al. (2019)
describes this view, known as ‘sink-limitation’, with an analogy of constructing a
brick wall (Fig. 1.3). The rate at which a wall can be built is unlikely to be ex-
plained entirely by the rate at which bricks are supplied. Other factors such as
the supply of cement, working conditions for the builders, and transport of materi-
als are likely to have equally large contributions. Sink-limitations on plant growth
are rarely represented in LSMs but may have a significant impact on projections
of future carbon uptake by forests (Friend et al., 2019).

Figure 1.3: From (Fatichi et al., 2019): The construction site analogy of carbon (C)
source and sink limitation in plant growth. The build-up of C in a growing plant is
ultimately governed by the provisioning of C (C source; left side of the figure), and
its investment into plant tissues (C sink; right side of the figure). These processes
and the factors driving them can be exemplified with the construction site analogy,
where C, or bricks form the key ingredient. The C source activity is mainly driven
by the availability of light and atmospheric [CO2] (i.e. photosynthesis), or power
and clay (i.e. brick production). Yet, for the C sink activity, where plant tissues
(or buildings) are formed, the provisioning of C (or bricks) becomes only one of
many limiting factors. Apart from C, favourable temperature and water availability,
at least 14 other macro- and micronutrients are required (and hence can limit) the
C sink strength (Körner, 2015).
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Sink and source limitation are often confronted as though they are independent
or contrary frameworks. However, in some sense plant growth must be both
source and sink limited. Over the short-term, changes in environment may pre-
dominantly determine growth, but ultimately plants cannot grow more than they
assimilate over the long-term. In the wall construction analogy, if the supply of
bricks stops, eventually so too will the building of the wall. In order to account for
both types of limitation, LSMs must allow environmental conditions as well as the
availability of nutrients and water to affect growth, but without completely decou-
pling it from photosynthesis. This can be achieved mechanistically by including a
dependence of growth on NSC availability. NSC stores are ultimately determined
by long-term photosynthesis which couples growth to carbon assimilation. If NSC
stores build up, however, the carbon available for growth is much larger than the
amount supplied by instantaneous photosynthesis and so sink-limitations become
more important in determining instantaneous growth rates.

The dependence of growth on NSC is less commonly represented in LSMs, al-
though it is not non-existent. In models such as CLASS-CTEM (Asaadi et al.,
2018), CLM5 (Lawrence et al., 2018) and ED2 (Medvigy et al., 2009), the NSC
pool (or pools) not only supports respiration, but also has a role in determin-
ing plant growth. For example, in CLASS-CTEM (Asaadi et al., 2018), all the
remaining assimilated carbon after respiration has been accounted for (i.e. all
NPP) first enters three NSC pools (one each for leaf, stem and root). Carbon
is then transferred from these pools to structural ones, at a rate determined by
the availability of NSC within the storage pools. This flux of carbon from non-
structural to structural pools is considered equivalent to plant growth, and hence
plant growth in CLASS-CTEM depends on the availability of NSC. However, even
in these models that include a a dependence of growth on NSC, there are rarely
detailed mechanistic descriptions of how external factors like temperature and
water availability affect sink strength (i.e. the demand for NSC by growth) (Fatichi
et al., 2019; Körner, 2015). In CLASS-CTEM while the rate of structural growth
depends on NSC availability, the sink strength is still determined by NPP. This is
likely due to our relatively poor understanding, and lack of mathematical theories
that describe the behaviour of plant carbon sinks (Fatichi et al., 2019; Körner,
2015). Sink strength is particularly hard to measure experimentally, in part due
to the complexity of measuring NSC concentrations as mentioned above. Pho-
tosynthesis, in contrast, is more well understood owing to the easier nature of
measuring leaf gas exchange (Körner, 2015). Recent studies that explore how
components of plant carbon expenditure respond to environmental change (e.g.
Mahmud et al., 2018; Signori-Müller et al., 2021) provide useful insights into the
role of NSC and sink strength in determining plant growth and can guide model
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development. However, currently the structure of many LSMs means that they will
not be compatible with this development (Friend et al., 2019). A simple framework
that will allow new theories to be integrated into LSMs as they are developed is
therefore required.

1.3.2.2 Respiration

A similar argument can be made with respect to the dependence of plant respira-
tion on NSC, but again, few LSMs actually include this dependence. Of the mod-
els mentioned above, in almost all (including ORCHIDEE Krinner et al. (2005);
JSBACH-CN, Parida (2011); CLM5, Lawrence et al. (2018); ED2 Medvigy et al.
(2009)), at least one of the NSC pools has an associated respiration rate that
depends on the available carbohydrate within the pool. There is, therefore, a
component of respiration that depends on NSC in these models, however, the
respiration rates of the other plant components (e.g. structural leaf, stem and
root) do not have this dependence. Yet the role of NSC in determining whole
plant respiration rates, including those of structural components, may be particu-
larly important (Thornley and Cannell, 2000; Cannell and Thornley, 2000). Early
observations that plant carbon use efficiency (CUE: the ratio of NPP to GPP) is
relatively uniform across plant species, size and environmental conditions (War-
ing et al., 1998) indicate a coupling between whole plant respiration and photo-
synthesis. This led many models (reviewed in Collalti and Prentice (2019)) to
adopt a ‘fixed fraction’ framework, in which plant respiration was set proportional
to photosynthesis. However, while CUE may be constant over sufficiently long
time-scales, significant variations have been subsequently observed both tempo-
rally and spatially (Collalti and Prentice, 2019). Over short-term time-scales the
ratio of respiration to photosynthesis (R:P) may change significantly in response
to changes in environment such as temperature (Hansen et al., 2002; Atkin et al.,
2006). The fixed fraction framework is unable to capture these changes (Atkin
et al., 2007) which may be hugely important to long term predictions of global ter-
restrial carbon balance, given the feedbacks and non-linearities that exist within
the climate system (Friedlingstein et al., 2001; Huntingford et al., 2009).

An alternative approach adopted by many LSMs (e.g. JULES, Clark et al. (2011);
ISAM, (Meiyappan et al., 2015); CLM5, Lawrence et al. (2018)) is to decouple
respiration and photosynthesis entirely. Respiration is commonly split into growth
and maintenance components, with growth respiration typically proportional to
biomass synthesis, and maintenance respiration proportional to total plant car-
bon or nitrogen biomass and controlled by temperature (Thornley, 1970; McCree,
1970). This approach allows changes in CUE over the short-term as maintenance
respiration and photosynthesis covary due only to shared sensitivities to changes
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in environment, and a shared dependence on biomass. However, linking mainte-
nance respiration to total plant biomass can lead to unrealistically large respiration
demands as biomass accumulates (Collalti et al., 2020; Thornley, 1970) and does
not take into account the coupling between GPP and respiration that occurs over
the long term (Gifford, 2003). In reality changes in respiration are not controlled
directly by either photosynthesis or biomass, but by recent and long term NSC
stores (Collalti et al., 2020; Cannell and Thornley, 2000; Thornley and Cannell,
2000). Both short term changes in CUE, and its apparent long term consistency
can be explained with a simple substrate based framework (Dewar et al., 1998,
1999). An increase in the R:P ratio can be caused by an increase in tempera-
ture if respiration and photosynthesis have different sensitivities to temperature,
but under the substrate framework, prolonged changes cannot be sustained. Ul-
timately, if respiration increases more than photosynthesis, it is down-regulated
by the eventual decline in NSC. This behaviour is only possible if whole plant
respiration has some dependence on NSC, at least in the limit of small NSC con-
centrations. Without representing this role that NSC has in determining plant
metabolism, as well as supporting it, LSMs may not be able to capture the re-
sponse of plant CUE to changes in climate over both the long and short-term.

1.4 What should we aim for?

Non-structural carbohydrates have an important role within the terrestrial carbon
cycle, playing a significant part in both supporting and regulating plant metabolism.
Storing NSC allows plants to maintain respiration and growth during periods when
carbon assimilation through photosynthesis is reduced, which can occur over sea-
sonal to multi-annual time-scales, and in particular in response to environmental
stress. In addition, they have a potentially significant role in regulating plant water
status and driving the recovery of plants from hydraulic damage, and as a result
are a crucial component of plant responses to drought. However, comprehen-
sive representations of NSC are missing from many LSMs, limiting their ability to
predict the responses of terrestrial ecosystems to future changes in climate. An
improved description of NSC utilisation and transport, and the relationship be-
tween NSC and plant respiration and growth is required in LSMs that will allow
them to accurately capture the response of plant carbon expenditure to changes
in climate (Friend et al., 2019).

Idealised modelling studies provide a theoretical framework that may guide model
development (e.g. Rastetter et al., 1991; Thornley, 1991, 1997), and detailed
mechanistic models that can successfully replicate plant growth and respiration
are possible (e.g. Hemming et al., 2001; Fritts et al., 2000; Salomón et al., 2019).
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However, these studies typically focus on the individual plant or species. A lack of
detailed data at the ecosystem level, means that evaluating the parameters within
these models for a range of species and biomes that covers all plant functional
types (PFT) used in global LSMs is currently difficult (Fatichi et al., 2019; Hart-
mann et al., 2020). It is therefore necessary to develop a parameter-sparse model
than can be calibrated against data sources that can be more effectively collected
and yet captures the essential characteristics of representing a NSC pool. This
will allow new developments to be built into LSMs as our understanding of the
role of NSC within plants evolves.

1.5 Thesis Outline

In this chapter the current understanding of the role of NSC in plant function has
been explored and the current state of NSC representation in large scale ecosys-
tem models has been presented.

The aim of the remainder of this thesis is to present and evaluate a simple rep-
resentation of NSC (The Substrate Utilisation by Growth and Autotrophic Respi-
ration - SUGAR model) that is designed to be integrated into a LSM. The model
is parsimonious yet captures the essential elements of NSC dynamics, with the
dependence of both whole plant respiration and growth on NSC considered.

Chapter 2 outlines the key concepts required to build the model and briefly de-
scribes how the model may be integrated into the Joint UK Land Environment
Simulator (JULES) (Best et al., 2011; Clark et al., 2011) LSM. The model equa-
tions are then presented, and by considering the model under steady-state, the
possibility of evaluating the model parameters using more readily available datasets,
including GPP, NPP and biomass, is explored.

In chapter 3 the ability of plants to buffer growth and respiration against variations
in photosynthesis is examined at a regional scale. The behaviour and applicability
of the SUGAR model to large-scale ecosystem modelling is tested using satellite
data of plant productivity over the Amazon rainforest, to predict plant carbon ex-
penditure over seasonal time-scales.

Chapter 4 investigates the role that NSC plays in buffering growth and respira-
tion against reductions of productivity induced by extreme drought. The SUGAR
model is used to simulate ecosystem carbon fluxes within an Amazonian forest
under both non-stressed and stressed conditions, in conjunction with JULES, us-
ing data from a through-fall exclusion drought experiment in Caxiuanã, Brazil.
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Chapter 5 looks at the role of NSC in predictions of the global terrestrial car-
bon sink. Specifically the variability of net biome productivity (NBP) is explored in
relation to NSC. This study also allows an investigation into the separation of plant
respiration into maintenance and growth components, which is typically done in
most LSMs. The potential for using observed variability of atmospheric CO2 con-
centrations to constrain model parameters within SUGAR is also explored.

Finally, in chapter 6, the main findings from the thesis are summarised, and the
potential questions that result from these findings are presented in order to guide
future research.
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Chapter 2

A simple model of Non-structural
Carbohydrates

2.1 Introduction

Without at least simple representations of non-structural carbohydrate (NSC) stor-
age and utilisation, land surface models (LSM) are unlikely to accurately capture
real world plant growth and respiration fluxes in the future. Despite their impor-
tance, NSC dynamics are missing from many LSMs likely owing to the scarcity of
reliable datasets that show how NSCs are stored, used and transported in plants.
Given our current knowledge and data availability, it is necessary to develop a
parameter-sparse model that can be calibrated against data sources that can be
more effectively collected than NSC data (e.g. growth and respiration data) and
yet capture the essential characteristics of representing a NSC pool (e.g. decou-
pling photosynthesis from growth and respiration). Such an effort will not only
constrain future climate projections but may also be used to stimulate further re-
search that improves our empirical understanding of NSC storage and use.

In this chapter, SUGAR (“Substrate Utilisation by Growth and Autotrophic Res-
piration”), a simple model of NSC storage and utilisation, designed to be coupled
to a dynamic global vegetation model (DGVM) and function as part of a land
surface model (LSM), is presented. The aim of the model is to allow the de-
coupling of plant carbon expenditure (PCE = respiration + growth) and Gross
Primary Productivity (GPP), in order to provide a more accurate representation of
respiration and growth fluxes, in particular in response to environmental stress.
SUGAR may be applicable to a wide range of LSMs, however, it was developed
specifically to be integrated into JULES (The Joint UK Land Environment Simu-
lator, Best et al., 2011; Clark et al., 2011), which is the land surface component
of the UK Met Office Unified Model. Despite this aim, SUGAR is not coupled to
JULES throughout this thesis and all subsequent simulations with SUGAR are
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performed off-line. Nonetheless, before the model equations are presented, a
brief description of the relevant equations in JULES is given to provide context for
how SUGAR is designed to fit within a land surface scheme. SUGAR makes use
of well known equations that represent the dependence of respiration and growth
on temperature and substrate availability. The dependences of growth and respi-
ration on substrate are given by the Michaelis-Menten equation, which is derived
and briefly discussed. Finally, an overview of how the model parameters are
evaluated throughout the remainder of this thesis is given.

2.2 JULES

The Joint UK Land Environment Simulator (JULES) is a processed-based LSM
that is used both as a stand-alone model and as the land surface component
of the UK Met Office weather forecast and climate models, as well as the UK
community Earth System Model (UKESM Sellar et al., 2019). A full description
of JULES is given in Best et al. (2011); Clark et al. (2011), however, some of
the relevant equations within the model are given here to provide context for the
development of a NSC sub-model.

2.2.1 Vegetation structure

JULES represents five plant functional types (PFT), or nine in more recent ver-
sions (Harper et al., 2016), in terms of a grid-box vegetation carbon density, Cv,
and fractional coverage, ν. Vegetation carbon biomass is split into three compo-
nents - leaf, stem and root, which are all related allometrically to the leaf area
index (LAI) of each PFT:

Cv = L+W +R (2.1)

L = σlLAI (2.2)

R = σlLAI (2.3)

W = awlLAI
bwl (2.4)

(2.5)

where σl is specific leaf density (kgCm−2 per unit LAI), and awl and bwl are PFT-
specific parameters.

2.2.2 Respiration and growth

To understand how NSC may be represented in JULES, it is important to un-
derstand how JULES represents plant respiration and growth. Like many LSMs,
since JULES does not represent any form of NSC, the sum of plant growth and
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respiration (PCE) is equal to GPP.

The physiology component of JULES calculates plant respiration, Rp, which is
split into maintenance, Rpm, and growth, Rpg, components:

Rp = Rpm +Rpg (2.6)

Growth respiration is a fixed fraction of the Net Primary Productivity (NPP):

Rpg =
rg

1− rg
(ΠG −Rp) (2.7)

where rg is a constant with a default value of 0.25.

Maintenance respiration is calculated for each plant component (leaf, stem and
root) and depends on nitrogen content and temperature through a dependence on
canopy dark respiration, with leaf maintenance respiration additionally depending
on soil moisture. The nitrogen concentrations in stem and root are assumed to
be fixed multiples (µsl and µrl respectively) of the average leaf nitrogen concen-
tration, which allows total maintenance respiration to be written as:

Rpm = 0.012Rdc

(
β + µsl

S

L
+ µrl

R

L

)
(2.8)

where the the three terms in the brackets represent leaf, stem and root mainte-
nance respiration respectively; the factor of 0.012 converts from (mol CO2m

−2 s−1)
to (kgCm−2 s−1); Rdc is canopy dark respiration; β is a soil moisture stress factor
given by:

β =


1 for θ > θc
θ − θw
θc − θw

for θw < θ ≤ θc

0 for θ ≤ θw

(2.9)

where θc and θw are the soil moisture concentrations below which photosynthesis
drops below it’s maximum (uninhibited) value, and becomes zero respectively

S is respiring stem carbon and is assumed to be a constant fraction of total stem
carbon, W :

S =
1

aws
W (2.10)

Once respiration has been accounted for, the remaining carbon (NPP) is passed
to the vegetation dynamics component (TRIFFID) of JULES. TRIFFID uses NPP
to increase the carbon content and fractional coverage, which together make up
total plant growth. In more recent versions of JULES, the carbon allocated to
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TRIFFID may be limited by available nitrogen (Wiltshire et al., 2021), causing a
reduction in plant growth. However, since JULES does not contain a NSC pool,
the excess carbon that cannot be allocated to growth is added to the respiration
term, meaning that the equalities between growth and NPP, and between GPP
and PCE are maintained. The NPP is allocated between each plant component
so as to maintain the allometric scalings with LAI given in equations (2.2, 2.3,
2.4).

2.2.3 NSC in JULES

Given the allometric scaling between the three plant components (leaf, stem and
root) it may be possible to represent just a single NSC pool that is assumed to be
distributed evenly throughout the grid-box vegetation. Plant biomass should be
separated into structural and non-structural carbon and a new plant growth term
should be defined that represents the conversion of NSC to structural carbon.
Growth respiration can be made equal to a fraction of this new growth term, which
should depend on NSC availability. Similarly a dependence on NSC should be
added to maintenance respiration (Fig. (2.2)).

2.3 Reaction kinetics

In order to model the role of NSC in LSMs it is important to understand how
plant respiration and growth depend on substrate availability. Both respiration and
growth are complex processes that result from the aggregate of many individual
biochemical reactions. Representing these reactions individually is not practical
for modelling plant behaviour at a global, ecosystem or even individual plant scale.
However, several useful equations may be derived by considering the kinetics of
these reactions, that may be used to describe the dependence of the aggregate
process on substrate availability. Qualitatively, both respiration and growth can be
described as simple enzyme reactions in which an input (NSC) is converted into
a product through a reaction catalysed by an enzyme (Thornley and Johnson,
1990).

2.3.1 The Michaeilis-Menten equation

The simplest enzymatic reaction is the single-substrate scheme in which the for-
mation of a product (P) from a substrate (S) is catalysed by an enzyme (E).

E + S
kf

kr
ES

kc E + P (2.11)
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where E, S, ES and P are the enzyme, substrate, intermediate reaction product
and final reaction product respectively; and kf , kr and kc are rate constants for
the forward and reverse reactions of the enzyme-substrate binding, and catalytic
reaction respectively.

Under steady state when the concentration of ES is constant, the rate of ES
production and decay must be equal. If we assume that the rate of each individ-
ual reaction is proportional to the concentrations of the reagents (denoted with
square brackets) then we can write the following expression, equating ES pro-
duction and decay:

kf [E][S] = (kr + kc)[ES] (2.12)

Since the enzyme is conserved in this reaction, we can assume that it’s total
concentration is constant and define:

E0 = [E] + [ES] (2.13)

Rearranging equation (2.13) for [E], and substituting into equation (2.12) gives
the following expression for the steady state concentration of the intermediate
enzyme-substrate complex in terms of the substrate concentration and total en-
zyme concentration:

[ES] =
kfE0[S]

kf [S] + kr + kc
(2.14)

Again assuming that the rate of reactions are linearly proportional to their reagents,
the rate of the catalytic reaction under steady state can be written as:

v = kc[ES] =
kckfE0[S]

kf [S] + kr + kc
(2.15)

This is commonly expressed as:

v = vmax
[S]

Km + [S]
(2.16)

where vmax = kcE0 and Km =
kr + kc
kf

.

This is known as the (single-substrate) Michaelis-Menten equation. It is a good
approximation of the rate of isolated reactions described by equation 2.11, but
is also widely used to approximate more complex processes that are the aggre-
gate of many individual reactions. The Michaelis-Menten equation is commonly
used to represent the substrate dependence of respiration and growth since both
processes rely on enzymes and have a theoretical limiting rate above which addi-
tional carbon substrate does not increase utilisation rate (Thornley and Cannell,
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2000; Thornley and Johnson, 1990; Thornley, 1971).

2.3.2 Analytical solutions to Michaelis-Menten systems

Despite its apparent simplicity, the Michaelis-Menten equation adds a relatively
high level of complexity into even basic carbohydrate models. The most simple
system, for example, is a finite pool of substrate that is utilised at a rate deter-
mined by Michaelis-Menten kinetics. The rate of change of the concentration of
the substrate, [S], in this system is given by:

d[S]

dt
= − vmax[S]

Km + [S]
(2.17)

As a separable ordinary differential equation, this may be solved by integration:∫
[S] +Km

[S]
d[S] =

∫
−vmaxdt (2.18)

This gives:
[S] +Km ln ([S]) = −vmaxt+ C (2.19)

where ln() is the natural logarithm and C is a constant. Assuming as initial condi-
tions that at t = 0 the substrate concentration is given by:

[S](t = 0) = S0 (2.20)

the constant C is found as:

C = S0 +Km ln (S0) (2.21)

Eqn. (2.19) therefore, becomes:

[S] +Km ln([S]) = −vmaxt+ S0 +Km ln(S0) (2.22)

Rearranging gives:
[S]

S0

+
Km

S0

ln

(
[S]

S0

)
= 1− vmaxt

S0

(2.23)

This is a transcendental equation, meaning that an expression for [S](t) cannot
be written in terms of elementary functions. A solution may be given in terms of
the transcendental Lambert W function (Goličnik, 2012), which is the function that
satisfies the equation:

W (x) exp(W (x)) = x (2.24)

However, again this cannot be written as a closed-form expression. The time-
course may still be plotted retrospectively by diagnosing time from an array of
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substrate concentrations (Fig. 2.1). Analytical solutions are not often necessary
in the field of plant or crop modelling and Michaelis-Menten systems like that
given in eqn (2.17) can be solved numerically.

Figure 2.1: The time-course of substrate concentration ([S]) depletion relative to
the initial substrate concentration (S0), via the Michaelis-Menten equation, for four
different Michaelis-Menten constants (Km). The Michaelis-Menten constants are
defined as a fraction of the initial substrate concentration.

2.3.3 Simplifications in the limits of substrate availability

A common simplification to the Michaelis-Menten equation is to consider the lin-
ear part of the function (e.g. Potkay et al., 2021; Dewar, 1993) in the limit that
substrate availability is low relative to the saturation parameter (Km):

vmax[S]

Km + [S]
≈ vmax

Km

[S], for Km >> [S] (2.25)

Linear reaction kinetics may allow analytical solutions to be found, however the
most common justification for using this approach is that it reduces the two pa-
rameters in the Michaelis-Menten equation (vmax, Km) to just one.

Similarly, in the limit that substrate availability is saturated (or the saturation con-
stant, Km, is small), the rate of reaction can be approximated as independent of
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substrate availability. This is known as zero-order reaction kinetics:

vmax[S]

Km + [S]
≈ vmax, for Km << [S] (2.26)

Zero-order kinetics are not used to represent the substrate dependence of growth
and respiration since there is trivially no difference compared to not representing
any substrate dependence. However, it can be useful to consider zero-order reac-
tion kinetics as the saturated limit of Michaelis-Menten kinetics, in order to bridge
the gap between models that simulate substrate availability and those that do
not. For example, it is common in LSMs to represent maintenance respiration
as proportional to plant biomass, Cv. Viewing this instead as zero-order reaction
kinetics in NSC, we can expect the maintenance respiration of a model that in-
cludes NSC dynamics, to behave similarly to one that does not in the limit that
Km << [S].

2.4 The SUGAR Model

The ‘Substrate Utilisation by Growth and Autotrophic Respiration’ (SUGAR) model
simulates a single pool of carbohydrate at the ecosystem scale (Fig. (2.2)) al-
though in theory the model could be applied at multiple scales including the or-
gan and whole plant scale. Sugars and starches are not distinguished meaning
that all carbohydrate is readily available to support respiration and growth. Rep-
resenting just a single pool in this way keeps the model simple and parameter
sparse making integration into an LSM much easier. SUGAR is designed to sit
below the photosynthesis component of a LSM. Assimilated carbon from photo-
synthesis (GPP) is collected by the NSC pool and the total carbon allocated to
respiration and growth is then calculated and taken directly from the NSC pool.
The pool is therefore always active and is constantly depleted by growth and
respiration, and replenished by photosynthesis. Both growth and respiration are
assumed to be single substrate enzyme reactions and depend on NSC content
via the Michaeilis-Menten equation. Respiration and growth both depend on tem-
perature via the standard Q10 function (Ryan, 1991). Carbohydrate content is not
actively regulated by the plants in SUGAR meaning that variations in NSC stores
are the passive result of asynchrony between photosynthesis and PCE caused
by variations in climate.

2.4.1 Non-structural carbohydrate pool

Total plant biomass (Cv) is split into structural carbon (CSC) and NSC (CNSC)

Cv = CSC + CNSC (2.27)
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Figure 2.2: Flow diagrams that demonstrate how SUGAR is designed to change
the model structure of carbon allocation within the Joint UK Land Environment
Simulator (JULES) (Best et al., 2011; Clark et al., 2011)). Arrows represent fluxes
of carbon and black boxes represent carbon pools. (a) A representation of the
current structure of carbon allocation in JULES. Maintenance respiration (Rm) de-
pends on temperature (T), leaf nitrogen (N) and optionally, water availability (θ).
Growth respiration (RG) is equal to a constant fraction of net primary productivity
(ΠN ) which is equal to photosynthesis (ΠG) less total plant respiration (RG +Rm).
Total utilisation of carbon (Rm + RG + ΠN ) is always exactly equal to carbon as-
similation by photosynthesis (ΠG). (b) A representation of how SUGAR would
sit within JULES. Vegetation carbon (Cv) is split into structural carbon (CSC) and
non structural carbohydrate (CNSC). Both maintenance respiration and structural
carbon growth depend on temperature via a Q10 function (FQ), total biomass (Cv)
and non-structural carbohydrate content (CNSC). Growth respiration becomes a
constant fraction of growth instead of a fraction of net primary productivity.
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The NSC mass fraction is then be defined as:

WNSC =
CNSC
Cv

(2.28)

The rate of change of NSC content (CNSC) is given by:

dCNSC
dt

= ΠG −Rp −G (2.29)

where ΠG is canopy GPP, Rp is total plant respiration, and G is plant growth.

Using the definition of net primary productivity (ΠN ):

ΠN = ΠG −Rp

equation (2.29) is written as:

dCNSC
dt

= ΠN −G (2.30)

2.4.2 Growth

Plant growth depends on temperature and NSC availability. The temperature
dependence is assumed to follow a Q10 exponential relationship and the NSC
dependence follows Michaelis-Menten reaction kinetics:

G = G0FQ(T )Cv
CNSC

CNSC +KmCv
(2.31)

where G0 (yr−1) is the maximum specific growth rate at the reference temperature
25 °C, T (°C) is temperature, Cv (kgCm−2) is total structural carbon biomass, Km

is a half saturation constant equal to the NSC mass fraction at which growth rate
is half of its maximum value at the reference temperature, and FQ(T ) is the Q10

temperature dependence given by:

FQ(T ) = q
0.1(T−25)
10 = exp

(
ln (q10)

(T − 25)

10

)
(2.32)

where q10, which is a constant taken to be 2.0 by default.
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2.4.3 Respiration

Plant respiration is split into maintenance and growth components. Growth respi-
ration is calculated as a constant fraction of plant growth:

Rg =
1− Yg
Yg

G (2.33)

where Yg is the growth conversion efficiency, or yield, with a default value of 0.75
(Thornley and Johnson, 1990).

Maintenance respiration has the same temperature and NSC dependence as
plant growth:

Rm = Rm0FQ(T )Cv
CNSC

CNSC +KmCv
(2.34)

where Rm0 (yr−1) is the maximum specific rate of maintenance respiration at the
reference temperature 25°C.

2.4.4 Total carbohydrate utilisation

The total rate of NSC utilisation, U , is defined as the sum of plant respiration and
growth:

U = Rp +G (2.35)

U here is exactly equivalent to PCE and is only denoted differently for conve-
nience and ease of reading. Using this definition, Eq. (2.29) can be written as:

dCNSC
dt

= ΠG − U (2.36)

Since both respiration and growth have the same NSC and temperature depen-
dence, U is given by:

U = φFQ(T )Cv
CNSC

CNSC +KmCv
(2.37)

where φ = Rm0 +
G0

Yg
is the maximum specific rate of utilisation of carbohydrate

at the reference temperature 25°C.

2.5 Parameter estimation

Detailed time-series data of forest level NSC stocks are difficult to collect and are
therefore scarce. This makes parameter evaluation difficult. Below is a discussion
on the evaluation process for each parameter in SUGAR. Some of these param-
eters, for example the q10 parameter, have standard or commonly used values
within the LSM literature, and the validity of their given values is not discussed
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Symbol Description Units
CNSC Non-structural carbohydrate content kgCm−2

CSC Structural carbon biomass kgCm−2

Cv Total vegetation carbon biomass kgCm−2

FQ Q10 temperature function
G Structural plant growth rate kgCm−2 yr−1

Rg Growth respiration kgCm−2 yr−1

Rm Maintenance respiration kgCm−2 yr−1

Rp Total plant respiration kgCm−2 yr−1

T Leaf temperature K
U Total non-structural carbohydrate utilisation rate kgCm−2 yr−1

WNSC Non-structural carbohydrate mass fraction kgC kgC−1

ΠG Gross primary productivity kgCm−2 yr−1

ΠN Net primary productivity kgCm−2 yr−1

Table 2.1: Definition of symbols

here. In these cases only a very brief justification is presented. For the remaining
parameters, with a few assumptions the simplicity of SUGAR can be used to eval-
uate these parameters without the need for detailed NSC data, and instead use
more commonly and readily measured variables. A summary of all parameters is
given in table 2.2.

q10

The q10 parameter represents the factor by which respiration and growth increase
with every 10°C of warming. The exponential Q10 function is commonly used to
describe the temperature dependence of plant metabolism in LSMs with the stan-
dard q10 value of 2.0 (Ryan, 1991)

Yg

The Yg parameter represents the conversion efficiency of plant growth (Thornley
and Johnson, 1990). By default, it is assumed to have a value of 0.75, consis-
tent with previous estimates (Thornley and Johnson, 1990), and the parameters
assumed in other LSMs (e.g. Clark et al., 2011). It is derived in Thornley and
Johnson (1990) and estimated to equal 0.75. Similar parameters are used in
other LSMs (e.g. Clark et al., 2011).

G0 and Rm0

These parameters represent the maximum specific rate of plant growth and main-
tenance respiration respectively, at the reference temperature of 25°C. To evalu-
ate these parameters it is useful to define the parameter α as the ratio of G0 to
φ:

α =
G0

φ
(2.38)

40



Values for φ and α can be found by considering the steady-state behaviour of the
model, which can then be used to determine G0 and Rm0.

φ

The φ parameter represents the maximum specific rate of carbohydrate utilisation
by plant respiration and growth at the reference temperature of 25°C. To estimate
φ, the NSC pool is considered in equilibrium such that the rate of change of the
NSC mass fraction (WNSC) is zero. In reality the NSC mass fraction of a forest
will never be exactly constant and variations in environmental variables will always
cause at least small changes in NSC stocks. However, for a non-stressed forest
it is a good assumption that over a prolonged period, τobs, the NSC mass fraction
will be roughly constant. For example, we can assume that over the course of one
year, a non-stressed forest will use as much carbon as it assimilates and conse-
quently will end the year with roughly the same NSC stock with which it started.
This means that averaging the model over the period τobs, changes in the NSC
pool can be neglected and we can consider the mean model behaviour which is
more easily evaluated.

The rate of change of WNSC is given by:

dWNSC

dt
=

1

Cv

dCNSC
dt

− WNSC

Cv

dCv
dt

(2.39)

Integrating over the period τobs, the left hand side can be set equal to zero:

0 =

∫
τobs

(
1

Cv

dCNSC
dt

−WNSC
1

Cv

dCv
dt

)
dt (2.40)

In the ‘stand-alone’ version of SUGAR where Cv is constant, the second term is
equal to zero, and equation (2.40) becomes:

0 =

∫
τobs

(
1

Cv

dCNSC
dt

)
dt (2.41)

Using the equation for the rate of change of NSC (Eq. (2.36)) this becomes:

0 =

∫
τobs

(
ΠG

Cv
− U

Cv

)
dt (2.42)

Substituting equation (2.37) in place of U and rearranging gives:

φ

∫
τobs

FQ(T )
WNSC

WNSC +Km

dt =

∫
τobs

ΠG

Cv
dt (2.43)
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Dividing equation (2.43) by τobs results in the temporal average of each side over
the observation period.

φ

(
FQ(T )

WNSC

WNSC +Km

)∗
=

(
ΠG

Cv

)∗
(2.44)

where the asterisk denotes a temporal average over the period τobs. I.e. for
variable X:

X∗ =
1

τobs

∫
τobs

Xdt (2.45)

If it is assumed that variations in the NSC pool are small relative to it’s total size,
which is a good assumption for an unstressed forest in steady state, the left hand
side of equation (2.44) can be approximated in terms of the temporal averages of
WNSC and FQ(T ):

φF ∗Q(T )
W ∗
NSC

W ∗
NSC +Km

=

(
ΠG

Cv

)∗
(2.46)

Rearranging, results in the following expression for φ

φ =
W ∗
NSC +Km

F ∗Q(T )W ∗
NSC

(
ΠG

Cv

)∗
(2.47)

Equation (2.5) describes the assumption that given an average long term rate of
photosynthesis (ΠG/Cv), and a long term average NSC mass fraction (W ∗

NSC), a
specific rate of NSC utilisation can be inferred. Evaluating φ, therefore requires
an estimate of average specific GPP, a time series of temperature over the pe-
riod of observation, and an estimate of the average NSC concentration within an
ecosystem. If SUGAR is used at a single site these can be evaluated directly us-
ing GPP, biomass and temperature data where these are available. If these data
are not available then the specific GPP can be approximated as the inverse of the

steady state carbon residency time, τ =
Cv
ΠG

(e.g. Carvalhais et al., 2014), and

the temperature can found using global climatology data over the same period.
The average NSC pool size may be estimated directly using empirical data (e.g.
for tropical forests using Würth et al., 2005).

Throughout the remainder of this thesis SUGAR is driven off-line using grid-box
data of GPP, temperature and biomass. The φ parameter is evaluated in these
simulation by first finding the average specific GPP over an initialisation period
using a subset of the driving data. The average NSC mass fraction is then either
estimated using empirical estimates (e.g. Würth et al., 2005), or is varied as part
of a sensitivity study. It is considered a parameter in these studies and denoted
fNSC . Essentially the φ parameter has been split into two components, the tem-
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perature normalised average specific rate of photosynthesis and the equilibrium
NSC mass fraction, which themselves can be considered separate parameters.

α

To evaluate α, the forest is again considered under steady-state and equation
(2.39) is again temporally averaged over the observation period τobs. This can
then be written as:

0 =

(
ΠG

Cv

)∗
−
(
U

Cv

)∗
(2.48)

Since for the stand-alone verion of SUGAR we are considering Cv to be constant,
this becomes:

Π∗G = U∗ (2.49)

For interest this equation simply describes the assumption that over a prolonged,
steady state period, the average rate of carbon assimilation by photosynthesis is
equal to the average rate of utilisation by respiration and growth.

A similar equation for long term average NPP and growth can be found by rewrit-
ing equation (2.42):

0 =

∫
τobs

(
ΠN

Cv
− G

Cv

)
dt (2.50)

Again dividing by the integration period, τobs, this becomes:

0 =

(
ΠN

Cv

)∗
−
(
G

Cv

)∗
(2.51)

For the stand-alone version this gives:

Π∗N = G∗ (2.52)

Dividing equation (2.52) by equation (2.49) yields:

Π∗N
Π∗G

=
G∗

U∗
(2.53)

Using the definitions of G and U from equations (2.31) and (2.37), and cancelling
terms this becomes:

Π∗N
Π∗G

=
G0

φ
(2.54)

Finally this can be written as
α = CUE∗ (2.55)

where CUE∗ =
Π∗N
Π∗G

, is the time averaged carbon use efficiency of the non-

stressed forest over the period τobs.
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This can be evaluated using data from a single site where available, or using
more general estimates of CUE (e.g. Chambers et al., 2004; Gifford, 1995) if not.
G0 and Rm0 can then be found as:

G0 = αφ (2.56)

and
Rm0 =

(
1− α

Yg

)
φ (2.57)

Km

Finally, the Km parameter, represents the NSC mass fraction (WNSC) at which the
rate of NSC utilisation is half of it’s maximum value at a reference temperature
of 25 °C. It is currently not possible to evaluate Km from empirical data. As
described in section 2.3.2, the saturation effect of the Michaelis-Menten equation
depends on the ratio of Km to substrate concentration. The Km parameter in
SUGAR is therefore expressed as a fraction (aKm) of the equilibrium NSC mass
fraction (fNSC):

Km = aKmfNSC (2.58)

where aKm is a constant. The sensitivity of SUGAR to this parameter is examined
in Jones et al. (2020) within the range aKm ∈ [0.1, 2.0], but is given a default value
of 0.5, as this gives realistic NSC mass fractions (Jones et al., 2020).

2.6 Discussion and Conclusions

Many LSMs, including JULES, are unable to correctly capture plant carbon fluxes
due to a tight coupling between total carbon expenditure and assimilation. SUGAR
is a simple model of NSC storage designed to be integrated into a LSM and break
the direct link between PCE and GPP to provide more mechanistic predictions of
growth and respiration. SUGAR makes use of commonly used equations to de-
scribe the dependence of respiration and growth on temperature and substrate
availability. While simple, the model is parsimonious and may be initialised and
evaluated without the need for detailed NSC data. A more complex NSC model
might distinguish between starch and sugar pools, or represent multiple pools
for each plant organ, and actively control the input or output of NSC into pools
(Martı́nez-Vilalta et al., 2016; Hartmann and Trumbore, 2016). However, such
models would likely require representation of substrate transport between pools.
NSC transport within plants is not currently well understood and evaluating pa-
rameters in these models requires the scaling of detailed NSC data to the level
of trees and forests. Previously the level of uncertainty on such figures has been
up to 400% (Quentin et al., 2015) and as a result, comprehensive NSC data-
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sets, measured through time in response to climatic variations and across enough
biomes to allow all model PFTs to be evaluated are currently not available. Re-
cent advancements in measurement protocols may allow these datasets to be
reliably collected (Landhäusser et al., 2018) in the future and simple representa-
tions like SUGAR may allow more complex processes to be readily incorporated
into LSMs as our understanding of them improves.

In the next chapter, the behaviour of SUGAR and its applicability to large scale
ecosystem modelling will be investigated. SUGAR will be used to simulate plant
carbon expenditure fluxes across the Amazon basin using predicted GPP data
from an ensemble of LSMs and constrained with observations. The sensitivity of
the model to the fNSC parameter will be investigated in these simulations allowing
the transition from modelling without, to modelling with NSC to be examined.
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Chapter 3

The role of non-structural
carbohydrates in the seasonality of
ecosystem carbon fluxes across the
Amazon rainforest.

3.1 Introduction

The Amazon rainforest is the world’s largest tropical forest, storing between 69
and 102 PgC (Saatchi et al., 2007), and has a large influence on both local and
global climate. Sequestering an average 0.42-0.65 PgC yr−1 between the years
1990 and 2007 (Pan et al., 2011), the Amazon has represented a significant
sink of atmospheric CO2 in the recent past, and is an important mitigating fac-
tor against human-induced climate change. However, sensitivity of the forest to
changes in climate, combined with the effects of fire and land use change, may
mean that the Amazon sink does not persist in the future (Davidson et al., 2012;
Brienen et al., 2015). Decreasing water-availability and increasing temperature
both have the potential to reduce or even reverse the flux of carbon from the at-
mosphere into the forest (Gatti et al., 2014; Liu et al., 2017; Phillips et al., 2009).
Understanding how changes in the climate influence carbon fluxes in the Ama-
zon, and successfully representing these interactions in global climate models
(GCM) is crucial to making accurate predictions of global climate in the future.

The largest axis of climate variability faced by Amazonian forests in the present
day is the seasonal variation of precipitation, temperature and day length, which
result in significant annual cycles of plant carbon fluxes including Gross Primary
Production (GPP), plant respiration (Rp) and Net Primary Productivity (NPP). If
models are to accurately predict the response of forests to future changes in cli-
mate, they must also be able to capture the response to these seasonal changes.
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Yet, the seasonal cycle of carbon fluxes in the Amazon is often poorly represented
in modern land surface models (LSM) (Restrepo-Coupe et al., 2016), with signifi-
cant discrepancies between observations and model predictions of GPP, Rp and
NPP (Harper et al., 2016). Important processes within the Amazon are there-
fore either missing or poorly represented in models and further development is
required if accurate predictions of seasonal and future responses to climate are
to be made.

There has been a large focus on modelled GPP as an area in need of improve-
ment, in particular its response to water availability (Rogers et al., 2017). The
importance of GPP should not be understated and as the gross flux of carbon
into the ecosystem, it has a large impact on the net sink of carbon into the Ama-
zon. Of equal importance, however, is what happens to carbon once it has been
assimilated through photosynthesis. Even with a perfect representation of sea-
sonal GPP, many models would be unlikely to capture the correct seasonal cycles
of plant respiration and growth. Over long time-scales, the sum of respiration and
growth, referred to as plant carbon expenditure (PCE), is approximately equal to
GPP. However, over shorter time-scales these fluxes may diverge, with seem-
ingly little correlation between carbon assimilation and utilisation (Doughty et al.,
2015a; Restrepo-Coupe et al., 2016; Körner, 2003). Differences between car-
bon expenditure and assimilation may be driven by active optimisation by plants
that allow the growing season to occur at the most ecologically beneficial time
(Doughty et al., 2015a), or passively due to differences in the response of plant
metabolism and photosynthesis to external controls, such as light, nutrient and
water availability, and temperature (Fatichi et al., 2014; Wagner et al., 2012,
2016). In either case, this asynchrony between carbon assimilation and carbon
expenditure must be supported by labile non-structural carbohydrates (NSC) that
can deplete when demand exceeds supply and accumulate when supply is in
excess. Without at least simple representations of NSC, models will remain inca-
pable of capturing the seasonality of respiration and growth, even if photosynthe-
sis is represented perfectly.

In this chapter the impact of NSC on the seasonal cycle of PCE is examined
relative to GPP across the Amazon. SUGAR is run off-line to simulate PCE
fluxes across the Amazon basin, using GPP data from an ensemble of LSMs,
constrained by global fluorescence measurements from the Greenhouse Gases
Observing SATellite (GOSAT) (Parazoo et al., 2014) as driving data. The sensitiv-
ity of the model to initialised NSC content within a reasonable range of possible
pool sizes, and the changes the model makes to predictions of ecosystem carbon
expenditure are assessed. The seasonality of predicted PCE is compared to that
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of GPP and the drivers of PCE are examined.

3.2 Methods

To demonstrate how the introduction of a carbohydrate pool influences predic-
tions of PCE, SUGAR was used to conduct a series of simulations over a six
and a half year period from June 2009 to December 2015 across the Amazon
basin. The model was driven with monthly GPP and temperature data and was
initialised using estimates of grid-box biomass (described below). To examine the
transition from modelling without, to modelling with NSC, a sensitivity study was
conducted on the size of the NSC pool within SUGAR. This was done by varying
the fNSC parameter between simulations, within the range 0.0005-0.16. As fNSC
represents the initial fraction of the biomass pool that is NSC, a value of 0.0005
effectively represents a model without NSC1, while the upper bound of 0.16 is
two times a realistic estimate of the ecosystem NSC content in a tropical forest in
Panama (Würth et al., 2005), representing an extreme upper limit on the effects of
NSC. The range is, therefore, likely to include a realistic estimate of NSC content
within the Amazon basin. Finally, the seasonality of predicted PCE is compared
to that of observed leaf production, which itself is a component of PCE, at two
sites within the Amazon (Wu et al., 2016).

3.2.1 Driving Data

3.2.1.1 GPP

Monthly GPP data was provided by a dataset inferred from the combination of
satellite observations and vegetation models (Parazoo et al., 2014). This dataset
(henceforth referred to as GOSAT GPP) uses observations of solar-induced chloro-
phyll fluorescence (SIF) from the Greenhouse Gases Observing SATellite (GOSAT)
to constrain the output of an ensemble of eight Dynamic Global Vegetation Mod-
els (DGVM) from the TRENDY model consortium (Sitch et al., 2015). SIF is
light re-emitted from leaf chlorophyll during photosynthesis, and global SIF ob-
servations from GOSAT have been shown to correlate strongly with GPP derived
from flux measurements at a global scale (Frankenberg et al., 2011). Combining
these observations with model output, Parazoo et al. (2014) were able to con-
strain seasonal and spatial variability in GPP and reduce model uncertainty by up
to 40-70% in highly productive regions such as the Amazon, within the TRENDY
model ensemble. Using this dataset in place of a single model, or even the orig-
inal TRENDY ensemble output allows the effect of the NSC pool to be examined

1Since the NSC turnover rate is inversely related to the pool size, it is not possible to set fNSC

equal to zero since this results in an undefined turnover rate, so a value of 0.0005 is used.
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with a reduced influence of uncertainty or deficiencies in input GPP which can be
considerable (Sitch et al., 2015).

3.2.1.2 Temperature

Driving temperature was given by ‘temperature at 2m’ from the CRU JRA dataset
(Harris, 2019) - based on the Japanese 55-year Reanalysis (JRA-55) dataset
(Kobayashi et al., 2015) combined with data from the Climate Research Unit
(CRU). The CRU-JRA data was re-gridded to match the spatial and temporal res-
olutions of the GOSAT GPP data. This data was used to drive the temperature
dependence of growth and respiration in SUGAR.

3.2.1.3 Biomass

The total biomass (Cv) in each grid-box was assumed to be constant. This was a
reasonable assumption given the relatively short length of the simulations. Esti-
mates for grid-box biomass were taken from a pan-tropical above-ground biomass
(AGB) dataset (Avitabile et al., 2016) which was re-gridded to the spatial resolu-
tion of the GOSAT GPP dataset.

3.2.1.4 Amazon basin

To isolate the Amazon basin region, all driving datasets were masked using the
regions defined in Lavell et al. (2012) (SREX regions, Fig. 3.1), leaving only
region seven to be used within the simulations.

Figure 3.1: Regions defined by the Special Report on Managing the Risks of
Extreme Events and Disasters to Advance Climate Change Adaptation (SREX).
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3.2.2 Simulation set-up

The mean GPP over the first year of the simulation period was used with the
AGB data to calculate vegetation carbon turnover time (τ ) in each grid box. This
was then used together with the time averaged Q10 function of the first year of
driving temperature to evaluate the φ parameter in SUGAR for each grid-box. The
parameters Yg, aKm and q10 were kept at their default values. NPP data required to
evaluate α was not available and so predicted PCE was not split into respiration
and growth components. Each simulation was initialised with a different value
of fNSC and then spun-up to equilibrium using a 12-year repeated loop of the
parametrisation year data (i.e. the first year of the simulation period).

3.2.3 Evaluation

To assess the effect that SUGAR has on predictions of PCE, a basin wide average
PCE flux was compared to the basin average GPP for each pool size. An aver-
age seasonal cycle over the simulation period of GPP and PCE for each value of
fNSC was calculated at both a basin average and individual grid-box scale. Both
the coefficient of variation and average seasonal cycle of predicted PCE were
calculated for each grid-box and compared to those of GPP, in order to assess
the effect of carbohydrate on seasonal variability of PCE. It is important to note
that in models that do not simulate NSC storage, GPP and PCE are equivalent.
This means that these comparisons not only show differences between PCE and
GPP in SUGAR, but also potential differences in the prediction of PCE between
SUGAR and models that do not simulate NSC. The drivers of variability of pre-
dicted PCE were also evaluated. The two possible drivers of PCE in SUGAR are
carbon availability from the NSC pool which is itself driven by the carbon input
from GPP, and temperature via the Q10 function. Therefore, the Pearson correla-
tion coefficients of simulated PCE and driving GPP, and PCE and the Q10 function
were calculated in each grid cell for each value of fNSC . A strong correlation be-
tween predicted PCE and either variable was interpreted to mean that the variable
was a strong driver of variability in PCE.

Finally, the seasonality of predicted PCE was compared to that of observed leaf
production at two Amazonian evergreen forests (Wu et al., 2016). The first site
(henceforth referred to as K67) is located in the Tapajós National forest near San-
tarém, Brazil (2.85°S, 54.97°W). The second site (henceforth referred to as K34)
is located in the Reserva Cuieiras near Manaus, Brazil (2.61°S, 60.21°W) (Fig.
3.2). Wu et al. (2016) estimated an average seasonal cycle of leaf production
rates at each site using litter-fall and camera-based leaf area index (LAI) obser-
vations at both sites. These were compared to the average seasonal cycle of
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simulated PCE in the two grid-boxes containing each site.

Figure 3.2: Location of two sites in the Amazon Basin at which observations of
leaf production rates have been derived (Wu et al., 2016)

3.3 Results

Predictions of basin average PCE showed a significant sensitivity to the size of
the initialised NSC pool (fNSC). In the simulations with fNSC = 0.0005, roughly
equivalent to a model that does not represent NSC, the rate of predicted basin
average PCE was almost exactly equivalent to the rate of basin average GPP
from the GOSAT driving dataset (Fig. 3.3). However, as the fNSC parameter was
increased between simulations, the NSC pool in SUGAR caused predicted PCE
to decouple from GPP, with significant differences between the two fluxes occur-
ring in the simulations with the largest fNSC values over the six and a half year
period (Fig. 3.3).

The decoupling between predicted PCE and GPP was reflected in the average
seasonal cycle of each flux, and SUGAR altered both the seasonal phase and
amplitude of predicted seasonal PCE relative to GPP. On average the seasonal
peak in the basin average GPP from GOSAT occurred in January (Fig. 3.4). In
the simulations with fNSC = 0.0005 this was mirrored in the average seasonal
cycle of predicted PCE. However, as fNSC was increased the mean peak in basin
PCE was both dampened in magnitude and shifted in time. In the simulations
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with fNSC = 0.08, representative of a realistic estimate of ecosystem NSC con-
tent (Würth et al., 2005), the mean seasonal peak in predicted basin average
PCE no longer corresponded with the peak in basin average GPP in January,
but occurred one month later in February. Additionally a second peak of com-
parable size occurred in August, one month after the seasonal minimum of GPP
(Fig. 3.4). When the NSC pool was doubled to fNSC = 0.16, this second peak
(in August) became larger on average resulting in a 7 month difference between
average seasonal peaks in PCE and GPP within the same year.

The decrease in the seasonal amplitude of predicted PCE with increasing fNSC

resulted in a decline in it’s seasonal variability across the Amazon basin (Fig.
3.5). The coefficient of variation of the basin average GPP data was 9.51% with
a maximum individual grid-box coefficient of variation of 40.9%, and a minimum
of 7.47% (Fig. 3.5). When SUGAR was initialised with fNSC = 0.0005, the co-
efficient of variation of the basin averaged PCE was similar at 9.12% (grid-box
bounds: 6.57 – 37.4%, Fig. 3.5). As fNSC increased the coefficient of variation
decreased sharply across all grid boxes. At fNSC = 0.04, the coefficient of varia-
tion across the Amazon was 3.73% with a minimum individual grid-box value of
3.59%, and a maximum value of 29.8% (Fig. 3.5). The dampening effect started
to saturate at larger values of fNSC and the coefficient of variation of simulated
PCE decreased more slowly with increasing fNSC from this point. At fNSC = 0.08,
the coefficient of variation of PCE across the Amazon was 3.54% (bounds: 3.78
– 25.1%, Fig. 3.5). Finally at fNSC = 0.16 the coefficient of variation of simulated
basin PCE was 3.63% (grid-box bounds: 3.74 - 22.9%, Fig. 3.5).

The dampening of predicted seasonal PCE caused by SUGAR occurred across
all grid-boxes but was not uniform in its magnitude, and increasing the effective
size of the NSC pool also reduced the spatial variation in the seasonality of PCE
across Amazonia. Relative to the wetter northern Amazon, the more seasonally
dry southern Amazon experiences far greater seasonal variation in GPP. This pat-
tern was mirrored in the seasonal variation of simulated PCE (Fig. 3.5), however,
with more NSC in the model the difference between PCE seasonality in the north
and south declined, due to a larger decrease in seasonal variation of PCE in the
southern regions. This was caused by an increase in dry season carbon expen-
diture when GPP was low, and a decrease in the wet season carbon expenditure
when GPP was at a seasonal peak.

Alongside the decoupling between GPP and PCE, there was also a shift in the
primary driver of simulated PCE. In the approximately 0% NSC mass fraction
simulation (fNSC = 0.0005), the Pearson Correlation coefficient between GPP
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(a)
GPP

(b)
fNSC = 0.01

(c)
fNSC = 0.02

(d)
fNSC = 0.04

(e)
fNSC = 0.08

(f)
fNSC = 0.16

5 10 15 20 25 30 35 40
Coefficient of Variation (%)

Figure 3.5: The coefficient of variation of (a) Gross Primary Productivity (GPP)
(Parazoo et al., 2014) and (b-f) simulated Plant Carbon Expenditure (PCE) for
different initialised carbohydrate content as a fraction of grid-box Biomass (fNSC).

and predicted PCE was 0.980 on average across the Amazon, with a minimum
individual grid-box value of 0.939, and a maximum value of 1.00 (Fig. 3.6). As
fNSC increased, the correlation between GPP and PCE declined (Fig. 3.6). In
the 8% NSC mass fraction simulations (fNSC = 0.08), the Pearson Correlation
coefficient had an average value across the Amazon of 0.181, with a minimum
individual grid-box value of -0.501, and a maximum of 0.997 (Fig. 3.6). This de-
cline in the correlation between GPP and PCE not only indicates the decoupling
between the two fluxes but also the declining influence of GPP on the rate of PCE
in SUGAR as the NSC pool is increased. In contrast the Pearson Correlation
coefficient between predicted PCE and the Q10 function (Eq. (2.32)) in SUGAR
increased across the Amazon with increasing fNSC (Fig. 3.7). In the simula-
tions with fNSC = 0.0005, there was little correlation between PCE and the Q10

function with an average Pearson Correlation coefficient of -0.0485 across the
Amazon, with minimum and maximum individual grid-box values of -0.651 and
0.517 respectively (Fig. 3.7). In the simulations with fNSC = 0.08, the Pearson
Correlation coefficient had increased to an average value of 0.637, with minimum
and maximum grid-box values of -0.456 and 0.956 respectively. This increase
demonstrates the increase in the control of temperature over predictions of PCE
via the Q10 function, and a shift in the primary driver of PCE from being GPP in
the simulations with small NSC pool sizes, to the Q10 function in the simulations
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fNSC = 0.0005 fNSC = 0.01 fNSC = 0.02

fNSC = 0.04 fNSC = 0.08 fNSC = 0.16

0.4 0.2 0.0 0.2 0.4 0.6 0.8
Pearson Correlation coefficient of PCE and GPP

Figure 3.6: The Pearson correlation coefficient of simulated plant carbon expen-
diture (PCE) and driving gross primary productivity (GPP) for different initialised
carbohydrate contents as a fraction (fNSC) of grid-box biomass. This gives an
indication of how important a driver GPP is for PCE in each grid-box.

with large NSC pool sizes.

3.4 Discussion

SUGAR alters the relationship between photosynthesis and plant carbon expendi-
ture. In the absence of labile carbohydrate, these two fluxes are necessarily equal
as the only source of carbon for respiration and growth is instantaneous assimi-
late from photosynthesis. This means that in models that lack any representation
of NSC, PCE and GPP are always equivalent. With little or no carbohydrate, car-
bon expenditure in SUGAR is driven predominantly by the rate of photosynthesis,
and the fluxes are equivalent (Fig. 3.3). Carbon is used by the ecosystem as soon
as it is assimilated, meaning that the rate of expenditure is highly correlated with
the rate of photosynthesis (Fig 3.7). This dependence of PCE on photosynthe-
sis is often described as ‘source-limitation’, or ‘source driven carbon dynamics’
indicating the predominant role that photosynthesis (the source of carbon) has
in determining the carbon balance of the ecosystem. Source-limitation is at the
heart of many LSMs, likely owing to the relatively easy nature of measuring plant
photosynthesis, compared to the complexity of measuring internal carbon alloca-
tion processes (Fatichi et al., 2019; Körner, 2015). Over long time scales (e.g.
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fNSC = 0.0005 fNSC = 0.01 fNSC = 0.02

fNSC = 0.04 fNSC = 0.08 fNSC = 0.16

0.6 0.4 0.2 0.0 0.2 0.4 0.6 0.8
Pearson Correlation coefficient of PCE and FQ(T)

Figure 3.7: The Pearson correlation coefficient of simulated plant carbon expen-
diture (PCE) and driving Q10 (FQ) for different initialised carbohydrate contents as
a fraction (fNSC) of grid-box biomass. This gives an indication of how important a
driver the Q10 function is for PCE in each grid-box.

> 1 year) the equality between PCE and GPP may hold, and the total amount
of carbon assimilated through photosynthesis will be approximately the same as
the total amount expended by respiration and growth (PCE). However, on shorter
time scales (e.g. seasonal or diurnal time scales) PCE and GPP can diverge
significantly with carbon being expended either when physiologically needed or
when environmental conditions allow; and not simply when it is made available
through photosynthesis (Doughty et al., 2015a; Restrepo-Coupe et al., 2016).

Increasing evidence suggests that components of PCE, in particular plant growth,
are often more strongly limited by the rate at which they can use carbon, referred
to as their ‘sink strength’, rather than the rate at which carbon is supplied (Fatichi
et al., 2014; Körner, 2003; Wiley and Helliker, 2012; Palacio et al., 2014). Lim-
itation by sink-strength, or ‘sink-limitation’, means that PCE is more commonly
driven by environmental factors, such as temperature and water availability, than
it is by photosynthesis. This can result in differences between GPP and PCE both
through time and across space, as the two fluxes respond differently to tempo-
ral variations and spatial gradients in climate. Sink-limitation is only possible if
theses differences between photosynthesis and carbon expenditure can be sup-
ported by labile NSC pools. In SUGAR we see a transition from source to sink-
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limitation by adding more carbohydrate to the ecosystem. As the fNSC parameter
was increased, PCE in SUGAR became less carbon limited (Fig 3.6) and more
controlled by the Q10 that controls its response to temperature (Fig 3.7). This
allowed PCE and GPP to diverge over the seasonal time-scale and across spa-
tial gradients. In the simulations with the largest fNSC values, this resulted in a
significant change in the seasonality of predicted PCE (Fig. 3.3), and the spatial
patterns of PCE variability across the Amazon (Fig. 3.5).

At the basin scale, the average seasonal cycle of predicted PCE in SUGAR ex-
ceeded that of the driving GPP, for five months between May and September,
when the model was initialised with fNSC values of 0.04 and above (Fig. 3.4). In
addition, there was a significant shift in the average seasonal peak of PCE rela-
tive to GPP, with peak carbon expenditure moving from January, when GPP was
also at its seasonal maximum, to August, only a month after the seasonal mini-
mum of GPP (Fig. 3.4). This shift from January to August was fully realised in
the simulations with the largest initialised NSC pool, although it is difficult to draw
much significance from this simulation since the initialised carbohydrate pool was
twice that of a realistic estimate. However, it aptly demonstrates the upper bound
of the transition of predicted PCE with increasing NSC. Similar asynchrony be-
tween PCE and GPP has been observed across the Amazon. Doughty et al.
(2015a) found that PCE exceeded GPP for at least four months of the year at two
sites within the Amazon. In Caxiuanã, Brazil PCE exceeded GPP between April
and August, while in Tambopata, Peru this occurred between August and Novem-
ber (Doughty et al., 2015a). While these differences occur over short time-scales,
they may be significant over the long-term, in particular if the asynchrony is driven
by extreme stress events such as drought (Martı́nez-Vilalta et al., 2016; Adams
et al., 2013; Galiano et al., 2011). Maintaining PCE during periods of reduced
GPP is a key part of plant survival as many components of PCE are integral to
plant function. Developing simple representations of NSC such as SUGAR, that
allow PCE to decouple from GPP in LSMs, is therefore vital for improving the ac-
curacy of future projections of the Amazon.

Capturing the correct seasonality of PCE is of course key to accurately simulating
growth and respiration fluxes, but may also be crucial for predicting the season-
ality of photosynthesis. Wu et al. (2016) found that the variability of climate alone
was insufficient to fully explain the seasonality of photosynthesis at various sites
across the Amazon. The timing of peaks in LAI, as well as the age and quality
of leaves were found to be primary drivers of GPP over seasonal time-scales.
The rate of leaf production, as well as the rate of leaf senescence, are therefore
key variables in predicting plant productivity across the Amazon, and this creates
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an important feedback between carbon expenditure and productivity. At two of
the sites (K34 and K67) observed by Wu et al. (2016), leaf production peaked
in the dry season, several months before the peak in observed GPP (Figs 3.9 &
3.10). This pattern may be a sign of active strategies by plants that aim to opti-
mise carbon gain from photosynthesis given the seasonality of light, temperature
and precipitation (Kikuzawa, 1995), and these strategies likely rely on significant
stores of NSC within plants as well as subsoil water reserves (Elliott et al., 2006;
Nepstad et al., 1994).

Interestingly the peak in leaf production observed by Wu et al. (2016) is matched
by the predicted peak of PCE in SUGAR in the corresponding grid-boxes of each
site, for realistic estimates of fNSC (Figs 3.9 & 3.10). The comparison of a single
component of carbon expenditure to total PCE must be done with caution, as the
proportions of total PCE allocated to each process within a plant can vary signifi-
cantly throughout a year, particularly in response to changes in water-availability
(Chaves et al., 2002; Doughty et al., 2015a). The seasonality of total PCE may
therefore differ greatly from that of a single component such as leaf production.
Nonetheless, the agreement between SUGAR and these observations may pro-
vide insight into the drivers for leaf growth across the Amazon. The timing of peak
leaf production rates is attributed to an optimisation strategy that maximises pho-
tosynthetic carbon gains. However, it seems likely that there are still one or more
environmental indicators that trigger this increased leaf production and allow the
optimisation to occur. In the SUGAR simulations with fNSC values above 0.04,
the primary driver of PCE was temperature via the Q10 function. It is possible that
changing temperatures also signal the increase in leaf production seen at the K34
and K67 sites. However, the seasonality of insolation has previously been found
as a predominant driver of leaf production in non-water-limited forests across the
Amazon (Wagner et al., 2017), and given the strong correlation between incoming
solar radiation and maximum air temperature (Wagner et al., 2017), it is also pos-
sible that the temperature response in SUGAR is acting as a proxy for incoming
light radiation. A better understanding of the physiological mechanisms behind
leaf growth is required to correctly represent the environmental drivers of both
PCE and GPP.

As well as changing the timing (or phase) of the peak of PCE, SUGAR also al-
tered its seasonal amplitude, reducing the overall variability of PCE across the
Amazon. This effect was most pronounced in the semi-arid regions of the south-
ern Amazon where there is a strong seasonal cycle in GPP (Fig. 3.8), corre-
sponding to a strong seasonal pattern of precipitation. Semi-arid regions provide
the largest contribution to the global carbon sink anomaly, in part due to this high
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variability in GPP (Poulter et al., 2014; Ahlström et al., 2015). Yet variability in
terrestrial carbon uptake is not only determined by the variability of GPP but also
by that of plant respiration, heterotrophic respiration from soils and carbon loss
from disturbance and land-use change. The seasonality of GPP varies signifi-
cantly across the Amazon as ecosystems span climatic gradients (Wagner et al.,
2016). However spatial patterns of respiration and growth may differ greatly due
to their contrasting responses to these gradients relative to photosynthesis (Liu
et al., 2017; Girardin et al., 2016; Doughty et al., 2015a). Capturing the difference
between GPP and PCE spatially as well as temporally is therefore crucial to mod-
elling the variability of terrestrial carbon uptake and representing the contribution
of semi-arid regions to the global carbon sink. Given the significant role that ter-
restrial carbon uptake has on the global carbon balance (IPCC, 2013), accurately
predicting future variability in atmospheric CO2 concentrations (Cox et al., 2013)
may be reliant on a sub-model such as SUGAR which can allow this de-coupling
to occur. Further research examining the role of NSC-based approaches in large
scale ecosystem models is required and we must focus on improving our under-
standing of NSCs and how to model them.

3.5 Conclusions

In this chapter, we have seen how SUGAR is able to decouple GPP from PCE
across the Amazon basin by shifting the primary driver of carbon utilisation from
being the rate of carbon assimilation by photosynthesis, to the direct control of
temperature via the Q10 function in SUGAR. This was described as a transi-
tion from source to sink limited carbon dynamics and we saw the importance
of this in relation to predictions of terrestrial carbon uptake by LSMs both spa-
tially and through time. In the next chapter, the accuracy of SUGAR at predicting
ecosystem carbon fluxes under both steady-state and extreme climatic condi-
tions is evaluated using observational data from a through-fall exclusion (TFE)
drought experiment and corresponding control forest in Caxiuanã, Brazi. Results
from both SUGAR and The Joint UK Land Environment Simulator (JULES) are
compared with observations for the site, allowing the role of NSC in supporting
respiration and growth during drought to be investigated.
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Chapter 4

Simulating the responses of a
tropical forest to drought

4.1 Introduction

The frequency and severity of droughts are predicted to increase across large
parts of the globe as a result of climate change (Marengo et al., 2018; Hartmann
et al., 2013). The effects of drought on vegetated ecosystems are well docu-
mented (Phillips et al., 2009; Bastos et al., 2018; Luo et al., 2018; Gloor et al.,
2018; Schwalm et al., 2012), yet their sensitivity to the droughts of the future is
highly uncertain. Key questions relate to how forests will respond to increasing
drought length and severity (McDowell et al., 2008), as well as the effect that
repeated droughts, occurring in quick succession may have on ecosystem re-
sponses (Anderegg et al., 2020). Plants can be resilient to less severe and short-
term droughts as they combat excessive water loss by closing stomata (Martı́nez-
Vilalta et al., 2014; Sperry and Love, 2015; Tyree and Sperry, 1989), and man-
age the resulting loss in productivity by making use of stores of non-structural
carbohydrates (NSC) (O’Brien et al., 2015). However, over the long-term, or if
the decline in water availability is particularly severe, drought may cause sig-
nificant increases in forest mortality as plants become more likely to succumb
to hydraulic failure or carbon starvation, and become more vulnerable to distur-
bance from biotic attack and fire (Rowland et al., 2015; Meir et al., 2018; Nepstad
et al., 2007; McDowell et al., 2008). Our understanding of these long-term/severe
drought responses stems largely from experimental studies in which soil moisture
is artificially reduced by preventing rainfall from reaching the forest floor. These
experiments, referred to as through-fall exclusion (TFE), allow more severe and
prolonged drought conditions to be studied than can be achieved by observing
natural droughts alone. TFE experiments have provided significant insight into
the response of forests to the potential droughts of the future, however, due to the
small number of experiments that have actually been carried out, particularly in
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the tropics where only eight have been reported (Meir et al., 2015), determining
the mechanistic processes behind these responses remains a challenge.

The ‘Esecaflor’ experiment in Caxiuanã, Brazil is a large-scale TFE experiment in
the Amazon rainforest. As the longest running tropical TFE experiment, it has not
only provided unique insight into the response of the Amazon to extreme drought,
but also become a useful tool for evaluating process-based vegetation models
such as those that exist within the land surface model (LSM) component of global
climate models. Accurately capturing the response of the forest to the TFE exper-
iment is an important benchmark that allows us to assess the capacity of LSMs
to predict future responses to drought. However, previous simulations using five
process-based terrestrial biosphere models (CLM3.5, (Levis et al., 2004; Oleson
et al., 2008); ED2, (Medvigy et al., 2009); IBIS v2.6.4, (Foley et al., 1996; Kucharik
et al., 2000); JULES v2.1 (Best et al., 2011; Clark et al., 2011) and SiB3, (Sell-
ers et al., 1996; Baker et al., 2008)) reveal significant deficiencies in predictions
of the experiment (Powell et al., 2013). While the five models were able to suc-
cessfully capture the behaviour of a corresponding control plot associated with
the experiment, the response of the forest in the TFE plot was poorly represented
in all five model simulations. Each model failed to correctly capture the loss of
above ground biomass (AGB) through mortality as a result of the drought, and re-
sponses of carbon fluxes and allocation, including autotrophic respiration and net
primary productivity (NPP), over both the short and long term were also not cap-
tured by the models. These mismatches between predictions and observations
have been attributed to a lack of drought induced mortality mechanisms within
models; an over sensitivity of photosynthesis to soil water stress, resulting in an
overestimation of productivity declines in response to the drought; and deficien-
cies in the phenological cycle within the models, which has an important role in
determining whole canopy level carbon fluxes. However, the role of other factors,
including the dynamics of NSC have been so far left unexplored.

Observations suggest that during the early stages of the experiment, the TFE
forest was using significantly more carbon than was being supplied through pho-
tosynthesis, as Plant Carbon Expenditure (PCE - the sum of plant growth and
respiration) exceeded Gross Primary Production (GPP) by 7.0±4.5 MgCha−1 yr−1

in the third year of the experiment (Metcalfe et al., 2010). This implies an impor-
tant role for NSCs, which are typically used to support this type of asynchrony
between supply and utilisation during the drought. However, it has also been
observed that trees that died as a result of the experiment showed no signifi-
cant signs of depleted NSC stores relative to trees in the control plot (Rowland
et al., 2015). Resolving these apparently contradicting observations remains a
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challenge as detailed observations of NSC concentrations over the course the
experiment are not available due to the high complexity and uncertainty involved
in collecting this data. Comprehensive representations of NSC and its role in de-
termining plant respiration and growth rates are also missing from previous mod-
elling studies of the experiment, including within the five models used in Powell
et al. (2013). The role of NSC dynamics in the response of the forest to the
experiment, and its contribution to the discrepancies between model predictions
and observations remain unclear.

In this chapter, the role that NSC dynamics has on model predictions during the
drought is assessed. New simulations of the TFE experiment and corresponding
control plot are carried out using a more recent version of one of the five models
used in Powell et al. (2013), namely version 5.2 of the Joint UK Land Environ-
ment Simulator (JULES). The output from these simulations is then used to drive
SUGAR off-line to produce a post-processed set of model predictions that ac-
count for the effect of NSC on ecosystem carbon fluxes in each plot. The outputs
from both JULES and SUGAR are evaluated against observations from the TFE
experiment (Metcalfe et al., 2010; da Costa et al., 2014) as well as a new time-
series of NPP derived from data collected in Rowland et al. (2015). In addition to
investigating the role that NSC may have had in the ecosystem response to the
TFE experiment in Caxiuanã, this chapter represents an opportunity to evaluate
the capability of SUGAR at predicting carbon fluxes, both under steady-state, and
extreme climate conditions.

4.2 Methods

4.2.1 The Caxiuanã drought experiment

The TFE experiment is located in the Caxiuanã National Forest, Pará State, Brazil
(1°43’3.5”S, 51°27’36”W), where measurements of meteorology and plant phys-
iology of two 1ha plots began in 2001. In January 2002, panels were introduced
into one of the plots, excluding c. 50% of rainfall from the soils and subjecting
the plot to an artificial drought. Measurements of meteorology and forest physi-
ology continue to the present day, providing a detailed dataset of forest response
to drought. At the start of the experiment, total estimated above-ground biomass
was 213.9±14.2 MgCha−1 in the control forest, and 200.6±13.2 MgCha−1 in the
TFE plot. After 13 years of the drought treatment, biomass loss to mortality in the
TFE plot had increased by 41.0±2.7% relative to 2001 values (Rowland et al.,
2015). Observations and modelling studies at the site suggest that while GPP
declined in response to the artificial drought, PCE was maintained at close to
pre-drought levels during at least the first 3-4 years of the experiment (Metcalfe
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et al., 2010; Fisher et al., 2007). NSC reserves are thought to have sustained
PCE during this time and it is estimated that the forest had access to c. 20
MgCha−1 of available NSC (c. 8% of live biomass) during the drought (Metcalfe
et al., 2010). This discrepancy between PCE and GPP in the TFE plot cannot be
captured by LSMs without simulating some kind of NSC storage. A full summary
of the experimental set up and the most recent collection of results from the site
is available in Meir et al. (2018).

4.2.2 JULES simulations

4.2.2.1 Paramtetrisation

JULES version 5.2 was first used to simulate the control plot from 2001-01-01 to
2016-12-09 using a pre-existing parametrisation of the site. This initial simulation
predicted much lower values of GPP than observations (Metcalfe et al., 2010;
da Costa et al., 2014) and so the effective leaf nitrogen content in JULES was
increased by increasing the ‘vint’ and ‘vsl’ parameters. These represent the in-
tercept and slope, respectively, of the linear relationship between Vcmax and leaf
nitrogen. vint was increased from 7.21 to 12.0 and vsl from 19.22 to 25.0. This
increased Vcmax, bringing predicted GPP in-line with observations. This increase
in Vcmax however, also increased predicted plant respiration in JULES, causing
predicted carbon use-efficiency to drop below observed values. This was solved
by reducing the ‘fd’ parameter, which controls the linear relationship between
dark respiration and Vcmax, from 0.01 to 0.0075. The same parametrisation was
then used to simulate both the control and TFE plots over the same period. Both
simulations were spun up for 176 years using a repeated loop of the control me-
teorological data.

4.2.2.2 Driving data

JULES was driven with hourly meteorological data collected from the site (da Costa
et al., 2010, 2018) over the simulation period. Mean annual rainfall during this pe-
riod was between 1772.6 and 2967.1 mm. To simulate the effect of the drought ex-
periment, precipitation in the TFE driving data was halved from January 1, 2002,
in line with estimates of average exclusion rate. Daily incident radiation varied
from 419.8 Wm−2 to 731.1 Wm−2. Specific humidity, long-wave radiation and air
pressure were not collected but were be either estimated or calculated from other
meteorological variables. Air pressure was assumed constant at 101325.0Pa (At-
mospheric pressure at sea level). This is a reasonable assumption as, although
there will have been some variation in reality, JULES is not particularly sensitive
to changes in air pressure in the likely range. Specific humidity (q) was calculated
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from relative humidity (rh), temperature (T ) (°C) and air pressure (p):

Specific humidity is defined as the ratio of water vapour mass (mw) to total air
mass (m = mv +md, where md is dry air mass).

q =
mv

mv +md

(4.1)

This can be written in terms of the mixing ratio (w) which is defined as the ratio of
water vapour mass to dry air mass.

q =
w

w + 1
(4.2)

where w =
mv

md

We can consider water vapour to be an ideal gas under normal atmospheric con-
ditions, which allows us to write its equation of state as:

e = ρvRvT (4.3)

where e is the partial pressure of water in the air (or partial vapour pressure); ρv is
the density of water vapour in the air (i.e. the mass of water vapour, mv, per unit
volume of air.); Rv ≈ 461.5J kg−1 K−1 is the specific gas constant of water vapour;
and T is temperature.

Rearranging Eq. (4.3) and the equivalent equation for dry air, to find ρv and dry
air density (ρd), we can write the water vapour mixing ratio in terms of the partial
vapour pressure and total air pressure (p):

w =
eRd

(p− e)Rv

(4.4)

where Rd ≈ 287.1J kg−1 K−1 is the specific gas constant of dry air.

Relative humidity (RH) is defined as the ratio of the water vapour mixing ratio,
w, to its equivalent value at saturation (ws) and is commonly expressed as a per-
centage:

RH = 100
w

ws
(4.5)

Rearranging Eq. (4.5) for w and substituting into Eq. (4.2), we find an expression
for q in terms of RH and ws:

q =
wsrh

wsrh+ 1
(4.6)
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where rh =
RH

100

Using Eq. (4.4) we can find an expression for ws in terms of the saturated partial
vapour pressure (es), and write q as:

q =
εesrh

εesrh+ p− es
(4.7)

where ε = Rv/Rd ≈ 0.622

Finally we can use the August-Roche-Magnus formula to approximate es in terms
of temperature:

es = 611.2 exp

(
17.67T

T + 243.5

)
(4.8)

Both relative humidity and temperature were measured at the site, while air pres-
sure was estimated as described above. Long-wave radiation was calculated
from measured temperature using linear relationships taken from Powell (2015).
A summary of all the data used to drive JULES is given in table 4.1

Variable name Physical variable Units Source
sw down Downward short-

waveradiation
Wm−2 Measured directly on

site
lw down Downward long-

waveradiation
Wm−2 Calculated using linear

regressions on temper-
ature for each month.

tot rain Total rainfall kgm−2 s−1 Measured directly on
site. Converted from
mmh−1 to kgm−2 s−1.

tot snow Total snowfall kgm−2 s−1 Set to zero
t Temperature K Measured directly on

site. Converted from
°C to K

wind Wind speed ms−1 Measured directly on
site.

pstar Air pressure Pa Not measured on site.
Assumed to be con-
stant at 101325.0 Pa
(Mean pressure at sea
level).

q Specific humidity kg kg−1 Calculated using rel-
ative humidity (mea-
sured on site); temper-
ature and estimated air
pressure.

Table 4.1: A summary of the meteorological variables used to drive JULES at
Caxiuanã
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4.2.3 SUGAR simulations

Gridbox GPP (gpp gb) and grid-box temperature at 1.5 m above canopy height
(t1p5m gb) outputs from JULES were then used to drive SUGAR off-line in each
plot. In both control and TFE simulations the forests were considered to be in
equilibrium, and the total plant biomass (Cv) was assumed to be constant. This
was a reasonable assumption in the control plot given the relatively short simula-
tion period. The assumption is less reliable in the TFE plot but was necessary to
allow the effect of the NSC pool to be examined in isolation. The aim of these sim-
ulations was to examine how SUGAR compares to JULES in its response to the
drought experiment. With the exception of the fNSC and aKm parameters, SUGAR
was therefore parametrised using the first year of output data from JULES (i.e. the
year before panels were installed in the TFE plot) rather than observations from
Caxiuanã. The average predicted GPP and biomass of the simulated forest were
used to evaluate φ. The parameter α was evaluated by finding the average CUE
of the simulated forest. This was then used to evaluate Rm0 and G0. The NSC
pool in both plots was initialised to 8% of the simulated biomass, in-line with esti-
mates of total available NSC in the TFE plot (Metcalfe et al., 2010). Finally, to test
the sensitivity of SUGAR to the parameter aKm, the simulations were repeated
using a range of aKm values between 0.1 and 2.0.

4.2.4 Model Evaluation

Snapshot fluxes (NPP,Ra, PCE) from JULES and SUGAR were evaluated against
observations from Metcalfe et al. (2010) and da Costa et al. (2014) for the pe-
riods 2005 and 2009-2011. Model predictions from JULES and SUGAR were
calculated by taking the mean of each flux over each period. Observations for
2005 are from Metcalfe et al. (2010) and observations from 2009-2011 are from
da Costa et al. (2014). Simulated photosynthesis in JULES responded almost
instantly to the introduction of the panels on the TFE plot which meant that NPP,
Ra and PCE changed significantly in both models between 2002 and 2005. To
demonstrate this change predicted fluxes during the 2002-2004 period were also
calculated for each model. Observations for this period are not available to such
a comprehensive degree as they are for 2005 and the 2009-2011 period. For this
reason the model predictions for 2002-2004 were compared to the 2005 obser-
vations. This is reasonable in the control plot where it is plausible that the forest
was in steady state (Metcalfe et al., 2010) and so fluxes from 2005 will be similar
to those during the 2002-2004 period. In the TFE plot while there were some
significant changes in observed carbon fluxes during the first 3 years of the ex-
periment, (for example the production of leaves, flowers and fruits, and fine wood
(Rowland et al., 2018; Meir et al., 2018)), the forest largely resisted the effects
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of the drought during this period (significant increases in mortality were not seen
until 2005 (Rowland et al., 2015; Meir et al., 2018)) and so we can similarly expect
fluxes from 2002-2004 to be comparable to those from 2005. Nonetheless, care
should be taken with these comparisons.

Predicted plant growth from each model was also evaluated against an observed
time-series of NPP from each plot. Observed NPP was calculated using total local
litter-fall and AGB increment (Rowland et al., 2018). The use of AGB in place of
total biomass increment means that this NPP time-series did not include root in-
crement. This was accounted for in both models by removing the root component
of plant growth. Since SUGAR does not disaggregate any fluxes into organ level
components, root growth was removed using the allometric scaling within JULES.

Litter-fall was collected on a monthly basis in each plot. The dataset was gap-
filled using linear interpolation (Fig. 4.1).
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Figure 4.1: Interpolated litter-fall observations at Caxiuanã in (a) the control plot
and (b) the through-fall exclusion (TFE) plot.

An ensemble of eight allometric equations (Table 4.2) were used to estimate AGB
increment from trunk diameter at breast height (DBH) data that was measured
on all trees with DBH>10cm, every 1 to 3 years over the period of 2000 to 2015
(Rowland et al., 2015). Trees adjacent to perimeter trenches, dug around both
plots to prevent through-flow of soil water into the plots, were excluded from the
datasets (Rowland et al., 2015), leaving a total measured plot size of 0.64ha. The
resulting biomass was scaled to 1.0ha. If a tree grew into the DBH ≥10cm class
during the experiment it was counted as a ‘new recruit’ and its DBH data was then
measured. This meant that the calculated AGB increment included a recruitment
flux which manifested as a positive flux of carbon each time a tree was recruited.
This recruitment flux was due to a change in the sample population and not due to
a change in physiology, and was therefore removed. Similarly if a tree died during
the experiment it was removed from the dataset for the remainder of the mea-
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surement period. This loss of carbon by mortality was also removed, isolating the
plant growth component of AGB increment. The 95% confidence intervals from
the ensemble of allometric equations were used as an estimate of error, although
in reality the uncertainty in this data is likely to be much larger.

Author Equation a b c d E
Brown (1997) a+ bD + cD2 42.69 -12.8 1.242
Brown (1997) exp(a+ bloge(D)) -2.134 2.53
Carvalho Jr. et al. (1998) 1000aexp(b+ cloge(D/100)) 0.6 3.323 2.546
Araújo et al. (1999) abDc 0.6 4.06 1.76
Chambers et al. (2001) exp(a+ bloge(D) + cloge(D)2 + dlog(D)3) -0.37 0.333 0.933 -0.122
Baker et al. (2004) exp(a+ bloge(D) + cloge(D)2 + dlog(D)3)(ρ/0.67) -0.37 0.333 0.933 -0.122
Chave et al. (2005) exp(a+ bloge(D) + cloge(D)2 + dlog(D)3)(ρ) -1.499 2.148 0.207 -0.0281
Chave et al. (2014) exp(a− 0.976E + bloge(D) + cloge(D)2 + dlog(ρ)) -1.803 2.673 -0.0299 0.976 -0.0510307

D = Diameter at breast height (dbh); ρ = Wood density; a, b, c, d, E are constants.

Table 4.2: Ensemble of allometric equations used to calculate above-ground biomass at the Caxiuanã drought experiment.

4.3 Results

4.3.1 Simulations in a tropical moist forest

In the simulations of the control plot, in which the forest was not subject to any
artificial drought stress, JULES and SUGAR produced similar results of long term
NPP accumulation (Fig. 4.2), that were both consistent with observations. By
the end of the NPP observation period (2014-12-17), JULES predicted a total
accumulated NPP of 155.6 MgCha−1 and SUGAR 154.7 MgCha−1. Both results
were consistent with observations (Fig. 4.2, 161.5±22.0 MgCha−1) from the site.
There were some small differences between JULES and SUGAR on an inter-
annual time-scale, but in general the models predicted comparable annual mean
values of control plot PCE, Ra and NPP (Fig. 4.4). During the first three years
of the experiment (2002, 2003, 2004), JULES predicted an annual mean PCE
of 35.13 MgCha−1 yr−1, and SUGAR predicted 34.79±0.17 MgCha−1 yr−1. Both
these results lay within the confidence intervals of the observations from the site
(Fig. 4.4, 33.0±2.9 MgCha−1 yr−1). The two models differed most in the natural
drought years of 2005, 2010 and 2015 in which predicted annual GPP was at its
lowest. In 2005 JULES predicted a decrease (relative to the 2002-2004 period)
in annual mean PCE to 33.32 MgCha−1 yr−1 (-5.15%) whereas SUGAR predicted
an increase to 36.13±0.27 MgCha−1 yr−1 (+3.85%). The decrease in JULES PCE
was caused by a decrease in predicted GPP in 2005. In SUGAR this decrease
in GPP was buffered by NSC storage (Fig. 4.5), and an increase in the annual
mean temperature drove the increase in predicted PCE. Both results were close
to the observed value although the SUGAR result was outside the observed con-
fidence intervals by 0.64%. In 2010 average annual rainfall was 1772.6 mmyr−1,
the lowest in the 16 year period (c. 25% decrease on the 16-year mean 2324.2
mmyr−1). This caused a decline in predicted GPP on the control plot from 35.92
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Figure 4.2: Accumulated Net Primary Productivity (NPP) at Caxiuanã in (a) Con-
trol plot, (b) Through-fall exclusion (TFE) plot and (c) The difference between the
drought and control forest (TFE-control). Observations are calculated as the ac-
cumulated sum of above-ground biomass increment change and total local litter-
fall (Rowland et al., 2018). The presented confidence intervals are the sum of the
litterfall measurement error and the 95% confidence intervals of biomass incre-
ment calculated from 8 allometric equations using trunk diameter at breast height
(DBH) data from Caxiuanã. The uncertainty envelope on SUGAR represents the
maximum and minimum of an ensemble of simulations in which parameter aKm

was varied between 0.1 and 2.0.

MgCha−1 yr−1 in 2008 to 32.94 MgCha−1 yr−1 in 2010. Consequently, JULES pre-
dicted a mean PCE of 33.60 MgCha−1 yr−1 over the period 2009-2011 which lay
below observed values. SUGAR was able to buffer the forest against the 2010
decline in GPP and allows elevated PCE in 2010 (36.36±0.36 MgCha−1 yr−1) rel-
ative to 2008 (34.52±0.52 MgCha−1 yr−1). This allowed SUGAR to maintain a
mean PCE value over the 2009-2011 period of 36.00±0.54 MgCha−1 yr−1 which
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was close to observations (Fig. 4.4). The largest difference between the two
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Figure 4.3: The average seasonal cycle of control plot Plant Carbon Expendi-
ture (PCE = NPP+Ra), Autotrophic respiration (Ra) and Net primary productivity
(NPP) predicted by The Joint UK Land Environment Simulator (JULES) and the
Substrate Utilisation by Growth and Autotrophic Respiration (SUGAR) model.

models in the control plot was their prediction of the seasonal cycles of PCE, au-
totrophic respiration and NPP (Fig. 4.3). SUGAR predicted a much less variable
seasonal cycle in all three fluxes relative to JULES, with a coefficient of variation
of 5.74% for each flux, compared to 16.7%, 9.41% and 33.3% for PCE, Ra and
NPP in JULES respectively. On average the fluxes in JULES all peaked in August
with seasonal maximums of 41.7±1.30 MgCha−1 yr−1, 26.7±0.43 MgCha−1 yr−1

and 15.1±1.03 MgCha−1 yr−1 respectively. Seasonal minimums occurred in De-
cember with values of 22.9±4.87 MgCha−1 yr−1, 19.5±1.73 MgCha−1 yr−1 and
3.39±3.23 MgCha−1 yr−1 respectively. In SUGAR; PCE, Ra and NPP all peaked
in October and the seasonal maximums were lower than those of JULES at
37.6±0.80 MgCha−1 yr−1, 25.8±0.55MgCha−1 yr−1 and 11.9±0.25 MgCha−1 yr−1

respectively. Similarly the seasonal minimums in SUGAR occurred in February
and were larger than those in JULES with values of 32.1±0.58 MgCha−1 yr−1,
22.0±0.40 MgCha−1 yr−1 and 10.1±0.18 MgCha−1 yr−1 respectively.

4.3.2 Simulating responses to drought

In the TFE plot simulations, SUGAR and JULES diverged significantly in their
predictions of NPP, PCE and Ra, with SUGAR more accurately capturing obser-
vations than JULES (Figs. 4.2&4.4). JULES was able to capture NPP accumu-
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Figure 4.4: Net primary productivity (NPP), Autotrophic respiration (Ra) and Plant
Carbon Expenditure (PCE = NPP+Ra); for the periods 2002-2004, 2005 and
2009-2011. The left column is from the control plot and the right is from the
through-fall exclusion (TFE) plot. The error bars on the SUGAR fluxes repre-
sent the maximum and minimum of an ensemble of simulations in which the aKm

parameter was varied between 0.1 and 2.0.

lation for approximately 1 year after the start of the drought treatment, however,
from 2003 onwards, predicted NPP accumulation dropped significantly below the
confidence intervals of the observations (Fig. 4.2). This was driven predomi-
nantly by a sharp decline in GPP in response to the declining water availability.
SUGAR was able to capture NPP accumulation for much longer and predictions
remained within the confidence intervals of the observations until the start of 2009
(Fig. 4.2). By the end of the observation period JULES predicted a total of 60.6
MgCha−1 of accumulated NPP and SUGAR 105.22 MgCha−1. Neither result lay
within observed confidence intervals of the observations (Fig. 4.2, 126.8±16.9
MgCha−1) although the SUGAR result represented a significant improvement rel-
ative to JULES.

During the first 3 years of the experiment, SUGAR was able to buffer a sig-
nificant decline in predicted GPP on the TFE plot, which dropped from 34.90
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MgCha−1 yr−1 in 2001, to a minimum of 19.61 MgCha−1 yr−1 in 2003 (-43.8%).
Since JULES does not contain an NSC storage component and PCE is equal
to GPP, PCE in JULES also dropped by 43.8%, from 34.90 MgCha−1 yr−1 in
2001 to 19.61 MgCha−1 yr−1 in 2003. As a result JULES predicted a mean PCE
value of 24.84 MgCha−1 yr−1 over the first three years of drought treatment (2002,
2003, 2004). These values were outside the confidence intervals of the observa-
tions and 26.7% below the mean PCE value observed in the TFE plot (33.9±3.6
MgCha−1 yr−1, Fig. 4.4). SUGAR was able to maintain PCE at a higher level
than JULES during these first three years by drawing upon a mean 5.60±1.01
MgCha−1 yr−1 of NSC each year to support growth and respiration (Fig. 4.5).
This resulted in a mean PCE of 30.44±1.01 MgCha−1 yr−1 over the period 2002-
2004, which lay within the observed confidence interval (Fig. 4.4). The NSC
buffering effect in SUGAR continued in 2005 with SUGAR expending 5.59±0.76
MgCha−1 yr−1 more carbon than JULES during that year. This meant that the pre-
dicted annual mean PCE in SUGAR was 22.82±0.76 MgCha−1 yr−1 compared
to 17.23 MgCha−1 yr−1 in JULES. Both results lay below the lower bound of the
observed confidence intervals (33.9±3.6 MgCha−1 yr−1, Fig. 4.4), however, the
SUGAR result represented a significant improvement relative to JULES. In the
latter years of the drought simulations (2009 onwards), the NSC pool became sig-
nificantly depleted (Fig. 4.5) and the buffering effect in SUGAR (described above)
diminished. Consequently, on annual time-scales, the mean PCE in JULES
and SUGAR during the 2009-2011 period were similar (20.76 and 21.20pm0.87
MgCha−1 yr−1 respectively), although the allocation of carbon to respiration and
growth was different, with SUGAR expending more (6.70±0.28 MgCha−1 yr−1)
carbon on growth than JULES (3.06 MgCha−1 yr−1). This difference in allocation
allowed SUGAR to predict the observed NPP with more skill than JULES, how-
ever it meant that respiration predictions were reduced relative to JULES and the
observations.

4.3.3 Reduced soil-moisture stress in JULES

The ability of SUGAR to accurately capture PCE responses to drought in these
simulations is partially dependent on the GPP used to run it. Photosynthesis in
JULES has a high sensitivity to reductions in soil moisture (eg., Harper et al.,
2016; Williams et al., 2018). In the TFE simulations JULES predicted a total re-
duction in GPP of 17.68 MgCha−1 between 2001 to 2005, an average of 4.42
MgCha−1 yr−1 each year. Combining the observed PCE rates (Metcalfe et al.,
2010) in the TFE plot with the predicted GPP by JULES implies that the forest
was using an average of 10.96 MgCha−1 yr−1 carbon more than it is assimilating
in the first four years of the drought. Assuming that JULES correctly captured
the response of GPP to the drought, this implies that the forest had access to at
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Figure 4.5: The effect of the non-structural carbohydrate (NSC) saturation pa-
rameter (aKm) in SUGAR on simulated NSC as a fraction of total carbon biomass,
in (a) the control plot and (b) the TFE plot. The mean, maximum and minimum
from an ensemble of simulations where aKm is varied between 0.1 and 2.0 are
presented.

least 43.86MgCha−1 of NSC, c. 22% of estimated forest biomass. Such a high
NSC content is unlikely for tropical forests, which are more likely to have reserves
close to 10% (Würth et al., 2005). The more likely explanation for this difference
between predicted GPP and observed PCE, is that JULES overestimated the de-
cline in photosynthesis in response to the drought. To test this, the drought stress
in JULES was artificially reduced by 50% and the simulations were repeated.

Photosynthesis in JULES is scaled by a factor, β, that depends piece-wise lin-
early on soil-moisture concentration (θ) (Clark et al., 2011).

β =


1 for θ > θc
θ − θw
θc − θw

for θw < θ ≤ θc

0 for θ ≤ θw

(4.9)

where θc and θw are the soil moisture concentrations below which photosynthesis
drops below it’s maximum (uninhibited) value, and becomes zero respectively.
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Figure 4.6: The soil-moisture stress (β) and adjusted soil-moisture stress (β′) as
a function of soil moisture concentration (θ).

To reduce the sensitivity of β to soil-moisture an altered β-factor was defined as:

β′ = min {1.0, 1.5× β} (4.10)

This is equivalent to defining a new value for θc (Fig. 4.6):

θ′c =
2

3
(θc − θw) + θw (4.11)

The new beta-factor means that soil-moisture stress does not start to occur until
a lower soil-moisture concentration, therefore reducing the sensitivity of predicted
photosynthesis to drought. The time-series of β and β′ throughout both control
and TFE simulations is shown in Fig. 4.7.

As expected, changing β in this way reduced the effect of the drought on pre-
dicted photosynthesis. Total annual PCE was consistently higher in both plots
than it was in the original simulations. In the control plot the change was small
but allowed both SUGAR and JULES to better capture PCE towards the end of
the experiment, while slightly reducing the accuracy of PCE predictions during the
early stages (Fig. 4.8). In the TFE plot the change was larger and both JULES
and SUGAR captured early experiment PCE much better than in the previous
simulations. However, PCE in both models still dropped significantly below ob-
served levels during the latter stages of the experiment, potentially suggesting
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Figure 4.7: The soil-moisture stress (β) and adjusted soil-moisture stress (β′)
in (a) the control plot simulations and (b) the through-fall exclusion (TFE) plot
simulations.

that the sensitivity of β to soil-moisture is still too high. The allocation of car-
bon between respiration and growth in SUGAR suffered with too much going to
growth. This meant that SUGAR overestimated NPP accumulation in the TFE
plot, while JULES more accurately captured it.

4.4 Discussion

SUGAR and JULES predicted very similar long-term NPP accumulation, and
comparable annual mean fluxes of NPP, Ra and PCE in the natural climate con-
ditions of a tropical moist forest. However, there were larger differences between
SUGAR and JULES on shorter time-scales, due to the buffering of the natural
variability in GPP by SUGAR. While carbon fluxes were similar over a year or
longer, SUGAR significantly changed their seasonal cycle, with both the ampli-
tude and phase of the seasonal variation being notably different with the addition
of the NSC pool. The top panel in Fig. 4.3 shows the difference in the sea-
sonal cycles of PCE within JULES and SUGAR. However, since PCE in JULES is
equivalent to GPP, we can also view this panel as a demonstration of the decou-
pling between PCE and GPP in SUGAR. Doughty et al. (2015a) showed a similar
decoupling on a seasonal scale in multiple sites across South America including
Caxiuanã. While peaks in photosynthesis of many tropical forests are typically
driven by the seasonality of radiation, the seasonal cycle of plant growth is com-
monly driven by variation in precipitation (Wagner et al., 2016). On its own JULES
is unable to capture this asynchrony since the discrepancy between supply and
demand must be supported by a NSC pool. This means that even if JULES were
able to perfectly capture the seasonal cycle of GPP it would be unlikely to cap-
ture the seasonal cycles of plant respiration and growth. Accurately capturing
these seasonal patterns may be crucial to accurately predicting the response of
tropical forests to future climate change. These results, therefore, highlight the
importance of substrate-based modelling to better capture the responses to nat-

80



0

10

20

30

40
2002-2004

Control

0

10

20

30

40
2002-2004

Drought

0

10

20

30

40
2005

0

10

20

30

40
2005

NPP Ra PCE
0

10

20

30

40
2009-2011

NPP Ra PCE
0

10

20

30

40
2009-2011

Observations
SUGAR
JULES

Fl
ux

 (
M

gC
ha

1 y
r

1 )

Figure 4.8: Net primary productivity (NPP), Autotrophic respiration (Ra) and Plant
Carbon Expenditure (PCE = NPP+Ra); for the periods 2002-2004, 2005 and
2009-2011. The left column is from the control plot and the right is from the
through-fall exclusion (TFE) plot. Soil moisture stress has been artificially re-
duced in JULES by 50% and the resulting GPP has been used to drive SUGAR.

ural variation, even under current climate conditions and without extreme events.

In the TFE plot, SUGAR made significant improvements to the prediction of ecosys-
tem carbon fluxes, particularly for accumulated NPP. This improvement was caused
by a combination of two processes that occur in SUGAR and that are not present
in JULES. The first process is the utilisation of the NSC pool during the early
stages of the experiment. SUGAR expended a mean 5.53 MgCha−1 more carbon
than was assimilated through photosynthesis in the first three years of drought
(2002-2004) and a further 5.80 MgCha−1 in 2005. This allowed an increase in
both growth and respiration relative to JULES and was consistent with the analy-
sis in Metcalfe et al. (2010), which suggests the TFE plot was expending 7.0±4.5
MgCha−1 yr−1 more than it was accumulating in 2005, implying that NSC stores
were being depleted in response to the drought (Fig. 4.5). Signori-Müller et al.
(2021) found significant dry-season reductions in the total NSC contents of leaves
and branches across multiple sites in the Amazon. These were largely attributed
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Figure 4.9: Accumulated Net Primary Productivity at Caxiuanã in (a) Control plot,
(b) TFE plot and (c) The difference between the drought and control forest (TFE-
control). Soil moisture stress has been artificially reduced in JULES by 50% and
the resulting GPP has been used to drive SUGAR. Observations are calculated
as the accumulated sum of biomass increment change and local litter-fall (Row-
land et al., 2018). The presented confidence intervals are the sum of the litter-fall
measurement error and the 95% confidence intervals of biomass increment cal-
culated from 8 allometric equations using trunk diameter at breast height (DBH)
data from Caxiuanã.
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to the limitation of photosynthesis by declining water availability combined with
the continued carbon demand of respiration and growth (Signori-Müller et al.,
2021), and support the results predicted by SUGAR in the TFE plot. However,
alongside the reductions in total NSC, Signori-Müller et al. (2021) also observed
significant shifts in the ratio of soluble sugars to starch in response to declining
water-availability, with almost all measured species greatly increasing their pro-
portions of soluble sugars during the dry season. SUGAR is currently unable to
capture these shifts as these different types of NSC are not distinguished. Yet,
shifts in NSC composition represent an important adaptation by plants, as soluble
sugars are frequently used to maintain hydraulic function via osmotic regulation.
The dynamic allocation of carbon to soluble sugars and starches may have im-
portant feedbacks on plant water-status, which in turn can effect photosynthesis
and greatly impact forest responses to drought. Further work is required to in-
clude these processes within SUGAR as these advances may have the potential
to greatly improve simulations of ecosystem responses to drought.

The second process that occurred in SUGAR, and aided the prediction of NPP
accumulation was the down regulation of respiration in response to the depleting
NSC pool. In the JULES simulations, photosynthesis declined much faster than
respiration and, since growth is equal to GPP – Ra in JULES, this meant that NPP
dropped significantly as GPP declined in response to the drought. The result of
this effect was that in two years (2005 and 2007), the predicted annual mean NPP
by JULES, was negative. Negative NPP is generally considered to be unrealis-
tic, particularly over the time-scale of a year (Roxburgh et al., 2005), and since
JULES does not contain a labile carbon pool to support the deficit, missing carbon
was taken from the structural pool. The physical interpretation of this is that trees
in JULES respire away their structural carbon and shrink. While there is some
evidence of recycling and remobilisation of structural compounds, the magnitude
of structural carbon being allocated to respiration (via the resulting negative NPP)
in these JULES simulations was not realistic. In SUGAR, respiration declined due
to the depletion of the NSC pool. This down-regulation of Ra meant that a larger
proportion of instantaneous GPP was available for NPP, resulting in larger pre-
dictions of NPP in SUGAR than JULES, despite similar estimates of total PCE.
While this latter process aided the prediction of NPP in SUGAR, it should be noted
that observations from Caxiuanã actually indicate an increase in TFE plot respi-
ration between 2005 and 2011 (Metcalfe et al., 2010; da Costa et al., 2014), likely
associated with an increase in stem and root respiration rates (Rowland et al.,
2021). SUGAR is currently unable to capture this increase and this is likely due
to the simplicity of the assumptions made within the model. For example, it has
been assumed that plant growth is directly dependent on carbohydrate availability
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and temperature only. Water stress can reduce plant growth in SUGAR, but only
indirectly by inhibiting photosynthesis and causing a decrease in available car-
bon. However, in reality plant growth can be affected directly by decreasing water
availability through the inhibition of cell expansion (Balducci et al., 2013; Hsiao,
1973; Boyer, 1970). This decline in growth may even occur before declines in
photosynthesis which can cause a build up of NSC and eventually result in an in-
crease in respiration (Fatichi et al., 2014). This is not to suggest that this specific
process comprehensively explains the observed increases in respiration on the
drought plot at Caxiuanã, but such interactions between NSC utilisation and the
environment are likely to have been important during the TFE experiment. Nei-
ther SUGAR nor JULES are able to capture these processes currently, however,
SUGAR provides a basis upon which these interactions may be implemented in
models like JULES, potentially resulting in further improvements to predictions of
forest responses to drought.

The sensitivity of photosynthesis to water-availability is a significant component
of modelling forest drought responses, and has been highlighted as a key source
of error between model predictions and observations at Caxiuanã (Powell et al.,
2013). The difference between observed PCE and predicted GPP by JULES in
the TFE plot in the original simulations was roughly 50% larger than suggested by
Metcalfe et al. (2010) and implied an unrealistic amount of stored NSC. Reducing
the sensitivity of photosynthesis to soil-moisture stress in JULES improved pre-
dictions of PCE, Ra and NPP in the TFE plot by JULES, in particular in the early
stages of drought (Fig. 4.8). It might be possible for JULES to accurately capture
both respiration and NPP in both plots over the entire drought experiment by fur-
ther tuning of the sensitivity of photosynthesis to soil moisture. However, when
tuning model responses in this way, it is important to ask what the physiologi-
cal meaning is behind the changes being made. In this case we are not seeing
improved results because of the inclusion of an important process that was pre-
viously missing. Nor has the representation of an already existing process been
improved in a way that has any grounding in plant physiology. ‘Artificial’ model
development like this can be useful, as it has been here, in demonstrating defi-
ciencies in the structure or parametrisation of models. However, while reducing
the sensitivity of photosynthesis to water-stress has improved predictions of NPP
and respiration in these simulations, it would be unreasonable to expect these
improvements to be universal across all sites and drought scenarios. Recent de-
velopments in modelling stomatal responses to soil moisture (Mencuccini et al.,
2019; Eller et al., 2018, 2020; Sperry et al., 2017) have proven to be more capable
of capturing forest transpiration during drought (Eller et al., 2018), and may have
the potential to significantly improve GPP predictions in LSMs such as JULES.
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This may allow more accurate and robust simulations of the TFE experiment at
Caxiuanã using JULES in the future. However, there is a clear link between plant
hydraulics and labile carbon storage, given stomatal closure comes at the cost of
a reduction in carbon assimilation. The ability of a plant to store and use labile
carbon is crucial to its ability to survive, and recover from, drought-induced stom-
atal closure (Sala and Mencuccini, 2014; O’Brien et al., 2014; Trugman et al.,
2018). Without including at least simple representations of NSC storage, the po-
tential of this recent work to improve the representation of stomatal behaviour in
response to drought in LSMs, is unlikely to be realised.

4.5 Conclusions

A significant proportion of previous discrepancies between observations and model
predictions of tropical forest responses to drought is associated with deficien-
cies in the representation of photosynthesis in LSMs. However, the work in this
chapter reveals that there is also an important role for NSC in these predictions,
and that this role cannot be neglected in future model developments. Despite
the simplicity of SUGAR, it makes significant changes to the predictions of car-
bon fluxes in response to drought and demonstrates the potential impact that
substrate-based approaches to plant modelling could have on future predictions
of ecosystem carbon fluxes, in particular during periods of drought.

Additional work is required to further improve predictions of the TFE experiment
at Caxiuanã, in particular the role of water-availability in directly regulating plant
growth must be explored. Significant improvements are being made to the rep-
resentation of stomatal behaviour during drought. However, given the theoretical
relationship between stomatal control and NSC, this work must be accompanied
by the development of simple models such as SUGAR, which may form the basis
for more complex processes to be introduced into LSMs like JULES that allow
more accurate predictions of vegetation drought responses.

The aim of the next chapter, is to assess the role of NSC in determining ecosys-
tem carbon fluxes on a global scale. Output from four LSMs will be used to drive a
simplified version of SUGAR off-line to predict respiration and NPP fluxes across
the globe. The effects of SUGAR on these predictions will be examined and the
possible changes to estimates of global terrestrial carbon uptake, that including
NSC in the four LSMs could make, will be explored. This allows the possibil-
ity of using the variability of atmospheric CO2 concentrations to constrain model
parameters within SUGAR to be investigated.
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Chapter 5

The effects of NSC on predictions
of the global terrestrial carbon sink

5.1 Introduction

5.1.1 The Growth-Maintenance Respiration Paradigm

Due to the complexity of respiratory processes within plants, truly mechanistic
representations of autotrophic respiration (Ra) do not currently exist, and nor
would they be practical within current state of the art land surface models (LSM).
Nonetheless, capturing variation in plant respiration is an integral component of
modelling the climate and so several simple approaches have been proposed.
The most common approach is the so called growth maintenance respiration
(GMR) paradigm (Thornley, 1970), in which plant processes are split into two
distinct categories, each with their own separate respiratory demands. Growth
processes are defined as those that result or aid in the synthesis of new plant
biomass, while maintenance processes are defined as those that maintain pre-
existing biomass. This separation results in a corresponding separation of total
respiration into two distinct fluxes which can be represented independently. This
framework is widespread due to its simplicity (a useful property for representa-
tions of plant processes at a global scale) but also its apparent consistency with
observations. Experiments by McCree (1970) suggest that under controlled envi-
ronmental conditions, variations in Ra can be described by the following equation:

Ra = kP + cW (5.1)

where P is photosynthesis, W is plant dry mass and, k and c are coefficients that
are constant under constant environmental conditions, but may vary with changes
in temperature for example. The dependence of Ra on photosynthesis, indicated
by the first term on the right hand side of equation (5.1), is interpreted as the res-
piratory cost associated with converting substrates (derived from photosynthesis)
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into new biomass, and equated to growth respiration. The dependence of Ra on
biomass, indicated by the second term on the right hand side of equation (5.1),
is interpreted as a demonstration of the respiratory cost of maintenance, which is
assumed to increase with plant size.

Despite the prevalence of the GMR paradigm within LSMs, it has faced criti-
cism (Thornley, 2011; Amthor, 2000). While it may be reasonable to split plant
processes into growth and maintenance categories on a functional basis, at a
biochemical level the distinction between growth and maintenance respiration is
less clear (Thornley, 2011). Both sets of processes require energy in the form of
ATP, and many processes in both categories also require matter, either to produce
new biomass (growth) or to replace old biomass (maintenance). The metabolic
processes that produce ATP and the anabolic processes that synthesise carbon
compounds are qualitatively the same in growing and non-growing plants (Thorn-
ley, 2011). From this viewpoint, attributing the two terms in equation (5.1) to two
distinct respiratory processes makes little sense and suggests an alternative in-
terpretation of McCree’s equation (equation 5.1) is required.

A simple framework proposed by Thornley (2011) represents respiration as just a
single component that depends on the availability of labile substrate in the form of
non-structural carbohydrate (NSC). When the availability of NSC is large, respira-
tion is able to completely decouple from photosynthesis, with environmental fac-
tors such as temperature controlling its rate (Collalti et al., 2020). Under constant
environmental conditions, changes in photosynthesis do not significantly alter the
concentration of NSC and with constant substrate concentrations, respiration be-
comes proportional to biomass. Conversely, in the absence of significant NSC
stores, the rate of respiration is dependent on the supply of carbon from photo-
synthesis and becomes a constant fraction of Gross Primary Productivity (GPP)
(Collalti et al., 2020). Under more intermediate NSC availability, this framework
is able to capture the influence of both photosynthesis and biomass on respira-
tion, and importantly can be used to explain McCree’s equation (Thornley, 2011).
While a potentially more mechanistic approach, this framework has received little
attention in large scale modelling studies. This may be in part due to the difficulty
of representing labile carbon storage. In particular the evaluation of NSC turnover
rates and pool sizes (Collalti et al., 2020) are difficult to determine due to the large
error associated with direct NSC measurements at an ecosystem or even whole
plant scale (Quentin et al., 2015). In order for this approach to be examined, an
alternative method for evaluating these uncertainties is therefore required.

87



5.1.2 Terrestrial carbon uptake and the Global Carbon Budget

A crucial part of predicting future climate is the development of reliable estimates
of stocks and fluxes of carbon in the global system. These estimates are in-
tegral to limiting the increase in the concentrations of greenhouse gases in the
atmosphere and reducing the risk of the most severe emissions scenarios. The
Global Carbon Project (GCP) is a global research project with the aim of devel-
oping an accurate overview of the global carbon cycle that not only details the
patterns within observations of carbon stocks and fluxes, but also describes the
processes and interactions that govern and control these patterns. Each year
the GCP produces a “Global Carbon Budget” (GCB) that outlines the most up to
date estimates of carbon stocks and fluxes globally (Friedlingstein et al., 2019).
However, estimates of the difference between sources (from fossil fuel, industry
and land-use change emissions) and sinks (into the land and ocean) of carbon to
and from the atmosphere do not currently match the observed changes in atmo-
spheric CO2 concentrations. This results in a “budget imbalance” that represents
the uncertainty within both our understanding and empirical assessment of the
global carbon cycle. The exact source of this uncertainty is not clear, but it has
been attributed largely to deficiencies in process-based models used to estimate
carbon uptake by both the land and ocean, due to its high inter-annual and semi-
decadal variability, and lack of significant long-term trend (Bastos et al., 2020;
Friedlingstein et al., 2019). We may, therefore, tentatively view the GCB budget
imbalance as a metric of the accuracy of these models, and use it as benchmark
for future developments within these models.

In this chapter the applicability of this benchmark for evaluating the role of NSC in
simulating plant carbon fluxes is investigated. A simplified version of the SUGAR
model is driven off-line with the output of four LSMs from the TRENDY model
consortium, which supports the terrestrial carbon uptake component of the GCB.
In this version of SUGAR, plant respiration is represented as a single component
that depends on temperature and substrate availability. The output from SUGAR
is compared to the original TRENDY outputs and the relationship between the
GMR paradigm and the single component respiration framework is examined at
a global scale. The role that NSC turnover rates play in this relationship is inves-
tigated by examining the variability of predicted Net Primary Productivity (NPP).
The potential of using the GCB budget imbalance to evaluate these changes and
potentially constrain model parameters is examined by calculating new estimates
of NBP based on the updated predictions of NPP by SUGAR, and comparing
to an ‘implied land carbon sink’, which is calculated using the budget imbalance
from GCB 2019 (Friedlingstein et al., 2019).
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5.2 Methods

5.2.1 TRENDY LSMs

Simulations from a group of four LSMs were used to drive a modified version of
SUGAR off-line. The LSMs used were; CLASS-CTEM (Melton and Arora, 2016),
LPJ-GUESS (Smith et al., 2001, 2014), JULES-ES-1.0 (Best et al., 2011; Clark
et al., 2011) and ISAM (Meiyappan et al., 2015) and the simulations used were
all completed as a part of the TRENDY v.8 project. The four LSMs were chosen
from the wider TRENDY consortium due to two common properties:

1. None of the versions of the models used contain any representation of NSC
or labile carbon reserves.

2. All four models follow the GMR paradigm and separate respiration into growth
and maintenance components, with growth respiration a simple fraction of
NPP.

Most models in the TRENDY consortium split respiration into growth and mainte-
nance components. However, these components were not outputted separately
as part of the TRENDY v.8 project. It was important, therefore, that maintenance
and growth respiration could be calculated from the NPP and total autotrophic
respiration outputs. This was possible with the four chosen TRENDY LSMs since
growth respiration is a simple fraction of NPP in these models. In JULES-ES-1.0
and LPJ-GUESS this fraction is constant with a value of one third. CLASS-CTEM
and ISAM differ slightly as the value of this fraction depends on whether NPP is
positive or negative. When NPP is negative, growth respiration is set to zero in
both models. When NPP is positive, growth respiration is equal to one third of
NPP in ISAM and equal to 0.176 (3/17) times NPP in CLASS-CTEM. These rep-
resentations allow growth respiration to be calculated from NPP output from each
LSM, which then allows maintenance respiration to be found from total respiration.
A summary of the representation of both growth and maintenance respiration in
each LSM is given in table 5.1. Other models in the TRENDY consortium that
(a) do not have representations of NSC and (b) separate respiration according
to the GMR paradigm (e.g. CABLE-POP: Haverd et al., 2018) would have also
been suitable for this study, however, more complex dependences in the growth
respiration coefficient meant that growth and maintenance respiration could not
be separated using just the TRENDY v.8 outputs.

5.2.2 Modifications to the SUGAR model

The standard SUGAR model uses a simple Q10 function to describe the tem-
perature dependence of both respiration and growth. There has been much dis-
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cussion on the responses of plants to temperature, in particular the response
of respiration (Huntingford et al., 2017). However, this was not the focus of this
study, and changing the temperature dependence of respiration in the four LSMs
would likely result in significant changes to its variability, that would be difficult to
separate from the effects made by the NSC pool. Therefore, to isolate the impact
of NSC, the temperature dependence of maintenance respiration in each LSM
was used. To simplify the model further, the Michaelis-Menten NSC dependence
in standard SUGAR was replaced with linear reaction kinetics. This removes the
saturation parameter (Km) from SUGAR and directly links the equilibrium pool
size (fNSC) to the NSC turnover rate. This results in just a single tuning param-
eter which allows for a more simple sensitivity analysis to be carried out. The
maintenance respiration (RmSUGAR

) in this simplified version was given by:

RmSUGAR
= RmTRENDY

WNSC

fNSC
(5.2)

where RmTRENDY
is the maintenance respiration of each TRENDY LSM, and fNSC

is a constant.

As in the standard version of SUGAR, a new plant growth term, G, was de-
fined that depends on temperature and NSC availability. In SUGAR growth and
maintenance respiration have the same temperature and NSC availability and are
therefore proportional. In order to maintain this property, the growth was given by:

G
SUGAR

= g0RmTRENDY

WNSC

fNSC
(5.3)

where g0 is a constant.

Growth respiration was then made proportional to the new plant growth term.
The constant of proportionality or growth respiration coefficient was assumed to
be the same as in the TRENDY LSMs.

RgSUGAR
=

rg
1− rg

G
SUGAR

(5.4)

where rg is the growth respiration coefficient from each LSM given in table 5.1.

Since maintenance respiration and plant growth have the same dependence on
NSC, temperature and biomass in SUGAR, the total autotrophic respiration can
be written as:

RaSUGAR
=

(
1 +

rgg0
1− rG

)
RmTRENDY

WNSC

fNSC
(5.5)
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We can view this as a single component of respiration, with the first term in the
brackets representing maintenance respiration now scaled by the size of the NSC
pool, and the second term representing growth-respiration.

5.2.3 Numerical simulations

Simulations were carried out over a 118 year period from January 1901 to Decem-
ber 2018 on a monthly time-step. The NSC mass fraction, WNSC , was updated
each time-step using prescribed annual biomass and prescribed monthly GPP
(ΠGTRENDY

) from each TRENDY LSM, using the following equation:

dCNSC
dt

= ΠGTRENDY
−RmSUGAR

−G
SUGAR

−RgSUGAR
(5.6)

Equation (5.6) was updated using the forward euler method. The time-step of
one month was split into 500 sub-steps of roughly 1.5 hours each. This was only
necessary for the smallest values of fNSC (i.e. the fastest turnover rates), but for
consistency this was used for every simulation. This process was carried out for
all grid-boxes where the initial grid-box biomass was greater than 1kgCm−2. Since
the turnover time of NSC is inversely related to its pool size which is itself related
to the initial biomass in each gridbox, Cv values below this threshold resulted in
large turnover rates which were numerically unstable, even when the time-step
was subdivided 500 times.

5.2.4 Parameter calibration

Since the value from each TRENDY LSM was used for the rg parameter, there
were only two parameters that needed to be calibrated, g0 and fNSC . The g0

parameter was first calibrated for each grid-box following the principles described
in chapter 2 and Jones et al. (2020), using the first ten years of TRENDY data
from the 118 year period. The parameter in each grid-box was given by:

g0 =

∫
τ10

ΠNTRENDY
dt
∫
τ10
CvTRENDY

dt∫
τ10

ΠGTRENDY
dt
∫
τ10
RmTRENDY

dt
(5.7)

where ΠNTRENDY
and ΠGTRENDY

are the NPP and Gross Primary Productivity
(GPP) outputs from each TRENDY model respectively; and τ10 is the ten year
period from 01/01/1901 to 01/01/1911.

To assess the role of NSC turnover time, a sensitivity study was carried out for
the fNSC parameter. Forty values of fNSC were tested that were split evenly on
a log-scale between 0.001 and 1.0, with a maximum value of 0.838. The lower
bound represents a NSC pool with a fast turnover and was the smallest pool size
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that could be simulated with a reasonable time-step. The behaviour of these sim-
ulations was qualitatively similar enough to the model with an infinitely fast NSC
turnover rate (fNSC = 0) to not warrant any lower values. The upper bound is
an unrealistically large estimate of NSC mass fraction. Setting it close to one
ensures that all realistic estimates of NSC mass fraction are captured within the
tested range. A value of 1.0 was not used since this represents the case when
100% of biomass is NSC, which is not possible to represent mathematically, when
the structural biomass is non-zero.

5.2.5 Analysing NPP variability

Predictions of plant respiration were used to calculate updated predictions of NPP,
by subtracting from the GPP data from the four TRENDY LSMs. The effect of
the SUGAR model on these predictions of NPP was then assessed at a global
scale, looking both spatially and at global averages. First the inter-annual vari-
ability (IAV) of the global average NPP from the four original TRENDY LSMs was
calculated. This was done by de-trending the annual TRENDY NPP data using
a quadratic fit and then taking the variance. The same was done for SUGAR
and each value of fNSC . The percentage change in IAV of global average NPP
caused by SUGAR, relative to the original TRENDY models, was then calculated
and plotted against fNSC .

The variance of NPP is given by:

var{NPP} = var{GPP}+ var{Ra} − 2Cov{GPP,Ra} (5.8)

where var{GPP} and var{Ra} are the IAV of GPP and Ra respectively; and
Cov{GPP,Ra} is their covariance. SUGAR does not affect predictions of GPP
and so a change in the IAV of predicted NPP can be associated with either a
change in the IAV of Ra or a change in the covariance of Ra with GPP. The IAV of
Ra, and the covariance of Ra and GPP from SUGAR were therefore also calcu-
lated, as described above. The percentage changes in the IAV of NPP, the IAV of
Ra, and the covariance of Ra and GPP, relative to the TRENDY LSMs were then
plotted spatially for four values of fNSC : 0.001, 0.01, 0.1 and 0.5. This allowed the
change in IAV of global mean NPP to be analysed, first in terms of which regions
contributed most to this change, and second whether the change was driven pre-
dominantly by a change in the IAV of autotrophic respiration, or by a change in
the covariance of GPP and respiration.
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5.2.6 Comparing to global Net Biome Productivity

Data from the GCB was used to evaluate the changes made to global NPP by
SUGAR on the four TRENDY LSMs. First, the inter-annual difference between
the original TRENDY NPP output and the updated prediction of NPP from SUGAR
was added to the NBP output from each TRENDY LSM:

NBP
SUGAR

= NBP
TRENDY

+ ∆NPP (5.9)

where ∆NPP is the inter-annual difference between NPP predicted by SUGAR
and the original TRENDY output. To calculate ∆NPP , both TRENDY and SUGAR
NPP fluxes were first de-trended using a quadratic fit, in order to isolate inter-
annual differences and remove any changes to the long term trend caused by
SUGAR. The justification for this is that net biome productivity depends on both
NPP and soil respiration. However, soil respiration rates are not directly inde-
pendent of NPP on short time-scales. Large changes in the long term trend of
NPP would likely result in a significant response from soil respiration which would
not be captured in these uncoupled simulations. By just using de-trended differ-
ences, this error is minimised. Updated global datasets of NBP were then created
for each TRENDY LSM using the updated estimates of NBP from SUGAR, and
the original TRENDY data for grid-boxes where SUGAR had not been used (i.e.
all grid-boxes with initial Cv < 0). These merged datasets were then summed to
produce a global mean NBP flux for each value of fNSC .

An implied land carbon sink from GCB was calculated by assuming that the
budget imbalance within the GCB was exclusively associated with errors within
predictions of the land sink. Assuming that there was no error associated with
observations of carbon emissions from fossil fuels and land-use change, and no
error within the predictions of the ocean carbon sink, an implied land sink was
calculated as:

Implied land sink = fossil fuel and industry + land-use change emissions

− atmospheric CO2 growth − ocean sink

This is essentially the rate that carbon must have been absorbed into the land,
assuming our measurements and predictions of all other carbon fluxes and stocks
within the climate system are correct. This implied land C sink is shown in Fig 5.1
along with the original predictions of NBP from each of the four chosen TRENDY
LSMs. In general the four TRENDY models tend to over estimate the variability of
NBP over the period of 1959 to 2018.
The affect of SUGAR on these predictions was assessed by calculating the rel-
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Figure 5.1: Predicted net biome productivity (NBP) from four LSMs from the
TRENDY v.8 project (Sitch et al., 2015), compared to the implied land sink from
the global carbon budget (GCB) 2019 (Friedlingstein et al., 2019).

ative change in the root mean square error (RMSE) between predicted and ob-
served NBP. This was done by first calculating the RMSE between the implied
land sink from GCB2019 and the predicted NBP in each TRENDY LSM. Data
from the years 1990 and 1991 were not included to remove the effect of the erup-
tion of Mount Pinatubo which was not captured in the LSMs. The same was then
done with predictions from SUGAR for each value of fNSC . A percentage change
in RMSE relative to the original TRENDY models was then plotted against fNSC
for the output of each SUGAR post-processed LSM.

5.3 Results

5.3.1 Inter-annual variability of NPP: global mean

The addition of the NSC pool into the TRENDY LSMs had a significant effect
on the IAV of global mean NPP. For the slowest turnover rates/largest NSC pool
sizes, there was a large increase in the IAV of global NPP relative to the origi-
nal TRENDY LSMs (Fig. 5.2). The ensemble mean saw a maximum increase of
42.7% in the IAV of NPP at a fNSC value of 0.49. The largest increase in IAV
was in LPJ-GUESS which saw a maximum increase of 69.2% when fNSC was
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equal to 0.59. In contrast, when the turnover rate of NSC was fast/NSC pool size

Figure 5.2: The percentage change in the inter-annual variance of predicted
global net primary productivity (NPP) against initialised non-structural carbohy-
drate (NSC) mass fraction fNSC from a simplified version of the SUGAR model.
The percentage change is relative to the inter-annual variance of global NPP
from four land surface models (LSM) which have been used to drive the SUGAR
model.

was small, all four models saw a significant decrease in the IAV of global mean
NPP (Fig. 5.2). This decreases was largest in CLASS-CTEM which saw a 35.7%
decrease in IAV for the smallest fNSC value of 0.001. For the ensemble mean,
this maximum decrease was still significant at 25.4%.

An important feature of Fig. 5.2 is the point at which each curve crosses the
x-axis. This represents the NSC turnover rate/pool size at which the IAV of global
NPP was unchanged relative to the original TRENDY LSMs. This point was sim-
ilar across all four models, occurring when fNSC was approximately equal to 0.1.
Using linear interpolation, the fNSC values at which each model curve crossed
the x-axis were calculated as: CLASS-CTEM: 0.156; JULES-ES.1p0: 0.0481;
LPJ-GUESS: 0.0706; ISAM: 0.0735.

5.3.2 Inter-annual variability of NPP: spatial analysis

To understand the change in IAV of global mean NPP it was useful to examine
how the variability of NPP changes spatially (Fig. 5.3). First, at fNSC = 0.5,
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representing slow NSC turnover/large NSC pool size, the increase in the IAV of
NPP seen previously in the global mean, was also seen both spatially across all
models (Fig. 5.3). In the ensemble mean the relative increase in IAV was most
pronounced across the tropics. It should be noted that this does not necessar-
ily mean that the topics have the largest contribution to the change in IAV of the
global mean NPP seen in Fig. 5.2, since the changes presented are relative to the
original variability in TRENDY and not absolute change. The relative change in
the tropics was significant across all four models, however, in LPJ-GUESS there
were also large relative changes across the northern hemisphere and sub-tropics
(Fig. 5.3).

Figure 5.3: The percentage change in the inter-annual variance of predicted
net primary productivity (NPP) against four initialised non-structural carbohydrate
(NSC) mass fractions (fNSC) from a simplified version of the SUGAR model. The
percentage change is relative to the inter-annual variance of NPP from four land
surface models (LSM) which have been used to drive the SUGAR model.

The change in the IAV of NPP can be associated with a change in either the IAV
of Ra, or the covariance of GPP and Ra, according to equation (5.8). An increase
in the IAV of Ra results in an increase in the IAV of NPP, while an increase in the
covariance of GPP and Ra decreases the IAV of NPP. The percentage change
in the IAV of Ra was far less uniform with respect to the sign of the change,
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both spatially and across models, than that of NPP (Fig. 5.4). In the ensemble
mean, the increase in the IAV of NPP was consistent with an increase in the IAV
of Ra across the Amazon basin, however, for many other regions, the IAV of Ra

decreased in contrast to the increase in the IAV of NPP. This indicates that the
increase in IAV of NPP was driven predominantly by the relative change in the
covariance of GPP and Ra, the sign of which was consistently negative both spa-
tially and across models (Fig. 5.5). The decrease in the covariance of GPP and
Ra was again most pronounced across tropical regions in most models, with the
exception once more being in LPJ-GUESS where significant decreases were also
seen in northern latitudes and the subtropics (Fig. 5.5).

Figure 5.4: The percentage change in the inter-annual variance of predicted au-
torophic respiration (Ra) against four initialised non-structural carbohydrate (NSC)
mass fractions (fNSC) from a simplified version of the SUGAR model. The per-
centage change is relative to the inter-annual variance of Ra from four land sur-
face models (LSM) which have been used to drive the SUGAR model.

At fNSC = 0.001, representing the fastest NSC turnover rates/smallest pool sizes,
the decrease in the IAV of global mean NPP (Fig. 5.2) was again a largely con-
sistent result both spatially and across models (Fig. 5.3). The main exception to
this was a significant increase in IAV across northern regions in ISAM. The cause
of this exception is not yet clear.
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Figure 5.5: The percentage change in the covariance of annual gross primary
production (GPP) and predicted annual autotrophic respiration (Ra), against four
initialised non-structural carbohydrate (NSC) mass fractions (fNSC) from a simpli-
fied version of the SUGAR model. The percentage change is relative to the equiv-
alent covariance from four land surface models (LSM) which have been used to
drive the SUGAR model.

The mostly consistent decrease in the IAV of NPP was again in contrast to the
heterogeneity in the sign of the change in IAV of Ra (Fig. 5.4). At this smaller
fNSC values, several regions across all models saw significant increases in the
IAV of Ra which was in contradiction to the decrease seen for NPP. Again, this
indicates that the change in the covariance of GPP and Ra, which was positive
across most regions and models, was the predominant driver of the change in IAV
of NPP. The increase in the IAV of NPP seen across northern latitudes in ISAM
was also consistent with decreases in the covariance of GPP and Ra. Finally, at
the two intermediate fNSC values (0.01 and 0.1), the transition from a decrease
to an increase in the IAV of global mean NPP (from small fNSC values to large) is
seen spatially (Fig. 5.3). This transition did not occur uniformly in space or across
models.
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5.3.3 Comparing to observations of the land carbon sink

Figure 5.6: The percentage change in the root mean square error (RMSE) be-
tween predicted and observations of global net biome productivity (NBP) against
initialised non-structural carbohydrate (NSC) mass fraction. The predicted NBP
is from a simplified version of the SUGAR model, driven by four land surface
models (LSM). Observations are the implied land sink from the Global Carbon
Project. The percentage change is relative to the RMSE between observations
and the predicted NBP from the four original LSMs.

The changes made to predicted NBP relative to the original LSMs and ob-
servations varied significantly between models (Fig. 5.6). In CLASS-CTEM and
LPJ-GUESS, significant improvements to predicted NBP were achieved using the
smallest values of fNSC . In both models, the maximum reduction in the RMSE be-
tween observations and predictions occurred at the smallest tested value of fNSC
(fNSC = 0.001). At this value LPJ-GUESS saw a decrease of 15.2% in the RMSE,
and CLASS-CTEM saw a decrease of 10.9%. However, above fNSC = 0.0953

in LPJ-GUESS, and above fNSC = 0.0796 in CLASS-CTEM, the predictions of
NBP by SUGAR less accurately captured the GCB obsevrations than the original
LSMs, with the RMSE increasing as fNSC increased above these values in both
models. In JULES-ES-1.0 and ISAM, improvements to the predictions of NBP
were less significant and occurred at different values of fNSC . In JULES-ES-1.0,
the RMSE between predictions and observations was reduced, relative to the
original model, for fNSC values between 0.00711 and 0.0100. The maximum de-
crease of 1.33% occurred at an fNSC value of 0.0492. In ISAM the RMSE was
reduced relative to the original model for fNSC values between 0.225 and 0.636,
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with a maximum reduction of 1.72% occurring at fNSC = 0.412. The NBP pre-
dicted by SUGAR at these optimal values of fNSC are compared with the original
prediction by each LSM and the GCB observations in Fig. 5.7.

Figure 5.7: The Net Biome Productivity (NBP) predicted by four land surface mod-
els (LSM) from the TRENDY model consortium (orange), and the NBP predicted
by the SUGAR model (blue) with an initialised non-structural carbohydrate (NSC)
mass fraction (fNSC) that optimises the prediction of NBP relative to observations
from the Global Carbon Budget (GCB). The fNSC values that optimise the predic-
tion of NBP by SUGAR for each TRENDY LSM are: for JULES-ES-1.0, fNSC =
0.0492; for CLASS-CTEM, fNSC = 0.001; for LPJ-GUESS, fNSC = 0.001; and for
ISAM, fNSC = 0.412.

5.4 Discussion

In order to understand the changes made by SUGAR to the variability of predicted
NPP it is useful to consider the extreme limits of fNSC . When NSC turnover is
slow (i.e. fNSC is large) the rate of respiration in SUGAR is driven predominantly
by its temperature and biomass dependences, which in these simulations come
from the RmTRENDY

factor in equation (5.2). Covariance between Ra and GPP in
this limit, is due only to their shared dependence on temperature and biomass
and there is no direct relationship between the two variables. The dependence
of photosynthesis on other factors such as light and water availability in the four
LSMs, mean that the variability both seasonally and inter-annually of respiration
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and photosynthesis may be significantly different in this limit. We see a decrease
in their covariance relative to the original TRENDY models as fNSC increases, as
the influence of photosynthesis on respiration declines. This complete decoupling
of GPP and Ra may be particularly important in tropical regions where the varia-
tion of GPP can differ greatly from that of temperature (Wagner et al., 2016), and
may explain the significant relative change in the covariance of GPP and Ra seen
in these regions (Fig. 5.3). In the opposite limit of fast NSC turnover (i.e. fNSC
is small), photosynthesis becomes the most important driver of respiration, and
the influence of temperature and biomass via the RmTRENDY

factor is negligible.
This results in a general increase in the covariance between GPP and Ra, as the
two variables become more tightly correlated. It should be noted that since the
magnitude of covariance depends on the magnitude of the variables, a change in
the long-term trend (and therefore magnitude) of respiration in SUGAR may also
result in a change in the covariance between GPP and Ra, that not does not nec-
essarily indicate a change in the correlation between the two variables. This may
explain the apparent decrease in covariance seen in some regions and models
at low fNSC values, in particular across northern latitudes in ISAM, which is in
contradiction to the increasing correlation between the two variables that should
occur in this limit of fast NSC turnover rate.

These two opposing extremes of fast and slow NSC turnovers are significant.
In the limit that fNSC tends to zero (i.e. the turnover rate tends to∞), respiration
in SUGAR becomes a constant fraction of GPP, as NSC is utilised as soon as
it is assimilated. Importantly, since respiration is a constant fraction of GPP, it is
also always proportional to NPP, and so in this limit we can view SUGAR as a
purely growth respiration model. In the opposing limit, where fNSC is large and
the turnover rate of NSC is slow, respiration is controlled by its own dependences
on temperature and biomass, and we can view SUGAR in this limit as a purely
maintenance respiration model. These limits allow us to connect the single res-
piration flux in SUGAR to the GMR paradigm used in the TRENDY LSMs. The
GMR paradigm is an interpretation of empirical observations that, at a constant
temperature, changes in respiration can be described by both changes in biomass
and changes in photosynthesis (McCree, 1970), as described by equation (5.1).
The split of respiration into growth and maintenance components is an attempt to
account for this balance between photosynthesis and biomass as primary drivers
of respiration. This balance is commonly altered via the growth and maintenance
coefficients (k and c from eq. (5.1) respectively), however, the physical interpre-
tation of these coefficients is not clear, which makes justifying their values diffi-
cult. The single component respiration framework provides a more mechanistic
explanation that the apparent split in the control of respiration between photo-
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synthesis and biomass is determined by the turnover rate of substrate (Thornley,
2011; Collalti et al., 2020). At intermediate NSC turnover rates, SUGAR is in the
transition shown in Figure. 5.5, where respiration moves from being controlled
predominantly by photosynthesis at fast NSC turnover rates to being controlled
predominantly by biomass and temperature at slow NSC turnover rates. The point
at which the variability of global mean NPP predicted by SUGAR is the same as
that in the original TRENDY LSMs may be viewed as the point at which this alter-
native interpretation is equivalent to the GMR paradigm. It is interesting to note
that the value of fNSC at which this happened, was of the order of 0.1 for all four
LSMs. It is difficult to say with any certainty whether this holds any significance.
However, a mass fraction of 0.1 is a good estimate of the average concentration
of NSC at an ecosystem level within a tropical rainforest (Würth et al., 2005), and
given the large proportion of total global biomass made up by tropical forests,
may also be a reasonable estimate of the average ecosystem NSC content at a
global scale. If we assume that the maintenance-growth split within these four
LSMs has been parametrised to match the observed split in the control of respi-
ration by photosynthesis and biomass, then these values may support the idea
that the single component respiration framework is a more mechanistic way to
explain variation in total plant respiration.

An aim of this study was to explore the possibility of using global observations
of terrestrial carbon uptake to constrain the turnover rate of NSC within SUGAR.
In all four LSMs the RMSE between predicted and observed NBP was reduced by
the addition of the NSC pool in SUGAR, for at least a small range of fNSC values.
In some of the LSMs the maximum reduction in this RMSE was quite large, in
particular in LPJ-GUESS and CLASS-CTEM where the RMSE was reduced by
by up to 15.2% and 10.9% respectively. However, it is important to analyse the
significance of these reductions and the fNSC values associated with them. First,
for LPJ-GUESS and CLASS-CTEM, the RMSE between predicted and observed
NBP saw the largest reduction as fNSC tended towards zero and NSC turnover
rates became large. The resulting constraint on NSC concentrations, suggests
that plants do not store any form of reserve compounds and that all carbon is
utilised as soon as it is assimilated. This limit is equivalent to setting respiration
equal to a constant fraction of GPP, an approached used in some models (Collalti
and Prentice, 2019) and referred to as the ‘fixed fraction hypothesis’ (Waring et al.,
1998; Collalti et al., 2020). However, this conflicts with observations that plants of-
ten contain significant amounts of reserve carbon (Würth et al., 2005; Hoch et al.,
2003) and that carbon utilisation rates can diverge from carbon assimilation rates
over both seasonal and multi-annual time-scales (Doughty et al., 2015a). In con-
trast, in ISAM, the maximum reduction in RMSE occurred when fNSC was equal
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to 0.412, suggesting that on average more than 40% of plant biomass is made
up of NSC. While plants are capable of storing large quantities of non-structural
compounds, such high concentrations of NSC are unlikely. Ecosystem level NSC
concentrations are difficult to determine but estimates are usually close to ∼10%
of total plant biomass (Martı́nez-Vilalta et al., 2016). For example, an estimate of
8% was reported for a semi-deciduous tropical forest (Würth et al., 2005), while
the most recent estimate of NSC concentrations in temperate forests is at c. 4%
(Furze et al., 2019). Finally, in JULES-ES-1.0, the maximum reduction in RMSE
occurred at an fNSC value of 0.0492, implying an average NSC mass fraction of
around 5% globally. This is a far more realistic estimate, however, its reliability
must be thoroughly examined. Several of the factors that we might use to explain
the unrealistic values of fNSC that emerge from the other LSMs, also apply to
JULES-ES-1.0, meaning we cannot rule out getting the right (or at least realistic)
answer for the wrong reason. Nonetheless as a proof of concept this is an en-
couraging result.

Several limitations in this study limit the use of the GCB budget imbalance to con-
strain NSC turnover. The first is the calculation of NBP predictions in SUGAR.
NBP is the balance between fluxes into and out of the land surface. Two signifi-
cant components of this are the net flux of carbon absorbed by plants (NPP) and
the flux of carbon out of the soil by heterotrophic respiration (RH). These two
components are not independent as the rate of RH is closely related to the input
of carbon into the soils through plant litter-fall, which itself is determined by NPP.
To calculate predictions of NBP in SUGAR, changes in the inter-annual variabil-
ity of in NPP were added to the original predictions of NBP from each TRENDY
LSM, however, this did not take into the account the relationship between NPP
and RH . Accounting properly for this relationship would require SUGAR to be
coupled to each LSM and the TRENDY simulations to be repeated, which may
produce significantly different predictions of NBP to those presented here. This
should motivate the community to consider the role of NSC in LSMs so that fully
coupled simulations can be realised. Another limitation was the use of grid-box
fluxes from the TRENDY LSMs to drive SUGAR. One of the main assumptions
made in these simulations was that the fNSC value used within SUGAR was uni-
form across the globe meaning that every ecosystem was initialised with the same
NSC mass fraction. However, significant variation in the amount of NSC stored
by plants has been seen across ecosystems and plant species (Martı́nez-Vilalta
et al., 2016; Dietze et al., 2014). An improvement to these simulations may be
to represent NSC on a plant function type (PFT) basis instead of at the grid-box
level. This would allow the spatial and inter-species variation in NSC content to be
accounted for and result in more accurate constraints on NSC turnover. Finally,
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the effect that the variability of both predicted GPP and maintenance respiration
in each LSM has on the predictions made by SUGAR is large. The variability of
respiration and NPP predicted by SUGAR is ultimately determined by contribu-
tions from the GPP and Rm inputs from TRENDY. Deficiencies in the predictions
of these two variables therefore limits the ability of SUGAR to accurately predict
respiration and NPP fluxes, and highlights the need to develop the representation
of respiration and NSC in these LSMs, in conjunction with developments in the
representation of photosynthesis.

5.5 Conclusions

This work highlights the potential impact that representing the dependence of
respiration and growth on NSC may have on the variability of carbon fluxes even
on inter-annual time-scales. The apparent dependence of respiration on photo-
synthesis and biomass may be explained by a simple substrate-based framework
which represents an alternative interpretation to the GMR paradigm. The growth-
maintenance split within the four TRENDY LSMs used in this chapter may also
indicate an average global NSC mass fraction of around 10%. The use of at-
mospheric CO2 observations to constrain parameters within SUGAR is difficult
due to the many other processes associated with the global carbon cycle that
introduce uncertainty into observations and model predictions. Further work is
needed if this method is to be successful, however, it highlights the potential of
using the variability of carbon fluxes to constrain components of NSC dynamics.
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Chapter 6

Conclusions

This thesis has focused on the role of non-structural carbohydrates (NSC) in
model predictions of plant carbon fluxes at an ecosystem, regional and global
scale.

6.1 Overview

In chapter 1 our current empirical understanding of NSC within plants was in-
vestigated. The role of NSC in supporting plant respiration and growth, when
photosynthetic carbon assimilation is limited, was presented and discussed. In
particular the importance of NSC during periods of environmental stress was
highlighted. Key uncertainties associated with how NSC dynamics are involved
in plant responses to drought, in particular within mortality processes were exam-
ined. We saw that despite the importance of NSC within terrestrial ecosystems,
many land surface models (LSM) do not contain comprehensive descriptions of
NSC storage and utilisation. While many LSMs represent some form of labile car-
bon reserve, that is typically required to produce accurate predictions of certain
plant processes such as leaf phenology; most LSMs do not capture all the key
components associated with NSC. Specifically, there are currently few LSMs that
account for the dependence of both respiration and growth on NSC, which limits
their ability to capture both long and short term responses to changes in both
environment and carbon availability from photosynthesis.

In chapter 2, a simple model of NSC storage and utilisation, the “Substrate Utili-
sation by Growth and Autotrophic Respiration” model (SUGAR), designed to work
within a LSM was presented. The model equations were presented and key con-
cepts within the model were derived. Context for how SUGAR may fit within a
LSM was also given by describing the relevant equations within JULES (The Joint
UK Land Environment Simulator Best et al., 2011; Clark et al., 2011). The sim-
plicity of SUGAR allowed an approach to evaluating its parameters, that does not
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require detailed time-series of NSC concentrations, which are difficult to measure.

In chapter 3, SUGAR was used to simulate plant carbon expenditure (PCE) fluxes
across the Amazon basin, using predicted Gross Primary Productivity (GPP) from
an ensemble of LSMs and constrained with observations. The difference between
models that do not represent NSC, and models that do, and the transition between
them, was demonstrated by examining the sensitivity of SUGAR to NSC turnover
rate, which was varied by changing the initialised NSC pool size between sim-
ulations. In simulations with realistic estimates of NSC pool size, SUGAR was
able to decouple PCE from GPP over seasonal time-scales, and a transition from
source-driven to sink-driven carbon dynamics was seen in the predictions of PCE.
The difference in the seasonality between GPP and PCE, predicted by SUGAR,
was qualitatively consistent with observations over the Amazon and highlighted
the importance of comprehensive representations of NSC in large scale ecosys-
tem models.

In chapter 4, SUGAR was tested under stressed and non-stressed conditions
by simulating carbon fluxes at a tropical through-fall exclusion (TFE) experiment
and corresponding control plot. Simulations of the two forests by JULES were
used to drive SUGAR off-line, and predictions of respiration and growth from both
models were compared to observations. SUGAR more accurately captured the
response of net primary productivity (NPP) to the drought experiment compared
to JULES, suggesting an important role for NSC within the forest drought re-
sponse. However, the results also highlighted the need for further development of
the response of photosynthesis in JULES as reducing the sensitivity of photosyn-
thesis to soil moisture stress also allowed more accurate predictions by JULES,
and was another significant contributor to the mismatch between observations
and predictions.

Finally, chapter 5 investigated the impact of a simple model of NSC on predic-
tions of respiration, NPP and net terrestrial carbon uptake at a global scale. A
simplified version of SUGAR was used to simulate respiration and growth fluxes,
with output data from four LSMs from the TRENDY consortium used as driv-
ing data. These simulations showed that NSC may have a significant effect on
predictions of carbon fluxes at a global scale and over multi-annual time-scales.
They also presented an alternative interpretation of the growth-maintenance res-
piration paradigm which is at the heart of most LSMs. This may provide a more
mechanistic representation and understanding of respiration within LSMs.
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6.2 Future work

SUGAR is a relatively simple approach to modelling NSC, that reflects the cur-
rent availability of empirical data on carbohydrate dynamics in plants. Due to its
parsimonious nature, it is generally easy to run and evaluate, and facilitates a
basic understanding of NSC dynamics at an ecosystem scale. However, despite
the paucity of data, there are significant processes associated with NSC that are
known to be important for plant function that are missing from SUGAR. In addi-
tion, there are several issues and questions that arise from attempting to integrate
SUGAR into a LSM, which was the original aim of this work.

6.2.1 The effect of water availability on growth

As seen throughout this thesis, an underlying assumption in many LSMs is that
plant growth is driven predominantly by the rate of photosynthesis. Growth in
these models is often predicted to increase in the future as photosynthesis is
stimulated by increasing CO2 concentrations, albeit with substantial spread be-
tween models in terms of the magnitude of this change (Friend et al., 2014).
However, these predictions are at odds with several observations from experi-
mental CO2 fertilisation studies in which plant growth is largely unaffected by in-
creased CO2 despite enhanced photosynthesis (Woodward, 2002; Kirschbaum,
2010; Ellsworth et al., 2017). This may be due to the limitation of plant growth by
external factors such as nutrient availability, temperature, and water availability
(Körner, 2003), and so representing these factors is an integral part to predicting
accurate growth responses of global vegetation to climate change in the future.

It is well documented that declining water availability has a direct impact on plant
growth, that is not associated with a reduced carbon supply from the inhibition of
photosynthesis (Muller et al., 2011; Hsiao, 1973; Boyer, 1970). Growth in plants
relies on uptake of water by cells causing them to expand, and resulting in an
irreversible extension of their walls (Cosgrove, 2014; Fricke, 2017). When water
availability is low, cell water uptake is prevented and growth ceases. However,
this process is rarely represented in large scale vegetation models. This is in
part due to a lack of NSCs that allow environmental controls of sink processes,
and in part because it is not clear how cell extension can be scaled to the whole
plant or ecosystem level, that most global vegetation models work at. Attempts
to incorporate direct water limitation on growth into models have largely used
empirically derived relationships (e.g. Guillemot et al., 2017; Mencuccini et al.,
2017) in place of mechanistic representations. These allow accurate predictions
of plant growth at fine spatial and temporal resolutions, however may not be ap-
plicable to the global scale as they are commonly derived from relatively small
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subsets of plant species and environmental conditions. Mechanistic approaches
(e.g. Steppe et al., 2006; Hölttä et al., 2010) will likely prove to be more reliable
for predicting future plant growth at global scales, however, commonly these mod-
els contain large amounts of parameters which are currently difficult to evaluate
(Babst et al., 2018; Peters et al., 2021). Recent efforts to measure environmental
limitations on plant growth (Babst et al., 2019) may allow both mechanistic and
empirical approaches to be incorporated into large-scale vegetation models and
efforts should be made to evaluate these approaches across the globe. This will
further our understanding of water limited plant growth and allow new theory to
be tested and evaluated.

6.2.2 Dynamic carbon allocation

A further limitation of SUGAR is that it currently simulates just one NSC pool,
distributed uniformly across all plant organs. In addition, different molecules such
as sugars and starches are not distinguished. Yet NSC concentrations are com-
monly found to vary significantly throughout a plant, often being highest in leaves
for example, and lowest in stems (Martı́nez-Vilalta et al., 2016). Idealised mod-
elling studies suggest that partitioning and transport of substrate between or-
gans may be important for determining the dynamic allocation of carbon to dif-
ferent structural tissues in response to changes in environment (Thornley, 1991;
Reynolds and Thornley, 1982), for example enhanced root growth when soil nutri-
ents or water availability are low, or enhanced leaf growth when in poor light con-
ditions (Doughty et al., 2014; Kobe et al., 2010; Girardin et al., 2016). However,
many LSMs do not allow these types of dynamic adaptations to occur, with the
ratios between different plant organs being determined by predefined allometric
relationships (e.g. Clark et al., 2011). Even with dynamic allometry, the transport
of NSC throughout a plant is not well understood and mechanistic representa-
tions are difficult to parametrise, particularly at a global level. Nonetheless, efforts
should be made to develop representations of these adaptive strategies as they
play an integral role in the response of forests to changes in climate (Doughty
et al., 2014).

6.2.3 Sink priority

NSC utilisation in SUGAR is limited by both the availability of carbohydrate in the
NSC pool and the climatic control of temperature. However, another factor that
can potentially limit NSC utilisation in plants is what is known as ‘sink priority’
(Hartmann et al., 2018). When the source of carbon is limiting, plants appear to
dynamically change the relative allocation rates of carbon to various processes,
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prioritising certain sinks over others. It is unclear what mechanisms cause this
hierarchy (Hartmann et al., 2018), however suggestions include the relative posi-
tion of sinks within the plant (Minchin et al., 1993) and genetic changes in proteins
associated with loading and unloading carbohydrates from the phloem (Lemoine
et al., 2013).

Currently in SUGAR, there is no hierarchical sink priority, as maintenance res-
piration (Rm), growth (G), and growth respiration (Rg) are all equally effected by
the decline in available carbon from the NSC pool. This may result in unrealistic
predictions of plant growth and respiration, in particular over the life cycle of a
forest (Hartmann et al., 2018). As trees grow from saplings to maturity, the allo-
metric ratios between different organs can undergo significant shifts, which can
greatly effect the dynamics of NSC allocation within the tree (Hartmann et al.,
2018). For example, the ratio of leaf biomass to total biomass sharply declines
with tree size (Poorter et al., 2012), and as a result the specific rate of GPP (i.e.
the ratio of GPP to total biomass) often declines as a tree grows. The specific
cost of biomass maintenance, however, does not decline so strongly (Tang et al.,
2014) and this results in declining net primary productivity (NPP) and carbon
use efficiency (CUE) with increasing plant age (DeLucia et al., 2007; Mencuccini
et al., 2005). Since maintenance respiration and growth have the same priority in
SUGAR, this shift in CUE does not occur and instead both are equally affected
by the decline in specific GPP. This can result in unrealistic predictions of forest
regrowth after disturbance, for example. Some form of sink hierarchy therefore
needs to be implemented into SUGAR so that, as trees grow and their specific
rate of GPP declines, they prioritise maintenance respiration over growth.

One simple approach to achieving sink hierarchy in SUGAR is to introduce dif-
ferent dependences of maintenance respiration and growth on NSC. This can
be done simply by introducing distinct Michaelis-Menten parameters (Km) for
each process. The Michaelis-Menten parameter in SUGAR determines the NSC
concentration at which utilisation has been reduced by a half of its maximum
value. Therefore, by giving maintenance respiration a much smaller Michaelis-
Menten parameter than growth, a priority for maintenance respiration is intro-
duced. Growth is down-regulated at larger NSC concentrations and therefore
much sooner in response to declining NSC (Fig. 6.1(a)). The current limit to this
development is that evaluating these parameters is extremely difficult. Measur-
ing the affinity of different processes for NSC, while controlling for environmental
drivers of utilisation is currently not possible. One possible approach, however,
might be to use long term carbon use efficiency and whole plant NSC data. Hav-
ing different Km parameters for Rm and G in SUGAR introduces a NSC depen-
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dence into the equilibrium carbon use efficiency (CUE, Fig. 6.1(b)), which is
calculated in SUGAR by assuming that over a sufficiently long period, total NSC
utilisation is approximately equal to GPP, and total plant growth is approximately
equal to NPP (see chapter 2.5):

CUE∗ =
G∗

R∗m +R∗g +G∗
(6.1)

Using the equations for Rm, Rg and G, and cancelling terms gives:

CUE∗ =
G0

Rm0

W ∗
NSC +KmG

W ∗
NSC +KmR

+
G0

Yg

(6.2)

where KmR and KmG are the distinct Michaelis-Menten parameters for mainte-
nance respiration and growth respectively.

It may be possible therefore, to fit these parameters with long-term NSC and CUE
data over the lifetime of a tree or forest. Such data is rare as the lifetime of forests
is typically much longer than the average field experiment. However, long-term
data like this would be invaluable in the understanding of NSC allocation and sink
priority and would aid in further development of models, including SUGAR. The
long-term evolution of NSC dynamics as trees grow from saplings to trees may
unlock some of the key questions associated with our understanding of carbon
allocation in plants (Hartmann et al., 2018).

Figure 6.1: (a) The relationships between maintenance respiration (R) and growth
(G), with non-structural carbohydrate (NSC) availability with distinct Michaelis-
Menten parameters (Km). Growth declines at larger concentrations of NSC rel-
ative to maintenance respiration and hence has a lower priority. (b) Equilibrium
carbon use efficiency (G/(G+R)) against NSC availability.
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6.2.4 Litter-fall and disturbance

An issue that arises when coupling SUGAR to a LSM is how the NSC pool in-
teracts with litter-fall and disturbance processes. It is intuitive that during distur-
bance events such as fire, herbivory or wind induced litter-fall, (i.e. biomass loss
that plants have no prior ‘knowledge’ of) all forms of biomass may be lost. That
is, if for example a leaf is blown from a tree, or eaten by an animal, the whole
leaf and its contents must be lost, including the NSC stored within it. This there-
fore changes the rate equation for NSC in SUGAR as there must now be a loss
from disturbance. However, there are some litter-fall events that are not induced
directly by external factors. Deciduous trees, for example, drop their leaves in
response to changes in environment such as declining temperatures or water
availability, however the actual process of leaf senescence is induced and con-
trolled internally by the tree itself. There is some evidence that nutrients may be
partially reabsorbed before leaves are dropped (Aerts, 1996; Killingbeck, 1996),
and it may therefore be possible for plants to also partially reabsorb NSC into
their stems, and drop only structural compounds in litter-fall. There is little data
on the NSC concentrations within leaves before and after senescence and so
this process is not well quantified. The re-absorption of NSC must necessarily
work against concentration gradients and so may be a relatively small flux. Math-
ematically it is simplest to assume that no NSC can be re-absorbed before leaf
senescence and so in future work when coupling SUGAR to a LSM, this will be
assumed. However, this process may still have a large effect on whole plant NSC
dynamics in deciduous species and work should be done to attempt to quantify it.

Assuming that there is no NSC re-absorption before leaf senescence, the equa-
tions in SUGAR change as follows: In SUGAR the mass fraction of NSC (WNSC) is
uniform throughout an ecosystem, as different plant organs are not distinguished.
If the rate of total biomass (Cv) loss from litter-fall and disturbance is given by Λ,
then the rate of NSC loss through these processes must be given by WNSCΛ. The
equation for the rate of change of NSC then becomes:

dCNSC
dt

= ΠG −Rm −Rg −G−WNSCΛ (6.3)

where ΠG is Gross Primary Productivity (GPP), Rm is maintenance respiration,
Rg is growth respiration, and G is structural plant growth.

The rate of change of total plant carbon biomass is given by:

dCv
dt

= ΠN − Λ (6.4)
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where ΠN is Net Primary Productivity (NPP).

The rate of change of WNSC is, therefore, given by:

dWNSC

dt
=

(1−WNSC)

Cv
(ΠG −Rm −Rg)−

G

Cv
(6.5)

To evaluate the parameters in SUGAR (φ and α; equations 2.37 & 2.38) we can
again consider SUGAR under steady state such that the rate of change of WNSC

is zeros. Assuming that over a period τobs, WNSC can be considered constant,
then averaging over that period gives:

0 =
1

τobs

∫
τobs

(
dWNSC

dt
=

(1−WNSC)

Cv
(ΠG −Rm −Rg)−

G

Cv

)
dt (6.6)

Using the definition of α (equation (2.38)) and substituting the definition of U
(equation (2.37)) gives:

0 =
1

τobs

∫
τobs

(
(1−WNSC)

ΠG

Cv
− (1−WNSC(1− α))φFQ(T )

WNSC

WNSC +Km

)
dt

(6.7)
Assuming that variations in the NSC pool are small relative to its total size, this
can be approximated as:

0 = (1− fNSC)

(
ΠG

Cv

)∗
− (1− fNSC(1− α))φF ∗Q(T )

fNSC
fNSC +Km

(6.8)

Rearranging for φ gives:

φ =
1 + aKm

F ∗Q(T )

(
ΠG

Cv

)∗
1− fNSC

1− fNSC(1− α)
(6.9)

Similarly for α, writing the rate of change of WNSC in terms of NPP:

dWNSC

dt
=

(1−WNSC)

Cv
ΠN −

G

Cv
(6.10)

Averaging over the observation period, the average NPP can be aprroximated in
terms of the equilibrium structural carbon growth rate (G∗) and equilibrium NSC
mass fraction (fNSC):

Π∗N =
G∗

1− fNSC
(6.11)
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Similarly using equation (6.5), an expression for steady state GPP can be found
in terms of equilibrium growth and respiration:

Π∗G = R∗m +R∗g +
G∗

1− fNSC
(6.12)

Equations (6.11) and (6.12) can then be used to relate steady-state carbon use
efficiency to equilibrium growth and respiration:

CUE∗ =
G∗

(R∗m +R∗g)(1− fNSC) +G∗
(6.13)

Substituting equations (2.31), (2.34) and (2.33), and rearranging yields:

CUE∗ =
G0

Rm0(1− fNSC) +
1− Yg
Yg

(1− fNSC)G0 +G0

(6.14)

Rearranging gives:

Rm0

G0

=
1

1− fNSC

[
1

CUE∗
− 1− Yg

Yg
(1− fNSC)− 1

]
(6.15)

Finally using φ = Rm0 +
G0

Yg
and G0 = αφ, yields:

Rm0

G0

=
1

α
− 1

Yg
(6.16)

Which allows the following expression to be written for α in terms of steady state
carbon use efficiency:

α =

[
1

1− fNSC

(
1

CUE∗
− 1− Yg

Yg
(1− fNSC)− 1

)
+

1

Yg

]−1
(6.17)

6.2.5 Carbon starvation

Many LSMs including JULES do not explicitly represent mortality. Instead, veg-
etation carbon is lost through background litter-fall and disturbance rates, and
mortality is implicitly represented when the forest carbon balance is negative, i.e.
NPP is less than background litter-fall + disturbance. In addition this may be
accelerated if respiration exceeds photosynthesis and NPP becomes negative.
Structural biomass is respired, reducing plant biomass and emulating mortality.
In SUGAR, however, structural carbon cannot be respired and so NPP can only
become negative while there is still NSC to support respiration. When NSC is
depleted, it down regulates respiration, restoring positive NPP levels. This essen-
tially removes the implicit representation of mortality that occurs when respiration
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exceeds GPP. An explicit representation of plant mortality is therefore required
such that when the NSC pool is depleted, if photosynthesis is remains inhibited
and respiration is down regulated, then biomass can be lost from the ecosystem.

6.2.6 End-product Inhibition

In SUGAR there is currently no upper bound on the mass fraction of NSC, and
in theory if the specific rate of GPP increases sufficiently, the NSC mass fraction
could become unrealistically large. In reality, large NSC mass fractions do not
occur as excessive build up of substrate within leaves can actually inhibit pho-
tosynthesis, a process termed ‘end-product inhibition’ (Stitt, 1991). End-product
inhibition is not well understood however, future work might look at improving this
understanding and developing a representation that can be added to SUGAR and
JULES to prevent unrealistically large NSC mass fractions.

6.2.7 Stomatal optimisation

SOX (Eller et al., 2018, 2020) is a stomatal optimisation model designed to im-
prove the representation of stomatal responses to water availability. The model
is based upon stomatal optimality theory which suggests that stomatal regulation
must maximise carbon gain from photosynthesis against evaporative water loss,
both associated with increasing stomatal conductance (Wolf et al., 2016). SOX
assumes that the optimal stomatal conductance maximises the product of photo-
synthetic rate and the relative change in hydraulic conductance associated with
stomatal opening. In chapter 1 of this thesis we saw that plant water and plant
carbon status are inextricably linked, and there may be several applications of
SUGAR that may relate to SOX:

• The first is associated with xylem repair. Once xylem is damaged in SOX,
and hydraulic conductance is lost, it can be recovered instantaneously once
the water stress is eased and normal photosynthesis is resumed. In reality
xylem repair must depend on resource availability (Sevanto et al., 2014) and
a possible area for future research is therefore the role that NSC availability
in SUGAR may have in determining xylem recovery in SOX.

• Second is associated with the optimisation within SOX. Stomatal optimal-
ity theory maximises carbon gain by photosynthesis as it is assumed that
greater carbon assimilation results in increased plant growth. However,
throughout this thesis we have seen that plant growth does not always de-
pend on photosynthesis, and environmental conditions may limit growth in-
dependently of carbon assimilation. NSCs are central to this and it may
be necessary to take into account the NSC availability in this optimisation.
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One hypothesis might be that with significant stores of NSC, plants do not
need to risk opening their stomata, as they can maintain respiration and
growth using their NSC reserves. Alternatively it may be that with significant
NSC, any damage to xylem can be easily repaired due to high resource
availability. Plants may therefore be able to risk opening their stomata fur-
ther to further maximise carbon assimilation. It is not clear what role NSC
might have in this optimisation but the simplicity of SUGAR may allow these
hypotheses to be tested.
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Wiley, E., and Zaehle, S. (2018). Identifying differences in carbohydrate dy-
namics of seedlings and mature trees to improve carbon allocation in models
for trees and forests. Environmental and Experimental Botany, 152:7–18. Ex-
periments with trees: from seedlings to ecosystems.

Hartmann, H., Bahn, M., Carbone, M., and Richardson, A. D. (2020). Plant carbon
allocation in a changing world – challenges and progress: introduction to a
virtual issue on carbon allocation. New Phytologist, 227(4):981–988.

Hartmann, H. and Trumbore, S. (2016). Understanding the roles of nonstructural
carbohydrates in forest trees – from what we can measure to what we want to
know. New Phytologist, 211(2):386–403. 2016-21190.

Haverd, V., Smith, B., Nieradzik, L., Briggs, P. R., Woodgate, W., Trudinger, C. M.,
Canadell, J. G., and Cuntz, M. (2018). A new version of the cable land sur-
face model (subversion revision r4601) incorporating land use and land cover
change, woody vegetation demography, and a novel optimisation-based ap-
proach to plant coordination of photosynthesis. Geoscientific Model Develop-
ment, 11(7):2995–3026.

127



Hemming, D., Fritts, H., Leavitt, S., Wright, W., Long, A., and Shashkin, A. (2001).
Modelling tree-ring δ13c. Dendrochronologia, 19:23–38.

Hewitt, A. J., Booth, B. B. B., Jones, C. D., Robertson, E. S., Wiltshire, A. J.,
Sansom, P. G., Stephenson, D. B., and Yip, S. (2016). Sources of uncertainty
in future projections of the carbon cycle. Journal of Climate, 29(20):7203–7213.

Hoch, G., Richter, A., and Körner, C. (2003). Non-structural carbon compounds
in temperate forest trees. Plant, Cell & Environment, 26(7):1067–1081.

Hsiao, T. C. (1973). Plant responses to water stress. Annual Review of Plant
Physiology, 24(1):519–570.

Huntingford, C., Atkin, O. K., Martinez-de la Torre, A., Mercado, L. M., Heskel,
M. A., Harper, A. B., Bloomfield, K. J., O’Sullivan, O. S., Reich, P. B., Wythers,
K. R., Butler, E. E., Chen, M., Griffin, K. L., Meir, P., Tjoelker, M. G., Turnbull,
M. H., Sitch, S., Wiltshire, A., and Malhi, Y. (2017). Implications of improved
representations of plant respiration in a changing climate. Nature Communica-
tions, 8(1):1602.

Huntingford, C., Harris, P. P., Gedney, N., Cox, P. M., Betts, R. A., Marengo, J. A.,
and Gash, J. H. C. (2004). Using a gcm analogue model to investigate the
potential for amazonian forest dieback. Theoretical and Applied Climatology,
78(1):177–185.

Huntingford, C., Lowe, J. A., Booth, B. B. B., Jones, C. D., Harris, G. R., Gohar,
L. K., and Meir, P. (2009). Contributions of carbon cycle uncertainty to future
climate projection spread. Tellus B, 61(2):355–360.
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F. F., Pfeil, B., Pierrot, D., Poulter, B., Rehder, G., Rödenbeck, C., Saito, S.,
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