
Cooperative Edge Caching Based on Temporal
Convolutional Networks

Xu Zhang, Zhengnan Qi, Geyong Min, Wang Miao, Qilin Fan, Zhan Ma

Abstract

With the rapid growth of networked multimedia services in the Internet, wireless network traffic has increased dramatically.
However, the current mainstream content caching schemes do not take into account the cooperation of different edge servers,
resulting in deteriorated system performance. In this paper, we propose a learning-based edge caching scheme to enable mutual
cooperation among different edge servers with limited caching resources, thus effectively reducing the content delivery latency.
Specifically, we formulate the cooperative content caching problem as an optimization problem, which is proven to be NP-hard. To
solve this problem, we design a new learning-based cooperative caching strategy (LECS) that encompasses three key components.
Firstly, a temporal convolutional network driven content popularity prediction model is developed to estimate the content popularity
with high accuracy. Secondly, with the predicted content popularity, the concept of content caching value (CCV) is introduced to
weigh the value of a content cached on a given edge server. Thirdly, an novel dynamic programming algorithm is developed to
maximize the overall CCV. Extensive simulation results have demonstrated the superiority of our approach. Compared with the
state-of-the-art caching schemes, LECS can improve the cache hit rate by 8.3%-10.1%, and reduce the average content delivery
delay by 9.1%-15.1%.
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I. INTRODUCTION

The rapid development of 5G/B5G technology and the prevalence of smartphones have catalysed the proliferation of emerging
multimedia services, such as Cloud Virtual Reality (CloudVR) and Cloud Gaming. In addition, the global mobile data traffic
will increase by more than six times from 2017 to 2022, with an annual growth rate of 42% [1]. As a sequence, tremendous
pressure has been brought to the current wireless communication system in terms of the network latency and throughput. In
this context, Multi-access Edge Computing (MEC) has been introduced to cope with the growing data traffic and strict latency
requirements via bringing computing and storage closer to the network edge [2]–[5].

Content caching is one of the key pillars of MEC, which can reduce the redundant transmission of data content, network
latency and bandwidth consumption, as well as improve the Quality-of-Experience (QoE) perceived by users. In this regard, a
rich literature has been developed around the design of content caching mechanisms [6]–[8]. However, most of the conventional
caching approaches follow fixed rules, and thus cannot cope with the frequently changing content popularity and object access
patterns. Recently, learning-based approaches [9]–[12] have been proposed. For example, Li et al. [9] proposed a PopCaching
system to increase the cache hit rate, which uses a learning-based method to predict content popularity. In [10], the authors
proposed a Seq2Seq model to predict the content popularity. However, these studies on estimating the content popularity
suffer from either slow training speed, gradient disappearance or insufficient accuracy. Moreover, none of the above methods
considered the cooperation between servers. When the local server does not cache the requested content while the neighboring
servers cache the content, the non-cooperative caching approaches will forward the request to the remote central server, resulting
in repeated data transmission and resource consumption.

There also exist some research works [13]–[15] in terms of cooperative content caching. For instance, Serbetci et al. [14]
designed an optimal caching strategy by estimating the cost function, and proposed a transfer learning based method to
estimate the content popularity to improve the cache hit rate. Chen et al. [15] proposed a cooperative caching algorithm based
on collaborative filtering, and adopted a greedy algorithm to obtain the approximate minimum total content delivery latency.
However, the greedy algorithm falls into local optimal solutions in some cases [15]. In addition, most of the existing works
assume that the contents have the same size, which does not hold in practical systems. For example, the size of a popular
video is much larger than the size of a picture with a high click-through rate. How to obtain the global near-optimal solution
with the minimum total content delivery latency faces high challenges.
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In this paper, we propose a learning-based edge caching scheme to enable mutual cooperation among different edge servers
with limited caching resources, in order to maximize the overall caching performance. The cooperative content caching problem
is formulated as an optimization problem with the objective of minimizing the total latency of content delivery, which is
proved to be NP-hard. To this end, we design a learning-based edge cooperative caching scheme (LECS), which possesses
the following three key components. Firstly, we propose a temporal convolutional network (TCN) driven content popularity
prediction model (TCNCP), which has the advantages of high parallelism, fast convergence and stable gradient. To the best
of our knowledge, this is the first of its kind to leverage TCN to predict the future popularity of contents. Next, based on the
content popularity, we comprehensively consider several other factors (i.e., content delivery delay, and content size) that affect
the caching performance, and define a concept for the content caching value (CCV) to weigh the value of a content cached
on a given edge serve. The CCV is calculated based on the content delivery latency, content popularity and size. Finally, we
design a dynamic programming optimization scheme based on the CCV. The extensive performance comparison with with the
state-of-the-art approaches reveals that LECS can improve the content cache hit rate by 8.3%-10.1% and reduce the average
content delivery latency by 9.1%-15.1%.

The main contributions of this paper can be summarized as follows:
• Firstly, we propose a new cooperative caching strategy named LECS to enable mutual cooperation among different edge

servers with limited caching resources, with the aim of maximizing the overall caching performance.
• Secondly, we develop a temporal convolutional network driven content popularity prediction model (TCNCP) to predict

the future content popularity, which can strike a good balance between long and short-term memory and obtain accurate
prediction results.

• Thirdly, we introduce the concept of content caching value (CCV) to weigh the value of a content for a given edge server.
Compared with the content popularity, CCV takes into account more pragmatic factors such as content delivery delay and
content size.

• Next, we propose a dynamic programming driven caching strategy to maximize the overall CCV. Theoretical analysis and
results demonstrate that the strategy can achieve near-optimal content placement.

• Last but not least, the results obtained from real-trace driven simulation experiments show that LECS can achieve superior
performance in terms of the average content delivery latency and cache hit rate in different scenarios.

The rest of the paper is organized as follows. Section II presents a review of related work on caching approaches. Section
III introduces the system model and the formulation of the cooperative content caching problem. In Section IV, we present in
detail our approach to predicting content popularity and present the TCNCP model. Furthermore, we elaborate on the CCV and
LECS. In Section V, we conduct the performance evaluation by comparing our algorithm with the state-of-the-art approaches.
Finally, Section VI concludes the paper.

II. RELATED WORK

There exist extensive studies on the design of caching mechanisms, which can be divided into the following two categories.

A. The non-cooperative caching approaches

Caching approaches were originally derived from page replacement algorithms in the operating system or storage system [16],
such as First Input First Output (FIFO), Least Recently Used (LRU) and Least Frequently Used (LFU) [17], [18]. These
classical approaches are easy to be implemented, paving the way for their wide adoption in Content Delivery Network
(CDN) [19]. However, these approaches with fixed rules can hardly adapt to dynamic requirements of users, thus deteriorating
the performance under dynamic scenarios. To fill the gap, Psara et al. [20] proposed a probability-based caching strategy for
data resources, which gives high priority to content streams over the longer paths and allocates less space than shorter paths,
thus improving the overall resource utilization. In [21], a node centrality driven heuristic method was proposed to minimize
the content delivery latency via a shortest path tree algorithm. A joint caching and routing strategy [22] was designed in
consideration of the capacity constraints of small base stations. Poularakis et al. [23] proposed to optimize the caching policies
based on multicast transmissions via a random rounding technology, which can yield significant energy savings. Gu et al. [24]
proposed a greedy strategy to solve the cache space allocation problem of macro base stations, which can obtain a cache space
allocation result close to the optimal solution. Traverso et al. [25] proposed a Shot Noise Model which captures the dynamic
content popularity, effectively resolving the temporal locality of content popularity. Gharaibeh et al. [26] proposed an online
caching algorithm that allows users to access multiple base stations, minimizing the total cost of content providers. Zhong et al.
[27] presented a DRL-based framework with Wolpertinger architecture for content caching at the base station, which improves
cache hit rate. Sugi et al. [28] proposed the T-Caching which operates in a distributed way using tokens to maximize cache
hit rate. However, most of the existing work assumes that the user requests are evenly distributed [29] without considering
the cooperation between MEC servers. When applying these non-cooperative algorithms into real-world scenarios, it is easy
to cause the adjacent MEC servers to cache duplicate contents, resulting in cache redundancy and system inefficiency.
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Fig. 1. The structure of cooperative caching system.

B. The cooperative caching approaches

To cope with the aforementioned limitations, cooperative caching approaches have attracted an increasing interest from both
academia and industry [30]. Serbetci et al. [14] designed an optimal random caching strategy by estimating the cost function, and
proposed a method based on transfer learning to estimate the content popularity, with the aim of improving the cache hit rate. Li
et al. [31] proposed two caching strategies that mine user/group interests to improve caching performance at network edge, using
recommendation algorithms to predict the probability of contents in the next time slot. Zhao et al. [32] considered a content
caching structure that combines distributed caching and centralized processing to reduce redundant backhaul traffic and improve
the quality of service (QoS). Sun et al. [33] presented a caching scheme assisted by simulated annealing algorithm, which
optimizes bandwidth allocation through double decomposition to ensure user fairness with a low interruption probability. Wang
et al. [34] proposed a zone-based cooperative content caching and distribution scheme and developed a heuristic cooperative
content caching strategy, which divides the storage space in each MEC server into two parts. The first part caches locally
popular contents and the second part is used to cooperatively cache zone-wide popular items, with the assumption that the
content popularity is known as a prior. Nie et al. [35] proposed a Bayes-based learning algorithm that learns the popularity
profile, then optimizes the content placement by using greedy algorithm to cache contents with better channel qualities. An
edge cooperative cache based on neural collaborative filtering and greedy algorithm was presented in [15] to accurately predict
content popularity and minimize content transmission latency. Xia et al. [36] proposed an online algorithm named CEDC-O
based on Lyapunov optimization to minimize the cost. However, most studies assume that all contents have the same size,
while the sizes of contents are diversified in practice.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Overview

In this work, we take the position that an effective MEC system should embed cooperative caching mechanisms in its
architecture, as shown in Fig. 1. It consists of the central servers, MEC servers co-located with the base stations, regional core
servers, and users. The base stations connected with each other through optical fiber belong to a cooperative coalition, while
the central server distributes contents to base stations via backhaul links. Within the same cooperative coalition, an MEC server
can share contents with each other to maximize the overall resource utilization. A cooperative cache coalition covers a large
cell and provides proxy services. MEC servers in different cooperative coalitions do not exchange information to ensure user
privacy. A regional core server connects directly to all the edge servers in the cooperative coalition to gather the information
of servers.

When a user requests a content via an MEC server, the overall system workflow is as follows:
• Firstly, the local MEC server checks whether it has cached the content requested by the user. If yes, the local MEC server

sends the content to the user directly; otherwise, the local MEC server will go to the second step to find out whether the
nearby server has the content.



TABLE I
THE MAIN TERMINOLOGIES USED IN THE DESCRIPTION OF LECS

Notation Semantics
M Number of the MEC servers
S Set of the MEC Servers {s1, s2, . . . , sM}
C Caching capacities of the MEC Servers {c1, c2, . . . , cM}
O Set of contents {o1, o2, . . . , oF }, where F is the number of contents.
L Size of the contents {l1, l2, . . . , lF }, where F is the number of contents

Pm,i,t Popularity of content oi at time t on the server sm
PT+1,m,i Predicted content popularity of content oi on sm at time point T + 1

xm,i Indicator whether content oi is cached on the server sm or not
dsn,sm,i Delivery latency of content oi from server sn to server sm
Dm,i Server with the minimum content delivery latency when distributing the content oi to sm
ym,i Latency for the MEC server sm to obtain content oi
XT Set of historical popularity {Pm,1,T , Pm,2,T , . . . , Pm,f,T } of all contents on MEC server sm at time T

Vt(sm, oi) CCV of the content oi on the MEC server sm
β Skewness coefficients of a Zipf distribution

• Secondly, the regional core server finds out whether other servers in the cooperative coalition have cached the content.
If yes, the server which has the content with the least latency delivers the content to the local server and then the local
server sends it to the user; otherwise, the local MEC server will go to the third step to get the data resource on the central
server.

• Thirdly, once the content is not in the cooperative coalition, it will be transmitted by the central server to the local server
and then sent by the local server to the user.

Note that, fetching a content from the central server not only increases the network load but also increases the latency.
Therefore, caching the content in the local MEC servers or cooperative coalition can reduce the content delivery latency
and data traffic. However, the caching capacity is limited on the MEC servers and the requests from users arrive unevenly
distributed. Hence, how to design an efficient caching strategy is challenging.

B. Problem Formulation

The terminologies defined in this section is listed as Table I. For brevity, we focus on one cooperative cache coalition. Assume
that there are M MEC servers deployed within a cooperative coalition, where the set of MEC servers is S = {s1, s2, . . . , sM},
and the corresponding caching capacity is C = {c1, c2, . . . , cM}. Let s0 represent the central server and c0 denote its capacity,
which is infinite. Assume that the central server provides F different contents and the corresponding set is O = {o1, o2, . . . , oF },
and the corresponding size of each content is L = {l1, l2, . . . , lF }. Each user independently requests content oi(1 ≤ i ≤ F )
from an MEC server within the cooperative coalition. We define the popularity of content oi at time t on the server sm as
Pm,i,t. We assume that within a given time interval, the content popularity is static. The cache information can be shared
between various servers on a cooperative cache coalition. We set a content cache matrix X = (xm,i)M×F , where

xm,i =

{
1 If content oi is cached on the server sm,

0 Otherwise.
(1)

The caching scheme is updated for each time interval. Without loss of generality, we consider the scheme design in the
time interval [t, t+∆t). During the time interval, the pattern of user’s demand on content does not change. Based on the
prediction of the content requirement pattern within [t, t+∆t), a cooperative caching deployment strategy will be designed to
maximize the QoE perceived by users. Considering that the latency is one of the most critical issues that affects the QoE, we
choose the content delivery latency as the index to evaluate our system. The latency perceived by a user can be divided into
three components, including the content transmission latency from the central server to an MEC server, the content sharing
latency between MECs, and the content fetching latency from a local MEC to a user. In summary, the edge caching problem
is equivalent to minimizing the overall latencies perceived by users with the constraints of caching capacities.

The delivery latency for a unit size of data from server sn to server sm consists of two parts: 1) the transmission latency
dtlsn,sm and 2) the propagation latency dplsn,sm , where the transmission latency is the time elapsed from the first bit until the
last bit of a content has left the transmitting node, while the propagation latency refers to the time needed for the head of the
signal to travel from the sender to the receiver. Hence, the delivery latency dsn,sm,i for content oi from server sn to server
sm is as follows:

dsn,sm,i = dtlsn,sm · li + dplsn,sm . (2)



The server with the minimum content delivery latency when distributing the content oi to sm is expressed as follows:

Dm,i =argmin
sn

{dsn,sm,i|∀sn ∈ {S ∪ {s0}}&xn,i = 1}. (3)

The content delivery latency ym,i for the MEC server sm to obtain content oi is dDm,i,sm,i, where the content oi is forwarded
from server Dm,i to server sm. Specifically,

• When the content oi is cached on the MEC server sm, Dm,i = sm, and ym,i = 0.
• When the content oi is not cached on sm but exists on another server in the cooperative coalition, the server with the

least delivery latency will be selected to outsource the content. In such a case, Dm,i ∈ S, and ym,i = dDm,i,sm,i.
• If the content oi is not cached in any MEC server in the coalition, it will be transferred from the central server to the

local MEC and distributed to the user. In such a case, Dm,i = s0, and ym,i = ds0,sm,i.
Therefore, the cooperative caching can be formulated as an optimization problem with the objective to minimize the average

content delivery latency while conforming to the caching capacities of MEC servers. Specifically,
Optimization objective:

(P1)min

M∑
m=1

F∑
i=1

Pm,i,t · ym,i (4)

Constraints:

s.t.

F∑
i=1

xm,i · li ≤ cm,∀sn ∈ S, (5)

xm,i ∈ {0, 1},∀sn ∈ S, ∀oi ∈ O, (6)

x0,i = 1,∀oi ∈ O. (7)

Objective (5) is to minimize the content delivery latency, where Pm,i,t represents the popularity of content oi in server sm
at time t. Constraint (6) ensures that the total sizes of all the cached contents at server sm should not exceed the server’s
capacity. Constraint (7) represents that the cloud data center stores all the contents.

Lemma 1: P1 is an NP-hard problem.
Proof: Consider a special use case for the optimization problem P1: suppose that there is only one MEC server sm in the

cooperative coalition. To minimize the average latency perceived by users fetching contents from sm, sm should cache the
contents to achieve the lowest average content delivery latency and make full use of the cache space. The content in this
problem only has the option to be cached or not, where no content can be partially cached. In this scenario, the original
problem P1 is transformed into a knapsack problem, which is known as a classical NP-hard problem. Since the subproblem
of the original optimization problem P1 is NP-hard, P1 is an NP-hard problem.

IV. LEARNING-BASED COOPERATIVE CACHING MECHANISM

We propose a learning-based cooperative caching mechanism named LECS to solve the above problem. The LECS strategy
can be divided in three steps. First, a learning-based model is designed to predict the content popularity in the future. Then,
the content caching value (CCV) is introduced to value the content on a specific MEC server. Finally, based on the CCV, a
dynamic programming based algorithm is proposed to make the decisions for addressing the cooperative caching problem.

A. Content popularity prediction based on Temporal Convolutional Network (TCNCP)

Content popularity is an important parameter in the design of edge caching strategies. Most of the previous work assume
that the content popularity follows the Zipf distribution [10], [15], [37]–[39]. Actually, due to the rapid update of content and
dynamic changes in user demand, content popularity is difficult to be obtained in advance, and can only be estimated based
on the relevant information in the past. In this paper, we exploits the TCNCP to predict the future content popularity.

The TCNCP Model Components: As shown in Fig. 2, the model consists of two components: the content characteristics
predictor and the future content popularity estimation. When the characteristics of content is captured by the predictor
component, it will be forwarded to the estimation component. Then, the estimation component takes advantage of the popularity
data of several time slots in the past, and leverages the weighted-index average method to weighted sum with it to estimate the
future popularity of the content. Therefore, our model can achieve a balance between long-term and short-term burst memory.

Content Characteristics Predictor: It mainly encompasses a batch normalization module and a TCN-based prediction
module. The former module aims at improving the stability of the overall neural model via normalization of the inputs, while
the latter module is responsible for predicting the popularity characteristics of future contents through analyzing the past content
request information.
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Fig. 2. The TCNCP model.

Future Content Popularity Estimation: It estimates the future popularity of contents by balancing the content popularity
predicted by the Content Characteristics Predictor with the content popularity in the past.

1) Content Characteristics Predictor: The objective of this module is to construct the appropriate input sequence and
predict the reasonable expected output based on TCN, which can help LECS to make effective cache decisions. Specifically,
the content popularity feature vectors from time (T − k) to time T are taken as input, that is, the input to the TCN-
based Prection is {XT−k, XT−k+1, XT−k+2, . . . , XT }, where XT = {Pm,1,T , Pm,2,T , . . . , Pm,f,T } is the set of popularity
characteristics of all contents on MEC server sm at time T , and f is the number of contents. The expected output is a vector
{YT+1, YT+2, . . . , YT+K}, which represents the collection of the popularity characteristics of all contents in the future K time
slots, where YT+1 = {P̂m,1,T+1, P̂m,2,T+1, . . . , P̂m,f,T+1}. Our goal is to construct an effective input-output mapping, thus
predicting the popularity characteristics of future contents from historical request information.

To achieve this aim, TCN is exploited to realize the mapping [40]–[43]. TCN has the following advantages to predict the
content popularity. Firstly, the content popularity prediction problem can be transformed into a time series prediction problem,
while TCN does a fantastic job of sequence modeling; Secondly, compared with the typical recurrent neural network (RNN)
structure that has always been used for sequence modeling, TCN can be processed in parallel at a large scale, so the network
speed will be faster during training and testing; Thirdly, TCN can effectively avoid the problem of gradient explosion and
disappearance; Last but not least, the training process of TCN takes up less memory, especially for long sequences, which can
better extract the features of the time series for prediction. The overall architecture of TCN is shown in Fig. 3.

In detail, TCN adopts a 1-D fully-convolutional network (FCN) architecture [42], where each hidden layer has the same
length as the input layer. TCN can achieve intensive prediction with the FCN, which helps to sense the information of the
entire input sequence. Besides, the convolution in the TCN architecture has a causal relationship, which means that the future
information will not leak into the past in the time series forecast. In what follows, we will elaborate how the current convolution
structure is integrated into TCN by considering both deep network and long-term dependence.

Dilated casual convolution: Causal convolution requires a plethora of layers or large convolution kernels to widen the
receptive field, which is necessary for the construction of long-term memory. To solve this problem, we introduce dilated
convolution into the model. By applying the dilated convolution, the model has a larger size of receptive field. Fig. 3
shows the dilated casual convolution of TCN. For the filter F = {f1, f2, . . . , fk}, the dilated casual convolution yt of
X = {x1, x2, . . . , xT } at xt:

yt =

K∑
k−1

fkxt−(K−k)d, (8)

where d is the dilation factor, and k is the filter size.
Residual block: The residual block contains two dilated causal convolutions. The weight of convolution kernel is normalized,

and a dropout is added to TCN after every dilated causal convolution in the residual block to realize regularization. However,
the input directly adds the output vector of the residual function in the standard ResNet [44], and the input and output may
have different widths in TCN. Hence, TCN adds 1 × 1 convolution to ensure that the corresponding pixels between F (X) and
X have the same dimension. The entire process is illustrated in Fig. 3.

2) Future Content Popularity Estimation: To improve the performance of TCN, the short-term sudden memory and long-
term memory are balanced in this module, where different priorities of contents at different time points are considered for the
the popularity prediction. Specifically, the popularity of contents in the past n time slots and the short-term future popularity
generated by the Content Characteristics Predictor are considered, and the final popularity data is obtained by weighted
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Fig. 3. TCN prediction for caching.

summation with the exponential average method. Then, at the next moment of time T + 1, the estimated content popularity
PT+1,m,i of content oi in the sm area of the server is :

Pm,i,T+1 = (1− λ)P̂m,i,T+1 +

T∑
t=T−n+1

λT−t+1Pm,i,t, (9)

where Pm,i,t is the popularity of content oi at the t-th time, P̂m,i,T+1 is the popularity of content oi at time T +1 predicted by
the Content Characteristics Predictor, λ is a constant (0 < λ < 1) to adjust the proportion between historical data and latest
data, and n is the length of historical data to be considered. This method combines the historical content popularity information
to effectively prevent the ever-changing popularity incurred by high user dynamics, thus balancing short-term sudden memory
and long-term memory.

B. The Content Caching Value

Most of the existing caching approaches based on content popularity is to cache the most popular contents in each MEC
server in exchange for the maximum cache performance. However, they fail to take the cooperations between MEC servers into
consideration.. If an MEC server only selects the content with the high local popularity, multiple MECs in the same coalition
may cache the same content ineffectively, resulting in cache redundancy. The system performance may be deteriorated if we
consider the popularity only without the factors of content size and delivery latency.

To address this challenge, we introduce a novel metric named CCV. The CCV is calculated from the perspective of a
cooperative coalition, which takes into account factors such as the content popularity, content size, and delivery delay. In
particularly, when users request the content oi from the cooperative coalition, the average delivery latency perceived by them
when requesting oi from the coalition is given by:

M∑
n=1

dDn,i,sn,i · Pn,i,t, (10)

where Dn,i is the MEC server with the minimum content delivery latency to provide content oi to sn, and Pn,i,t is the
popularity of oi on the server sn at time point t. Then the CCV Vt(sm, oi) which weighs the value of oi on sm can be defined
in the following two cases.

Case one: If the server sm does not cache the content oi, the average latency perceived by users requesting the content oi
from the cooperative coalition after sm caches the content oi is as follows:

M∑
n=1

dEn,i,sn,i · Pn,i,t, (11)



where xm,i = 0, and
Em,i = argmin

sk

{dsk,sn,i|∀sk ∈ {S ∪ {s0}}, xk,i = 1 if k ̸= m}.

Then the CCV Vt(sm, oi) is defined as the benefit if sm caches the content oi:

Vt(sm, oi) =

M∑
n=1

dDn,i,sn,i · Pn,i,t −
M∑
n=1

dEn,i,sn,i · Pn,i,t

=

M∑
n=1

max{dDn,i,sn,i − dsm,sn,i, 0} · Pn,i,t,

(12)

Case two: If the server sm does cache the content oi, the average latency perceived by users requesting the content oi from
the cooperative coalition after sm removes the content oi is as follows:

M∑
n=1

dFn,i,sn,i · Pn,i,t, (13)

where xm,i = 1, and
Fm,i = argmin

sk

{dsk,sn,i|∀sk ∈ {S ∪ {s0}/{sm}}, xk,i = 1}.

Then the CCV Vt(sm, oi) is defined as the loss if sm removes the content oi:

Vt(sm, oi) =

M∑
n=1

dFn,i,sn,i · Pn,i,t −
M∑
n=1

dDn,i,sn,i · Pn,i,t

=

M∑
n=1

max{dFn,i,sn,i − dsm,sn,i, 0} · Pn,i,t

(14)

C. Dynamic Programming based Decision Making

Based on the CCV, we transfer the original problem P1 into another optimization problem P2, which aims at maximizing
the overall CCV in the coalition. Specifically,
Optimization objective:

(P2)max

M∑
m=1

k∑
i=1

Vt(sm, oi) · xm,i (15)

Constraints:

s.t.

k∑
i=1

xm,i · li ≤ cm,∀sm ∈ S, (16)

xm,i ∈ {0, 1},∀sm ∈ S, ∀oi ∈ O. (17)

where xm,i indicates whether sm should cache the content oi. To solve the problem, a Dynamic Programming (DP) based
algorithm is put forward, which divides the whole decision-making process into several single-stages and solves them one by
one. These stages with multiple states and decision variables can be deduced forward based on a recursive relationship. In this
way, the optimal solution to the original problem can be obtained if the starting stage can be solved optimally. Specifically,
the stages, states and recursive relationship for P2 are illustrated as follows.

Stages and States: We divide the whole dynamic programming process into k stages, that is, {stage[1], ..., stage[i], ..., stage[k]},
where k is the number of newly requested contents plus the contents in the cache. At each stage, let zi indicate the cache
decision for a specific content. We represent the state at stage[i] as res[i, j], where res[i, j] is the maximum value of the
cumulative CCV for the first i contents.

res[i, j] = max

i∑
k=1

Vt(sm, ok) · wk. (18)

s.t.

i∑
k=1

wk · lk + j ≤ cm, (19)

where wk indicates whether content ok should be cached at the stage i to achieve the maximum value res[i, j] of the cumulative
CCV for the first i contents.



Recursive Relationship: In stage stage[1], since there is only one file to be cached, when the remaining cache space is
larger than the size of this content, the best decision is z1,1 = 1. In stage[i], LECS first checks whether the remaining cache
space can cache the content oi, and then determines if caching the content that can get the optimal value and the optimal
solution for the res[i, j].

Lemma 2 : The optimal solution at the stage[i] can be obtained according to the following state transfer equation:

res[i, j] =


max{res[i− 1, j], res[i− 1, j − lidi ]

+Vt(sm, oidi)} lidi ≤ j,

res[i− 1, j] lidi>j.

(20)

Boundary condition
res[i, j] = 0,when i = 0 or j = 0. (21)

Proof: We first consider a caching placement for i-th content. When the remaining space j ≥ lidi
, there are two cases. When

sm stores content oidi
, the remaining caching capacity becomes j− lidi

and res[i, j] becomes res[i−1, j− lidi
]+V (sm, oidi

);
otherwise, res[i, j] becomes res[i− 1, j]. When the remaining space j ≤ lidi

, res[i, j] becomes res[i− 1, j].
Finally, the optimal decision process Z is obtained from the state transition equation. The dynamic programming algorithm

is summarized in Algorithm 1 and Algorithm 2.

Algorithm 1 Dynamic programming cache placement algorithm based on the CCV
Input: Cache space: cm; A = [a0, ..., ak−1], where k is the total number of newly requested content plus the content in the

cache.
Output: Decision process: Z = [z0, ..., zk−1].

1: // ai=(oidi
, lidi

, ridi
);

2: // oidi
: content item;

3: // lidi
: the size of content oidi

;
4: // ridi : the CCV of oidi ;
5:
6: Z ← [0, ..., 0];
7: res← [[0, ..., 0], ..., [0, ..., 0]];
8: for i = 1 to k do
9: for j = 1 to cm do

10: if a[i− 1][1] > j then
11: res[i][j] = res[i− 1][j];
12: else
13: res[i][j] = max{res[i− 1][j], res[i− 1][j − a[i− 1][1]] + a[i− 1][2]};
14: end if
15: end for
16: end for
17: GETCACHELIST(A, res, Z, k, cm);
18: Update Z

Algorithm 2 Function GetCacheList()
1: function GETCACHELIST(A, res, Z, i, j)
2: if i > 0 then
3: if res[i][j] == res[i− 1][j] then
4: zi−1 = 0;
5: GETCACHELIST(A, res, z, i− 1, j);
6: else if j − a[i− 1][1] >= 0 and res[i− 1][j − a[i− 1][1]] + a[i− 1][2] then
7: zi−1 = 1;
8: GETCACHELIST(A, res, Z, i− 1, j − a[i− 1][1]);
9: end if

10: end if
11: end function



V. EVALUATION

In this section, we first compare the performance of the proposed scheme with the benchmark methods in terms of cache
hit rate and content delivery latency. Then, we verify the effectiveness of the TCNCP model by comparing it with the classical
and state-of-the-art content popularity prediction methods.

A. Experiment setup

1) Default parameter settings: In the simulation experiments, we consider that there are four base stations in a cooperative
cache coalition, and each base station is equipped with an MEC server. Without loss of generality, we assume that the content
providers publish 1000 video files whose popularity follows the Zipf distribution model [45], and the size of each content is
randomly selected from {1,3,5,7,9} [46], [47]. The caching capacity of each server is set as 256, and the skewness coefficient
of the Zipf distribution is set to be 0.55. We set the range of ds0,sm,i as [10,20] ms, dsn,sm,i as [2,4] ms, which are the
representative configuration in the 5G era. In order to simplify the experiment, we assume that the delivery latency of dsn,sm,i

is equal to dsm,sn,i.
For the TCNNCP prediction model, we leverage Random Search [48] to set the parameters, which samples the search space

instead of brute forcing all possible parameter sets, thus avoiding the curse of dimensionality. In detail, the residual network
depth is set to 10, the dilations are set as [1, 2, 4, 8], and the kernel size is set as 2. The loss function is chosen as Mean
Absolute Error (MAE). We set the length of the sliding window to 2000, the sliding step length to 200, and the length of input
to 20 time steps. We aim to predict the content popularity of the next 5 future units, that is, K=5.

2) The benchmark approaches: To intuitively and effectively illustrate the advantages of the LECS, we compare it with the
following benchmark approaches:

• LFU (Least Frequently Used) [17]: The cache node calculates the number of arrivals of all contents. When the storage
space is full, the least frequently used content is replaced.

• LRU (Least Recently Used) [17]: The cache node records all the recently arrived contents. When the storage space is
full, the least recently used one is replaced by the new one.

• ECC (edge cooperative caching) [15]: The strategy uses the neural collaborative filtering algorithm to predict content
popularity, and adopts a greedy algorithm to obtain the cache deployment.

• Distributed [32]: The Distributed strategy makes caching decisions from the perspective of the whole cooperative coalition.
The strategy ranks the contents according to the popularity of the whole cooperative coalition, selects the content with
higher ranking to cache, and only caches one copy of content item in the cooperative coalition. The policy does not cache
duplicates, so it can cache as much content as possible.

• DeepCache [10]: The DeepCache considers the content popularity of the local server region, and leverages LSTM Encoder-
Decoder model to predict the future characteristics of an object, which is used to guide the caching decision of LRU.

3) The performance metrics: To weigh how LECS can improve the system performance, we leverage two metrics including
content cache hit rate (HR) and average content delivery latency (ADL).

On the one hand, HR is defined as the percentage of requests whose required content is cached in the cooperative coalition.
Specifically,

HR =
N

R
(22)

where R represents the number of requests received by the cooperative coalition per period ∆t and N is the number of cache
hits.

On the other hand, ADL is defined as the average latency experienced by the requests from the cooperative coalition.
Specifically,

ADL = min

M∑
m=1

F∑
i=1

PT (sm, oi) · ym,i (23)

where PT (sm, oi) represents the popularity of content oi at time T on the server sm and ym,i is the content delivery latency.
The definition of ym,i is given in Section 3.

B. Caching performance

We explore the impact of system parameters on the caching performance, including the size of the caching capacity, the
number of service contents, the skew coefficient of the popularity distribution, and the cooperative area.
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Fig. 4. The impact of the Zipf parameters on
the caching performance: a) HR; b) ADL.
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Fig. 5. The impact of the caching capacity on
the caching performance: a) HR; b) ADL.
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Fig. 6. The impact of the number of content
items on the caching performance: a) HR; b)
ADL.

1) Impact of Zipf Distribution Parameters: To analyze the impact of content popularity on performance, we adjust the
parameter β of the Zipf distribution to change the content popularity distribution. We observe that as the parameter β increases,
the caching performance improves. When the parameter β becomes higher, more caching spaces are allocated to contents with
high popularity. Fig. 4 shows that as β increases, the performance gap between the various solutions gradually increases. We
notice that the performance achieved by Distributed strategy is close to that by the LECS strategy, and even better in some cases,
as shown in Fig. 4(a). This is because the Distributed strategy is to cache as much contents as possible without duplicates.
However, in the case when some contents become highly popular on different servers, the average content delivery latency
achieved by the Distributed strategy will increase, as shown in Fig. 4(b). When β is large, most user requests are concentrated
on a small amount of contents, and the Distributed strategy does not cache popular content on each server. Compared with the
ECC strategy, the LECS strategy improves the content cache hit rate by 1.1%-12.2% and reduces the average content delivery
latency by 5.3%-13%.

2) Impact of caching capacity: In order to investigate the impact of the caching capacity on the caching performance, we
adjust the caching capacity of each MEC server ranging from 100 to 600, while keeping the other parameters as their default
values. It is intuitive that the caching performance gets better with the increase of the the caching capacity. This is because
that more contents can be cached at the MEC servers, and the requests of users can be served within the coalition rather than
from the remote cloud. As depicted in Fig. 5(a), the cache hit rate of all cache strategies increases as the caching capacity
increases, while the LECS strategy outperforms all the other benchmark approaches. Similarly, Fig. 5(b) shows that the ADL
decreases with the increasing of the caching capacities and the LECS strategy has the lowest ADL. Compared with ECC, the
LECS strategy can reduce the ADL by 4.3%-10.6%.

3) Impact of the number of contents: Furthermore, we also evaluate the performance of the LECS strategy under different
numbers of contents. To this end, we set the number of content items increasing from 500 to 3000 and keep the other system
parameters fixed, the HR decreases as the number of contents increases, and the ADL increases as the number of contents
increases. When the number of contents increases, more and more requests from the users cannot be served from the local
cache with limited cache capacity. As shown in Fig. 6(a), the LECS mechanism improves the HR by 6.1%-12.2% compared
to the ECC strategy, and is better than the Distributed strategy to a certain extent. Moreover, the LECS strategy reduces the
ADL by 4.3%-11% compared to the ECC strategy, as illustrated in Fig. 6(b).

4) Impact of the cooperative area: To investigate the impact of cooperative coalition area on the caching performance, we
adjust the number of MEC servers in the cooperative coalition as the number of MEC servers is always positively correlated
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Fig. 7. The impact of the number of MEC servers on the caching performance: a) HR; b) ADL.
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Fig. 8. The impact of Zipf parameter on the performance of the TCNCP model: a) β = 0.3; b) β = 0.55; c) β = 0.8.
to the era of the coalition. In detail, the number of MEC servers is set from 3 to 8. As depicted in Fig. 7, the HR under
all strategies increases as the number of MEC servers increases, while the ADL decreases, which is in accordance with our
intuition that contents are much more likely to be cached if there exist more MEC servers. Experimental results show that
the LECS strategy is better than other baseline cache strategies. Specifically, compared with the second-ranked ECC strategy,
LECS improves the HR by 3.6%-12.1% and reduces the ADL by 4.6%-7.1%. We notice that the performance of the DeepCache
strategy is improved slowly as the number of MEC servers increases. As the DeepCache strategy only considers the content
popularity of local MEC server, it is easy to cache multiple duplicate content and cause redundancy when the number of
servers increases.

C. TCNCP Prediction Accuracy

To verify the effectiveness of the proposed TCNCP model when predicting the content popularity, we compare TCNCP with
the state-of-the-art approaches, ECC [15] and DeepCache [10] on three different datasets, where the popularity of contents
has different distributions. Specifically, the skewness coefficients β of Dataset1, Dataset2 and Dataset3 are set as 0.3, 0.55,
and 0.8, respectively. And the Mean Squared Error (MSE) and the Mean Absolute Error (MAE) are selected as the metrics to
weigh the prediction accuracy [10]. As illustruted in TABLE II, compared with DeepCache and ECC, TCNCP has the lowest
error rate in terms of both MSE and MAE, which indicates that TCNCP has superior performance in predicting the content
popularity. To visualize the comparison, Fig. 8 shows the original and the predicted content popularity by the three approaches
over time. Likewise, TCNCP outperforms DeepCache and ECC in tracking the original time series.

To explore the impact of the hyper-parameters of TCNCP on the performance, we have set the parameters to different values
and measured the prediction accuracy of the model. As illustrated in Fig. 9, TCNCP has the highest prediction accuracy when
λ is set to 0.2 while n is set to the half of the input length. When keeping the other parameters as their default values, the
MAE of the predicted content popularity can be 14% higher when λ is set to 0.2, while 8% higher when n is set to one fifth
of the input length.

D. Superiority of CCV compared with content popularity

Instead of making caching decisions by considering content popularity only, LECS introduces CCV to weigh the value of
content on a specific edge server and determines what to cache on which edge server by maximizing the overall CCV. In this
subsection, we verify the superiority of CCV by comparing the proposed LECS (to make it clear, we represent it as CCV-LECS



TABLE II
PREDICTION ACCURACY

Dataset Algorithm MSE MAE
Dataset1 DeepCache 2.21× 10−6 1.135× 10−3

ECC 2.204× 10−6 1.133× 10−3

TCNCP 2.087× 10−6 1.104× 10−3

Dataset2 DeepCache 2.491× 10−6 1.159× 10−3

ECC 2.502× 10−6 1.160× 10−3

TCNCP 2.045× 10−6 1.012× 10−3

Dataset3 DeepCache 2.187× 10−6 0.975× 10−3

ECC 2.179× 10−6 0.970× 10−3

TCNCP 2.075× 10−6 0.934× 10−3

(a)

(b)

Fig. 9. Impact of parameters on the prediction
accuracy of TCNCP.
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Fig. 10. The impact of caching capacity on the
caching performance: a) HR; b) ADL.
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Fig. 11. The impact of the number of MEC
servers on the caching performance with real-
world datasets: a) HR; b) ADL.

in this subsection) with its alternative (represented as Popularity-LECS), which are solely depending on content popularity.
Different from CCV-LECS, Popularity-LECS skips the procedure of computing CCV and replaces CCV with the ratio of
popularity to content size in the dynamic programming. Fig. 10 shows the changes of the cache hit rate and the average
content delivery latency of the two methods as the cache space increases, respectively. As shown in the figure, the CCV-
LECS can achieve more superior performance in terms of the two metrics compared with the Popularity-LECS. Specifically,
CCV-LECS strategy can improve the content cache hit rate by 9%-20% and reduce the average content delivery latency by
7.9%-15%.

E. Verification with real-world datasets

To verify the performace of LECS when applied in a real system, we evaluate it with a real-world dataset named Movie-
Lens [49]. The dataset was collected by GroupLens Research, which encompasses more than 1 million records related to 3,952
movies and 6,040 users. Specifically, the UserID, the MovieID, the Timestamp and other user information are included in the
dataset, which can be utilized to calculate the content popularity of different contents. The other settings of our experiment
keep the same as above. We adjust the caching capacity of each MEC server ranging from 200 to 1000. Fig. 11 shows that
as the caching capacity increases, the cache performance of all cache strategies increases as the caching capacity increases.
Experimental results show that the LECS strategy can achieve the best performance among all the strategies. Compared with
the ECC, the LECS can improve the HR by 8.3%-10.1%, and reduce the ADL by 9.1%-15.1%.



VI. CONCLUSION
In this paper, we propose a learning-based cooperative edge caching approach to improve the caching performance. We

formulate the cooperative edge caching problem as a NP-hard knapsack problem with the goal of minimizing the average
content delivery latency. To solve the problem, we firstly establish a TCNCP model to predict the popularity of future contents.
This model can effectively balance short-term and long-term memory, thus achieving accurate predictions on the content
popularity. Then, we define the concept of CCV, which can take various factors into account, such as the content delivery
latency and the content size. Finally, based on the CCV, we propose a dynamic programming caching strategy, which can
obtain the near-optimal cache placement scheme. In order to evaluate the performance of the proposed LECS strategy, we
compare it with five benchmark algorithms from five aspects, including the prediction accuracy, content popularity distribution,
caching capacity, number of contents, and cooperative area. Simulation-driven experiments and performance results show that
LECS can achieve the best performance in terms of the cache hit rate and the average content delivery latency.
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