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Abstract

This paper studies a new class of two-dimensional rational maps exhibiting self-excited and hidden

attractors. The mathematical model of these maps is firstly formulated by introducing a rational term.

The analysis of existence and stabilities of the fixed points in these maps suggests that there are four types

of fixed points, i.e., no fixed point, one single fixed point, two fixed points and a line of fixed points. To

investigate the complex dynamics of these rational maps with different types of fixed points, numerical

analysis tools, such as time histories, phase portraits, basins of attraction, Lyapunov exponent spectrum,

Lyapunov (Kaplan-Yorke) dimension and bifurcation diagrams, are employed. Our extensive numerical

simulations identify both self-excited and hidden attractors, which were rarely reported in the literature.

Therefore, the multi-stability of these maps, especially the hidden one, is further explored in the present

work.

Keywords: Two-dimensional rational map, hidden attractors, multi-stability, a line of fixed points, chaotic

attractor.

PACS: 05.45.Ac, 05.45.Pq

1. Introduction

Recently, hidden attractor has become an attractive topic for researchers in non-linear sciences, and has been

found in many practical systems, such as the Chua system [1–3], the drilling system [4], and the automatic control

system with piecewise-linear non-linearity [5]. They have been explored intensively in continuous dynamical

systems with different structures of equilibria, see [6]. As it is known, if a dynamical system with a given

set of parameters has more than one attractor according to its initial conditions, this phenomenon is called

multi-stability. Multi-stability has been studied extensively in the literature since it exists in many areas, such

as physics, chemistry, biology and economics, see e.g., [7–11].

*Project supported by the National Natural Science Foundation of China (Grant Nos. 11672257, 11772306 and 11972173) and

the 5th 333 High-level Personnel Training Project of Jiangsu Province of China (Grant No. BRA2018324).
†Corresponding author. E-mail:yctcjhb@126.com
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Many researchers have studied the self-excited and hidden attractors in discrete-time maps because of their

broad applications, e.g., [12–19,26–30]. Among these works, a few studies [15–19] have identified the attractors

with particular types of fixed points. For example, Jiang et al. [15,16] explored the hidden chaotic attractors

with no fixed point and a single stable fixed point in a class of two-dimensional and three-dimensional maps,

respectively. Jiang et al. [17] studied the hidden chaotic attractors in a class of two-dimensional chaotic maps

with closed curve fixed points. Luo [19] analysed the complexity and singularity of a class of discrete systems

with infinite-fixed-points by using the local analysis methods. Also, hidden attractors have been found in the

non-linear maps in a fractional form [20–25]. In [20], Ouannas et al. studied a fractional map with no fixed point

that exhibits hidden attractors. Hadjabi et al. proposed two new classes of two-dimensional fractional maps

with closed curve fixed points and studied their dynamics in [21]. Great efforts [26–30] have also been made for

searching and controlling hidden attractors. For example, Dudkowski et al. [26,27] presented a new method to

locate hidden and coexisting attractors in non-linear maps based on the concept of perpetual points. In [28],

Danca and Fečan used impulsive control to suppress chaos and produced hidden attractors in a one-dimensional

discrete supply and demand dynamical system. Then Danca and Lampart [29] proposed an algorithm to identify

hidden attractors in maps and numerically studied the dynamics of a heterogeneous Cournot oligopoly model

exhibiting self-excited and hidden attractors. In [30], Zhang et al. put forward a method to distinguish

hidden and self-excited attractors by constructing random bifurcation diagrams. They employed the linear

augmentation method to control hidden attractors and multi-stability in a class of two-dimensional maps.

On the other hand, the extreme multi-stability of which the map exhibits infinite many coexisting attractors

is of great interest of many researchers [31–33]. In [31], Zhang et al. constructed a new class of two-dimensional

maps by introducing a sine term and presented infinitely many coexisting attractors in the map. Bao et

al. proposed a new two-dimensional hyper-chaotic map with a sine term. They investigated the parameter-

dependent and initial-boosting bifurcations for the map with line and no fixed points in [32]. In [33], Kong et al.

proposed a novel two-dimensional hyper-chaotic map with two sine terms and investigated the map’s conditional

symmetry and attractor growth. Among different maps, the maps with rational fraction, e.g., [34–41], are

complex that are challenging for investigation. In [35], Lu et al. investigated the complex dynamics of a new

rational chaotic map. Chang et al. constructed a new two-dimensional rational chaotic map and studied its

tracking and synchronization in [36]. Elhadj and Sprott proposed a new two-dimensional rational map that

presents a quasi-periodic route to chaos in [37,38]. In [39], Somarakis and Baras investigated the complex

dynamics of the two-dimensional rational map proposed in [37] analytically and numerically by studying the

strange attractors, bifurcation diagrams, periodic windows, and invariant characteristics. Chen et al. studied

the boundedness of the attractors and the corresponding estimation of absorbing set of the Zeraoulia-Sprott

map [37] analytically in [40]. In [41], Ouannas et al. considered the dynamics, control and synchronization of the

rational maps in a fractional form based on the Rulkov [34], Chang [36], and Zeraoulia-Sprott [37] rational maps.

However, to the best of authers’ knowledge, the current research work on the hidden attractors in rational maps

is very limited, which is the motivation of the present work.

This paper aims to explore several simple chaotic rational maps exhibiting self-excited and hidden attractors

by performing an exhaustive computer search [13,14]. The main focus of this paper is as follows: (1) A new class of

two-dimensional rational maps with self-excited and hidden attractors is developed; (2) The chaotic attractors
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are analysed numerically by using the basins of attraction, the Lyapunov exponent spectrum (Les) and the

Kaplan-Yorke dimension; (3) By varying parameters, the map can display four types of fixed points, i.e., no

fixed point, one single fixed point, two fixed points and a line of fixed points. Furthermore, it can exhibit

different types of coexisting attractors.

The rest of this paper is structured as follows. In Section 2, the mathematical model of this class of two-

dimensional rational maps is formulated, and the existence and stabilities of their fixed points are studied. In

Section 3, the dynamical behaviours of the rational map are investigated by using various numerical analysis

tools. Finally, concluding remarks are drawn in Section 4.

2. System model

Inspired by [31–33], we constructed a new class of two-dimensional rational maps in the following form⎧⎨⎩ 𝑥𝑘+1 = 𝑥𝑘 + 𝑎𝑥𝑘

1+𝑦2
𝑘

+ 𝑏,

𝑦𝑘+1 = 𝑦𝑘 + 𝑐𝑥𝑘 + 𝑑,
(1)

where 𝑥𝑘 and 𝑦𝑘 (𝑘 = 0, 1, 2, · · · ) are system states at step 𝑘, the coefficients 𝑎, 𝑏, 𝑐 and 𝑑 are system parameters,

𝑎𝑥𝑘

1+𝑦2
𝑘

is a rational term. When 𝑎 = 0 or 𝑐 = 0, one sub-equation of the rational map (1) will only have one state,

so the sub-equation corresponds to a one-dimensional map. Thus in this paper, we only consider the case that

𝑎 ̸= 0 and 𝑐 ̸= 0.

The fixed points (𝑥*, 𝑦*) of the rational map (1) can be obtained by solving the following equations⎧⎨⎩ 𝑥* = 𝑥* + 𝑎𝑥*

1+(𝑦*)2 + 𝑏,

𝑦* = 𝑦* + 𝑐𝑥* + 𝑑.
(2)

which can be converted into ⎧⎨⎩ 𝑎𝑥*

1+(𝑦*)2 + 𝑏 = 0,

𝑐𝑥* + 𝑑 = 0.
(3)

The Jacobian matrix of the rational map (1) at the fixed points (𝑥*, 𝑦*) can be represented by

𝐽 =

⎡⎣ 1 + 𝑎
1+(𝑦*)2 − 2𝑎𝑥*𝑦*

(1+(𝑦*)2)2

𝑐 1

⎤⎦ , (4)

The characteristic equation of the Jacobian matrix can be expressed as

det(𝜆𝐼 − 𝐽) = 𝜆2 − tr(𝐽)𝜆 + det(𝐽) = 0, (5)

where det(𝐽) = 1 + 𝑎
1+(𝑦*)2 + 2𝑎𝑐𝑥*𝑦*

(1+(𝑦*)2)2 and tr(𝐽) = 2 + 𝑎
1+(𝑦*)2 stand for the determinant of the Jacobian

matrix and the trace of the Jacobian matrix, respectively. Eigenvalues of 𝐽 , 𝜆1 and 𝜆2 are termed as multipliers

of the fixed point. Denote the numbers of multipliers of the fixed point (𝑥*, 𝑦*) lying inside, on and outside

the unit circle {𝜆 ∈ 𝐶 : |𝜆| = 1} by 𝑛−, 𝑛0 and 𝑛+, respectively. The fixed point is stable if the roots of the

characteristic equation, 𝜆1 and 𝜆2 satisfy that |𝜆1,2| < 1, where | · | refers to the modulus of a complex number.

Definition 1 (Definition 2.10 in [42]) A fixed point (𝑥*, 𝑦*) is called hyperbolic if 𝑛0 = 0, that is, if there

is no eigenvalue of the Jacobian matrix evaluated at this fixed point on the unit circle. Otherwise, the fixed
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point is called non-hyperbolic, that is, there is at least one eigenvalue of the Jacobian matrix evaluated at the

fixed point on the unit circle.

To distinguish the hidden and self-excited attractors of the rational map (1), the following definition is

introduced.

Definition 2 [43] An attractor is called a hidden attractor if its basin of attraction does not intersect with

the small neighborhoods of equilibria (fixed points) of the system (map); Otherwise, it is called a self-excited

attractor.

Five cases can be divided from Eq. (2) as follows.

If 𝑎 ̸= 0, 𝑏 = 0, 𝑐 ̸= 0, there are two different cases, i.e., 𝑑 = 0 and 𝑑 ̸= 0.

Case I: 𝑎 ̸= 0, 𝑏 = 0, 𝑐 ̸= 0, 𝑑 = 0 (a line of fixed points).

When 𝑎 ̸= 0, 𝑏 = 0, 𝑐 ̸= 0 and 𝑑 = 0, there is a line of fixed points (0, 𝑒), 𝑒 ∈ 𝑅. The Jacobian matrix of

the rational map (1) at the fixed points (0, 𝑒) can be rewritten as

𝐽 =

⎡⎣ 1 + 𝑎
1+𝑒2 0

𝑐 1

⎤⎦ , (6)

The multipliers of the fixed points, eigenvalues of 𝐽 , 𝜆1 = 1 and 𝜆2 = 1 + 𝑎
1+𝑒2 . Thus, according to Definition

1, these fixed points are all non-hyperbolic. Then these fixed points are critical stable.

Case II: 𝑎 ̸= 0, 𝑏 = 0, 𝑐 ̸= 0, 𝑑 ̸= 0 (no fixed point A).

When 𝑎 ̸= 0, 𝑏 = 0, 𝑐 ̸= 0 and 𝑑 ̸= 0, Eq. (2) has none solution. So there is no fixed point.

If 𝑎 ̸= 0, 𝑏 ̸= 0 and 𝑐 ̸= 0, then 𝑥* = −𝑑
𝑐 , − 𝑎𝑑

𝑐(1+(𝑦*)2) + 𝑏 = 0, i.e., (𝑦*)2 = 𝑎𝑑
𝑏𝑐 − 1. So if 𝑎 ̸= 0, 𝑐 ̸= 0 and

𝑏 ̸= 0, three cases can be obtained by considering the size relation between 𝑎𝑑
𝑏𝑐 and 1.

Case III: 𝑎 ̸= 0, 𝑏 ̸= 0, 𝑐 ̸= 0, 𝑎𝑑
𝑏𝑐 < 1 (no fixed point B).

When 𝑎 ̸= 0, 𝑏 ̸= 0, 𝑐 ̸= 0 and 𝑎𝑑
𝑏𝑐 < 1, Eq. (2) has none solution. So there is no fixed point.

Case IV: 𝑎 ̸= 0, 𝑏 ̸= 0, 𝑐 ̸= 0, 𝑎𝑑
𝑏𝑐 = 1 (one fixed point).

When 𝑎 ̸= 0, 𝑏 ̸= 0, 𝑐 ̸= 0 and 𝑎𝑑
𝑏𝑐 = 1, Eq. (2) has two equal solutions, i.e., 𝑥* = −𝑑

𝑐 , 𝑦* = 0. So there is

only one fixed point. The Jacobian matrix of the rational map (1) at the fixed point (−𝑑
𝑐 , 0) can be expressed

as

𝐽 =

⎡⎣ 1 + 𝑎 0

𝑐 1

⎤⎦ , (7)

The multipliers of the fixed point, eigenvalues of 𝐽 , are 𝜆1 = 1 and 𝜆2 = 1 + 𝑎. Thus, according to Definition

1, this fixed point is non-hyperbolic.

Case V: 𝑎 ̸= 0, 𝑏 ̸= 0, 𝑐 ̸= 0 and 𝑎𝑑
𝑏𝑐 > 1 (two fixed points).

When 𝑎 ̸= 0, 𝑏 ̸= 0, 𝑐 ̸= 0 and 𝑎𝑑
𝑏𝑐 > 1, Eq. (2) has two different solutions, i.e., 𝑥* = −𝑑

𝑐 , 𝑦* = ±
√︁

𝑎𝑑
𝑏𝑐 − 1.

So there are two fixed points. The Jacobian matrix of the rational map (1) at the fixed points (−𝑑
𝑐 ,±

√︁
𝑎𝑑
𝑏𝑐 − 1)

can be derived as

𝐽 =

⎡⎣ 1 + 𝑏𝑐
𝑑 ± 2𝑏2𝑐

𝑎𝑑

√︁
𝑎𝑑
𝑏𝑐 − 1

𝑐 1

⎤⎦ . (8)

The multipliers of the fixed points can also be obtained by solving the characteristic equation of the Jacobian

matrix (8), which will be analyzed in the following section.
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3. Dynamical behaviours of the rational map

There are several ways to construct a bifurcation diagram, for example, by using random or fixed initial

value, and forward or backward. In the random bifurcation diagram, many initial values are selected randomly

in a range for each bifurcation parameter value. So the random bifurcation diagram can be used to exhibit

all possible attractors. In the forward (backward) bifurcation diagram, one initial value is chosen first and the

method of “follow the attractor” is used, that is, the last steady state is used for the initial state of next value

of the increasing (decreasing) bifurcation parameter. In the bifurcation diagram calculated by using the fixed

initial value, only a fixed initial value is chosen for all the values of the bifurcation parameter.

In this section, the dynamical behaviours of the rational map (1) will be investigated in five cases in

accordance with different types of fixed points. In each case, the random bifurcation diagram [30] is drawn

firstly to show the possible attractors of the rational map (1). If no multi-stability is observed, the forward

(backward) bifurcation diagram will be presented to show the complex behaviours of the rational map (1).

Moreover, the Lyapunov exponent spectrum (Les) and the Lyapunov (Kaplan-Yorke) dimension (Dky) of the

attractors of the rational map (1) are computed using the Wolf methods given in [14,44].

3.1.Case I: a line of fixed points

By random searching, chaotic attractors were found with several coefficients satisfying the condition that

𝑎 ̸= 0, 𝑏 = 0, 𝑐 ̸= 0 and 𝑑 = 0, i.e., there exist a line of fixed points. For example, when 𝑎 = −3, 𝑏 = 0, 𝑐 = 0.1

and 𝑑 = 0, the rational map (1) can present chaotic attractors.

In order to show the complex dynamics of the rational map (1) with a line of fixed points, random bifurcation

diagram and Lyapunov exponent spectrum diagram of the map were plotted in Fig. 1 by using 𝑎 as a branching

parameter and fixing (𝑏, 𝑐, 𝑑) as (0, 0.1, 0), where 500 initial values were randomly chosen within [−5, 5] for each

value of the parameter 𝑎. The steady states after transience marked by black dots were shown in Fig. 1(a),

and the largest Lyapunov exponents (Le1) were indicated by black dots in Fig. 1(b). Since there were many

fixed points, many Lyapunov exponents of the map for each parameter value were presented. To see the largest

Lyapunov exponents clearly, the smallest Lyapunov exponents were omitted. Some samples of phase portraits

of the rational map (1) with different values of the parameter 𝑎 were presented in Fig. 2. As can be seen from

Fig. 1, when −4 ≤ 𝑎 ≤ −1, the rational map (1) shows a line of fixed points (Fig. 2(a)). As 𝑎 decreases

from −1 to −2, a period-2 solution (Fig. 2(b)) emerges. When 𝑎 = −2.667, the period-2 solution bifurcates

to a period-8 solution (Fig. 2(c)). When 𝑎 = −2.892, there is a reverse period-doubling bifurcation, and the

period-8 solution bifurcates to a period-16 solution (Fig. 2(d)), and then becomes multiple-piece chaos (Fig.

2(e)) and two-piece chaos (Fig. 2(f)) after a reverse period-doubling cascade. Thereafter the map experiences

a small window of periodic solutions (Fig. 2(g)). There is coexistence of stable fixed points, periodic solutions

and chaotic solutions (Fig. 2(h)). Finally, the two-piece chaotic attractors are merged into one-piece chaotic

attractors (Fig. 2(i)), which terminate to emerge at 𝑎 = −3.38.

To show the stability of a line of fixed points, we plotted the basin of attraction of the rational map (1)

when 𝑎 = −3.05, 𝑏 = 0, 𝑐 = 0.1 and 𝑑 = 0 as shown in Fig. 3. The black and red dots represent the chaotic

attractor and the stable fixed points, respectively. The basins of the chaotic attractor, the stable fixed points

and unbounded solutions were painted cyan, yellow and white, respectively. From Fig. 3, although the line of
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a
Fig. 1. Random bifurcation diagrams of (a) 𝑥, and (b) the largest Lyapunov exponent (Le1) of the rational map

(1) calculated for 𝑎 ∈ [−4,−1] and (𝑏, 𝑐, 𝑑) = (0, 0.1, 0). In Fig. 1(b), the horizontal line denotes the zero value of

the largest Lyapunov exponent.

fixed points are all non-hyperbolic, many fixed points are stable while there exist unstable fixed points. Since

the knowledge about the line of fixed points is not very helpful for the localization of attractors, the attractors

with a line of fixed points can also be considered as hidden attractors.

3.2.Case II: No fixed point A

By random searching, chaotic attractors were found with several coefficients satisfying the condition that

𝑎 ̸= 0, 𝑏 = 0, 𝑐 ̸= 0 and 𝑑 ̸= 0, i.e., there exists no fixed point. So the attractors are hidden. For example, when

𝑎 = −3, 𝑏 = 0, 𝑐 = 1 and 𝑑 = 0.1, the rational map (1) has chaotic attractors.

To show the complex dynamics of the rational map (1) with no fixed point, forward bifurcation diagram and

Lyapunov exponent spectrum diagrams of the map were plotted in Fig. 4 by using 𝑎 as a varying parameter and

fixing (𝑏, 𝑐, 𝑑) as (0, 1, 0.1), where the initial value was assigned as (1, 0), and the final state at the end of each

iteration of the parameter was used as the initial state for the next iteration of computation. The steady states

after transience denoted by black dots were presented in Fig. 4 (a), and the largest Lyapunov exponent (Le1),

the smallest Lyapunov exponent (Le2) and the Lyapunov (Kaplan-Yorke) dimension (Dky) were indicated by

red, blue and black lines in Fig. 4 (b), respectively. From Fig. 4, the Lyapunov exponent spectrum diagram

is in good agreement with the bifurcation diagram. Fig. 5 presents some samples of phase portraits of the

solutions for the rational map (1). It can be seen from Fig. 4 that, when 𝑎 = −2.361, the rational map (1)

shows a hidden period-2 solution (Fig. 5(a)) . As 𝑎 decreases to −2.521, the rational map (1) experiences a

reverse period-doubling bifurcation, and the hidden period-2 solution bifurcates to a hidden period-4 solution

(Fig. 5(b)). When 𝑎 = −2.741, another reverse period-doubling bifurcation is encountered, and this hidden

period-4 solution converts into a hidden period-8 solution (Fig. 5(c)). At 𝑎 = −2.798, this hidden period-8

solution transforms into a hidden period-16 solution (Fig. 5(d)), and then becomes multiple-piece chaos after
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Fig. 2. (Colour online) Phase portraits of the solutions of the rational map (1) calculated at (𝑏, 𝑐, 𝑑) = (0, 0.1, 0) and

(a) 𝑎 = −1.95 (stable fixed points), (b) 𝑎 = −2.1 (stable fixed points and period-2 solution), (c) 𝑎 = −2.7, (stable

fixed points and period-8 solution), (d) 𝑎 = −2.9 (stable fixed points and period-16 solution), (e) 𝑎 = −2.98 (stable

fixed points and eight-piece chaotic solution), (f) 𝑎 = −3.05 (a line of fixed points and two-piece chaotic solution),

(g) 𝑎 = −3.11 (stable fixed points and period-12 solution), (h) 𝑎 = −3.135 (stable fixed points, period-24 solution

and four-piece chaotic solution), (i) 𝑎 = −3.37 (stable fixed points and one-piece chaotic solution), respectively.
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Fig. 3. (Colour online) Basins of attraction of the rational map (1) when 𝑎 = −3.05, 𝑏 = 0, 𝑐 = 0.1, 𝑑 = 0 in

the region {(𝑥, 𝑦)|𝑥 ∈ [−30, 30], 𝑦 ∈ [−3, 3]}. The unbounded basin of attraction which is the set of initial points

going into the region ({(𝑥, 𝑦)||𝑥|+ |𝑦| > 100}) is shown in white. The chaotic attractor, the stable fixed points and

unstable fixed points are denoted by black, red and blue dots, respectively. The basin of chaotic attractors and

stable fixed points are shown in cyan and yellow, respectively.

a reverse period-doubling cascade. After that, a small window of hidden period-6 solutions (Fig. 5(e)) and

hidden period-12 solutions are recorded, and the rational map (1) goes into chaotic states again at 𝑎 = −2.965

through a reverse period-doubling cascade. Finally, when 𝑎 = −3.144, the hidden two-piece chaotic attractors

are jointed together into hidden one-piece chaotic attractors (Fig. 5(f)), which disappear at 𝑎 = −3.148.

3.3.Case III: No fixed point B

When 𝑎 = −3, 𝑏 = 1, 𝑐 = −0.1 and 𝑑 = −0.1, the condition that 𝑏 ̸= 0 and 𝑎𝑑
𝑏𝑐 < 1 is fulfilled, i.e., there is

no fixed point. So the attractors are hidden. If 𝑏 = 1, 𝑐 = −0.1, 𝑑 = −0.1 and 𝑎 < 1, then 𝑎𝑑
𝑏𝑐 < 1, so there is

no fixed point and the attractors are hidden.

In order to show the complex dynamics of the rational map (1) with no fixed point, backward bifurcation

diagram and Lyapunov exponent spectrum diagram of the map were depicted in Fig. 6 by using 𝑎 as a bifurcation

parameter and fixing (𝑏, 𝑐, 𝑑) as (1,−0.1,−0.1). The initial value was set as (7, 0) and the final state at the

end of each iteration of the parameter was used as the initial state for the next iteration of computation. The

steady states after transience were shown in Fig. 6 (a), and the largest Lyapunov exponent (Le1), the smallest

Lyapunov exponent (Le2) and the Lyapunov (Kaplan-Yorke) dimension (Dky) were denoted by red, blue and

black lines in Fig. 6 (b), respectively. From Fig. 6, the Lyapunov exponent diagram agrees well with the

bifurcation diagram. Fig. 6 presents some samples of phase portraits of the solutions for the rational map (1).

It is apparent from Fig. 6 that the bifurcation procedure of Case III is very similar to that of Case II. When

𝑎 = −2.459, a hidden period-2 solution (Fig. 7(a)) exists. As 𝑎 decreases to −2.504, there is a reverse period-

doubling bifurcation, leading the hidden period-2 solution to a hidden period-4 solution (Fig. 7(b)). When

𝑎 = −2.706, the occurrence of another reverse period-doubling bifurcation leads the hidden period-4 solution to
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Fig. 4. (Colour online) Forward bifurcation diagram of (a) 𝑥, and (b) Lyapunov exponent spectrum (Les) and

Lyapunov (Kaplan-Yorke) dimension (Dky) of the rational map (1) calculated for 𝑎 ∈ [−3.2,−2.3] and (𝑏, 𝑐, 𝑑) =

(0, 1, 0.1) using the initial value (1, 0). The largest Lyapunov exponent (Le1), the smallest Lyapunov exponent (Le2)

and the Lyapunov (Kaplan-Yorke) dimension (Dky) are indicated by red, blue and black lines, respectively. The

dashed horizontal line denotes that the zero value of the Lyapunov exponent and the Lyapunov (Kaplan-Yorke)

dimension.

a hidden period-8 solution (Fig. 7(c)). At 𝑎 = −2.760, this hidden period-8 solution becomes a hidden period-16

solution (Fig. 7(d)), and then changes into hidden multiple-piece chaos after a reverse period-doubling cascade.

Hereafter, the map exhibits a small window of hidden period-6 solutions (Fig. 7(e)) and hidden period-12

solutions, and bifurcates into chaos again at 𝑎 = −2.937 via a reverse period-doubling cascade. Finally, the

hidden two-piece chaotic attractors are combined into hidden one-piece chaotic attractors (Fig. 7(f)), which

cease to exist at 𝑎 = −3.158.

3.4.Case IV: A single fixed point

By random searching, several coefficients satisfying the condition that 𝑏 ̸= 0, 𝑎𝑑
𝑏𝑐 = 1 and yielding chaotic

attractors of the rational map (1) were found. In this case, the rational map (1) has a single non-hyperbolic

fixed point. If 𝑎 = −3, 𝑏 = 1, 𝑐 = 0.6 and 𝑑 = −0.2, the non-hyperbolic fixed point is (1/3, 0) and the

map shows a two-piece chaotic attractor with the initial value chosen as (0, 0). Figs. 8(a) and (b) show

the states 𝑥 and 𝑦 of the chaotic attractor of the rational map (1) as a function of the step 𝑘, respectively.

Fig. 8 (c) presents the phase portrait of the chaotic attractor of the rational map (1). Based on our numerical

computation, Lyapunov exponent spectrum (Les) of the chaotic attractor are 0.2182,−0.1304, and its Lyapunov

(Kaplan-Yorke) dimension (Dky) is 2, which proves the chaotic property of the rational map (1).

The basin of attraction of the rational map (1) was depicted in Fig. 9. The cyan and white regions

correspond to the basin of the chaotic attractor and the unbounded solution, respectively. The black dots and

the blue dot represent the chaotic attractor and the non-hyperbolic fixed point, respectively. From Fig. 9, the
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Fig. 5. Phase portraits of the solutions of the rational map (1) calculated at (𝑏, 𝑐, 𝑑) = (0, 1, 0.1) and (a) 𝑎 = −2.361

(hidden period-2 solution), (b) 𝑎 = −2.600 (hidden period-4 solution), (c) 𝑎 = −2.780 (hidden period-8 solution),

(d) 𝑎 = −2.817 (hidden period-16 solution), (e) 𝑎 = −2.946 (hidden period-6 solution), (f) 𝑎 = −3.144 (one-piece

hidden chaotic solution), respectively.

Fig. 6. (Colour online) Backward bifurcation diagram of (a) 𝑥, and (b) Lyapunov exponent spectrum (Les)

and Lyapunov (Kaplan-Yorke) dimension (Dky) of the rational map (1) calculated for 𝑎 ∈ [−3.14,−2.44] and

(𝑏, 𝑐, 𝑑) = (1,−0.1,−0.1) using the initial value (7, 0). The largest Lyapunov exponent (Le1), the smallest Lyapunov

exponent (Le2) and Lyapunov (Kaplan-Yorke) dimension (Dky) are denoted by red, blue and black lines, respectively.

The dashed horizontal line denotes the zero value of the Lyapunov exponent and the Lyapunov (Kaplan-Yorke)

dimension.
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Fig. 7. Phase portraits of the solutions of the rational map (1) calculated at (𝑏, 𝑐, 𝑑) = (1,−0.1,−0.1) and (a)

𝑎 = −2.459 (hidden period-2 solution), (b) 𝑎 = −2.508 (hidden period-4 solution), (c) 𝑎 = −2.718 (hidden period-8

solution), (d) 𝑎 = −2.776 (hidden period-16 solution), (e) 𝑎 = −2.926 (hidden period-6 solution), (f) 𝑎 = −3.133

(one-piece hidden chaotic solution), respectively.

non-hyperbolic fixed point lies inside the chaotic attractor’s basin, so the initial values chosen from any small

punctured neighborhood of the fixed point will tend to the chaotic attractor. However, the basin of the chaotic

attractor exhibits to be striped.
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Fig. 8. Time histories of (a) 𝑥, (b) 𝑦, and (c) phase portrait of the chaotic attractor of the rational map (1)

calculated by using the parameter (𝑎, 𝑏, 𝑐, 𝑑) = (−3, 1, 0.6,−0.2) and the initial value (0, 0).

3.5.Case V: Two fixed points

If 𝑏 ̸= 0 and 𝑎𝑑
𝑏𝑐 > 1, the rational map (1) has two fixed points. By numerical exploration, the stabilities of

these fixed points can be classified into two cases, i.e., one stable and one unstable fixed points, two unstable

fixed points. In the following, we will discuss these cases in detail.
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Fig. 9. (Colour online) Basins of attraction of the rational map (1) when 𝑎 = −3, 𝑏 = 1, 𝑐 = 0.6 and 𝑑 = −0.2

in the region {(𝑥, 𝑦)|𝑥 ∈ [−10, 10], 𝑦 ∈ [−10, 10]}. The chaotic attractor and the non-hyperbolic fixed point are

denoted by black dots and a blue dot, respectively. The basin of the chaotic attractor and the unbounded solution

are shown in cyan and white, respectively.

3.5.1. Case VA: one stable and one unstable fixed points

If 𝑎 = −3, 𝑏 = 1, 𝑐 = 0.1 and 𝑑 = −0.1, then 𝑏 ̸= 0 and 𝑎𝑑
𝑏𝑐 > 1, i.e., there are two fixed points. If 𝑏 = 1,

𝑐 = 0.1, 𝑑 = −0.1 and 𝑎 < 1, then 𝑎𝑑
𝑏𝑐 < 1, there are two fixed points.

In order to show the complex dynamics of the rational map (1) with two fixed points, random bifurcation

diagram and Lyapunov exponent spectrum diagram of the map were presented in Fig. 10 by varying 𝑎 in the

range [−4,−1] and fixing (𝑏, 𝑐, 𝑑) as (1, 0.1,−0.1), where 500 initial states were randomly selected in the interval

[−5, 5] for each value of the parameter 𝑎. The steady states after transience marked by black dots were shown

in Fig. 10 (a). The largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) were indicated

by red and blue dots in Fig. 10 (b), respectively. According to Fig. 10, there is a good agreement between

the Lyapunov exponent spectrum diagram and the bifurcation diagram. When −4 < 𝑎 < −1, there are one

unstable fixed point (UFP) and one stable fixed point (SFP), represented by blue dashed lines and red lines,

lying in down and up branches, respectively. As 𝑎 increases to −1, the stable and unstable branches intersect

and the stable fixed point becomes unstable via a saddle-node bifurcation. Fig. 11 presents some samples of

phase portraits of the solutions for the rational map (1). For −2.361 < 𝑎 < −1, there only exists one stable

fixed point (Fig. 11(a)). When 𝑎 = −2.361, the map (1) shows a coexisting period-2 solution (Fig. 11(b)). As

𝑎 decreases to −2.521, a reverse period-doubling bifurcation occurs, and the coexisting period-2 solution loses

stability, leaving a coexisting period-4 solution (Fig. 11(c)). When 𝑎 = −2.741, another reverse period-doubling

bifurcation arises, and this coexisting period-4 solution bifurcates to a coexisting period-8 solution (Fig. 11(d)),

and then becomes a coexisting multiple-piece chaotic attractor (Fig. 11(e)) through a reverse period-doubling

cascade. Some small range in which there are more than three coexisting attractors are observed, e.g., the

coexistence of fixed point, period-6 solution and chaotic attractor (Fig. 11(f)). After that, a cascade of period-

doubling bifurcations is observed and the state of the map (1) goes to the coexisting period-8 solution (Fig.

12

A
cc

ep
te

d 
M

an
us

cr
ip

t



11(g)), which evolves into chaos again as a result of a reverse period-doubling cascade. Finally, when 𝑎 = −3.14,

the two-piece chaotic attractors (Fig. 11(h)) are formed into one-piece chaotic attractors (Fig. 11(i)). When

−4 < 𝑎 < −3.38, there only exists one stable fixed point.

Fig. 10. (Colour online) Random bifurcation diagram of (a) 𝑥, and (b) Lyapunov exponent spectrum (Les) of

the rational map (1) calculated for 𝑎 ∈ [−3.14,−2.44] and (𝑏, 𝑐, 𝑑) = (1, 0.1,−0.1). The stable fixed points (SFP),

unstable fixed points (UFP) and attractors expect for the stable fixed points are denoted by red lines, dashed lines

and black dots, respectively. The largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2)

are indicated by red and blue dots, respectively. In Fig. 10(b), the horizontal line denotes the zero value of the

Lyapunov exponent.

To show the hidden and self-excited attractors of the rational map (1), we computed the basin of attraction

of the map when 𝑎 = −2.98 and 𝑎 = −3.06, 𝑏 = 1, 𝑐 = 0.1, 𝑑 = −0.1, as demonstrated in Fig. 12, respectively.

The chaotic attractor, the period-6 attractor, the stable fixed point and the unstable fixed point were represented

by black, magenta, red and blue dots, respectively. The basins of the chaotic attractors, the period-6 attractor,

the stable fixed points and the unbounded solutions were colored in cyan, green, yellow and white, respectively.

From Fig. 12(a), the period-6 attractor is self-excited since one unstable fixed point stays in the basin of the

period-6 attractor. However, the chaotic attractor is hidden since the basin of the chaotic attractor is not

connected with any small neighborhoods of the fixed points. It can be concluded from Fig. 12(b) that, the

chaotic attractor is self-excited since one unstable fixed point lies in the basin of the chaotic attractor, i.e., the

basin of the chaotic attractor is connected with the small neighborhoods of the unstable fixed point.

3.5.2. Case VB: two unstable fixed points

If 𝑎 = −1, 𝑏 = −1, 𝑐 = 1 and 𝑑 = 2, then we have 𝑏 ̸= 0 and 𝑎𝑑
𝑏𝑐 > 1, i.e., there exist two fixed points. If

𝑎 = −1, 𝑐 = 1, 𝑑 = 2 and −2 < 𝑏 < 0, then 𝑎𝑑
𝑏𝑐 > 1. Thus the rational map (1) admits two fixed points. In

the following, we chose 𝑎 = −1, 𝑐 = 1, 𝑑 = 2, and selected 𝑏 as a branching parameter. Fig. 13 presents the

fixed points of the rational map (1) calculated for 𝑏 ∈ [−2.1,−0.01] and (𝑎, 𝑐, 𝑑) = (−1, 1, 2). The stable and
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Fig. 11. Phase portraits of the solutions of the rational map (1) calculated at (𝑏, 𝑐, 𝑑) = (1, 0.1,−0.1) and (a) 𝑎 = −1

(a fixed point), (b) 𝑎 = −2.24 (fixed point and period-2 solution), (c) 𝑎 = −2.56 (fixed point and period-4 solution),

(d) 𝑎 = −2.79 (fixed point and period-8 solution), (e) 𝑎 = −2.94 (fixed point and chaotic solution), (f) 𝑎 = −2.98

(one fixed point, period-6 solution and chaotic solution), (g) 𝑎 = −3.04 (fixed point and period-8 solution), (h)

𝑎 = −3.06 (fixed point and two-piece chaotic solution), (i) 𝑎 = −3.14 (fixed point and one-piece chaotic solution),

respectively.
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Fig. 12. (Colour online) Basins of attraction of the rational map (1) when (a) 𝑎 = −2.98, (b) 𝑎 = −3.06 and 𝑏 = 1,

𝑐 = 0.1, 𝑑 = −0.1 in the region {(𝑥, 𝑦)|𝑥 ∈ [−25, 25], 𝑦 ∈ [−2, 2]}. The chaotic attractor, the period-6 attractor, the

stable fixed point and the unstable fixed point are represented by black, magenta, red and blue dots, respectively.

The basins of the chaotic attractors, the period-6 attractor, the stable fixed point and the unbounded solution are

shown in cyan, green, yellow and white, respectively.

unstable fixed points were indicated by red and blue lines, respectively. For −2.1 < 𝑏 < −2, there is an unstable

fixed point. Then the rational map (1) experiences a saddle-node bifurcation at 𝑏 = −2, which yields one stable

fixed point and one unstable fixed point. When the parameter 𝑏 increases to −1.867, the stable fixed point loses

stability and becomes unstable through a saddle-node bifurcation. When the parameter 𝑏 increases further, this

unstable fixed point gains stability and becomes stable at 𝑏 = −0.133 via a saddle-node bifurcation. Thus there

are two unstable fixed points for 𝑏 ∈ [−1.866,−0.132].

-2.1 -1.4 -0.7 0.0
-14

-7

0

7

14

y

b

 STP
 UTP

Fig. 13. (Colour online) The fixed points of the rational map (1) calculated for 𝑏 ∈ [−2.1,−0.001] and (𝑎, 𝑐, 𝑑) =

(−1, 1, 2). The stable and unstable fixed points are indicated by red and blue lines, respectively.

For showing the complex dynamics of the rational map (1) with two fixed points, random bifurcation

diagram and Lyapunov exponent spectrum diagram of the map were illustrated in Fig. 14 by taking 𝑏 as a

control parameter and fixing (𝑎, 𝑐, 𝑑) as (−1, 1, 2), where 500 initial states were randomly selected in the interval

[−5, 5] for each value of the parameter 𝑏. The steady states after transience were depicted in Fig. 14 (a). The

largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) were indicated by red and blue

dots in Fig. 14(b), respectively. From Fig. 14, the Lyapunov exponent diagram coincides with the bifurcation

diagram. Fig. 15 presents some samples of phase portraits of the solutions for the rational map (1). It is
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apparent from Fig. 14 that, there exist many chaotic regimes and periodic windows. For −0.58 < 𝑏 < 0,

the period of the periodic solutions increases by one from eleven, as displayed in Fig. 15(a)-(i), which can

be considered as period-adding bifurcation. And the length of the chaotic regimes becomes shorter as the

parameter 𝑎 increases. For −1.2 < 𝑏 < −0.58, several period-doubling bifurcations and inverse period-doubling

bifurcations are observed. Finally the chaotic attractors disappear at 𝑏 = −1.075. Although there exist two

unstable fixed points, the rational map (1) may also exhibit hidden attractors.

Fig. 14. (Colour online) Random bifurcation diagram of (a) 𝑥, and (b) Lyapunov exponent spectrum (Les) of the

rational map (1) calculated for 𝑏 ∈ [−1.1,−0.001] and (𝑎, 𝑐, 𝑑) = (−1, 1, 2) using the initial value randomly chosen in

the interval [−5, 5]. The largest Lyapunov exponent (Le1) and the smallest Lyapunov exponent (Le2) are indicated

by red and blue dots, respectively. The dashed horizontal line denotes the zero value of the Lyapunov exponent.

To distinguish the hidden and self-excited attractors of the rational map (1), we drew the basin of attraction

of the map (1) for 𝑏 = −0.745 and 𝑏 = 0.58, 𝑎 = −1, 𝑐 = 1, 𝑑 = 2, as demonstrated in Fig. 16. The chaotic

attractor, the period-6 attractor, the stable fixed point and the unstable fixed point were represented by black,

magenta, red and blue dots, respectively. The basins of the chaotic attractors, the period-11 attractor, the

stable fixed points and the unbounded solutions were colored in cyan, green, yellow and white, respectively.

From Fig. 16(a), the basins of the period-11 attractor and the chaotic attractor are fractal, so the basins of the

chaotic attractor and period-11 attractor are connected with the small neighborhoods of the fixed points. Hence

the period-11 attractor and the chaotic attractor are all self-excited. It can be found from Fig. 16(b) that, the

period-11 attractor is self-excited since one unstable fixed point lies in the basin of the period-11 attractor, i.e.,

the basins of the period-11 attractor is connected with the small neighborhoods of the unstable fixed point. We

also verified the class of attractors according to the definition of hidden and self-excited attractors by exploiting

the numerical tools as follows. Firstly, we obtained two fixed points. Then we randomly chose initial points in

a very small neighborhood (< 0.001) of these fixed points. Finally, some points could tend to these self-excited

attractors.
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Fig. 15. Phase portraits of the solutions of the rational map (1) calculated at (𝑎, 𝑐, 𝑑) = (−1, 1, 2) and (a) 𝑏 = −0.58

(period-11 solution), (b) 𝑏 = −0.55 (period-12 solution), (c) 𝑏 = −0.46 (period-13 solution), (d) 𝑏 = −0.40 (period-

14 solution), (e) 𝑏 = −0.37 (period-15 solution), (f) 𝑏 = −0.34 (period-16 solution), (g) 𝑏 = −0.32 (period-17

solution), (h) 𝑏 = −0.31 (period-18 solution), (i) 𝑏 = −0.27 (period-19 solution), (j) 𝑏 = −0.26 (period-20 solution),

(k) 𝑏 = −0.24 (period-21 solution), (l) 𝑏 = −0.23 (period-22 solution), respectively.
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Fig. 16. (Colour online) Basins of attraction of the rational map (1) when (a) 𝑏 = −0.745, (b) 𝑏 = −0.58 and

𝑎 = −1, 𝑐 = 1, 𝑑 = 2, respectively. The chaotic attractors, the period-11 attractor, the stable fixed point and

the unstable fixed point are denoted by black, magenta, red and blue dots, respectively. The basins of the chaotic

attractors, the period-11 attractor, the stable fixed point and the unbounded solution are shown in cyan, green,

yellow and white, respectively.

4. Conclusions

A new class of two-dimensional rational maps with different types of fixed points was introduced and

studied in this paper. The existence and stabilities of fixed points of the rational map were discussed. Several

numerical analysis tools were employed to demonstrate the rich and complex dynamics of the rational map.

Both self-excited and hidden attractors were shown and explored in the rational map. In addition, multi-

stability, especially the hidden multi-stability, was further investigated. The proposed rational map can be

applied to secure network communications, such as data and image encryption [32]. Future works will focus on

the investigation of high-dimensional rational maps with self-excited and hidden attractors.
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