
Control of Coexisting Attractors in
Nonsmooth Dynamical Systems

Zhi Zhang

Department of Engineering
University of Exeter

Submitted by Zhi Zhang to the University of Exeter for the degree of
Doctor of Philosophy in Engineering.

This thesis is available for Library use on the understanding that it is copyright material and
that no quotation from the thesis may be published without proper acknowledgement.

I certify that all material in this thesis which is not my own work has been identified and that

any material that has previously been submitted and approved for the award of a degree by

this or any other University has been acknowledged.

Signature:..............................................................

College of Engineering, Mathematics
and Physical Sciences December 2021





Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements.

Zhi Zhang
December 2021



Acknowledgements

My deepest gratitude goes first and foremost to my academic supervisor, Dr Yang Liu, who
has been carefully guiding and meticulously helping me in my PhD research and live. He
has led me to a promising research field with his solid background and foundation, creative
mind and extensive experience in academic research.

I am very thankful to my second supervisor, Prof. Jan Sieber, for his guidance, timely
support and useful suggestions during my PhD research. I would like to show my special
thanks to Prof. Joseph Páez Chávez who shares many experiences and had many useful
discussion with me.

I also would like to thank all my colleagues of Applied Dynamics and Control Lab in the
Department of Engineering at the University of Exeter, Dr Bingyong Guo, Dr Wei Lin, Mr
Kenneth Omokhagbo Afebu, Miss Jiajia Zhang, Mr Kingsley Amadi, Mr Ahmed Al Shekaili
and Mr Jiyuan Tian, who have helped me with many useful discussions and provided many
supports on my life.

I gratefully acknowledge the financial support from the University of Exeter for the
Exeter International Excellence Scholarship.

Finally, a special acknowledgement owes to my family for their understanding, support
and encouragement during all these years.



Abstract

Nonsmooth dynamical systems are widely used in many engineering applications. Because
of its nonsmooth property, it is very common to observe coexisting attractors in this type of
dynamical systems. These coexisting attractors are extremely sensitive to noise due to their
fractal basin boundaries. For some certain requirements and application scenarios, some of
them are not desireable, which should be avoided. Obviously, achieving the switching among
these attractors could offer the dynamical systems more flexibilities. Hence, studying the
control of coexisting attractors in nonsmooth dynamical systems is vital. In this thesis, the
study focuses on developing new control strategies and computational methods for evaluating
the controlling process, and in particular, the near-grazing dynamics of the nonsmooth
dynamical systems with and without delay. To be more specific, the key contents of this
thesis are summarised as follows:

• Due to the infinite-dimensional nature of dynamical systems with delay, analytical
studies of such models are difficult and can provide in general only limited results, in
particular when some kind of nonsmooth phenomenon is involved, such as impacts,
switches, impulses, etc. Also, there exists so far no dedicated software package to
carry out numerical continuation for such type of models. In order to overcome this
problem, an approximation scheme for nonsmooth dynamical systems with delay was
proposed so that a numerical bifurcation analysis can be allowed via continuation
(path-following) methods, using existing numerical packages, such as COCO.

• Lyapunov exponent is a widely used tool for studying dynamical systems. When
calculating Lyapunov exponents for piecewise-smooth systems with time-delayed
arguments one faces a lack of continuity in the variational problem. In this thesis,
the part of our works studies how to build a variational equation for the efficient
construction of Jacobians along trajectories of a delay nonsmooth system. Trajectories
of a piecewise-smooth system may encounter the so-called grazing event where the
trajectory approaches a discontinuity surface in the state space in a non-transversal
manner. For this event a grazing point estimation algorithm was developed to ensure
the accuracy of trajectories for the nonlinear and the variational equations. Through
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adopting this algorithm, the eigenvalues of the Jacobian matrix computed by the
algorithm converge with an order consistent with the order of the numerical integration
method, therefore guaranteeing the reliability of the proposed numerical method.

• For the nonsmooth dynamical systems, the coexisting attractors are widely existing.
But this property increases the complexity of the system’s dynamics. For example,
the dynamical system with this property can have many different motions under some
different initial conditions. It is easy for the system to present some undesired attractors,
which should be avoided. In order to suppress the complex dynamics, a delay feedback
control was considered for the nonsmooth dynamical systems to achieve the switch
from the undesired attractors to the desired one. The efficiency and dynamical property
of this control were demonstrated numerically for nonsmooth dynamical systems.

• In order to control coexisting attractors a control strategy for switching stable coexisting
attractors of a class of non-autonomous dynamical systems was developed. The central
idea is to introduce a continuous path for the system’s trajectory to transition from
its original undesired stable attractor to a desired one by varying one of the system
parameters according to the information of the desired attractor. The behavior of
the control strategy was demonstrated numerically for both nonsmooth and smooth
dynamical systems. It was shown that the proposed control concept can be implemented
through either using an external control input or by varying a system parameter.
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Chapter 1

Introduction

1.1 Motivation

Nonsmooth system is widely existed in physics and engineering, such as self-propelled
capsule systems [5, 6], rotor systems [7, 8], energy harvesting [9], mechanical bearings [10],
manufacturing cutting [11], and oil and gas drilling [12–14]. Due to the nonsmooth property,
this class of dynamical systems presents many complex nonlinear phenomena, such as chaotic
motion, coexisting attractors, and grazing and sliding events. The coexisting attractors mean
a dynamical system is able to present many dynamical responses under different initial
conditions. Apparently, among the coexisting dynamical responses, some of them can
present good dynamics, which are desired, and the others should be avoided, due to the
undesired properties. For example, in [15], for the vibro-impact systems, the chaotic attractor
is undesirable, due to random and unpredictable property. Furthermore, choosing among the
coexisting attractors can improve and optimize the dynamical performance of the dynamical
system. For instance, Liu et al. [16] and Liao et al. [17] showed that through choosing
the most efficient operational mode among possible coexisting attractors, the efficiency of
the vibro-impact drilling can be improved. However, introducing some methods to achieve
the control of coexisting attractors undoubtedly can change the basic dynamical properties
of dynamical systems. For example, in [18], the delay feedback controller developed by
Pyragas [19] can reduce the numbers of coexisting attractors and increase the dimensions of
the system. In [20], a feedback controller including the information of the desired attractor
can drive the system to the desired attractor, and the system with this controlled becomes
monostable. There are many control methods [21–24] that also change the basic dynamical
properties during the control of coexisting attractors. Therefore, studying these changes
appearing in the control of coexisting attractors is necessary to understand how the control
impact the dynamical performances.
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1.2 Aims and scope of the thesis

In this thesis, the main aim is to develop mathematical tools for controlling coexisting
attractors in nonsmooth dynamical systems, and analyse the dynamical characteristcs of
the controlled nonsmooth dynamical systems. To this end, this work will employ the delay
feedback control method based on the velocity of the systems, and develop a number of
new control strategies for the switching between coexisting attractors. In addition, some
new numerical methods will be developed in order to analyse the complex dynamics for the
controlled nonsmooth dynamical systems.

In this chapter, the general motivation of the research has been illustrated. From the next
chapter (Chapter 2), detailed related works and state-of-the-art analysis and control methods
related to the control of coexisting attractors will be thoroughly surveyed.

In Chapter 3, three different types of piecewise continuous dynamical systems will be
introduced, which widely exist in many engineering applications. In addition, it gives a brief
preliminary discussion about some important properties of these systems.

In Chapter 4, an approximation method for nonsmooth DDEs will be introduced to enable
the numerical bifurcation analysis of the system dynamics via existing and well-established
numerical continuation packages, such as COCO [25]. Specifically, the method is based on
the chain method outlined above, in combination with a second-order approximation scheme
of the original DDE by considering a finite sequence of Taylor expansions as proposed
in [26]. In this way, a piecewise-smooth dynamical system with (constant) delay can be
approximated by a piecewise-smooth system of ODEs of large dimension, which then allows
the study of the resulting model in the framework of hybrid dynamical systems. following
the ideas of [27] and [28].

In Chapter 5, the contribution is the development of a novel method for precisely calcu-
lating the LEs of piecewise-smooth differential equations with a delay argument, which can
promote the accuracy for stability analysis of periodic orbits. In detail, if an algorithm cannot
estimate the point of discontinuity along trajectory with an accuracy of the same order as its
integration method, especially in the grazing event, the expected discontinuous coefficients of
the variational problem will have unexpectedly low accuracy leading to an accumulation of
errors. In order to improve the accuracy, it is necessary to consider the accurate information
about the time of crossing or grazing of a discontinuity (when impact occurs), which can be
estimated by a grazing estimation algorithm. The novelty of this method is that it can estimate
the point of discontinuity locally along trajectories of piecewise-smooth DDEs, improving the
accuracy of computations of the system trajectory and of the LEs. The proposed method can
also be extended to other nonsmooth dynamical systems, such as the hard impact oscillator
with a time-delayed controller or stick-slip vibrations with a delay term.



4 Introduction

In Chapter 6, it attempts to investigate the dynamical performance of three different
impact systems with a.periodically forced impacting system by delay feedback controller and
present how time-delayed feedback control suppresses multistability, through a non-invasive
approach, without affecting its original dynamics. Specifically, coexisting attractors, caused
by nonsmooth property, can be reduced to one of attractors, through the delay feedback
controller, and without introducing any external attractors, or changing any existing attractors.

In Chapter 7, the primary focus is to address the continuous switching between two of
coexisting stable attractors by varying a system parameter without affecting their original
dynamics. In order to achieve this, a continuous control method is proposed, and can adjust a
system parameter based on the information of trajectory of the desired attractor. This control
method is applied to the controlled system continuously until its trajectory is sufficiently
close to the desired one. Based on this control concept, two control strategies, the so-call
linear and nonlinear control strategies, were developed. The former one can be treated as an
external control input and the latter one can be treated as the variation of a system parameter.
The advantage of the latter one is that it depends only on the original properties of system
parameter and does not rely on any external input.

Finally, Chapter 8 summarises the thesis contributions and comments on the achievements
made during the PhD study. Also, future work is outlined in Chapter 8.

1.3 Contribution of the thesis

The main topic of this thesis is to study the control of coexisting attractors in nonsmooth
dynamical systems. The main contributions of this thesis mainly includes two parts. First
of all, some new numerical tools were developed to study the dynamical performances and
properties of nonsmooth dynamical systems. Specifically, an approximation scheme for
nonsmooth dynamical systems with delay was proposed to allow a numerical bifurcation
analysis for nonsmooth DDEs, via continuation (path-following) methods, using existing
numerical packages, such as COCO. Also, a novel method was developed for precisely
calculating the LEs of piecewise-smooth differential equations with a delay argument, so that
the stability of this type of nonsmooth differential equations can be studied. Secondly, the
problem related to the control of coexisting attractors in nonsmooth dynamical systems was
considered. Specifically, a delay feedback controller was introduced to a type of nonsmooth
dynamical systems to achieve the control of coexisting attractors. In addition, a feedback
control strategy was developed to achieve the switch from the undesired attractors to the
desired coexisting attractors for the nonsmooth and smooth dynamical systems.
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During the PhD study, three journal papers were published, one journal paper is under
review and two abstracts were submitted and presented at two international conferences,
which are summarised as below.

• Z. Zhang, J. Páez Chávez, J. Sieber, Y. Liu, Controlling coexisting attractors of a class
of non-autonomous dynamical systems. (Submitted to Physica D).

• Z. Zhang, J. Páez Chávez, J. Sieber, Y. Liu, Controlling grazing-induced multistabil-
ity in a piecewise-smooth impacting system via the time-delayed feedback control.
Nonlinear Dynamics, 2021. https://doi.org/10.1007/s11071-021-06511-2.

• Z. Zhang, J. Sieber, Y. Liu, Calculating the Lyapunov exponents of a piecewise-smooth
soft impacting system with a time-delayed feedback controller. Communications in
Nonlinear Science and Numerical Simulation, vol. 91, pp. 10545, 2020.

• J. Páez Chávez, Z. Zhang, Y. Liu, A numerical approach for the bifurcation analysis of
nonsmooth delay equations. Communications in Nonlinear Science and Numerical
Simulation, vol. 83, pp. 105095, 2020.

• Z. Zhang, Y. Liu, J. Sieber, Lyapunov exponents of an impact oscillator with delayed
feedback control, the Fourth International Conference on Recent Advances in Nonlinear
Mechanics, Lodz, Poland, 2019.

• Z. Zhang, Y. Liu, J. Páez Chávez, J. Sieber, Delayed feedback control of grazing-
induced multistability in an impacting system, the First International Nonlinear Dy-
namics Conference, Rome, Italy, 2019.



Chapter 2

Previous works

2.1 Nonsmooth dynamical systems

Nonsmooth dynamical systems are very common in many engineering applications, such
as the occurrence of impacting motion in mechanical systems [29–31, 2, 3, 32], stick-
slip motion in oscillators with friction [33], switchings in electronic circuits [34, 35], and
hybrid dynamics in control systems [36, 37]. Studying these dynamical systems is able to
observe many complex new phenomena, which are hard to be discovered in the smooth
dynamical systems. For example, grazing bifurcation [38] cannot be observed in smooth
dynamical systems, and is bifurcation presenting that systems witness a varying from a
nonimpacting to an impacting state (or vice versa) with the smooth varying of system
parameter. In addition, the flow of the nonsmooth system can witness the discontinuity due to
the discontinuous conditions, which cannot discovered from smooth dynamical systems [39].
Thus, studying the nonsmooth dynamical systems enables us to have a better understanding of
the dynamical charateristics of these systems, so their performance in practical applications
can be optimised.

Among nonsmooth dynamical systems, impacting systems play important role and are
widely existed in many physical and engineering systems, such as self-propelled capsule
systems [5, 6], rotor systems [7, 8], energy harvesting [9], mechanical bearings [10], manufac-
turing cutting [11], and oil and gas drilling [12–14]. Impacting systems show many complex
nonlinear phenomena, e.g. chaotic motion, multistability, and grazing and sliding events
[39], which can be exploited during design. For example, Liu et al. [16] and Liao et al. [17]
suggested that the efficiency of the vibro-impact drilling can be improved by choosing the
most efficient operational mode among possible coexisting attractors. For the self-propelled
capsule system in [5], Guo et al. validated the mathematical model by comparing it with
experimental results. Then the numerical results obtained from the model were used to
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optimise the progression speed and energy efficiency of the capsule prototype. In [40], Páez
Chávez et al. studied the mathematical model of a Jeffcott rotor within a snubber ring with
anisotropic supports, and the model was used to predict the onset of impacts between the
rotor and the snubber ring. The present work will study a periodically excited system with
soft impacts, which can represent a wide range of mechanical collisions. Here, soft impact,
in contrast to hard impact [41], refers to a collision that has a finite nonzero contact time
and the colliding body hits the obstacle modelled by a spring This type of soft impact is a
representative model for mechanical collisions. Its nonlinearity brings complex phenomena
into system’s dynamics. For example, in [32], the motion of the impact oscillator with
one-sided elastic constraint may experience a significant change due to a slight variation on
its parameter when a grazing bifurcation is encountered. In addition, this thesis will study
some impacting systems, such as the impact system with a drift and the piecewise-smooth
capsule system with bidirectional drifts, which also have many complex phenomena induced
by their nonlinearity.

2.2 Near-grazing dynamics

Analysing grazing events for nonsmooth systems is a challenging task [39]. In general, vibro-
impact systems, such as ship mooring interactions [42], bearing looseness [43] and multi-
degree-of-freedom impact oscillators [44], may have abundant coexisting attractors when
grazing occurs. Here, “Grazing” refers to the scenario when the colliding body encounters the
impact with zero transversal velocity. Near-by trajectories experience qualitatively different
forces: some will not impact, others will have an impact with non-zero transversal velocity.
When an attractor encounters a grazing event, it may change qualitatively (see e.g. [44–46]),
which is called a discontinuity-induced (or, short, discontinuous or non-smooth) bifurcation.
For insttance, Budd and Dux [47] studied grazing-induced intermittent chaotic behaviour for
a impact oscillator, which shows that grazing bifurcations can result in intermittent chaotic
behaviour with low velocity impacts followed by an irregular sequence of high velocity
impacts. In [48], Normark presented that some periodic orbits can be found due to appearing
of grazing bifurcations and gave the sufficient conditions for the existence of a periodic
orbit for a type of impact systems. Nordmark [49] and Pavlovskaia et al. [50] analyse what
dynamics occurs near grazing events. The textbook [39] classifies grazing bifurcations also
for other piecewise-smooth systems. Their analysis find coexistence of multistable attractors,
chaotic motions and vulnerable attractors, which can be easily perturbed by any variations of
system parameters or any external disturbances. Detection of grazing events helps predicting
the performance behavior of the impacting systems. For example, Lamba and Budd [51]
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studied the grazing bifurcation of an impacting system through calculating its Lyapunov
exponents (LEs), and the bifurcation was observed as a jump in LEs. In [49], Normark
investigated the grazing bifurcation of a single-degree-of-freedom oscillator subjected to a
rigid amplitude constraint and the singularities caused by grazing impacts by controlling
a system parameter. Normark showed that the grazing impact resulted in the apparence of
a square root singularity. In [52] , Foale and Bishop studied grazing bifurcations for two
different models of the impact oscillator, which cannot be classified by the usual bifurcation
theory of smooth dynamical systems. In [38], Chin et al. showed that a simple impact
oscillator with periodic excitation can present different types of grazing bifurcations. They
presented numerical evidence that the observed discontinuous bifurcations were limits of
standard bifurcations of smooth dynamical systems as the impact was hardened. In [53],
Dankowicz and Zhao studied three different bifurcation scenarios associated with grazing
conditions for a periodic response of an impact microactuator, a discontinuous jump to an
impacting periodic response, a continuous transition to an impacting chaotic attractor and a
discontinuous jump to an impacting chaotic attractor, by using the concept of discontinuity
mappings. Furthermore, Ing et al. [32, 54] carried out experimental investigations on
different bifurcation scenarios of an impact oscillator with a one-sided elastic constraint,
leading to smooth (that is, classical) and non-smooth bifurcations. Previous works have
presented the detailed complexities induced by near-grazing events. However, the above
works did not mention how to avoid these complexities. Thus, introducing control methods
to suppress them will be a focus of this thesis.

2.3 Control of coexisting attractors

Coexisting attractors or multistability widely exist in all areas of science and nature. For
example, in engineering applications, such as an impact rig with two-sided constraint [55],
electronic circuits [56, 57], gas laser [58] and drilling system [12], these systems are all
present the multistability. From the biological aspect, multistability is also a fundamen-
tal property in many biological systems, such as spiking neurons[59], cancer progression
[60], cell fate transitions [61, 62] and cell cycle control [63, 64]. A common feature of
coexisting attractors is that the final state of the system crucially depends on the relevant
initial conditions, which means that the initial conditions can decide the long-term dynamical
behaviours related to one of the coexisting attractors. Since coexisting many attractors is
a phenomenon describing that a dynamical system can present many long-term motions,
studying the switching among these coexisting attractors can offer more flexibility and con-
venience on analysis for dynamical properties of a system with multistability. Therefore,
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developing a reliable method for achieving the control from one of the coexisting attractors
to others can be necessary to achieve the above target.

As the mentioned above, many nonsmooth dynamical systems have the property of coex-
isting attractors or multistability. Due to this property, the dynamical reponses of nonsmooth
dynamical systems can behave differently under different initial conditions. For example,
in [1], Liu et al. presented that an impact oscillator with a one-sided elastic constraint
near grazing is able to coexist different 4 attractors, which their dynamical properties have
significant differences. While, since this system’s basin has fractal basin boundary, any tiny
differences in initial condition may result in the different motions. In [65], a vibro-impact
capsule system can coexist forward and backward motion, which means that the capsule is
able to move forward or backward direction under some initial conditions,.

Switching between coexisting attractors by control methods plays an essential role in
studying the multistability of dynamical systems [22]. There are many methods to achieve
the above targets. For example, it is well known that the OGY method [66] was initially
developed for stabilising the chaotic attractor to an unstable periodic orbit embedded in a
chaotic motion via adjusting the system parameter in a small area. After that, besides the
OGY method, Pyragas [19] designed a delay feedback control to achieve the stabilisation of
unstable periodic orbits of a chaotic system. Pyragas type delay feedback control has input
u(τ) of the form

u(τ) = K(y(τ − τd)− y(τ)),

where y(τ) is some output of the system, τ is the time and τd is a time delay. The control’s
aim is to achieve the switching from one of its coexisting attractors to a target attractor. If
τd is equal to the forcing period and the system with delay feedback control shows periodic
motion with period τd , the control effort u(τ) is zero (hence, called non-invasive). This
type of control has many important applications on controlling chaos. For example, in [67],
Pyragas and Tamaševičius used the proposed delay feedback control method to stabilise
the chaotic attractor to the unstable attractor on an analogue circuit. In [67], Pyragas et al.
controlled a chaotic electronic oscillator successfully by using the time-delayed feedback
controller. In [68], a modified delay feedback control using the act-and-wait concept was
proposed to reduce the dimension of phase space of the time-delayed feedback systems.
Yamasue et al. [69] used time-delayed feedback control to stabilise irregular and non-periodic
cantilever oscillations in amplitude modulation atomic force microscopy experiments.

The above methods focus on stabilising the system with chaotic motions to the coexisting
unstable periodic attractors, which are embedded into the chaotic attractor. For the control of
coexisting stable attractors, these methods and their concepts also can be useful. For example,
Lai [21] constructed a hierarchy of paths to the desired attractor by introducing a feedback
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perturbation which is generated by the similar idea with the OGY method, for the system with
fractal basin boundaries in the phase space. However, Lai’s method might not be successful
since the initial condition is far away from the basin boundary. In [18], Martínez-Zérega et
al. presented that the delay feedback control can achieve the control of coexisting attractors
of the logistic map. Besides that, there are many other methods for controlling multistability.
In [23], Pisarchik and Goswami studied that one of the coexisting states can be annihilated
by applying a slow external periodic perturbation to a system parameter. Arecchi et al. [70]
discovered that external noise could bridge two states of Duffing oscillator. In [20], Jiang
adopted a feedback-type drivings to achieve the switch among different stable trajectories of
the dynamical systems with multistability. Through modifying the above control method,
an intermittent control was designed to give an impulsive force to control the one attractor
to others by introducing the information of the desired attractor as the target, and does not
change the structure of the system’s basins of attraction [71]. In [72], Wang et al. presented
that the control principle based on bifurcation can be used for controlling the multistability
of complex networks. In details, through adjusting the parameters, the controlled system
can move to the basin of the desired attractor and then converge to the desired attractor after
returning the parameters to the original value. However, this method needs large amount of
computations on controlling coexisting attractors of relatively large dynamical networks by
multiple parameter perturbation. For the similar system, Cornelius et al. [73] proposed a
realistic control method, which introduces a perturbation based on the information from the
desired attractor, to the system’s states.

Multistable impact motions may have negative effects [74], such as degrading efficiency
or reducing service life for the system, which should be avoided. Control of multistable
impact motions, especially the near-grazing dynamics, has been studied extensively by many
researchers in the past decade. For example, the linear augmentation feedback control law
was adopted to control switching between coexisting attractors in a soft impacting system [1].
De Souza et al. used both, a perturbation method [75] and a feedback damping controller
[76], to control chaotic attractors in an impacting system. The intermittent control method
proposed by Liu et al. [71] can switch between coexisting attractors of the soft impact
oscillator. A class of control strategies was developed by Dankowicz et al. [77–79] to ensure
the persistence of desired attractors near the grazing bifurcation of an impact oscillator.
Veldman et al. [80] introduced an impulsive control method to bring a single-degree-of-
freedom system from an undesired to a desired attractor.
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2.4 Dynamical systems with delay

In many applications [81–84, 11, 85] arise differential equations in which the derivative of
the unknown functions at a certain time depends on the value of the function at previous
time. These are so-called delay differential equations (DDEs). Delay differential equations
(DDEs) are widely used in physical, mechanical, and biological systems to simulate the time
delay phenomena caused by human observer [86], feedback control [87], actuation [88], and
communication [89]. With the introduction of time delay in differential equations, the model
can be more accurate for predicting the real system. For example, Zhang et al. [83] studied a
delay pest control model which was a high-dimensional differential equation with impulsive
effects at different fixed impulse times. In [84], Carvalho and Pinto used a mathematical
model with delay to describe the dynamics of AIDS- related cancers with the treatment
of HIV and chemotherapy. In [11], Yan et al. used the basin of a time-delayed system
modelling cutting process to determine the unsafe cutting zone. On the other hand, time
delay is sometimes artificially introduced to the system for control purposes. For example,
constant maturation time delay, pulse pesticide input, and pulse harvesting prey may have
obvious effects on the predator-prey model with stage-structure for pests [83]. Pyragas
[19] proposed to use the famous delay self-controlling feedback for chaos control, which
does not require a priori analytical knowledge of the system dynamics and are applicable to
experiment. The above studies are concerned with smooth DDEs. The analysis of nonsmooth
DDEs is more challenging due to infinite-dimensional nature and nonsmooth property. In
principle, in order to analyse the basic property of DDEs, a DDE could be approximated by a
high-dimensional ODE, which can be linearised along trajectories obtained by numerical
integration [90]. For example, Repin [91] proposed a system of ODEs to approximate a DDE
through a first-order approximation of the original solution, currently referred to as the chain
method. Later on, Gyori and Turi [92] proved the uniform convergence of this method for a
DDE in an infinite interval. In [93], Westdal and Lehn proposed the time optimal control
by approximating the linear time invariant differential-difference system. Hess [94] used
this method to approximate the linear differential equation with a large time delay. Further
improvements of the numerical approach proposed in [91] were introduced in the work by
Banks [95]. This numerical framework was later employed by Lipták et al. [96] to study
delay chemical reaction networks.

Until now, there are very few systematic studies regarding to nonsmooth DDEs. While,
the available general-purpose computational tools for the numerical treatment of smooth
DDEs are rather limited, and almost nonexistent for piecewise-smooth DDEs, specially for
numerical bifurcation analysis. Therefore, while a number of software packages have been
developed for numerical continuation in smooth DDEs (e.g. DDE-BIFTOOL [97, 98], PDDE-
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CONT [99] and Knut [100]), no software package of this kind exists for the path-following
analysis of piecewise-smooth DDEs. In addition, as mentioned above, piecewise-smooth
dynamical systems have received considerable attention in the past, mainly due to their crucial
role played in understanding complex nonsmooth phenomena. For instance, in the study of
piecewise linear suspension bridge model [101], the model of a DC-DC buck converter [102],
and the recurrent dynamics of human gait system [103]. For the bifurcation analysis of this
type of systems, a number of continuation tools have been developed in the past, for instance,
TC-HAT [28], SlideCont [104] and the multi-segment continuation capability included in
COCO [25]. However, when time delay is introduced, there is no continuation software
available to carry out bifurcation studies via path-following routines. In the past, however, a
solid numerical framework has been proposed for this task (see e.g. [105, 106, 27]), but the
related codes are not yet available in a user friendly and general-purpose form.

2.5 Calculation of Lyapunov exponents

The LE of a trajectory is a quantity that characterises the rate of separation of infinitesi-
mally near-by trajectories [107]. It determines a notion of sensitivity of this trajectory to
perturbations in initial conditions. If the largest LE, which is referred to the maximal LE, is
greater than zero, any small perturbation of the initial condition will result in an exponential
divergence of the resulting perturbed trajectory until the distance between the perturbed and
unperturbed trajectories is no longer small. This sensitivity with respect to initial condition is
one of the defining features of chaos. If the LEs are identical for typical trajectories of an
attractor in a dynamical system, one speaks of the LE for this attractor (or this dynamical
system). The LE indicates predictability (or lack of it) for dynamical systems, such that it is
considered as an important tool for studying the stability of dynamical systems. Therefore,
the development of an efficient method for calculating the LEs of dynamical system is
an active area of research, see e.g. [108–115]. For finite-dimensional dynamical systems
Benettin et al. [109] introduced a systematic method for estimating the LEs of smooth
dynamical systems. Wolf et al. [110] developed a method for extracting the largest LE from
an experimental time series. For nonsmooth systems, Müller [113] developed a model-based
algorithm to calculate the LEs of nonlinear dynamical systems with discontinuities. They
found that the required linearised equations must be supplemented by certain transition
conditions when crossing the discontinuities. In [114], Dellago et al. generalised Benettin’s
classical algorithm and applied it to the case of dynamical systems where smooth streaming
was interrupted by a differentiable map at discrete times. Lamba and Budd [51] have shown
that the largest LE has a discontinuous jump at grazing bifurcations in Filippov systems and
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scales like 1/| lnε|, where ε is the bifurcation parameter. These works focused on computing
LEs for finite dimensional systems. However, the methods for the finite dimensional systems
are hard to be implemented directly to DDEs that have infinite dimensions. Obviously, in
contrast to ordinary differential equations (ODEs), the computation of LEs for nonsmooth
DDEs is more complex due to the discontinuities and high dimensionality. In principle, a
DDE could be approximated by a high-dimensional ODE, which can be linearised along
trajectories obtained by numerical integration [90], such that the LEs can be constructed for
the Poincaré map. Studies by Repin [116] and Györi and Turi [92] have shown that DDEs
can be analysed using approximating high-dimensional ODEs. However, if the delay time is
large, calculating the LEs of nonsmooth DDEs needs to store excessive history data points
during delay period compared to smooth DDEs [117–119], e.g. the data at past encounters
of the discontinuity. In this case the global convergence of the system cannot be guaranteed.
Therefore, it may cause inaccuracy in calculating the eigenvalues of Jacobian matrix which
is used for estimating the LEs of nonsmooth DDEs.

2.6 Conclusion

In this chapter, an organised overview of the techniques for the control of coexisting attractors
and the investigation of characteristics of nonsmooth dynamical systems was presented.
It is clear that the control of coexisting attractors in nonsmooth dynamical systems is a
challenging and complex task due to the complex dynamics and the lack of a systematic study
on the dynamical characteristics during the control process. Meanwhile, many methods on
controlling coexisting attractors have been presented showing good performance. However,
with the consideration of different application scenarios of nonsmooth dynamical systems,
control of coexisting attractors has many new requirements, which were rarely studied in the
previous works. For example, one may have limited information of the desired attractor, or
sometimes may require using the properties of the original system rather than the external
inputs to achieve the switching between the two coexisting attractors in the presence of a
large distance on their basins of attraction. Thus, based on those of different requirements,
new control methods are needed. In order to address this issue, the delay feedback control
and a new control method based on adjusting system parameter will be introduced into
the piecewise-smooth dynamical systems. Besides that, the dynamics of the controlled
nonsmooth dynamical systems under the delay feedback control is complex, and there exists
so far no dedicated numerical methods to carry out numerical analysis for such type of
systems. Without the numerical methods, it is hard to analyse the dynamical responses of
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nonsmooth dynamical systems during the control process. Thus, developing new numerical
methods to carry out above analyses will also be considered in this thesis.

Section 2.1 gives the detailed review of the dynamical properties and applications of
nonsmooth dynmaiclal systems. Since the grazing events is widely existing in many nons-
mooth dynamical systems, the relevant phenomena and dynamical properties are outlined in
Section 2.2. Following that, in Section 2.3, the background of coexisting attractors and its
control problems are introduced. Since at the following chapters the delay feedback control
and analysis tools for DDEs will be studied, the review of DDEs is discussed in Section 2.4.
Finally, Section 2.5 reviews the calculating methods of LEs.



Chapter 3

Mathematical models of nonsmooth
dynamical systems

3.1 Introduction

The aim of this chapter is to introduce some piecewise impact mathematical models cor-
responding to the different applications, which will be detailed at the following. It is
well-known that impacting systems are very common and important components in many
engineering applications, such as self-propelled capsule systems [5, 6], rotor systems [7],
mechanical bearings [10], manufacturing cutting [11], and oil and gas drilling [12–14]. For
Impacting systems, there are many complex nonlinear phenomena, e.g. chaotic motion,
multistability, and grazing and sliding events [39], which can have significant effects on the
performance of engineering systems.

In this chapter, it includes three impact models: a soft impact system, an impact system
with a drift and a vibro-impact capsule system.

3.2 Soft impact system

The soft impact system shown in Fig. 3.2.1 represents a mechanical system encountering
intermittent so-called soft impacts, which will be studied in the present work. Soft impacts
occur in mechanical systems when an object hits an obstacle of negligible mass but non-
negligible stiffness. In Fig. 3.2.1 the object is modelled by the block of mass m and the
obstacle is modelled by the spring with stiffness k2 (a backlash spring). The collision occurs
when the distance G between block and spring reaches 0. Since at impact the spring is
relaxed, the forces in the system depend continuously on G (and, hence, on the position y of
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the block), but the spring constants exerted by the backlash spring are discontinuous: 0 for
g > 0, k2 for g ≤ 0. Hence, the operation of mass can be divided into 2 phases.

• There is no contact between the mass and the right spring. The dynamics of system
can be described as a differential equation

mÿ = mAω
2 sinωt − cẏ− k1y, (3.2.1)

• When the mass and the right spring are in contact, the dynamics of system can be
described as a differential equation

mÿ = mAω
2 sinωt − cẏ− k1y− k2(y−G), (3.2.2)

G

Fig. 3.2.1 Physical model of the soft impact system [1].

Based on the following nondimensional variables and system parameters:

ωn =

√
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m
, τ = ωnt, ω =
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where y0 > 0 is an arbitrary reference distance, ωn is the natural angular frequency of the
mass-spring system (m, k1 in Fig. 3.2.1), ω is the ratio between forcing and natural frequency,
β is the stiffness ratio, ζ is the damping ratio, and a is the nondimensionalised forcing
amplitude, the nondimensional equations of motion of the soft impact system can be written
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in a compact form as below [32],x′(τ) = v(τ),

v′(τ) = aω2 sin(ωτ)−2ζ v(τ)− x(τ)−β (x(τ)− e)H(x(τ)− e),
(3.2.3)

where H(·) stands for the Heaviside step function and x′, v′ denote differentiation with respect
to the nondimensional time τ . The discontinuity boundary is fixed at x = e, with e > 0 being
the nondimensional gap to the rest point of the linear spring.

3.3 Impact system with a drift

A simple two degree-of-freedom system introduced by Pavlovskaia et al. [2, 4, 120], as
shown in Fig. 3.3.1, presents that mass M driven by an external force progresses when the
threshold of the dry friction Pf is smaller than the force acting on the slider exceeds. The
external force acting on mass M consists of amplitude Pd , frequency Ω and phase shift φ , and
a static component Ps. In Fig. 3.3.1, the absolute displacements of the slider bottom, slider
top and mass are denoted by Xb, Xt , Xm respectively. G represents the gap between the mass
and the slider top, and its value may be positive, negative, or equal to zero. When G > 0,
the mass moves freely without any interaction with the slider. When G = 0, the mass just
touches the slider top, but there is not any compression in the slider spring. Finally, when
G < 0, the slider is compressed. Hence, the operation of mass can be divided into 3 phases.

• There is no contact between the mass and the slider. The dynamics of the system can
be described as a differential equation

mẌm = Ps +Pd cos(Ωt +φ),

c(Ẋt − Ẋb)+ k(Xt −Xb) = 0, (3.3.1)

Ẋb = 0.

• When the mass and the slider are in contact and moving oscillatory without progression,
the dynamics of the system can be described as a differential equation

mẌm + c(Ẋt − Ẋb)+ k(Xt −Xb) = Ps +Pd cos(Ωt +φ),

Ẋb = 0. (3.3.2)
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• When the mass and the slider are progressing, the dynamics of system can be described
as a differential equation

mẌm =−Pf +Ps +Pd cos(Ωt +φ),

c(Ẋt − Ẋb)+ k(Xt −Xb) = Pf . (3.3.3)

In addition, for Eq. (3.3.2) and (3.3.3), Xt and Xm satisfy that

Xt = Xm −G.

In order to discuss conveniently, the above three phases can be denoted as: (i) No contact,
(ii) Contact without progression and (iii) Contact with progression.

m

p=p cos(Ωt+𝜑)+p sd

X

X

Xb

m

t
k c

fp

{slider

Fig. 3.3.1 Physical model of the impact system with a drift [2].

Based on the following nondimensional variables:

τ = Ω0t, x =
k

Pmax
Xm, y =

dx
dτ

=
k

Ω0Pmax
Ẋm, z =

k
Pmax

Xt , v̄ =
k

Pmax
Xb,

and parameters:

ω =
Ω

Ω0
, Ω0 =

√
k
m
, a =

Pd

Pmax
, b =

Ps

Pmax
, d =

Pf

Pmax
, ξ =

c
2mΩ0

, g =
k

Pmax
G,

where Pmax is a normalization constant force, the relevant nondimensional system can be
described as the following:
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• No contact, i.e. x < z+g. This phase means that the mass and the slider top move
separately, since the mass does not contact the slider top. Then, the motions of the
mass, the top and bottom of slider are:

x′ = y,

y′ = acos(ωτ +φ)+b,

z′ =− 1
2ξ

(z− v̄),

v̄′ = 0, (3.3.4)

• Contact without progression, i.e. x ≥ z+g and 0 < 2ξ z′+(z− v̄)< 1. This phase
means that the mass has a contact with the top of slider, but the force acting on mass is
larger than zero. Meanwhile, the threshold of the dry friction force is greater than the
force on mass. Hence, the mass and the top of slider are moving together without any
progression, and the bottom of the slider remains stationary. Then, the motions of the
mass, the top and bottom of slider are:

x′ = y,

y′ =−2ξ z′− (z− v̄)+acos(ωτ +φ)+b,

z′ = x′,

x = z+g,

v̄′ = 0, (3.3.5)

• Contact with progression, i.e. x ≥ z+g and 2ξ z′+(z− v̄)≥ 1. This means that the
mass has a contact with the top of slider and the force acting on mass is greater than
the threshold of dry friction force. Then, the motions of the mass, the top and bottom
of slider are:

x′ = y,

y′ = acos(ωτ +φ)+b−1,

z′ = x′,

x = z+g,

v̄′ = z′+
1

2ξ
(z− v̄−1), (3.3.6)
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The impact system with a drift can presented many different periodic and chaotic motions.
It is difficult to study some dynamical properties of this system in a standard way, due to
the problem of the motion unboundeness. To overcome this difficulty, in [4], Pavlovskaia
and Wiercigroch adopted a simple co-ordinates transformation to ensure the boundedness of
this system, which offers a possibility to analyse the dynamical properties in a standard way.
At the following discussion, this transformation, i.e. p := x− v̄ and q := z− v̄, also will be
adopt to rewrite system as following:

• No contact, i.e. p < q+g.

p′ = y,

y′ = acos(ωτ +φ)+b,

q′ =− 1
2ξ

(q), (3.3.7)

• Contact without progression, i.e. p ≥ q+g and 0 < 2ξ y+q < 1.

p′ = y,

y′ =−2ξ y−q+acos(ωτ +φ)+b,

q′ = y, (3.3.8)

• Contact with progression, i.e. p ≥ q+g and 2ξ y′+q ≥ 1.

p′ =− 1
2ξ

(q−1),

y′ = acos(ωτ +φ)+b−1,

q′ =− 1
2ξ

(q−1), (3.3.9)

According to the above transformation, the stability, chaotic property and multistability
can be observed clearly from the above new system. At the following chapters, the system
described by Eq. (3.3.7), (3.3.8) and (3.3.9) will be used to study the stability and control of
coexisting attractors of the impact system with a drift.
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3.4 Vibro-impact capsule system

In this section, a two degree-of-freedom system introduced by Liu et al. [3] in Fig. 3.4.1 is
considered. In details, there is a movable internal mass m1, which is driven by an external
harmonic force with amplitude Pd and frequency Ω. The internal mass m1 interacts with
a rigid capsule m2 by a linear spring with stiffness k1 and a viscous damper with damping
coefficient c. The absolute displacements of the internal mass and the capsule separately
denote by X1 and X2. At the right hand side of the rigid capsule, there is a weightless plate
connecting to the capsule by a secondary linear spring with stiffness k2. When the relative
displacement X1 −X2 is larger than or equal to the gap G, the weightless plate can be hit
by the internal mass m1. The capsule starts to moving forward or backward until the force
acting on the capsule exceeds the threshold of the dry friction force Pf between the capsule
and supporting surface.

Fig. 3.4.1 Physical model of the vibro-impact capsule system [3].

At the following discussion, Coulomb friction model is considered to calculate the
frictional force between the capsule and the sliding surface

f =

0, Ẋ2 = 0

−sign(Ẋ2) ·Pf , Ẋ2 6= 0,
(3.4.1)

where Pf = µ(m1+m2)g, µ is the friction coefficient between the capsule and the supporting
surface, and g is the acceleration resulted by gravity. The operation of the system can be
divided into 4 phases.

• If there is no contact between the mass m1 and the plate, i.e. X1 −X2 < G, and the
threshold of the dry friction force is larger than the force acting on the capsule from
the internal mass, i.e, |k1(X2 −X1)+ c(Ẋ2 − Ẋ1)|< Pf , which means that the capsule
is stationary, the dynamics of the internal mass and capsule can be described as
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m1Ẍ1 =Pd cos(Ωt)+ k1(X2 −X1)+ c(Ẋ2 − Ẋ1), (3.4.2)

Ẋ2 = 0. (3.4.3)

• If there is no contact between the mass m1 and the plate, i.e. X1 −X2 < G, and the
capsule is moving, the dynamics of the internal mass can be described as Eq. (3.4.2)
and the capsule can be described as

m1Ẍ2 =−sign(Ẋ2) ·Pf − k1(X2 −X1)− c(Ẋ2 − Ẋ1). (3.4.4)

It is necessary to point out that the dry friction force acting on the capsule has an
opposite direction with the force acting on the capsule, when the dry friction force is
just equal to the threshold of the dry friction force, i.e. |k1(X2−X1)+c(Ẋ2− Ẋ1)|= Pf

and the capsule begins to move. At this moment, the dry friction force can be described
as

f =−sign(k1(X2 −X1)+ c(Ẋ2 − Ẋ1)) ·Pf . (3.4.5)

• If there is a contact between the mass m1 and the plate, i.e. X1 −X2 ≥ G, and the
threshold of the dry friction force is larger than the force acting on the capsule from the
internal mass, i.e, |k1(X2 −X1)+ c(Ẋ2 − Ẋ1)− k2(X1 −X2 −G)| < Pf , which means
that the capsule is stationary, the dynamics of the internal mass and capsule can be
described as

m1Ẍ1 =Pd cos(Ωt)+ k1(X2 −X1)+ c(Ẋ2 − Ẋ1)− k2(X1 −X2 −G), (3.4.6)

Ẋ2 =0. (3.4.7)

• If there is a contact between the mass m1 and the plate, i.e. X1 −X2 ≥ G, and the
capsule is moving, the dynamics of the internal mass can be described as Eq. (3.4.6)
and the capsule can be described as

m1Ẍ2 =−sign(Ẋ2) ·Pf − k1(X2 −X1)− c(Ẋ2 − Ẋ1)+ k2(X1 −X2 −G). (3.4.8)

Also, it should point out that the dry friction force acting on the capsule has an opposite
direction with the force acting on the capsule, when the dry friction force is just equal
to the threshold of the dry friction force, i.e. |k1(X2 −X1)+c(Ẋ2 − Ẋ1)−k2(X1 −X2 −
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G)|= Pf and the capsule begins to move. In this moment, the dry friction force can be
described as

f =−sign(k1(X2 −X1)+ c(Ẋ2 − Ẋ1)− k2(X1 −X2 −G)) ·Pf . (3.4.9)

In order to discuss conveniently, the above four phases can be denoted as: (i) No contact
with stationary capsule, (ii) Contact with moving capsule, (iii) Contact with stationary
capsule and (iv) Contact with moving capsule .

Based on the following nondimensional variables:

τ = Ω0t, xi =
k1

Pf
Xi, yi =

dxi

dτ
=

k1

Ω0Pf
Ẋi, ẏi =

dyi

dτ
=

k1

Ω2
0Pf

Ẍi,

and parameters:

Ω0 =

√
k1

m1
, ω =

Ω

Ω0
, α =

Pd

Pf
, δ =

k1

Pf
G, β =

k2

k1
, ξ =

c
2mΩ0

, γ =
m2

m1
.

where i = 1,2, the relevant nondimensional system can be described as the following:

• No contact with stationary capsule, i.e. x1−x2 < δ , and |(x2−x1)+2ξ (y2−y1)| ≤
1. This phase means that the mass does not contact with the plate and the force acting
on the capsule is smaller or equal to threshold of the dry friction force. Then, the
motions of the mass and capsule are:

ẋ1 = y1,

ẏ1 = α cos(ωτ)+(x2 − x1)+2ξ (y2 − y1),

ẋ2 = 0,

ẏ2 = 0, (3.4.10)

When the capsule begins to move and the force acting on the capsule just equals
to the threshold |(x2 − x1)+2ξ (y2 − y1)| = 1, the direction of the dry friction force
is opposite to the elastic force acting on the capsule, which can be illustrated as
−sign((x2 − x1)+2ξ (y2 − y1)).

• No contact with moving capsule, i.e. x1 − x2 < δ , and |(x2 − x1)+2ξ (y2 − y1)|> 1.
This phase means that the mass does not contact with the plate and the force acting on
the capsule is larger than the threshold of the dry friction force. Then, the motions of
the mass and capsule are:
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ẋ1 = y1,

ẏ1 = α cos(ωτ)+(x2 − x1)+2ξ (y2 − y1),

ẋ2 = y2,

ẏ2 = [−sign(y2)− (x2 − x1)−2ξ (y2 − y1)]/(γ), (3.4.11)

• Contact with stationary capsule, i.e. x1 − x2 ≥ δ , and |(x2 − x1)+ 2ξ (y2 − y1)−
β (x1 − x2 −δ )| ≤ 1. This phase means that the mass is contacting with the plate and
the force acting on the capsule is smaller or equal to the threshold of the dry friction
force. Then, the motions of the mass and capsule are:

ẋ1 = y1,

ẏ1 = α cos(ωτ)+(x2 − x1)+2ξ (y2 − y1)−β (x1 − x2 −δ ),

ẋ2 = 0,

ẏ2 = 0, (3.4.12)

It is necessary to point out that when the capsule begins to move and the force on the
capsule is just equal to the threshold of dry friction (i.e. |(x2 − x1)+ 2ξ (y2 − y1)−
β (x1 − x2 −δ )|= 1), the relation between the direction of the dry friction force and
the force acting on the capsule from the springs and damper can be represented as
−sign((x2 − x1)+2ξ (y2 − y1)−β (x1 − x2 −δ )).

• Contact with moving capsule, i.e. x1−x2 ≥ δ , and |(x2−x1)+2ξ (y2−y1)−β (x1−
x2 −δ )|> 1. This phase means that the mass is contacting with the plate and the force
acting on the capsule is larger than the threshold of the dry friction force. Then, the
motions of the mass and capsule are:

ẋ1 = y1,

ẏ1 = α cos(ωτ)+(x2 − x1)+2ξ (y2 − y1)−β (x1 − x2 −δ ),

ẋ2 = y2,

ẏ2 = [−sign(y2)− (x2 − x1)−2ξ (y2 − y1)+β (x1 − x2 −δ )]/γ. (3.4.13)

Similarly to the impact system with a drift, the above capsule system also has a problem
of the motion unboundedness. It is necessary to adopt the similar idea from the impact
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system with a drift to change the above capsule system. Assuming that υ := x1 − x2 and
κ := y1 − y2, the above capsule system can be written as:

• No contact with stationary capsule, i.e. υ < δ , and |υ +2ξ κ| ≤ 1,

υ̇ = y1,

κ̇ = α cos(ωτ)−υ −2ξ κ,

ẏ1 = α cos(ωτ)−υ −2ξ κ,

ẏ2 = 0. (3.4.14)

• No contact with moving capsule, i.e. υ < δ , and |υ +2ξ κ|> 1,

υ̇ = κ,

κ̇ = α cos(ωτ)−υ −2ξ κ − (−sign(y2)+υ +2ξ κ)/(γ),

ẏ1 = α cos(ωτ)−υ −2ξ κ,

ẏ2 = [−sign(y2)+υ +2ξ κ]/(γ). (3.4.15)

• Contact with stationary capsule, i.e. υ ≥ δ , and |υ +2ξ κ −β (υ −δ )| ≤ 1,

υ̇ = y1,

κ̇ = α cos(ωτ)−υ −2ξ κ −β (υ −δ ),

ẏ1 = α cos(ωτ)−υ −2ξ κ −β (υ −δ ),

ẏ2 = 0. (3.4.16)

• Contact with moving capsule, i.e. υ ≥ δ , and |υ +2ξ κ −β (υ −δ )|> 1,

υ̇ = κ,

κ̇ = α cos(ωτ)−υ −2ξ κ −β (υ −δ )− [−sign(y2)+υ +2ξ κ +β (υ −δ )]/γ,

ẏ1 = α cos(ωτ)−υ −2ξ κ −β (υ −δ ),

ẏ2 = [−sign(y2)+υ +2ξ κ +β (υ −δ )]/γ. (3.4.17)

According to the above transformation, the stability, chaotic property and multistability
can be observed clearly from the above new system. At the following chapters, the system
described by Eq. (3.4.14), (3.4.15), (3.4.16) and (3.4.17) will be used to study the stability
and control of coexisting attractors of the vibro-impact capsule system.
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3.5 Conclusion

In this section, three different nonsmooth dynamical systems were introduced. Their non-
smooth properties can introduce many complex phenomena, such as coexisting attractors
(multistability), grazing bifurcations, and chaotic motions. Among these phenomena, the
coexisting attractors and grazing bifurcation are the main concerns of this work. In order
to suppress the complexity, in the following sections, the delay feedback control will be
considered to control the above three nonsmooth dynamical systems, and a new control
method also will be studied. In addition, it is important to analyse how the control methods
can affect the dynamics of the above three systems. In order to address this problem, a new
numerical method and an algorithm will be developed to study the dynamical characteristics
of the controlled nonsmooth dynamical systems.



Chapter 4

A numerical approach for bifurcation
analysis of nonsmooth delay differential
equations

4.1 Introduction

In fact, for the Piecewise-smooth dynamical systems with delay terms, there is no continuation
software available to carry out bifurcation studies via path-following routines. In order to
study the dynamical properties of these systems, a new numerical scheme has to be considered.
It is well-known that many engineering applications experiencing repeated collisions at their
mechanical parts can be represented using a soft-impact model as the one considered here,
where the discontinuity boundary is neither motion- nor time-dependent but fixed at a constant.
One of the main questions in such mechanical scenarios is to identify parameter values that
allows the user to drive the system from impacting to non-impacting system responses and
viceversa, in a controllable and reliable manner. In order to answer the above question, an
approximation method for nonsmooth DDEs will be proposed to carry out the numerical
bifurcation analysis of the system dynamics via numerical continuation.

The chapter is organised as follows. Section 4.2 presents the basic mathematical frame-
work for the study of dynamical systems with delay, as well as a detailed development of
the numerical approach to approximate their solutions via systems of ODEs of large dimen-
sion. In Section 4.3, the physical and mathematical description of the soft impact system
is presented, together with its formulation as a hybrid dynamical system and numerical
approximation considering the delay feedback controller. After that the system is analysed
numerically via the continuation software COCO in Section 4.4. This part also includes



28A numerical approach for bifurcation analysis of nonsmooth delay differential equations

some preliminary numerical tests regarding the approximation properties of the proposed
numerical scheme. Finally, the main conclusions of the present work are given in Section
4.5.

4.2 Approximation of delay differential equations

As mentioned before, the main goal of the present work is to develop a numerical approach
in order to analyse nonsmooth DDEs via path-following (continuation) methods. Numerical
continuation is a well-established technique that permits an in-depth analysis of a system
dynamics, under parameter variations. In particular, it allows tracing certain invariant sets
(such as equilibria, periodic orbits, homoclinic orbits, etc.) as selected system parameters
vary, usually via a predictor-corrector approach [121]. For ODEs there is a variety of software
packages that are widely used for numerical continuation in such class of models, for example
AUTO [122], CONTENT [123] and MATCONT [99], among many others. On the other hand,
software tools for piecewise-smooth systems are much less abundant, being SLIDECONT
[104], TC-HAT [28] and COCO [25] essentially the only available in the field. Similarly,
path-following software for (smooth) DDEs have received relatively little attention in the
literature, with the packages DDE-BIFTOOL [97] and PDDE-CONT [99] being the most
widely used tools for such type of models.

Right now, there is no software package able to perform numerical continuation for DDEs
considering nonsmooth phenomena, such as impacts, switches, impulses, etc. Numerical
continuation of periodic solutions in piecewise-smooth DDEs has been carried out by Barton
[124], where the author combines the mathematical framework designed for hybrid dynamical
systems [28] with a multi-point boundary-value problem that is then embedded in a numerical
continuation setting, whose applicability is illustrated in four different examples. From
this work, however, no software packages or codes have been made available for general
applications. Another approach for dealing with nonsmooth DDEs consists in substituting
Heaviside and sign functions by a tanh function with certain calibrating parameters to adjust
the desired degree of approximation to the original functions [105, 99, 106]. After the
replacements have been made, the original system is turned into a smooth DDE for which
any of the continuation tools mentioned in the previous paragraph can be applied. This
approach, however, presents some limitations, especially when the considered orbit possesses
a nontrivial solution signature [28, 124]. In addition, this technique cannot be applied when
the DDE considers impulsive perturbations, and also it does not allow the study of dynamical
phenomena inherent to nonsmooth systems, such as grazing and sliding events. Therefore,
the subsection studies a different approach, consisting in approximating a DDE via large
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systems of ODEs, in combination with the mathematical formulation for hybrid dynamical
systems, which then allows the application of any of the software tools mentioned above,
designed for nonsmooth dynamical systems.

4.2.1 Basic mathematical setup

Delay differential equations can be considered as dynamical systems of infinite dimension,
where the present state depends also on values in the past [125–127]. Such systems are
usually defined over the Banach space of continuous functions C([−τmax,0],Rn), equipped
with the supremum norm, where τmax > 0 represents the largest delay, n ≥ 1. For some t0 ∈R
and σ > 0, suppose that x : [t0 − τmax, t0 +σ ]→R

n is a continuous mapping. Then, for any
t ∈ [t0, t0 +σ ], xt(θ) := x̄(t +θ) should be defined, θ ∈ [−τmax,0]. Under this setting,

˙̄x = F(t,xt), (4.2.1)

is a retarded functional differential equation (RFDE), where F : Ω →R
n is a given function,

with Ω being an open subset ofR×C([−τmax,0],Rn). A function x ∈C([t0−τmax, t0+σ ],Rn)

is called a solution to (4.2.1) if (t,xt) ∈ Ω and x satisfies (4.2.1) for all t ∈ [t0, t0 +σ ]. The
solution to (4.2.1) can be made unique [125] if F is continuous and locally Lipschitz with
respect to its second argument and impose the initial condition xt0 = φ̄ , for some fixed
φ̄ ∈C([−τmax,0],Rn).

An important feature of the RFDE (4.2.1) is that of smoothing [128], i.e., an increase in
the regularity of the solution x as the time t grows. Specifically, it can be shown [129] that if
F is of class Ck, k ≥ 1, and I := [t0,σmax) stands for the maximum interval of existence for the
solution x, then x is of class Cq on [t0+qτmax,σmax) for q = 0,1, . . . ,k, provided t0+qτmax does
not exceed σmax. In particular, one has that periodic solutions are as smooth as the operator F
[130], a property that can be exploited for the numerical approximation of the solution of the
RFDE (4.2.1) that will be introduced in the next section.

4.2.2 Numerical approach

In this work, it is interesting to analysing a particular type of retarded functional differential
equation (see (4.2.1)), namely

˙̄x(t) = f (t, x̄(t), x̄(t − τd)), (4.2.2)

which represents a system of delay differential equations (DDEs) with constant delay τd > 0,
where f : R×Rn×Rn → R

n is a sufficiently smooth function. This type of equations
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considered here can be seen as dynamical systems with an infinite-dimensional phase space,
due to which analytical studies of such systems are generally difficult and require careful
mathematical treatment. The situation becomes even more complicated when some kind of
nonsmooth phenomenon is involved, such as impacts, switches, impulses, etc., as can be seen
later. Consequently, numerical approximations are fundamental to gain both a quantitative
and qualitative insight into the model dynamics.

A preliminary approach to reduce the infinite-dimensional problem to one of finite
dimension is via a Taylor expansion [131]:

x̄(t − τd) =
M

∑
k=0

x̄(k)(t)
(−τd)

k

k!
+O

(
τ

M+1
d

)
, (4.2.3)

which can then be inserted into (4.2.2) (neglecting the O-terms), hence obtaining a system
of ordinary differential equations of high order, see for example [132, 133] for practical
applications of this technique. This is by all means an analytically valid approach, however,
it suffers from certain limitations. For instance, the power series expansion (4.2.3) provides
good approximations depending on the size of the delay τd and how many terms are used in
the expansion (which depends on M). Therefore, this approach restricts the size of the delay
and also may require the solution to be many times differentiable, which is not always the case.
The main idea, however, can be slightly modified in order to overcome the aforementioned
limitations, by considering a finite sequence of Taylor expansions as follows [26].

For the sake of simplicity, it is necessary to assume that the solution x̄ of (4.2.2) is as
smooth as required for our discussion, which can be achieved via the smoothing property
outlined in the previous section. Take N ∈N sufficiently large and define the grid points
ti := i τd

N , i = 0, . . . ,N. Furthermore, define ui(t) := x̄(t − ti) for all t ≥ 0, i = 0, . . . ,N. In this
setting, via Taylor expansion, the following can be obtained

ui−1(t) = x̄

(
t −
(

ti −
τd

N

))
= ui

(
t +

τd

N

)
=

M

∑
k=0

1
k!

u(k)i (t)
(

τd

N

)k

+O

((
τd

N

)M+1
)
,

(4.2.4)
and

u̇0(t) = f (t,u0(t),uN(t)), (4.2.5)

for all t ≥ 0, i = 1, . . . ,N, M ≥ 1. After neglecting the O-terms, from (4.2.4), a system of
dN differential equations of order M can be obtained. As is well known, the resulting set
of equations can then be written as a first-order system of ODEs, in such a way that the
ordinary differential equations (from (4.2.4) and (4.2.5)) with n(NM+1) can be obtained
to approximate the solution of the DDE (4.2.2). If M = 1 is chosen, the approach outlined
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above reduces itself to the well-known chain method, which results in the following system
of n(N +1) ODEs:

u̇0(t) = f (t,u0(t),uN(t)), t ≥ 0,

u̇i(t) =
N
τd
(ui−1(t)−ui(t)), t ≥ 0, i = 1, . . . ,N,

ui(0) = φ̄

(
−i

τd

N

)
, i = 0, . . . ,N,

(4.2.6)

where φ̄ ∈C([−τmax,0],Rn) is a suitably chosen initial function at t0 = 0 (i.e. xt0 = x̄0 = φ̄ ).
This approximating system was developed and studied since mid 1960s, see for example
the works by Krasovskii [134], Repin [91] and Westdal [93]. In particular, it has been
shown that the solution of (4.2.6) converges uniformly to the solution of the original DDE
(4.2.2) as N → ∞, provided the initial function φ is suitably chosen [91]. Further results
regarding convergence have been derived in the past, see for instance the studies by Gyori et
al. [92, 135], Banks [95] and Demidenko [136], as well as recent applications in practical
problems [96, 137]. Here, the present work will apply a second-order approximation of
the DDE (4.2.2) based on the general scheme shown in (4.2.4) and (4.2.5), which takes the
following form

u̇0(t) = f (t,u0(t),uN(t)), t ≥ 0,

u̇i(t) = wi(t), t ≥ 0, i = 1, . . . ,N,

ẇi(t) =
2N2

τ2
d

(
ui−1(t)−ui(t)−

τd

N
wi(t)

)
, t ≥ 0, i = 1, . . . ,N,

(4.2.7)

where wi, i = 1, . . . ,N, represent auxiliary functions introduced to write the approximating
system as a set of n(2N +1) first-order scalar ODEs.

4.2.3 Mathematical framework for nonsmooth DDEs

A simple example of a nonsmooth DDE, considering two vector fields and an impulsive
perturbation [138], is given by

˙̄x(t) = f1(t, x̄(t), x̄(t − τd)), h(x̄(t), x̄(t − τd))> 0,

˙̄x(t) = f2(t, x̄(t), x̄(t − τd)), h(x̄(t), x̄(t − τd))< 0,

x̄(t+) = g(x̄(t−)), h(x̄(t), x̄(t − τd)) = 0,

(4.2.8)
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where f1,2 :R×Rn×Rn →R
n, h :Rn×Rn →R and g :Rn →R

n are sufficiently smooth
functions. Model (4.2.8) belongs to the class of hybrid dynamical systems [39], which are
characterized by a continuous evolution interrupted by discrete events, hence producing a
piecewise-continuous flow. This type of systems appears typically in applications dealing
with switches, impacts, stick-slip phenomena, etc. A classical example is that of an elastic
ball bouncing on a rigid surface. A continuous evolution of the ball position is produced
under action of the gravity. However, a discontinuous transition occurs every time the ball
touches the rigid surface. At this moment, the ball experiences an “instantaneous” reversal
of its direction of motion, and the magnitude of the outgoing velocity is usually assumed
to be smaller than that of the velocity right before the impact (Newton’s restitution law).
The general framework to model this type of dynamical systems consists in dividing the
state space into disjoint subregions associated to a particular operation mode of the system,
described by a certain smooth vector field ( f1 and f2 in system (4.2.8)). A transition to a
different mode of operation takes place whenever a system trajectory reaches the boundary
of the corresponding subregion. The boundaries are often defined as the zero-set of smooth
scalar functions (referred to as event functions, given by the function h in system (4.2.8)),
which normally describe physical instantaneous events, such as impacts, switches, transitions
from stick to slip motion, etc., as mentioned earlier. Once a transition has been detected, the
vector field describing the system behavior is changed according to the governing laws of
the system, and the initial point of the next system trajectory is defined by a certain reset
function, represented by the mapping g in (4.2.8). In the example of the bouncing ball, the
reset function would be given in terms of the described restitution law that reverses and
reduces the magnitude of the ball velocity after an impact occurs.

In general, a hybrid dynamical system can be characterized by a collection of (smooth)
vector fields, event and reset functions{

fMi
:R×Rn×Rn →R

n}KM

i=1 ,
{

hE j
:Rn×Rn →R

}KE

j=1 and {gRm
:Rn →R

n}KR
m=1 ,

respectively, with n,KM,KE,KR ∈N. Here, the subindex Mi, i = 1, . . . ,KM, represents a mode
of operation of the system, for which the system dynamics is described by the smooth
vector field fMi . Each mode of operation is defined within a subregion of the state space
R

n. The boundaries of these subregions are determined by the zero-set of the smooth scalar
functions hE j , j = 1, . . . ,KE. The subindex E j represents in this case an event related to e.g.
collisions, switches, etc., as outlined at the beginning of this section. Whenever a system
trajectory reaches one of these boundaries, the final state of the system is mapped to the
initial state of the next solution branch via a predefined reset function gRm , for some fixed
m = 1, . . . ,KR. A periodic solution of a hybrid dynamical system can then be represented by
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a sequence of segments
{

Isñ

}KS

ñ=1, 1 ≤ sñ ≤ KI, also referred to as solution signature. Here,
KS ∈N represents the length of the signature, while KI ∈N stands for the total number of
available segments. Each segment is associated with a vector field, an event function and
a reset function, i.e. I` :=

{
Mi`,E j`,Rm`

}
for all ` = 1, . . . ,KI, 1 ≤ i` ≤ KM, 1 ≤ j` ≤ KE,

1 ≤ m` ≤ KR. More details about this formulation can be found in [28, 25].

4.3 Soft impact system with the delay feedback controller

4.3.1 Mathematical model

The present work will consider a control signal u(τ), τ ≥ 0, which will be applied to the
system’s external excitation as followsx′(τ) = v(τ),

v′(τ) =
(

aω2 sin(ωτ)+u(τ)
)
−2ζ v(τ)− x(τ)−β (x(τ)− e)H(x(τ)− e),

(4.3.1)

where
u(τ) = K

(
v(τ − τd)− v(τ)

)
, τ ≥ 0, (4.3.2)

defines the delay feedback controller. In the expression above, K ≥ 0 represents a control
gain used to calibrate the coupling strength between the soft impact system and the controller,
while τd > 0 stands for a predefined time delay.

4.3.2 Preliminary transformations

Since most of the continuation packages are written for autonomous systems, it will consider
the following standard nonlinear oscillator [139] that will be appended to the equations of
motion: r′(τ) = r(τ)+ωs(τ)− r(τ)

(
r(τ)2 + s(τ)2

)
,

s′(τ) = s(τ)−ωr(τ)− s(τ)
(

r(τ)2 + s(τ)2
)
,

(4.3.3)

which has the asymptotically stable solution, r(τ) = sin(ωτ) and s(τ) = cos(ωτ), τ ≥ 0. In
this way, the periodically forced model can be written as an autonomous system. Furthermore,
to allow the time delay τd > 0 vary as a control parameter, it is convenient to perform a
re-scaling of the model according to

t̃ =
τ

τd
, x̃(̃t) = x(τd t̃), ṽ(̃t) = v(τd t̃), (4.3.4)
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and hence it follows that

u(τ) = u(τd t̃) = K
(
v(τd t̃ − τd)− v(τd t̃)

)
= K

(
ṽ(̃t −1)− ṽ(̃t)

)
=: ũ(̃t).

In this way, the numerical approximation of the resulting DDE will be carried out for a fixed
delay (equal to 1), which will facilitate the time discretization, while the effective control
delay τd can be now embedded into the system as follows (cf. (4.3.1), (4.3.3) and (4.3.4))

x̃′(̃t) = τd ṽ(̃t),

ṽ′(̃t) = τd

((
aω2r(̃t)+ ũ(̃t)

)
−2ζ ṽ(̃t)− x̃(̃t)−β (x̃(̃t)− e)H(x̃(̃t)− e)

)
,

r′(̃t) = r(̃t)+ωτds(̃t)− r(̃t)
(

r(̃t)2 + s(̃t)2
)
,

s′(̃t) = s(̃t)−ωτdr(̃t)− s(̃t)
(

r(̃t)2 + s(̃t)2
)
,

(4.3.5)

where now the derivatives are given with respect to the re-scaled time t̃. In what follows, all
tildes will be dropped for the sake of simplicity.

4.3.3 Formulation of the model as a hybrid dynamical system

Let us define α := (ω,a,β ,ζ ,e,K,τd) ∈
(
R

+
0
)7 and z̄ := (x,v,r,s)T ∈R4 as the parameters

and state variables of the system, respectively, where R+
0 represents the set of nonnegative

numbers. As explained in Section 4.2.3, the trajectories of the soft impact system (4.3.5) can
be divided into segments, as detailed below:

No contact (NC). This segment occurs when the mass m is not in contact with the
secondary spring k2 (see Fig. 3.2.1), i.e. x− e < 0. The dynamics of the system during this
regime is governed by the (smooth) DDE (cf. (4.3.5))

z̄′(t) = fNC(z̄(t), z̄(t −1),α)

:=


τdv(t)

τd

(
aω2r(t)+K

(
v(t −1)− v(t)

)
−2ζ v(t)− x(t)

)
r(t)+ωτds(t)− r(t)

(
r(t)2 + s(t)2

)
s(t)−ωτdr(t)− s(t)

(
r(t)2 + s(t)2

)

 . (4.3.6)

This segment terminates when the mass hits the secondary spring k2, which can be detected
via the condition himp(z̄(t), z̄(t −1),α) := x(t)− e = 0. After the contact occurs, the initial
point for the next segment is given by the jump function gid(z̄) := z̄.
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Contact (C). During this segment, the mass is in contact with the secondary spring (i.e.
x− e ≥ 0), and the behavior of the system is described by the equation (cf. (4.3.5))

z̄′(t) = fC(z̄(t), z̄(t −1),α)

:=


τdv(t)

τd

(
aω2r(t)+K

(
v(t −1)− v(t)

)
−2ζ v(t)− x(t)−β (x(t)− e)

)
r(t)+ωτds(t)− r(t)

(
r(t)2 + s(t)2

)
s(t)−ωτdr(t)− s(t)

(
r(t)2 + s(t)2

)

 , (4.3.7)

The terminal point of this segment occurs when the mass loses contact with the secondary
spring, which again can be detected via the condition himp(z̄(t), z̄(t −1),α) = 0, as before. In
this case, the initial point for the next segment is given by the jump function gid previously
defined.

In the mathematical framework introduced in Section 4.2.3, the segments defined above
can be expressed as follows: I1 := {NC, imp, id} (no contact) and I2 := {C, imp, id} (contact),
where the labels stand for the corresponding vector field describing the dynamics of the
operation mode, the event function that defines the terminal condition and the jump function,
which is in both cases just the identity function, since no impulsive phenomena are considered.
Consequently, every solution to system (4.3.5) can be characterized by a sequence

{
Isñ

}KS

ñ=1,
with 1 ≤ sñ ≤ 2, which is referred to as the solution signature, as defined earlier. Under this
setting, the mathematical model of the considered impact system can be written in compact
form as followsz̄′(t) = fNC(z̄(t), z̄(t −1),α), himp(z̄(t), z̄(t −1),α)< 0 (no contact),

z̄′(t) = fC(z̄(t), z̄(t −1),α), himp(z̄(t), z̄(t −1),α)≥ 0 (contact).
(4.3.8)

4.3.4 Finite-dimensional approximation of the model

Note that the set of DDEs (4.3.8) introduced in the previous section to describe the behavior
of the soft impact system can be interpreted as a piecewise-smooth dynamical system of
infinite dimension. Therefore, in order to study numerically the dynamics of the system, it
is necessary to obtain a finite-dimensional approximation of the model (4.3.8) firstly. For
this purpose, the numerical approach described in Section 4.2.2 will be employed to obtain a
piecewise-smooth system of ODEs of large dimension. Once the system of ODEs has been
constructed, it can then be solved numerically by any standard integration technique [140],
including path-following methods for piecewise-smooth systems, as will be done here.
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Now, the state variable z̃ :=(x,r,s,u0, . . . ,uN ,w1, . . . ,wN)
T ∈R2N+4 is considered. Hence,

by applying the numerical approximation given by (4.2.7) to (4.3.6), it is convenient to obtain
the system of ODEs

z̃′(t) = f̃NC(z̃(t),α)

:=



τdu0(t)

r(t)+ωτds(t)− r(t)
(

r(t)2 + s(t)2
)

s(t)−ωτdr(t)− s(t)
(

r(t)2 + s(t)2
)

τd

(
aω2r(t)+K

(
uN(t)−u0(t)

)
−2ζ u0(t)− x(t)

)
(
wi(t)

)
i=1,...,N(

2N2
(

ui−1(t)−ui(t)−
1
N

wi(t)
))

i=1,...,N


, (4.3.9)

which gives a finite-dimensional approximation of the DDE (4.3.6), corresponding to the no
contact mode. Here, assume u0(t) = v(t) and

ui(t)≈ v(t − ti), for all t ≥ 0, ti =
i
N
, i = 1, . . . ,N. (4.3.10)

Note that owing to the transformation (4.3.4), the time discretization is carried out over the
unit interval, regardless the value of the delay τd . Following the same procedure, another set
of ODEs can be obtained for the contact regime

z̃′(t) = f̃C(z̃(t),α)

:=



τdu0(t)

r(t)+ωτds(t)− r(t)
(

r(t)2 + s(t)2
)

s(t)−ωτdr(t)− s(t)
(

r(t)2 + s(t)2
)

τd

(
aω2r(t)+K

(
uN(t)−u0(t)

)
−2ζ u0(t)− x(t)−β (x(t)− e)

)
(
wi(t)

)
i=1,...,N(

2N2
(

ui−1(t)−ui(t)−
1
N

wi(t)
))

i=1,...,N


, (4.3.11)
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In this way, the original infinite-dimensional, piecewise-smooth system (4.3.8) can be ap-
proximated by the following system of finite dimensionz̃′(t) = f̃NC(z̃(t),α), x(t)− e < 0 (no contact),

z̃′(t) = f̃C(z̃(t),α), x(t)− e ≥ 0 (contact).
(4.3.12)

With this mathematical setup it is ready to test the proposed numerical approach to approxi-
mate the solution of piecewise-smooth DDEs.

4.4 Numerical investigation of dynamical response of the
controlled impact system

4.4.1 Preliminary numerical studies

The preliminary analysis of the soft impact system (3.2.3) begins with the multistable scenario
where two stable attractors coexist. Fig. 4.4.1 shows the bifurcation of the system without
the delay feedback control when its stiffness ratio varies in the range β ∈ [20,100]. As can
be seen from the figure, blue dots represent a period-2 attractor with two impacts, and red
dots denote a period-2 attractor with one impact. The soft impact system is monostable
exhibiting the period-2 motion with one impact for β ∈ [20,27.081), and when β ≈ 27.081,
the period-2 motion with two impacts emerges. As can be seen from the right windows of
Fig. 4.4.1, the period-2 motion with two impacts becomes more stable as the stiffness ratio
increases, and the basin of the period-2 motion with one impact shrinks. Next, the dynamics
of the soft impact system with the delay feedback control, under variation of the control
parameter K, will be investigated.

Bifurcation diagram for the controlled soft impact system under variation of the control
parameter K is presented in Fig. 4.4.2. As the control parameter increases up to K ≈ 0.0027,
the period-2 attractor with two impacts disappears and the system becomes monostable. A
comparison of this bistability with and without the delay feedback controller is shown in the
left windows of Fig. 4.4.2, where the basin for the period-2 attractor with two impacts shrinks
as the control parameter K increases. Thereafter, only the period-2 attractor with one impact
exists until a reverse period doubling encountered at K = 0.177, and the system bifurcates
into a period-1 motion with one impact per period of excitation. Examples of the soft impact
system controlled from bistable to monostable is given in Fig. 4.4.3, where time histories of
the external excitation (including the delay feedback control) and the displacement of the
soft impact system are presented. As can be seen from the figure, the controller was switched
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Fig. 4.4.1 Bifurcation diagram of the soft impact system without the delay feedback controller
computed for ω = 0.8, a = 0.9, ζ = 0.01, e = 1.26 by varying the stiffness ratio β . Blue dots
represent the period-2 attractor with two impacts per period of excitation, red dots denote
the period-2 attractor with one impact per period of excitation. The location of the impact
boundary is shown by the vertical green line. Right windows show the evolution of basins of
attraction of the system as the stiffness ratio increases.
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Fig. 4.4.2 Bifurcation diagram of the soft impact system with the delay feedback controller
computed for ω = 0.8, a = 0.9, ζ = 0.01, e = 1.26, β = 29, τd = 3.8 by varying the control
parameter K. Red dots represent the period-2 attractor with one impact, and blue dots denote
the period-2 attractor with two impacts per period of excitation. Left windows compare the
basins of attraction of the system with (K = 0.0025) and without (K = 0) the time-delayed
feedback controller.
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on at τ = 4000, and both the period-2 attractor with two impacts and the period-2 attractor
with one impact were controlled to a new period-2 attractor with one impact per period of
excitation.

Fig. 4.4.3 Trajectories and external excitations of the soft impact system with the delay
feedback controller, computed for ω = 0.8, a = 0.9, ζ = 0.01, e = 1.26, β = 29, K = 0.12
and τd = 3.8. The soft impact system is controlled from (a) the period-2 attractor with two
impacts and (b) the period-2 attractor with one impact to a new period-2 attractor with one
impact per period of excitation.
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4.4.2 Numerical test of the approximation scheme for nonsmooth DDEs

In Section 4.3.4 a nonsmooth ODE of large dimension approximating the original DDE
model (4.3.8) was introduced. This approximation was based on the numerical scheme
explained in detail in Section 4.2.2, where the main idea is to introduce auxiliary functions
defined via suitable time shifts of the exact solution, which are then expanded through a
Taylor series of a predefined order. The time shift is defined, after re-scaling (see (4.3.4)),
over the unit interval, at the grid points ti = i

N , i = 0, . . . ,N, with N ∈N sufficiently large.
It is convenient to obtain a finite-dimensional approximation of a DDE, which then can
be solved numerically by any standard integration technique. In this section, a numerical
investigation will be carried out to study the approximation properties of the nonsmooth
ODE (4.3.12) introduced in Section 4.3.4, as the dimension of this system varies with the
discretization parameter N.

In Fig. 4.4.4 a numerical comparison was made for the dynamical behavior of the original
nonsmooth DDE (4.3.8) with the approximating system of ODEs (4.3.12), for different values
of the delay parameter τd . In this diagram, and in the remainder of this work, all DDE and
ODE models are integrated using the MATLAB solvers ‘dde23’ and ‘ode15s’, respectively,
in combination with their built-in event location routines [141, 142] so as to detect accurately
collisions with the impact boundary x = e. For the chosen discretization parameter N = 50
(which gives a step-size 1

N = 0.02), the computed solutions of the original DDE (plotted in
red, dashed lines) and the approximating ODE system (blue, solid lines) are very close to
each other, for different values of τd . In addition, for each case the figure presents time plots
showing trajectories for u0(t) (= v(t), in blue) and uN(t) (≈ v(t−1), in black), corresponding
to the solutions of the approximating system (4.3.12) (see (4.3.10)). These plots can present
that the proposed numerical scheme provides reasonable approximations of the original DDE,
although the time plots present some perturbations of the solution observable in the lower
peaks, produced by a well-known effect referred to as numerical distortion, which typically
appears in semi-discretization schemes as the one proposed in the present work [143]. This
numerical distortion, however, does not affect significantly the approximation of the orbits
depicted in the phase plots shown in Fig. 4.4.4.

Next, some of the convergence properties of the proposed numerical scheme to approxi-
mate the solution of nonsmooth DDEs will be investigated numerically. Specifically, this
investigate will focus on the experimental order of approximation for the specific case of the
soft impact system driven by a delay feedback controller, considered in the present work. For
this purpose, a suitable distance function will be defined to quantify how close a solution of
the original DDE and its numerical approximation are, as the step-size 1

N varies. This study
is also motivated by the fact that local truncation errors act as perturbations to the original
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Fig. 4.4.4 Numerical comparison of the dynamical response of the nonsmooth DDE (4.3.8)
with the approximating system of ODEs (4.3.12), for the parameter values ω = 0.8, a = 0.9,
ζ = 0.01, e = 1.26, β = 29, K = 0.12 and N = 50. Panels (a) to (d) show phase plots for
τd = 3.8, τd = 4.6, τd = 5.9 and τd = 7.1, respectively. The solutions to the original system
(4.3.8) and their approximations are depicted in red (dashed line) and in blue (solid line),
respectively. In all phase plots, the vertical black line stands for the impact boundary x = e.
The time plots show the behavior of u0(t) (= v(t), in blue) and uN(t) (≈ v(t −1), in black),
corresponding to the solutions of the approximating system (4.3.12) (see (4.3.10)). The time
plots are given with respect to the original timescale τd · t, see (4.3.4).
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Fig. 4.4.5 (a) Family of approximating orbits (in blue) computed from the system of ODEs
(4.3.12), for the parameter values used in Fig. 4.4.4 (with τd = 7.1) and 10 ≤ N ≤ 100. Here,
the reference solution of the piecewise-smooth DDE (4.3.8) is plotted in red (dashed line),
showing the intersections P1 and P2 with the discontinuity boundary x = e. An enlargement
of the boxed region is depicted in panel (b), where the arrows indicate the direction of
increasing N. Panels (c) to (f) show the behavior of the distance function (4.4.1) as N varies,
computed for τd = 3.8, τd = 4.6, τd = 5.9 and τd = 7.1, respectively, using the reference
solutions (in red, dashed lines) depicted in Fig. 4.4.4.
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system whose solutions are approximated, and in some cases the computed solutions may
exhibit high sensitivity when the mesh width is varied [144].

To investigate the approximation properties of the proposed numerical scheme, it is
necessary to consider bounded periodic solutions of the nonsmooth DDE (4.3.8), and assume
that the solutions intersect (transversally) the impact boundary (x = e) m ≥ 2 times, at the
points (x1,v1), . . . ,(xm,vm), with (xi,vi) ∈ R2, for i = 1, . . . ,m. Let us pick one of such
solutions and consider the corresponding numerical approximation computed from the
nonsmooth system of ODEs (4.3.12). If N is sufficiently large, then the approximating
solution will also intersect the impact boundary m times, at the points (x̃(N)

1 , ṽ(N)
1 ), . . . ,

(x̃(N)
m , ṽ(N)

m ). Assuming a suitable ordering of the intersection points, the following distance
function can be defined

Dist(N) :=
m

∑
i=1

∥∥∥(xi,vi)− (x̃(N)
i , ṽ(N)

i )
∥∥∥ , (4.4.1)

where‖·‖ stands for the Euclidean norm in R2. This function can be used as a quantitative
indicator of how close a solution of the original DDE and its numerical approximation are,
when the step-size 1

N is adjusted.
The main results are shown in Fig. 4.4.5. Panel (a) presents a periodic solution of

the original nonsmooth DDE (4.3.8) (plotted in red, dashed lines) together with a family
of approximating solutions computed from the system of ODEs (4.3.12) (in blue), with
10 ≤ N ≤ 100 and τd = 7.1. In this picture, it can be observed that the approximating
solutions indeed become closer and closer to the reference solution as the mesh width 1

N
decreases. This procedure was repeated also for τd = 3.8, τd = 4.6 and τd = 5.9, and the
convergence was verified as well. A closer look into the convergence is obtained from panels
(c) to (f), where the behavior of the distance function defined in (4.4.1) is analysed with
respect to variations of N, on a logarithmic scale, for the values of τd considered above.
The panels reveal an almost linear response indicating that the distance function decreases
according to O

(
N−p), with p ≈ 2. This observed order of accuracy is consistent with the

second-order approximation given by (4.2.7) and applied in (4.3.12), which confirms the
reliability of the proposed numerical scheme to approximate the solution of nonsmooth
DDEs. In what follows and unless otherwise indicated, the numerical study will considers the
approximation with N = 15, which was found to be a suitable value to keep a good balance
between computational cost and accuracy of the results.
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4.4.3 Numerical investigation of the delay soft impact system via con-
tinuation methods

In this section, the main purpose will be the application of the proposed numerical approach
to study the dynamics of the considered soft impact system with delay feedback control,
via continuation techniques. The starting point for this numerical investigation will be the
periodic solution computed in Fig. 4.4.4(a) (the one in blue, computed from system (4.3.12)).
To begin with, the control delay τd can be treated as the bifurcation parameter and investigate
how the initial periodic solution behaves as this parameter is changed. The result is presented
in Fig. 4.4.6. The figure includes a diagram showing the behavior of the test function

hGR(z̄(t),α) := x(t)− e, (4.4.2)

which is evaluated at a suitably chosen point along a periodic solution where the mass
velocity is zero (for example at the point Pt shown in one of the phase plots in Fig. 4.4.6).
In this way, an accurate detection of grazing events is possible. As can be observed in the
figure, the bifurcation diagram is limited by two grazing bifurcations, labeled GR1 and GR2,
detected at τd ≈ 3.1903 and τd ≈ 4.6563, respectively, whose phase plots are depicted in the
smaller external panels. A closer look to the system dynamics around the grazing point GR2
reveals a period-doubling effect produced when the grazing contact occurs, when GR2 is
crossed from above, which is a classical phenomenon observed near grazing points, see e.g.
[39, Section 6.3.3].

Next, with varying of the control gain K, the periodic response of the approximating
system (4.3.12) will be investigated. The result of this study is presented in Fig. 4.4.7, where
the plot shows the contact time, i.e., the time the mass is in contact with the secondary
spring within one orbital period, as a function of K. As can be seen in this diagram, large
values of K induce a periodic response with no impacts with the secondary spring, hence the
contact time equals zero. As this parameter decreases, a periodic solution with a tangential
intersection with the impact boundary x = e is detected at the point labeled GR, found for
K ≈ 0.1747. Therefore, this value defines a boundary between impacting and non-impacting
periodic behavior. In addition, further investigations reveal that this grazing bifurcation also
produces a period-doubling effect, similarly to the case studied in the previous paragraph.
The bifurcation diagram finishes at K = 0, corresponding to the situation when the delay
feedback controller is switched off, due to which any delay effect disappears from the model.
In this case the original DDE model (4.3.8) and its approximating system of ODEs (4.3.12)
are equivalent.
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Fig. 4.4.6 Continuation of the periodic response of system (4.3.12) with respect to the control
delay τd , for the parameter values given in Fig. 4.4.4. The diagram presents the behavior
of the test function hGR introduced in (4.4.2) to detect grazing events. The labels GR1 and
GR2 stand for grazing bifurcations detected at τd ≈ 3.1903 and τd ≈ 4.6563, respectively.
The phase plots show periodic solutions computed at GR1, GR2 and at the test points P1
(τd = 3.868), P2 (τd = 4.620) and P3 (τd = 4.558).

As can be observed from the studies above, the dynamics of the controlled soft impact
system is dominated by the presence of grazing phenomena. In particular, the investigation
revealed that the delay feedback controller is able to drive the system from impacting to
non-impacting responses and viceversa, where the boundary point is defined by a grazing
bifurcation. Therefore, a two-parameter continuation of this critical point with respect to the
main control parameters, i.e., the control delay τd and the control gain K, will be carried out
at the next step. The result of this process is displayed in Fig. 4.4.8. Panel (a) shows a curve
representing all combinations of τd and K producing periodic solutions making tangential
contact with the impact boundary x = e. In this way, the parameter space is divided locally
by this curve into two regions. The first one (above the curve) corresponds to all pairs (τd , K)
for which the system presents non-impacting periodic solutions, as the one computed at the
test point P2 (see panel (d)). On the contrary, below the grazing curve, the operation points
(τd , K) producing impacting periodic solutions can be found, for instance at the test points
P1 and P3, depicted in panels (c) and (e), respectively. In panels (c) to (e), the solutions



46 A numerical approach for bifurcation analysis of nonsmooth delay differential equations

K

C
on

ta
ct

 ti
m

e

Fig. 4.4.7 Continuation of the periodic response of system (4.3.12) with respect to the control
gain K, for the parameter values given in Fig. 4.4.4, with τd = 3.8. The diagram presents the
time spent during the contact mode (see Section 4.3.3) on the vertical axis. The label GR
represents a grazing bifurcation found at K ≈ 0.1747. The inner panels show phase plots on
the x-v plane for the test points P1 (K = 0), P2 (K = 0.1071), P3 (K = 0.2482) and GR.

to the original system (4.3.8) and their approximations (computed from system (4.3.12))
are depicted in red (dashed line) and in blue (solid line), respectively. Furthermore, in Fig.
4.4.8(b) it presents the solution manifold computed along the grazing curve displayed in
panel (a), showing the components u0(t) (= v(t)), uN(t) (≈ v(t −1)) and the delay parameter
τd . In this graph, two particular values can be identified. The first one, when τd takes the
value closest to zero, presents that the phase plot corresponding to this value resembles the
identity function. This is because, since the delay is close to zero, both the signals v(τ) and
v(τ − τd) (in the original time scale) are almost in phase, and this is reflected on the phase
plane u0-uN . A similar phenomenon can be observed for τd = 2π/ω ≈ 3.927, where the
signals are 180 degrees out phase, which can also be identified from the 3D plot.

4.5 Conclusion

Nonsmooth dynamical systems with delay have been widely used in the past to describe com-
plex phenomena in a variety of research areas, for instance in biology, mechanics and control.
Despite the popularity and importance of such type of models, the available computational
tools for numerical study and simulation are rather limited, owing to the infinite-dimensional
nature of dynamical systems with delay, in combination with the analytical and numeri-
cal difficulties arising when nonsmooth phenomena are considered. While a number of
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Fig. 4.4.8 (a) Continuation in two parameters of the grazing bifurcation (GR) encountered
in Fig. 4.4.7, with respect to τd and K. The resulting curve defines the boundary between
impacting and non-impacting responses. (b) Solution manifold computed along the grazing
curve plotted in (a). The axes show the components u0(t) (= v(t)), uN(t) (≈ v(t −1)) and
the delay parameter τd . Panels (c) to (e) show phase plots computed at the test points P1, P2
and P3, respectively, marked in panel (a). The solutions to the original system (4.3.8) and
their approximations (computed from system (4.3.12)) are depicted in red (dashed line) and
in blue (solid line), respectively.

software packages have been developed for numerical continuation in smooth DDEs (e.g.
DDE-BIFTOOL [97], PDDE-CONT [99] and Knut [100]), no software package of this
kind exists for the path-following analysis of nonsmooth DDEs. There is, however, a solid
computational framework developed for this purpose (see for instance [124]), but the related
codes are not yet available in a user friendly form.

The present work proposed a numerical approach for the numerical continuation of
periodic solutions of nonsmooth dynamical systems with delay. The numerical approach
is based on the well-known technique of approximating delay differential equations via
large systems of ODEs. Such approximating systems were developed and studied since
mid 1960s, see for example the works by Krasovskii [134], Repin [91] and Westdal [93].
In particular, it has been shown that the solution of the approximating systems of ODEs
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converges uniformly to the solution of the original DDE as the number of ODEs tends to
infinity [91]. Further results regarding convergence have been derived thereafter, see for
instance the studies by Gyori et al. [92, 135], Banks [95] and Demidenko [136], as well as
recent applications in practical problems [96, 137]. Following these previous works, the
present study applied a second-order approximation of the original DDE by considering a
finite sequence of Taylor expansions as proposed in [26]. In this way, a nonsmooth dynamical
system with (constant) delay can be approximated by a nonsmooth system of ODEs of
large dimension, which then allows the study of the resulting model in the framework of
hybrid dynamical systems, following the ideas of [124] and [28]. This enables the numerical
bifurcation study of the system response via path-following methods, for instance via the
general-purpose continuation platform COCO [25].

The effectiveness of the proposed scheme was tested on a well-known and widely studied
impact system [32, 145], driven by a delay feedback controller. One of the advantages of the
proposed numerical approach is that it allows the study of discontinuity-induced bifurcations,
such as sliding and grazing, a task that is difficult to perform if discontinuity boundaries
are not clearly identified in the numerical implementation, for instance when smoothing the
original system via e.g. parameter-dependent families of tanh functions. Via the numerical
software COCO, the numerical continuation was carried out for periodic solutions of the
soft impact system, with special focus on detection of grazing phenomena when the main
control parameters are varied, specifically, the control delay τd and the control gain K. This
investigation revealed that the considered delay feedback controller is able to steer the system
from impacting to non-impacting responses and viceversa, where the boundary point is
defined by a grazing bifurcation. By using the COCO capability of tracing loci of special
points in two parameters, the two-parameter continuation of the detected grazing bifurcation
with respect to τd and K was carried out. In this way, it was convenient to obtain a curve
in the τd-K plane defining the boundary between impacting and non-impacting periodic
behavior.

Although the proposed the numerical approach provides a straightforward mean to study
nonsmooth dynamical systems with delay via existing and well-established continuation
packages, it suffers from a number of limitations. To begin with, a significant increase of
computation time can be noticed when the mesh width 1

N decreases (see (4.2.7)), which is
an unavoidable effect owing to the infinite-dimensional nature of dynamical systems with
delay. Nevertheless, the numerical investigation showed that still a good balance between
computational cost and accuracy of the results can be found. It is also important to mention
that the above implementation has not consider to track secondary discontinuities that are
known to be propagated as the time increases. Due to the well-known smoothing property
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of DDEs [128], this does not seem to affect the numerical accuracy in the considered
continuation framework (since the study focused on periodic solutions), however, this is
something that needs to be looked into when dealing with DDEs with nonsmooth phenomena.
Therefore, in the long term future work should focus on the development of general-purpose,
portable and user friendly computational tools for the numerical continuation and bifurcation
analysis of nonsmooth dynamical systems with delay, combining the capabilities offered by
e.g. DDE-BIFTOOL and the multi-segment continuation toolbox of COCO.



Chapter 5

Lyapunov exponents of soft impact
system with the delay feedback control

5.1 Introduction

Grazing events for nonsmooth systems can introduce coexisting attractors (also called
Multistability), which means that the nonsmooth system can has many different motions
caused by grazing events. Controlling multistability offers a possibility to understand the
relation among the relevant coexisting attractors. The delay feedback controller [19] can
be used to stabilise the system to one of periodic coexisting attractors. But, under some
conditions, the delay feedback controller can lose its effectiveness on stabilising at the desired
attractors. Thus, Lyapunov Exponents (LEs) should be considered to analyse the nonsmooth
dynamical system with a delay feedback controller. In addition, during the simulation of the
nonsmooth dynamical system with a delay feedback control near grazing, the convergence of
the numerical result always cannot be improved through adopting high numerical integration.

The chapter is organised as follows. Section 5.2 introduces the mathematical model of a
periodically forced mechanical oscillator subjected to a one-sided soft impact, with the delay
feedback controller. This is followed by some basic relevant definitions and preparations.
Section 5.3 presents the method for constructing the Jacobian of Poincaré map of piecewise-
smooth DDEs. However, such a construction is inaccurate due to the nonsmooth property of
the considered system. Thus, Section 5.4 studies an estimation method for determining the
points of discontinuity accurately. Here, two cases of grazing events are considered based
on the geometry of the trajectory. Section 5.5 uses linear operator theory to carry out an
error analysis for the eigenvalues of the Jacobian, which can validate the reliability of the
proposed method. In Section 5.6, the steps for computing LEs are detailed. Examples and
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several control scenarios of the oscillator are presented in Section 5.7 to demonstrate the
accuracy of the method. Finally, some concluding remarks are drawn in Section 5.8.

5.2 Mathematical preparation

The present work will consider a control signal u(τ), which will be superimposed on the
system’s external excitation as followsx′(τ) = v(τ),

v′(τ) =
(

aω2 sin(ωτ)+u(τ)
)
−2ζ v(τ)− x(τ)−β (x(τ)− e)H(x(τ)− e),

(5.2.1)

where
u(τ) = K

(
v(τ − τd)− v(τ)

)
, τ ≥ 0, (5.2.2)

defines the proportional feedback control that feedbacks the difference between the current
measurement of v and a measurement of v from some time τd ago [19]. In the expression
above, K ≥ 0 represents the feedback gain of the controller and τd > 0 stands for a predefined
time delay. The control objective here is to avoid undesired chaotic responses and to suppress
the multistability of the soft impact system in the vicinity of the grazing events. This type of
delay feedback control has many advantages. For instance, it may result in a zero control
signal if τd = 2π/ω and if (5.2.2) successfully stabilises a period-1 motion. This case does
not need to know the precise time profile of this period-1 motion, which is in contrast to
standard linear feedback control u(τ) = k(vref(τ)− v(τ)). The asymptotically vanishing
control signal is attractive in applications where energy consumption is a critical issue, e.g.
[5].

Eq. (5.2.1) can be rewritten in the form of a general piecewise continuous DDE with a
periodic external excitation as

ẏ(t) = f1(y(t),y(t − τd))+ p(t), for H(y(t),e)> 0,

ẏ(t) = f2(y(t),y(t − τd))+ p(t), for H(y(t),e)< 0,

y(t+) = y(t−), for H(y(t),e) = 0,

(5.2.3)

where f1,2 : Rn ×Rn → Rn, H : Rn → R are sufficiently smooth functions and p : R+ → Rn

is smooth and periodic with the period T > 0. The delay τd is assumed to be positive but
may be different from the period in general. The present work only considers one single
delay in the system for simplicity, and assumes that for any y, ȳ,yd, ȳd ∈ Rn, f1, f2 and H
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satisfy the Lipschitz condition

| f1,2(y,yd)− f1,2(ȳ, ȳd)| ≤ l1|y− ȳ|+ l2|yd − ȳd|,
|H(y,e)−H(ȳ,e)| ≤ l3|y− ȳ|,

where l1, l2, l3 ≥ 0 and | · | is a norm on Rn. Also, a suitable initial function on [t0, t0 − τd]

is chosen for the initial condition. The general form (5.2.3) belongs to the class of hybrid
dynamical systems [39], which consists of a flow (in our case only forward in time), combined
with discrete events.

Take N ∈ Z+ sufficiently large, and define the discretisation grid points τ i
d := i τd

N , i =
0, . . . ,N, and ui(t) := y(t − τ i

d) for all t ≥ 0, i = 0, . . . ,N. Eq. (5.2.3) can be approximated
by a n(N +1) dimensional piecewise-smooth discretised problem studied in [116], which
will be presented in Section 5.3. This approximation method has also been studied by
Krasovskii [146], finding that the solution of the approximating system uniformly converges
to the solution of the original DDEs when N → ∞. By using the same approach, Györi
and Turi [92] and Banks [95] carried out convergence analyses for two DDEs. Breda et al.
[118]. studied the characteristic roots of linear DDEs, and used a Runge-Kutta method to
construct a high-dimensional approximating system. The nonzero eigenvalues of evolution
operators were computed through a pseudospectral collection, which was used to analyse
the asymptotic stability of DDEs. Since Eq. (5.2.3) is a nonsmooth DDE whose trajectories
can encounter discontinuities, the methods used for smooth DDEs are not suitable, or, at
least, converge with lower-than-expected order. Therefore, motivated by the periodic forcing
of Eq. (5.2.3), the plan here is to derive a Poincaré map (also called stroboscopic map) for
discretising the system and study linear stability of its orbits by considering the Jacobian
matrix of the map in these orbits. After such a reduction to the Poincaré map, it is convenient
to define LEs for this time-discrete map.

For the nonsmooth DDE (5.2.3), a constant phase surface as the Poincaré section can
be defined as PT

s := {(y, t) ∈C([t0 − τd, t0],Rn)×R+| t = t0 + kT, k ∈ Z+}. For the corre-
sponding Poincaré map

P : PT
s → PT

s (5.2.4)

the LEs can be defined as follows.

Definition 5.2.1. [108] For any initial condition x0 ∈ PT
s , let {xm∗}∞

m∗=0 be the corresponding
orbit of the map P, and let λ m∗

0 , · · · ,λ m∗
n∗ be the n∗ largest in modulus eigenvalues of DPm∗

(x0),
where is the Jacobian matrix of Pm∗

with the relevant orbit, which is the Jacobian matrix of
Pm∗

with respect to the relevant orbit, sorted such that |λ m∗
0 | ≥ . . .≥ |λ m∗

n∗ |. The Lyapunov
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exponents of x0 are
ϑi := lim

m∗→∞
ln |λ m∗

i |
1

m∗ , i = 1, . . . ,n∗ (5.2.5)

whenever the limit exists for x0 and for all i ≤ n∗.

The above definition is applicable to the map P acting on the infinite dimensional
space PT

s , since P is differentiable and its linearisation is bounded and has a spectrum only
consisting of a sequence (finite or infinite) of eigenvalues of finite multiplicity converging to
0 and zero. The expression in the limit (5.2.5) is not a practical recipe for computation since
λ m∗

i may be very large or very small.

5.3 Constructing the Jacobian matrix of the Poincaré map

For a nonsmooth system with a delay τd smaller than its forcing period T , i.e. 0 < τd < T ,
the period T can be written as T = n̂τd +∆t, for some n̂ ∈ Z+ and ∆t ∈ [0,τd). For any
time interval [tm̄, tm̄ + τd], where tm̄ = t1 +(m̄− 1)T , t1 = t0 and m̄ ∈ Z+, the solution of
system (5.2.3) can be approximated by N steps of size h = τd

N by using numerical integration.
The expressions derived in this section initially ignore grazing of the discontinuity surface
{H = 0}. Section 5.4 will explain how the expressions will be modified at the respective
events. The modified Euler integration formula [147] gives for a single step of size h = τd/N

u0(tm̄ +h) =u0(tm̄)+ h
2

[
f j(u0(tm̄),u0(tm̄ −hN))

+ f j(uE ,u0(tm̄ −h(N −1)))
]
+ h

2

[
p(tm̄)+ p(tm̄ +h)

]
, (5.3.1)

(here written only for the first step at tm̄) where uE = u0(tm̄)+ h f j(u0(tm̄),u0(tm̄ − hN))+

hp(tm̄) and 
j = 1, if H(u0(tm̄),e)> 0,

j = 2, if H(u0(tm̄),e))< 0,

u0(t+m̄ ) = u0(t−m̄ ), if H(u0(tm̄),e) = 0.

Iterating this map N +1 times gives a discretised map for the delay-time interval [tm̄, tm̄ +

τd], which it can be called Pd : Rn(N+1) → Rn(N+1). It satisfies

Um̄,1 = Pd(Um̄,0), (5.3.2)

where Um̄,0 :=(uT
N(tm̄), · · · ,uT

1 (tm̄),u
T
0 (tm̄))

T ∈Rn(N+1) and Um̄,1 :=(uT
N(tm̄+τd), · · · ,uT

1 (tm̄+
τd),uT

0 (tm̄ + τd))
T ∈ Rn(N+1), and let ui(t) := u0(t − (i/N)τd) for arbitrary i ∈ {0, . . . ,N}
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and t. Iterating the map Pd n̂ times, it is convenient to obtain a map Pn̂
d from U at time tm̄ to

U at time tm̄ + n̂τd ,
Um̄,n̂ = Pd ◦ · · · ◦Pd(Um̄,0) = Pn̂

d (Um̄,0), (5.3.3)

where Um̄,i := (uT
N(tm̄ + ihN), · · · ,uT

0 (tm̄ + ihN))T ∈ Rn(N+1). Finally the discretised map for
the time ∆t is defined as P∆t : Rn(N+1) → Rn(N+1), which can be represented as

Um̄,n̂+∆N = P∆t(Um̄,n̂), (5.3.4)

where Um̄,n̂+∆N := (uT
N(tm̄+h(n̂N+∆N))T , · · · ,uT

0 (tm̄+h(n̂N+∆N))T ∈Rn(N+1) and ∆N :=
∆t
h . Thus combining Eqs. (5.3.3) and (5.3.4) it is easy to construct the map Pdisc as the

discretised Poincaré map P advancing by time T

Um̄,n̂+∆N = Pdisc(Um̄+1,0) = P∆t ◦Pn̂
d (Um̄,0), (5.3.5)

which can then be iterated further by setting Um̄+1,0 =Um̄,n̂+∆N . When an arbitrary perturba-
tion δU is applied, the variational equation for Pdisc can be written as

δUm̄+1,0 =
N+1

∑
i=1

∂Pdisc(Um̄,0)

∂ui−1(tm̄)
δui−1(tm̄), (5.3.6)

where δUm̄,0 := (δuT
N(tm̄), · · · ,δuT

1 (tm̄),δuT
0 (tm̄))

T ∈Rn(N+1), and again let δui(t) := δu(t−
τ i

d), i = 0, · · · ,N. In fact, Eq. (5.3.6) can be obtained from discretising the continuous
variational equation of system (5.2.3), and its form can be obtained as

d
dt

δu0(t) =
∂ f j(t,u0(t),uN(t))

∂u0
δu0(t)+

∂ f j(t,u0(t),uN(t))
∂uN

δuN(t), (5.3.7)

where 
j = 1, if H(u0(t),e)> 0,

j = 2, if H(u0(t),e)< 0,

u0(t+) = u0(t−), if H(u0(t),e) = 0.

An example initial function φδ for Eq. (5.3.7) is of the form φδ (t1) = (ε,0, · · · ,0)T ∈Rd and
φδ (t) = (0, · · · ,0)T ∈Rn for t ∈ [t1−τd, t1), and sufficiently small ε . Discretising Eq. (5.3.7)
in the interval [tm̄, tm̄ + n̂τd] by using the modified Euler integration gives
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δu0(tm̄ + lh) =δu0(tm̄ +(l −1)h)

+ h
2

[
Am̄,lδu0(tm̄ +(l −1)h+Bm̄,lδu0(tm̄ − (N − l +1)h)] (5.3.8)

+ h
2 [Am̄,l+1δu0(tm̄ + lh)+Bm̄,l+1δu0(tm̄ − (N − l)h)

]
,

where l = 1, · · · ,N, · · · ,nN +∆N, Am̄,l =
∂ f j(u0(t),uN(t))

∂u0
|t=tm̄+h(l−1),

Bm̄,l =
∂ f j(u0(t),uN(t))

∂uN
|t=tm̄+h(l−1) and m̄ ∈ Z+. Rewriting Eq. (5.3.8) in a matrix form gives

δuN(tm̄ + lh)
...

δu1(tm̄ + lh)
δu0(tm̄ + lh)

= Mm̄,l


δuN(tm̄ +(l −1)h)

...
δu1(tm̄ +(l −1)h)
δu0(tm̄ +(l −1)h)

 , (5.3.9)

where

Mm̄,l = M̂m̄,lM̃m̄,l,

M̂m̄,l =


I · · · 0 0
... . . . ...

...
0 · · · I 0

−h
2Bm̄,l+1 · · · 0 I − h

2Am̄,l+1


−1

,

and

M̃m̄,l =


0 I · · · 0
...

... . . . ...
0 0 · · · I

h
2Bm̄,l 0 · · · I + h

2Am̄,l

 .

By using the map (5.3.2), the matrix form of the variational equation (5.3.9) can be rewritten
as

δUm̄,N = Mm̄,N ◦ · · · ◦Mm̄,1δUm̄,0.
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Since there are n̂ maps constructed, combining all the maps for the interval [tm̄, tm̄ +T ] gives

δUm̄,n̂ = Mm̄,n̂N ◦ · · · ◦Mm̄,2 ◦Mm̄,1δUm̄,0.

In addition, the map P4t for the interval [tm̄ + n̂τd, tm̄ +T ] can be written as

δUm̄+1,0 = Mm̄,n̂N+∆N ◦ · · · ◦Mm̄,n̂NδUm̄,n̂. (5.3.10)

Finally, the overall variational equation can be obtained as

δUm̄+1,0 = Mm̄δUm̄,0, (5.3.11)

where Mm̄ = Mm̄,n̂N+∆N ◦ · · · ◦Mm̄,n̂N ◦ · · · ◦Mm̄,1 is the approximation of Jacobian matrix of
the Poincaré map P.

Similarly, for the system with a large delay time, e.g. τd ≥ T , the solution of system
(5.2.3) can be approximated by N steps of size h = τd

N by using numerical integration,
which can be considered as a special case of the nonsmooth system with a small delay time
(0 < τd < T ) when n̂ = 0. Let NT = T

h be the sample number for one period T , construct the
map Pd , and combine all the linearised maps at the interval [tm̄, tm̄ +T ]. Finally, the same
variational equation as Eq. (5.3.11) and the Jaocbian matrix of the Poincaré map P can be
obtained .

5.4 Modifying the algorithm at the discontinuity

In this section, a special phenomenon of the soft impact system, the so-called crossing and
grazing events will be discussed. Since the system has rich complex dynamics when it
experiences grazing [54, 148], a careful consideration in calculating the time of reaching
the discontinuity is required. In addition, the global error of the above proposed algorithm
will depend on how accurately the algorithm captures the effect of switching, as the error
made at the switching boundary could accumulate, leading to unexpected large global error.
Therefore, during the grazing event, the two grazing cases illustrated in Fig. 5.4.1 will be
introduced to modify the proposed algorithm from Section 5.3.

5.4.1 Case 1

In the Case 1, for time step l∗ ∈ Z+ at time t∗ := tm̄ +(l∗− 1)h the switching function H
changes sign:H1 := H(u0(t∗),e) < 0 and H2 := H(u0(t∗+ h),e) > 0, or H1 > 0, H2 < 0.
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Fig. 5.4.1 (a) Case 1: for t = t∗ > 0, such that H1 := H(u0(t∗),e)< 0 and H2 := H(u0(t∗+
h),e)> 0 (or H1 > 0 and H2 < 0). (b) Case 2: for t = t∗ > 0, and there exists δ t ∈ (0,h), such
that H1 := H(u0(t∗),e)< 0, H2 := H(u0(t∗+h))< 0 and Hcr,1 := H(u0(t∗+δ t),e) = 0 (or
H1 > 0, H2 > 0 and Hcr,1 = 0).

Thus, for some time δ t ∈ (0,h), the switching fucntion is zero: Hcr,1 := H(u(t∗+δ t),e) = 0.
In order to guarantee the order of convergence of the proposed algorithm to O(h2), the
crossing time δ t needs to be estimated first. Since δ t < h, the condition Hcr,1 = 0 can be
linearised as

Hcr,1 ≈ H(u(t∗)+ u̇(t∗)δ t,e)≈ H1 +
d

duH1[u̇(t∗)δ t] = 0,

such that
δ t =

−H1
d

duH1[u̇(t∗)]
. (5.4.1)

Once δ t is calculated, the switching time t∗+ δ t can be obtained, and the variational
equation at the step crossing the switching can be written as

δu0(t∗+δ t) =δu0(t∗)+ δ t
2 [Am̄,l∗δu0(t∗)+Bm̄,l∗δuN(t∗)]

+ δ t
2 [A

δ t
m̄,l∗δu0(t∗+δ t)+Bδ t

m̄,l∗δuN(t∗+δ t)], (5.4.2)

where Aδ t
m̄,l∗ =

∂ f j(u0(t),uN(t))
∂u0

|t=t−m̄+h(l∗−1)+δ t , Bδ t
m̄,l∗ =

∂ f j(u0(t),uN(t))
∂uN

|t=t−m̄+h(l∗−1)+δ t and l∗ =
1, · · · ,N, · · · , n̂N +∆N. Thus the discretised map from t∗ to t∗+δ t can be written as
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δuN(t∗+δ t)

...
δu1(t∗+δ t)
δu0(t∗+δ t)

= Mδ t
m̄,l∗


δuN(t∗)

...
δu1(t∗)
δu0(t∗)

 , (5.4.3)

where

Mδ t
m̄,l∗ = M̂δ t

m̄,l∗M̃
δ t
m̄,l∗,

M̂δ t
m̄,l∗ :=


I · · · 0 0
... . . . ...

...
0 · · · I 0

−δ t
2 Bδ t

m̄,l∗ · · · 0 I − δ t
2 Aδ t

m̄,l∗


−1

,

M̃δ t
m̄,l∗ :=


0 I · · · 0
...

... . . . ...
0 0 · · · I

δ t
2 Bm̄,l∗ 0 · · · I + δ t

2 Am̄,l∗

 ,

Am̄,l∗ =
∂ f j(u0(t),uN(t))

∂u0
|t=tm̄+h(l∗−1) and Bm̄,l∗ =

∂ f j(u0(t),uN(t))
∂uN

|t=tm̄+h(l∗−1). It is worth noting
that δui(t∗+δ t) can be approximated through linear interpolation based on the historical
data obtained from the delay time interval which also includes the grazing data.

Similarly, for the time interval [t∗+δ t, t∗+h], the relevant discretised map can be written
as 

δuN(t∗+h)
...

δu1(t∗+h)
δu0(t∗+h)

= M̄h
m̄,l∗


δuN(t∗+δ t)

...
δu1(t∗+δ t)
δu0(t∗+δ t)

 , (5.4.4)
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where M̄h
m̄,l∗ := M̂h

m̄,l∗M̃
h
m̄,l∗ ,

M̃h
m̄,l∗ :=


0 I · · · 0
...

... . . . ...
0 0 · · · I

h−δ t
2 Bδ t

m̄,l∗ 0 · · · I + h−δ t
2 Aδ t

m̄,l∗


and

M̂h
m̄,l∗ :=


I · · · 0 0
... . . . ...

...
0 · · · I 0

−h−δ t
2 Bm̄,l∗+1 · · · 0 I − h−δ t

2 Am̄,l∗+1


−1

.

Finally, the discretised map for the time interval [t∗, t∗+h]can be written as
δuN(t∗+h)

...
δu1(t∗+h)
δu0(t∗+h)

= M̄h
m̄,l∗M

δ t
m̄,l∗


δuN(t∗)

...
δu1(t∗)
δu0(t∗)

 . (5.4.5)

Therefore, when Case 1 occurs, M̄h
m̄,l∗M

δ t
m̄,l∗ should be inserted between Mm̄,l∗+1 and Mm̄,l∗ for

the time interval [t∗, t∗+h] in Eq. (5.3.10). The expressions for crossing events from H > 0
to H < 0 look identical, except that the subscripts 1 and 2 for f in Eq. (5.2.3) are reversed.

5.4.2 Case 2

Let δ t be the first crossing time for Case 2, which can be calculated based on Eq. (5.4.1). δ t∗

can be defined as the time where H is maximal, such that Hmax := H(u(t∗+ δ t + δ t∗)) =
maxt∈[t∗,t∗+h]H(u(t),e), and δ t̄ as the time where H changes sign back, such that Hcr,2 :=
H(u(t∗+δ tgraz)) = 0, where δ tgraz := δ t +δ t∗+δ t̄. The estimate of δ t follows Eq. (5.4.1).
From a computational point of view, Case 2 can be triggered either by (i) H1 < 0, H2 < 0,
d
dt H1 > 0, d

dt H2 < 0 and 0 < δ tgraz < h, or (ii) H1 > 0, H2 > 0, d
dt H1 < 0, d

dt H2 > 0 and
0 < δ tgraz < h.
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Since

d
dt H(t∗+δ t + t)|t=δ t∗ ≈ d

duHcr,1[u̇(t∗+δ t)+ ü(t∗+δ t)δ t∗]+ d2

du2 Hcr,1[u̇2(t∗+δ t)δ t∗] = 0,

δ t∗ can be obtained as

δ t∗ =
− d

duHcr,1[u̇(t∗+δ t)]
d

duHcr,1[ü(t∗+δ t)]+ d2

du2 Hcr,1[u̇2(t∗+δ t)]
. (5.4.6)

For δ t̄ it is convenient to have

Hcr,2 ≈Hmax +
d

duHmax[u̇(t∗+δ t +δ t∗)]δ t̄

≈Hcros,1 +
d
duHcros,1[u̇(t∗+δ t)]δ t∗

+
[

d
duHcros,1 +

d2

du2 Hcros,1[u̇(t∗+δ t)δ t∗]
][

u̇(t∗+δ t)+ ü(t∗+δ t)δ t∗
]
δ t̄ = 0,

which gives

δ t̄ =−
[
Hcr,1 +

d
duHcr,1[u̇(t∗+δ t)]δ t∗

][
d2

du2 Hcr,1

+ d2

du2 Hcr,1[u̇(t∗+δ t)δ t∗]
][

u̇(t∗+δ t)+ ü(t∗+δ t)δ t∗
]−1

. (5.4.7)

Therefore, for the step from t∗ to t∗+δ t, the variational equation can be written as
δuN(t∗+δ t)

...
δu1(t∗+δ t)
δu0(t∗+δ t)

= Mδ t
m̄,l∗


δuN(t∗)

...
δu1(t∗)
δu0(t∗)

 . (5.4.8)

For the step from t∗+δ t to t∗+δ tgraz, the relevant map can be written as
δuN(t∗+δ tgraz)

...
δu1(t∗+δ tgraz)

δu0(t∗+δ tgraz)

= Mδ tgraz
m̄,l∗


δuN(t∗+δ t)

...
δu1(t∗+δ t)
δu0(t∗+δ t)

 , (5.4.9)

where

Mδ tgraz
m̄,l∗ := M̂δ tgraz

m̄,l∗ M̃δ tgraz
m̄,l∗ ,
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M̂δ tgraz
m̄,l∗ :=


I · · · 0 0
... . . . ...

...
0 · · · I 0

−δ t∗+δ t̄
2 Bδ tgraz

m̄,l∗ · · · 0 I − δ t∗+δ t̄
2 Aδ tgraz

m̄,l∗


−1

,

M̃δ tgraz
m̄,l∗ :=


0 I · · · 0
...

... . . . ...
0 0 · · · I

δ t∗+δ t̄
2 Bδ t

m̄,l∗ 0 · · · I + δ t∗+δ t̄
2 Aδ t

m̄,l∗

 ,

Aδ tgraz
m̄,l∗ =

∂ f j(u0(t),uN(t))
∂u0

|t=t−m̄+h(l∗−1)+δ tgraz
and Bδ tgraz

m̄,l∗ =
∂ f j(u0(t),uN(t))

∂uN
|t=t−m̄+h(l∗−1)+δ tgraz

. For
the period [t∗+δ tgraz, t∗+h],

δuN(t∗+h)
...

δu1(t∗+h)
δu0(t∗+h)

= M̄h
m̄,l∗


δuN(t∗+δ tgraz)

...
δu1(t∗+δ tgraz)

δu0(t∗+δ tgraz)

 , (5.4.10)

where

M̄h
m̄,l∗ = M̂h

m̄,l∗M̃
h
m̄,l∗,

M̂h
m̄,l∗ :=


I · · · 0 0
... . . . ...

...
0 · · · I 0

−h−δ tgraz
2 Bm̄,l∗+1 · · · 0 I − h−δ tgraz

2 Am̄,l∗+1


−1

and
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M̃h
m̄,l∗ :=


0 I · · · 0
...

... . . . ...
0 0 · · · I

h−δ tgraz
2 Bδ tgraz

m̄,l∗ 0 · · · I + h−δ tgraz
2 Aδ tgraz

m̄,l∗

 .

Finally, the discretised map for the time interval [t∗, t∗+h]can be written as
δuN(t∗+h)

...
δu1(t∗+h)
δu0(t∗+h)

= M̄h
m̄,l∗M

δ tgraz
m̄,l∗ Mδ t

m̄,l∗


δuN(t∗)

...
δu1(t∗)
δu0(t∗)

 , (5.4.11)

Thus, once Case 2 is encountered, M̄h
m̄,l∗M

δ tgraz
m̄,l∗ Mδ t

m̄,l∗ should be inserted between Mm̄,l∗+1 and
Mm̄,l∗ in Eq. (5.3.10) for the step from t∗ to t∗+h.

From the discussion above, an accurate Jacobian matrix for the Poincaré map (5.2.4) can
be obtained. In the next section, in order to ensure the accuracy of the proposed method
considering the two grazing cases, the convergence of eigenvalues of the Jacobian matrix
will be discussed when a perturbation is introduced.

5.5 Convergence analysis

5.5.1 Properties of the evaluation operator

According to [149, 150], the spectrum of the Jacobian for the Poincaré map consists of
eigenvalues and 0. So the Poincaré map of Eq. (5.3.7) and its relevant Jacobian will be
studied.

For the space Cn, assume P := [t1, t1 + ∆T ], which is a bounded interval in R and
∆T <+∞. C(P,Cn) denotes the Banach space with all bounded continuous functions from
P to Cn with the norm ||u||C = maxt∈P |u(t)|, where u ∈C(P,Cn) and | · | is a given norm on
Cn.

Now, Eq. (5.3.7) can be written as d
dt δu0(t) = F(t,δu0(t),δuN(t)), where t ∈ P and F : P×Cn ×Cn → Cn,

δu0(t) = φδ (t) , where t ∈ [t1 − τd, t1] and φδ ∈C([t1 − τd, t1],Cn),
(5.5.1)
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where φδ is defined in Eq. (5.3.7). Here, let δud(t) = δuN(t), and F can be written as

F(t,δu0(t),δud(t)) = Fj,1(t)δu0(t)+Fj,2(t)δud(t), (5.5.2)

where 
j = 1, if H(u0(t),e)> 0,

j = 2, if H(u0(t),e)< 0,

F(t−,δu0(t−),δud(t−)) = F(t+,δu0(t+),δud(t+)), if H(u0(t),e) = 0,

Fj,1(t) := ∂ f j(t,u0(t),ud(t))
∂u0

, and Fj,2(t) := ∂ f j(t,u0(t),ud(t))
∂ud

.
According to [119], a nonautonomous delay dynamical system can be represented as an

evolution operator. So, for any t1 ∈ P and sufficiently small h > 0,

U(t1 +h, t1)φδ = δu0(t1 +h), (5.5.3)

where δu0(t1+h) is the solution of Eq. (5.5.1) at t = t1+h. For any time t = t1+Nth, ∀Nt ∈
Z+, δu0(t) can be written as

δu0(t) =U(t1 +hNt , t1 +h(Nt −1)) · · ·U(t1 +2h, t1 +h)U(t1 +h, t1)φδ .

Next, the following will construct the approximation operator with finite dimension for
the evolution operator U(t1 +h, t1). In order to simplify the discussion, the following spaces
can be defined

P :=C([t1 − τd, t1],Cn),

and
P+ :=C([t1, t1 +h],Cn),

their relevant norms
|| · || := max

t∈[t1−τd ,t1]
| · |,

and
|| · ||+ := max

t∈[t1,t1+h]
| · |,

and the space
P∗ :=C([t1 − τd, t1 +h],Cn),
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with the map L : P ×P+ → P∗ satisfying

L(φδ ,z)(η) =

φδ (t0)+
∫

η

t1 z(θ)dθ , if η ∈ [t1, t1 +h],

φδ (η), if η ∈ [t1 − τd, t1].

According to [119], the map L can be divided into two operators L1 : P → P∗ and L2 :
P+ → P∗ with

L(φδ ,ω) = L1φδ +L2ω, (5.5.4)

where (φδ ,ω) ∈ P ×P+, L1φδ = L(φδ ,0) and L2ω = L(0,ω).
In addition, a linear operator can be defined to satisfy Θ : P∗ → P+ and

[Θv](t) = F(t,v(t),vd(t)), (5.5.5)

where v ∈ P∗, t ∈ [t1, t1 +h] and vd(t) = v(t − τd). The fixed point problem

ω
∗ = ΘL(φδ ,ω

∗). (5.5.6)

has a fixed point ω∗ ∈ P+ if the original problem (5.5.1) has a solution in [t1, t1 +h]. So ω∗

satisfies
U(t1 +h, t1)φδ = L(φδ ,ω

∗). (5.5.7)

According to Eq. (5.5.4), Eq. (5.5.6) can be rewritten as

(IP+ −ΘL2)ω
∗ = ΘL1φδ (5.5.8)

where IP+ is the identity operator for the space P+. Therefore, the following properties for
the operators ΘL1 and ΘL2 can be derived.

Proposition 1. If the operator Θ is defined by Eq. (5.5.5), it is a bounded linear operator
acting on v ∈ P∗.

Proof: Let v1,v2 ∈ P∗, where

Θv1(t) = F(t,v1(t),v1(t − τd)),

and
Θv2(t) = F(t,v2(t),v2(t − τd)).
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Then we can obtain

||Θ(v1 + v2)|| ≤|Fj̄,1(t)v1(t)+Fj̄,2(t)v1(t − τd)|+ |Fj,1(t)v2(t)+Fj,2(t)v2(t − τd)|
= ||Θv1||+ ||Θv2||

In addition, according to Eq. (5.5.2), there must exist a positive constant BΘ satisfying that,
for any v ∈ P∗, ||Θv|| ≤ BΘ||v||. Therefore, the operator Θ is bounded and linear in the
space.

Proposition 2. If L1 and L2 are defined by Eq. (5.5.4), then ΘL1 : P → P+ and ΘL2 :
P+ → P+ are bounded linear operators with regard to ω ∈ P+.

Proof: For all φδ , there exist ω0,ω1,ω2 ∈ P+ such that ΘL(φδ ,ω0) = ω0 and ω0 =

ω1 +ω2. So, the following can be obtained

ΘL(φδ ,ω0) =Θ[L1(φδ ,ω1)+L2ω2]

=ΘL1(φδ )+ΘL2ω1 +ΘL2ω2

=ΘL1(φδ )+ΘL2(ω1 +ω2).

According to the Eqs. (5.5.5)-(5.5.7), if ΘL(0,ω) = ω (where ω ∈ P+) holds, L(0,ω) must
be the solution of the following system d

dt δu0(t) = F(t,δu0(t),δud(t)),

δu0(s) = 0,
(5.5.9)

where F ∈C(P,Rn) and s ∈ [t1−τd, t1]. Then for any ω ∈ P+, it gives ||ΘL2ω||= ||ω||, so
ΘL2 is bounded.

Let φδ ,1,φδ ,2 ∈ P , and for φδ ,1 + φδ ,2, there exists ω ∈ P+ such that ΘL(φδ ,1 +

φδ ,2,ω) = ω . Also, there exists ω1, ω2 ∈ P+, such that ω = ω1 +ω2. Then we have

L(φδ ,1 +φδ ,2,ω) =L(φδ ,1,ω1)+L(φδ ,2,ω2)

=L1φδ ,1 +L2ω1 +L1φδ ,2 +L2ω2

=L1(φδ ,1 +φδ ,2)+L2ω

Since

Θ[L1φδ ,1 +L2ω1 +L1φδ ,2 +L2ω2] = ΘL1φδ ,1 +ΘL1φδ ,2 +ΘL2ω



66 Lyapunov exponents of soft impact system with the delay feedback control

and
Θ[L1(φδ ,1 +φδ ,2)+L2ω] = ΘL1(φδ ,1 +φδ ,2)+ΘL2ω,

ΘL1 is a bounded linear operator.

5.5.2 Approximation of the evaluation operator

Since system (5.5.1) can be approximated by large finite ODE systems, the approximated
operators are constructed through discretisation by introducing the relevant discrete space for
P and P+ along with the following operators. As large finite ODE systems can be obtained
from the modified Euler integration, the linear interpolation will be adopt to discretise the
space P and P+.

First of all, based on the time step h, consider the mesh ΛN+1 := (t1 −Nh, · · · , t1 −h, t1)
in [t1−τd, t1]. a restriction operator can be constructed to satisfy rh : P →PN+1 :=Cd(N+1)

on ΛN+1, such that rhφδ ∈ PN+1, where [rhφδ ]i = φδ (t1 − (N +1− i)h) ∈ Cn. In addition,
there exists a prolongation operator on the mesh ΛN+1 such that for any ϖN+1 := (ϖT (t1 −
Nh), · · · ,ϖT (t1))T ∈PN+1, where ϖ ∈P , r̄h : t ∈ [t1−τd, t1]→ r̄h(t) ∈C1×n(N+1), r̄h(t1−
(N +1− i)h)ϖN+1 = ϖ(t1 − (N +1− i)h), i ∈ Z[1,N +1], and r̄h(t)ϖN+1 is a polynomial
with a degree less than or equal to 2.

Similarly, consider the mesh ΛK̂+1 := (t1, t1 + hs, · · · , t1 + K̂hs) in [t1, t1 + h], where
0 < hs < h, K̂ = h/hs, the space P+ can be discretised by the restriction operator Rhs :
P+ → P+

K̂+1
:= Cn(K̂+1) on the mesh ΛK̂+1 such that Rhsψ ∈ P+

K̂+1
, where Rhsψ

i =

ψ(t1 +(i−1)hs) ∈ Cn. For mesh ΛK̂+1 a relevant prolongation operator can be constructed
as follows. For any ϖK̂+1 := (ϖT (t1), · · · ,ϖT (t1 + K̂hs)) ∈ P+

K̂+1
, where ϖ ∈ P+, R̄hs :

t ∈ [t1, t1 + h] → R̄hs(t) ∈ Cn(K̂+1), such that R̄hs(t1 +(i− 1)hs)ϖK̂+1 = ϖ(t1 +(i− 1)hs),
i ∈Z[1, K̂+1], and R̄hs(t)ϖK̂+1 is a polynomial with degree less than or equal to K̂+1. Here,
the operator L := R̄hs(t)Rhs is a Lagrange operator [151].

Let K̂ = 1 ( i.e. hs = h ) and for any given N, the relevant approximated operator
UN+1,1(t1 +h, t1) : PN+1 → PN+1 satisfies

UN+1,2(t1 +h, t1)Φ = rhL(r̄h(t − τd)Φ, R̄hs(t)Ψ
∗), (5.5.10)

where t ∈ [t1, t1 + h], Φ ∈ PN+1 and Ψ∗ ∈ P+
K+1, which is the solution of the following

equation
Ψ

∗ = RhsΘL(r̄h(t − τd)Φ, R̄hs(t)Ψ
∗). (5.5.11)

It is worth noting that the operator R̄hs at the time interval [t1, t1 +h] can be more accurate if
the time step h is reduced.
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5.5.3 Convergence analysis for the nonzero eigenvalues of Jacobian
matrix

In this section, the convergence analysis for 0 < τd < T will be presented. The proof for
τd ≥ T is similar, so will be omitted here. In order to ensure a unique solution for the initial
problem (5.5.1), a subspace P+

Lip of P+ can be introduced and has the following the norm

||ψ||+Lip = l(ψ)+ ||ψ||+, ψ ∈ P+
Lip,

where l(ψ) is the Lipschitz constant of ψ , and the subspace PLip of P with the norm as

||ψ||Lip = l(ψ)+ ||ψ||, ψ ∈ PLip.

To carry out convergence analysis for the eigenvalues of Jacobian of the Poincaré map
(5.2.4), the following lemmas are given based on [119].

Lemma 5.5.1. For any σ∗
1 ,σ

∗
2 ∈ P+,

σ
∗
1 = LΘL(φδ ,σ

∗
1 ), φδ ∈ P, (5.5.12)

and
σ
∗
2 = ΘL(φδ ,σ

∗
2 ), φδ ∈ P,

for sufficiently small h, then
||σ∗

1 −σ
∗
2 ||+ ≤ c1h2, (5.5.13)

where c1 is a positive constant.

Proof : Based on Theorem 3.3 in [119] and let σ∗
1 = σ∗

2 +ρ∗, then

||ρ∗|| :=||σ∗
1 −σ

∗
2 ||+ = ||(IP+ −LΘL2)

−1|| ||(IP+ −L)||+||σ∗
2 ||+Lip, (5.5.14)

For sufficiently small h, ||(IP+−L)||+ is the global error from the modified Euler integration,
which satisfies

||(IP+ −L)||+ ≤ c2h2,

where c2 is a positive constant. Since

IP+ −LΘL2 = (IP+ −ΘL2)+(IP+ −L)ΘL2,
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and ΘL2 is bounded, if h → 0, (IP+ −LΘL2)
−1 = (IP+ −ΘL2). In addition, as

σ
∗
2 = (IP+

Lip
−ΘL2)

−1
ΘL1φδ , (5.5.15)

and
||σ∗

2 ||+Lip ≤ ||(IP+
Lip

−ΘL2)
−1|| ||ΘL1|| ||φδ ||Lip, (5.5.16)

||σ∗
2 ||

+
Lip is bounded. Thus, there must exist a positive constant c1 for Eq. (5.5.14) satisfying

||ρ∗|| ≤ c1h2.

Based on Eq. (5.5.10), a new operator in the interval [t1, t1 +h] can be introduced as

ŪN+1,2(t1 +h, t1) = r̄hUN+1,2(t1 +h, t1)rh : P → P, (5.5.17)

which has the same geometric and partial multiplicities as the operator UN+1,2(t1 +h, t1) in
Eq. (5.5.10). Therefore, there exists a map Ū2(t1 +h, t1) : P → P such that

Ū2(t1 +h, t1)φδ = L(φδ ,σ
∗), φδ ∈ P, (5.5.18)

where σ∗ ∈ P+ is the solution of Eq. (5.5.12), and ŪN+1,2(t1 +h, t1) can be written as

ŪN+1,2(t1 +h, t1) = LŪ2(t1 +h, t1)L.

Lemma 5.5.2. If the operator Ū2(t1 +h, t1) is defined as Eq. (5.5.18), then

||Ū2(t1 +h, t1)−U(t1 +h, t1)|| ≤ c3h3, (5.5.19)

where c3 is a positive constant.

Proof: For (φδ ,ω
∗
1 ), (φδ ,ω

∗
2 ) ∈ P+

Lip ×P+, based on Eq. (5.5.4), It is easy to have

||Ū2(t1 +h, t1)−U(t1 +h, t1)||= ||L(φδ ,ω
∗
1 )−L(φδ ,ω

∗
2 )||= ||L2(ω

∗
1 −ω

∗
2 )||,

where
ω

∗ = ĪP+ΘL(φδ ,ω
∗
1 )

and
σ
∗ = ΘL(φδ ,ω

∗
2 ).
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So

||Ū2(t1 +h, t1)−U(t1 +h, t1)||=||L2(ω
∗
1 −ω

∗
2 )||

=||
∫ t1+h

t1
(ω∗

1 −ω
∗
2 )(t)dt||= ||(ω∗

1 −ω
∗
2 )||+h.

According to Eqs. (5.5.14) and (5.5.15) and the inequality (5.5.16), then the following can be
obtained

||Ū2(t1 +h, t1)−U(t1 +h, t1)|| ≤ c3h3.

It is worth noting that the evolution operator Ū2(t1 + ih, t1 +(i−1)h), where i = 1, · · · , N̄
and N̄ := N + n̂+4N +1, must have the same properties as the operator U(t1 + ih, t1 +(i−
1)h) in the inequality (5.5.19). Thus, the Poincaré map can be obtained by combining all
the evolution operators U(t1 + ih, t1 +(i−1)h) over the entire time interval [t1, t1 +T ]. As a
result, the convergence problem is equivalent to studying the convergence of the operator

∏
N̄
i=1Ū2(t1 + ih, t1 +(i−1)h) to U(t1, t1 +T ).

Lemma 5.5.3. For the entire interval [t1, t1 +T ] and a sufficiently small time step h, then we
can obtain

||U(t1 +T, t1)−
N̄

∏
i=1

Ū2(t1 + ih, t1 +(i−1)h)|| ≤ c4h2, (5.5.20)

where i = 1,2, · · · , N̄, N̄ := N + n̂+4N +1, and c4 is a positive constant.

Proof : According to Lemma 5.5.2, there are two positive constants M1 and M2 such that

||
N̄−1

∏
i=2

U(t1 + ih, t1 +(i−1)h)|| ≤ M1, (5.5.21)

and

||
N̄−1

∏
j=1

Ū2(t1 + jh, t1 +( j−1)h)|| ≤ M2. (5.5.22)

Therefore,

||U(t1 +T, t1)−
N̄

∏
i=1

Ū2(t1 + ih, t1 +(i−1)h)||

≤N̄
N̄−1

∏
i=2

U(t1 + ih, t1 +(i−1)h)
N̄−1

∏
j=1

Ū2(t1 + jh, t1 +( j−1)h)c3h3

≤N̄M1M2c3h3 =
T
h

M1M2c3h3 = c4h2.



70 Lyapunov exponents of soft impact system with the delay feedback control

It should be noted that ŪN+1,2 and Ū2 have the same nonzero eigenvalues, geometric and
partial multiplicities and eigenvectors. This leads to the following theorem.

Theorem 5.5.4. Let λ ∈C\{0} be an isolated eigenvalue for the operator U(t1+T, t1) with
the finite algebraic multiplicity ma and the ascent κ , and let Γ be a neighborhood of λ for
the time interval [t1, t1 +T ]. For a sufficiently small h, ŪN+1,2(t1 +T, t1) has ma eigenvalues
λN+1,2,ι , where ι = 1, . . . . ,ma, and such that

max
ι=1,...,ma

|λ −λN+1,2,ι | ≤ c6h
2
κ , (5.5.23)

where c6 is a positive constant.

The inequality (5.5.23) holds for any interval [tm̄, tm̄ +T ]. The above study can ensure
that the proposed approximation method in this chapter has the expected convergence rate
on the nonzero characteristic multipliers of the system (5.5.1). So this approximation for
the Jacobian of the Poincaré map (5.2.4) is reliable. It is also worth noting that by adopting
a high-order integration method (e.g. Runge-Kutta method) with a sufficiently small time
step h, the approximated operator could be more accurate O(h4). However, this would also
require higher-order corrections at the crossing and grazing events for the terms derived in
Section 5.4. Without these corrections the convergence of the approximated operator cannot
be guaranteed to be the same as the order of the numerical integration. Furthermore, if the
system encounters a sufficiently large number of grazing events, the convergence rate will be
lower than O(h2) due to these grazing events.

5.6 Calculation of the Lyapunov exponents

The dynamics of system (5.2.3) can be represented by the Poincaré map (5.2.4) as

Ym̄+1,0 = Pm̄(Y1,0) = P◦ · · ·P◦P(Y1,0), (5.6.1)

where the Jaobian matrix of Pm̄ is ∏
m̄
i=1 Mi. According to Definition 5.2.1, LEs can be

calculated as
ϑi = lim

m̄→∞

1
m̄

ln |λ m̄
i |, i = 1, · · · ,n(N +1), (5.6.2)

where λ m̄
i is the ith eigenvalues of ∏

m̄
i=1 Mi .

However, calculating LEs by using Eq. (5.6.2) will introduce an overflow problem.
Specifically, some elements of the Jacobian matrix will be very large for chaotic attractors,
and some of them could be very small for periodic attractors, which may cause inaccuracy.
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On the other hand, calculating LEs from the Jacobian matrix directly is time-consuming
as the delay dynamical system is high-dimensional. To overcome these issues , LEs can
be computed according to the average exponential divergence rate between the basis orbit
started from Y1(0) and its neighborhood orbit along the direction of v1,0 =

Y1,0
||Y1,0|| as

ϑ(Y1,0,v1,0) = lim
m̄→∞

1
m̄

ln
||δYm̄,0||
||δY1,0||

, (5.6.3)

where ||δYm̄,0|| is the norm of δYm̄,0 and m̄ ∈ Z+.
Next, choose Y1,0 ∈ Rn(N+1), and its related linearly independent initial perturbed vector

(δY 1
1,0,δY 2

1,0, · · · ,δY n(N+1)
1,0 ) can be normalised as

(δv1
1,0,δv2

1,0, · · · ,δvn(N+1)
1,0 ) = (

δY 1
1,0

||δY 1
1,0||

,
δY 2

1,0

||δY 2
1,0||

, · · · ,
δY n(N+1)

1,0

||δY n(N+1)
1,0 ||

). (5.6.4)

Substituting the vector (5.6.4) to Eq. (5.6.1) obtains the second vector (δY 1
2,0,δY 2

2,0, · · · ,
δY n(N+1)

2,0 ), and Gram-Schmidt orthonormalization [147] can be applied to normalise the

second vector, which gives a new vector (δv1
2,0,δv2

2,0, · · · ,δvn(N+1)
2,0 ). For the next iteration,

the second vector will be used as the initial vector to be substituted into Eq. (5.6.1). Likewise,
repeating m̄ times for this process gives the m̄th vector (δY 1

m̄,0,δY 2
m̄,0, · · · ,δY n(N+1)

m̄,0 ). The
steps of Gram-Schmidt orthonormalization are given as follows

V 1
m̄,0 =δY 1

m̄,0,

δv1
m̄,0 =

V 1
m̄,0

||V 1
m̄,0||

,

V 2
m̄,0 =δY 2

m̄,0−< δY 2
m̄,0,δv1

m̄,0 > δv1
m̄,0,

δv2
m̄,0 =

V 2
m̄,0

||V 2
m̄,0||

,

...

V n(N+1)
m̄,0 =δY 2(N+1)

m̄,0 −< δY 2(N+1)
m̄,0 ,δv1

m̄,0 > δv1
m̄,0 −·· ·

−< δY n(N+1)
m̄,0 ,δvn(N+1)−1

m,0 > δvn(N+1)−1
m̄,0 ,

δvn(N+1)
m̄,0 =

V n(N+1)
m̄,0

||V n(N+1)
m̄,0 ||

,
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where ||V i
m̄,0|| is the norm of V i

m̄,0, 〈δY i
m̄,0,δvī

m̄,0〉 (i, ī= 1,2, · · · ,d(N+1)) is a standard scalar
product. Finally, LEs can be calculated by using

ϑi ≈
1
m̄

ln
m̄

∏
ρ=1

||V i
ρ(0)||=

1
m̄

m̄

∑
ρ=1

ln ||V i
ρ(0)||. (5.6.5)

Remark. Based on the above analysis, a guideline for the implementation of the algorithm
is presented as follows, and the flowchart of the algorithm is shown in Fig. 5.6.1.

Step 1: Calculate the Jacobian matrix according to the relevant trajectory at the time step
after the system is stabilised by the delay feedback control;

Start the Simulation 
until the trajectory 
become stable 

Calculate the Jacobian
matrix of Poincaré map
according to the 
relevant trajectory

When the trajectory
facing crossing events 
    H <0 and H >0
(or H >0 and H <0)

1 2

1 2

When the trajectory
facing grazing events 

H <0 , H <0 and H   =0
(or H >0 , H >0 and 
            H   =0) 

1 2

1 2

cr,1

cr,1

Calculate the Jacobian
for this period using 
Eq. (5.4.5)  

Calculate the Jacobian
for this period using 
Eq. (5.4.11)  

Insert Jacobian matrix
to the matrix M
in Eq. (5.3.11) at 
the relevant periods

m

Choose initial perturbed  unit vectors, 
and calculate the Floquet Multipliers 
of each Poincaré map using Gram-Schmidt 
Orthonormalization

After certain several evolutions of Poincaré 
map, Calculate the LEs using Eq. (5.6.5) 
and stop the algorithm

Fig. 5.6.1 Flowchart of the algorithm for calculating LEs.
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Step 2: If the trajectory approaches to grazing, calculate its relevant Jacobian using
Eq. (5.4.5) or Eq. (5.4.11), and then insert it to the matrix Mm̄ in Eq. (5.3.11) at the grazing
moment;

Step 3: Choose appropriate initial perturbed unit vectors, and calculate the Floquet
Multipliers of each Poincaré map using Gram-Schmidt orthonormalization;

Step 4: Calculate the LEs using Eq. (5.6.5) after several evolutions of Poincaré map.

5.7 Numerical studies

This section will show the effectiveness of the proposed method by studying the soft im-
pacting system with a delay feedback control presented in Fig. 3.2.1. Since the system has
many coexisting attractors when grazing is encountered [1], the control objective here is to
drive the system from its current attractor to a desired one. Calculating the LEs of the system
allows us to monitor the stability of the delay feedback control and its effective parametric
regime.

The following parameters for the impacting system are chosen,

ζ = 0.01, e = 1.26, a = 0.7, β = 28 and ω = 0.802.

For these parameters a grazing event is encountered, and a chaotic and a period-5 attractors
coexist as shown in Fig. 5.7.1.

5.7.1 Case τd ≥ T

Fig. 5.7.2 presents the first example of using the delay feedback control (5.2.2) for which a
large delay time (i.e. τd ≥ T ) was considered, and the control parameter K was varied from 0
to 1.4. As can be seen from Fig. 5.7.2(a), the largest LEs are all greater than 0 for K ∈ [0,0.04]
and the system presents a chaotic motion as shown in Fig. 5.7.2(b). The phase trajectory
of the chaotic motion for K = 0.02 is presented in Fig. 5.7.2(c). For K ∈ (0.04,0.055),
the largest LEs decrease and suddenly increase to the neighbourhood of zero at K = 0.055
indicating a period doubling of the system. Similarly, at K = 0.065, such a fluctuation is
observed again. Thereafter, the largest LEs decrease dramatically, and then increase gradually
from K = 0.07. For K ∈ [0.07,1.4], both LEs are below zero, and the system has period-1
response which is demonstrated by Figs. 5.7.2(d) and (e).

A critical issue for computing nonsmooth dynamical systems is that the accumulated
computational error from the impact boundary due to grazing event could lead to inaccurate
simulation. Fig. 5.7.3 compares the computations of the impacting system for e = 1.2609
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Fig. 5.7.1 Basin of attraction of the impacting system computed for ζ = 0.01, e = 1.26, a =
0.7, β = 28 and ω = 0.802. Black dots denote the chaotic attractor with green basin, blue
dots represent the period-5 attractor with red basin, and blue lines denote the impact boundary.

controlled from a chaotic response to a period-1 response by using the delay feedback control
with and without the grazing estimation algorithm. The number of impacts as a function of
time without (black line) and with (orange line) the grazing estimation algorithm is presented
in Fig. 5.7.3(a) which were counted from t = 9722, and the phase trajectories from chaotic
(grey line) to period-1 (red line) response are shown in Fig. 5.7.3(b). It can be seen from
the figure that the accumulated error was built up in the number of impacts, and a clear
difference can be observed from t = 10411. The cause of such a difference can be found
from Figs. 5.7.3(c) and (d), where the time histories of displacement of the impacting system
are shown. As can be seen from these two figures, the system with the grazing estimation
algorithm was stabilised quicker than the one without the algorithm.

5.7.2 Case 0 < τd < T

For the case of a small time delay (i.e. 0 < τd < T ), the example for τd = T/2 is shown in
Fig. 5.7.4. It can be seen from the figures that the system has chaotic motion for K ∈ [0,0.007]
and its largest LEs are all greater than zero (green line). For K ∈ (0.007,0.015], the system
experiences transient periodic motion, and the relevant largest LEs are smaller than zero which
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K

K=0.02 K=0.55 K=1

Fig. 5.7.2 (a) LEs and (b) displacement of the impacting system under the delay feedback
controller as functions of the control parameter K. Black, red and green lines denote the two
largest LEs and the zero line, respectively. Additional panels show the phase trajectories of
the system calculated for (c) K = 0.02, (d) K = 0.55 and (e) K = 1. Black dots represent the
Poincaré sections, and blue lines represent the impact boundary.

is consistent with the result shown in Fig. 5.7.4(b) indicating several alternations between
chaotic and periodic motions. At K = 0.016, the system has a very narrow chaotic window
and bifurcates into a non-impact period-1 response immediately lasting until K = 0.0425
at where another chaotic regime is encountered. For K ∈ [0.0425,0.045], the system has
chaotic response in most of the region, but has a small window of period-3 response in
K ∈ [0.044,0.04475]. After K = 0.045, the non-impact period-1 response emerges again as
the control parameter k increases. To compare Figs. 5.7.4(a) and (b), the evolution of the
calculated LEs is consistent with system’s bifurcation, which is also demonstrated by the
phase trajectories presented in Figs. 5.7.4(c)-(f).
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Fig. 5.7.3 (a) Number of impacts as a function of time without (black line) and with (orange
line) the grazing estimation algorithm based on the discontinuous condition calculated for
ζ = 0.01, e = 1.2609, a = 0.7, β = 28, ω = 0.802 and K = 1.4. (b) Phase trajectories of the
impacting system controlled from chaotic (grey line) to period-1 (red line) response. Time
histories of displacement of the system (c) without and (d) with the algorithm are presented,
and blue lines indicate the discontinuous boundary.

5.8 Conclusion

This chapter studies a numerical method for calculating the LEs of nonsmooth delay systems
by using a soft impact system under the delay feedback control with a particular focus on
its near-grazing dynamics. The main feature of the proposed method is that it can provide
improved accuracy for the stability analysis of periodic orbits by estimating the point of
discontinuity locally along trajectories of nonsmooth DDEs with an accuracy of the same
order as its integration method. In addition, the method can also be applied to the other
nonsmooth dynamical systems with a delay argument, such that it can be used as a generic
computational tool for stability analysis.

The main tasks were to build an effective variational equation and obtain the Jacobian for
the delay soft impact system. As this system is infinite dimensional, it was approximated
by finite dimensional systems, which were discretised by the modified Euler integration
method at each time step. Then the DDE system was converted to a time-discrete map by
constructing a Poincaré map, and its linearisation was introduced to obtain its variational
equation. Then the Jacobian of the map was obtained by combining all the approximating
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K

K=0.01 K=0.03 K=0.043

K=0.053

Fig. 5.7.4 (a) LEs and (b) displacement of the impacting system under the delay feedback
controller as functions of the control parameter K. Black, red and green lines denote the two
largest LEs and the zero line, respectively. Phase trajectories of the system calculated for (c)
K = 0.01, (d) K = 0.03, (e) K = 0.043 and (f) K = 0.052 are shown. Black dots represent
the Poincaré sections, and blue lines indicate the nonsmooth boundary.

systems linearised from the variational equation at each time step in one period of external
excitation. In order to increase the convergence rate and improve computational accuracy, a
grazing estimation algorithm was introduced. The convergence rate of eigenvalues of the
Jacobian matrix was studied by using the spectral theory of the evolutionary operator. In
particular, the delay soft impact system was described as an evolutionary operator with the
expected convergence rate for the relevant nonzero eigenvalues of the Jacobian, therefore
guaranteeing the reliability of the proposed numerical method.

The numerical studies considered two scenarios of delay time in the system, a larger
(τd ≥ T ) and a smaller (0 < τd < T ) delay than the period of excitation. Both cases showed
that the calculated LEs were consistent with the bifurcation of the system, and the grazing
estimation algorithm did improve accuracy for simulating nonsmooth dynamical systems.



Chapter 6

Control of coexisting attractors by the
delay feedback control

6.1 Introduction

It is well-known that delay feedback control was originally proposed by Pyragas [19] for
controlling chaos. In fact, this controller also can be used to control the multistability of
dynamical systems, including nonsmooth dynamical systems. The control’s aim is to achieve
the switching from one of its coexisting attractors to a target attractor. If τd in Eq. (5.2.2) is
equal to the forcing period and the system with delay feedback control shows periodic motion
with period τd , the control effort u(τ) is zero (hence, called non-invasive). In addition, due
to the effect from the delay feedback controller, the multistability of system can disappear,
and only some attractors with the certain periods or multiple of this periods left. Thus, the
delay feedback controller is a powerful tool for controlling multistability.

This chapter will present the details about how the delay feedback controller is working on
controlling coexisting attractors of nonsmooth systems. The chapter is organised as follows.
In Section 6.2, it presents the details on how the delay feedback controller is controlling the
multistability of soft impact system and the dynamical responses of the controlled soft impact
system. In Section 6.3, it shows the dynamical response of the impact system with a drift
under the control from the delay feedback controller. In Section 6.4, it shows a vibro-impact
capsule system can be controlled by the delay feedback controller. Some conclusions are
drawn in Section 6.5.
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6.2 Control of the soft impact system via the delay feed-
back control

6.2.1 Mathematical preparation

Because system (3.2.3) has many coexisting attractors, when the grazing occurs. In order to
suppress the near-grazing multistability of the soft impact system, a delay feedback controller
[67] is applied to system (3.2.3) by adding an input u(τ) as Eq. (5.2.2), and the soft impact
system with a delay feedback control can be written as Eq. (5.2.1). In Eq. (5.2.2) K ≥ 0
is the control gain, setting the coupling strength between the soft impact system output
v(τ − τd)− v(τ) and the control input u(τ), and τd > 0 is a tunable time delay (in contrast to
a lag introduced by the control loop, which is assumed to be zero here). Since the purpose of
this present work is to control the system to a period-1 response, the delay term τd is set to
one period of the external excitation τd = T := 2π/ω .

Construction of the Stroboscopic map

To calculate the LEs, a Stroboscopic map needs to be constructed to obtain a discrete-time
system. For the nonsmooth DDEs (5.2.1), a constant phase surface can be defined as

PT
s := {(y,τ) ∈ R2 ×R+| τ = τ0 + kT, k ∈ Z+}, (6.2.1)

and the relevant continuous Stroboscopic map is

PD : PT
s → PT

s , (6.2.2)

which is defined by the semiflow described by the nonsmooth DDE system (5.2.1). The two
regions are determined by the Heaviside step function on their right-hand side of system
(5.2.1). Since the system’s dynamics can be described using the Stroboscopic map (6.2.2),
the following discussion will use the definition of LEs for discrete-time dynamical systems.

Definition 6.2.1. [108] For any initial condition x0 ∈ PT
s , let {xm}∞

m∗=0 be the correspond-
ing orbit of the map PD, and let λ m∗

0 , · · · ,λ m∗
n be the n largest in modulus eigenvalues of

D(PD)
m∗
(x0), sorted such that |λ m∗

0 | ≥ . . .≥ |λ m∗
n |. The LEs of x0 are

ϑi := lim
m∗→∞

ln |λ m∗
i |

1
m∗ , i = 1, . . . ,n (6.2.3)

whenever the limit exists for x0 and for all i ≤ n.
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Construction of basins of attraction

Similarly, the relevant continuous Stroboscopic map of the uncontrolled system (3.2.3) can
be constructed as

P : PT
s → PT

s , (6.2.4)

which is defined as a semiflow with two dimensions, or is consisted as two regions. The
basin of a compact invariant subset A ⊂ M of system (3.2.3) is defined as

B(A) := {y ∈ M : (P)τ(y) ∈ A,τ →+∞}, (6.2.5)

where the manifold M is two dimensional.
According to the construction of the maps P and PD, the basin of a compact invariant

subset A ⊂ M of system (5.2.1) can be defined as

Bd(A) := {y ∈ M : (PD)
τ ◦P(y) ∈ A for τ → ∞}. (6.2.6)

Thus, by monitoring the evolution of the basin (6.2.6) through varying system parameters and
comparing with the basin (6.2.5) for the system (3.2.3), multistability in the system (5.2.1)
can be observed.

Construction of the Jacobian matrix

In order to construct the Jacobian matrix of the map (6.2.2), system (5.2.1) can be written as
a nonlinear DDE of the form

q′ = f (τ,q,q(τ − τd)) (6.2.7)

by inserting Eqs. (5.2.2) into (5.2.1). For this DDE τ is in P, where P is an interval of R+

unbounded on the right, and f : P×R2 ×R2 → R2 is a piecewise-smooth function based
on the Heaviside step function. Take N ∈ Z+ sufficiently large, and define the grid points
τ i

d := i τd
N , i = 0, . . . ,N, and ȳi(t) := q(t − τ i

d) for all t ≥ 0, i = 0, . . . ,N, where τd := T . The
DDE (6.2.7) can be approximated as a 2(N +1)-dimensional piecewise-smooth discretised
system, as studied in [116]. Thus, in detail, for any time interval [τm̄,τm̄ + τd], where
τm̄ = τ1 +(m̄−1)T , τ1 = τ0 and m̄ ∈ Z+, the solution of DDE (6.2.7) can be approximated
by N steps of size h = τd

N by using numerical integration. The modified Euler integration
formula [147] gives a single step of size as
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ȳ0(τm̄ +h) = ȳ0(τm̄)+
h
2

[
f (τm̄, ȳ0(τm̄), ȳ0(τm̄ −hN))

+ f (τm̄+1, ȳ0(τm̄+1), ȳ0(τm̄ −h(N −1)))
]
. (6.2.8)

Applying the recursion (6.2.8) N +1 times, the discretised the map PD can be obtained and
such that FP : R2(N+1) →R2(N+1), mapping Ym̄ := (ȳT

N(τm̄), · · · , ȳT
1 (τm̄), ȳT

0 (τm̄))
T ∈R2(N+1)

to Ym̄+1 = FP(Ym̄), where Ym̄+1 := (ȳT
N(τm̄ + τd), · · · , ȳT

1 (τm̄ + τd), ȳT
0 (τm̄ + τd))

T ∈ R2(N+1).
When an arbitrary perturbation δY is applied, the variational equation for FP can be written
as

δYm̄+1 =
N+1

∑
i=1

∂FP(Ym̄)

∂ ȳi−1(τm̄)
δyi−1(τm̄), (6.2.9)

where δYm̄ := (δyT
N(τm̄), · · · ,δyT

1 (τm̄),δyT
0 (τm̄))

T ∈ R2(N+1) and δyi(τ) := δy(τ − τ i
d), i =

0, · · · ,N. As Eq. (6.2.9) can be obtained by linearising the variational equation of the
nonlinear differential equation as

d
dτ

δy0(τ) =
∂ f (τ, ȳ0(τ), ȳN(τ))

∂y0
δ ȳ0(τ)+

∂ f (τ, ȳ0(τ), ȳN(τ))

∂ ȳN
δ ȳN(τ), (6.2.10)

using the modified Euler integration formula, Eq. (6.2.10) can be disretised in the same way
as Eq. (6.2.8). Iterating this process for N +1 times, the approximation of Jacobian matrix
Jm̄ of the map PD, applied to δYm̄, equals δYm̄+1, such that Jm̄ can be assembled through the
relation

δYm̄+1 = Jm̄δYm̄.

Then, for an arbitrary sufficiently small δ > 0, through selecting an arbitrary initial separation
vector (e.g. δY1 = (0, · · · ,0,0,δ )T ) and renormalisation, and calculating the leading LEs of
the map PD along approximate trajectory ȳi(τm̄) using Gram-Schmidt orthonormalisation and
Eq. (6.2.3), which details have been shown in Chapter 5.

6.2.2 Numerical investigation of the soft impact system with the delay
feedback controller

The numerical investigation starts with the bifurcation analysis of near-grazing dynamics of
the soft impact system without the delay feedback control, as given in Eq. (3.2.3). Fig. 6.2.1
shows the bifurcation diagram of the system (3.2.3) with excitation ω ∈ [0.845,0.854] as the
bifurcation parameter. The calculation was run for 350 cycles of external excitation, and the
data for the first 300 cycles were omitted to ensure the steady state response, whereas the last
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50 values of the displacement x at τ = 2nsπ
ω

, ns ∈ Z+ were plotted in the bifurcation diagram
for each value of the bifurcation parameter. For the range ω ∈ [0.851,0.8512], the system
present many coexisting attractors: one period-7, one period-4 and one period-3 orbits,
shown as green, red and blue dots, respectively. The additional panels of Fig. 6.2.1 show
the continuous-time trajectories of the orbits and the corresponding discrete orbits of the
Stroboscopic map for τ0 = 0. At ω = 0.845 (first row), the system presents a period-1 (blue)
and a period-7 (green) attractors. At ω = 0.8510 (second row), there are a period-3 (blue), a
period-7 (green), and a period-4 (red) orbits. At ω = 0.8513 (third row), the system has a
period-3 (blue) and a period-7 (green) responses, which both persist throughout the entire
parameter range. Please be noted that at the end of this row, it show the unstable period-1
response (red dashed line), which is the desired target for the delay feedback controller
to suppress this grazing-induced complex dynamics. At ω = 0.8528 (fourth row), a new
period-7 response (red) can be observed coexisting with the period-3 (blue) and the period-7
(green) orbits. At ω = 0.8538 (final row), only period-7 (green) and period-3 (blue) attractors
are left. Basins of attraction of the soft impact system are presented in Fig. 6.2.2 computed
using DYNAMICS-WIN [152] showing the evolution of all these attractors as the frequency
of excitation ω varies.

Since the system has multiple attractors at ω = 0.8528, the delay feedback control (5.2.2),
u(τ) = K

(
v(τ − τd)− v(τ)

)
with τd = 2π/ω was applied to suppress this multistable regime.

The period-1 orbit is stable only for control gains K in a certain range. Fig. 6.2.3 (a) shows a
bifurcation diagram of the controlled soft impact system for varying the bifurcation parameter
K. The calculations were run for 80 periods of the external excitation with K = 0 to ensure
that the system (3.2.3) settles down to its steady state, and then switched the controller (5.2.2)
on and kept the system (5.2.1) under a particular value of the control gain K running for
600 periods, whereas the last 80 values of oscillator’s displacement x were plotted in the
bifurcation diagram. Fig. 6.2.3 (b) shows the corresponding LE diagram of the controlled
soft impact system by varying the control parameter K. Likewise, the calculations for the
LEs were run for 80 periods of external excitation with K = 0 initially, followed by another
600 periods calculations with a certain value of K, where the first 200 periods were omitted
to ensure the steady state response of the controlled system while the rest 400 periods
were used to calculate the LEs as studied in Section 6.2.1. It can be seen from the figures
that, when K < 0.148, the system presents multi-periodic responses. For example, when
K = 0.0015, the system has a period-3 attractor, which is a small perturbation of the period-3
attractor in the uncontrolled system (see inset in Fig. 6.2.3(a)). For a range of K larger
than 0.04, the chaotic motion can be observed, as indicated by the leading positive LEs,
shown in Fig. 6.2.3(b). For K ∈ [0.148,0.42], the control stabilises the desired period-1
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Fig. 6.2.1 Bifurcation diagram of the soft impact system computed for ζ = 0.01, e = 1.28,
a = 0.49, β = 28 and varying frequency of external excitation ω . The period-7, period-4
and period-3 (period-1) attractors are denoted by green, red and blue dots, respectively.
Additional panels below present the corresponding periodic orbits and Poincaré sections for
ω = 0.845, ω = 0.851, ω = 0.8513, ω = 0.8528 and ω = 0.8538. The desired attractor for
control purpose, i.e. an unstable period-1 orbit, is shown in red dashed line. The location of
the impact boundary is indicated by the vertical blue lines.
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Fig. 6.2.2 Basins of attraction for frequencies ω highlighted in Fig. 6.2.1: (a) ω = 0.851
with a period-3 (blue dots, black basin), a period-4 (green dots, red basin) and a period-7
attractors (black dots, white basin), (b) ω = 0.8513 with a period-3 (blue dots, black basin)
and a period-7 attractors (black dots, red basin), (c) ω = 0.8528 with a period-3 (blue dots,
red basin), a period-7 (black dots, white basin) and a new period-7 attractors (green dots,
black basin). The other parameters are ζ = 0.01, e = 1.28, a = 0.49 and β = 28.
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Fig. 6.2.3 (a) Bifurcation diagram and (b) the largest LEs of the soft impact system with
the delay feedback control for varying the control gain K. System parameters are ζ = 0.01,
e = 1.28, a = 0.49, β = 28, ω = 0.8528 and τd = 2π

ω
.
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motion at grazing. The leading LE is smaller than 0, as expected for stable periodic motion,
for K ∈ [0.148,0.42]. For K > 0.42, the desired period-1 motion loses its stability via a
Neimark-Sacker bifurcation and transits into chaos via torus. The chaotic motions have been
shown in the periodic windows and their relevant LEs are around 0, which means that the
controller is not successful on stabilising the system on period-1 motion.

Fig. 6.2.4 Basins of attraction of the soft impact system with delay feedback control, (5.2.1)–
(5.2.2), and different control gains K: (a) K = 0.0015 (period-3: green dots with cyan basin,
period-7: red dots with orange basin), (b) K = 0.04 (period-4: red dots with orange basin,
chaos: purple dots with cyan basin) and (c) K = 0.32 (period-1: red dot with orange basin).
Additional panels demonstrate the phase trajectories of the soft impact system. The location
of the impact boundary is denoted by the vertical blue lines. The other parameters of the
system are ζ = 0.01, e = 1.28, a = 0.49, β = 28 and ω = 0.8528.

To demonstrate global stability of the delay feedback control strategy for suitable control
gains K, the basins of attraction for various control gains K in Fig. 6.2.4 is presented. The
computation procedure for these basins is given as follows: From any initial value (x0,v0),
the trajectory of the system (3.2.3) at the moment τ0 + T was calculated, and then was
inserted into the system (5.2.1) under a certain value of the control gain K. As the trajectory
converged to an attractor, this initial value was marked by a specific colour in the phase plane.
As the control gain K is set to its non-zero value only for τ > T = τd = 2π/ω , the basins of
attraction are subsets of R2, even though the controlled system is a DDE. In Fig. 6.2.4(a),
there are two coexisting attractors for K = 0.0015, a period-3 (green dots with cyan basin)
and a period-7 (red dots with orange basin) attractors. Both attractors are small perturbations
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of attractors existing in the uncontrolled system. For K = 0.04, as shown in Fig. 6.2.4(b),
the system is bistable consisting of a period-4 (red dots with orange basin) and a chaotic
attractors (purple dots with cyan basin). The basin of the chaotic attractor is noticeably
smaller than the basin of the period-3 attractor in Fig. 6.2.4(a). At K = 0.32 the system is
monostable with the desired period-1 attractor only (see Fig. 6.2.4(c)).

According to the above results, when K ∈ [0.148,0.42], the delay feedback controller
can stabilise the soft impact system on the target period-1 orbit. Fig. 6.2.5 presents the time
profiles of displacement of the system and its external excitation with the control signal u as
a demonstration of controlling from different coexisting attractor. As can be seen from the
figure, the controller was switched on at the 81th period of the external excitation, and for all
the coexisting attractors at ω = 0.8528, including a period-3 and two period-7 attractors, the
system was successfully driven to the desired period-1 motion at grazing with one impact per
period of excitation. It is worth noting that, as the targeted period-1 attractor is very similar
with the period-3 attractor as shown in Fig. 6.2.1, the switching from the period-3 to the
period-1 attractor just needs a small control signal. Hence, as shown in Fig. 6.2.5(a), the
displacement and the external excitation before and after the control is on are almost the
same.

6.2.3 Path-following study of the delay feedback controller

In this section the periodically forced soft impact system considering the delay feedback
controller introduced previously (see system (5.2.1) with (5.2.2)) will be investigated by the
path-following (continuation) methods. As mentioned before, this model is a piecewise-
smooth dynamical system with delay, for which no specialized software package for numeri-
cal continuation is available to the best of our knowledge. Therefore, in order to carry out
a detailed path-following study of the soft impact system with delay feedback control the
numerical approach proposed in Chapter 4 will be employed.

Defining systems for continuation

The numerical approach presented in Chapter 4 is based on the chain approximation [91]
using a higher-order approximation scheme of the original DDE by introducing a finite
sequence of Taylor expansions as follows. Let us consider a general DDE of the form

q̇(t) = f (t,q(t),q(t − τd)), (6.2.11)

which defines a system of delay differential equations (DDEs) with constant delay τd > 0,
where f : R×Rn ×Rn → Rn is a sufficiently smooth function. Now, the value of N ∈N
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Fig. 6.2.5 Time profiles of displacement of the soft impact system and the external excitation
including the control signal u. Grey line indicates the time when the delay feedback control
was switched on. Before this time the gain K = 0 and the uncontrolled system is on its
(a) period-3, (b) first period-7 and (c) second period-7 attractors. The parameters of the
controlled soft impact system are ζ = 0.01, e = 1.28, a = 0.49, β = 28, ω = 0.8528 and
K = 0.32.
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should be sufficiently large and the grid points can be defined as ti := i τd
N , i = 0, . . . ,N.

Furthermore, define ui(t) := q(t − ti) for all t ≥ 0, i = 0, . . . ,N. In this setting, we obtain via
Taylor expansion to order M with

ui−1(t) = q

(
t −
(

ti −
τd

N

))
= ui

(
t +

τd

N

)
=

M

∑
k=0

1
k!

u(k)i (t)
(

τd

N

)k

+O

((
τd

N

)M+1
)
,

(6.2.12)
and

u̇0(t) = f (t,u0(t),uN(t)), (6.2.13)

for all t ≥ 0, i= 1, . . . ,N, M ≥ 1. After neglecting the O-terms, from (6.2.12), a system of dN
differential equations of order M can be obtained. In this way, a piecewise-smooth dynamical
system of dimension n with constant delay can be approximated by a piecewise-smooth
system of ODEs of dimension n(NM+1) for large N, which then allows the study of the
resulting model in the framework of hybrid dynamical systems [28]. Choosing order M = 2,
the defining system for periodic orbits of a soft impact system with delay feedback control
(5.2.1) can be approximated by the following piecewise-smooth system of ODEs on the
interval [0,1]:

z̃′(τ) = f (z̃(τ), φ̃(z̃(τ),α),α), where φ̃(z̃,α) =

0 if x− e < 0 (no contact),

β (x− e) if x− e ≥ 0 (contact),

(6.2.14)

z̃ := (x,r,s,u0, . . . ,uN ,w1, . . . ,wN)
T ∈ R2N+4, α := (ω,a,β ,ζ ,e,K,τd) ∈

(
R+

0
)7

and

f (z̃,α, φ̃) :=



τdu0

r+ωτds− r
(

r2 + s2
)

s−ωτdr− s
(

r2 + s2
)

τd

(
aω2r+K (uN −u0)−2ζ u0 − x− φ̃

)
(wi)i=1,...,N(

2N2
(

ui−1 −ui −
1
N

wi

))
i=1,...,N


. (6.2.15)

The argument φ̃ of the right-hand side f defines the no contact and contact operation modes
of the soft impact system, respectively. In the approximating system (6.2.14) a time re-scaling
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τ/τd → τ was introduced such that the approximation of the history q(τ − t) for t ∈ [0,τd] by
Taylor expansion (6.2.12) is always over the unit interval, regardless the value of the delay
τd . Furthermore, in the approximating system (6.2.14) we have that u0(τ) = v(τ) and

ui(τ)≈ v(τ − τi), for all τ ∈ [0,1], τi =
i
N
, i = 1, . . . ,N. (6.2.16)

The approximation of the history of q by ui on the evenly spaced grid of τi on [0,1] with
order M = 2 is a special case of the pseudospectral approximation of DDEs by ODEs, as
used for bifurcation analysis in MATCONT by [153]. The spectral approximation from [153]
has no advantage over the low-order approximation (6.2.16) for this problem, because the
history segment is only differentiable once with Lipschitz continuous derivative, whenever
the contact threshold x = e has been crossed during the previous time interval of length τd .
Thus, the proposed second-order approximation has the most suitable order M.

In what follows, all numerical continuation results will be obtained from the approximat-
ing model (6.2.14) (with N = 15) via the continuation platform COCO [25]. Specifically,
this numerical anlaysis will make use of the COCO-toolbox ‘hspo’, which implements a
segment-specific discretization strategy in the framework of multisegment boundary-value
problems, thus allowing the numerical continuation of periodic solutions for piecewise-
smooth dynamical systems. In this way, a locus of grazing periodic orbits can be computed
by introducing an extra solution segment with a terminal point satisfying the condition x′ = 0,
where the mass velocity becomes zero. Here, a grazing solution can be detected via the
auxiliary boundary condition x− e = 0, and therefore a locus of such orbits can be obtained
by freeing two parameters during the continuation process, using the COCO-command ‘coco
xchg pars’. On the other hand, simulations generated via direct numerical integration will
be computed for the original DDE model (5.2.1) using the MATLAB solver ‘dde23’, in
combination with its built-in event location routines [154, 155] to detect accurately collisions
with the impact boundary x = e.

Continuation of periodic orbits

The behavior of the soft impact system (3.2.3) (without control) will be investigated firstly,
when this system presents the dynamical scenario analysed in Fig. 6.2.5. Figure 6.2.6 shows
the periodic response of system (3.2.3) with respect to the excitation frequency ω , showing in
the vertical axis the time the oscillating mass is in contact with the secondary spring k2 (see
Fig. 3.2.1). As can be seen in this bifurcation diagram, low values of ω produce oscillations
of small amplitude, with no contact with the secondary spring. A critical point, however,
is found at ω ≈ 0.85061, where a grazing bifurcation (labeled GR1) of limit cycles occurs.
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Here, the system presents a periodic solution making tangential contact with the impact
boundary x = e. Shortly after the GR1 point a period-doubling bifurcation (PD1) is detected
for ω ≈ 0.85113. At this value, the period-1 solution loses stability and a family of stable
period-2 solutions is born. The unstable period-1 orbit recovers stability at ω ≈ 0.91440,
where another period-doubling bifurcation (PD2) occurs. Using direct numerical integration
it is convenient to find further attractors of higher period between the period-doubling points
PD1 and PD2, as can be seen in Fig. 6.2.6(b) (see also Fig. 6.2.1). Here, a (stable) period-7
solution is depicted together with the original (unstable) period-1 orbit computed at the test
point ω = 0.8528 (P1). The purpose of the delay feedback control is to stabilise this period-1
response, as discussed before, for the parameter window defined by the period-doubling
points PD1 and PD2.

ω
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e

x(τ)

v(
τ)

(a) (b)

Fig. 6.2.6 (a) Continuation of period-1 solutions of the (uncontrolled) soft impact system
(3.2.3) with respect to the excitation frequency ω , for the parameter values given in Fig. 6.2.1.
The vertical axis presents the time the oscillating mass is in contact with the secondary spring
k2 (see Fig. 3.2.1). The labels GR1, PD1 and PD2 stand for grazing and period-doubling
bifurcations detected at ω ≈ 0.85061, ω ≈ 0.85113 and ω ≈ 0.91440, respectively. Solid and
dashed branches mark stable and unstable solutions, respectively. Furthermore, impacting
solutions are represented by the green line, while non-impacting orbits correspond to the red
branch (before the grazing bifurcation GR1). Panel (b) depicts a phase plot corresponding
to the test point P1 (ω = 0.8528), where two periodic solutions coexist, one stable (in blue,
solid line) and one unstable (in black, dashed curve).

The presence of the stable more complex (period-7) response in the range between PD1
and PD2 suggests that the period-doubling bifurcations PD1 and PD2 are the boundary of
a parameter region with more complex system responses in two parameters. Now these
period-doubling bifurcation will be investigated by tracing them in two parameters (frequency
ω and amplitude a of excitation) via two-parameter continuation. The result is presented in
Fig. 6.2.7. From this figure, it presents that the bifurcation points PD1 and PD2 belong to the
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same branch of period-doubling bifurcations in the two-parameter plane, bounding the isola
plotted in panel (a), located between the two extremes of ω on this curve at ω ≈ 0.66708
and ω ≈ 0.91456, which define the window of existence of this isola. Inside the isola the
period-1 solution is unstable. The delay feedback control stabilises the period-1 response, as
verified at three test points (P1, P2, P3) within the isola, where the uncontrolled response (in
blue, see Fig. 6.2.7(b)–(d)) ranges from periodic to chaotic motion, while the controller in all
these cases is able to stabilise the original period-1 orbit (in black).
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Fig. 6.2.7 (a) Two-parameter continuation of the period-doubling bifurcations found in Fig.
6.2.6, with respect to frequency ω and amplitude a of excitation. The intersection with
the horizontal line ω = 0.8528 defines the period-doubling points PD1 and PD2 detected
before. Panels (b)–(d) display phase plots corresponding to the test points P1 (ω = 0.72,
a = 1.25), P2 (ω = 0.8, a = 0.92) and P3 (ω = 0.9, a = 0.7), respectively. These panels
present the system response without control (in blue) and with control (in black), using the
control parameters K = 0.32 and τd = 2π

ω
.
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Next, it is necessary to investigate the periodic response of the soft impact system
with delay feedback control using the approximating system (6.2.14) and the continuation
platform COCO. In this way, the numerical continuation of period-1 solutions of the soft
impact system with delay feedback control is shown in Fig. 6.2.8, for the range 0 < τd ≤ 3,
using the (unstable) period-1 orbit shown in Fig. 6.2.6(b) as starting solution. As expected,
a family of unstable period-1 orbits is found for small time delay τd . This orbit becomes
stable at τd ≈ 0.47404, where a period-doubling bifurcation is located. As the time delay
grows, another bifurcation (GR2) is found at τd ≈ 1.78922, where the periodic orbit makes
tangential contact with the impact boundary x = e. This point, therefore, defines a boundary
between impacting and non-impacting motion, as can be seen from the right phase plots in
Fig. 6.2.8. This numerical investigation indicates that the delay feedback controller is able
to not only stabilise the desired period-1 motion but also control impacting regimes in the
system.
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Fig. 6.2.8 Continuation of the periodic response of the controlled soft impact system (5.2.1)
with respect to the control delay τd , for the parameter values given in Fig. 6.2.1, showing the
contact time on the vertical axis. The period-doubling (PD3) and grazing (GR2) bifurcations
are located at τd ≈ 0.47404 and τd ≈ 1.78922, respectively. Lateral panels present phase
portraits for different values of the control delay τd .

Next, a two-parameter continuation with respect to the main control parameters, i.e.
the time delay τd and the control gain K, will be carried out for the detected bifurcations
above. Fig. 6.2.9 shows the resulting red and green curves that represent the two-parameter
continuation of the period-doubling and grazing bifurcations found in Fig. 6.2.8. The
bifurcation curves divide the two-dimensional parameter space into three regions. The
first region, to the left of the period-doubling curve, corresponds to operation points for
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which the period-1 response is unstable in the controlled system. Crossing this line from
the right produces a supercritical period-doubling bifurcation, due to which stable period-2
solutions are created, as the one computed in Fig. 6.2.9(b), for the test point P1 (τd = 0.62,
K = 0.23). The region between the period-doubling and grazing curves provides parameter
values producing stable period-1 responses, as discussed before, see for instance the solution
calculated at the test point P2 (τd = 1.3, K = 0.3), shown in Fig. 6.2.9(c). The third region,
located to the right of the grazing curve, defines operation points yielding period-1 non-
impacting solutions, similar to the test point P3 (τd = 2.1, K = 0.4), see Fig. 6.2.9(d).
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Fig. 6.2.9 (a) Two-parameter continuation of the period-doubling and grazing bifurcations
found in Fig. 6.2.8, with respect to the control delay τd and control gain K. Panels (b)–(d)
display phase plots corresponding to the test points P1 (τd = 0.62, K = 0.23), P2 (τd = 1.3,
K = 0.3) and P3 (τd = 2.1, K = 0.4), respectively.
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6.3 Control of the impact system with a drift via the delay
feedback control

6.3.1 Mathematical preparation

With the introducing of the delay feedback controller into the impact system with a drift, the
system can be describe as

• No contact, i.e. x < z+g,

x′ = y,

y′ = acos(ωτ +φ)+b+u(τ),

z′ =− 1
2ξ

(z− v̄),

v̄′ = 0. (6.3.1)

• Contact without progression, i.e. x ≥ z+g and 0 < 2ξ z′+(z− v̄)< 1,

x′ = y,

y′ =−2ξ z′− (z− v̄)+acos(ωτ +φ)+b+u(τ),

z′ = x′,

x = z+g,

v̄′ = 0. (6.3.2)

• Contact with progression, i.e. x ≥ z+g and 2ξ z′+(z− v̄)≥ 1,

x′ = y,

y′ = acos(ωτ +φ)+b−1+u(τ),

z′ = x′,

x = z+g,

v̄′ = z′+
1

2ξ
(z− v̄−1). (6.3.3)

where
u(τ) = K

(
y(τ − τd)− y(τ)

)
, τ ≥ 0, (6.3.4)



6.3 Control of the impact system with a drift via the delay feedback control 95

is the delay feedback control. In Eq. (6.3.4) K ≥ 0 is the control gain, setting the coupling
strength between the velocity output y(τ − τd)− y(τ) and the control input u(τ), and τd > 0
is a tunable time delay (in contrast to a lag introduced by the control loop, which is assumed
to be zero here). Since the purpose of this present work is to control the system to a period-1
response, the delay term τd is set to one period of the external excitation τd = T := 2π/ω .

Since the impact system with a drift and delay feedback control described by Eq. (6.3.1),
(6.3.2) and (6.3.3) is hard to analyse due to the problem of the motion unboundedness, a
co-ordinates transformation p := x− v̄ and q := z− v̄ as show in Section 3.3 has to be adopt,
so that the above system can be changed to the following form:

• No contact, i.e. p < q+g.

p′ = y,

y′ = acos(ωτ +φ)+b+u(τ),

q′ =− 1
2ξ

(q). (6.3.5)

• Contact without progression, i.e. p ≥ q+g and 0 < 2ξ y+q < 1.

p′ = y,

y′ =−2ξ y−q+acos(ωτ +φ)+b+u(τ),

q′ = y. (6.3.6)

• Contact with progression, i.e. p ≥ q+g and 2ξ y+q ≥ 1.

p′ =− 1
2ξ

(q−1),

y′ = acos(ωτ +φ)+b−1+u(τ),

q′ =− 1
2ξ

(q−1). (6.3.7)

Through the above forms, the problem of motion unboundedness can be avoided and the
LEs can be calculated. At the following discussion, the definition of Stroboscopic map and
Jacobian matrix in Section 6.2.1 will be adopt to calculate the LEs for the above impact
system with a drift.
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6.3.2 Numerical investigation of the impact system with a drift and the
delay feedback controller

The numerical investigation starts with the bifurcation analysis of the dynamics of the impact
system with a drift without the delay feedback control, as given in Eq. (3.3.4), (3.3.5) and
(3.3.6). In Fig. 6.3.1, it shows the relevant bifurcation diagram, where ω is used as the
bifurcation parameter. The calculation was run for 330 cycles of external excitation, and
the data for the first 300 cycles were omitted to ensure the steady state response, whereas
the last 30 values of the velocity y were plotted in the bifurcation diagram for each value
of the bifurcation parameter. It can be seen that a period-1 motion is presented during
ω ∈ [0,0.268]. In addition, the phase portraits of the period-1 attractor at ω = 0.12 and
ω = 0.24 are separately shown in Fig 6.3.1 (b) and (c), and the relevant trajectories at
ω = 0.12 and ω = 0.24 are presented in Fig. 6.3.2 (a) and (b), which show that the slider
bottom under the external excitation with frequency ω = 0.12 is moving faster than the
slider bottom under the external excitation with frequency ω = 0.24. In details, the initial
displacements of the mass and slider bottom under these two cases are all v̄ = 0. But the
displacement of the slider bottom under the external excitation with frequency ω = 0.12 at
τ = 1600 is v̄ = 635, which is more than twice the displacement of the slider bottom under
the external excitation with frequency ω = 0.24. For the range ω ∈ [0.268,0.378], the system
behaves period-2 motion, as shown in Fig. 6.3.1 (a). At ω = 0.3, the phase portrait and
trajectory of period-2 attractor is presented in Fig. 6.3.1 (d) and Fig. 6.3.2 (c). In Fig. 6.3.2
(c), it shows that there are two peaks in one period. During the process of progression, it can
be discovered that the capsule is progressing from the displacement v̄ = 0 at τ = 0 to the
displacement v̄ = 137 at τ = 1600. For the case at ω = 0.38, during one period, there are 4
small peaks, and the moving distance between τ = 0 and τ = 1600 is the smallest, compared
with the previous three cases. Finally, the slider bottom arrives around the displacement
v̄ = 36, as shown in the small window of Fig. 6.3.2 (d).

Since the system presents period-2 dynamical response at ω = 0.3 as shown in Fig. 6.3.2,
the delay feedback control (6.3.4), u(τ) = K

(
y(τ − τd)− y(τ)

)
with τ = 2π/ω was applied

to control the system to the period-1 dynamical response. The period-1 motion is stable
only for control gains K in a certain range. In Fig. 6.3.3 (a), it shows a bifurcation diagram
of the controlled impact system with a drift for varying the bifurcation parameter K. The
calculations were run for 160 periods of the external excitation with K = 0 to ensure that
the system described by Eq. (6.3.1), (6.3.2) and (6.3.3) settles down to its steady state, and
then switched the controller (6.3.4) on and kept the system under a particular value of the
control gain K running for 500 periods, whereas the last 50 values of the velocity y of the
mass were plotted in the bifurcation diagram. Fig. 6.3.3 (b) shows the corresponding LE
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- -

- -

Fig. 6.3.1 (a) Bifurcation diagram of the impact system with a drift computed for a = 0.3,
b = 0.15, ξ = 0.05, g = 0.02, φ = π

2 and varying frequency of external excitation ω . The
phase portrait of different external excitation ω : (b) ω = 0.12, (c) ω = 0.24, (d) ω = 0.3 and
(e) ω = 0.38.

diagram of the controlled impact system with a drift by varying the control parameter K.
Likewise, the calculations for the LEs were run for 150 periods of external excitation with
K = 0 initially, followed by another 3000 periods calculations with a certain value of K,
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- -
-

Fig. 6.3.2 Time histories of displacement of mass x (black solid curves) and slider bottom
v (red dash curves) for a = 0.3, b = 0.15, ξ = 0.05, g = 0.02 and φ = π

2 : (a) ω = 0.12, (b)
ω = 0.24, (c) ω = 0.3 and (d) ω = 0.38.

where the first 250 periods were omitted to ensure the steady state response of the controlled
system while the rest periods were used to calculate the LEs. Since the period-2 and period-1
dynamical responses are described only by Eq. (6.3.6) and (6.3.7) and the performances of
two variables (i.e. p and q) of these two motions are always the same, which means that the
one of LEs is always around 0. It can be seen from the figures that, when K < 0.008, the
system presents period-2 dynamical responses. For example, when K = 0.002, the system
has a period-2 attractor as shown in the small window of Fig. 6.3.3 (a), which has a smaller
area of phase portrait than the attractor at ω = 0.3 and K = 0. For a range of K larger than
0.008, the control stabilises the desired period-1 motion. Relevantly, the period-doubling
bifurcation can be discovered at K = 0.008 as shown in Fig. 6.3.3 (b), and the leading LE is
2.2×10−5. After that, when K > 0.008, the leading LE is smaller than 0, as expected for
stable periodic motion.

According to the above results, when K > 0.008, the delay feedback controller can
stabilise the impact system with a drift on the target period-1 orbit. Fig. 6.3.4 presents the
time profiles of displacement of mass and slider bottom, the velocity of mass and its external
excitation with the control signal u as a demonstration of controlling to the period-1 motion,
when K = 0.5. As can be seen from the figure, the controller is switched on at τ = 1675.512,
and the system is stable on the period-1 attractor.
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Fig. 6.3.3 (a) Bifurcation diagram and (b) LEs of impact system with a drift and the delay
feedback control for varying the control gain K. System parameters are a = 0.3, b = 0.15,
ξ = 0.05, g = 0.02, φ = π

2 , ω = 0.3 and τd = 2π

ω
. Black, olive and magenta lines denote the

three LEs.

6.4 Control of the vibro-impact capsule system via the de-
lay feedback control

6.4.1 Mathematical preparation

With the introducing of the delay feedback controller into the vibro-impact capsule system,
the system can be described as

• No contact with stationary capsule, i.e. x1−x2 < δ , and |(x2−x1)+2ξ (y2−y1)| ≤
1. Then, the motion of the mass and capsule are:
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-

-

- -

Fig. 6.3.4 (a) Time histories of displacement of mass x and slider bottom v for a = 0.3,
ω = 0.3, b = 0.15, ξ = 0.05, g = 0.02, φ = π

2 and K = 0.5. (b) Time histories of the velocity
of mass x. (c) Time histories of the control signal u, and blue line denotes the zero line. Panel
(h) depicts the phase portrait of period-2 attractor when the controller is off. Panel (i) depicts
the phase portrait of period-1 attractor when the controller is on. The black solid curves and
red dash curves represent the displacement of mass x and slider bottom v.
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ẋ1 = y1,

ẏ1 = α cos(ωτ)+(x2 − x1)+2ξ (y2 − y1)+u(τ),

ẋ2 = 0,

ẏ2 = 0, (6.4.1)

• No contact with moving capsule, i.e. x1 − x2 < δ , and |(x2 − x1)+2ξ (y2 − y1)|> 1.
Then, the motion of the mass and capsule are:

ẋ1 = y1,

ẏ1 = α cos(ωτ)+(x2 − x1)+2ξ (y2 − y1)+u(τ),

ẋ2 = y2,

ẏ2 = (−sign(y2)− (x2 − x1)−2ξ (y2 − y1))/(γ), (6.4.2)

• Contact with stationary capsule, i.e. x1 − x2 ≥ δ , and |(x2 − x1)+ 2ξ (y2 − y1)−
β (x1 − x2 −δ )| ≤ 1. Then, the motion of the mass and capsule are:

ẋ1 = y1,

ẏ1 = α cos(ωτ)+(x2 − x1)+2ξ (y2 − y1)−β (x1 − x2 −δ )+u(τ),

ẋ2 = 0,

ẏ2 = 0, (6.4.3)

• Contact with moving capsule, i.e. x1−x2 ≥ δ , and |(x2−x1)+2ξ (y2−y1)−β (x1−
x2 −δ )|> 1. Then, the motion of the mass and capsule are:

ẋ1 = y1,

ẏ1 = α cos(ωτ)+(x2 − x1)+2ξ (y2 − y1)−β (x1 − x2 −δ )+u(τ),

ẋ2 = y2,

ẏ2 = [−sign(y2)− (x2 − x1)−2ξ (y2 − y1)+β (x1 − x2 −δ )]/γ, (6.4.4)

where
u(τ) = K

(
y1(τ − τd)− y1(τ)

)
, τ ≥ 0, (6.4.5)
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is the delay feedback control. In Eq. (6.4.5) K ≥ 0 is the control gain, setting the coupling
strength between the velocity output y1(τ −τd)−y1(τ) and the control input u(τ), and τd > 0
is a tunable time delay (in contrast to a lag introduced by the control loop, which is assumed
to be zero here). Since the purpose of this present work is to control the system to a period-1
response, the delay term τd is set to one period of the external excitation τd = T := 2π/ω .

Since the vibro-impact capsule system with the delay feedback control described as
Eq. (6.4.1), (6.4.2), (6.4.3) and (6.4.4) is hard to analyse due to the problem of the motion
unboundedness, a co-ordinates transformation υ := x1 − x2 and κ := y1 − y2 as shown in
Section 3.4 has to be adopt, so that the above system can be changed to the following form:

• No contact with stationary capsule, i.e. υ < δ , and |υ +2ξ κ| ≤ 1.

υ̇ = y1,

κ̇ = α cos(ωτ)−υ −2ξ κ +u(τ),

ẏ1 = α cos(ωτ)−υ −2ξ κ +u(τ),

ẏ2 = 0. (6.4.6)

• No contact with moving capsule, i.e. υ < δ , and |υ +2ξ κ|> 1.

υ̇ = κ,

κ̇ = α cos(ωτ)−υ −2ξ κ − (−sign(y2)+υ +2ξ κ)/(γ)+u(τ),

ẏ1 = α cos(ωτ)−υ −2ξ κ +u(τ),

ẏ2 = (−sign(y2)− (x2 − x1)−2ξ (y2 − y1))/(γ). (6.4.7)

• Contact with stationary capsule, i.e. υ ≥ δ , and |υ +2ξ κ −β (υ −δ )| ≤ 1.

υ̇ = y1,

κ̇ = α cos(ωτ)−υ −2ξ κ −β (υ −δ )+u(τ),

ẏ1 = α cos(ωτ)−υ −2ξ κ −β (υ −δ )+u(τ),

ẏ2 = 0. (6.4.8)

• Contact with moving capsule, i.e. υ ≥ δ , and |υ +2ξ κ −β (υ −δ )|> 1.
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υ̇ = κ,

κ̇ = α cos(ωτ)−υ −2ξ κ −β (υ −δ )

− [−sign(y2)+υ +2ξ κ +β (υ −δ )]/γ +u(τ),

ẏ1 = α cos(ωτ)−υ −2ξ κ −β (υ −δ )+u(τ),

ẏ2 = [−sign(y2)+υ +2ξ κ +β (υ −δ )]/γ. (6.4.9)

Through the above forms, the problem caused by motion unboundedness can be avoided
and the LEs can be calculated. At the following discussion, the definition of Stroboscopic
map and Jacobian matrix in Section 6.2.1 will be adopt to calculate the LEs for the above
vibro-impact system.

6.4.2 Numerical investigation of the vibro-impact capsule system with
the delay feedback controller

The numerical study starts with bifurcation analysis of the dynamics of the vibro-impact
capsule system without the delay feedback control, as given in Eq. (3.4.10), (3.4.11), (3.4.12)
and (3.4.13). In Fig. 6.4.1, it shows the relevant bifurcation diagram, where ω is used as the
bifurcation parameter. 330 cycles of external excitation were run to obtain the bifurcation
diagram. Among 330 cycles, the first 300 cycles were omitted to ensure the steady state
response, and the last 30 values of the velocity y were plotted in the bifurcation diagram for
each value of the bifurcation parameter. During the simulation, when the velocity is smaller
than 10−3 and greater than −10−3, this velocity can be treated as a small enough value. In
addition, the initial condition for the all simulations is x1 = 0, x2 = 0, y1 = 0 and y2 = 0. It
can be seen that a period-1 motion is presented during ω ∈ [2,2.32]. The phase portraits
of the period-1 attractor at ω = 2.2 is shown in Fig 6.4.1 (b), and the relevant trajectory is
presented in Fig. 6.4.2 (a), which show that the capsule under the external excitation with
frequency ω = 2.2 is moving very slowly. Finally, the capsule arrives at 0.164 at τ = 395 .
For the range ω ∈ [2.32,2.71] as shown in Fig. 6.4.1, the system witnesses period-doubling
twice at ω = 2.332 and ω = 2.592. When ω = 2.44 and ω = 2.62, the system present
two different motions with different periods. At ω = 2,44, the system behaves the period-2
motion in Fig. 6.4.1 (c), and at ω = 2.62 a period-4 motion is presented as shown in Fig. 6.4.1
(d). As shown in Fig. 6.4.2 (b) and (c), the capsule does not have obvious moving, and
their displacements are around 0. At ω = 3.175, the system presents a period-2 motion in
Fig. 6.4.1 (e). Compared with other motions, the capsule at ω = 3.175 witnesses an obvious
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moving, which starts from x2 = 0 at τ = 0 and arrives at x2 = 11.34 at τ = 395, as shown in
Fig. 6.4.2 (d).
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Fig. 6.4.1 (a) Bifurcation diagram of the capsule computed for α = 0.6, δ = 0.02, ξ = 0.05,
β = 12, γ = 3 and varying frequency of external excitation ω . The phase portrait of different
external excitation ω: (b) ω = 2.2, (c) ω = 2.44, (d) ω = 2.62 and (e) ω = 3.175. The
locations of the impact surface are shown by blue lines and Poincareé sections are marked by
blue dots.

Since the system presents period-2 dynamical response at ω = 3.175 as shown in Fig.
6.4.2, the delay feedback control (6.4.5), u(τ) = K

(
y1(τ − τd)− y1(τ)

)
with τ = 2π/ω was

applied to control the system to the period-1 dynamical response. In fact, there is an effective
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Fig. 6.4.2 Time histories of displacement of mass (black solid curves) and capsule (red dash
curves) for α = 0.6, δ = 0.02, ξ = 0.05, β = 12 and γ = 3: (a) ω = 2.2, (b) ω = 2.44, (c)
ω = 2.62 and (d) ω = 3.175.

interval of control gains K to stable the system on the period-1 motion. In Fig. 6.4.3 (a), it
shows a bifurcation diagram of the controlled vibro-impact capsule system for varying the
bifurcation parameter K. The calculation were run for 160 periods of the external excitation
with K = 0 to ensure that the system described by Eq. (6.4.6), (6.4.7), (6.4.8) and (6.4.9)
settles down to its steady state, and then switched the controller (6.4.5) on and kept the
system under a particular value of the control gain K running for 500 periods, whereas the
last 50 values of the velocity y1 of the mass were plotted in the bifurcation diagram. Fig. 6.4.3
(b) shows the corresponding LE diagram of the controlled vibro-impact capsule system by
varying the control parameter K. The calculations for the LEs were run for 150 periods
of external excitation with K = 0 initially, followed by another 3000 periods calculations
with a certain value of K, where the first 250 periods were omitted to ensure the steady
state response of the controlled system while the rest periods were used to calculate the LEs.
Since after K = 0.18 the capsule does not move any more after the system becomes stable,
the period-2 and period-1 dynamical responses in Fig. 6.4.3 after K = 0.18 are described
only by Eq. (6.4.6) and (6.4.8), which means that the two of LEs are always around 0. It
can be seen from the figures that, when K < 0.707, the system presents period-2 dynamical
responses. For example, when K = 0.1, the system has a period-2 attractor as shown in the
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small window of Fig. 6.4.3 (a), which has a smaller area of phase portrait than the attractor
at ω = 3.175 and K = 0. When K = 0.45, the system presents a period-2 motion with a
smaller area than the attractor at K = 0.1. It should be pointed out that when K = 0.707, the
system witnesses a period-doubling bifurcation, and the leading LE is −4.94×10−4, which
is very close to 0. In addition, the system presents period-1 motion at K ∈ [0.707,1.5], and
the leading LE is less than 0.
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Fig. 6.4.3 (a) Bifurcation diagram and (b) LEs of capsule system with the delay feedback
control for varying the control gain K. System parameters are α = 0.6, δ = 0.02, ξ = 0.05,
β = 12, γ = 3, ω = 3.175 and τd = 2π

ω
. Black, red, olive and magenta lines denote the four

LEs.

According to the above results, when K > 0.707, the delay feedback controller can
stabilise the vibro-impact capsule system on the target period-1 orbit. In Fig. 6.4.4, it presents
the time profiles of displacement of mass and capsule, velocity of the mass, velocity of the
capsule and its external excitation with the control signal u as a demonstration of controlling
to the period-1 motion, when K = 1. As can be seen from the figure, the controller is switched
on at τ = 158.197, and the relative motion between the inner mass and the capsule is stable
on the period-1 attractor. The capsule is stop and inner mass presents a period-1 motion.
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Fig. 6.4.4 (a) Time histories of displacement of mass x1 and capsule x2 for α = 0.6, δ = 0.02,
ξ = 0.05, β = 12, γ = 3, ω = 3.175 and τd = 2π

ω
and K = 1. The black solid curves and red

dash curves represent the displacement of mass x1 and capsule x2. (b) Time histories of the
velocity y1 of mass. (c) Time histories of the velocity y2 of mass. (d) Time histories of the
control signal u. Panel (e) depicts the phase portrait of period-2 attractor when the controller
is off. Panel (f) depicts the phase portrait of period-1 attractor when the controller is on.

6.5 Conclusion

This chapter studies the dynamical performance of three different impact systems with a
periodical force by a delay feedback controller. The control aims to switch the system
from undesired coexisting attractors to a desired period-1 response, so that some complex
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dynamical phenomenons can be avoided, such as the coexisting attractors and chaotic
motions. Compared with the other control methods, such as the linear gain control and the
Lai’s method [21], the advantage of the delay feedback control is that it does not need to have
the complete information of the desired attractor, while only the periods of the target attractor
is required. However, the delay feedback control has some disadvantages. For example,
the delay feedback control is hard to achieve the control from an undesired attractor to a
coexisting one with multiple periods of the undesired attractor. In addition, after introducing
this control, the controlled system becomes a infinite-dimensional system, which can result
in a significant increase of the computation time.

• In the first part, for the soft impact system, a scenario with grazing-induced multistabil-
ity with coexisting period-3, period-4 and period-7 attractors was investigated. Basins
of attraction reveal the complex dynamics of the system during grazing events. It was
found that, through fixing τd = 2π/ω in the delay feedback control, the system can be
controlled to a globally stable period-1 motion with grazing and one impact per period
of excitation, when its control parameter is K ∈ [0.148,0.42]. As the control gain
parameter increases (K > 0.42) the control destabilises the period-1 motion through
a Neimark-Sacker bifurcation and the system can bifurcate to chaos via torus. In
addition, the continuation techniques for nonsmooth dynamical systems were used for
identifying the parameter window defined by two period-doubling points at where the
desired (unstable) period-1 exists. The results show that the control is able to not only
stabilise the desired period-1 motion but also control impacting regimes in the system.

• In the second part, for the impact system with a drift, the bifurcation analysis was
studied, and the dynamical performance under different frequencies was revealed.
Through introducing the delay feedback control and fixing τd = 2π/ω in the delay
feedback control, the relative motion between the mass and slider bottom can be
controlled to the period-1 motion from the period-2 motion, when its control parameter
is K ∈ [0.008,1].

• In the third part, for the vibro-impact capsule system, the bifurcation analysis and the
simulations reveal the complex dynamics of the system under the complex discontinu-
ous conditions. This relative motion between mass and capsule can be controlled to
the period-1 motion from the period-2 motion, through introducing the delay feedback
control with τd = 2π/ω , when its control parameter is K ∈ [0.707,1.5].

6.6 Practical implementation of the delay feedback control
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From the previous numerical results, the efficiency of the delay feedback control on the
control of coexisting attractors was validated. In practice, the delayed feedback control
can be implemented by using a proper actuator. Based on the feedback from the historical
time series of the velocity, the control signal can be generated and applied together with the
external excitation of the system. However, when the delay feedback control is applied to
the system, the system’s states may witness a significant change due to the control signal.
Therefore, some constrains are needed for the controller (e.g., input saturation) to satisfy the
experimental setup for safety issues. On the other hand, the introduction of control constrains
may lead to a longer duration of stabilisation. Although there are some limitations, the delay
feedback control is still easy to be implemented, and is effective to control the coexisting
attractors.



Chapter 7

Control of coexisting attractors via the
linear and non-linear control strategies

7.1 Introduction

This chapter presents a new control method to achieve the control of coexisting attractors
for a class of non-autonomous dynamical systems. The central idea is through introducing a
control to a system parameter, which can be used to switch between coexisting attractors,
to generate a continuous path from the original undesired stable attractor to a desired one,
according to the information from the desired attractor. Special attention is given to the
process of which the value of the system parameter varies continuously from its original
value, and then returns continuously to the original value after the controlled trajectory of
the undesired attractor falls into the neighbourhood of the desired attractor, during switching
between coexisting attractors.

The chapter is split into sections in the following way: In Section 7.2, it presents the
concepts of the control method and details on how this control method is working on
controlling coexisting attractors of the soft impact system. In Section 7.3, it shows the
performance of this method on controlling coexisting attractors of the impact system with a
drift. In Section 7.4, the control of coexisting attractors in a vibro-impact capsule system
is studied, via the varying parameter control method. In Section 7.5, this control method is
adopted to duffing oscillator. Finally, some conclusions are drawn in Section 7.6.
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7.2 Control of the soft impact system

7.2.1 Design of the feedback control strategies

The following periodically forced systems with a single control input is considered

Ẏu(τ) = F(τ,Yu(τ),u(τ)),

Yu(τ0) = Yu,0,
(7.2.1)

where the input u(τ) is a scalar function of time, and Ẏ denotes differentiation with respect to
time τ . Assuming that the uncontrolled system, (7.2.1) with u(τ) = 0, has an attractor Yd(·)
(where the subscript in Yd stands for “desired”), but that the initial condition Yu,0 is away
from Yd(0), and possibly outside the basin of attraction of Yd(·). Also assuming that this
“desired” attractor Yd(·) is (internally) stable in the sense that it has no positive Lyapunov
exponents. It should be pointed out that the typical scenario is that Yu,0 is on one of the other
(“undesirable”) attractors of the uncontrolled system.

Soft impact system

In this section, the soft impact system shown in Fig. 3.2.1 will be used as an example to
study the proposed control method. Soft impacts occur in mechanical systems when an
object hits an obstacle with a negligible mass but with a non-negligible stiffness, see e.g.
[39, 15, 156, 9, 157]. As can be seen from Fig. 3.2.1, it is assumed that the discontinuity
boundary is fixed at x = e, with e > 0 being the nondimensional gap. The equations of motion
of the oscillator are in form (7.2.1), where Y (τ) := (x(τ),v(τ))T . Three different cases will
be considered. Defining for scalar ũ

Fgen(Y, ũ,ue) :=

[
0 I

−I −βH(x− e) −2ζ

]
Y +

[
0

β (e+ue)H(x− e−ue)+ ũ

]
, (7.2.2)

the three cases for control input are

Flin(τ,Y,u) := Fgen(Y,aω
2 sin(ωτ)+u,0), (7.2.3)

Fa(τ,Y,u) := Ffrc(Y,(a+u)ω2 sin(ωτ),0), (7.2.4)

Fe(τ,Y,u) := Ffrc(Y,aω
2 sin(ωτ),u). (7.2.5)

The first case, Flin has linear control input and the second case, Fa, has parametric control
input, varying the forcing amplitude, while the third case adjusts the gap e. The function
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H(·) stands for the Heaviside step function. In the right-hand side Ffrc, defined in (7.2.2), the
variables (including time) and parameters of the system are nondimensionalised, as shown in
Section 3.2.

The right-hand side given in Eq. (7.2.2) is a typical non-autonomous dynamical system
with the one-sided elastic constraint considered as the nonsmooth property that can lead to
complex phenomena, such as the grazing bifurcation [44, 46], the coexistence of multistable
attractors [158, 54] and the chaotic motions [156]. Here, a situation that system (7.2.1) with
u(τ) = 0 has many coexisting attractors within some specific ranges of the system parameters
was considered. In particular, among the coexisting attractors, Yd denotes a desired stable
attractor with non-positive Lyapunov exponents exists. Usually, this Yd(·) is a stable periodic
orbit. For Yd, small changes in system parameters do not affect the response of the system
significantly, such that the attractor Yd will persist.

Distance-reducing control

Let us introduce the following definition.

Definition 7.2.1. For a dynamical system Ẏ (τ) = F(τ,Y (τ),0), Yu(τ0) = Yu,0 (so, of type
(7.2.1) with u = 0) with two stable coexisting attractors Yc(·) and Yd(·), if there exists a
continuous control u(τ) such that system (7.2.1) with this control u(·) and Yu,0 = Yc(τ0)

satisfies Yu(τ)−Yd(τ) → 0 for τ → ∞, it is said that Yc is controllable to Yd (by u). If
Yu(τ

∗) = Yd(τ
∗) for some finite time τ∗, it is said that Yc is controllable to Yd in finite time.

Since Yd(·) is an attractor for u(τ) = 0, the system will follow Yd(τ) for τ > τ∗, if
u(τ) = 0 for τ > τ∗ after controlling to Yd in finite time τ∗. Let us assume that system
(7.2.1) is controllable, and there exists a control input u(·) that can be used for controlling its
multistability.

Define the difference between the desired and the current states as

d(τ) := Yd(τ)−Yu(τ), such that

∆(τ) := 〈d(τ),d(τ)〉 ≥ 0

is the distance at time τ from the desired attractor Yd, where 〈·, ·〉 is the inner product of two
vectors. Then, a simple feedback control strategy will be investigated to reduce this distance
∆ over time, such that [d/dτ]∆(τ)< 0. Requiring that u(τ) has permissible values between
−M1 and M1, i.e. u ∈ [−M1.M1], and Lipschitz constant M2, where M1,2 ∈ R+, u at every
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time τ ≥ τ0 can be adjusted according to

u̇(τ) = M2 sign
[
− ∂

∂u
d

dτ
∆(τ)

]
H(M1 +u)H(M1 −u), (7.2.6)

starting from u(τ0) = 0, for as long as ∆(τ)> ε with some tolerance ε � 1. In Eq. (7.2.6),
H(M1−u)H(M1+u) is the indicator function for the interval [−M1,M1] (recall that H is the
Heaviside function). The term [d/dτ]∆(τ) is a function of (τ,Yu(τ),Yd(τ),u(τ)), making the
derivative with respect to u non-zero:

∂

∂u

[
d

dτ
∆

]
(τ,Yu,Yd,u) = 2〈Yd −Yu,∂uF(τ,Yu,u)〉. (7.2.7)

In the practical algorithms described in Section 7.2.1 and 7.2.1, Eq. (7.2.6) will be applied
only when [d/dτ]∆(τ)> 0, otherwise, u̇(τ) = 0.

Implementation with finite sampling step — linear case

Let us assume the sampling time step, h > 0, such that τi = τ0 + ih. If the control input u
enters the right-hand side linearly with a constant coefficient vector b, such that F(τ,Y,u) =
F(τ,Y )+ bu (as in example Flin given in (7.2.2), where b = (0,1)T), the notation in the
definition (7.2.6) of the control u and the resulting expression (7.2.7) simplifies. Thus,
Algorithm 1 can be formulated separately for this common case. In the formulation of
Algorithm 1 with the sampling step h, the control input u(τ) is of type “zero-order hold”.
That is, u(τ) is a constant ui on the sampling interval [τi,τi+1], and the Lipschitz constant M2

applies to changes per time step: |ui+1 −ui| ≤ hM2.
After introducing the algorithm, the following main theorem can be obtained.

Theorem 7.2.1. Let the dynamical system Ẏ (τ) = F(τ,Y )+(0,u(τ))T with u = 0 have two
stable coexisting attractors Yc and Yd, and let M1,2 be bounded intervals in R. We assume that
there exists a time τ∗ > τ0, such that for all sufficiently small sampling steps h the control U
and trajectory Yu obtained by Algorithm 1 with bounds M1,2 satisfy

∣∣〈d(τ0),d(τ0)〉+
n∗

∑
i=0

[
2〈d(τi),F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi)〉h−〈d(τi),U̇(τi)〉h2

+ 〈F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi),F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi)〉h2
]∣∣≤ c1h2

(7.2.8)
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(here d(τ) = Yd(τ)−Yu(τ) and the τi are from the interval partition [τ0,τ
∗) =

⋃n∗
i=0[τi,τi+1)

with τi+1 = τi +h for i = 0, . . . ,n∗). Then these two stable attractors are controllable by this
external controller.

Proof. Assume that there exists a sufficiently small h> 0, the interval [τ0,τ
∗] =

⋃n∗
i=0[τi,τi+1],

where τi+1 = τi +h and i = 1, · · · ,n∗. For τ ∈ [τi,τi +h], the distance vector can be defined
as d(τ) := Yd(τ0)+

∫
τ

τ0
F(τs,Yd(τs))dτs −Yc(τ0)−

∫
τ

τ0
(F(τs,Yu(τs))+U(τs))dτs.Thus,

〈d(τ),d(τ)〉=〈Yd(τi)+
∫

τ

τi

F(τs,Yd(τs))dτs −Yu(τi)−
∫

τ

τi

(F(τs,Yu(τs))+U(τs))dτs,

Yd(τi)+
∫

τ

τi

F(τs,Yd(τs))dτs −Yu(τi)−
∫

τ

τi

(F(τs,Yu(τs))+U(τs))dτs〉,

where Yu(τi) :=Yc(τ0)+
∫

τi
τ0
(F(τs,Yu(τs))+U(τs))dτs. Since U(τ) =U(τi)+U̇(τi)(τ −τi),

where τ ∈ [τi,τi +h], and Eq. (7.2.7), it gives

〈d(τ),d(τ)〉=〈Yd(τi)−Yu(τi)+
∫

τ

τi

(F(τs,Yd(τs))−F(τs,Yu(τs))−U(τs))dτs,

Yd(τi)−Yu(τi)+
∫

τ

τi

(F(τs,Yd(τs))−F(τs,Yu(τs))−U(τs))dτs〉

=〈d(τi),d(τi)〉+2〈d(τi),
∫

τ

τi

(F(τs,Yd(τs))−F(τs,Yu(τs))−U(τi))dτs〉

−2〈d(τi),
∫

τ

τi

U̇(τi)(τs − τi)dτs〉+ 〈
∫

τ

τi

(F(τs,Yd(τs))−F(τs,Yu(τs))

−U(τi))dτs,
∫

τ

τi

(F(τs,Yd(τs))−F(τs,Yu(τs))−U(τi))dτs〉

−2〈
∫

τ

τi

(F(τs,Yd(τs))−F(τs,Yu(τs))−U(τi))dτs,
∫

τ

τi

U̇(τi)(τs − τi)dτs〉

+ 〈
∫

τ

τi

U̇(τi)(τs − τi)dτs,
∫

τ

τi

U̇(τi)(τs − τi)dτs〉.

When τ = τi+1, it can obtain that,

〈d(τi+1),d(τi+1)〉−〈d(τi),d(τi)〉

=2〈d(τi),F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi)〉h−〈d(τi),U̇(τi)〉h2

+ 〈F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi),F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi)〉h2

−〈F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi),U̇(τi)〉h3 + 1
4〈U̇(τi),U̇(τi)〉h4

=2〈d(τi),F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi)〉h−〈d(τi),U̇(τi)〉h2

+ 〈F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi),F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi)〉h2 +O(h3).
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If 〈d(τi+1),d(τi+1)〉−〈d(τi),d(τi)〉 is not positive, the inequality (7.2.9) in Step 2 is obtained.
By repeating n∗ times, then

〈d(τn∗),d(τn∗)〉−〈d(τ0),d(τ0)〉

=
n∗−1

∑
i=0

[
〈d(τi+1),d(τi+1)〉−〈d(τi),d(τi)〉

]
=

n∗

∑
i=0

[
2〈d(τi),F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi)〉h−〈d(τi),U̇(τi)〉h2

+ 〈F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi),F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi)〉h2
]
+O(h2)

Hence, 〈d(τn∗),d(τn∗)〉 ≤ c1h2 indicating that the controlled trajectory is within the neigh-
borhood of the desired attractor.

Algorithm 1 Linear control
Step 0:
Choose M1 and M2, where M1 is the boundary of |u(τ)|, M2 is the boundary of |u̇(τ)|, and
u̇(τ) := du(τ)

dτ
. Take the initial control u(τ0) = 0 ∈ M1, and set the iteration index i = 0 and

the time step h. Below we denote U(τ) = bu(τ).
while the termination criterion 〈d(τi),d(τi)〉 ≤ ε is not satisfied, do

Step 1: Compute the range of u̇(τi) that satisfies the following criterion

〈d(τi),U̇(τi)〉h ≥2〈d(τi),F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi)〉 (7.2.9)
+ 〈F(τi,Yd(τi))−F(τi,Yu(τi))−U(τi),F(τi,Yd(τi))

−F(τi,Yu(τi))−U(τi)〉h,

calling this range the feasible range for u̇(τi).
Step 2: If this feasible range is greater than M2 and ensure that ui+1 satisfies M1, take
the minimum value of |u̇(τi)| and go to Step 3. Otherwise, choose the value u̇(τi) such
that both M1 and M2 are satisfied and is the closest to the feasible range of u̇(τi), and go
to Step 3. (NB. Use u̇(τi) = 0 if d(τi) decreases at τi.)
Step 3:
Use ui+1 = ui + u̇(τi)h for input u in Eq. (7.2.1) for τ > τi. Increase i by 1 and return to
Step 1.

end while

According to Theorem 7.2.1, the following lemma can be obtained.

Lemma 7.2.2. For any two of stable coexisting attractors of system (7.2.2), if the control
sequence {ui}, i = 1, · · · ,n∗ generated by Algorithm 1 satisfies u(τ0) = 0, u(τ) ∈ M1, u̇(τ) ∈
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M2, where M1,2 are the bounded intervals of R, inequality (7.2.8) and |u(τ∗)| ≤ c1h, then
these two stable attractors are controllable by this external control sequence.

Implementation with finite sampling step — nonlinear case

By adjusting the accessible parameter of non-autonomous dynamical systems, such as the
amplitude of excitation, system energy is altered, so the dynamical property of the system
can be controlled (see e.g. [66, 21, 72]). In this part, the control method in in Algorithm
1 will be applied to an accessible system parameter to achieve the switching between two
stable coexisting attractors. The detailed algorithm of the new control method (Algorithm 2)
is given as below, and the following theorem is introduced.

Theorem 7.2.3. Let the dynamical system Ẏ (τ) = F(τ,Y,up(τ)) with up = 0 have two stable
coexisting attractors Yc and Yd, and let Mp,κ , κ = 1,2 be bounded intervals in R. We assume
that there exists a time τ∗ > τ0, such that for all sufficiently small sampling steps h the control
up and trajectory Yu obtained by Algorithm 2 with bounds Mp,κ satisfy

∣∣〈dp(τ0),dp(τ0)〉+
n∗

∑
i=0

[
2〈dp(τi),F(τi,Yd(τi))−F(τi,Yu(τi),up(τi))〉h

−〈dp(τi),
DF(τi,Yu(τi),up(τi))

Dτ
〉h2 + 〈F(τi,Yd(τi))−F(τi,Yu(τi),up(τi)),F(τi,Yd(τi))

−F(τi,Yu(τi),up(τi))〉h2 −〈dp(τi),
DF(τi,Yu(τi),up(τi))

DY
〉h2

−〈dp(τi),
DF(τi,Yu(τi),up(τi))

Dup
u̇p(τi)〉h2

]∣∣≤ c2h2, (7.2.10)

(here d(τ) = Yd(τ)−Yu(τ) and the τi are from the interval partition [τ0,τ
∗) =

⋃n∗
i=0[τi,τi+1)

with τi+1 = τi +h for i = 0, . . . ,n∗). Then these two stable attractors are controllable by this
external controller.

Proof. Assume that there exists a sufficiently small h> 0, the interval [τ0,τ
∗] =

⋃n∗
i=0[τi,τi+1],

where τi+1 = τi +h, i = 1, · · · ,n∗. For τ ∈ [τi,τi +h], the distance vector can be defined as

dp(τ) := Yd(τ0)+
∫

τ

τ0

F(τs,Yd(τs))dτs −Yc(τ0)−
∫

τ

τ0

F(τs,Yu(τs),up(τs))dτs.

Next, we consider the Taylor expansion of F(τ,Yu(τ),up(τ)) within the time interval as
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〈dp(τi+1),dp(τi+1)〉

= 〈Yd(τi)−Yu(τi)+
∫

τi+1

τi

(F(τs,Yd(τs))−F(τi,Yu(τi),up(τi))−
DF(τi,Yu(τi),up(τi))

Dτ
(τs

− τi)−
DF(τi,Yu(τi),up(τi))

DY
Ẏu(τi)(τs − τi)−

DF(τi,Yu(τi),up(τi))

Dup
u̇p(τi)(τs − τi))dτs,

Yd(τi)−Yu(τi)+
∫

τi+1

τi

(F(τs,Yd(τs))−F(τi,Yu(τi),up(τi))−
DF(τi,Yu(τi),up(τi))

Dτ
(τs

− τi)−
DF(τi,Yu(τi),up(τi))

DY
Ẏu(τi)(τs − τi)−

DF(τi,Yu(τi),up(τi))

Dup
u̇p(τi)(τs − τi))dτs〉.

By following the same procedure in Theorem 7.2.1, this theorem can be proved.

Algorithm 2 Nonlinear control

Step 0: Choose Mp,1 and Mp,2, which are the boundaries of up(τ) and u̇p(τ), respectively.
Take the initial control up(τ0) = 0 ∈ Mp,1, and set the iteration i := 0 and the time step h.
while the termination criterion 〈dp(τi),dp(τi)〉 ≤ ε is not satisfied, do

Step 1: Compute the feasible range of u̇p(τi) to satisfy the following criterion

〈dp(τi),
DF(τi,Yu(τi),up(τi))

Dup
〉u̇p(τi)h

≥ 2〈dp(τi),F(τi,Yd(τi))−F(τi,Yu(τi),up(τi))〉−〈dp(τi),
DF(τi,Yu(τi),up(τi))

Dτ
〉h

+ 〈F(τi,Yd(τi))−F(τi,Yu(τi),up(τi)),F(τi,Yd(τi))−F(τi,Yu(τi),up(τi))〉h

−〈dp(τi),
DF(τi,Yu(τi),up(τi))

DY
〉h, (7.2.11)

Step 2: If this range is greater than M2 and ensure that up,i satisfied Mp,1, take the
minimum value of |u̇p(τi)| and go to Step 3. Otherwise, choose the value u̇p(τi) such
that both Mp,1 and Mp,2 are satisfied and is closest to the feasible range of u̇p(τi). Then
go to Step 3.
Step 3: Use up,i+1 = up,i+ u̇p(τi)h for Eq. (7.2.1) for τ > τi. Increment i by 1 and return
to Step 1.

end while

According to Theorem 7.2.3, the following lemma can be obtained.

Lemma 7.2.4. For any two of stable coexisting attractors of system (7.2.2), if the control
sequence {up,i}, i = 1, · · · ,n∗ generated by Algorithm 2 satisfies up(τ0) = 0, up(τ) ∈ Mp,1,
u̇p(τ) ∈ Mp,2, where Mp,1 and Mp,2 are the bounded intervals of R, inequality condition
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(7.2.10) and |up(τ
∗)| ≤ c2h, then these two stable attractors are controllable by varying the

system parameter p.
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Fig. 7.2.1 Flowchart of the nonlinear control algorithm

The flowchart to implement the nonlinear control strategy is presented in Fig. 7.2.1. This
flowchart is also applicable to the linear control strategy.
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7.2.2 Numerical investigation

This section will show the effectiveness of the proposed control methods by using the soft
impact system shown in Fig. 3.2.1, which is a typical nonsmooth dynamical system exhibiting
many coexisting attractors at its near-grazing dynamics [54]. The following parameters were
used for which two stable attractors, a period-2 and a period-5 responses, coexist as shown in
Fig. 7.2.2.

ζ = 0.01, e = 1.26, a = 0.7, β = 28 and ω = 0.85.

Fig. 7.2.2 Basins of attraction of the soft impact system computed for ζ = 0.01, e= 1.26, a=
0.7, β = 28 and ω = 0.85. Orange dots denote the period-5 attractor with black basin, and
green dots represent the period-2 attractor with red basin. The right panels present the
trajectories of the period-5 and the period-2 attractors on the phase plane, where blue lines
indicate the impact boundary.

Linear control

Firstly, the dynamical response of the soft impact system of type (7.2.2) with right-hand side
Flin given in (7.2.3) is presented in Fig. 7.2.3 at where the original period-5 attractor was
switched to the period-2 attractor by using the external control strategy. The time step of the
simulations was fixed at h = 0.002, and the control strategy was implemented at τ = 591.358.
As can be seen from Figs. 7.2.3(b) and (c), the period-5 response experienced a transition
and was settled down to the period-2 response around τ = 637. Fig. 7.2.3(d) shows the
transition by grey line on the phase plane and indicates the steady-state response by red line.
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Fig. 7.2.3 (a) The period-5 response on the phase plane with the Poincaré sections denoted
by orange dots. (b) Time histories of the desired (red line) and the current (black line)
displacements of the system under the external control strategy (Algorithm 1) with M1 = 5 and
M2 = 3. (c) Time histories of the desired (red line) and the current (black line) velocities of
the system. (d) Trajectory of the system on the phase plane under the external control strategy,
where grey and red lines represent the transient and the steady-state responses, respectively.
(e) Time history of the distance between the desired and the controlled trajectories in 2-norm.
(f) Time history of the control sequence generated by the external control strategy. Blue lines
in (a) and (d) indicate the impact boundary, while the blue lines in (e) and (f) mark the zero
reference. The result was computed for ζ = 0.01, e = 1.26, a = 0.7, β = 28 and ω = 0.85.

Figs. 7.2.3(e) and (f) also demonstrate the effectiveness of the control where the distance
between the present and the desired attractors was reduced once the control sequence was
applied. It can be seen that the overall trend of the distance was decreased, and according to
the simulation, it was about 0.026 at τ = 637 and was about nil after τ = 650. In addition, it
can be seen from Fig. 7.2.3(f) that, during the control process, no control was applied when
the distance between the two trajectories was decreasing. Then a continuous increase in the
control signal to 0.832 at τ = 593.01 and a continuous decrease to 0 at τ = 594.65 were
recorded. Thereafter, the control experienced intermittent control actions, and the amplitudes
of the control actions decreased as the two trajectories were closer. Finally, the control was
turned off when the control target was achieved.

Fig. 7.2.4 shows the control result from the period-2 to the period-5 attractor by using
the external control strategy. According to the simulation, the control was switched on
at τ = 591.358, and the distance between the two trajectories was decreased to 0.01 at
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Fig. 7.2.4 (a) The period-2 response on the phase plane with the Poincaré sections denoted
by green dots. (b) Time histories of the desired (red line) and the current (black line)
displacements of the system under the external control strategy (Algorithm 1) with M1 = 5 and
M2 = 3. (c) Time histories of the desired (red line) and the current (black line) velocities of
the system. (d) Trajectory of the system on the phase plane under the external control strategy,
where grey and red lines represent the transient and the steady-state responses, respectively.
(e) Time history of the distance between the desired and the controlled trajectories in 2-norm.
(f) Time history of the control sequence generated by the external control strategy. Blue lines
in (a) and (d) indicate the impact boundary, while the blue lines in (e) and (f) mark the zero
reference. The result was computed for ζ = 0.01, e = 1.26, a = 0.7, β = 28 and ω = 0.85.

τ = 643.5. The control signal became zero gradually when the distance was sufficiently
small at τ = 651.9.

Nonlinear control

In this part, the effectiveness of the nonlinear control strategy (Algorithm 2) by varying the
amplitude of excitation a and the gap e, as given in (7.2.4) and (7.2.5) will be verified. Again,
the control target here is to switch the response of system (7.2.1) with right-hand side (7.2.4)
between the period-5 and period-2 attractors by varying its amplitude of excitation.

Fig. 7.2.5 shows the control of the soft impact system from the period-5 attractor to
the period-2 attractor by varying its amplitude of excitation a. Based on the calculation,
when the nonlinear control strategy was applied at τ = 591.358, the controlled trajectory
of the system experienced a transition as observed in Figs. 7.2.5(b), (c) and (d). As can be
seen from Fig. 7.2.5(e), the distance between the desired and the controlled trajectories in
2-norm was decreased indicating the controlled trajectory approached to the desired one,
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Fig. 7.2.5 (a) The period-5 response on the phase plane with the Poincaré sections denoted
by orange dots. (b) Time histories of the desired (red line) and the current (black line)
displacements of the system under the nonlinear control strategy (Algorithm 2) by varying
the amplitude of excitation with Ma,1 = 0.3 and Ma,2 = 5. (c) Time histories of the desired
(red line) and the current (black line) velocities of the system. (d) Trajectory of the system
on the phase plane under the nonlinear control strategy, where grey and red lines represent
the transient and the steady-state responses, respectively. (e) Time history of the distance
between the desired and the controlled trajectories in 2-norm. (f) Time history of the control
sequence generated by the nonlinear control strategy. Blue lines in (a) and (d) indicate the
impact boundary, while the blue lines in (e) and (f) mark the zero reference. The result was
computed for ζ = 0.01, e = 1.26, a = 0.7, β = 28 and ω = 0.85.

and this distance was reduced to 0.001 at τ ≈ 640.64. Fig. 7.2.5(f) presents the time history
of the control signal up(τ) that initiated from τ = 591.358 and terminated at τ = 640.854.
Thereafter, up(τ) = 0, and the amplitude of excitation was back to its original value, a = 0.7.

The control from the period-2 attractor to the period-5 attractor by varying the amplitude
of excitation a is presented in Fig. 7.2.6. The control strategy was applied at τ = 591.358,
but the distance between the two trajectories was not decreased continuously. Therefore,
compared to the external control strategy, it took a longer time for the system to settle down to
the period-5 attractor. According to the simulation, the control was switched off at τ = 689.1
when the distance was reduced to 0.001.

When applying the control input up(τ) to the gap e, as given in (7.2.5), the control aims
again to switch the response of the soft impact system (7.2.1) with right-hand side Fe(τ,Y,up)

given in (7.2.5), between the period-5 and period-2 attractors by varying its gap e.



7.2 Control of the soft impact system 123

Fig. 7.2.6 (a) The period-2 response on the phase plane with the Poincaré sections denoted
by green dots. (b) Time histories of the desired (red line) and the current (black line)
displacements of the system under the nonlinear control strategy (Algorithm 2) by varying
the amplitude of excitation with Ma,1 = 0.3 and Ma,2 = 5. (c) Time histories of the desired
(red line) and the current (black line) velocities of the system. (d) Trajectory of the system
on the phase plane under the nonlinear control strategy, where grey and red lines represent
the transient and the steady-state responses, respectively. (e) Time history of the distance
between the desired and the controlled trajectories in 2-norm. (f) Time history of the control
sequence generated by the nonlinear control strategy. Blue lines in (a) and (d) indicate the
impact boundary, while the blue lines in (e) and (f) mark the zero reference. The result was
computed for ζ = 0.01, e = 1.26, a = 0.7, β = 28 and ω = 0.85.

Fig. 7.2.7 presents the control result from the period-5 to the period-2 attractor by varying
system’s gap e. The control strategy was applied at τ = 591.358 and was switched off at
τ = 659.6. During the control period, the trajectory of the system experienced a transition,
and the distance between the controlled and the desired trajectories was decreased from 1.03
to 0.001. Within the same time duration, the control signal up(τ) reached a maximum value
up(τ) = 0.21 and decreased to −0.02 at τ = 630.326. Thereafter, the control signal did not
change significantly and reduced to nil gradually after τ = 659.49.

To demonstrate the switching from the period-2 to the period-5 attractor by varying
system’s gap, Fig. 7.2.8 presents the control result. Based on the calculation, the control
strategy was applied at τ = 591.358, and the distance between the two trajectories was
reduced from 1.03 to 0.001 at τ = 703.794. Thereafter, the control signal up(τ) decreased to
nil, and the control target was achieved. Compared to the control result shown in Fig. 7.2.7,
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Fig. 7.2.7 (a) The period-5 response on the phase plane with the Poincaré sections denoted
by orange dots. (b) Time histories of the desired (red line) and the current (black line)
displacements of the system under the nonlinear control strategy (Algorithm 2) by varying
system’s gap with Me,1 = 0.3 and Me,2 = 5. (c) Time histories of the desired (red line) and the
current (black line) velocities of the system. (d) Trajectory of the system on the phase plane
under the nonlinear control strategy, where grey and red lines represent the transient and the
steady-state responses, respectively. (e) Time history of the distance between the desired
and the controlled trajectories in 2-norm. (f) Time history of the control sequence generated
by the nonlinear control strategy. Blue lines in (a) and (d) indicate the impact boundary,
while the blue lines in (e) and (f) mark the zero reference. The result was computed for
ζ = 0.01, e = 1.26, a = 0.7, β = 28 and ω = 0.85.

the transition from the period-2 to the period-5 attractor took a longer time and had a more
complex transient response, which was due to the complexity of the period-5 response.

Bifurcation analysis of the coexisting attractors

In this section how the control parameters (excitation amplitude a and mass-spring gap e)
will affect the period-2 and period-5 coexisting attractors studied in the previous section
will be studied in detail. For this purpose the path-following methods for piecewise-smooth
dynamical systems, using the continuation platform COCO [25], will be employed. The
precise COCO-implementation for the soft impact system (7.2.2) can be found in a previous
publication by the authors [1], which will be adopted in the present work.

As can be seen from the previous section, in order to apply the proposed control mecha-
nism it is essential to identify parameter regimes where the considered period-2 and period-5
attractors maintain both their stability properties and orbit structure. For this purpose a one-
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Fig. 7.2.8 (a) The period-2 response on the phase plane with the Poincaré sections denoted
by green dots. (b) Time histories of the desired (red line) and the current (black line)
displacements of the system under the nonlinear control strategy (Algorithm 2) by varying
system’s gap with Me,1 = 0.3 and Me,2 = 5. (c) Time histories of the desired (red line) and the
current (black line) velocities of the system. (d) Trajectory of the system on the phase plane
under the nonlinear control strategy, where grey and red lines represent the transient and the
steady-state responses, respectively. (e) Time history of the distance between the desired
and the controlled trajectories in 2-norm. (f) Time history of the control sequence generated
by the nonlinear control strategy. Blue lines in (a) and (d) indicate the impact boundary,
while the blue lines in (e) and (f) mark the zero reference. The result was computed for
ζ = 0.01, e = 1.26, a = 0.7, β = 28 and ω = 0.85.

parameter continuation of the underlying attractors with respect to the excitation amplitude
a will be carried out, through using the contact time as solution measure, i.e. the time the
impacting mass stays in contact with the secondary spring per orbital period.

The result of the process described above is depicted in Fig. 7.2.9, which shows yellow
and green curves corresponding to the numerical continuation of the period-2 and period-5
attractors detected in Fig. 7.2.2, respectively. In both cases, the parameter window where
the corresponding periodic solutions remain stable and maintain their orbit structure is
determined by period-doubling and grazing bifurcations of limit cycles. Specifically, the
period-2 solution traced along the yellow branch loses stability when the excitation amplitude
decreases below a ≈ 0.63111, where the solution undergoes a period-doubling bifurcation
(PD1). Here, the original period-2 orbit (with one impact per orbital period) becomes
unstable and a family of period-4 orbits is born, see for instance the test solution plotted in
Fig. 7.2.9(f), right after the bifurcation occurs. On the other hand, when the parameter a
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Fig. 7.2.9 (a) One-parameter continuation of the coexisting attractors shown in panels (b)
(yellow branch) and (c) (green branch) with respect to the excitation amplitude a, computed
for the parameter values ζ = 0.01, e = 1.26, a = 0.68, β = 28 and ω = 0.85 of the soft
impact system (7.2.2). The vertical axis shows the contact time, the time the impacting mass
stays in contact with the secondary spring per orbital period. Branches of stable and unstable
periodic orbits are depicted with solid and dashed lines, respectively. The points labeled
GR1 (a ≈ 1.54462), GR2 (a ≈ 0.71258) and PD1 (a ≈ 0.63111), PD2 (a ≈ 0.64564) denote
grazing and period-doubling bifurcations of limit cycles. Panels (g) and (e) depict periodic
solutions corresponding to the grazing bifurcations points GR1 and GR2, respectively. Here,
a dot marks a grazing contact with the impact boundary x = e (vertical blue line). Panel
(f) presents a period-4 attractor computed for a = 0.63, while panel (d) depicts a period-10
solution calculated at a = 0.645, originated by the period-doubling bifurcations PD1 and
PD2, respectively.
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Fig. 7.2.10 (a) Two-parameter continuation of the bifurcation points PD1 (blue curve), GR1
(green curve), PD2 (black curve) and GR2 (red curve) found in Fig. 7.2.9(a), with respect to
the excitation amplitude a and mass-spring gap e. The grey area represents the parameter
region in which the stable period-2 solution of the type shown in panel (b) exists. The yellow
region corresponds to the coexistence of the latter solution type with the stable period-5 orbit
type presented in panel (c). Panels (f)-(g), (b)-(c) and (d)-(e) represent pairs of coexisting
attractors computed at the test points P1 (a = 0.68, e = 1.26), P2 (a = 1.1, e = 2.05) and P3
(a = 1.5, e = 2.8).

increases, a grazing bifurcation is found at a ≈ 1.54462, where the solution makes tangential
contact with the impact boundary x = e, see Fig. 7.2.9(g). After this point, a small window
of period-2 solutions with two impacts per orbital period exists, and they lose stability via a
fold bifurcation at a ≈ 1.54486 (not shown in the diagram). An analogous scenario is found
for the period-5 attractor (with three impacts per orbital period) depicted in Fig. 7.2.9(c).
As before, the window of stability (and orbit structure preservation) for this solution is
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determined by the period-doubling bifurcation PD2 (a ≈ 0.64564) and the grazing point GR2
(a ≈ 0.71258), which results in a significantly smaller window than the one obtained for the
period-2 attractor.

With the results of the one-parameter continuation it is necessary to determine a parameter
region in the a-e plane where the considered period-2 and period-5 attractors maintain both
their stability properties and orbit structure. To this end, a two-parameter continuation of
the codimension-one bifurcations detected above will be performed. Fig. 7.2.10(a) shows
the locus of the period-doubling points PD1 (blue curve), PD2 (black curve) and grazing
bifurcations GR1 (green curve), GR2 (red curve) encountered in Fig. 7.2.9(a). In this figure,
two regions are highlighted, in grey and yellow colors. The grey area represents the parameter
region in which the stable period-2 solution (with one impact per orbital period, see panel (b))
exists. The yellow region corresponds to the coexistence of the latter solution with the stable
period-5 orbit (with three impacts per orbital period, see panel (c)). Furthermore, several test
points have been selected in order to illustrate the validity of the highlighted yellow area in
the a-e plane. Specifically, pairs of coexisting attractors have been computed at the test points
P1 (a = 0.68, e = 1.26), P2 (a = 1.1, e = 2.05) and P3 (a = 1.5, e = 2.8), see panels (b)–(g)
in Fig. 7.2.10. In this way, the yellow area can be used as a reference for the applicability
of the proposed control scheme, so as to guarantee that the parametric perturbations do not
bring the system to a regime where either of the considered attractors lose stability or the
intended orbit structure.

7.3 Control of the impact system with a drift

7.3.1 Mathematical description and preparation

In this part, the control of coexisting attractors of an impact system with a drift described
by Eq. (3.3.7), (3.3.8) and (3.3.9) will be considered. As shown in [4], this system has
a phenomenon of coexisting attractors. It is an ideal model to test the effectiveness of
the varying parameter control method. Hence, at the following numerical discussion, the
concepts and strategy in Section 7.2.1 will be adopt to achieve the control from one attractor
to other coexisting attractors for the impact system with a drift.

The equations of motion of the impact system with a drift are in form (7.2.1), where
Y (τ) := (p(τ),y(τ),q(τ))T . Two different cases will be considered. Defining for scalar ũ

• No contact, i.e. p < q+g,
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Fgen, dr(Y (τ), ũ) :=

 0 1 0
0 0 0
0 0 − 1

2ξ

Y (τ)+

 0
ũ+b

0

 ,
• Contact without progression, i.e. p ≥ q+g and 0 < 2ξ y+q < 1,

Fgen, dr(Y (τ), ũ) :=

 0 1 0
0 −2ξ −1
0 1 0

Y (τ)+

 0
ũ+b

0

 ,
• Contact with progression, i.e. p ≥ q+g and 2ξ y′+q ≥ 1.

Fgen, dr(Y (τ), ũ) :=


0 0 − 1

2ξ

0 0 0
0 0 − 1

2ξ

Y (τ)+


1

2ξ

ũ+b−1
1

2ξ

 ,
the two cases for control input are

Flin, dr(τ,Y,u) := Fgen, dr(Y,acos(ωτ +φ)+u), (7.3.1)

Fa, dr(τ,Y,u) := Fgen, dr(Y,(a+u)cos(ωτ +φ)). (7.3.2)

The first case, Flin, dr has linear control input and the second case, Fa, dr, has parametric
control input, varying the forcing amplitude. The details of the algorithm for the above
systems are illustrated in Section 7.2.1.

7.3.2 Numerical investigation

In this section, the impact system with a drift shown in Fig. 3.3.1 will be used for studying
the effectiveness of the proposed method. This system will choose the following parameters

a = 0.3, b = 0.1, ξ = 0.1, ω = 1.4, g = 0.02, φ =
π

2
.

For these parameters, the impact system with a drift coexists one stable and one chaotic
attractor. One is the period-4 attractor, and another is the chaotic attractor, as shown in
Fig. 7.3.1. The control target at following discussions is to achieve the switching from the



130 Control of coexisting attractors via the linear and non-linear control strategies

chaotic attractor to the period-4 attractor through introducing the information of the desired
attractor as a target. Specifically, in the first part, a linear control input will be introduced
into the system described by Eq. (3.3.7), (3.3.8) and (3.3.9) to achieve the control target. In
addition, in the second part, since the amplitude a is the parameter, which can control the
velocity conveniently, a parametric control input will be introduced into the amplitude to
achieve the control target.

(a)

(b)

(c)

Fig. 7.3.1 Basin of attraction of the impact system with a drift computed for a = 0.3, b = 0.1,
ξ = 0.1, ω = 1.4, g = 0.02 and φ = π

2 [4]. Orange dots denote the chaotic attractor with
yellow basin and black dots represent the period-4 attractor with purple basin.

Linear control

At this part, how the linear control input affects the dynamical behavior of the impact
system with a drift will be investigated. In Fig. 7.3.2, it shows the original chaotic attractor
is switched to the period-4 attractor by an external control input. The time step of the
simulations was fixed as h = 0.001 and the control ends when the distance between this two
attractors is 0.005. At time τ = 2692.8 the control strategy was implemented and the chaotic
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Fig. 7.3.2 (a) The chaotic attractor on the phase plane with the Poincaré sections denoted
by orange dots. (b) Time history of the response relative displacement with control on,
under M1 = 5 and M2 = 150. (c) Trajectory of the system on the phase plane under the
linear control strategy, where grey and red lines represent the transient and the steady-state
responses, respectively. (d) Time histories of the desired (red line) and the current (black line)
velocities of the system. (e) Time history of the distance between the desired and controlled
trajectory, and the distance is based on 2-Norm. (f) Time history of the control sequence
generated by the linear control strategy. (g) Time history of the control sequence in the small
time range. While, the blue lines in (e), (f) and (g) mark the zero reference. The result was
computed for a = 0.3, b = 0.1, ξ = 0.1, ω = 1.4, g = 0.02 and φ = π

2 .
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Fig. 7.3.3 (a) The chaotic attractor on the phase plane with the Poincaré sections denoted
by orange dots. (b) Time history of the response relative displacement with control on,
under Ma,1 = 0.15 and Ma,2 = 35. (c) Trajectory of the system on the phase plane under the
nonlinear control strategy, where grey and red lines represent the transient and the steady-
state responses, respectively. (d) Time histories of the desired (red line) and the current
(black line) velocities of the system. (e) Time history of the distance between the desired and
controlled trajectory, and the distance is based on 2-Norm. (f) Time history of the control
sequence generated by the nonlinear control strategy. (g) Time history of the control signal
in the small time range While, the blue lines in (e), (f) and (g) mark the zero reference. The
result was computed for a = 0.3, b = 0.1, ξ = 0.1, ω = 1.4, g = 0.02 and φ = π

2 .
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attractor witnesses a transition and finally be stable on the period-4 attractor, as shown in Fig.
7.3.2 (b), (c) and (d). In details, from Fig.7.3.2 (b) and (c), the displacement and velocity of
the controlled trajectory are very closed to the target trajectory (red line) of period-2 attractor
around τ = 2884.98. A similar result can be discovered from Fig.7.3.2 (e), which shows the
distance between two attractors was around 0.005 at τ = 2884.98. Meanwhile, the relevant
control signal tends to 0. After τ = 2884.98, the control is turned off, since the distance
between two attractors was reduced to 0.005. Finally, the controlled trajectory can be stable
on the period-4 attractor spontaneously.

Nonlinear control

Here, varying amplitude to achieve the switching from chaotic attractor to period-4 attractor
will be considered. As shown in Fig. 7.3.3, the nonlinear control strategy is implemented at
time τ = 1346.397. The control signal increases very fast from 0 at τ = 1346.397 to 0.15 at
τ = 1346.403 in Fig. 7.3.3 (f) and (g). With varying of the amplitude based on the nonlinear
control strategy, the chaotic attractor witnesses a transition as showin in Fig. 7.3.3 (b), (c)
and (d). In details, in Fig. 7.3.3 (b) and (d), the relative displacement x− v and velocity y
of the controlled attractor are very close to the relative displacement x− v and velocity y of
desired attractor around τ = 1429.397, and the distance between these two trajectories is
0.005 at this moment in Fig. 7.3.3 (e). After that moment, the control becomes 0 and the
amplitude returns to its original value in Fig. 7.3.3 (f) and (g). Meanwhile, the controlled
attractor is stable on the desired period-4 attractor.

7.4 Control of the vibro-impact capsule system

7.4.1 Mathematical description and preparation

In this part, the following discussion will consider controlling coexisting attractors of a
vibro-impact capsule system, which is described by Eq. (3.4.14), (3.4.15), (3.4.16) and
(3.4.17). As shown in [3], many coexisting attractors in this vibro-impact system under
the Coulomb friction were discovered. Hence, through studying this case, it can prove the
effectiveness of the concept of varying parameter control method. At the following numerical
discussion, the similar concepts and strategy in Section 7.2.1 will be adopt to achieve the
control from one attractor to other coexisting attractors for the vibro-impact capsule system.

The equations of motion of the vibro-impact capsule system are in form (7.2.1), where
Y (τ) := (υ(τ),κ(τ),y1(τ),y2(τ))

T . Two different cases will be considered. Defining for
scalar ũ



134 Control of coexisting attractors via the linear and non-linear control strategies

• No contact with stationary capsule, i.e. υ < δ , and |υ +2ξ κ| ≤ 1.

Fgen, cap(Y (τ), ũ) :=


0 0 1 0
−1 −2ξ 0 0
−1 −2ξ 0 0
0 0 0 0

Y (τ)+


0
ũ
ũ
0

 ,

• No contact with moving capsule, i.e. υ < δ , and |υ +2ξ κ|> 1.

Fgen, cap(Y (τ), ũ) :=


0 1 0 0

−1− 1
γ

−2ξ − 2ξ

γ
0 0

−1 −2ξ 0 0
1
γ

2ξ

γ
0 0

Y (τ)+


0

ũ+ sign(y2)
γ

ũ

− sign(y2)
γ

 ,

• Contact with stationary capsule, i.e. υ ≥ δ , and |υ +2ξ κ −β (υ −δ )| ≤ 1.

Fgen, cap(Y (τ), ũ) :=


0 0 1 0

−1−β −2ξ 0 0
−1−β −2ξ 0 0

0 0 0 0

Y (τ)+


0

ũ+βδ

ũ+βδ

0

 ,

• Contact with moving capsule, i.e. υ ≥ δ , and |υ +2ξ κ −β (υ −δ )|> 1.

Fgen, cap(Y (τ), ũ) :=


0 1 0 0

−1−β − 1+β

γ
−2ξ − 2ξ

γ
0 0

−1−β −2ξ 0 0
1+β

γ

2ξ

γ
0 0

Y (τ)+


0

ũ+ sign(y2)
γ

ũ

− sign(y2)
γ

 ,

the two cases for control input are

Flin, cap(τ,Y,u) := Fgen, cap(Y,acos(ωτ +φ)+u), (7.4.1)

Fa, cap(τ,Y,u) := Fgen, cap(Y,(a+u)cos(ωτ +φ)). (7.4.2)

The first case, Flin, cap has linear control input and the second case, Fa, cap, has parametric
control input, varying the forcing amplitude. The details of the algorithm for the above
systems are illustrated in Section 7.2.1.
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7.4.2 Numerical investigation

Here, the simulations will be presented to verify the effectiveness of the proposed method by
studying the vibro-impact capsule system in Fig. 3.4.1. The following parameters are chosen
for the system,

α = 1.6, b = 0.1, ω = 0.95, ξ = 0.01, δ = 0.02, β = 15, γ = 5.

For these parameters, the vibro-impact system coexists two stable attractors. One is the
period-3 attractor, and another is the period-1 attractor, as shown in Fig. 7.4.1. The control
target at following discussions is to achieve the switching between this two coexisting stable
attractors. Specifically, in the first part, a linear control input will be introduced into the
system described by Eq. (3.4.14), (3.4.15), (3.4.16) and (3.4.17) to achieve the control
target. In addition, in the second part, a parametric control input will be introduced into the
amplitude to achieve the control target.

(a)

(b)

(c)

Fig. 7.4.1 Basin of attraction of the vibro-impact capsule system computed for α = 1.6,
ω = 0.95, ξ = 0.01, δ = 0.02, β = 15 and γ = 5 [3]. Oliver dots denote the period-3 attractor
with red basin and blue dot represent the period-1 attractor with yellow basin.

Linear control

Here, how the linear control strategy achieves the switching between the period-3 and period-
1 attractor will be studied numerically. In Fig. 7.4.2, the period-1attractor is controlled to
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period-3 attractor. The transition from period-1 to period-3 attractor is shown in Fig. 7.4.2
(b), (c) and (d). During the transition, the relevant distance between these two trajectories
decreases from 2.8785 at τ = 661.388 to 0.005 at τ = 678.578. In the process, the control
signal reaches the highest value u(τ) = 1.77 at τ = 662.842 and the lowest value u(τ) =
−0.995 during τ ∈ [663.396,663.88]. Then, the control signal returns back to 0 after τ =

678.578. Finally, the controlled trajectory converges to the period-3 attractor. In addition, for
the case of which the period-3 attractor is switched to the period-1 attractor in Fig. 7.4.3, the
linear control strategy begins at the same time as above, and reduces the distance between
two trajectories to 0.005 at τ = 675.877, shown in Fig. 7.4.3(e). After that moment, the
control signal up(τ) tends to 0, and the control target is successfully achieved. Thus, these
two stable attractors can be switched by the control generated from the linear control strategy.
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Fig. 7.4.2 (a) The period-1 response on the phase plane with the Poincaré sections denoted
by a blue dot. (b) Time histories of the desired (red line) and the current (black line)
displacements of the system under the linear control strategy (Algorithm 1) with M1 = 5 and
M2 = 5.. (c) Time histories of the desired (red line) and the current (black line) velocities of
the system. (d) Trajectory of the system on the phase plane under the linear control strategy,
where grey and red lines represent the transient and the steady-state responses, respectively.
(e) Time history of the distance between the desired and the controlled trajectories in 2-norm.
(f) Time history of the control sequence generated by the linear control strategy. Blue lines
in (a) and (d) indicate the impact boundary, while the blue lines in (e) and (f) mark the zero
reference. The result was computed for α = 1.6, ω = 0.95, ξ = 0.01, δ = 0.02, β = 15 and
γ = 5.
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Fig. 7.4.3 (a) The period-3 response on the phase plane with the Poincaré sections denoted
by oliver dots. (b) Time histories of the desired (red line) and the current (black line)
displacements of the system under the linear control strategy (Algorithm 1) with M1 = 5 and
M2 = 5. (c) Time histories of the desired (red line) and the current (black line) velocities of
the system. (d) Trajectory of the system on the phase plane under the linear control strategy,
where grey and red lines represent the transient and the steady-state responses, respectively.
(e) Time history of the distance between the desired and the controlled trajectories in 2-norm.
(f) Time history of the control sequence generated by the linear control strategy. Blue lines
in (a) and (d) indicate the impact boundary, while the blue lines in (e) and (f) mark the zero
reference. The result was computed for α = 1.6, ω = 0.95, ξ = 0.01, δ = 0.02, β = 15 and
γ = 5.

Nonlinear control

A case on the switching between the period-3 and period-1 attractor by the nonlinear control
strategy will be studied at this part. In Fig. 7.4.4, the period-1attractor is controlled to
period-3 attractor. The transition from period-1 to period-3 attractor is shown in Fig. 7.4.4
(b), (c) and (d). During the transition, the relevant distance between these two trajectories
decreases from 2.8785 at τ = 661.388 to 0.005 at τ = 688.016. In the process, the control
signal reaches the highest value up(τ) = 0.3 and the lowest value u(τ) = −0.3 at many
times. Then, the control signal returns back to 0 after τ = 688.016. Finally, the controlled
trajectory converges to the period-3 attractor. In addition, for the case of which the period-3
attractor is switched to the period-1 attractor in Fig. 7.4.5, the nonlinear control strategy
begins at the same time as above, and reduces the distance between two trajectories to 0.005
at τ = 674.298, shown in Fig. 7.4.5(e). After that moment, the control signal up(τ) tends
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to 0, and the control target is successfully achieved. Thus, the nonlinear control strategy
successfully calculates the value of up(τ) to achieve the switching between the period-1
attractor and the period-3 attractor.
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Fig. 7.4.4 (a) The period-1 response on the phase plane with the Poincaré sections denoted
by a blue dot. (b) Time histories of the desired (red line) and the current (black line)
displacements of the system under the nonlinear control strategy (Algorithm 2) with Ma,1 =
0.3 and Ma,2 = 10. (c) Time histories of the desired (red line) and the current (black
line) velocities of the system. (d) Trajectory of the system on the phase plane under the
nonlinear control strategy, where grey and red lines represent the transient and the steady-
state responses, respectively. (e) Time history of the distance between the desired and the
controlled trajectories in 2-norm. (f) Time history of the control sequence generated by the
nonlinear control strategy. Blue lines in (a) and (d) indicate the impact boundary, while
the blue lines in (e) and (f) mark the zero reference. The result was computed for α = 1.6,
ω = 0.95, ξ = 0.01, δ = 0.02, β = 15 and γ = 5.

7.5 Control of the Duffing system

7.5.1 Mathematical description and preparation

In this section, the Duffing oscillator representing smooth dynamical systems is employed to
test the versatility of the proposed control method. The Duffing system, which is known to
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Fig. 7.4.5 (a) The period-3 response on the phase plane with the Poincaré sections denoted
by oliver dots. (b) Time histories of the desired (red line) and the current (black line)
displacements of the system under the nonlinear control strategy (Algorithm 2) with Ma,1 =
0.5 and Ma,2 = 15. (c) Time histories of the desired (red line) and the current (black
line) velocities of the system. (d) Trajectory of the system on the phase plane under the
nonlinear control strategy, where grey and red lines represent the transient and the steady-
state responses, respectively. (e) Time history of the distance between the desired and the
controlled trajectories in 2-norm. (f) Time history of the control sequence generated by the
nonlinear control strategy. Blue lines in (a) and (d) indicate the impact boundary, while
the blue lines in (e) and (f) mark the zero reference. The result was computed for α = 1.6,
ω = 0.95, ξ = 0.01, δ = 0.02, β = 15 and γ = 5.

have many coexisting attractors without control, can be described by

Ẏ (τ) = Fdu(τ,Y (τ),up(τ)),

Y0 = Y (τ0),
(7.5.1)

where Y (τ) := (x(τ),v(τ))T , and

Fdu(τ,Y,up) :=

[
0

Γsin(ωτ)

]
+

[
0 1
1 −p1

]
Y +Y T (τ)

[
1
0

]
Y T

[
1
0

][
0 0

−(p2 +up) 0

]
Y.

The following parameters: Γ = 1.9, ω = 1.2, p1 = 0.9 and p2 = 1 were considered in this
study. At these parameter values, the system without control (up = 0) has two coexisting
attractors, depicted in Fig. 7.5.1, which are a period-1 small and a large amplitude attractors
with their Poincaré sections denoted by black and violet dots, respectively.
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Fig. 7.5.1 Basins of attraction of the Duffing system computed for Γ = 1.9, ω = 1.2, p1 = 0.9
and p2 = 1. Black dot denotes the period-1 small amplitude attractor with red basin, and
violate dot represents the period-1 large amplitude attractor with black basin. The right
panels present the trajectories of the two period-1 attractors on the phase plane.

7.5.2 Numerical investigation

Nonlinear control

The control aims for system (7.5.1) to switch the two stable attractors shown in Fig. 7.5.1
by varying the stiffness of the nonlinear spring p2. The control result for the switching
from the large to the small amplitude attractor is shown in Fig. 7.5.2, where the control
strategy was applied to the original attractor at τ = 418.879, and the controlled trajectory
experienced a transition until τ = 439. During this time the 2-norm distance between the
control and the desired trajectories was reduced from 1.338 to 0.001. The control signal
reached the maximum up(τ) = 0.3 and the minimum up(τ) =−0.3 for several times before
it was switched off.

The control from the small to the large amplitude attractor is presented in Fig. 7.5.3,
where the control strategy is switched on at τ = 418.879 and is switched off at τ = 440.246
when the distance between the two trajectories is decreased to 0.001. Compared to the case
in Fig. 7.5.2, the transition from the small to the large amplitude attractor took a longer time.
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Fig. 7.5.2 (a) The large amplitude period-1 response on the phase plane with the Poincaré
section denoted by violate dot. (b) Time histories of the desired (red line) and the current
(black line) displacements of the system under the nonlinear control strategy (Algorithm 2)
by varying the stiffness of the nonlinear spring with Mp2,1 = 0.3 and Mp2,2 = 10. (c) Time
histories of the desired (red line) and the current (black line) velocities of the system. (d)
Trajectory of the system on the phase plane under the nonlinear control strategy, where grey
and red lines represent the transient and the steady-state responses, respectively. (e) Time
history of the distance between the desired and the controlled trajectories in 2-norm. (f) Time
history of the control sequence generated by the nonlinear control strategy. Blue lines in
(a) and (d) indicate the impact boundary, while the blue lines in (e) and (f) mark the zero
reference. The result was computed for Γ = 1.9, ω = 1.2, p1 = 0.9 and p2 = 1.

Bifurcation analysis of the coexisting attractors

Analogous to Section 7.2.2, in this section the main concern will be to study in detail the
effect of the control parameters p1, p2 on the small- and high-amplitude oscillations of the
Duffing system (7.5.1), see Fig. 7.5.1. To this end, the path-following methods for limit
cycles, implemented via the continuation platform COCO [25] will be employed, along
with its routines for bifurcation detection and two-parameter continuation of codimension-1
bifurcations.

The starting point for this study is the high-amplitude periodic solution shown in Fig.
7.5.4(c), computed for p1 = 0.8. Panel (a) presents the result of the numerical continuation
of this orbit with respect to the control parameter p1. In this diagram, changes of stability are
detected, which are marked with solid (for stable solutions) and dashed (unstable solutions)
lines. The window of stability of the the high-amplitude orbit is bounded from above by the
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Fig. 7.5.3 (a) The small amplitude period-1 response on the phase plane with the Poincaré
section denoted by black dot. (b) Time histories of the desired (red line) and the current
(black line) displacements of the system under the nonlinear control strategy (Algorithm 2)
by varying the stiffness of the nonlinear spring with Mp2,1 = 0.3 and Mp2,2 = 10. (c) Time
histories of the desired (red line) and the current (black line) velocities of the system. (d)
Trajectory of the system on the phase plane under the nonlinear control strategy, where grey
and red lines represent the transient and the steady-state responses, respectively. (e) Time
history of the distance between the desired and the controlled trajectories in 2-norm. (f) Time
history of the control sequence generated by the nonlinear control strategy. Blue lines in
(a) and (d) indicate the impact boundary, while the blue lines in (e) and (f) mark the zero
reference. The result was computed for Γ = 1.9, ω = 1.2, p1 = 0.9 and p2 = 1.

fold bifurcation F2 (p1 ≈ 0.90352). At this point, a branch of unstable periodic solutions is
born, which finishes at the fold point F1 (p1 ≈ 0.69494). Here, a family of stable oscillations
emerges, corresponding to small-amplitude periodic orbits as can be seen at the test point
P2, see Fig. 7.5.4(b). Consequently, the bifurcation points F1 and F2 defines a parameter
window where both attractors coexist.

Next, a two-parameter continuation of the fold points detected above will be carried
out, in order to determine a region in the p1-p2 plane where the small- and high-amplitude
attractors of the Duffing system coexist. The result of this numerical process is presented
in Fig. 7.5.4(d), where the red curve stands for a locus of fold bifurcations of limit cycles.
In this picture, the yellow area enclosed by the fold curve represents the parameter regime
where small- and high-amplitude oscillations coexist. The intersections of the horizontal
dashed line (p2 = 1) with the bifurcation diagram correspond to the fold bifurcations F1 and
F2 found in Fig. 7.5.4(a). Furthermore, the numerical computations reveal the presence of a
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Fig. 7.5.4 (a) One-parameter continuation of the periodic response of the Duffing oscillator
(7.5.1) with respect to p1, computed for the parameter values Γ = 1.9, ω = 1.2 and p2 = 1.
The vertical axis shows the peak-to-peak amplitude AP2P of the x-component. Branches of
stable and unstable periodic orbits are depicted with solid and dashed lines, respectively. The
points labeled F1 (p1 ≈ 0.69494) and F2 (p1 ≈ 0.90352) stand for fold bifurcations of limit
cycles. Panels (b) and (c) depict stable coexisting solutions computed at the test points P1
and P2 (p1 = 0.8), respectively, shown in panel (a). (d) Two-parameter continuation of the
fold points found in panel (a), with respect to p1 and p2. Here, the label CP represents a cusp
bifurcation (p1 ≈ 1.14902, p2 ≈ 1.51194). The intersections of the horizontal dashed line
(p2 = 1) with the bifurcation diagram correspond to the fold bifurcations F1 and F2 shown
in panel (a). The yellow area represents the parameter region in which the stable periodic
solutions of the type shown in panels (b) and (c) coexist.

codimension-2 point (p1, p2)≈ (1.14902,1.51194) (CP), where two branches of fold points
(those corresponding to F1 and F2) join together via a cusp singularity. In this way, it is
possible to determine boundaries in the considered parameter region for the application of
the control mechanism proposed in this work.

7.6 Conclusion

This chapter studied a control method for switching stable coexisting attractors of non-
autonomous smooth and nonsmooth dynamical systems. The control aim was to control an
undesired coexisting attractor to a desired one by modulating a system parameter without
affecting the original property of the system. To examine the proposed control concept, the
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above cases were controlled by two control strategies with finite sampling step, namely the
linear and nonlinear control strategies, where one was implemented through the external
control input and the other one was applied via a system parameter. Then, some simple
dynamical systems were used for verifying the effectiveness of this method. In details,
for the soft impact system with two coexisting attractors, the varying parameter control
method can achieve the switching from one of coexisting attractors to another without
introducing a significant change into system’s states suddenly. For the impact system with
a drift, the chaotic attractor can be controlled to the coexisting period-4 attractor by this
method. Similarly, for the vibro-impact capsule system, this method also can be effective
on the control of coexisting attractors. Finally, a duffing system also was used for verifying
the effectiveness of this method. Therefore, this new control method presented a great
performance on the control of coexisting attractors without having a significant changes on
system’s states suddenly. The basic concept and idea of this method could be adopted to
study the control of coexisting attractors for other types of dynamical systems.

7.7 Practical implementation of the proposed control strate-
gies

From the previous numerical results, the efficiency of the proposed control methods on the
control of coexisting attractors was validated. From the practical aspect, the implementation
of the linear control strategy is similar with the delay feedback control studied in Chapter
6, and the varying rate of the controller can be constrained to satisfy the strict requirement,
e.g., ensuring the state of the system does not experience a drastic change. But under
this condition, the controlled system will undoubtedly need to spend a longer time for
stabilisation. Compared with the linear control strategy, the nonlinear control strategy by
varying the amplitude of the external excitation is easy to be implemented in the above
systems, since it just needs to satisfy the continuous varying trend of amplitude based on
Algorithm 2. For example, in the experimental environment of the soft impact system, the
amplitude of the external excitation is one of the accessible control parameters, which is easy
to be ajusted. In order to have more control options, the nonlinear control strategy by varying
the gap is also possible to be implemented in the experiment. For this scenario, an electric
motor for moving the right spring in Fig. 3.2.1 can be used to control the gap constantly
based on Algorithm 2. Furthermore, similar implementation can be applied to more complex
experimental platforms, such as the impact system with a drift and the vibro-impact capsule
system.



Chapter 8

Conclusion and future work

8.1 Conclusion

This thesis studies the control of coexisting attractors in nonsmooth dynamical systems with
the consideration of time delay by using different control and computational method for
analysing their near-grazing dynamics. The main works in this thesis are presented in the
following.

Chapter 4 focused on developing a numerical approach for the numerical continuation of
periodic solutions of nonsmooth dynamical systems with delay. The numerical approach is
based on the well-known technique of approximating delay differential equations via large
systems of ODEs. This second-order approximation of the original DDE was developed
by considering a finite sequence of Taylor expansions. In this way, a piecewise-smooth
dynamical system with (constant) delay can be approximated by a piecewise- smooth system
of ODEs of large dimension, which then allows the study of the resulting model in the
framework of hybrid dynamical systems. Then, a numerical bifurcation analysis can be
carried out via continuation methods, using existing numerical packages, such as COCO.
The effectiveness of the proposed scheme was tested on a well-known and widely studied the
soft impact system driven by a delay feedback controller.

Chapter 5 studied a numerical method to calculate the LEs of delay nonsmooth systems
by using a soft impact system under the delay feedback control with a particular focus on its
near-grazing dynamics. Specifically, in order to develop this algorithm with high accuracy, a
grazing estimation algorithm was developed to estimate the impact time near grazing locally
along trajectories of nonsmooth DDEs. In addition, as the delay impact system is infinite
dimensional, it was approximated by finite dimensional systems, which were discretised by
the modified Euler integration method at each time step. Then the DDE system was expressed
as a time-discrete map by constructing a Poincaré map, and the variational equation was



146 Conclusion and future work

obtained from linearising the DDE system. Then the Jacobian of the map can be obtained
through combining all the Jacobian from the variational equation at each time step in one
period of external excitation. With the introducing of the grazing estimation algorithm, the
accurate Jacobian of the map can be obtained. Through the above steps, the improvement of
accuracy of the algorithm for calculating LEs was observed from the the convergence rate of
eigenvalues of the Jacobian matrix, which was studied by using the spectral theory of the
evolutionary operator.

Chapter 6 presented a numerical study of controlling coexisting attractors in the period-
ically forced nosmooth dynamcial systems by using delay feedback control. The control
achieved the aim of switching the systems from undesired coexisting attractors to a desired
period-1 response, and then suppressing complex dynamics of these nonsmooth dynamical
systems, such as the coexisting attractors and chaotic motions. This orbit was used as the
desired attractor for the system with the delay feedback control. It was found that the delay
feedback control is effective, and the nonsmooth dynamical systems can be driven to a
globally stable period-1 motion. In the numerical analysis, the feasible conditions of the
delay feedback control on different nonsmooth dynamical systems were given. In addition,
how the control effect dynamics of nonsmooth dynamical systems was analysed numerically.

Chapter 7 focused on addressing the continuous switching between two of coexisting
stable attractors by varying a system parameter without affecting their original dynamics. In
order to achieve this, a continuous control method was proposed to control the coexisting
attractors of non-autonomous smooth and nonsmooth dynamical systems. This feedback
control method was applied to the controlled system continuously until its trajectory is
sufficiently close to the desired one. Two control strategies, the so-called linear and nonlinear
control strategies, were developed based on this concept. Specifically, the former is imple-
mented through an external control input and the latter is applied via a system parameter. The
advantage of the nonlinear control strategy is that it depends only on the original properties
of system parameter and does not rely on any external input. To examine the proposed
control concept, two control strategies were implemented to control the nonsmooth dynami-
cal systems. Specifically, for the soft impact system, a multistable scenario of the impact
system, where a period-5 and a period-2 attractors coexist, was studied. For the impact
system with a drift, a scenario, where a period-4 and chaotic attractors coexist, was studied.
Then, a scenario of the vibro-impact capsule system, where a period-3 and period-1 attractors
coexist, was studied. Following that, the nonlinear control strategy was implemented to the
Duffing oscillator for switching a period-1 small and a period-1 large amplitude attractors.
All simulations showed that both control strategies were effective for switching the stable
coexisting attractors in the nonsmooth dynamical systems.
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8.2 Future work

Overall, this thesis presented some new methods and analyses on studying the control of
coexisting attractors in nonsmooth dynamical systems, which address the issues related to
the multistability in nonsmooth dynamical systems. These works can be expanded to study
the coexisting attractors in other nonlinear dynamical systems, such as the network systems
[72, 73] and the stochastic dynamical systems [22, 159]. Following the work of this thesis, in
the short-term future, the numerical bifurcation analysis of the impact system with a drift and
vibro-impact capsule system with delay feedback control will be carried out via continuation
methods to fully understand the dynamics of the controlled nonsmooth systems.

In the long-term future, some unclear and unsolved problems will be studied. First of
all, according to the results in Chapter 7, there is a case that the capsule is stop and while
the inner mass presents a period-1 motion under the effect from the time-delayed feedback
controller. Obviously, the motion of capsule driven by inner mass may present different
motions compared with the motion of inner mass. Hence, the relationship between the
motion of the inner mass and the capsule is necessary to be studied. This relationship can be
explored further through the numerical and theoretical analysis in the future. Secondly, in this
thesis, some control methods are introduced to achieve the control of coexisting attractors
in nonsmooth dynamical systems. The control target is only to achieve the switch from the
undesired attractors to the desired one and does not consider complex targets, such as the
energy-saving or time-saving switch among the coexisting attractors. Thus, the future work
will adopt the optimal control theory to study the control of coexisting attractors in nonsmooth
dynamical systems under some constraint conditions. Thirdly, since multistability is also
important property for many dynamical systems appearing in many other applications, such
as cancer diseases, epilepsy, climate change and power grid, it will be meaningful to consider
the control of coexisting attractors appearing in the above applications and give the analysis
of the dynamical properties of the controlled systems. Besides that, since the methods in the
thesis present good performance and are validated theoretically and numerically, the future
task will focus on validating these methods through experiments.
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