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ABSTRACT
Mapping solar wind plasma back to its source is often achieved using the ‘two-step ballistic backmapping’ method. Solar wind
observations are mapped through the heliosphere to the edge of a PFSS model, by assuming a constant speed, radial, plasma
flow. Tracing field lines through the model gives the source location at 1 R� The heliospheric mapping component hinges upon
the argument that two known sources of error, stemming from solar wind acceleration and non-radial flow, effectively cancel.
This assumption has not been tested statistically. In this study, we evaluate the heliospheric portion of two-step backmapping, in
addition to mapping using models with explicit radial acceleration, and azimuthal velocity, vφ , derived from angular momentum
conservation. We estimate longitudinal mapping offsets, �φ, between 326 Earth-observed crossings of the heliospheric current
sheet (HCS), and corresponding crossings at 2.5 R� from PFSS models. While the detailed solar wind models can be optimized
to produce �φ in good average agreement with HCS crossing data, the ballistic mapping performs almost as well, although all
residuals have a sizeable standard deviation σ ∼ 16◦. We conclude that the proposed error cancellation likely contributes to the
good performance of ballistic mapping. However, interplanetary acceleration and the height of effective solar wind corotation
are both smaller than previously assumed. Our results further suggest that early Parker Solar Probe observations of large vφ

around 36 R� do not represent the overall solar wind, due to the requirement for it to be balanced by increased acceleration.
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1 IN T RO D U C T I O N

1.1 Solar wind mapping

One of the fundamental questions in heliophysics is that of how the
solar wind is created in the corona and expands into the heliosphere.
A major step towards understanding solar wind formation is the
establishment of observational links between solar wind streams
encountered in situ in the heliosphere and the locations at the Sun
where they originate, which are observed remotely. Making this
link for specific solar wind streams is important due to the spatial
variability of solar wind plasma properties, which depend strongly
upon the source region (Krieger, Timothy & Roelof 1973).

Approaches for linking in situ and remote sensing domains exist
with varying levels of sophistication. These range from matching
solar wind and coronal structures (e.g. Krieger et al. 1973; Schwenn
et al. 1978; Rouillard et al. 2020a), to simplified solar wind propaga-
tion models and schemes (e.g. Nolte & Roelof 1973; Schwenn 1990;
Neugebauer et al. 1998; Riley & Lionello 2011; Owens et al. 2020b;
Rouillard et al. 2020b), to MHD modelling (e.g. Riley et al. 2019;
van der Holst et al. 2019; Kim et al. 2020; Réville et al. 2020). These
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approaches are frequently focused on estimating the coordinates
of a stream’s source at the Sun, based on the inferred traveltime,
flow properties, and location where it was measured (i.e. mapping).
For the purposes of this study, we shall focus on one of the most
simple and widely applied mapping approaches: two-step ballistic
backmapping (Nolte & Roelof 1973; Neugebauer et al. 1998).

Two-step ballistic backmapping maps spacecraft observations to
the Sun by separating the plasma propagation into two parts. First,
the solar wind is assumed to flow with a constant, purely radial,
velocity, in order to calculate a traveltime, �t, between the point of
solar wind release and the spacecraft. The point of release is taken to
be the outer edge of a potential field source surface (PFSS; Schatten,
Wilcox & Ness 1969) model of the global coronal magnetic field,
typically chosen to be rss = 2.5 R�. For a spacecraft observing solar
wind with radial velocity vr = vsc, located at distance r = rsc, �t =
vsc/(rsc − rss). From �t, we compute the corresponding change in
heliographic Carrington longitude experienced by the plasma during
transit, �φ = ��t, where � is the solar sidereal rotation rate. The
mapped source surface coordinates are then distance rss, longitude
φss = φsc + �φ, and latitude θ ss = θ sc (where subscripts ss and sc
indicate source surface and spacecraft, respectively). �φ from this
ballistic step of the mapping is on the order of 40◦–80◦ (roughly
corresponding to speeds of 600–300 km s−1).

From the source surface coordinates, the plasma is assumed to
travel parallel to the PFSS-generated magnetic field. The plasma
origin point is then estimated by tracing magnetic field lines from the
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source surface down to 1 R�. Travel time is not a consideration here,
because the PFSS model is time stationary. The shifts in longitude
(and latitude) associated with tracing the field depend heavily on the
mapped source surface coordinates. The shift can be close to 0◦ for
a near-radial field line, or >90◦ for an overexpanding field line near
a coronal hole boundary. The two-step ballistic mapping procedure
has been widely applied in studies of solar wind origins, including
very recently (e.g. Badman et al. 2020; Berčič et al. 2020; Stansby
et al. 2020; de Pablos et al. 2021).

It is well established that the two key assumptions (constant
speed and purely radial flow) of the heliospheric portion of the
ballistic mapping are incorrect. As argued by Nolte & Roelof (1973),
however, these assumptions have systematic effects on �φ that have
the tendency to cancel each other out for observers near 1 AU. To
explain these effects, Fig. 1 presents a two-dimensional schematic of
Carrington longitude φ against distance r for differently propagating
solar wind streams. Each stream maps to the same point at the
spacecraft from different origin points at the Sun. This schematic
is based on fig. 1 of Nolte & Roelof (1973), with some additional
information included.

Contrary to the constant speed assumption, an accelerating solar
wind is both expected theoretically (Parker 1958) and observed
experimentally (e.g. Schwenn 1990; Sheeley et al. 1997; Wang
et al. 2000). The mapping for two radially propagating streams, one
accelerating and the other travelling at a constant speed, is shown by
the pair of dashed lines in Fig. 1(a). Fig. 1(b) shows the corresponding
radial velocity, vr, profiles with r, for both streams, where the two
profiles reach both reach vsc at the spacecraft. The constant speed
stream corresponds to a smaller �φ than the accelerating stream.
This is because the constant speed stream’s average speed during
transit is greater than the accelerating stream, leading to a shorter
traveltime.

The solar wind also has a tangential velocity component, vφ , of
the order of one to tens of km s−1 at 1 AU, which is, on average,
positive in the direction of solar rotation (Weber & Davis 1967).
This flow arises due to angular momentum conservation (Weber &
Davis 1967), which we shall discuss further in the next section. The
corresponding angular velocity, ω = vφ /r, is negligible far from the
Sun, but at small r can become comparable to �. When mapping a
radial solar wind, �φ > 0 in Carrington coordinates because the Sun
continues to rotate after the plasma has been ‘released’. Introducing
a non-negligible ω > 0 in the direction of solar rotation will thus
reduce �φ. This can be expressed mathematically by the integral

�φ =
∫ 1 AU

rinner

� − ω(r)

vr(r)
dr. (1)

Note that for any r at which ω = � (i.e. the solar wind is co-
rotating with the Sun), the �φ contribution is zero, so long as vr >

0. Example vφ and corresponding ω are shown in Figs 1(c) and (d).
Fig. 1(a) shows the evolution of φ for solar wind propagating with
these vφ . The vφ = 0 streams produce a larger �φ than the vφ > 0
streams with the same acceleration.

We expect that the ‘true’ mapping for a solar wind stream will
result from both acceleration and vφ > 0. This true mapping is
represented by the solid orange line in Fig. 1(a), which maps to φA, R

(indicating acceleration and rotation). Disregarding acceleration but
maintaining vφ > 0 leads to mapping to φC, R < φA, R. Meanwhile,
setting instead vφ = 0 the stream maps to φA > φA, R. We can
truncate the mapping of φA down to φA, R by defining some height
below which the plasma rigidly rotates with the Sun. We label this the
‘effective corotation height’, rEC, which approximates the influence
of vφ on solar wind mapping. We note that this is not the same as

the effective corotation height from the standpoint of solar angular
momentum loss, as pointed out by e.g. Pizzo et al. (1983).

If we set both vφ = 0 and use vr = vsc (i.e. the propagation used in
ballistic mapping), we map to φC. This falls between φC, R, and φA,
due to the cancellation of the offsets from disregarding each effect.
For the parameters chosen for this schematic, we see that φC falls
closer to the true connection longitude, φA, R, than either of the other
simplified mappings.

The above cancellation effect is what is presented by Nolte &
Roelof (1973), who modelled the expected acceleration and rotation,
and calculated that �φ computed from constant speed mapping from
1 AU should be approximately equal to the true �φ offset, with an
associated uncertainty of ±10◦ due to balancing of acceleration and
rotation offsets. Specifically, the acceleration follows a power-law fit
to a solution to the Parker solar wind model introduced by Burlaga
(1967):

vr(r) = Kr1/4, (2)

where K is a constant. The rotational component is handled by a
broad range of possible effective corotation heights 0.1–0.25 AU

(around 21.5–50 R�).
Evaluations and improvements upon the two-step ballistic map-

ping procedure have been made, often focusing on improvements
around stream interactions, where excess acceleration occurs be-
tween fast and slow streams. Schwenn (1990) proposed a scheme for
mapping corotating interaction regions that leveraged momentum
balance between streams on either side of the interface. Riley &
Lionello (2011) compared the outward ballistic propagation between
30 R� and 1 AU with other forms of propagation, including an
MHD solution and an ad hoc method for accounting for stream
interactions created by Arge & Pizzo (2000). Building on the work
of Riley & Lionello (2011), Owens & Riley (2017) developed a one-
dimensional, time-stationary, ‘upwind’ solar wind mapping scheme
named ‘HUX’. This scheme accounts for stream interactions by
solving a highly-simplified form of the fluid momentum equation.
Later, the ‘HUXt’ model was introduced by Owens et al. (2020a) by
retaining the explicit time-dependencies in the momentum equation.

Neugebauer et al. (1998) carried out one of the earliest stud-
ies to employ the two-step ballistic backmapping technique. One
component of this was an evaluation of the ballistic portion of the
mapping by comparing the percentage agreement between in situ
heliospheric magnetic field (HMF) polarity associated with solar
wind samples encountered at 1 AU and the source surface polarity
at each sample’s backmapped coordinates. They found that for the
three unique Carrington rotations studied (rotation numbers 1892–
94) the greatest percentage agreement was achieved following a �φ

shift 20◦–25◦ in excess of that computed using the radial constant
speed mapping. The authors suggested that acceleration and rotation
offsets are not as well balanced as was concluded by Nolte & Roelof
(1973). From Fig. 1, producing an underestimate would require some
combination of the acceleration effect being greater than accounted
for by Nolte & Roelof (1973), and/or the rotation effect being smaller
(i.e. a lower effective corotation height).

More recent studies have used comparisons of percentage agree-
ment between ballistically mapped in situ and PFSS polarity to
evaluate PFSS representations of the coronal magnetic field. Koskela,
Virtanen & Mursula (2017) did so for four decades of data, finding
variation in the optimal source surface height depending on solar
cycle phase. Kruse, Heidrich-Meisner & Wimmer-Schweingruber
(2021) made similar comparisons, and found that allowing variable
ellipticity of the source surface also improves polarity agreement.
Koskela et al. (2017) also noted that mapping with solar wind speed
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2392 A. R. Macneil et al.

Figure 1. Panel (a): schematic of the evolution of Carrington longitude φ as a function of distance r, for solar wind streams with different radial and tangential
flow properties. Propagation is shown for four cases, corresponding to combinations of either a constant (vr = vsc) or accelerating vr = vr(r) profile, and a zero
or radially-dependent vφ profile derived from equation (4), as indicated in the legend. φsc represents the longitude at which a spacecraft encounters the streams.
For each stream, �φ = φsc − φX, where the subscript X denotes the stream in question. The horizontal dashed line indicates the effective corotation height that
is required to reduce �φ for the accelerating stream with vφ = 0 down to the same �φ as the stream that both accelerates and has vφ = vφ (r). Panel (b): radial
velocity profiles vr = vr(r) and vsc as a function of r. Panel (c): tangential velocity profiles vφ = 0 and vφ (r) as a function of r. Panel (d): values of angular
velocity ω corresponding to the different vφ profiles. The red dot-dashed line shows the angular velocity of the Sun, �.

per equation (2) does not perform as well as constant speed mapping.
To our knowledge, a more detailed statistical study examining what
shifts in �φ produce best agreement between mapped in situ and
PFSS polarities, in the vein of Neugebauer et al. (1998), has not yet
been carried out.

1.2 Solar wind acceleration

Observations of near-Sun solar wind acceleration have been carried
out remotely. Sheeley et al. (1997) measured the radial speeds of
slow wind plasma ‘blobs’ over distances 2–30 R� in coronagraph
data. They found acceleration on the order of some 4 m s−2; bringing
the solar wind to typical interplanetary speeds of ∼ 400 km s−1 by
around 30 R�. Comparable results were found through a similar
approach by Wang et al. (2000). The acceleration from these results
appears to begin at 0 km s−1 at 2–5 R�. Outflow speeds derived from
solar radio observations also indicate a profile of acceleration in
general agreement with these white light observations, subject to a
large degree of spread (Wexler, Lawhite & Song 2020a; Wexler et al.
2020b).

Evidence of residual solar wind acceleration at greater distances
(0.3–1 AU) has been observed in situ by Helios. Schwenn (1990)
reported 10 and 5 per cent increases in vr observed by Helios 1 and
2, respectively, over these distances. Venzmer & Bothmer (2018) fit
the Helios velocity observations, binned by r, using a power law, and
found the relationship

vrmed(r) = Kr0.099, (3)

for vrmed the median value of vr, and K = 363 km s−1 for the slow
wind and K = 483 km s−1 for the fast wind (split at 400 km s−1). We
note that this is the same form as the fit to the Parker solar wind
model from equation (2), with a smaller exponent.

Configurations in which Helios 1 and 2 were in radial alignment
show that while the fast wind exhibits little increase in vr over 0.3–
1 AU, the slow wind residual acceleration is considerable; around
50 km s−1 AU−1 (Schwenn 1990). This feature arose again in a
recent study by Maksimovic et al. (2020), who binned the Helios
data by distance and vr quintiles, fitting each quintile linearly with
r: vr = Ar + vr0. They found that the gradient A dropped off for

increasing vr0, with A ≈ 90 km s−1 AU−1 for vr0 ≈ 250 km s−1 (the
lowest quintile) and A ≈ −10 km s−1 AU−1 for vr0 ≈ 620 km s−1 (the
highest quintile). For slow wind, a linear fit to equation (2) over the
same distance range produces a steeper slope than is derived from
these observations, of 131 km s−1 AU−1, suggesting that the residual
acceleration from the Parker fit may be excessive. Recent Parker
Solar Probe (PSP) observations have observed vr closer to the Sun,
and as we would expect for an accelerating solar wind, vr for the
slow wind has access to smaller values at around 30 R� than were
typically observed with Helios (e.g. Maksimovic et al. 2020; Wexler
et al. 2020a).

1.3 Solar wind tangential velocity

Weber & Davis (1967) derived equations for the conservation of
solar wind angular momentum per unit mass, which gives rise to the
tangential flow profile vφ . From mass conservation and Gauss’s law,
they went on to produce the following expression for vφ :

vφ(r) = �r

uA

uA − vr(r)

1 − M2
A(r)

. (4)

Here, MA is the radial Alfvén mach number defined as MA =
vr/vA, where vA is the local Alfvén speed computed using the radial
component of the HMF, Br, in place of the absolute value B. uA is
the wind speed at the radial Alfvén height rA, which is the height
at which vr = vA. This formulation allows vφ to be computed from
pre-calculated vr(r) and vA(r) profiles.

Weber & Davis (1967) computed an example profile of vφ as a
function of r resulting from simulating a self-consistent, polytropic
solar wind with boundary conditions set to reasonable values ob-
served near Earth. This produced a profile with vφ ≈ 1 km s−1 at 1
AU, and a peak value of vφ ≈ 4 km s−1 at ∼ 20 R�. The value of rA

in this solution was 24.3 R�.
vφ measurements are considered subject to large uncertainty,

because vφ is expected to be small in comparison to vr, and it is also
sensitive to spacecraft tangential velocities and pointing errors (see
e.g. Pizzo et al. 1983). Never the less, initial in situ observations of vφ

were reported to be roughly consistent with the Weber & Davis (1967)
predictions. Lazarus & Goldstein (1971) reported vφ observed by
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Mariner 5 evolving from around 10 to 1 km s−1 over the distance 0.7–
1 AU. Having corrected for pointing errors in both Helios spacecraft,
Pizzo et al. (1983) and Marsch & Richter (1984b), Marsch &
Richter (1984a) reported an average vφ = 1.45 ± 28.11 km s−1 over
distances 0.3–1 AU. They found average vφ = 11.82 km s−1 for
wind of vr < 400 km s−1, vφ = 1.8 km s−1 for 400 km s−1 ≤ vr ≤
600 km s−1, and vφ = −2.2 km s−1 for vr > 600 km s−1. vφ < 0 in
the faster wind was attributed to stream dynamics. The corresponding
rA were reported to be some 34 R� (40–48 R�) for the slow solar
wind and around 13 R� (13–30 R�) for the fast wind. Non-bracketed
values correspond to lower limits on rA inferred only from the
magnetic torque contribution to specific angular momentum, while
bracketed values were computed by Marsch & Richter (1984a)
incorporating the more uncertain particle contributions.

At 1 AU, Finley et al. (2019) computed Carrington rotation-
averaged proton vφ using the Wind spacecraft. They found these
averages exhibit strong variability, around 1–10 km s−1. Based on
the distribution of vr in the ecliptic plane, around 80 per cent of
their observations correspond to vr < 500 km s−1, and thus represent
the slow solar wind. The remaining 20 per cent of observations,
associated with the fast wind, had, on average, a negative vφ ,
matching the trend observed by the Helios spacecraft. Similar values
are reported by Němeček et al. (2020), who studied the deflection of
the Earth’s magnetotail due to non-radial solar wind flows.

PSP has allowed measurement of vφ at unprecedented proximity
to the Sun. These observations are naturally more important for
mapping, since ω = vφ /r. Kasper et al. (2019) reported mean
values from the first two PSP encounters of vφ ∼ 40 km s−1 at
∼ 36 R�, measured by the Solar Wind Electrons Alphas and Protons
(SWEAP) experiment’s Solar Probe Cup (SPC). These are well in
excess of those predicted by Weber & Davis (1967), and exceed
50 per cent of rigid rotation velocity at these distances. Despite the
estimated values of rA from these vφ observations being shown to
be comparable to the spacecraft distance, the solar wind remained
super-Alfvénic. Réville et al. (2020) suggested a resolution to this
based on the presence of pressure anisotropies, which increase vφ

closer to the mean observed values. With the same data, Finley et al.
(2020) noted the presence of strong positive and negative patches
of vφ that they suggest, when averaged, can lead to values more
consistent with Weber & Davis (1967). Liu et al. (2021) offered
an alternative solution in the contribution of alpha particles to the
solar wind angular momentum. However, this was not observed by
Finley et al. (2021) who used the SWEAP Solar Probe Analyzer
(SPAN) to measure the vφ of the proton core, beam, and alpha
particle populations, during PSP encounters 3 and 4. Considering
the measurements themselves, Woodham et al. (2021) showed that
the velocity distribution measured by SPC may be truncated when
there is large −vφ . Their results imply larger −vφ values than initially
thought, which would decrease the large, positive, vφ averages.

The larger values of vφ measured closer to the Sun mean that
the tangential velocity component is a more significant fraction of
the total speed. This reduces one factor contributing to the overall
uncertainty in vφ measurements. In addition, increased accuracy in
the spacecraft pointing (in part due to the inclusion of remote-sensing
instrumentation) has allowed for accurate measurements of vφ to
be carried out with Solar Orbiter (SO) at an increased heliocentric
distance (Verscharen et al. 2021). Like previous observations, they
detect both positive and negative values of vφ , which have a distinct
trend with radial wind speed. Ultimately, values measured in situ can
be much larger (or lower) than those depicted by Weber & Davis
(1967).

1.4 Testing ballistic mapping

Given the reported observations of large and variable vφ that depart
from the model of Weber & Davis (1967), and the likelihood that the
residual acceleration from equation (2) is too large, it is appropriate
to test the suggestion by Nolte & Roelof (1973) that the assumption
of cancellation of errors due to the constant speed, radial, solar wind
mapping is valid. This is a key assumption in the ballistic portion
of the widely applied two-step ballistic mapping procedure. In this
study, we aim to produce a statistical estimate of the true value of �φ

between 2.5 R� and 1 AU using data spanning 14 yr. Our approach
is similar to Neugebauer et al. (1998), in that we compare in situ
magnetic polarity observations to those near the Sun, as derived
from a PFSS model. However, we will explicitly compute �φ for
crossings of the heliospheric current sheet (HCS), which we will
refer to as �φHCS, such that our results apply strictly to the slow
solar wind. �φHCS can then be compared to �φ computed using the
ballistic mapping approach. In order to explain our results, we also
model solar wind propagation for different combinations of vr and
vφ radial profiles, and compare the resulting �φ to �φHCS. We begin
by presenting the data and methods used to produce these results in
Section 2, before showing the results themselves in Section 3. We
discuss the implications for solar wind mapping and propagation in
Section 4, and present our conclusions on these in Section 5. A pair
of appendices provide additional information and figures to support
the study.

2 DATA A N D M E T H O D O L O G Y

2.1 In Situ data

We identify HCS crossings and corresponding plasma properties
near Earth using in situ hourly-averaged plasma and magnetic field
data from the OMNI data set (available at https://omniweb.gsfc.n
asa.gov/ow.html) for the period spanning 2006 October 19–2020
December 31. Supporting observer heliographic distance r, latitude,
θ , and longitude φ information for these data are obtained from the
Earth ephemeris included in the SUNPY package (Mumford et al.
2015).

2.2 HCS detection

To identify times and heliographic coordinates of HCS crossings
in the OMNI data, we begin with the sector boundary list from L.
Svalgaard (available: http://wso.stanford.edu/SB/SB.Svalgaard.htm
l). This list is algorithmically generated through a combination of
in situ HMF and ground-based measurements and specifies dates of
boundary crossings, as well as the sign of the HMF polarity change,
and the wait time until another crossing on either side of the boundary.
From this initial list, we discard any crossings that have fewer than
4 d on either side without another sector boundary (this criteria is
loosely followed in the original list). For the specified time period,
this list yields 396 sector boundary crossings; about two to three
crossings per Carrington rotation.

We design an algorithm that identifies a more precise HCS crossing
time corresponding to each sector boundary, and discards crossings
where this is not possible. We first compute ψP, the smallest
angle between the R − T component of the HMF vector (RTN
coordinates) and the nominal Parker spiral angle, calculated using
the radial solar wind velocity component vr. From this, we define the
HMF polarity BP = 1 (−1) for ψP < 90◦ (≥ 90◦). For each sector
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Figure 2. Example of HCS matching procedure. Top panel: magnetic field
polarity against heliographic longitude, φ. Black points correspond to in situ
measurements. The black vertical line indicates the location of the in situ HCS
crossing from which the shift is computed. Blue and red points correspond
to expected polarities derived from the PFSS model (bottom panel). Green
points indicate the identified polarity reversals from these data. Middle panel:
the same as the top panel, but in situ data are shifted in φ to produce agreement
between the HCS and PFSS reversal longitudes per the method detailed in
Section 2. Bottom panel: PFSS model used for this example. Red and blue
points are positioned along the projected spacecraft trajectory, and coloured
based on the polarity of the source surface field at that location.

boundary crossing, we consider BP during the period corresponding
to 3 d either side of the crossing date. We fit this BP as a function of
time using a logistic regression (e.g. Wasserman 2004), to identify
the decision boundary in time that best separates the positive and
negative regions of BP. The location of the decision boundary is
interpreted as the time of HCS crossing in the magnetic field data. To
eliminate samples with ambiguous polarity, we only include samples
for which |ψP − 90◦| > 25◦ in the regression procedure. The top
panel of Fig. 2 shows an example HCS detection for the black points
that show observed BP.

A product of logistic regression is the accuracy score, which, in
this case, quantifies the fraction of BP samples correctly predicted
by the fitted decision boundary. A low score indicates that the fitted
decision boundary often fails to produce a prediction at a given time
that matches BP. Most commonly this is because BP flips from 1
to −1 multiple times. We discard crossings with a regression score
<0.8 (chosen by inspecting numerous crossings) on the basis that
such a score indicates an HCS that is extended or ragged, such
that its location cannot be appropriately described by a single time
stamp or longitude location. We further discard crossings where
< 50 per cent of the samples meet the |ψP − 90◦| > 25◦ condition;
where > 90 per cent of the samples in the 6-d interval are of the same

polarity; or where the fitted HCS crossing time is ≥ 2 d removed from
the date reported in the initial list. Following this procedure, there
are 326 HCS crossings remaining with valid crossing times.

2.3 Coronal current sheet identification

To estimate the location of the current sheet at the Sun, we employ
GONG synoptic magnetograms (available at https://gong2.nso.ed
u/oQR/zqs/) as the inner boundary of a PFSS model for each
in situ HCS crossing. GONG synoptic magnetograms are available
beginning 2006 September 19, which constrains the time periods
available for study. For each HCS crossing, we obtain the synoptic
magnetogram labelled with the time corresponding as near as
possible to the in situ crossing time. Given the expected slow wind
traveltime of 3–4 d, this ensures that the photospheric field around
the region likely underlying the HCS’s solar origin (i.e. westward of
the observer’s meridian at the time the HCS is encountered) has been
incorporated into the synoptic map since the prior rotation.

From each GONG map, we compute a PFSS magnetic field using
the pfsspy software package (Yeates 2018; Stansby 2019). We use a
source surface height of 2.5 R�, corresponding to the most common
choice for two-step ballistic mapping. We extract the magnetic
field polarity at the source surface at the θ and φ positions of the
spacecraft for the 27-d period preceding the in situ HCS encounter.
This yields a one-dimensional slice of magnetic polarity against φ

at the source surface. The bottom panel of Fig. 2 shows an example
PFSS output at 2.5 R� and the corresponding one-dimensional slice.
We algorithmically identify the longitudes of polarity reversals, φrev,
from this one-dimensional series as locations where the magnetic
polarity changes between adjacent grid points. These are locations
where the current sheet intersects the spacecraft trajectory, which will
map to HCS crossings in situ. We exclude from study any polarity
reversals that are <30◦ from one another to avoid later ambiguity.

2.4 Calculation of crossing offsets

We combine the in situ and PFSS polarity reversal to produce an
estimate of the longitude offset resulting from solar wind propagation
from the Sun to the Earth, �φHCS. To facilitate this we first match
each in situ crossing to its likely counterpart from the PFSS data.
For each crossing-model pair, we compute the difference between
the longitude of the in situ HCS crossing φHCS, obtained from the
Earth ephemeris, and each identified PFSS polarity reversal, φrev, i:
�φHCS, i = φrev, i − φHCS. We rectify these values such that 0◦ ≤
�φHCS < 360◦. We pair together each HCS crossing with the PFSS
reversal that has the same change in sign, and the smallest value
of �φHCS, i. Doing so identifies the reversal of appropriate sign that
occurred soonest prior to (and so at greater longitude than) the in situ
crossing in question, which we assume to be its counterpart. We
record �φHCS as the �φHCS, i value for each successful pairing.

2.5 Caveats for HCS methodology

A notable assumption of our approach, and the ballistic mapping
approach in general, is that the source surface model magnetic
polarity at the spacecraft latitude should correspond to the magnetic
structure that is encountered near Earth. Outside of interaction
regions, the solar wind typically does not feature a strong latitudinal
velocity component, so the connection latitude at the source surface
is expected to be reasonably accurate.

Our approach to identifying the HCS in situ does not account
for the finite thickness of the HCS, or for instances where the
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Solar wind mapping 2395

Figure 3. Examples of radial profiles of vr derived from different models as
labelled in the text. Top panel: vr constant at 1 AU value, fit to the Parker model
described by equation (2), the fitted VB18 model (equation 3), empirical vr

model used in HUXt (equation 5), and the ‘blended’ velocity profile described
in the text. Bottom panel: vr described by a range of coefficients in the
asymptotic function in equation (6), with n = 0.7, b shown in the figure, and
A specified to fix vr at r=1 AU.

spacecraft crosses back and forth over the same sector boundary.
While we exclude many such instances from study through the
logistic regression approach, it is possible that some persist and
are not properly accounted for. Further, these more complex sector
boundaries may propagate differently to the simple ones that we
include, which could bias the results in some way.

In interpreting the �φHCS estimates, it is important to note that
HCS crossings are typically embedded in the slow solar wind. We
shall see below that this is supported by the measured radial solar
wind speeds associated with the HCS crossings. As such, conclusions
which we draw by comparing mapping to �φHCS, regarding both the
expected errors of different mapping approaches and any details of
solar wind propagation, apply primarily to the slow solar wind.

2.6 Solar wind propagation

In this study we employ a selection of models for solar wind
propagation with which we compute theoretical mapping offsets
�φM. Here we introduce the models of vr using Fig. 3. The top panel
shows a selection of vr profiles with r, with each profile constructed
to reach vr = 400 km s−1 at 1 AU. The first model has constant vr,
as assumed in the standard ballistic mapping approach. The model
labelled ‘Parker fit’ is the fit to a solution to the Parker solar wind
model introduced by Burlaga (1967) and employed in the work of

Nolte & Roelof (1973): equation (2). Similarly, the model labelled
‘VB18’ represents the power law obtained by Venzmer & Bothmer
(2018) from fits to the Helios data set over distances 0.3–1 AU

described by equation (3). We choose the constant K to fix the speed
observed at 1 AU.

The model labelled ‘HUXt’ represents the empirical acceleration
term employed in the HUXt solar wind model introduced in Sec-
tion 1.1:

vr(r) = vr0 + αvr0

(
1 − e−r/rh

)
, (5)

where vr0 = vr(r = r0), r0 = 30 R�, α = 0.15, and rh = 50 R�. These
parameter values are tuned by Riley & Lionello (2011) to produce
good agreement with ‘residual’ solar wind acceleration between
30 R� and 1 AU, and as a result produce very similar solutions
to more sophisticated MHD models (Riley & Issan 2021).

Since the HUXt vr profile is defined relative to r0 = 30 R�, it is
not constrained to reach vr = 0 at r = 0, and possesses large speeds
and weak acceleration close to the Sun. We construct a profile that
matches the HUXt profile at r > 30 R� but still reaches vr = 0 at r =
0. We do so by combining it with a profile that obeys equation (2) at
r < 30 R�, and performing cubic interpolation between the two. We
choose K in equation (2) such that its velocity matches that of the
HUXt profile at 30 R�. This profile is labelled ‘Blend’ in Fig. 3.

To facilitate later analysis, we also construct a formulation for vr

that can be tuned more precisely, based on the function

vr(r) = A
rn

rn + b
, (6)

where A, b, and n are positive free parameters. A specifies the velocity
that vr approaches asymptotically, while n controls the growth, and
b moderates the rate at which vr reaches A. We ensure that a pre-
defined vr is reached at 1 AU by specifying n and b and then choosing
the appropriate value of A. Under these constraints, larger n leads
to vr growing rapidly near the Sun. Conversely, larger b causes
vr to undergo more of its acceleration further from the Sun, and
correspondingly accelerate more gradually close to the Sun. The
bottom panel of Fig. 3 shows examples of vr from equation (6), with
n = 0.7 and a logarithmically spaced range of b.

We account for tangential velocity effects either by assuming
purely radial flow above some effective corotation height rEC or
by calculating an explicit rotational velocity profile vφ from equa-
tion (4). By specifying rA, and using the definition vr(r = rA) =
uA, we compute MA at all r using the relation M2

A = (vrr
2)/(uAr2

A)
from Weber & Davis (1967). This relation assumes ρvrr2 is constant
(for mass density ρ), and Br scales as 1/r2. To find �φ during solar
wind propagation to 1 AU under combinations of vr and ω (= vφ/r)
profiles, we simply compute the integral from equation (1). Given the
various vr profiles that we consider here, for the sake of consistency
and simplicity, we evaluate this integral numerically.

3 R ESULTS

In Fig. 4 we present the results of the methodology of Section 2.4
applied to each identified in situ HCS crossing to produce estimates
of �φHCS. These data are presented firstly in Fig. 4(a) as a histogram.
The histogram produced from all 326 crossings exhibits a clear peak,
but with a large spread of values from 0◦ to 360◦. We attribute
this spread in large part to errors associated with our boundary
matching procedure, in particular the reliance on the PFSS model
(see Section 4 for further discussion). We devise a scheme to remove
likely erroneous values from further study. Since offsets of �φHCS ≥
180◦ are clearly unrealistic, we eliminate from the study all data that
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2396 A. R. Macneil et al.

Figure 4. Histograms of results derived from HCS crossing offsets and different mapping procedures. Panel (a): �φHCS from HCS crossings described in
Section 2.4, both prior to and following the removal of presumed erroneous values. Panel (b): �φM from different solar wind vr profiles described in the text
overlaid on �φHCS. A vertical line corresponds to the mean optimal offset for a uniformly propagating solar wind. Panel (c): residuals �φM − �φHCS for model
M used for mapping. Means (μ) and standard deviations σ for each distribution are shown in the legend. Panel (d): same as previous, but with each mapping
procedure with effective corotation height adjusted to minimize the mean residual value.

fall into bins containing a number of samples N ≤ N>180, where N>180

is the greatest number of samples in any of the bins located at �φHCS

> 180◦. This procedure reduces the number of valid �φHCS samples
to 261. The remaining data are plotted in the solid grey histogram
in Fig. 4(a). This distribution has a mean of 66.◦6 and median of
64.◦4, and σ = 16.◦3. These correspond to a traveltime mapping at a
constant speed of roughly 369 km s−1 for the mean and 381 km s−1

for the median. The standard deviation in the equivalent speeds is
around 90 km s−1.

For each remaining HCS crossing, we calculate an associated vr

by computing the mean vr value in a 24-h time window centred on
the HCS crossing time. The mean (median) vr for the valid data is
384 km s−1 (368 km s−1) – remarkably similar to the average constant
radial solar wind speeds derived from travel times corresponding
to �φHCS above. The true standard deviation in vr is smaller than
inferred from the spread in �φHCS; around 70 km s−1. We use these
speeds to calculate the mapping offsets, �φM, using the four vr

models shown in the top panel of Fig. 3, and assuming that the solar
wind rotates rigidly with the Sun up to 2.5 R� (the source surface
height) and then travels purely radially. For the constant speed case,
this represents the standard ballistic mapping approach. We plot
histograms of �φM for each model on top of the �φHCS histogram
in Fig. 4(b). Each mapping produces a distribution of �φM with σ ∼
10◦, which is narrower than that of �φHCS, reflecting the distribution
of vr as measured at 1 AU for the HCS encounters. The constant speed
mapping is roughly in best agreement with the �φHCS distribution, in
terms of modal values. The other models are shifted to greater �φM,
since they include acceleration and so exhibit larger travel times.
The Parker fit model correspondingly has the greatest shift, while
the HUXt and blend models have a smaller shift and very similar
distributions, and the VB18 model is intermediate between these.

We compute the distribution of residual values for each model,
�φM − �φHCS, and plot them in Fig. 4. Each residual distribution
has a comparable standard deviation, reflecting the broad �φHCS

distribution and the spread due to the 1 AU vr measurements. The
mean values of the constant speed, VB18, HUXt, and Blend model
residuals are all comparatively small, with the constant speed �φ

skewing slightly negative and the others slightly positive. The Parker
model skews to a far larger positive value.

We repeat the above process with modelled �φM values re-
calculated using effective corotation heights ≥ 2.5 R�, which mini-
mize the mean residual values, shown in Fig. 4(d). We also compute
and plot the residuals between �φHCS and a further simplified
mapping approach, in which a uniform mapping offset of �φ =

66.◦6 (found to give optimal agreement) is used. We see that for
the accelerating models, it is possible to bring the mean value to
effectively zero. For the constant speed model, this is not the case
because increasing the corotation height can only decrease �φ.
While decreasing the corotation height increases �φ, this would
require that we lower rss in the PFSS model. Doing so would
have consequences for mapping between the source surface and
photosphere that are beyond the scope of this study. The values
of the optimal corotation heights will be investigated below. The
standard deviations, σ , are very similar for each residual histogram,
including the highly simplified uniform-offset model, for which σ is
only slightly larger than the rest.

Fig. 5 presents ‘box and whisker’ plots that demonstrate the effect
of varying the effective corotation height on the residual values of
�φM − �φHCS for four of the above five solar wind models. The
HUXt model is excluded because it appears near-identical to the
Blend model. These plots demonstrate that increasing the effective
corotation height decreases the �φM value calculated in the mapping.
Rough values of ‘optimal’ effective corotation heights, ropt, become
clear for each model, and we estimate precise values of ropt using
linear interpolation. We find an ropt of 32.4 R� for the Parker model,
15.0 R� for the VB18 model, and 9.78 R� for the Blend model.
The optimal height for the constant speed model lies at r < 2.5 R�,
which is invalid since 2.5 R� is our chosen source surface height.
These values of ropt are used to generate the optimal histograms
shown in Fig. 4(d).

A more realistic representation of the solar wind tangential flow is
given by the conservation of angular momentum, as represented
by equation (4). We now present comparisons between �φHCS

and the simulated mapping offset �φemp. �φemp is computed with
equation (1) using the empirical asymptotic vr models (equation 6),
and vφ computed according to equation (4), using these vr with
specified rA. The explored range of rA extends up to unrealistically
large values (> 50 R�). This is motivated by the need to produce the
desired vφ profiles (Appendix A) that can approach the enhanced vφ

values often observed in situ near the Sun (Section 1). In this way, rA

here serves primarily as a mechanism with which to tune vφ , rather
than as a physical parameter. Fig. 6(a) plots maps of the mean of
the residuals �φemp − �φHCS. Each panel computes the mapping
using vr with a set value of n, with the mean residual plotted against
b and rA. For each of the chosen parameters, a line of zero mean
residual is clear. This line falls at greater values of b, indicating more
acceleration at larger distances, for greater values of rA, indicating
larger rotational flows. Likewise, this line shifts to lower values of rA
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Figure 5. Box and whisker plots summarizing the residuals between �φHCS

and four of the five the models summarized in Fig. 4, as a function of effective
corotation height. For each corotation height, the central lines represent the
median value, the box extends from the lower to upper quartile values, the
whiskers extend from the box edges by 1.5 times the inter-quartile range, and
individual points show samples that lie beyond the whiskers.

for greater values of n, which correspond to weaker rotational flows
and stronger acceleration near the Sun, respectively. In Appendix A,
we show the curves of vr and vφ against r for the combinations
of parameters that fall along the line. We also find that the mean
residual appears to saturate at around −1.5 at low b, for all n and rA.
We plot ticks on the top of each panel of Fig. 6(a), which indicate
the perihelion distances of PSP’s encounters thus far. To our best
knowledge, no encounters with publicly available data (which are all
but the innermost) suggest PSP to have definitively crossed rA (e.g.
Liu et al. 2021).

Fig. 6(b) shows maps of the standard deviation, σ , of �φemp −
�φHCS calculated using the same parameters as Fig. 6(a). σ does not
vary strongly over the full parameter space shown here. Around the
line delineating the smallest mean residual, σ ∼ 16.◦2, which is very
similar σ values to distributions in Fig. 4. σ here does not depend
strongly on the model parameters b, n, or rA, indicating that the
spread in �φemp is dominated by the spread in vr (which we account
for by varying A) associated with the HCS crossings. This occurs
because the values of �φemp from our model depend approximately
linearly on vr at 1 AU for fixed n, b, and rA.

Finally, Fig. 7 shows the effective corotation height, rEC, corre-
sponding to a selection of vr (derived from equation (6) with a range
of b, or equation (2)) and vφ profiles (specified by vr and rA in
equation (4)). vr here is constrained to be equal to 370 km s−1 at
1 AU, based on the median value of solar wind speed for the non-
discarded HCS crossings. For each vr-vφ combination, rEC is defined
as the height for which solar wind propagating at vr, and with angular
velocity ω = � for r ≤ rEC, ω = 0 for r > rEC (i.e. rotating rigidly out

Figure 6. Heatmaps showing properties of the residuals �φemp − �φHCS for a range of empirical solar wind model parameters. vr is set using b shown along
the y-axes, n corresponding to each panel, and A set to match the model to vr observed at 1 AU during each HCS crossing. vφ is determined using this vr and rA

per the x-axes of each plot. Ticks along the top of each panel show perihelion distances for the first nine encounters of PSP.
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2398 A. R. Macneil et al.

Figure 7. Curves demonstrating the relationship between effective corota-
tion height, rEC, and rA for a range of vr profiles generated using either
equation (6) with n = 0.8 and b given in the label or the Parker fit model
(labelled ‘P’). The top panel shows each vr profile, and the bottom panel shows
the corresponding relationship between rEC, and rA, computed as described
in the text.

to a given distance and then travelling purely radially), has mapping
offset �φ equal to that computed using vr and vφ . This is equivalent
to the labelled effective corotation heights in Fig. 1. Fig. 7 shows
that increasing rA produces larger vφ , corresponding in general to
larger effective corotation heights. For the vr profiles shown here,
and rA > 20 R�, rEC is between around 10–50 per cent of rA. Moving
to larger rA, we see that rEC tends to tail off in its growth.

The rEC–rA relationship depends strongly on vr. For increasing
b, growth in vr is concentrated at larger r. This leads to larger rEC

values required to match �φ, because of the associated increase in
vφ , which follows from equation (4). rEC computed using the Parker
profile for vr lies somewhat intermediate between the curves for the
smallest and largest b.

4 D ISCUSSION

4.1 Solar wind mapping

The results of Section 3 are favourable for the performance of
constant speed, radial, solar wind mapping, �φcon, which is central
to the two-step ballistic backmapping method. On average, �φcon

from this scheme underestimates �φHCS inferred from current sheet
crossings by around 1.◦5. However, there is a large σ ∼ 16◦ in the
distribution of the residual �φcon − �φHCS, which is nearly identical

to σ for �φHCS itself. Thus, while the constant speed mapping
predicts the central value of �φHCS well, it does not account for
the spread, which probably arises due to a range of uncertainties,
including those discussed below in Section 4.2.

The specified, accelerating, solar wind models (Parker, VB18,
HUXt, and Blend) can be adjusted to have close to zero mean
residual �φM − �φHCS, when an optimal effective corotation height
is chosen from Fig. 5. While these accelerating vr configurations are
more faithful to the true solar wind propagation, they do not greatly
improve upon �φcon, since it already has close to zero mean residual.
As in Fig. 1, the constant speed mapping predicts a slightly too small
�φ on average. Introducing acceleration shifts �φ higher, and it is
then brought back down by increasing the effective corotation height,
rEC, as shown in Figs 4(d) and 5. This is, in essence, the cancellation
of errors presented by Nolte & Roelof (1973).

Crucially, none of the models with optimized rEC in Fig. 4 produce
a standard deviation, σ , in the residuals that is noticeably smaller than
corresponds to �φcon. This is also true if we consider σ for �φemp

− �φHCS, where �φemp is derived from the more sophisticated
acceleration-rotation models shown in Fig. 6, along the line of zero
mean residual. Compared to the other models tested here, then, our
results suggest that the constant speed approach is very close to the
best-case mapping for tracing the slow solar wind back from 1 AU

to the source surface.
We recall from Section 1 that, in a similar study, Neugebauer et al.

(1998) found an average shift of an additional 20◦–25◦ over �φcon

gave the best agreement between 1 AU and source surface magnetic
polarity. This could arise from methodological differences. For exam-
ple, this study explicitly compares longitudes of HCS crossings, and
thus mapping results apply only to slow wind plasma. Meanwhile, the
Neugebauer et al. (1998) study compared the total percentage polarity
agreement over an entire Carrington rotation. Further, the present
study covers more than a full solar cycle’s worth of data from 2006
to 2020, while Neugebauer et al. (1998) covered four consecutive
Carrington rotations during 1995, in the declining/minimum cycle
phase. Given that the coronal magnetic field will be highly correlated
over consecutive rotations, the apparently systematic 20◦–25◦ offset
may be in fact a correlated random error (since the spread in �φHCS

in Fig. 4 shows that a random offset of 20◦ is very plausible).

4.2 Mapping uncertainty

Here we discuss the sources and implications of errors and variance
in our �φHCS and �φM − �φHCS residual results. In Section 3
we found that mapping with more sophisticated models of solar
wind propagation, which include acceleration and corotation, gives
standard deviations σ in the residuals that are very similar to the
constant speed, radial, mapping. The reason for this is that each of
our propagation models produce �φM for a given HCS crossing that
is proportional to the observed vr at 1 AU (e.g. equation 6). These
different models, which all have the same distribution of vr at 1 AU,
thus cannot have different spreads in the residual �φM − �φHCS.
Following from this point, it might be possible to reduce the size
of σ in residuals for the more sophisticated solar wind propagation
models using a more bespoke mapping procedure, in which different
acceleration (e.g. from adjusting the b and n parameters in equation 6)
and vφ profiles (e.g. adjusted rA) are used dependent on the observed
in situ solar wind properties. This would require a detailed fitting
procedure over a large parameter space, but may be worthwhile
in particular for vφ which has strong observed variability, even
when considering only slow wind streams (e.g. Finley et al. 2019;
Verscharen et al. 2021). However, given that much of this variability,
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particularly between streams with large positive or negative vφ , is
observed near to the Sun (Finley et al. 2020), reconstructing vφ

profiles based on 1 AU observations may not be feasible, especially
if these flows tend to equilibriate before reaching such distances.

The standard deviation, σ , in �φHCS results from various con-
tributions. We expect some contribution due to variability in solar
wind propagation, particularly differences in vr, due to its influence
on traveltime. However, computing residuals �φM − �φHCS for
different solar wind propagation models produces distributions with
only a very slight decrease in σ compared to �φHCS. If vr strongly
influenced �φHCS in the way it does �φM, then we would expect
�φM − �φHCS to have a greater decrease in σ , since σ for the
different �φM is dominated by vr. Conversely, if vr was uncorrelated
with �φHCS, such that σ in the residual �φM − �φHCS resulted from
adding in quadrature those in �φHCS and �φM, then we would expect
an increase in σ up to ∼19◦. Our results then suggest vr at 1 AU has a
weak influence on �φHCS in comparison to other effects, and that the
spread in �φM − �φHCS must arise either due to inadequacies in how
we account for vr in our models, or from other sources, discussed
below.

Large and variable vφ near the Sun could produce differences
in propagation amongst the different HCS-embedded slow wind
streams studied here. These differences would have a strong impact
on the distribution of true mapping offsets �φ, and would not be
captured by the simple Weber & Davis (1967) approach used in this
study. This effect could then constitute a sizeable contribution to σ for
�φHCS and the residual distributions. We could model such a process
in the future by introducing random perturbations to ensembles of
vφ profiles near the Sun, and measuring the resulting spread in �φM.

Errors associated with the PFSS model (and the construction of the
input photospheric synoptic maps) can also contribute to the spread
in �φHCS. In our methodology, we found discrepancies between HCS
crossings from PFSS model realizations and spacecraft observations.
For example, in unrealistic longitudinal separations of corresponding
crossings (Fig. 4a) or mismatches in the numbers of crossings
between model realizations and in situ data. A range of effects may
lead to these issues. Slight positional offsets of magnetic flux sources
at the photosphere produce enhanced or diminished warping in the
HCS, altering the location or number of HCS intersections with the
ecliptic plane. The choice of 2.5 R� as source surface height may
also produce inaccurate HCS intersections, given that evidence of
a non-constant optimal source surface height has previously been
reported (e.g. Koskela et al. 2017; Badman et al. 2020; Panasenco
et al. 2020). While the unfiltered histogram of �φHCS in Fig. 4(a)
shows that the impact of errors in PFSS-in situ agreement can be
sizeable, we expect no inherent longitudinal bias to exist in them.
Thus, our average results should be robust to these errors, particularly
as we remove the most severe outliers.

From the above, we conclude that σ for the residuals �φM −
�φHCS arises due to a combination of PFSS errors, and propagation
variance that is not described by the models producing �φM. It is
thus unsurprising that σ = 16◦ for our residuals while the estimated
ballistic mapping error from Nolte & Roelof (1973) was only ±10◦,
since their method does not include any PFSS modelling and has
limited comparison with data. To isolate the error in only the
ballistic portion of the mapping from our results would require some
independent estimate of the error contribution arising from the PFSS
model.

Our results suggest an error of ±16◦ can be expected between
ballistically backmapped HCS crossings and crossings derived from
PFSS models at the source surface. It is not possible to generalize
this to apply to e.g. general applications of the two-step backmapping

procedure because the impact of PFSS errors on HCS locations will
not be the same as those for other coronal structures. A ±16◦ error
could however be expected if we use a constant speed, radial, solar
wind propagation to map outward to predict the 1 AU, in situ, HCS
crossing point from a given PFSS realization, provided we have a
reasonable estimate of the 1-AU speed.

4.3 Solar wind propagation

In Fig. 6, we demonstrate that an average agreement with observed
�φHCS can be achieved by computing �φemp using a range of
combinations of empirical vr (from equation 6) and vφ (from
equation 4) radial profiles. To explain our estimates of �φHCS, any
additional acceleration concentrated in the outer heliosphere (higher
b or lower n) must be matched by stronger and/or more extended vφ

(here provided by greater rA), as shown in the schematic of Fig. 1.
These results are obtained using equation (4) with self-consistent vr

and vA, which suggests that the Weber & Davis (1967) model can
be compatible with the observed �φHCS for current sheet crossings
observed at 1 AU. Whether this is the case in reality depends on
which, if any, of the many possible solutions are representative of
the real solar wind.

The mean of residuals �φemp − �φHCS shown in Fig. 6(a) appears
to saturate at −1.5, for b values falling just below the line of zero
mean residual. This effect is emphasized in these plots due to the
logarithmic y-axis. The saturation value of −1.5 is very similar to
the mean residual found for the constant speed mapping in Fig. 4, so
it appears that b → 0 in this model either cannot produce �φemp <

�φcon, or �φemp at least decreases very slowly when it approaches
�φcon. In Appendix B, we compute �φemp − �φcon explicitly and
confirm that �φemp in the explored parameter space never violates
�φemp ≥ �φcon, given our chosen vr profiles and vφ derived from
the model of Weber & Davis (1967). This saturation occurs due to
vr approaching a constant speed propagation, and may explain why
we observe the constant speed mapping to perform relatively well at
predicting �φHCS. However, we expect the saturation to break down
if vφ is greater than predicted by Weber & Davis (1967). Given the
large vφ observed in the heliosphere which this implementation of
the Weber & Davis (1967) model struggles to explain (Section 1), it
is possible that in reality this saturation does not occur.

From the results of the explicit vr and vφ modelling, it is tempting
to draw comparison with directly measured vr and vφ values, and
critical parameters such as rA. However, we largely refrain from
doing so here for several reasons. Radial profiles of vr and vφ ,
particularly close to the Sun, are not well constrained by observation.
An average radial profile of vφ is especially difficult to produce due to
its strong variability (e.g. Finley et al. 2019). We must thus consider
a wide range of plausible values for both vr and vφ . As shown in
Fig. 6, and in Figs A1 and A2 in Appendix A, a large range of
vφ and vr solutions produce equivalent agreement between �φemp

and �φHCS. Further, these solutions are very close to the saturation
value associated with constant speed mapping, so the true values of
these key parameters could be quite different from those which we
consider optimal, without changing the results much. Finally, since
questions exist regarding whether the Weber & Davis (1967) model
is capable of explaining observed vφ (Section 1), it may also be
inappropriate for generating realistic values of vφ for the simulated
mapping. This factor motivates our inclusion of a large range of
values of rA in Fig. 6. The values of rA that produce our results
here, and correspondingly determine vφ , thus may not be close to the
true values of rA. We note many optimal solutions shown in Fig. 6
feature larger rA than is expected based on e.g. predicted number
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density values at 1 AU, which give an upper limit of around 40 R�
(Appendix A) and observations of predominantly super-Alfvénic
solar wind near the Sun reported so far at the PSP perihelia shown in
Fig. 6 (Section 1).

While we avoid most comparison with physical observations, the
scale of the large (∼ 50 km s−1) average tangential speeds at around
36 R� reported by Kasper et al. (2019) is such that some general
statements are possible. If we assume that this tangential speed is
maintained closer to the Sun then solar wind plasma would be fully
corotational at around 20 R�. This would naturally correspond to
an effective corotation height, rEC, considerably above 20 R�, since
vφ ∼ 50 km s−1 at 36 R� corresponds to ω ∼ 0.7�, which will still
have strong influence within the integral in equation (1). The exact
value of the corresponding rEC would depend on how vφ drops off
beyond this point. Comparing to Fig. 5 we see that the only model
capable of making this rEC compatible with our results is the fit to the
Parker solar wind solution. However, since we have already noted
that this model exhibits excessive residual acceleration, it appears that
our results are incompatible with vφ ∼ 50 km s−1 near the Sun being
representative of the majority of solar wind streams, or at least the
slow streams in which the HCS is typically embedded. In general, our
analysis supports the idea that the solar wind cannot predominantly
experience rapid rotation near the Sun, or else solar wind acceleration
profiles required to explain �φHCS become increasingly unrealistic.

Our main result – that constant speed, radial, solar wind mapping
performs well at reproducing solar wind mapping from 1 AU – agrees
with the prediction from Nolte & Roelof (1973) that this should
be the case. However, there are discrepancies between the present
study and theirs, when we consider mapping using the Parker fit vr

profile (equation 2) that was also used by Nolte & Roelof (1973).
In this case, we require rEC = 32.4 R� in order to produce optimal
agreement with �φHCS (Fig. 5). However, to produce such an rEC

with our implementation of the Weber & Davis (1967) model requires
very large rA (beyond the axis shown in Fig. 7). This leads to the
question of why Nolte & Roelof (1973) predicted that a smaller
rA in the range of ∼0.1–0.25 AU (20–50 R�) would be sufficient
to produce roughly this same rEC. This disagreement appears to
be due to their assumption that rEC is very similar to rA. However,
literature cited to support this (e.g. Brandt 1967) refers to the effective
corotation height from the perspective of total angular momentum
loss, rather than from the perspective of mapping, being close to rA.
Pizzo et al. (1983) pointed out that this effective corotation height is
not equivalent to true corotation out to rA. Since most of the angular
momentum is carried by the field, the extent of actual corotation
should be far smaller. Computing rEC as defined in Section 1, and
as it appears to be interpreted by Nolte & Roelof (1973), produces
the result in Fig. 7 referenced above. Thus, while rEC = 32.4 R�
gives optimal agreement with �φHCS for the Parker vr model and lies
within the range of rEC presented by Nolte & Roelof (1973), we argue
that such a large rEC (per the definition of this work) is not consistent
with the model of Weber & Davis (1967), and is probably unrealistic.
vr profiles featuring weaker residual acceleration than the Parker fit
model (Blend and VB18) are based on in situ vr observations, and so
likely are more realistic at heights >rEC. It is encouraging then that
the corresponding optimal rEC values to agree with �φHCS (Fig. 5)
are also more realistic.

5 C O N C L U S I O N S

In this study we have estimated the longitudinal offsets, �φHCS,
undergone by a large number of slow solar wind samples associated

with HCS crossings between 2.5 R� and 1 AU. We used these �φHCS

to evaluate mapping offsets resulting from a range of different solar
wind propagation models. These included �φcon, the offset derived
from constant speed, radial, solar wind propagation, which is central
to the widely applied two-step ballistic backmapping technique.
Although �φHCS is subject to a large degree of spread, we find that on
average �φcon agrees well with �φHCS, to within 1.5◦. The standard
deviation in �φcon − �φHCS of 16◦ is made up of contributions from
errors in PFSS-in situ agreement and variable propagation effects. We
thus conclude that constant speed, radial, solar wind backmapping
is as accurate as, and also simpler than, the more complex models
tested here at mapping slow solar wind streams from 1 AU back to
the Sun. This echoes the conclusions of Nolte & Roelof (1973), but
now with the support of a large volume of data.

From computing �φemp for model solar wind vr and vφ , we find
many solutions involving the model of Weber & Davis (1967) that
reproduce the mean observed �φHCS. However, these solutions do
not outperform the constant speed mapping in terms of accuracy or
precision (giving close to the same σ = 16◦) because the variance in
all of these models is essentially due only to vr at 1 AU. To improve
upon this may be possible, but would likely require a stream-by-
stream approach to modelling the propagation. These results allow us
to illustrate that the constant speed, radial, mapping indeed performs
well because of the cancellation of errors associated with neglecting
both radial acceleration and rotational flows. A saturation effect,
which arises in the modelled results and limits �φemp to be ≥�φcon,
could provide the explanation for why the above error cancellation
happens in the real solar wind, if its acceleration is sufficiently rapid.
The existence of error cancellation agrees with the explanation put
forward originally by Nolte & Roelof (1973). Despite this, we would
revise some details of their solar wind modelling, favouring solar
wind that accelerates less between 0.3 and 1 AU (based on in situ
observation of vr) and correspondingly features a lower effective
corotation height (i.e. weaker vφ). Our results suggest that the
rapid solar wind rotation seen in early PSP measurements, around
40 km s−1 (Kasper et al. 2019), cannot be maintained everywhere
near the Sun. To allow this, unrealistically large residual solar wind
acceleration would become necessary in order to explain the good
performance of ballistic mapping found here.

The saturation effect and the wide range of plausible vr and vφ

solutions limit the prospects of using the results of the present study
to draw further conclusions about solar wind acceleration or angular
momentum, including validating the model of Weber & Davis (1967)
as implemented here. However, given that �φ does depend on these
integrated parameters, and can be estimated using our methodology,
there are opportunities with future studies to leverage this information
to explore these topics. Using better constrained and more realistic
profiles, particularly measured close to the Sun, of either one of
vr or vφ to compute �φ would help to constrain estimates of the
other. Further, estimates of �φHCS made at a range of heliocentric
distances could be combined, to allow comparisons with the results
from equation (1) evaluated for different outer limits, constraining
different radial sections of vr and vφ evolution. Both of these
suggestions become more realistic as further data are returned close
to the sun by PSP and SO.
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APPENDI X A : EXAMPLE RADI AL PROFILES

Figs A1 and A2 show plots of example vr and vφ profiles, respec-
tively. Each profile corresponds to a combination of b, n, and rA

(for vφ) at a point along one of the lines of minimum mean residual
in Fig. 6(a). Each panel corresponds to a panel in Fig. 6(a). These
figures show the wide range of vr and vφ profiles that can produce
equivalently optimal agreement with our observed �φHCS.

Profiles of vA are derived in Section 2 by assuming mass continuity
(constant ρvrr2) to give the form of the radial density profiles. In
Fig. A3, we plot example density profiles for different profiles of vr

and values of rA used in the study. To obtain explicit density values,
we use the definition of the radial Alfvén speed:

v2
A = B2

r

μ0ρ
, (A1)

where μ0 is the vacuum permeability, and specify Br by assuming it
scales as 1/r2 (per conservation of magnetic flux) and Br = 3.5 nT
at 1 AU (i.e. |B| = 5 nT for a 45◦ Parker spiral). We plot number
density profiles in Figs A3(b)–(d), which correspond to each vφ–
vr pair shown in Figs A1 and A2. We plot horizontal lines at 1 and
20 cm−3 to serve as rough lower and upper limits for realistic number
density values at 1 AU. Curves that fall outside of these limits at 1 AU

(215 R�) suggest sensible rA limits for the ‘optimal’ curves in Fig. 6
to be 10 � rA � 40 R�. However, these limits are quite sensitive to
our initial choice of |B| at r=1 AU.
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Figure A1. Empirical vr profiles from equation (6) for example b, n, and vr = 370 km s−1 at 1 AU, drawn from the ‘optimal’ values of Fig. 6. Each panel
corresponds to a different n and line colour corresponds to rA. The matching value of b can be found by examining the ’optimal’ line of b against rA on the
corresponding panel of Fig. 6.

Figure A2. vφ profiles for example b, n, rA values and vr = 370 km s−1 at 1 AU, drawn from the ‘optimal’ values of Fig. 6. Each panel corresponds to a
different n and line colour corresponds to rA. The matching value of b can be found by examining the ’optimal’ line of b against rA on the corresponding panel
of Fig. 6.

Figure A3. Panel (a): radial profile of modelled Br used to compute number density. Panels (b)–(d): example density profiles computed using Br shown in panel
(a), for combinations of rA and vr computed using equation (6) with parameters specified in Figs A1 and A2. The colour of each density profile corresponds to
a different value of rA, and the corresponding b that controls vr can be found by comparison with the optimal line in Fig. 6(a). Red horizontal lines correspond
to 1 and 20 cm−3.

APPENDIX B: C OMPARISON O F EMPIRICAL
AND CONSTANT SPEED MAPPING

To investigate the saturation in the mean residual of Fig. 6(a), we
compute �φemp − �φcon for the same b, n, and rA combinations.
The result of this is plotted in Fig. B1. We compute �φemp only for
vr = 370 km s−1 at 1 AU, rather than the distribution of vr that was
obtained from the in situ measurements. �φcon is calculated using
the assumptions of vφ = 0 and a constant vr = 370 km s−1. The
minimum value of �φemp − �φcon is 0.3. Fig. B1 shows that �φemp

in our explored parameter space saturates at ∼�φcon for small b.
From Fig. 3, vr approaches the constant speed case as b

→ 0, with increasingly rapid acceleration near the Sun. For a

model with fixed rA, this change in vr increases vA, resulting in
smaller near-Sun vφ from equation (4). The outcome of this is
that very little rotational or acceleration effects take place, and
�φemp tends to the radial, constant speed, case of �φcon. This
saturation effect could explain why the constant speed, radial,
mapping performs so well on average at predicting mean �φHCS

(Fig. 4), provided that our modelled vr and vφ are sufficiently
realistic. We also find that it is possible to produce vr and vφ

profiles for which �φemp − �φcon ≤ 0, if vφ is artificially scaled
up from the classical Weber & Davis (1967) values. Thus, it is
not fully clear whether the saturation should occur this way in
reality.
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Figure B1. Heatmaps in the form of Fig. 6(a), but showing the residual �φemp − �φcon for different b and n combinations and vr = 370 km s−1 at 1 AU.
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