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ABSTRACT 

 

Alzheimer’s disease is a complex, multifaceted disorder, which is estimated to 

affect over thirty six million people worldwide and is characterised by progressive 

neurodegeneration and cognitive decline. As the numerous genomic 

susceptibility loci that have been identified for the most common, sporadic form 

of Alzheimer’s disease do not fully account for the disease risk, epigenetic and 

environmental factors have been suggested to be involved in the aetiology and 

development of Alzheimer’s disease. Epigenetics, of which DNA methylation is 

perhaps the most studied mechanism, refers to transient, heritable changes in 

gene expression without the underlying genotype being altered. A growing 

number of epigenome-wide association studies have demonstrated robust 

differential DNA methylation in the brain of Alzheimer’s disease patients, though 

limited studies have been undertaken in blood. The aim of this thesis was to 

characterise blood DNA methylation profiles in Alzheimer’s disease, as well as 

individuals with mild cognitive impairment, who often progress to Alzheimer’s 

disease. Disease-associated profiles were characterised on autosomal 

chromosomes as well as sex chromosomes, and the effects and interactions of 

the Alzheimer’s disease risk factors sex and age were studied. The results from 

this thesis have provided novel insights into DNA methylation changes in blood 

related to Alzheimer’s disease, mild cognitive impairment, and future progression 

to Alzheimer’s disease. A region in the HOXB6 gene was found to be differentially 

methylated in Alzheimer’s disease, which presents an interesting target for future 

diagnostic biomarker studies. The results concerning the risk factors sex and age, 

and DNA methylation of the sex chromosomes, emphasise the importance of not 

only controlling for, but taking into account these factors. 
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CHAPTER 1. INTRODUCTION 
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This chapter introduces the field of epigenetics, namely DNA methylation, in 

Alzheimer’s disease (AD). It describes the research performed in this field to date, 

which has led to the research projects described in Chapters 3, 4, and 5. This 

chapter is based on a published review (Roubroeks et al., 2017), which can be 

found in Appendix A.  

 

1.1. Alzheimer’s disease 

 

Dementia, of which AD is the most common subtype, is a term for complex 

cognitive decline that arises from progressive cortical and subcortical 

dysfunction. A number of neurodegenerative diseases are characterised by 

dementia; in addition to AD, dementia is observed in frontotemporal dementia 

(FTD), dementia with Lewy bodies (DLB), Creutzfeldt-Jakob disease (CJD), 

Huntington’s disease (HD), and Parkinson’s disease (PD). Each of these 

diseases characterised by dementia are distinct in their pathological hallmarks. 

For example, AD is characterised by the aggregation of extracellular amyloid-

beta (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) of 

hyperphosphorylated tau protein (Yates & McLoughlin, 2008).  

 

1.1.1. Types of AD 

AD is often classified into two subtypes, termed early onset (EOAD) and late 

onset AD (LOAD). Alternatively, AD is often classed as familial (FAD) or sporadic 

AD. Although EOAD and FAD are often used interchangeably, they are not 

synonymous. It is most often the case that individuals with the familial form of AD 

have a much earlier onset of the disease than those with the sporadic type of AD. 

However, not all cases of EOAD can be classified as FAD (Joshi et al., 2012; 
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Mendez, 2012). As the name suggests, the division of EOAD and LOAD is largely 

based on the age at onset of the first symptoms of the disorder. However, the 

age cut-off is often an arbitrary number, and most studies refer to those older 

than 65 as LOAD, and younger than 65 as EOAD. Age is not the only 

distinguishing mark of LOAD and EOAD, as a number of studies have shown that 

these subtypes also differ in their topographical patterns of grey matter atrophy 

(Frisoni et al., 2007) and presentation of clinical symptoms (Koedam et al., 2010). 

 

The sporadic form of AD is the most common subtype, accounting for ~90-95% 

of AD cases (Goedert & Spillantini, 2006; Reitz & Mayeux, 2014), and its cause 

is multifaceted. This thesis focusses on individuals with LOAD, and its causes 

and symptoms will be further discussed in subsequent sections of this 

introduction. Unless specified otherwise, the term AD from hereon in will refer to 

this specific subtype. 

 

1.1.2. Epidemiology and burden of disease 

It is suggested that AD has the largest burden of disease amongst all 

neurodegenerative disorders, with an expected rise in dementia cases to over 

131 million cases worldwide by 2050 (Prince et al., 2015). The prevalence of AD 

has been estimated to be lowest in Sub-Saharan Africa (3.1% of the population 

over 60 years old) and highest in Latin America (7.6% of the population over 60 

years old). In Western Europe, the prevalence has been estimated to be 6.9% of 

the over 60 population, with women of every age group showing nearly twice the 

estimated prevalence of men (Prince et al., 2015). Similar results were found in 

a meta-analysis carried out over ten years from 2002-2012 by Takizawa et al., 

which analysed data from six European countries and the USA (Takizawa et al., 
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2014). The incidence of AD per 1,000 person years was found to vary greatly by 

country and by study, ranging from 0.04 in the UK for men and women between 

the ages of 45-65, to 16.8 in the USA in men and women aged 65 years and over. 

However, in each study the incidence in women was higher than the incidence in 

men, and on average the incidence in women was twice the incidence in men of 

a comparable age. The prevalence of AD across all studies examined varied from 

3-7%. Both incidence and prevalence were shown to increase with age, and AD 

and mortality due to AD were both found to be more common in females 

compared to males, regardless of age. 

 

1.1.2.1. Social and economic burden 

Worldwide, the total economic costs of dementia were estimated to be $604 

billion (£468 billion) in 2010, which amounts to ~$17,000 (~£13,155) per 

individual for both direct medical costs (e.g. hospital care, medication), and social 

care costs (e.g. home care, transport, nursing home care; Anders Wimo et al., 

2013). In Europe alone, the total cost of illness (direct medical cost and social 

care cost) was estimated to be €177.2 billion (£100 billion) yearly. Of this total, 

the EU27 accounts for the majority of costs, of which 56% is spent on social care 

costs (A. Wimo et al., 2011). In addition to these care costs, it is estimated that 

the total cost of developing a new disease-modifying drug is $5.7 billion (~£4.3 

billion) on average (Scott et al., 2014). 

 

Even more important than the monetary costs of the disease are the personal 

and social costs, as the devastating effects of AD greatly impact the quality of life 

of both patients and their caregivers (Shin et al., 2005).  
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1.1.3. Hallmarks of AD 

The pathological hallmarks of the disease include aggregations of extracellular 

Aβ protein, NFTs of hyperphosphorylated tau protein, and progressive neuronal 

cell death (Yates & McLoughlin, 2008). These changes in the brain are thought 

to occur years before a clinical diagnosis can be made (Amieva et al., 2008; Jack 

et al., 2010). In the early stages of disease, these hallmarks are most prevalent 

in the brainstem, hippocampal and entorhinal areas of the brain, and spread to 

the temporal, parietal and frontal cortex as the disease progresses (Dubois et al., 

2010; Iatrou et al., 2017). In later stages, brain autopsies have shown that there 

is a dramatic shrinkage of most neocortical areas and a substantial expansion of 

the ventricles (Dallaire-Théroux et al., 2017). There is also considerable loss of 

subcortical structures, including the majority of the cells of the basal nucleus, the 

locus coeruleus and dorsal raphe. Spared regions of the brain include the 

substantia nigra. Though initially believed to originate in the entorhinal cortex 

(Hyman et al., 1984), it is now also hypothesised that the brainstem is the origin 

of AD pathology (Braak et al., 2011; Braak & Del Tredici, 2011; Grudzien et al., 

2007; Simic et al., 2009).  

 

The clinical symptoms that accompany these spatiotemporal pathological 

changes generally can be used to divide AD into three stages of progression, i.e. 

an early stage, a moderate stage, and a late stage of severe AD. Commonly, 

some of the first symptoms of the disease are short-term memory issues and 

occasional aphasia which interfere significantly with daily life (American 

Psychiatric Association, 2014). Many individuals will develop neuropsychiatric 

symptoms such as apathy, delusions, hallucinations, and aggression (Lyketsos 

et al., 2011), and in advanced stages, sleep and circadian rhythm issues 
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commonly occur (Vitiello & Borson, 2001; Volicer et al., 2001). In the final stages 

of the disease there is an increased risk of contracting other diseases, and the 

most common cause of death for individuals with AD is respiratory system 

disease, specifically bronchopneumonia (Brunnström & Englund, 2009).  

 

1.1.4. Aetiology of AD 

Though the cause of sporadic AD remains elusive, there are several hypotheses 

as to the possible causes. There is a clear genetic basis for the development of 

FAD, and therefore a number of studies have explored the role of genetics in the 

aetiology of sporadic AD. The most often studied theories of sporadic AD fall into 

three classes: the amyloid cascade hypothesis, the tau aggregation hypothesis, 

and the inflammation hypothesis. The cause for FAD and each of these three 

hypotheses for sporadic AD will be described in further detail below. 

 

1.1.4.1. Causal mechanisms of FAD 

FAD can be caused by a single mutation in one of three genes: the presenilin 1 

(PSEN1) gene on chromosome 14, the presenilin 2 (PSEN2) gene on 

chromosome 1, and the amyloid precursor protein (APP) gene on chromosome 

21. At the time of writing, over 400 mutations have been identified in these three 

genes, of which most pathogenic mutations have been found in the PSEN1 gene 

(www.alzforum.org/mutations). Of note, individuals with Down’s syndrome with 

trisomy 21 also often exhibit AD pathology by the age of 50 (Mann & Esiri, 1989). 

APP can be translated into three different isoforms, of which APP695 is highly 

expressed in neurons (Yoshikai et al., 1990). APP can be cleaved into fragments 

via the non-amyloidogenic (non-pathological) pathway or the amyloidogenic 

(pathogenic) pathway (Figure 1.1). In the non-amyloidogenic pathway, APP is 

http://www.alzforum.org/mutations
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cleaved by α-secretase within the Aβ domain into sAPPα and an α-C-terminal 

fragment (CTF), which is further cleaved by γ-secretase, resulting in the 

fragments p3 and an APP intracellular domain (AICD; Müller et al., 2008). In the 

amyloidogenic pathway, APP is first cleaved by β-secretase, generating sAPPβ 

and β-CTF, followed by γ-secretase cleavage into an Aβ peptide and an AICD 

(G. F. Chen et al., 2017). PSEN1 and PSEN2 encode proteins that are important 

for the catalytic region of γ-secretase. Isoforms of various amino acid lengths of 

the Aβ peptide exist, though the most abundant isoforms are the 38-, 40-, and 

42-amino acid forms of Aβ (Aβ-38, Aβ-40, and Aβ-42, respectively; Kummer & 

Heneka, 2014). In healthy controls, these have been found in the cerebrospinal 

fluid (CSF) at proportions of around 53% for Aβ-40, 17% for Aβ-38, and 11% for 

Aβ-42 (Bibl et al., 2012). Via the amyloidogenic pathway, mutations in the APP 

gene as well as the PSEN1 and PSEN2 genes generally lead to an 

overproduction of Aβ-42, which is more likely to aggregate and constitutes the 

primary component of Aβ plaques, thereby causing AD. 
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Figure 1.1 The amyloidogenic and non-amyloidogenic pathways of APP cleavage. 

In the non-amyloidogenic pathway, α-secretase and γ-secretase cleave APP leading to the production of sAPPα, p3, and AICD. In the amyloidogenic pathway, β-

secretase and γ-secretase cleave APP leading to the production of sAPPβ, Aβ and AICD. Mutations in the genes APP, PSEN1, and PSEN2 can lead to increased 

processing via the amyloidogenic pathway, resulting in increased production of Aβ oligomers and plaques.  
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1.1.4.2. The amyloid cascade hypothesis 

As FAD has a similar phenotype to sporadic AD, with the exception of the age of 

onset, identification of the mutations causal to FAD gave support to the amyloid 

cascade hypothesis. This hypothesis focuses on Aβ, which, in a healthy state, 

has been associated with neurogenesis and memory enhancement (Morley et 

al., 2019; Morley & Farr, 2014; Rajasekhar et al., 2015), though the focus of Aβ 

research is predominantly placed on exploring the pathological role of Aβ rather 

than its physiological function. The amyloid cascade hypothesis states that the 

accumulation of Aβ peptides serves as a trigger for a cascade that leads to 

neuritic injury, neuronal dysfunction, the aggregation of tau protein, and eventual 

cell death (Beyreuther & Masters, 1991; J. A. Hardy & Higgins, 1992; J. Hardy & 

Allsop, 1991; Selkoe, 1991). While there is much support for the amyloid cascade 

hypothesis, several mouse models with Aβ depositions have been shown not to 

display cytotoxicity or develop tau tangles, nor display cognitive impairment 

(Bryan et al., 2009; Kim et al., 2013). Additionally, positron emission tomography 

(PET) studies have found amyloid deposits in healthy non-demented individuals 

(Chételat et al., 2013; Klunk et al., 2004). This has led to the idea that Aβ may 

not be the primary and/or sole toxic agent responsible for AD, but another product 

of the amyloidogenic pathway such as β-CTF or AICD. Indeed, it has been found 

that β-CTF can cause memory impairment and synaptic deficits (Tamayev et al., 

2012), and a clinical trial of a γ-secretase inhibitor which cleaves CTF under 

normal circumstances in both APP processing pathways, found significantly 

worsened symptoms in AD patients (Doody et al., 2013). As for AICD, 

overexpression can lead to pathological hallmarks of AD such as tau aggregation, 

neurodegeneration and cognitive impairment in mouse models (Ghosal et al., 

2009). Additionally, due to the spatial properties of the amyloidogenic and non-
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amyloidogenic pathways, only AICD produced through the amyloidogenic 

pathway can be transported to the nucleus (Goodger et al., 2009). There, 

together with the proteins Fe65 and Tip60 it forms an AFT complex, which was 

found to influence expression of APP as well as β-secretase (von Rotz et al., 

2004). In which manner and to which extent these substances may contribute to 

the aetiology of AD is still to be determined.  

 

1.1.4.3. The tau hypothesis 

Tau, a microtubule-associated protein (MAP), is expressed by the MAPT gene 

located on chromosome 17. As the name suggests, the tau hypothesis states that 

tau, and specifically hyperphosphorylated tau, is the principal cause of AD. In a 

healthy state, tau is important for the maintenance of neuronal structure through 

the binding of microtubules. Phosphorylation of tau is important for microtubule 

dynamics, and is known to be elevated during development (Brion et al., 1994). 

In disease, tau becomes hyperphosphorylated, causing decreased binding to 

microtubules and their destabilisation (Drewes et al., 1995; Ksiezak-Reding et al., 

2003; Sengupta et al., 1998). Detached tau self-aggregates to form paired helical 

fragments (PHFs) leading to the formation of NFTs (Figure 1.2; Iqbal, Liu, Gong, 

& Grundke-Iqbal, 2010). Hyperphosphorylated tau can further cause disruption 

to microtubules and inhibit their assembly (B. Li et al., 2007). 

 

The tau hypothesis is supported by (i) the fact that the accumulation of NFTs in 

the brain strongly corresponds to cognitive impairment seen in AD, unlike Aβ 

plaques (Arriagada et al., 1992; Ghoshal et al., 2002), (ii) hyperphosphorylated 

tau in CSF has been found to correlate with the extent of cognitive impairment 

(Maccioni et al., 2006), and (iii) tau aggregation has been reported to occur before 
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Aβ aggregation (Braak & Del Tredici, 2014). Additionally, a study by Götz et al. 

(2001) found that the injection of Aβ-42 in a mouse model expressing NFTs 

accelerated the formation of NFTs. While there is much support for the role tau 

may play in the development of AD, the initial triggering mechanism of the 

pathogenic tau aggregation pathway remains unclear. 
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Figure 1.2 The formation of neurofibrillary tangles (NFTs) in AD. 

Hyperphosphorylation of tau protein leads to destabilisation of microtubules and the formation of paired helical filaments (PHFs), which subsequently aggregate into 

the neurotoxic neurofibrillary tangles (NFTs) which are a hallmark of AD.  
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1.1.4.4. The inflammation hypothesis 

Multiple studies have observed evidence of a sustained inflammatory response 

in AD, and activation of microglia, the brain resident macrophages, is thought to 

play a major role starting in the early stages of the disease (Arends et al., 2000; 

Cagnin et al., 2001). It is hypothesised that the existence of Aβ plaques is the 

main catalyst for microglial activation. In the early stages of AD pathogenesis, 

microglia are able to phagocytose and clear Aβ (Lee & Landreth, 2010). However, 

in more advanced stages the microglia may be unable to process Aβ, leading to 

a loop of increased Aβ accumulation and continuous activation of microglia and 

pro-inflammatory signalling, which in turn causes neuronal damage (Hickman et 

al., 2008; Krabbe et al., 2013; Meda et al., 1995; Michelucci et al., 2009). While 

microglia are increasingly unable to clear Aβ, their ability to produce pro-

inflammatory cytokines remains constant, exacerbating the neurodegenerative 

effects. This is supported by studies of ageing, which have found that microglia 

in aged brains reflect a primed state in which they are hypersensitive to 

inflammatory signals (Norden & Godbout, 2013). Microglia in this primed state 

can display a magnified inflammatory response in the presence of NFTs and Aβ 

plaques (Perry & Holmes, 2014). Furthermore, there is some evidence that 

increased quantities of the cytokines interleukin-1 (IL-1) and IL-1β may lead to 

increased Aβ production and tau phosphorylation, respectively. As such, the 

inflammation hypothesis provides a potential link between the accumulation of 

Aβ plaques and NFTs. 

 

1.1.5. Risk factors of AD 

Though there appears to be no single genetic cause of sporadic AD, quantitative 

models examining twins have estimated the heritability of AD to lie between 58% 
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and 79%. In recent years, this has led to many genome-wide association studies 

(GWAS), through which a number of genetic risk factors have been identified. Of 

these factors, the largest risk is associated with the apolipoprotein E (APOE) ε4 

allele, where the presence of two ε4 alleles is associated with an increased risk 

of developing AD (Corder et al., 1993; Harold et al., 2009), for both EOAD and 

LOAD (Chartier-Hariln et al., 1994). Conversely, the presence of an APOE ε2 

allele is associated with decreased risk, while the most common ε3 allele does 

not increase nor decrease risk (Chartier-Hariln et al., 1994; Corder et al., 1994). 

While two copies of the APOE ε4 allele are neither sufficient nor necessary to 

cause AD, their presence may reduce the age of onset of AD (Blacker et al., 

1997; Corder et al., 1993; Meyer et al., 1998). In addition to APOE, several other 

genetic risk variants have been identified and validated in meta-analyses of 

GWAS (Harold et al., 2009; Hollingworth et al., 2011; Jansen et al., 2019; Jun et 

al., 2010; Kunkle et al., 2019; Lambert et al., 2013; Naj et al., 2011). The most 

recent meta-analysis of AD risk genes confirmed the risk of several previously 

identified genes including BIN1, INPP5D, TREM2, PTK2B, EPHA1, SORL1, 

PICALM, ABCA7, and CASS4, and identified new risk loci near NCK2, SPRED2, 

TSPAN14, and CCDC6 (Schwartzentruber et al., 2021). Furthermore, genome 

and exome analysis of a large cohort of AD patients and controls has identified a 

significantly increased risk of AD associated with rare variants within the TREM2 

gene (Guerreiro et al., 2013). In addition to genetic risk factors, many studies 

have focused on non-genetic factors, the largest influencers being age and sex 

(J. H. Chen et al., 2009; Mazure & Swendsen, 2016), which will be discussed in 

detail in Chapters 4 and 5. Other risk factors have also been examined, such as 

pathogenic microbes (Hill et al., 2014), obesity (Alford et al., 2018), vascular 
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factors (Larsson & Markus, 2018), stress (Caruso et al., 2018), and other 

psychosocial factors (Burke et al., 2018).  

 

1.1.6. Diagnosis of AD  

Currently, a definitive diagnosis of AD can only be made through post-mortem 

pathological assessment and confirmation of the presence of Aβ plaques 

according to the Consortium to Establish a Registry for Alzheimer’s disease 

(CERAD) score, and the presence of NFTs according to Braak staging (Hyman 

et al., 2012). Braak staging is a classification method for the spatiotemporal 

progression of tau accumulation in the brain, and identifies six stages: the 

preclinical stages I-II where tau accumulation is present in brainstem and 

transentorhinal regions, stages III-IV indicate accumulation in limbic regions, and 

stages V-VI are the late-disease stages of AD with neocortical tau accumulation 

(Braak & Braak, 1995). In a clinical setting, a diagnosis can be made using 

different guidelines, such as the diagnostic and statistical manual of mental 

disorders (DSM-5; American Psychiatric Association, 2013), as well as the 

National Institute of Neurological and Communicative Disorders and Stroke and 

the Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) 

criteria (McKhann et al., 2011). The latter set of criteria describes three stages of 

AD; a preclinical stage where pathological changes have emerged, but clinical 

symptoms are not evident; a middle stage referring to mild cognitive impairment 

(MCI; see section 1.1.6.1.); and a final stage of dementia. These criteria have 

also taken into consideration the use of biomarkers for the detection of a 

preclinical phase of AD, though only recommends these to be used in research 

and not in a clinical setting. This is recommended as biomarkers need to be 

further validated and standardised in their usage, and not all diagnostic centres 
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have access to all biomarkers. However, it is acknowledged that some fluid and 

imaging biomarkers may supplement clinical diagnosis in certain cases in 

research settings. An overview of the most commonly used biomarkers is 

described in section 1.1.6.2. 

 

1.1.6.1. Mild Cognitive Impairment as a precursor of AD 

MCI is defined as a condition in which an extent of cognitive impairment is present 

that surpasses normal age-associated cognitive decline (Albert et al., 2011). 

Individuals with MCI generally do not experience extensive impairments in their 

daily life and show no signs of dementia, unlike those who suffer from AD. 

However, like AD, MCI currently cannot be diagnosed using a definitive test, and 

is assessed clinically. This is often done using the Petersen criteria for amnestic 

MCI (aMCI; Petersen, 2004; Petersen et al., 1999), or the NINCDS-ADRDA 

criteria for MCI due to AD (Albert et al., 2011), which are nearly identical. A clinical 

diagnosis of MCI due to AD can be assisted through biomarker measurement, 

particularly by Aβ deposition and neuronal injury measures (section 1.1.6.2.). 

Individuals with MCI can further be distinguished based on the type of cognitive 

decline. Generally, when memory is affected, this is classified as aMCI, and when 

other cognitive domains are affected this can be classified as non-amnestic MCI.  

 

While some individuals with MCI may remain stable over time, it is known that 

some can develop a neurodegenerative disorder other than AD, or progress to 

AD. This is particularly true for individuals with aMCI (Jicha et al., 2006). In these 

cases AD has not fully manifested yet, but the clinical symptoms reflect 

underlying pathological changes that occur in early AD (Jack et al., 2010; see 

Figure 1.3). 
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Figure 1.3 Hypothetical model of biomarker presence prior to development of dementia. 

Reprinted from Jack et al. (2010). The model shows a representation of the onset of pathological hallmarks of AD which may be assessed with neuroimaging or CSF 

measurements, prior to the emergence of clinical symptoms.  
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1.1.6.2. Biomarkers of preclinical AD 

The most commonly studied biomarkers of AD can be classified into three groups, 

based on the type of pathophysiology measured: A, for biomarkers targeting Aβ; 

T, for biomarkers targeting tau; N, for biomarkers targeting neurodegeneration. 

This model, proposed by Jack et al. (2016), suggests a diagnosis can be assisted 

by creating a score in which an individual receives a positive or negative 

indication for A, T, and N biomarker presence. It should be noted that not all 

(future) biomarkers may fit into these categories. For example, a DNA methylation 

biomarker which is suggested in Chapter 3, would not classify into A, T, or N. 

However, this classification system still provides a useful system for biomarker-

assisted diagnosis of AD using the most commonly used biomarkers, as 

described in Jack et al. (2018).  

 

Class A consists of CSF measures of Aβ, which detect the presence of Aβ-42 or 

calculate a ratio of Aβ-42 to Aβ-40 (Fagan et al., 2007; Mattsson et al., 2009). 

Additionally, a ratio of Aβ-42 to total tau may also be used (Visser et al., 2009). 

Levels of amyloid detected through PET imaging, using the Pittsburgh 

Compound-B (PIB) for example (Klunk et al., 2004; Villain et al., 2012), are also 

included in this category. Class T consists of measures of tau through PET 

imaging (Maass et al., 2017), or phosphorylated tau detection in CSF (Hampel et 

al., 2010). Though perhaps counterintuitive, total tau levels detected in CSF are 

included in class N, not class T. While total tau may also be classified in the T 

class (Dubois et al., 2014), it is included in the N category here due to its similarity 

to other biomarkers in class N in relation to cognitive symptoms of AD. Class N 

includes general measures of neurodegeneration or neuronal injury, such as PET 
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imaging of fluorodeoxyglucose (FDG), and atrophy detected by magnetic 

resonance imaging (MRI). 

 

Though these biomarkers have been studied extensively, variable ranges of 

specificity and sensitivity have been reported particularly when it comes to 

detection of early AD (Bloudek et al., 2011). Furthermore, accuracy has been 

reported to vary between diagnostic centres for CSF measurements (Mattsson et 

al., 2009) in addition to MRI and PET techniques not being widely available to all 

diagnostic centres. An ideal target for new biomarker development would 

therefore be blood or saliva, which are both easily accessible, and may be 

obtained more easily in an elderly population of MCI and AD individuals. A study 

by A. K. Smith et al. (2015) found that DNA methylation profiles obtained from 

saliva samples were more similar to brain tissue DNA methylation than DNA 

methylation in blood. This appeared to be dependent on the proportion of 

epithelial cells collected within a sample, which can be highly variable. However, 

as DNA methylation profiles obtained from blood and saliva samples correlate 

well, and blood samples are more readily available in large cohorts, the primary 

focus of this thesis is the assessment of blood DNA methylation. This thesis aims 

to explore the epigenetic mark of DNA methylation in the blood of individuals with 

AD and MCI, which could have implication for novel biomarkers in the future.   
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1.2. Epigenetic Mechanisms 

 

The term epigenetics was first coined by Waddington in 1942 (Waddington, 

2012), and it is now used to describe the study of heritable changes in the 

phenotype without any changes in the genotype. In other words, epigenetics 

refers to mitotically and meiotically heritable changes in gene expression without 

alterations in the underlying DNA sequence. This allows for alterations in gene 

expression in response to environmental variation, for example stress, diet or 

exposure to environmental chemicals. The essence of epigenetics as a regulator 

of gene expression may also provide a mechanism for the missing heritability 

found in some diseases such as AD. Additionally, the transient nature of 

epigenetics gives rise to the idea that pathological changes might be reversible, 

making epigenetic processes interesting targets for drug discovery studies. Of 

the various known epigenetic mechanisms, DNA modifications of the cytosine 

base are perhaps the most investigated and are the focus of this thesis. 

 

1.2.1. DNA modifications 

Currently, the cytosine base is known to exist in five states: as unmodified 

cytosine (C), 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-

formylcytosine (5fC), and 5-carboxylcytosine (5caC). The most common state of 

cytosine in the brain, after the unmodified state, is 5mC, which is mainly located 

in cytosine-phosphate-guanine (CpG) dinucleotides. Genome-wide distribution 

studies have found 5mC in a large majority of CpG dinucleotides, with the 

exception of high density CpG areas, known as CpG islands (CGIs), which largely 

remain unmethylated (Y. Li et al., 2010; Lister et al., 2009; Meissner et al., 2008). 

Unmodified DNA can be methylated through DNA methyltransferases (DNMTs) 
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that transfer a methyl group from S-adenosyl methionine (SAM) to the 5 position 

of cytosine (Figure 1.4). DNMT3A and DNMT3B are de novo DNTMs, acting on 

unmodified cytosine, while DNMT1 is thought to be largely responsible for the 

maintenance of methylation through cell divisions (Z. X. Chen & Riggs, 2011). 

DNA methylation plays a crucial role in several key processes, such as genomic 

imprinting and X-chromosome inactivation (Bonasio et al., 2010). Although it was 

originally believed to be solely associated with transcriptional repression, recent 

evidence suggests a differential effect on gene expression depending on location 

in or around the gene (Ziller et al., 2013), with intragenic DNA methylation shown 

to modulate alternative splicing (Maunakea et al., 2013) and gene body 

methylation associated with increased expression (Varley et al., 2013). 

Demethylation, the transition from methylation to unmodified cytosine, can occur 

either passively, or actively (Delatte & Fuks, 2013). Passive demethylation takes 

place over several DNA replication cycles, during which DNMT1 is inhibited or 

absent from the process, leaving the newly synthesised DNA strand 

unmethylated. Active demethylation refers to the enzymatic conversion of 5mC 

to cytosine, which is initiated by oxidation of 5mC into 5hmC by a family of ten-

eleven translocation (TET) proteins (Delatte & Fuks, 2013; J. U. Guo et al., 2011; 

Tahiliani et al., 2009). Initially believed to be a transient step in the demethylation 

process, in recent years, 5hmC has been shown to be a potentially independent 

and functional epigenetic marker (Sun et al., 2014; van den Hove et al., 2014). It 

has been found to be present in most tissues and cell types, but is particularly 

abundant in the brain (Wen & Tang, 2014), where it shows a genomic region-

specific distribution (Lunnon et al., 2016). Interestingly, the presence of 5hmC 

appears to be negligible in blood (Nestor et al., 2012). 5hmC can be further 

oxidised into 5fC by TET enzymes, which in turn can be oxidised into 5caC in the 
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demethylation process (He et al., 2011; Ito et al., 2011). Finally, the demethylation 

process can be completed through decarboxylation of 5caC into unmodified 

cytosine (Ito et al., 2011; S. C. Wu & Zhang, 2010). The role of 5fC and 5caC in 

human development and their potential role in diseases such as AD remains 

unclear (for a review see Breiling & Lyko, 2015), and these are beyond the scope 

of this thesis.  
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Figure 1.4 Cycle of cytosine modifications. 

Unmethylated cytosine can be converted into 5mC through DNMTs. Active demethylation of 

5hmC, 5fC, and 5caC occurs via TET enzymes and decarboxylation. 
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1.2.2. Other epigenetic mechanisms 

In addition to cytosine modifications, there are several other epigenetic 

mechanisms that play a role in the regulation of gene expression, such as histone 

modifications and non-coding RNA regulation. As the focus of this PhD thesis is 

on DNA methylation, other regulating mechanisms of gene expression are 

outside of the scope of this review and are only briefly highlighted here. However, 

it is acknowledged that these factors may also contribute to the development and 

progression of AD. 

 

Histones, which form octamers around which DNA is wound, can be modified 

post-translationally. The octamer structure with the DNA wound around it, the 

nucleosome, is necessary to fit entire DNA strands into the small space of a 

nucleus, and its conformation affects the overall chromatin structure as well as 

the transcriptional capability of the DNA. The conformation of the histone can be 

changed through several methods, the most well studied of these methods being 

histone acetylation. Bannister and Kouzarides (2011) and Sadakierska-Chudy 

and Filip (2014) provide excellent reviews on chromatin regulation and histone 

modifications. 

 

Non-coding RNAs (ncRNAs) exist in a multitude of classes, including long non-

coding RNAs (lnRNAs), micro RNAs (miRNAs) and small interfering RNAs 

(siRNAs), for example (Mattick, 2011). Just as there are a multitude of classes of 

ncRNAs, so there are numerous ways in which these can regulate gene 

expression, such as transcriptional- and post-transcriptional regulation, and 

chromatin remodelling (for reviews of these mechanisms see Kaikkonen et al., 

2011 and Mattick, 2011). 
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1.3. Epigenetics in Alzheimer’s disease 

 

1.3.1. Global measures of DNA methylation and hydroxymethylation 

Initially, most human epigenetic studies on AD focused on identifying changes in 

global DNA methylation in post-mortem brain tissue, employing 

immunohistochemical techniques with antibodies specific for 5mC or 5hmC ( 

Table 1.1). These studies highlight the potential tissue-specificity of epigenetic 

modifications, as some studies of the hippocampus (5mC + 5hmC; Chouliaras et 

al., 2013), temporal neocortex (5mC; Mastroeni, McKee, Grover, Rogers, & 

Coleman, 2009) and entorhinal cortex (5mC; Mastroeni et al., 2010, 5hmC; 

Condliffe et al., 2014) have found a global decrease in DNA modifications in AD 

patients compared to controls. However, a study of the middle temporal gyrus 

and middle frontal gyrus demonstrated elevated levels of 5mC and 5hmC in 

neurons of AD patients (Coppieters et al., 2014). Other studies have published 

conflicting evidence; Bradley-Whitman and Lovell showed increased 5mC and 

5hmC in the hippocampus in AD (Bradley-Whitman & Lovell, 2013), whilst 

Lashley and colleagues showed no global changes in either modification in the 

entorhinal cortex (Lashley et al., 2015). A recently published study using the more 

specific technique of gas chromatography/mass spectrometry (GC/MS) 

examined global levels of methylation and hydroxymethylation in the superior 

temporal gyrus and middle temporal gyrus, hippocampus/parahippocampal 

gyrus, cerebellum, and the inferior parietal lobe across various stages of AD 

(Ellison et al., 2017). It was found that brain regions affected by AD pathology 

can show global alterations in 5mC and 5hmC in a temporal pattern. Particularly 

for 5hmC, hyper-hydroxymethylation was found in the early stages of AD, yet in 

later stages of the disease these global levels reversed to levels observed in 
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controls. This disease progression-related change in global DNA methylation and 

hydroxymethylation levels could contribute to the contradictory results found in 

the previous immunohistochemical studies, although methodological differences 

in tissue processing may also play an important role. 
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Global measurements of DNA modifications 

Article 
Sample 
type 

Number of Samples Type of 
modification 

Approach Method Main findings 
AD Control 

Mastroeni et al. (2009) TN, CER 1 1 5mC  Global assessment 
in discordant 
monozygotic twin 
pair 

Immunohistochemistry Decreased global 5mC in 
neurons in AD 

Mastroeni et al. (2010) EC 20 20 5mC Global assessment Immunohistochemistry Decreased global 5mC in 
neurons in AD 

Chouliaras et al. (2013) HIP (CA1, 
CA3, DG) 

10 11 5mC, 5hmC Global, cell-specific 
analysis in 
AD/control samples 
and a discordant 
monozygotic twin 
pair 

Immunohistochemistry Decreased global 5mC and 
5hmC in glia and neurons 
in AD 

Bradley-Whitman & 
Lovell (2013) 

HIP/PHG, 
CER 

12  
(5 
Preclinical + 
7 late-stage 
AD) 

5 5mC, 5hmC, 
5fC, 5caC 

Global assessment Immunohistochemistry Increased global 5mC and 
5hmC, and decreased 5fC 
and 5caC in all AD subjects 
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Global measurements of DNA modifications (Continued) 

Article 
Sample 
type 

Number of Samples Type of 
modification 

Approach Method Main findings 
AD Control 

Coppieters et al. (2014) MTG, 
MFG 

29 29 5mC, 5hmC Global assessment Immunohistochemistry Increased global 5mC and 5hmC 
in AD neurons 

Condliffe et al. (2014) EC, CER 13 8 5mC, 5hmC, 
5fC, 5caC 

Global assessment Immunohistochemistry Decreased global 5hmC in EC 
and CER in AD 

Lashley et al. (2015) EC, CER 12 14 5mC, 5hmC Global assessment Immunohistochemistry, 
ELISA 

No global neuronal changes in 
5mC and 5hmC 

Ellison et al. (2017) STG, 
MTG, 
HIP/PHG, 
IPL, CER 

29  
(8 Preclinical 
AD + 8 MCI + 11 
Late stage AD) 

10 C, 5mC, 
5hmC 

Global assessment Gas 
chromatography/mass 
spectrometry 

Global levels of 5mC and 5hmC 
altered in early disease stages, 
return to basal levels at later 
stages 

 
Table 1.1 Overview of studies examining global DNA modifications in AD.  

Abbreviations: CA1: cornu ammonis area 1, CA3: cornu ammonis area 3, CER: cerebellum, DG: dentate gyrus, EC: entorhinal cortex, HIP: hippocampus, IPL: inferior 

parietal lobe, MFG: middle frontal gyrus, MTG: middle temporal gyrus, PHG: parahippocampal gyrus, STG: superior temporal gyrus, TN: temporal neocortex. 
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1.3.2. Candidate gene studies of DNA methylation 

Although global DNA modification studies in AD have highlighted a potential role 

for epigenetic mechanisms in AD, it is, however, important that changes in 

individual genes are studied, to allow us to better understand mechanisms and 

pathways. Candidate gene studies in AD have mainly focused on methylation 

profiling of a vast array of genes, the majority of which were studied based on 

previous association with either EOAD or LOAD (see  

Table 1.2). Initially, studies focussed on APP gene methylation in AD, although 

these have been relatively inconsistent; an early study of APP methylation found 

AD-associated hypomethylation of APP in the temporal lobe (West et al., 1995), 

whilst more recent studies have found no AD-related changes in DNA methylation 

(Barrachina & Ferrer, 2009; Brohede et al., 2010), or even increased APP DNA 

methylation (Iwata et al., 2014). However, the use of different techniques in each 

of these studies, the limited sample numbers and the use of heterogeneous tissue 

could be responsible for conflicting results, in addition to the previously discussed 

temporally sensitive DNA methylation profile. Since the initial study of APP, a 

wide range of other candidate genes have been studied. DNA methylation 

alterations have been found in a number of genes, including PP2AC (Sontag et 

al., 2004), S100A2 and SORBS3 (Siegmund et al., 2007), BDNF, SYP, NF-κβ, 

and COX-2 (Rao et al., 2012) and TREM2 (Celarain et al., 2016; A. R. Smith et 

al., 2016). Studies of alterations in MAPT DNA methylation in AD are currently 

inconclusive, with reports of both AD-associated hypomethylation (Iwata et al., 

2014) and no AD-related changes (Barrachina & Ferrer, 2009).
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Candidate gene studies of AD 

Article 
Sample 

type 

Number of Samples 
Type of 

modification Approach Method Main findings AD Control 

West et al. 
(1995) 

TL (BA38) 1 1 control, 
1 non-AD 
dementia 

5mC APP targeted Southern blot AD-associated decreased APP 
methylation 

Sontag et al. 
(2004) 

MFG, STG, 
CER 

48 24 5mC PP2AC targeted 
methylation analysis 

Western blot AD-associated decreased 
PP2AC methylation  

Siegmund et 
al. (2007) 

ALTLC 18 39 5mC* 50 target genes  RT-PCR (MethyLight) AD-associated decreased 
S100A2 methylation, and 
increased SORBS3 methylation 

Wang et al. 
(2008) 

PFC, 
lymphocytes 

Blood: 6 Blood: 6 5mC* 12 target genes 
previously associated 
with AD 

MALDI-TOF mass 
spectrometry 

Identified epigenetic drift from 
the norm in late-onset AD Brain: 24 Brain: 10 

Barrachina & 
Ferrer (2009) 

FC, HIP Stage I-II: 17 26 5mC* MAPT, APP, PSEN1, 
RAGE, ADORA2A and 
UCHL1 targeted 
analysis of 5mC in AD 
and other tauopathies 

MALDI-TOF mass 
spectrometry 

No AD-associated methylation 
differences found in any of the 
target genes 

Stage III-IV: 
15 
Stage V-VI: 12 

Brohede et 
al. (2010) 

FC, PC, TC, 
CER 

6 - 5mC* 5mC analysis targeted 
at CpG island at 5' end 
of APP gene 

Capillary 
electrophoresis 

No methylation at APP CpG 
island in any of the investigated 
brain regions 

Rao et al. 
(2012) 

FC (BA9) 10 10 5mC Global 5mC, and 8 
target genes known for 
differential expression 
in AD 

RT-PCR (MethyLight) Increased methylation of BDNF 
and synaptophysin, decreased 
methylation of NF-κβ and COX-
2 

Furuya, da 
Silva, Payão, 
Bertolucci et 
al. (2012) 

EC, AC, 
HIP, blood 

Blood: 34 Blood: 22 
(young), 
23 
(elderly) 

5mC* SNAP25 promoter 
targeted 

MALDI-TOF mass 
spectrometry 

No AD-associated methylation 
differences in SNAP25 promoter 
in brain or blood 

Brain: 10 Brain: 10 
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Furuya, da 
Silva, Payão, 
Rasmussen 
et al. (2012) 

EC, AC, 
HIP, blood 

Blood: 36 Blood: 25 
(young), 
23 
(elderly) 

5mC* SORL1 and SIRT1 
promoter targeted 

MALDI-TOF mass 
spectrometry 

No AD-associated methylation 
differences in SORL1 and 
SIRT1 promoters in brain or 
blood 

Brain: 12 Brain: 10 

Da Silva et 
al. (2013) 

EC, AC, HIP 12 10 5mC* CNP and DPYSL2 
targeted 

MALDI-TOF mass 
spectrometry 

No AD-associated methylation 
differences in CNP and 
DPYSL2 promoters  

Da Silva et 
al. (2014) 

EC, AC, 
HIP, blood 

Blood: 34 Blood: 23 5mC* Targeted at promoter 
regions of HSPA8 and 
HSPA9 

MALDI-TOF mass 
spectrometry 

No AD-associated methylation 
differences in HSPA8 and 
HSPA9 promoters in brain or 
blood 

Brain: 12 Brain: 10 

Iwata et al. 
(2014) 

grey matter 
from ITL, 
CER, SPL 

CER: 45 CER: 71 5mC* Genes related to 
sporadic or familial AD 

FACS, pyrosequencing Increased APP methylation and 
decreased MAPT methylation in 
both neuronal and non-neuronal 
cells 

SPL: 59 SPL: 76 

ITL: 56 ITL: 74 

Celarain et 
al. (2016) 

HIP 10 6 5mC*, 5hmC 5mC and 5hmC 
analysis of TREM2 

Cloning-based Sanger 
sequencing, 5hMeDIP 

AD-associated increase of 
5mC+5hmC in TREM2 TSS-
associated region 

A.R. Smith et 
al. (2016) 

STG Cohort 1: 66 Cohort 1: 
29 

5mC* Meta-analysis of 3 
cohorts targeting 
TREM2 

Illumina 450K array, 
pyrosequencing 

AD-associated 
hypermethylation of TREM2 

Cohort 2: 44 Cohort 2: 
59 

Cohort 3: 117 Cohort 3: 
75 

 
Table 1.2 Overview of candidate gene studies of AD. 

Studies examining DNA methylation differences between individuals with AD and control groups targeted at specific genes or regions of interest. Abbreviations: AC: 

auditory cortex, ALTLC: anterior lateral temporal lobe cortex BA: Brodmann area, CER: cerebellum, EC: entorhinal cortex, FC: frontal cortex, HIP: hippocampus, ITL: 

inferior temporal lobe, MFG: middle frontal gyrus, PC: parietal cortex, SPL: superior parietal lobe, STG: superior temporal gyrus, TC: temporal cortex, TL: temporal 

lobe. *The methods used in these studies could not distinguish 5mC and 5hmC.  
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1.3.3. Epigenome-wide association studies of AD 

In the past decade, major technological advances have allowed the first 

epigenome-wide association studies (EWAS) in AD (Table 1.3; R. G. Smith & 

Lunnon, 2017). The first AD EWAS utilised the Illumina Infinium 

HumanMethylation 27K array (27K array) to study >27,000 CpG sites in 14,475 

genes (Bakulski et al., 2012). The study identified 948 CpG sites spanning 918 

unique genes associated with late-onset AD, in a comparison of frontal cortex 

tissue from 12 AD cases and 12 age- and sex-matched controls. The most 

significant AD-associated CpG site showed hypomethylation in the TMEM59 

gene, with a 7.3% difference on the 27K array between AD patients and controls, 

and a 2.7% difference shown via pyrosequencing validation. Sanchez-Mut et al. 

(2014) also used the 27K array, and examined hippocampal tissue of five Braak 

stage I-II cases, five Braak stage III-IV cases, five Braak stage V-VI cases and 

five controls. Braak-associated DNA methylation alterations were found in four 

loci, of which two resided in DUSP22, and one locus each in CLDN15 and 

QSCN6. The group also reported that hypermethylation of DUSP22 correlated 

with its decreased RNA expression.  

 

The 27K array was superseded by the Illumina Infinium HumanMethylation 450K 

array (450K array), which has been the most widely used method for EWAS in 

AD to date, although the Illumina Infinium MethylationEPIC array (EPIC array) 

has been released with additional coverage. The 450K array interrogates more 

than 485,000 CpG sites covering 98.9% of known UCSC RefGenes and 96% of 

CpG islands (Bibikova et al., 2011). Lunnon et al. used this technique to study a 

cohort of ~120 donors in a cross-tissue approach, using tissue from the superior 

temporal gyrus, entorhinal cortex, prefrontal cortex, cerebellum and pre-mortem 
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blood (Lunnon et al., 2014). These regions are known to be affected differentially 

by AD, with the entorhinal cortex showing pathology early in the disease process, 

and the cerebellum remaining relatively unaffected (Wenk, 2003). Initially 

focusing on the entorhinal cortex, the study found two neighbouring differentially 

methylated positions (DMPs) located in the ANK1 gene among the most 

significant Braak stage-associated sites. These results were replicated in the 

prefrontal cortex and superior temporal gyrus in the same individuals, yet no 

disease-associated changes in these loci were found in the cerebellum or pre-

mortem blood. The study also validated AD-associated ANK1 hypermethylation 

in a further three validation cohorts, including one that used another technology 

(bisulfite pyrosequencing). Genetic variation in ANK1 has been associated with 

diabetes (Harder et al., 2013; Imamura et al., 2012) and, interestingly, DNA 

methylation changes in this gene were implicated in AD in the study by De Jager 

and colleagues (De Jager et al., 2014). Their EWAS study determined 

dorsolateral prefrontal cortex DNA methylomic profiles associated with Aβ plaque 

burden in 708 individuals, and identified 71 plaque burden-associated CpG sites. 

Twelve of these nominated loci were validated in data taken from the Lunnon et 

al. study, reaching Bonferroni significance. Of the genes identified, ANK1, 

CHD23, DIP2A, RHBDF2, RPL13, SERPINF1 and SERPINF2 were found to 

show significant AD-associated gene expression changes, indicating a potential 

functional role for the DNA modifications identified in AD. Furthermore, Watson 

et al. (2016) examined superior temporal gyrus tissue from 34 patients with 

LOAD, and an equal number of age-, race-, and sex-matched non-demented 

controls. They analysed neighbouring AD-associated CpG sites and identified 

479 differentially methylated regions (DMRs) with an average size of 927 bp, the 

majority of which were found to be hypermethylated in AD. Of the 25 most 
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significant DMRs, eight genes (LOC100507547, PRDM16, PPT2, PPT2-EGFL8, 

PRRT1, C10orf105, CDH23, and RNF39) had been previously reported in the 

first AD EWAS studies (De Jager et al., 2014; Lunnon et al., 2014). 

 

One caveat of the EWAS studies described above is that they have all used 

bisulfite-treated DNA, which means that 5mC and 5hmC are indistinguishable, 

and results actually represent the sum of the two modifications. A recent 

adaptation to the protocol, whereby DNA is first oxidised prior to bisulfite 

treatment, allows measurement of 5mC alone. Furthermore, by performing an 

oxidative-bisulfite treatment in parallel with a bisulfite treatment, one can subtract 

one value from the other to generate a measurement of 5hmC in isolation 

(Fukuzawa et al., 2016). At the time of writing, three EWAS of 5hmC in AD have 

been published. The first study used high-throughput sequencing to examine the 

distribution of 5hmC in dorsolateral prefrontal cortex tissue of 20 AD patients, four 

MCI patients, and six non-demented controls (J. Zhao et al., 2017). A total of 517 

plaque-associated differentially hydroxymethylated regions (DHRs) were 

identified, along with 60 NFT-associated DHRs (at q<0.05). However, due to the 

low sample size these results will require replication in further studies. It should 

also be noted that due to low sequencing resolution, this study was not able to 

sensitively differentiate 5mC and 5hmC. Two further EWAS studies have been 

carried out since, both examining 5mC and 5hmC in parallel. A study by Smith et 

al. (2019) examined the entorhinal cortex, finding a differentially methylated locus 

in WNT5B associated with Braak stage, and DMRs in ARID5B and ANK1, where 

the latter overlapped with the findings of De Jager et al. (2014) and Lunnon et al. 

(2014) and was validated using pyrosequencing. Furthermore, a DHR was found 

in the FBXL16 gene in association with Braak stage. The third EWAS assessed 
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5mC and 5hmC in the middle temporal gyrus (MTG) of controls and AD patients, 

in addition to examining blood DNA methylation in parallel in a separate 

longitudinal cohort of preclinical AD patients and controls (Lardenoije et al., 

2019). As a joint first author of this paper, a copy has been added in Appendix C 

of this thesis. A case-control analysis in the brain identified several AD-associated 

genomic regions, including one DMR in OXT and one DHR in CHRNB1. In blood, 

controls were compared to individuals who were non-demented at baseline, but 

who had developed AD by a follow-up point at least 4.5 years later. In the baseline 

analysis, three genome-wide significant DMPs and 15 DMRs were detected, with 

a further 266 DMPs and 21 DMRs at follow-up. Interestingly, the DMR found in 

OXT was detected in the MTG as well as the blood baseline measurement, 

showing hypomethylation in the MTG in AD, and hypermethylation in the blood 

of future converters.  

 

In addition to the study by Lardenoije (Lardenoije et al., 2019), several other 

EWAS on blood DNA methylation in AD have been carried out. The study by 

Kobayashi et al. (2016) generated 450K array data in blood from 12 individuals, 

classified into an AD group, an aMCI group, and a control group. At a nominally 

significant level (p < 0.05), 1021 loci were found to show differential methylation 

patterns between the three groups. Four of these loci were located in the 

NCAPH2/LMF2 gene and were validated using pyrosequencing, with lower 

methylation levels found in the MCI and AD groups compared to controls. It 

should be noted that the analyses carried out do not account for cell type 

proportions. Second, Madrid et al (2018) examined DNA methylation in whole 

blood samples from 45 LOAD patients and 39 controls using the Illumina EPIC 

array, investigating over 850,000 CpG sites. A total of 466 CpG sites showed 
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differential methylation levels between groups, with several sites located in genes 

previously associated with LOAD, for example B3GALT4, FLOT1, DLG2, and 

OXT. Of the total differentially methylated sites, 17 sites also showed 

associations with various CSF measures and the Rey Auditory Verbal Learning 

Test (RAVLT). Through pyrosequencing, seven of these 17 sites located in the 

B3GALT4 gene were validated. Third, Konki et al. (2019) studied DNA 

methylation profiles in blood of 23 AD-discordant twin pairs using reduced 

representation bisulfite sequencing. Based on APOE genotypes and 21 risk 

genes for AD, discordant twins were found to have similar risk scores for AD. An 

analysis of both monozygotic and dizygotic twin pairs discordant for AD yielded 

11 DMPs, located in or near the genes DEFA1, TSNARE1, DEAF1, ARAP2, 

CNPY1, ADARB2, ARHGAP8, GTF3C2, ACTA1, SEMA5A, and CLIP2. 

Investigation of DNA methylation in a separate cohort of six AD and six control 

samples from the anterior hippocampus identified a gene altered in both brain 

and blood, with a DMP found in ADARB2 near the DMP identified in the analysis 

of blood samples. A fourth study, conducted by Vasanthakumar and colleagues 

(2020) performed an EWAS on blood DNA methylation data from the Alzheimer’s 

disease Neuroimaging Initiative (ADNI) cohort, which has been used in Chapters 

4 and 5 of this thesis. The study by Vasanthakumar et al. used data from 653 

individuals, and compared DNA methylation profiles from controls, individuals 

with MCI, and individuals with AD. A total of 42 DMPs were associated with AD 

relative to control, 25 DMPs were associated with MCI relative to control, and 13 

DMPs were related to differences between MCI and AD. This study was 

conducted independently, but at the same time as the AD, MCI, and control 

EWAS presented in Chapter 3 of this thesis. 



69 
 

Epigenome-wide association studies of AD 

Article Sample type 

Number of Samples Type of 
modification Approach Method Main findings AD Control 

Bakulski et 
al. (2012) 

FC 12 12 5mC* AD-control EWAS Illumina 27K array 948 AD-associated CpG sites 
representing 918 unique genes, 
TMEM59 

Sanchez-
Mut et al. 
(2014) 

HIP Braak stage 
I-II: 5 

5 5mC* Braak stage EWAS Illumina 27K array 4 Braak-associated CpG sites in 
DUSP22, CLDN15, QSCN6 genes 

Braak stage 
III-IV: 5 

Braak stage 
V-VI: 5 

De Jager et 
al. (2014) 

DLPFC 708 5mC* Plaque burden 
EWAS 

Illumina 450K array 71 Plaque burden-associated CpG 
sites, BIN1, RHBDF2, ANK1 

Lunnon et 
al. (2014) 

EC, STG, 
PFC, CER, 
blood 

122 5mC* Braak stage EWAS Illumina 450K array ANK1, MIR486, RHBDF2 

Kobayashi 
et al. (2016) 

Blood AD: 4 
MCI: 4 

4 5mC* AD-control EWAS Illumina 450K array, 
pyrosequencing 

Hypomethylation in NCAPH2/LMF2 
region in MCI and AD 

Watson et 
al. (2016) 

STG 34 34 5mC* AD-control EWAS Illumina 450K array 479 AD-associated DMRs 

Yu et al. 
(2016) 

CD4+ T-
cells, DLPFC 

41 (longitudinal) 5mC* Plaque burden 
EWAS 

Illumina 450K array DLPFC results were not replicated in 
CD4+ lymphocytes. 

Zhao et al. 
(2017) 

DLPFC AD: 20  
MCI: 4 

6 5hmC* Plaque & NFT EWAS High-throughput 
sequencing 

517 plaque-associated DHRs, 60 
NFT-associated DHRs 
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Epigenome-wide association studies of AD (continued) 

Article Sample type 

Number of Samples Type of 
modification Approach Method Main findings AD Control 

Gasparoni 
et al. (2018) 

FC, TC, cell-
sorted OC 

FC: 63 
TC: 65 
OC: 31 

5mC* Cell-sorted ageing 
and Braak stage 
EWAS 

Illumina 450K array Replication of differential methylation 
in HOXA3, APP, and ANK1 in AD. 
Novel AD-associated DMPs in 
LRRC8B and MCF2L, and age-related 
DMPs in CLU. 

Madrid et 
al. (2018) 

Blood 45 39 5mC* AD-control EWAS Illumina EPIC array, 
pyrosequencing 

477 AD-associated DMPs (i.a. in 
B3GALT4, FLOT1, DLG2, OXT). 
B3GALT4 sites associated with CSF 
& cognitive measures. 

R.G. Smith 
et al. (2018) 

PFC, STG 147 5mC* Braak stage EWAS Illumina 450K array Large neuropathology-associated 
DMR in the HOXA gene cluster 
spanning 48 kb. 

Altuna et al. 
(2019) 

HIP 26 12 5mC* AD-control EWAS Illumina 450K array 118 AD-related DMPs in 159 genes, 
many of which were related to neural 
development and neurogenesis. 

A.R. Smith 
et al. (2019) 

EC Discovery cohort: 96 
Validation cohorts: 104, 
96 

5mC,5hmC Braak stage EWAS Illumina 450K array DMP in WNT5B, DMRs in ANK1, 
ARID5B, DHR in FBXL16, DUR in 
ALLC, JAG2, ARID5B. ANK1 
hypermethylation and 
hypohydroxymethylation in AD.  

Konki et al. 
(2019) 

Blood, AH Blood: 23 discordant 
twin pairs 
AH: 6 AD, 6 control 

5mC* AD-control EWAS Illumina 
HiSeq2500/3000, 
pyrosequencing 

11 AD-associated DMPs detected in 
blood, though no association was 
found with gene expression. 
Differential methylation in ADARB2, in 
both brain and blood. 
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Epigenome-wide association studies of AD (continued) 

Article Sample type 

Number of Samples Type of 
modification Approach Method Main findings AD Control 

Lardenoije 
et al. (2019) 

MTG, blood MTG: 45 
Blood: 42 

MTG: 
36 
Blood: 
54 

5mC, 5hmC AD-control EWAS, 
EWAS of future 
conversion to AD 

Illumina 450K array MTG: one DMR in OXT, one DHR in 
CHRNB1, 11 DURs. Blood: 3 DMPs 
and 15 DMRs at baseline prior to 
conversion, 266 DMPs and 21 DMRs 
after conversion to AD. OXT DMR 
found in both brain and blood. 

Vasanthaku
mar et al. 
(2020) 

Blood AD: 94 
MCI: 333 

220 5mC* AD-MCI-control 
EWAS 

Illumina EPIC array 42 DMPs associated with AD, 25 with 
MCI, and 13 with MCI vs. AD 
differences. DMPs enriched near brain 
tissue-specific genes. 

Roubroeks 
et al. (2020) 

Blood AD: 86 
MCI: 109 

89 5mC* AD-MCI-control 
EWAS, EWAS of 
future conversion to 
AD 

Illumina 450K array Hypermethylated DMR in HOXB6 in 
AD, DMRs associated with conversion 
to AD and altered biological pathways. 

Zhang et al. 
(2020) 

PFC, blood PFC: 1030 
Blood: 69 

5mC* Braak stage meta-
analysis of data from 
Lunnon et al. (2014), 
De Jager et al. 
(2014), R.G. Smith et 
al. (2018), and 
Gasparoni et al. 
(2018). 

Illumina 450K array 3751 DMPs and 119 DMRs associated 
with Braak stage in AD brain, including 
the genes MAMSTR, AGAP2, and 
AZU1. Replication of DMRs in HOXA3, 
ANK1, RHBDF2, BIN1. Low overlap 
between brain and blood DNA 
methylation. 

 
Table 1.3 Overview of epigenome-wide association studies of AD. 

Studies examining epigenome-wide DNA methylation profiles in AD. Abbreviations: AH: anterior hippocampus, CER: cerebellum, DLPFC: dorsolateral prefrontal 

cortex, EC: entorhinal cortex, FC: frontal cortex, HIP: hippocampus, MTG: middle temporal gyrus, OC: occipital cortex, PFC: prefrontal cortex, STG: superior temporal 

gyrus, TC: temporal cortex. *The methods used in these studies could not distinguish 5mC and 5hmC.
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1.4. Aims 

 

This thesis aims to investigate DNA methylation differences in the blood of AD, 

MCI and control individuals, and to determine the effects of the risk factors of age 

and sex on blood DNA methylation. The specific aims of this project are as 

follows: 

 

1. To perform the first EWAS of its size on blood DNA methylation data 

generated in AD, MCI and control individuals, identifying differences at the 

levels of single CpG sites and regions within the DNA. In addition, 

weighted gene correlation network analysis (WGCNA) will be performed 

to identify clusters of co-methylated loci, with biological pathway analyses 

run subsequently (Chapter 3). 

2. To examine the effects of age and sex on blood DNA methylation of the 

autosomes, and their interaction with disease (Chapter 4). 

3. To identify sex-specific and disease-associated differences in blood DNA 

methylation on the sex chromosomes and on the inactivated X 

chromosome (Xi; Chapter 5) 
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CHAPTER 2. MATERIALS AND METHODS 
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This chapter provides an overview of the samples, laboratory work, and data 

analysis methods used in multiple chapters of this thesis. Data analyses specific 

to a single chapter will be described in detail in the relevant chapter. 

 

2.1. The AddNeuroMed cohort 

 

The data and samples used to conduct the research described in this thesis 

include DNA methylation data which was generated by Professor Katie Lunnon 

from whole blood samples from the AddNeuroMed cohort (2.1, Chapters 3, 4, 

and 5) as well as previously generated DNA methylation data from the ADNI 

study which was used for replication purposes (described in section 2.3; Chapters 

4 and 5).  

 

2.1.1. AddNeuroMed cohort demographics 

The AddNeuroMed cohort was formed by the European Innovative Medicines 

(InnoMed) initiative, with the goal of diagnostic and prognostic biomarker 

discovery for AD (Lovestone et al., 2007, 2009). This initiative was funded by the 

European Union as well as by members of the European Federation for 

Pharmaceutical Industries and Associations. The study represents a 

collaboration between six centres across Europe where participants were 

recruited and assessed according to standardised procedures: the University of 

Eastern Finland (Kuopio, Finland), the University of Łódź (Łódź, Poland), King’s 

College London (London, United Kingdom), Università degli Studi di Perugia 

(Perugia, Italy), Aristotle University of Thessaloniki (Thessaloniki, Greece), and 

Centre Hospitalier Universitaire de Toulouse (Toulouse, France). Informed 

consent was obtained from all participants according to the Declaration of 
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Helsinki (1991), and all procedures were approved by the relevant institutional 

boards at each site. Participants included individuals with AD, MCI, and elderly 

CTL. AD was defined by the NINCDS-ADRDA criteria, MCI as Petersen amnestic 

and non-amnestic types, and CTL was defined as having a Mini-Mental State 

Examination (MMSE) score greater or equal to 28 points, and showing no 

symptoms of dementia. Subjects were excluded from the study if depression or 

another neurological syndrome was present at baseline which would call the 

diagnosis into question.  

 

Of the full AddNeuroMed cohort, a subset of 301 individuals were selected for 

genome-wide assessment of DNA methylation, on the basis of additional 

availability of transcriptomic (Lunnon et al., 2012, 2013), genomic (Furney, 

Simmons, et al., 2011), and imaging data (Furney, Kronenberg, et al., 2011; 

Furney, Simmons, et al., 2011; Westman et al., 2011). A further 16 samples were 

removed post-profiling as they met the exclusion criterion of being younger than 

65 years of age at baseline. After one sample was removed during data pre-

processing (as described in 2.2.3.5), 284 samples remained which were used in 

all baseline analyses described in Chapters 3, 4, and 5. A subset of individuals 

with MCI had received an AD diagnosis at follow-up assessments (MCI-AD, n = 

42). For four of these individuals, the time of conversion was unknown and 

therefore these samples were excluded from conversion analyses, whilst the 

remaining 38 individuals progressed to AD within one year after baseline 

assessment and were thus included in any conversion analysis. For an overview 

of samples used, see  

Table 2.1. 
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AddNeuroMed 

 CTL 
MCI 

AD 
MCI-MCI MCI-AD 

N 89 67 42† 86 

Sex (M/F) 34/55 34/33 16/26 30/56 

Age (Mean ± SD) 73.8 ± 5.3 75.1 ± 5.6 76.3 ± 5.3 76.8 ± 5.6 

MMSE (Mean ± SD) 29 ± 1.2 27.3 ± 1.7 26.3 ± 2.2 20.8 ± 4.5 

 
Table 2.1 AddNeuroMed cohort demographics.  

Subject characteristics of 284 whole blood DNA methylation samples that passed data pre-

processing. Of the original 301 samples, 16 did not meet inclusion criteria, and one sample did 

not pass quality control (QC). Shown are the number of samples (N), sex (Males/Females), mean 

age ± standard deviation (SD), and MMSE score ± SD. Of the 109 MCI subjects, 67 remained 

stable, and 42 progressed to AD. For conversion analyses comparing MCI-MCI to MCI-AD, four 

MCI-AD subjects were removed due to unknown conversion time, the remaining 38 individuals 

converted within one year after baseline measurement.  
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2.2. Genome-wide DNA methylation profiling in AddNeuroMed 

 

Of the full AddNeuroMed cohort, a subset of 301 samples were selected for DNA 

methylation profiling, which was performed by Professor Katie Lunnon (sections 

2.2.1 and 2.2.2).  

 

2.2.1. DNA preparation 

DNA had previously been extracted from venous blood baseline samples as 

described by Furney et al. (2011), and was tested for degradation and purity. For 

each sample, 500ng DNA was sodium bisulfite-treated using the Zymo EZ-96 

DNA methylation kit (Zymo Research, CA, USA) according to the manufacturer’s 

standard protocol. First described by Frommer et al. (1992), bisulfite treatment 

can be used to selectively identify the presence of the DNA cytosine modifications 

5mC and 5hmC, although levels of 5hmC are negligible in blood (Nestor et al., 

2012). With this method, unmodified cytosine bases are converted to uracil, while 

modified bases remain unchanged. During polymerase chain reaction (PCR) 

amplification, only modified cytosine sites will be amplified as cytosine, as uracil 

will be amplified as thymine.  

 

2.2.2. Illumina HumanMethylation 450K arrays 

Genome-wide DNA methylation profiles were obtained using the Illumina Infinium 

HumanMethylation450K BeadChip array (450K array; Illumina, CA, USA). This 

method is able to assess DNA methylation at more than 485,000 targeted CpG 

sites within the genome, which cover 98.9% of known UCSC RefGenes and 96% 

of CpG islands at the time of development (Bibikova et al., 2011). The 450K array 

makes use of two types of probes to assess methylation, i.e. type I and type II 
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probes (Figure 2.1). Type I probes originate from the 450K array’s predecessor, 

the Illumina Infinium HumanMethylation27 BeadChip (27K array). For this probe 

type, every CpG locus is covered by two beads, one to assess a methylated locus 

(M bead probe), and another to assess an unmethylated locus (U bead probe). 

The U bead probe contains an adenine base at its 3’ terminus, which will bind a 

query DNA strand containing an unmethylated locus (in which the unmethylated 

cytosine has been converted to thymine by bisulfite treatment and PCR). This 

enables single base elongation with labelled dideoxynucleotide triphosphates 

(ddNTPs), resulting in a fluorescent signal. If the query CpG locus is methylated, 

this will cause a 3’ mismatch pairing, preventing elongation. Conversely, the M 

bead probe contains a guanine base at the 3’ terminus. If the query CpG locus is 

methylated (and thus the methylated locus was converted to cytosine following 

bisulfite treatment and PCR), the DNA strand will bind to the probe and result in 

single base elongation and a fluorescent signal. In contrast, type II probes require 

only one type of bead per query CpG locus. The probes will bind to targeted 

regions, and single base extension will take place at the site of the query CpG 

locus. If unmethylated, the binding of adenosine to thymine will result in a red 

fluorescent signal, and if methylated, the binding of guanine to cytosine will result 

in a green signal. Using the two types of probes, the 450K array chips can bind 

bisulfite-treated DNA, and, through measurement of the resulting fluorescent 

signals with an Illumina HiScan (Illumina, CA, USA), DNA methylation levels at 

specific loci are assessed. 

 

For the generation of DNA methylation data in the AddNeuroMed cohort samples, 

bisulfite treatment of the DNA was performed in four batches, and all samples 
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were randomised with respect to sex, centre of sample collection, and diagnostic 

status on the 450K array BeadChips, which assess 12 samples per chip.  
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Figure 2.1 Illumina HumanMethylation 450K probe types.  

The 450K array employs two probe types, type I (Infinium I), and type II (Infinium II). The U bead 

in type I probes assesses unmethylated query CpG sites, while the M bead assesses methylated 

query sites. For type II probes, one bead type assesses both methylated and unmethylated query 

CpG sites. Taken from Infinium® HumanMethylation450 BeadChip Data Sheet (Illumina).  
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2.2.3. Data pre-processing 

Unless mentioned otherwise, all data processing was performed in the R 

statistical environment (version ≥ 3.5.2; R Development Core Team 3.0.1., 2013). 

R code for the computational methods described in this chapter, and Chapters 3, 

4, and 5 can be found on https://github.com/JanouR/PhD_Thesis.  

Following HiScan measurement, raw signal intensity data files were imported into 

R as a methylumi object using the methylumi package (Davis, S., Du, P., Bilke, 

S., Triche, T., Bootwalla, M, 2015). DNA methylation values were generated by 

calculating β-values as a ratio of the methylated and unmethylated signal 

intensities (M and U, respectively), according to the following equation: 

𝛽 =
𝑀 

𝑀 + 𝑈 + 100
 

β-Values range from zero to one, indicating no methylation present at a given loci 

at the zero value, and a given loci is fully methylated at the one value. Median 

methylated and unmethylated signal intensities were visually inspected to ensure 

no samples displayed extremely low intensities which clearly deviated from the 

main cluster of samples (Figure 2.2), and a density plot of raw β-values can be 

seen in Figure 2.3. 

 

Quality control (QC) and pre-processing was performed using the methylumi and 

wateRmelon packages (Schalkwyk et al., 2013), following the steps described 

below in sections 2.2.3.1 - 2.2.3.7. 

 

https://github.com/JanouR/PhD_Thesis
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Figure 2.2 Raw median methylated and unmethylated signal intensities in AddNeuroMed 
samples.  

None of the samples showed extremely low intensity levels that deviate from the main cluster of 

samples. Therefore, all samples could be taken forward in the QC pipeline. 
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Figure 2.3 Density plots of raw β-values in the AddNeuroMed cohort.  

Density plots displaying the frequency of DNA methylation values across all individual 

AddNeuroMed blood samples (top), and for the average of all samples (bottom). 
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2.2.3.1. Bisulfite conversion efficiency 

The efficiency of the bisulfite treatment of the DNA was assessed using the bscon 

function in the wateRmelon package. This function makes use of a set of fully 

methylated control probes that are included on the array, calculating a β-value for 

these probes, indicative of conversion efficiency. A threshold of a median value 

of ≥ 80% for each sample is commonly used, which all samples passed (Figure 

2.4).  
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Figure 2.4 Bisulfite conversion efficiency in AddNeuroMed samples. 

Distribution of median methylation percentage across samples in fully methylated control probes 

on the 450K array. All samples passed the minimum median methylation percentage of 80%. 

 

  



86 
 

2.2.3.2. Genetic distinctness of samples 

The 450K array contains 65 probes that interrogate single nucleotide 

polymorphism (SNP) sites by design, which can be used to assess whether any 

samples are genetically identical. The β-values for these samples were extracted 

and correlated, and the maximum correlation for each sample with all other 

samples was extracted. Typically, a value >0.95 indicates that samples may be 

genetically identical, which was, as expected, not found for the samples in this 

study (Figure 2.5).  
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Figure 2.5 Genetic distinctness of samples in the AddNeuromed cohort. 

Maximum correlations found between samples for 65 probes interrogating SNP loci. As none of 

the samples showed correlations higher than r > 0.95, this indicates that the samples are not 

genetically identical, as expected. 
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2.2.3.3. Removal of cross-hybridising and SNP probes 

The next step in the QC process included the removal of probes that have been 

previously reported to be technically questionable in 450K array data studies. 

These probes either contain a SNP within the target sequence, or may co-

hybridise, as they have a highly similar genetic sequence to other genomic sites. 

These probes have been described in Price et al. (2013) and Chen et al. (2013), 

and were removed from the original 485,577 probes on the array, leaving 413,510 

probes for further QC and analysis. 

 

2.2.3.4. Multidimensional scaling of sex chromosomes 

The next step in the QC process involves checking whether the sex predicted by 

the 450K array data (based on an individual’s DNA methylation profile on the X 

and Y chromosomes) matched the clinical record for that individual, which can 

help to detect mislabelling of samples. This was done by the creation of a 

distance matrix (dist function) and multidimensional scaling (MDS) of sex 

chromosome methylation using the cmdscale function. A visual inspection of the 

MDS coordinates plots, coloured by clinically defined sex, confirmed correct 

labelling of all samples (Figure 2.6). 
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Figure 2.6 Multidimensional scaling of sex chromosomes in AddNeuroMed. 

MDS coordinates calculated from the DNA methylation profile the sex chromosomes using the 

cmdscale function are plotted. Profiles that are more similar cluster together, and as expected 

two clusters are seen for each chromosome, which correspond to clinically reported sex (i.e. 

colour of the samples).  
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2.2.3.5. P-filter 

The pfilter function in wateRmelon is a further step of the QC process, which 

removes both probes and samples according to the following criteria: 

- Samples having 1% of probes with a detection p-value greater than 0.05; 

- Probes having a beadcount <3 in 5% of samples; 

- Probes having 1% of samples with a detection p-value greater than 0.05. 

Following the application of this function, one sample (out of the original 301 

profiled) was removed as a consequence of not fulfilling the first criterion.  

 

2.2.3.6. Outlier removal 

As a final control prior to normalisation of the data, the outlyx function in 

wateRmelon was applied to identify any outliers in the data. This function uses 

the first principal component of the data and determines outliers by interquartile 

ranges. No outliers were present in the final dataset of 284 individuals. 
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Figure 2.7 Outlyx plot for the identification of outliers in the AddNeuroMed cohort. 

The outlyx function was applied to the raw (p-filtered) DNA methylation data to detect any outlying 

samples. Outlier zones based on interquartile ranges are indicated in red, none of the samples 

were classified as outliers.  
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2.2.3.7. Normalisation and final QC 

Quantile normalisation of the data was performed using the dasen function of the 

wateRmelon package (Figure 2.8; see Pidsley et al. (2013) for a detailed 

description). Briefly, this method performs a background signal adjustment for 

both M and U intensity signals, for type I and type II probes, as they perform 

slightly differently. The background difference between the two types of probes 

is calculated and added to the type I intensity. The function then performs quantile 

normalisation of M and U intensity signals separately, as well as separately by 

probe type I and II. Although the wateRmelon package offers a range of functions 

for normalisation, the dasen function was found to perform best in the Pidsley et 

al. (2013) study as well as in our own studies within our research group.  

 

Finally, two further performance metrics were applied as data QC steps. The 

dmrse function in wateRmelon assesses β-values at 227 probes that are known 

to be located in imprinting differentially methylated regions (iDMRs), which are 

expected to be hemi-methylated (β = 0.5). As a measure of data quality, the 

function calculates the standard error (SE) of the β-values at these sites, with a 

low SE found in the current dataset indicating a positive performance (SE = 

0.0074, SE type I probes = 0.0073, SE type II probes = 0.0073). In addition, the 

genki function makes use of the 65 SNP probes described in section 2.2.3.2. This 

function was applied to a separate data object, in which the SNP probes had not 

been removed, but which had been normalised according to the methods 

described above. As the samples will represent two homozygous and one 

heterozygous group for each SNP, the signals for these SNP probes are 

expected to cluster into three groups. The genki function performs one-

dimensional K-means clustering on each SNP probe, and calculates an SE-like 
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statistic for each of the three genotype groups, with low values indicating low 

technical variation. For the current dataset, the overall genki SE values were: 

3.47×10-5, 4.21×10-5, and 2.06×10-5 (type I probes: 5.10×10-5, 4.53×10-5, 

2.96×10-5, type II probes: 2.49×10-5, 4.00×10-5, 1.49×10-5). Considering the low 

SE values found here, it is concluded that this QC step does not indicate there is 

any undue technical variation. 

 

After finalising data QC and pre-processing, two sets of data were created for 

subsequent analyses: one dataset for investigating effects in relation to baseline 

diagnostic status (n = 284 samples: CTL = 89, MCI = 109, AD = 86, see  

Table 2.1), and one dataset including only the MCI individuals, for analyses 

examining future progression to AD (n = 105 samples). In the subset created for 

analyses related to future progression to AD, four MCI samples were removed 

from the dataset as their exact conversion date was unknown, leaving a total of 

105 samples (MCI-MCI = 67, MCI-AD = 38). For the analysis conducted in 

Chapters 3 and 4, 9,676 probes located on the sex chromosomes were removed 

from the data, leaving 401,266 probes on the autosomes, whereas only the 

probes located on the sex chromosomes were included in the analyses for 

Chapter 5.  
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Figure 2.8 β-distribution following dasen normalisation in the AddNeuroMed cohort.  

Density plots displaying the frequency of dasen-normalised DNA methylation values. The overall 

distribution is shown in black, and the data separated by type I or type II probes in blue and red, 

respectively.  
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2.2.4. Identification of covariates in the AddNeuroMed cohort 

For all analyses of differential methylation, a number of covariates were included 

based on the identification of variables influencing DNA methylation using 

principal component analysis (PCA). As it is known that variables such as 

smoking (Hannon et al., 2018; Zeilinger et al., 2013) and cell type proportion 

within samples (Houseman et al., 2012) may cause variation, a smoking score 

was calculated for each individual according to (Elliott et al., 2014; Figure 2.11), 

and cell type proportions were estimated according to Houseman et al. (2012). 

Additionally, as both bisulfite treatment batch (plate) and array chip may cause 

technical variation, median methylated and unmethylated intensity signals 

calculated per plate and BeadChip were visually inspected (Figure 2.9 and Figure 

2.10, respectively).  

 

To determine which of these variables, in addition to the well-known confounding 

variables of sex and age, would be taken into account as covariates in 

subsequent analyses, an unrotated PCA was performed. Using the prcomp 

function, principal components were generated, each of which account for a 

certain proportion of the variance in the dataset (Table 2.2). I decided to focus on 

the first two principal components, as these accounted for more than 5% of the 

total variance each (11.2% and 5.9%, respectively). For visualisation purposes, 

the first five principal components were then correlated to potential confounders 

as well as diagnosis and other variables of interest (Figure 2.12), and only the 

variables correlated to the first two principal components were identified as 

covariates to include in subsequent analyses. Based on this information, the 

variables of age, sex, cell type proportion and bisulfite treatment batch (plate) 

were taken into account in all analyses. Of note, a small but significant correlation 
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was observed between samples originating from Toulouse and the first principal 

component. However, the inclusion of source as a covariate would add five 

dummy variables to any models, thereby decreasing power substantially. 

Furthermore, in trial runs of the differential methylation analyses it was found that 

adding source as a covariate only increased p-value inflation in models where 

inflation was already present (data not shown). Taking into account that the first 

principal component also strongly correlated with cell type, it was decided to omit 

the source dummy variables from further analyses.  
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Figure 2.9 Median signal intensities in AddNeuroMed plotted by batch. 

Median methylated (M) and unmethylated (U) signal intensities are plotted and coloured by 

bisulfite treatment plate (batch).  
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Figure 2.10 Median signal intensities in AddNeuroMed by 450K array chip. 

Median methylated (M) and unmethylated (U) signal intensities are plotted and coloured by 450K 

array Chip ID. 
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Figure 2.11 Distribution of smoking scores across all 284 baseline samples in 
AddNeuroMed.  

Smoking scores were calculated based on methods described by Elliott et al. (2014). Values 

toward the left end of the graph correspond to non-smokers. 
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Table 2.2 Principal components identified by PCA in the AddNeuroMed cohort. 

PCA was used to identify sources of variance in the data. Shown for the first ten principal components (PC1 - PC10) are the standard deviation, proportion of variance, 

and the cumulative proportion of variance. As the first two principal components accounted for the arbitrary threshold of more than 5% of variance in the data, these 

were used to select which covariates would be included in analyses of differential methylation.  

  

 

 

 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Standard deviation 6.719 4.875 3.743 2.833 2.591 2.039 1.987 1.827 1.771 1.735 

Proportion of Variance 0.112 0.059 0.035 0.020 0.017 0.010 0.010 0.008 0.008 0.007 

Cumulative Proportion 0.112 0.171 0.206 0.226 0.243 0.253 0.263 0.271 0.279 0.287 
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Figure 2.12 Correlation plot of principal components to potential confounders and 
variables of interest in AddNeuroMed. 

The first five principal components resulting from PCA were correlated to diagnosis as well as all 

potential confounders: age, cell types (CD8T, CD4T, natural killer (NK), B cells, monocytes 

(mono), granulocytes (gran)), smoking, number of education years (Edu.Yrs), MRI data 

(right/left/total entorhinal cortex volume (REV/LEV/TEV), median entorhinal thickness (MET), 

ventricular volume (VV), right/left/total hippocampal volume (RHV/LHV/THV), whole brain volume 

(WBV)) , sex, batch (Plate 1 – 4), sample source (Kuopio, Lodz, London, Perugia, Thessaloniki, 

Toulouse), and the number of APOE ε4 alleles. As cell types and batch correlated strongly with 

the first two principal components (accounting for > 5% of variance), these were selected as 

covariates in addition to age and sex. Significance: * = 3.23×10-4 (Bonferroni-corrected p-value), 

** = 1.0×10-8, *** = 1.0×10-10. 
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2.3. The ADNI cohort 

 

The ADNI study was initiated in 2004, in a partnership of private companies and 

the National Institute on Aging (NIA) as well as the National Institutes of Health 

(NIH) in the United States of America and Canada. The study, led by Dr. Michael 

W. Weiner, has the aim of developing biomarkers for the early diagnosis of AD 

using cross-sectional and longitudinal data from different modalities 

(http://adni.loni.usc.edu/). The ADNI cohort includes CTL subjects, individuals 

with MCI, and individuals with AD. The study design, selection of participants and 

data collection procedures have been described in Petersen et al. (2010). Briefly, 

participants were only included if they were between 55 and 90 years old, showed 

no signs of depression on the Geriatric Depression Scale (GDS), and were of 

good general health with no diseases precluding enrolment. The inclusion criteria 

specific to the CTL group were: no uncommon memory complaints for an 

individual’s age, normal memory functioning as determined by the revised 

Wechsler Memory Scale (WMS), and MMSE score between 24 and 30, a Clinical 

Dementia Rating (CDR) of 0, and no significant impairment in cognitive functions 

or activities of daily living. Participants with MCI were only included if they had 

memory complaints, showed abnormal memory function on the WMS, scored 

between 24 and 30 on the MMSE and had a CDR of 0.5, but general cognition 

and performance did not indicate a diagnosis of AD. AD was diagnosed through 

the NINCDS/ADRDA criteria for probable AD, with subjects having memory 

complaints, showing abnormal memory function on the WMS, scoring between 

20 and 26 on the MMSE and had a CDR of 0.5 – 1.0.  

 

http://adni.loni.usc.edu/
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2.3.1. DNA methylation profiling and sample selection in ADNI 

DNA methylation profiling of blood samples was performed on 653 individuals in 

the ADNI cohort using Illumina EPIC arrays. DNA was collected for DNA 

methylation profiling at baseline, and at two follow-up points, each one year apart. 

Samples were randomised with a modified incomplete balanced block design, 

with all samples from the same subject being placed on the same BeadChip. 

Spaces on the chip were filled with age- and sex-matched samples. In order to 

avoid confounding, subjects from different diagnostic groups were placed on the 

same chip, and any remaining spaces on the chip were filled with replicated DNA 

samples for technical reproducibility assessment. 

 

As the ADNI cohort was intended as a replication cohort for the analyses 

performed in Chapters 4 and 5, a subset of samples from the cohort were 

selected based on several criteria in order to match the cohort demographics of 

the AddNeuroMed cohort as closely as possible. The overall inclusion criteria 

were: 

1. Only individuals classified as CTL, or MCI, or AD (i.e. no individuals with 

subjective memory complaints). 

2. White/Caucasian ethnicity. 

3. Age 65 or older. 

 

As multiple time points were available for participants, the following process was 

used to select samples to obtain a cross-sectional cohort similar to AddNeuroMed 

(with CTL, MCI-MCI, MCI-AD, and AD groups). First, samples were divided into 

those with a consistent classification (i.e. the same diagnostic group at every 

clinical assessment), and those with an inconsistent classification. For every 
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subsequent step described below, the following applies: if multiple suitable 

methylation samples were available for an individual, the methylation sample with 

the age closest to the average age of the respective diagnostic group in 

AddNeuroMed was selected. Additionally, individuals were only included in one 

of the diagnostic groups. 

 

For samples with a consistent classification: 

- All samples were allocated to their respective diagnostic groups (CTL, 

MCI-MCI, and AD).  

o The CTL and MCI-MCI groups exclusively contained samples with 

a consistent classification. 

o The AD group contained some samples with a consistent 

classification, with the rest of the group composed of inconsistent 

classified samples as described below 

For samples with an inconsistent classification: 

- To generate the rest of the AD group, I selected methylation samples that 

had at least one earlier diagnosis of AD, and a stable diagnosis of AD after 

that time point (i.e. no reversion to MCI or CTL at a later time point). 

- For the MCI-AD group: 

o Only individuals with methylation profiling performed less than one 

year prior to conversion to AD were selected.  

o Individuals with a chronological development from CTL to MCI to 

AD were included, though any individuals with a chronological 

development from MCI to CTL, or AD to CTL or MCI were excluded. 

o Where two samples were available less than one year before 

conversion to AD, the earliest sample was selected. 
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This selection process left a total of 443 samples for the replication analyses of 

Chapters 3 and 4, of which 140 were CTL, 216 were MCI, and 87 were AD. Within 

the MCI group the ratio of MCI-AD converters to MCI-MCI individuals were the 

same in ADNI (38.9%) as in AddNeuroMed (38.8%; Fisher’s exact test: p = 1). 

The average age of the CTL group in ADNI (M = 76.3, SD = 5.9) was higher than 

the CTL group in AddNeuroMed (M = 73.8, SD = 5.3; t (227) = 3.32, p = .001). 

However, the average age between the MCI groups (AddNeuroMed: M = 75.5, 

SD = 5.5, ADNI: M = 75.9, SD = 5.9) did not differ significantly (t (323) = 0.50, p 

= .616), nor did the average age between the AD groups (AddNeuroMed: M = 

78.4, SD = 6.1, ADNI: M = 76.8, SD = 5.6, t (171) = 1.85, p = .066). The MMSE 

scores were also compared between each diagnostic group. No differences 

between cohorts were found for the CTL groups (AddNeuroMed: M = 29, SD = 

1.2, ADNI: M = 29.1, SD = 1.3, t (227) = 1.85, p = .56), the MCI groups 

(AddNeuroMed: M = 26.9, SD = 2, ADNI: M = 27.4, SD = 2.1, t (323) = 1.85, p = 

.56), or the AD groups (AddNeuroMed: M = 20.8, SD = 4.5, ADNI: M = 20.1, SD 

= 5, t (170) = -1.07, p = .288). Finally, the distribution of the number of APOE ε4 

alleles was compared between cohorts for each diagnostic group. No differences 

were found in the CTL groups (Fisher’s exact test: p = .244), the MCI groups 

(Fisher’s exact test: p = .470), or the AD groups (Fisher’s exact test: p = .071). 
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ADNI 

 CTL 
MCI 

AD 
MCI-MCI MCI-AD 

N 140 132 84 87 

Sex (M/F) 67/73 81/51 54/30 55/32 

Age (Mean ± SD) 76.3 ± 5.9 75.4 ± 5.9 76.6 ± 6 78.4 ± 6.1 

MMSE (Mean ± SD) 29.1 ± 1.3 28.1 ± 1.8 26.3 ± 2.1 20.1 ± 5 
 
Table 2.3 ADNI cohort demographics.  

Subject characteristics of 443 whole blood DNA methylation samples that all passed data pre-

processing. Shown are the number of samples (N), sex (Males/Females), mean age ± standard 

deviation (SD), and mini-mental state examination score (MMSE) ± SD. Of the 216 MCI subjects, 

132 remained stable (MCI-MCI), and 84 progressed to AD within one year after DNA profiling.  
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2.3.2. ADNI data pre-processing 

To keep differences between the ADNI and AddNeuroMed cohorts to a minimum, 

the raw data from the ADNI cohort was processed in the same manner as 

described in section 2.2.3, but adapted for EPIC arrays where necessary. Briefly, 

raw signal intensity data was imported into R as a methylumi object, and β-values 

were calculated across all 866,895 probes on the EPIC array (Figure 2.13). The 

median methylated and unmethylated signal intensities were visually inspected, 

and all samples were deemed acceptable. Although signal intensities are slightly 

lower on the EPIC array compared to the 450K array, this matches what has been 

seen previously in other EPIC array data analyses in our group. Signal intensity 

may vary from experiment to experiment, and samples should only be removed 

if they clearly deviate from the main cluster of samples on the intensity plot, which 

was not the case in this dataset (Figure 2.14). 

 

Next, bisulfite conversion efficiency was calculated (see section 2.2.3.1), and all 

samples passed the minimal conversion threshold of ≥ 80% median methylation 

in the fully methylated control probes (Figure 2.15). The complete set of samples 

also passed the threshold of SNP probe correlations <0.95 (section 2.2.3.2), 

indicating none of the samples were genetically identical (Figure 2.16). 

Subsequently, cross-hybridising probes and SNP probes were removed from the 

data based on the lists for the EPIC array provided by McCartney et al. (2016). 

This left 811,909 probes for further processing.  

 

The next QC step tested sample mislabelling by examining whether clinically 

recorded sex matched sex predicted from the DNA methylation data. However, 

the multidimensional scaling as detailed in section 2.2.3.4 does not work as well 
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for EPIC array data as it does for the 450K array data. Therefore, the getSex and 

plotSex functions from the minfi package were used, which generate an 

estimation of sex based on median intensity values on the X and Y chromosomes. 

For all samples, the clinically reported sex matched the sex predicted by the 

getSex function (Figure 2.17). Following the sex check, the pfilter function was 

applied (see section 2.2.3.5) which did not remove any samples, but removed 

162 probes with a beadcount < 3 in 5% of samples, and 1,605 probes that had 

1% of samples with a detection p-value greater than 0.05. A total of 810,140 

probes remained. Finally, the outlyx function was used to identify outliers (section 

2.2.3.6), which were not found in the ADNI dataset (Figure 2.18). The dataset of 

443 samples and 810,140 probes was then dasen-normalised (Figure 2.19), and 

the final QC performance checks were calculated as detailed in section 2.2.3.7. 

Low SEs were reported from the application of the dmrse function, indicating a 

positive performance (SE = 0.0056, SE type I probes = 0.0059, SE type II probes 

= 0.0049), and the results from the genki function indicated low technical 

variation. The genki SE values in the ADNI dataset were: 3.19×10-5, 4.6×10-5, 

and 1.73×10-5 (type I probes: 5.2×10-5, 5.13×10-5, 2.61×10-5, type II probes: 

2.18×10-5, 4.32×10-5, 1.17×10-5). 
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Figure 2.13 Density plots of raw β-values in the ADNI cohort. 

Density plots displaying the frequency of DNA methylation values across all individual ADNI blood 

samples (top), and for the average of all samples (bottom). 
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Figure 2.14 Raw median methylated and unmethylated signal intensities in ADNI samples.  

None of the samples show extreme deviations from the main cluster of samples, therefore, all 

samples are taken forward in the QC pipeline. 
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Figure 2.15 Bisulfite conversion efficiency in ADNI samples. 

Distribution of median methylation percentage across samples in fully methylated control probes 

on the EPIC array. All samples passed the minimum median methylation percentage of 80%.  
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Figure 2.16 Genetic distinctness of samples in the ADNI cohort. 

Maximum correlations found between samples for 59 probes interrogating SNP loci on the EPIC 

array. As none of the samples showed correlations higher than r > 0.95, this indicates that the 

samples are not genetically identical, as expected. 
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Figure 2.17 Prediction of sex based on the X and Y chromosomes in ADNI. 

Median intensity values of probes on the X and Y chromosomes are plotted, and coloured by 

clinically reported sex for each sample. Profiles that are more similar cluster together, and as 

expected two clusters are seen which correspond to clinically defined sex.  
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Figure 2.18 Outlyx plot for the identification of outliers in the ADNI cohort. 

The outlyx function was applied to the raw (p-filtered) DNA methylation data to detect any outlying 

samples. Outlier zones based on interquartile ranges are indicated in red, none of the samples 

were classified as outliers.  
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Figure 2.19 β-distribution following dasen normalisation in the ADNI cohort.  

Density plots displaying the frequency of dasen-normalised DNA methylation values. The overall 

distribution is shown in black, and the data separated by type I or type II probes in blue and red, 

respectively.  
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2.3.3. Identification of covariates in the ADNI cohort 

To identify covariates in the ADNI cohort, a smoking score (Figure 2.20) and cell 

type proportions were generated based on the DNA methylation data, as detailed 

in section 2.2.4. No data on bisulfite treatment plates (batch) was available in the 

ADNI cohort, but median methylated and unmethylated intensity signals 

calculated per BeadChip were visually inspected (Figure 2.21 and Figure 2.22, 

respectively).  

 

As in the AddNeuroMed cohort, covariates were identified using PCA performed 

on the DNA methylation data from the ADNI cohort, as described in section 2.2.4. 

The first 10 principal components are shown in Table 2.4. As in AddNeuroMed, 

the threshold of 5% proportion of variance was chosen to select which principal 

components are of interest. For visualisation purposes, the five largest principal 

components were correlated to diagnosis as well as potential confounders, which 

included age, an individual’s number of education years, Houseman cell type 

proportions, smoking score, time to conversion from MCI to AD, sex, source of 

samples (site), BeadChip ID, and number of APOE ε4 alleles (Figure 2.23). In 

addition to the variables age and sex, the cell type proportion variables were 

selected as covariates to be used in all differential methylation analysis models 

as they correlated with the first two principal components.  
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Figure 2.20 Distribution of smoking scores across all 443 ADNI samples.  

Smoking scores are calculated based on methods described by Elliott et al. (2014). Values toward 

the left end of the graph correspond to non-smokers. 
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Figure 2.21 Median methylated signal intensities in ADNI by EPIC array chip. 

Median methylated (M) signal intensities are plotted and coloured by EPIC array Chip ID.  
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Figure 2.22 Median unmethylated signal intensities in ADNI by EPIC array chip. 

Median unmethylated (U) signal intensities are plotted and coloured by EPIC array Chip ID.  
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 PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10 

Standard deviation 12.512 9.901 5.368 4.967 3.654 3.335 3.171 2.975 2.826 2.702 

Proportion of Variance 0.157 0.098 0.029 0.025 0.013 0.011 0.01 0.009 0.008 0.007 

Cumulative Proportion 0.157 0.255 0.284 0.309 0.322 0.334 0.344 0.353 0.361 0.368 

 
Table 2.4 Principal components identified by PCA in the ADNI cohort. 

PCA was used to identify sources of variance in the data. Shown for the first ten principal components (PC1 - PC10) are the standard deviation, proportion of variance, 

and the cumulative proportion of variance. As the first two principal components accounted for the arbitrary threshold of more than 5% of variance in the data, these 

were used to select which covariates would be included in analyses of differential methylation.  
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Figure 2.23 Correlation plot of principal components to potential confounders and 
variables of interest in ADNI. 

The first five principal components resulting from PCA were correlated to diagnosis as well as all 

potential confounders: age, number of education years (Edu.Yrs), cell types (CD8T, CD4T, 

natural killer (NK) B cells, monocytes (mono), granulocytes (gran)), smoking score, time to 

conversion from MCI to AD, sex, source of samples (site), and BeadChip ID. As cell types 

correlated strongly with the first two principal components (accounting for > 5% of variance), these 

were selected as covariates in addition to age and sex. Significance: * = 6.67×10-4 (Bonferroni-

corrected p-value), ** = 1.0×10-8, *** = 1.0×10-10.
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2.4. General data analysis methods 

 

This section describes data analysis methods which apply to multiple chapters in 

this thesis. Any minor variations to the methods described here are detailed in 

the relevant chapters. 

 

2.4.1. Differential methylation analysis 

Prior to each analysis, covariates as identified in sections 2.2.4 and 2.3.3 were 

regressed out of the dataset, and the residuals were extracted for subsequent 

analyses. The exact set of covariates used in each analysis is also specified in 

the relevant chapters. To identify DMPs within the genome, an analysis of 

variance (ANOVA) was performed for all analyses examining the baseline 

diagnostic groups, so as not to assume a linear correlation between CTL, MCI 

and AD. When examining effects in relation to future progression to AD, a linear 

regression was applied to compare the two (MCI-MCI, MCI-AD) groups.  

 

To identify DMRs, the python comb-p module was run (Pedersen et al., 2012). A 

1000bp sliding window was used to identify regions of adjacent, correlated p-

values, set to a minimum p-value threshold of 0.01. Regions which contained only 

one probe, or regions which did not show a significant p-value after multiple 

testing correction were excluded. The p-value resulting from the comp-b analysis 

is calculated following a Stouffer-Liptak-Kechris correction, which adjusts the 

value for each locus in a weighted manner for the adjacent p-values. A Šidák 

multiple testing correction is then applied.  
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2.4.2. Weighted gene correlation network analysis (WGCNA) 

WGCNA of the AddNeuroMed data was used in Chapters 3 and 4, to identify 

biological pathways altered in association with AD and MCI, as well as other 

variables of interest such as sex, age, or MMSE score.  

 

2.4.2.1. Generation of correlation networks in AddNeuroMed 

In order to identify clusters, or ‘modules’, of highly co-methylated sites in the 

genome, we made use of the WGCNA R package (Langfelder & Horvath, 2008). 

The hypothesis underlying this method is that genes that highly co-vary, share 

the same underlying biological processes. Prior to creating the modules, all non-

variable probes (variance<median variance) were first removed from the 

normalised AddNeuroMed data, leaving 200,633 probes for analysis. Samples 

were then clustered based on their Euclidean distance, and clustering 

dendrograms were visually inspected to identify outlier samples, which were not 

detected. Network construction and module detection was then performed in a 

block-wise manner and constructed irrespective of the direction of correlation 

between probes (unsigned). In the generation of the network, all probes are 

connected, though the strength of the connection between two probes is weighted 

by applying a soft threshold. This threshold suppresses low correlations in a 

continuous manner, thus emphasising high correlations over low correlations. 

The soft threshold values were selected using the pickSoftThreshold function 

within the WGCNA package. Using this function, the lowest soft thresholding 

power for which the scale-free topology fit index approached 0.90 was selected. 

In the generation of modules based on all samples (for Chapters 3 and 4), the 

soft threshold was set to 9, and in the comparison of MCI converters to MCI non-

converters the threshold was set to 8 (Chapter 3, see Figure 2.24). In the resulting 
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modules, each module is identified by an arbitrarily assigned colour, and the grey 

module is disregarded from further analyses as it contains unassigned probes. 

Module eigengenes (MEs) were calculated for each module, as the first principal 

component across probes assigned to each module. The ME is a single value for 

each sample and represents the shared methylation profile of the module. 

Modules were generated twice: once for all samples, to be used in Chapters 3 

and 4, and once for the conversion analysis in Chapter 3 using only the subset of 

MCI-MCI and MCI-AD samples. A total of 16 modules were identified in the full 

dataset of all samples (Figure 2.25), and 31 modules were identified in the subset 

of MCI-MCI and MCI-AD samples (Figure 2.26). 

 

Further processing of the modules involved the association of MEs to variables 

of interest, and subsequent Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) pathway enrichment analysis using the 

missMethyl package (Phipson et al., 2016). Details on these methods are 

provided in the relevant sections in Chapter 3 (section 3.3.4 and 3.3.5) and 

Chapter 4 (section 4.3.3), as they are analysis-specific.  
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Figure 2.24 Selection of the soft threshold for WGCNA module generation 

The function pickSoftThreshold analyses scale free topology for multiple soft thresholding powers. The lowest power for which the scale-free topology fit index curve 

flattens out upon reaching a high value should be selected, which was 9 for the module generation in all samples (A), and 8 for the module generation in MCI-MCI and 

MCI-AD samples (B). 

A. B. 
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Figure 2.25 Clusters (or ‘modules’) of highly co-methylated loci identified in the full dataset 
of 284 samples. 

Modules are hierarchically clustered based on calculated module eigengenes (representative of 

the methylation values within each module), and the number of probes included in each module 

are indicated along the x-axis. The colour of each module is assigned in an arbitrary manner. 
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Figure 2.26 Modules identified in the subset of MCI-MCI and MCI-AD subjects. 

Modules were generated in the samples of MCI-AD converters within one year of baseline 

assessment, and stable MCI-MCI individuals. Modules are hierarchically clustered based on 

calculated module eigengenes, and the number of probes included in each module are indicated 

along the x-axes. Colours are assigned in an arbitrary manner. 
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2.5. Pyrosequencing validation 

 

Pyrosequencing was used in Chapter 3 of this thesis, in order to validate DNA 

methylation changes at single base-pair resolution in the HOXB6 DMR identified 

in 450K array data (Chapter 3, section 3.3.7). Pyrosequencing is a “sequencing 

by synthesis” technique, based on the release of pyrophosphate (PPi) during the 

process of DNA elongation (Nyrén, 1987; Nyrén et al., 1993). PPi is released 

through the addition of a deoxyribonucleotide triphosphate (dNTP) to a DNA 

strand, after which it is converted to adenosine triphosphate (ATP) by ATP 

sulfurylase. In the presence of ATP, a luciferase enzyme then causes the 

oxidation of luciferin to oxyluciferin, producing a light signal, which is monitored 

by a pyrosequencer. By performing bisulfite treatment on DNA prior to PCR and 

pyrosequencing (as described in section 2.2.1), this technique can provide a 

measure of DNA methylation at the single base level.  

 

A brief description of the methods used is included in Chapter 3; the full protocol 

is described below. Dr. Adam Smith performed the DNA bisulfite treatment, 

performed part of the pyrosequencing and assisted at other occasions.  

 

2.5.1. DNA bisulfite treatment 

An initial 282 samples were selected from the AddNeuroMed cohort subset for 

DNA bisulfite treatment using Zymo EZ DNA Methylation-Gold™ Kits (Cambridge 

Bioscience Cat No.: D5007), according to the manufacturer’s instruction 

(https://files.zymoresearch.com/protocols/_d5007_ez-96_dna_methylation-

gold_kit.pdf). A slight modification was made to the last steps of the protocol (0, 

steps 12 – 15). Instead of adding 30 μL of M-Elution Buffer followed by incubation 

https://files.zymoresearch.com/protocols/_d5007_ez-96_dna_methylation-gold_kit.pdf
https://files.zymoresearch.com/protocols/_d5007_ez-96_dna_methylation-gold_kit.pdf
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and centrifugation, 15 μL was added, followed by incubation, centrifugation, and 

a repetition of these steps. This had previously been found to give a higher yield 

of bisulfite-treated DNA.  

 

2.5.1.1. Sample preparation 

1. DNA was diluted to 25 ng/μL, and 500 ng of DNA was added to each well of 

a 96-well PCR plate. 

 

2.5.1.2. Reagent preparation 

1. Preparation of the CT conversion reagent (Table 2.5). The reagent is provided 

in powder form, and must be mixed at room temperature with frequent 

vortexing or shaking for 15 minutes.  

2. M-Wash Buffer preparation (Table 2.6).  
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Reagent Volume Supplier 

Ultra-pure H2O 9 mL - 

M-Dissolving Buffer 500 μL Zymo 

M-Dilution Buffer 3 mL Zymo 

CT Conversion Reagent Bottle provided in kit Zymo 

Table 2.5 CT conversion reagent. 

Reagents as provided by the Zymo EZ DNA Methylation-Gold™ Kits (Cambridge Bioscience Cat 

No.: D5007), with the exception of Ultra-pure H2O. 

 

 

Reagent Volume Supplier 

M-Wash Buffer 36 mL Zymo 

100% Ethanol 144 mL - 

Table 2.6 M-Wash Buffer reagents.  

The M-Wash Buffer is provided by the Zymo EZ DNA Methylation-Gold™ Kits (Cambridge 

Bioscience Cat No.: D5007). 
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2.5.1.3. Sodium bisulfite conversion 

1. 130 μL of the prepared CT Conversion Reagent was added to each 20 μL 

DNA sample in each PCR plate well. The samples were mixed by pipetting. 

2. The plate was sealed with the film provided in the kit, and transferred to a 

thermal cycler which was set to run the following steps: 

2.1. 98°C for 10 minutes, 

2.2. 64°C for 2.5 hours, 

2.3. 4°C storage for up to 20 hours. 

3. 400 μL of M-Binding Buffer was added to the wells of a Silicon-A™ binding 

plate mounted on a collection plate. 

4. The samples were transferred from the conversion plate (Step 2) to the wells 

of the Silicon-A™ binding plate, and mixed by pipetting up and down. 

5. The plate was centrifuged at 3,500 x g for 5 minutes, and the flow-through 

was discarded.  

6. 400 μL of M-Wash Buffer was added to each well, and the plate was 

centrifuged at 3,500 x g for 5 minutes. 

7. 200 μL of M-Desulphonation Buffer was added to each well, and the plate 

was incubated at room temperature (20-30°C) for 20 minutes. 

8. The plate was centrifuged at 3,500 x g for 5 minutes, and the flow-through 

was discarded. 

9. 400 μL of M-Wash Buffer was added to each well, the plate was centrifuged 

at 3,500 x g for 5 minutes, and the flow-through discarded. 

10. Another 400 μL of M-Wash Buffer was added to each well, and the plate was 

centrifuged at 3,500 x g for 10 minutes. 

11. The Silicon-A™ binding plate was placed onto an elution plate. 

12. 15 μL of M-Elution Buffer was added to each well. 
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13. The plate was incubated for 5 minutes at room temperature (20-30°C). 

14. The plate was centrifuged at 4000 x g for 3 minutes to elute the DNA.  

15. Steps 12-14 were repeated. 

 

The DNA was stored at or below -20°C for later use. In case of long-term storage, 

the DNA was stored at or below -70°C. 

 

2.5.2. Pyrosequencing assay design  

Biotinylated PCR primers were used to amplify a region of interest within the DNA 

for pyrosequencing. Additionally, sequencing primers were designed that were 

specific to the region of interest, and were designed to adhere to the following 

criteria: 

- To ensure sufficient annealing, the sequencing primer was designed to be 

between 15 and 25 bp long. 

- For optimal efficiency in the pyrosequencer, the sequencing primer was 

designed to have an annealing temperature as close as possible to 40°C. 

- The primers did not contain CpG sites to prevent selective attachment to 

only methylated or unmethylated DNA. 

- Primers did not contain large repetitive elements. 

- The forward and reverse primers were designed to match in annealing 

temperature. 

- The amplicon size should not greatly exceed 300 bp, and the region of 

interest to be sequenced did not exceed 100 bp. 

 

The biotinylated primers and sequencing primers were designed using the 

PyroMark Assay Design software by Qiagen, and the CpG assay designs for the 
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PyroMark machine were designed using the PyroMark Q24 software from 

Qiagen, under standard conditions. The primers were designed to cover a region 

of the HOXB6 DMR, used in Chapter 3, are displayed in Table 2.7. 
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Primer Sequence 

HOXB6 Forward /5Biosg/TTTTTGGTGAGGGGGGAGT 

HOXB6 Reverse CCTACCATCCCTCCCTTATCT 

HOXB6 Sequencing CTCTAACTATTACCCC 
Table 2.7 HOXB6 primers for PCR and pyrosequencing. 
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2.5.2.1. Polymerase chain reaction (PCR) 

PCR is used as a method to amplify a specific region of DNA by creating many 

copies of the same fragment using designed primers. In the PCR, a mixture of 

DNA, primers targeting the region of interest, free nucleotides, polymerase, and 

buffers, cycles through a process of heating and cooling, which leads to an 

amplification of the chosen region. These cycles run as follows: 

1. In the first step of the PCR, the mix is heated to a temperature of 95°C for 15 

minutes, which activates the heat-sensitive polymerase taq. 

2. This is followed by a repetition of three steps, which are repeated in this order 

a total of 35 times: 

2.1. Denaturation: the mix is heated to 95°C to denature the double-stranded 

DNA. 

2.2. Annealing: the mix is cooled to 60°C, which allows the primers to anneal 

to the complimentary sequence within the DNA. This temperature is 

primer-specific and may vary. 

2.3. Extension: the mix is heated to 72°C which allows the taq polymerase to 

synthesise the complementary strand of DNA, using the deoxynucleotides 

(dNTPs) which are present in the mix. 

3. A final extension phase at 72°C of 15 minutes is performed after the last cycle 

of steps 2.1. – 2.3. has finished. 

 

The PCR reagents and optimised cycling conditions are shown in Table 2.8 and 

Table 2.9, optimisation of the PCR is discussed in 2.5.2.3. 

  



136 
 

Reagent Volume Supplier Function 

10x Buffer B1 3 μL Solis BioDyne Solution stabiliser for 
optimum polymerase reaction 

MgCl2 (25mM) 1.98 μL Solis BioDyne Cofactor necessary for 
polymerase 

dNTP mix (10mM) 0.3 μL Fisher Scientific DNA bases for DNA 
synthesis 

F/R primer mix (10μM) 1.5 μL IDT Single-stranded 
oligonucleotides matching 
target sequence  

HOT FIRE polymerase 
(5U/μL) 

0.3 μL Solis BioDyne Catalyses the addition of 
nucleotides 

DNA (25ng/μL) 2 μL  Bisulfite treated DNA 

H2O 20.92 μL  Makes total reaction volume 
30 μL 

Table 2.8 HOXB6 PCR reagents. 

 

Process Temperature (°C) Duration Cycles 

Hotstart 95 15 min 1 

Denaturation 95 30 sec 

35 Annealing 60 30 sec 

Extension 72 1 min 

Final Extension 72 10 min 1 
End 15 ∞ - 

Table 2.9 Optimised PCR cycling conditions. 
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2.5.2.2. Gel electrophoresis  

Agarose gel electrophoresis was used to optimise the efficiency of PCR 

amplification, verify correct amplification of the region of interest, and assess the 

presence of primer dimers. Gel electrophoresis was performed as follows: 

A 2% gel was created by dissolving 2 g of agarose powder (Sigma Aldrich, cat 

no.: A9539) in 100 mL 1% tris-borate EDTA (TBE) buffer (Fisher Scientific, cat 

no.: 10031223). This mixture was heated for approximately two minutes to allow 

the agarose to fully dissolve. Before the gel had cooled, 10 μL of diluted Syto60 

was added for fluorescence (1 μL stock in 99 μL of high purity water (dH2O), 

Fisher Scientific, Cat. No.: 10194852), and the solution was mixed gently to 

prevent formation of bubbles. This solution was then poured into a pre-prepared 

gel cassette, and combs were added to create wells. The gel was then allowed 

to cool and set. While the gel was cooling, 5 μL of PCR amplified DNA was added 

to a PCR plate, and mixed with 2 μL of 6 x Orange G (New England Biolabs; Cat 

No: B7022S). Once the gel had cooled and set, the combs were removed, and 

the gel was placed in the gel tank, filled with 1 x TBE buffer. 

 

Each sample was loaded into an individual well, and a 100 base pair ladder (New 

England Biolabs; Cat No: N3231S) was added to the first well of each row. The 

gel was then left to run for 30 minutes at 120 V.  

 

After the run had finished, the gel was placed in a Licor Odyssey CLx scanner to 

visualise and assess PCR product quality. Clear, single bands were indicative of 

good, high molecular weight DNA. Primer dimers may occur as secondary bands, 

in the case of pyrosequencing this was only considered to be an issue if the 

sequencing primers had any overlap with the PCR primers. As this was not the 
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case, it was certain that the sequencing primers would allow only the sequencing 

of the region of interest, not the primer dimers. 

 

2.5.2.3. Assay optimisation and quality control 

First, bisulfite treated DNA from a select few samples was amplified using the 

PCR primers in Table 2.7. To select an optimal annealing temperature for these 

primers, the PCR was run with variable annealing temperatures (Table 2.10), and 

the results were visually inspected using gel electrophoresis (Figure 2.27). Based 

on these findings, an annealing temperature of 60°C was chosen for the PCR 

amplification of all samples.  

 

Prior to pyrosequencing of the HOXB6 region, correct amplification of the region 

of interest was assessed using gel electrophoresis. PCRs were performed in 

three batches (as detailed in Table 2.9), and each PCR run included a 

methylation positive control and no template (negative) controls (NTC). From 

each plate, 12 samples were selected (at least one from each column and row), 

and these, along with the NTCs and positive control, were run on a gel (Figure 

2.28).  
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Reagent Temperature (°C)  Duration Cycles 

Hotstart 95 15 min 1 

Denaturation 95 30 sec 

35 Annealing 56, 58, 60, 62, 64, 66 30 sec 

Extension 72 1 min 

Final Extension 72 10 min 1 

End 15 ∞ - 
Table 2.10 PCR cycling conditions for HOXB6 assay optimisation. 

 

 

Figure 2.27 Optimisation of the HOXB6 assay. 

Gel electrophoresis following a PCR run using a gradient of annealing temperatures (shown in 

image). A 100 bp ladder is shown on each side, confirming the presence of the desired HOXB6 

amplicon of 303 bp. Secondary product or primer dimerisation can be observed at ± 100 bp. 

However, as the sequencing primer was designed not to overlap the PCR primers, this ensures 

that only the 303 bp HOXB6 amplicon is sequenced.  
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Figure 2.28 Gel electrophoresis quality control of PCR product of the HOXB6 amplicon. 

Prior to pyrosequencing of the HOXB6 region, correct amplification of the region of interest (303 bp) was confirmed with gel electrophoresis of one sample from each 

column, row, and the NTC and positive control (PC), from each plate.  
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2.5.3. Pyrosequencing 

Following HOXB6 assay optimisation and PCR amplification of the region, 

pyrosequencing was carried out. The protocol for pyrosequencing is described 

below, as detailed in:  

https://www.qiagen.com/gb/resources/resourcedetail?id=59f0275d-e60f-4517-

b786-b0e0ca13952e&lang=en.  

 

2.5.3.1. Immobilising the PCR product to beads 

Using previously amplified DNA, biotinylated PCR products are immobilised on 

traptavidin-coated Sepharose beads (Streptavidin Sepharose High Performance, 

GE Healthcare), as follows: 

 

1. The streptavidin-coated Sepharose beads were gently shaken to re-suspend 

and obtain a homogenous solution. 

2. Per sample, 2 μL of beads was added to a 2.0 mL centrifuge tube, along with 

40 μL Binding Buffer (per sample). 

3. High-purity water was added to create a total volume of 60 μL per sample. 

4. The solution prepared was then added to a 24-well PCR plate, in aliquots of 

60 μL.  

5. 20 μL of biotinylated PCR product was added to each well of the PCR plate. 

6. The PCR plate was sealed and agitated constantly for 5-10 minutes, at 

1,400rpm.  

 

  

https://www.qiagen.com/gb/resources/resourcedetail?id=59f0275d-e60f-4517-b786-b0e0ca13952e&lang=en
https://www.qiagen.com/gb/resources/resourcedetail?id=59f0275d-e60f-4517-b786-b0e0ca13952e&lang=en
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2.5.3.2. Preparation of the vacuum workstation: 

The troughs in the PyroMark Q24 Vacuum workstation were filled as follows: 

- 50 mL ethanol (70%; Sigma Aldrich, cat no.: E7023) 

- 40 mL Denaturation Solution (0.2M Sodium Hydroxide (NaOH); Qiagen, 

cat no.: 979307) 

- 50 mL 1x Wash Buffer (Qiagen, cat no.: 979308) 

- 50 mL high-purity water 

- 70 mL high-purity water 

Following this, the vacuum workstation was prepared as follows: 

1. With the vacuum filter turned on, the filter probes were lowered into the trough 

containing 70 mL of high-purity water until all water had been washed 

through. The filter probes was turned off and returned to the ‘parking’ position.  

2. The trough was then refilled with 70 mL high-purity water. 

 

2.5.3.3. Sequencing primer preparation: 

1. The sequencing primer was diluted to 0.3 μM in Annealing Buffer (Qiagen, 

cat no.: 979309). 

2. 25 μL of the diluted sequencing primer was pipetted into each well of a 

PyroMark Q24 well plate.  

 

2.5.3.4. Combining the PCR products and sequencing primer 

1. Once the plate containing the PCR products had been agitated for 5-10 

minutes, it was moved to the PyroMark Vacuum Workstation.  

2. Immediately following this, the vacuum probe filters were turned on and 

lowered into the PCR plate in order to capture the beads containing 

immobilised template. 
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3. The vacuum tool with the sepharose beads was lowered into the trough 

containing 70% ethanol and flushed for five seconds. 

4. Following this, the vacuum tool was lowered into the trough containing the 

Denaturing Solution and flushed for five seconds. 

5. The vacuum tool was then lowered into the Wash Buffer trough, and flushed 

for ten seconds. 

6. Subsequently, the vacuum tool was raised vertically beyond 90 degrees for 

30 seconds, in order to drain all liquid from the filter probes. 

7. The vacuum tool was then turned off, and lowered into the PyroMark Q24 

plates. The beads were dislodged into the Q24 plates by gently shaking the 

tool from side to side. 

8. The Q24 plate was then heated for 2 minutes at 80°C on a heat block for 

annealing of the sequencing primer to the samples. Afterwards the plate was 

left to cool down for 5 minutes at room temperature.  

 

2.5.3.5. Setting up the pyrosequencer 

1. The PyroMark Q24 Cartridge was filled with the enzyme and substrate 

mixtures, as well as the nucleotides, in aliquots described in the pre-run 

information from the PyroMark Q24 software (Table 2.11 Volumes of PyroMark 

Gold Q24 reagents for the PyroMark Q24 Cartridge.Table 2.11). 

2. The Q24 plate and cartridge were loaded into the sequencer, the 

sequencing programme was loaded from an external drive, and run. 
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Reagent Volume 

Enzyme mix 119 μL 

Substrate mix 119 μL 

G 77 μL 

C 105 μL 

T 108 μL 

A 133 μL 

Table 2.11 Volumes of PyroMark Gold Q24 reagents for the PyroMark Q24 Cartridge. 
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2.5.4. Pyrosequencing data analysis 

QC of the pyrosequencing data was performed using the Pyromark Q24 software, 

in addition to a visual inspection of the data and signal intensities. Methylation 

percentages at specific CpG sites were then calculated by the software and 

exported to the R statistical environment. Subsequently, an ANOVA was 

performed to examine the association of DNA methylation with baseline 

diagnosis (in the same way that it was performed for the array data as detailed in 

2.4.1), controlling for the covariates of age, sex, cell type proportion and batch 

effects. Pearson correlations were performed between methylation values as 

determined by pyrosequencing and methylation values for the same CpG locus 

as measured with the 450K array.  
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CHAPTER 3. AN EPIGENOME-WIDE ASSOCIATION STUDY OF 

ALZHEIMER'S DISEASE BLOOD HIGHLIGHTS ROBUST DNA 

HYPERMETHYLATION IN THE HOXB6 GENE  
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This chapter contains work published in Neurobiology of Aging (Roubroeks et al., 

2020). The published article has been added to Appendix B of this thesis. 

 

3.1. Introduction 

 

With an increasingly ageing population the prevalence of dementia is expected 

to almost double in the coming 20 years, with AD being the greatest contributor. 

AD presents itself as a heterogeneous, multifaceted disease, and this complexity 

is reflected in the challenges researchers face in elucidating the exact 

mechanisms underlying this disorder. A number of GWAS have identified 

susceptibility loci associated with the more common, sporadic form of AD 

(Lambert et al., 2013). However, these do not account fully for the disease risk, 

and the exact processes involved in the development and progression of this 

neurodegenerative disorder remain unknown. 

 

A growing number of studies have investigated the role of epigenetic mechanisms 

in the aetiology and progression of AD. Recently, numerous EWAS have explored 

DNA methylomic variation in post-mortem human brain tissue from AD patients 

and elderly CTL and have highlighted a number of loci that show robust 

differences in DNA methylation in the cortex across independent cohorts (see 

Chapter 1.3; Altuna et al., 2019; De Jager et al., 2014; Gasparoni et al., 2018; 

Lardenoije et al., 2019; Lunnon et al., 2014; A. R. Smith et al., 2019; R. G. Smith 

et al., 2018, 2020; Watson et al., 2016). In recent years, several studies have 

identified transcriptomic (Booij et al., 2011; Fehlbaum-Beurdeley et al., 2012; 

Lunnon et al., 2012, 2013, 2017; Rye et al., 2011) or proteomic (Hye et al., 2006; 

O’Bryant et al., 2010, 2011, 2016) alterations in the blood early in the disease 



148 
 

and these signatures have been utilised for identifying novel dysfunctional 

pathways and biomarkers in blood. Although valuable, the use of systemic gene 

expression or protein markers for this purpose still yields some pitfalls due to the 

dynamic nature of gene and protein expression. For example, sampling methods 

can significantly alter expression levels by inducing ex vivo mRNA expression 

(Asare et al., 2008; Thach et al., 2003). Similarly, differences in processing 

methods between researchers (e.g., handling methods, sample processing 

method) can affect the quality of mRNA and protein and impinge on downstream 

analyses (Vartanian et al., 2009; X. Zhao et al., 2012). DNA methylation levels 

are reported to be more stable than mRNA levels (Paziewska et al., 2014), and 

as such, studying this in AD blood could be more informative of important 

biological pathways specifically altered in disease. To date, most blood DNA 

methylation studies have focused on specifically investigating target genes (da 

Silva et al., 2014; Furuya, da Silva, Payão, Bertolucci, et al., 2012; Furuya, da 

Silva, Payão, Rasmussen, et al., 2012; S. C. Wang et al., 2008). Four EWAS of 

AD blood have been published so far, which have identified a number of disease-

associated loci. However, these studies used a limited set of (non-demented) 

samples and/or did not include any individuals with MCI (Kobayashi et al., 2016; 

Lardenoije et al., 2019; Lunnon et al., 2014; Madrid et al., 2018). One EWAS of 

CTL, MCI, and AD subjects was published around the same time as the current 

study, and was conducted using samples from the ADNI cohort, though this study 

did not investigate progression to AD (Vasanthakumar et al., 2020). 

 

In order to understand changes in the blood related to the development and 

progression of AD, it is important to include MCI individuals in addition to AD 

patients and CTLs. Often viewed as an early stage of AD, MCI is characterised 
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by memory and other cognitive complaints and impairments. In contrast to the 

characteristics of AD, the cognitive impairments that individuals with MCI suffer 

from do not have a significant impact on daily living (Ronald C. Petersen et al., 

1999). Although individuals with MCI may remain stable over time or develop 

another neurodegenerative disorder, MCI subjects, particularly those with aMCI, 

are at an increased risk of progressing to AD (Jicha et al., 2006). In these cases, 

the early clinical symptoms reflect the underlying pathological changes related to 

AD that occur years before the disease fully manifests (J. Hardy, 1997; Jack et 

al., 2010). Previous research has shown that disease-related changes in gene 

expression can be detected in peripheral blood from individuals with MCI and AD, 

with results indicating that some peripheral differences in AD can be detected in 

MCI subjects (Lunnon et al., 2012). Taken together, the identification of blood 

methylation patterns related to MCI and AD is of great interest, as it may increase 

our understanding of peripheral, as well as central changes that occur early in 

the disease. 

 

In the current study, we have generated genome-wide DNA methylation data from 

well-characterised CTL, MCI and AD subjects with detailed demographic, clinical, 

neuroimaging and transcriptomic data previously collected. We have used this 

dataset to identify differentially methylated loci and epigenetic differences in 

specific biological processes in blood, which are associated with disease status, 

or future progression from MCI to AD. 
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3.2. Aims 

 

The aims of this chapter are as follows: 

1. To identify DMPs and DMRs associated with AD, MCI, and progression to 

AD in blood in the AddNeuroMed cohort; 

2. To validate the AD-associated DMR (HOXB6) using pyrosequencing in the 

AddNeuroMed cohort; 

3. To investigate correlations between DMRs and the gene expression 

profiles of the associated genes in the AddNeuroMed cohort; 

4. To identify biological pathways related to AD, MCI, and progression to AD 

in the AddNeuroMed cohort. 
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3.3. Materials and methods 

 

3.3.1. Subjects 

We analysed a subset of 284 blood samples selected for our study from the larger 

AddNeuroMed cohort, as described in Chapter 2, section 2.1. Briefly, subjects 

were classified into one of three groups according to their status at baseline 

sample collection: AD (n = 86), MCI (n = 109), or elderly CTL (n = 89). A subset 

of MCI subjects progressed to AD within one year of the baseline measurement 

(MCI-AD, n = 38), while others remained stable (MCI-MCI, n = 67). A subset of 

four MCI subjects converted to AD at an unknown time after baseline collection 

and were excluded from any conversion analysis.  

 

In addition to DNA methylation data, MRI data was collected for 213 individuals 

as described previously (Simmons et al., 2011). An overview of individuals 

included in this study can be found in  

Table 2.1.  

 

3.3.2. DNA methylation analysis 

QC and normalisation of the AddNeuroMed DNA methylation data was performed 

as described in Chapter 2, section 2.2.3. Before identifying DMPs associated with 

baseline diagnosis, the effect of specific covariates was regressed out. Relevant 

covariates were identified as described in Chapter 2, section 2.2.4. The 

covariates included in the regression were age, sex, blood cell type proportion 

(CD4+ and CD8+ T lymphocytes, natural killer cells, B cells, monocytes, 

granulocytes) and bisulfite conversion batch. An ANOVA and subsequent post-

hoc Tukey’s Honest Significant Difference (HSD) test were then performed on the 
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residuals from the linear regression, to test for DNA methylation differences 

across all three groups (see section 2.4.1). DMRs were identified using the comb-

p module in Python, according to the settings described in section 2.4.1.  

 

To identify DMPs and DMRs relating to the future conversion from MCI to AD we 

performed an analysis comparing the MCI-MCI subjects and the MCI-AD 

subjects, by first regressing out age, sex, blood cell type proportion, batch and 

baseline MMSE score. Baseline MMSE score was included as a co-variate as we 

observed a small, but significant difference in baseline MMSE between the MCI-

MCI and MCI-AD groups (Welch t = 2.61, p = 5.63×10-3). We then used a linear 

regression to compare the two groups and performed comb-p analysis as 

described in section 2.4.1. Quantile-quantile (Q-Q) plots of the p-values from both 

the ANOVA (baseline analysis) and linear regression (conversion analysis) are 

shown in Figure 3.1. 
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Figure 3.1 Q-Q plots of p-values from the baseline diagnosis analysis and the analysis of conversion to AD. 

Q-Q plot of p-values from the ANOVA comparing methylation between CTL, MCI, and AD samples (A), and p-values from the linear regression analysis comparing 

stable MCI-MCI to MCI-AD who converted within one year of baseline assessment (B).

A. B. 
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3.3.3. Generation of weighted gene correlation networks 

Clusters of highly co-methylated sites, i.e. modules, were identified using 

WGCNA as described in Chapter 2.4. Briefly, each generated module is linked to 

an arbitrarily assigned colour, and within each module MEs were calculated as 

representative values for the shared DNA methylation profile within a module. 

Modules were generated twice: once for the baseline group analysis, which 

compared CTL to MCI to AD, and once for the conversion analysis using only the 

subset of MCI-MCI and MCI-AD samples. 

 

3.3.4. Association of modules to traits of interest 

Following module generation, the relationship between modules and variables of 

interest was explored. In the baseline analysis, covariates (age, sex, blood cell 

type proportions, and batch number) were regressed out from the MEs, and 

extreme outliers (exceeding > 5 standard deviations) were removed. Modules 

were then associated with baseline diagnosis groups and traits of interest by 

performing pairwise Pearson or Spearman correlations for continuous or ordinal 

variables, respectively. Correlations were performed using dummy variables of 

baseline diagnosis categories to investigate all permutations of comparisons 

(CTL vs. MCI, CTL vs. AD, and MCI vs. AD), with the group not used in each 

comparison set to NA. Additional traits of interest included number of education 

years, number of APOE ε4 alleles, MMSE score, and the following structural MRI 

measurements: left, right, and total entorhinal cortex volume (LEV, REV, and 

TEV, respectively), median entorhinal thickness (MET), left, right, and total 

hippocampal volume (LHV, RHV, and THV, respectively), ventricular volume 

(VV), and whole brain volume (WBV). Similarly, regression of the same 

covariates (with the addition of baseline MMSE score) and outlier removal was 
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also performed for MEs generated from the MCI-MCI and MCI-AD samples. The 

residuals from this regression were then used to run a linear regression, 

comparing non-converters to converters.  

 

3.3.5. Module membership and probe significance 

For each of the modules showing significant (p < 0.05) associations with one of 

the three baseline groups, conversion to AD, or traits of interest, we calculated 

the module membership (MM) and probe significance (PS). MM was calculated 

as the Pearson correlation between the methylation value of each probe and the 

ME values, representing the strength of association between a probe and the 

module it belongs to. PS represents the strength of the correlation between a 

probe’s methylation value and the diagnosis or trait of interest, as performed by 

Pearson correlations for continuous traits, and Spearman correlations for ordinal 

traits or diagnosis groups. We correlated and plotted MM to PS for modules of 

interest and focused on those that showed significant positive correlations (i.e., r 

> 0, p < 0.05), which would indicate that probes more integral to the module are 

mainly driving the association with the trait of interest. Underlying biological 

processes and pathways were then examined for the modules selected, using 

GO and KEGG pathway enrichment analyses. For modules containing a large 

number of probes (> 10,000), we performed these pathway analyses on the 

probes that were central to the module (i.e., core probes). We set this threshold 

at 15%, thus selecting the top 15% of probes with the highest MM. Analyses were 

performed using the missMethyl package (Phipson et al., 2016), taking into 

account the differing number of probes covering each gene on the array.  
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3.3.6. Analysis of gene expression data and association with methylation 

data 

Normalised gene expression data from Illumina Human HT-12 v3 Expression 

BeadChip arrays (HT-12 arrays) was obtained from a previous study by Lunnon 

et al. (2012), for 237 individuals included in the current study. Expression data for 

all genes containing DMRs identified in this study were extracted for analysis if 

available. For genes nominated from the diagnostic category analysis (CTL, MCI, 

AD), the covariates of age, sex, and cell type proportions (estimated using 

Houseman’s reference based method) were regressed out of the expression 

data. An ANOVA and subsequent Tukey’s HSD were then performed on the 

residuals of the regression to identify diagnostic category differences in 

expression levels of genes containing DMRs. For genes which contained DMRs 

associated with the progression to AD, only the MCI-MCI and MCI-AD samples 

were analysed, with age, sex, cell type proportions, and baseline MMSE score 

regressed out of the expression data, with a subsequent linear regression 

analysis performed to assess gene expression differences between MCI-MCI and 

MCI-AD individuals in DMR genes. 

 

Next, methylation values within a DMR were correlated to gene expression values 

of an annotated gene. Methylation values which had previously been corrected 

for covariates (i.e., residuals) were extracted for 450K array probes located within 

each DMR based on genomic location of the DMRs. Pairwise Pearson 

correlations were then performed between the covariate-adjusted gene 

expression levels and covariate-adjusted methylation values, for individual 450K 

probes within a DMR. We also performed correlations of gene expression and 

mean methylation levels from all 450K probes in the DMR. To determine whether 
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the association between gene expression and methylation differed between CTL 

and individuals with MCI or AD, ANOVAs were performed on gene expression 

levels which included an interaction term between methylation and baseline 

diagnosis groups (i.e., expression ~ methylation*group). This was performed on 

the probe most significantly associated with disease for each DMR, and the mean 

methylation value in the DMR. Similar analyses were performed on the MCI-MCI 

and MCI-AD subset of individuals, for DMRs associated with progression to AD.  

 

3.3.7. Validation of the HOXB6 DMR using pyrosequencing 

For the purpose of validating our findings, we designed a pyrosequencing assay 

to quantify DNA methylation at the most significant sites (cg17179862 and 

cg03803541) within the HOXB6 region (chr17:46681111-46682414), which was 

shown to be a DMR in AD relative to CTL. In addition to the two CpG sites the 

assay was designed for, a further three CpG sites that were not assessed on the 

450K array were also covered. The full methods for the pyrosequencing validation 

carried out for this chapter are detailed in Chapter 2, section 2.5. Briefly, out of 

the original 284 samples, 264 were used for pyrosequencing. Samples were 

semi-randomly selected, keeping the group sample number ratios as equal as 

possible, and randomly distributing samples across plates. A single amplicon of 

303 base pairs was amplified using designed primers, and tested for specificity 

(forward primer = TTTTTGGTGAGGGGGGAGT, reverse primer = 

CCTACCATCCCTCCCTTATCT, sequencing primer = CTCTAACTATTACCCC). 

The level of DNA methylation was then quantified using the Pyromark Q24 

system (Qiagen), following the standard protocol as provided by the manufacturer 

and the Pyro Q24 CpG 2.0.6.20 software.  
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Pyrosequencing data QC was performed using the Pyromark Q24 software, in 

addition to a visual inspection of the data and signal intensities, with all 264 

samples passing QC (CTL: n = 83, MCI: n = 102, AD: n = 79). DNA methylation 

percentages at specific CpG sites were calculated by the software and exported 

to the R statistical environment. Subsequently, an ANOVA was performed for 

each CpG site covered by the assay, as well as the average methylation value 

across the region. This analysis was identical to the analysis performed on the 

450K data, and the covariates of age, sex, cell type proportion and batch were 

included.  
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3.4. Results 

 

3.4.1. Identification of differentially methylated loci in MCI and AD blood 

The cohort characteristics are shown in  

Table 2.1. We first investigated whether any individual loci showed DNA 

methylation differences in either MCI or AD relative to CTL using an ANOVA 

model after adjusting for the covariates of age, sex, cell proportions and batch 

(Table 3.1). No DMPs reached the experiment-wide significance threshold that 

has been established for the 450K array (2.4×10-7; Saffari et al., 2018) with the 

smallest ANOVA p-value being 5.58×10-6 for probe cg26146855, of which the 

closest transcription start site (TSS) according to the GREAT annotation is 

located in the TMEM184A gene. The top 10 most significant probes resulting from 

the post-hoc Tukey’s HSD tests comparing CTL to MCI, MCI to AD and CTL to 

AD can be found in Table 3.2, Table 3.3, and Table 3.4, respectively. In addition 

to comparing methylation levels at baseline between the three groups, we were 

also interested in identifying differences within the MCI population that were 

predictive of later progression to AD. For this purpose, we compared the MCI-

MCI group to the MCI-AD group. While no DMPs passed the experiment-wide 

significance threshold, the most significant DMP was located in the TRIM62 gene 

and showed hypomethylation in converters (probe cg25342005, p = 1.67×10-6; 

Table 3.5).
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Top 10 ANOVA (CTL vs MCI vs AD) DMPs 

ProbeID Position F p (F) UCSC Gene UCSC Gene Group GREAT Annotation 

cg26146855 chr7: 1660603 12.632 5.58E-06   ELFN1 (-88194), TMEM184A (-64538) 

cg17510385 chr5: 912821 11.768 1.24E-05 TRIP13 Body NKD2 (-96346), TRIP13 (19853) 

cg05695925 chr2: 206493817 11.729 1.28E-05   NRP2 (-53406) 

cg10140957 chr16: 58768477 11.485 1.60E-05 GOT2 TSS1500 GOT2 (-232) 

cg18794145 chr1: 39546949 11.380 1.77E-05 MACF1 TSS200 MACF1 (-249991), NDUFS5 (54983) 

cg06255020 chr2: 46097140 11.318 1.87E-05 PRKCE Body EPAS1 (-427400), PRKCE (218098) 

cg23630878 chr3: 48255260 11.224 2.04E-05   CDC25A (-25460), CAMP (-9576) 

cg16723002 chr17: 27285150 11.166 2.16E-05 SEZ6 Body PHF12 (-6643), SEZ6 (47930) 

cg13026137 chr6: 31701260 10.810 3.00E-05 CLIC1 Body DDAH2 (-3222) 

cg03456393 chr3: 193310565 10.380 4.47E-05 OPA1 TSS1500 OPA1 (-367) 

 
Table 3.1 The top 10 most significant DMPs for diagnosis. 

The 10 most significant probes in an analysis of CTL, MCI and AD blood samples. Shown for each probe is chromosomal position (genome build 37), ANOVA F-

statistic and accompanying p-value (p (F)). Methylation data was corrected for the covariates of age, sex, cell type proportion, and batch number prior to this analysis. 

Probes have been annotated using the Illumina gene annotation (UCSC Gene), genomic region (UCSC Gene Group), and GREAT annotation (distance to closest 

TSS shown in parentheses). 

  



161 
 

Top 10 CTL vs MCI DMPs 

ProbeID Position Difference (CI) p CvM UCSC Gene UCSC Gene Group GREAT Annotation 

cg17510385 chr5: 912821 -1.45 (-2.19 - -0.71) 1.70E-05 TRIP13 Body NKD2 (-96346), TRIP13 (19853) 

cg13026137 chr6: 31701260 1.74 (0.84 - 2.65) 2.52E-05 CLIC1 Body DDAH2 (-3222) 

cg18477928 chr12: 111638391 -1.21 (-1.85 - -0.57) 3.28E-05 CUX2 Body CUX2 (166564), FAM109A (168533) 

cg00499210 chr11: 65190135 0.67 (0.31 - 1.04) 4.47E-05 NEAT1 TSS200 SCYL1 (-102412), FRMD8 (36095) 

cg18794145 chr1: 39546949 -0.81 (-1.25 - -0.37) 5.27E-05 MACF1 TSS200 MACF1 (-249991), NDUFS5 (54983) 

cg07177123 chr7: 30909162 -0.69 (-1.06 - -0.32) 5.34E-05 FAM188B Body GHRHR (-94473), FAM188B (98130) 

cg06972724 chr5: 130943742 -1.81 (-2.79 - -0.82) 5.98E-05 RAPGEF6 Body RAPGEF6 (27186), CDC42SE2 (344041) 

cg00852622 chr1: 112531653 1.68 (0.76 - 2.6) 6.91E-05 KCND3 5'UTR,1stExon KCND3 (123) 

cg05728337 chr21: 43277362 -0.67 (-1.03 - -0.3) 7.84E-05 PRDM15 Body RIPK4 (-90114), PRDM15 (22228) 

cg01191920 chr7: 158217561 -2.77 (-4.31 - -1.23) 8.63E-05 PTPRN2 Body PTPRN2 (162920) 

 
Table 3.2 The 10 most significant DMPs associated with MCI relative to CTL. 

The 10 most significant probes in an analysis of CTL and MCI blood samples. Shown for each probe is chromosomal position (genome build 37), the group difference 

in % methylation (MCI – CTL), confidence interval (CI), and p-value as calculated with Tukey’s HSD test. Methylation data was corrected for the covariates of age, 

sex, cell type proportion, and batch number prior to this analysis. Probes have been annotated using the Illumina gene annotation (UCSC Gene), genomic region 

(UCSC Gene Group), and GREAT annotation (distance to closest TSS shown in parentheses). 
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Top 10 MCI vs AD DMPs 

ProbeID Position Difference (CI) p MvA UCSC Gene UCSC Gene Group GREAT Annotation 

cg23630878 chr3: 48255260 1.63 (0.81 - 2.45) 1.27E-05   CDC25A (-25460), CAMP (-9576) 

cg16518176 chr4: 135248367 -1.7 (-2.6 - -0.8) 3.78E-05   PABPC4L (-125465) 

cg10140957 chr16: 58768477 -2.67 (-4.11 - -1.23) 5.19E-05 GOT2 TSS1500 GOT2 (-232) 

cg01575836 chr11: 15959856 1.06 (0.48 - 1.63) 6.26E-05   SOX6 (464556), INSC (825887) 

cg16135995 chr7: 73668739 0.33 (0.15 - 0.52) 7.26E-05 RFC2 TSS200 RFC2 (-2) 

cg00114478 chr8: 73658110 -4.81 (-7.45 - -2.16) 7.52E-05 KCNB2 Body TERF1 (-262986), KCNB2 (208485) 

cg21565421 chr15: 74592665 -3.7 (-5.76 - -1.65) 8.59E-05 CCDC33 Body CCDC33 (63999), CYP11A1 (67415) 

cg24760753 chr2: 159534030 1.37 (0.61 - 2.13) 8.65E-05 PKP4 Body DAPL1 (-117798), PKP4 (220555) 

cg26146855 chr7: 1660603 -0.78 (-1.22 - -0.34) 1.07E-04   ELFN1 (-88194), TMEM184A (-64538) 

cg16723002 chr17: 27285150 0.69 (0.3 - 1.07) 1.12E-04 SEZ6 Body PHF12 (-6643), SEZ6 (47930) 

 
Table 3.3 The 10 most significant DMPs associated with AD relative to MCI. 

The 10 most significant probes in an analysis of MCI and AD blood samples. Shown for each probe is chromosomal position (genome build 37), the group difference 

in % methylation (AD – MCI), confidence interval (CI), and p-value as calculated with Tukey’s HSD test. Methylation data has been corrected for the covariates of age, 

sex, cell type proportion, and batch number prior to this analysis. Probes have been annotated using the Illumina gene annotation (UCSC Gene), genomic region 

(UCSC Gene Group), and GREAT annotation (distance to closest TSS shown in parentheses). 
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Top 10 CTL vs AD DMPs 

ProbeID Position Difference (CI) p CvA UCSC Gene UCSC Gene Group GREAT Annotation 

cg05695925 chr2: 206493817 -0.99 (-1.49 - -0.49) 1.32E-05   NRP2 (-53406) 

cg26146855 chr7: 1660603 -0.89 (-1.36 - -0.43) 2.11E-05   ELFN1 (-88194), TMEM184A (-64538) 

cg03456393 chr3: 193310565 -3.74 (-5.68 - -1.8) 2.51E-05 OPA1 TSS1500 OPA1 (-367) 

cg03699566 chr11: 71900652 -0.83 (-1.27 - -0.39) 4.23E-05 FOLR1 1stExon,TSS1500,5'UTR FOLR1 (51) 

cg05827732 chr3: 96533699 -1.37 (-2.11 - -0.64) 4.91E-05 EPHA6 1stExon EPHA6 (275) 

cg13406003 chr6: 127535477 1.74 (0.8 - 2.68) 5.31E-05   RNF146 (-52349), RSPO3 (95430) 

cg06255020 chr2: 46097140 0.65 (0.3 - 1) 5.40E-05 PRKCE Body EPAS1 (-427400), PRKCE (218098) 

cg03530006 chr13: 38920380 -1.07 (-1.66 - -0.48) 6.99E-05   UFM1 (-3561) 

cg18120975 chr6: 151313327 0.74 (0.33 - 1.15) 8.93E-05 MTHFD1L Body AKAP12 (-247806), MTHFD1L (126513) 

cg22677650 chr19: 3675627 -1.19 (-1.85 - -0.53) 9.06E-05 PIP5K1C Body C19orf29 (-48815), PIP5K1C (24849) 

 
Table 3.4 The 10 most significant DMPs associated with AD relative to CTL. 

The 10 most significant probes in an analysis of CTL and AD blood samples. Shown for each probe is chromosomal position (genome build 37 the group difference in 

% methylation (AD – CTL), confidence interval (CI), and p-value as calculated with Tukey’s HSD test. Methylation data was corrected for the covariates of age, sex, 

cell type proportion, and batch number prior to this analysis. Probes have been annotated using the Illumina gene annotation (UCSC Gene), genomic region (UCSC 

Gene Group), and GREAT annotation (distance to closest TSS shown in parentheses). 
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Top 10 MCI to AD conversion DMPs 

ProbeID Position Diagnosis Est p-value UCSC Gene UCSC Gene Group GREAT Annotation 

cg25342005 chr1: 33648656 -0.025 1.67E-06 TRIM62 TSS1500 TRIM62 (-986) 

cg17292662 chr8: 54758936 -0.032 1.06E-05   ATP6V1H (-3087) 

cg19636302 chr19: 46032854 -0.037 1.27E-05 OPA3 Body VASP (22167), OPA3 (55267) 

cg20655558 chr22: 41257839 0.013 1.93E-05 XPNPEP3;DNAJB7 Body;1stExon DNAJB7 (290) 

cg07850832 chr5: 37378050 0.008 3.79E-05 WDR70 TSS1500 NUP155 (-6854), GDNF (457878) 

cg04664179 chr19: 40913800 -0.016 4.15E-05 PRX Body HIPK4 (-17707), PRX (5470) 

cg00723019 chr19: 48867290 0.006 4.49E-05 TMEM143;SYNGR4 TSS200;TSS1500 SYNGR4 (-360), TMEM143 (-105) 

cg16520539 chr6: 28890872 0.008 6.99E-05 TRIM27 Body TRIM27 (895) 

cg22322663 chr6: 30525268 0.008 7.73E-05 PRR3;GNL1 Body;5'UTR,1stExon GNL1 (102), PRR3 (783) 

cg09907542 chr4: 7033761 -0.033 7.89E-05 TBC1D14 3'UTR TADA2B (-11394), TBC1D14 (122267) 

 
Table 3.5 The 10 most significant DMPs associated with future progression to AD. 

The 10 most significant probes in a comparison of MCI-MCI and MCI-AD blood samples. Shown for each probe is chromosomal position (genome build 37), regression 

coefficient (Diagnosis Est), and accompanying p-value. Methylation data has been corrected for the covariates of age, sex, cell type proportion, batch number, and 

MMSE score prior to this analysis. Probes have been annotated using the Illumina gene annotation (UCSC Gene), genomic region (UCSC Gene Group), and GREAT 

annotation (distance to closest TSS shown in parentheses). 
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3.4.2. A number of significant DMRs can be identified in MCI and AD blood 

We next used a sliding window approach to identify regions spanning multiple 

adjacent DMPs that were significantly different in MCI and AD. We found four 

DMRs associated with differences across the three baseline groups (CTL, MCI, 

and AD, Table 3.6A). A ten probe DMR of 574 bp was identified in MOV10L1 

(Figure 3.2), as well as a five-probe (582 bp) intergenic DMR annotated to 

CBFA2T3 (Figure 3.3), with probes in both DMRs generally showing 

hypermethylation in MCI samples, with levels in AD samples similar to CTL. An 

eight-probe DMR of 301 bp was found in the readthrough transcription region of 

TPTEP2-CSNK1E, which appeared to be mainly driven by hypermethylation in 

the MCI group (Figure 3.4). One of the four identified DMRs was driven by a 

difference between the CTL and AD groups (Table 3.6B); we identified a 1,303 

bp DMR in the HOXB6 gene, containing 12 probes (Figure 3.5; Figure 3.6). Each 

of the twelve probes showed hypermethylation in AD.  

 

In the analysis of MCI conversion to AD, nine significant DMRs were identified 

(Table 3.7). We found DMRs showing decreased methylation in MCI-AD 

converters relative to MCI-MCI non-converters in the genes CPT1B and CHKB 

(932 bp; 14 probes; Figure 3.7), TMEM184A (659 bp; six probes; Figure 3.8), 

KCNAB3 (558 bp; seven probes; Figure 3.9), GABBR1 (379 bp; ten probes; 

Figure 3.10), PRDM1 (121 bp; five probes; Figure 3.11), FLJ37453 (568 bp; six 

probes; Figure 3.12), and OR56A3 and TRIM5 (556 bp; five probes; Figure 3.13). 

Hypermethylation in MCI-AD converters relative to MCI-MCI non-converters was 

seen in two DMRs located in the genes SMC1B and RIBC2 (725 bp; 15 probes; 

Figure 3.14), and an intergenic region near the gene FIGN (716 bp; six probes; 

Figure 3.15).
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A. ANOVA: CTL vs MCI vs AD  

Gene Position Gene Feature n p-value Šidák-p 
Average Methylation % 

CTL MCI AD 

HOXB-AS3;HOXB6 chr17: 46681111 - 46682414 nc_intron+nc_exon;TSS+intron+exon+utr5 12 2.79E-14 8.58E-12 56.59 58.79 60.81 

MOV10L1 chr22: 50528179 - 50528753 TSS+intron+utr5+cds;TSS+exon+utr5 10 2.03E-07 1.42E-04 68.38 70.18 68.23 

CBFA2T3 chr16: 88937216 - 88937798 intergenic 5 2.61E-07 1.80E-04 42.57 44.66 42.34 

TPTEP2-CSNK1E chr22: 38714166 - 38714467 intron+utr5 8 1.87E-06 2.49E-03 41.21 42.29 41.69 

B. CTL vs AD 

Gene Position Gene Feature n p-value Šidák-p 
Average Methylation % 

CTL MCI AD 

HOXB-AS3;HOXB6 chr17: 46681111 - 46682414 nc_intron+nc_exon;TSS+intron+exon+utr5 12 3.36E-16 1.03E-13 56.59 58.79 60.81 

 
Table 3.6 DMRs associated with baseline diagnosis in blood. 

DMRs in a comparison of CTL, MCI, and AD blood samples. Shown are DMRs for (A) the overall three group (ANOVA) comparison, and the post-hoc (B) CTL v AD 

comparison. Displayed for each region is the UCSC gene name, chromosomal position (genome build 37), gene feature (TSS = transcription start site; utr5 = 5' 

untranslated region; utr3 = 3' untranslated region; cds = coding sequence), number of probes in region (n), p-value and multiple testing-corrected p-value (Šidák-p), 

and average β-value per group. 
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Figure 3.2 The MOV10L1 DMR associated with baseline diagnostic status. 

Displayed are the methylation levels of individual probes located within the DMR, ordered by genomic location. Methylation values have been corrected for covariates 

age, sex, cell type proportion and batch.  
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Figure 3.3 The CBFA2T3 DMR associated with baseline diagnostic status. 

Displayed are the methylation levels of individual probes located within the DMR, ordered by genomic location. Methylation values have been corrected for covariates 

age, sex, cell type proportion and batch.  
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Figure 3.4 The TPTEP2-CSNK1E DMR associated with baseline diagnostic status. 

Displayed are the methylation levels of individual probes located within the DMR, ordered by genomic location. Methylation values have been corrected for covariates 

age, sex, cell type proportion and batch.  
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Figure 3.5 The HOXB6 DMR associated with AD relative to CTL. 

Displayed are the methylation levels of individual probes located within the DMR, ordered by genomic location. Methylation values have been corrected for covariates 

age, sex, cell type proportion and batch.
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Figure 3.6 The HOXB6 genomic region. 

The HOXB6 DMR was shown to be altered in AD relative to CTL. The region spanned by the 

DMR is highlighted in red, and genomic location and UCSC gene annotations are shown in 

addition to a mini-manhattan plot of the p-values of probes within and neighbouring the DMR, p-

values related to changes in AD relative to CTL are shown in orange, MCI relative to CTL in green, 

and AD relative to MCI in purple. The bottom panel shows relative methylation levels across the 

region, with methylation in AD in orange, MCI in green, and CTL in blue. 
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MCI-MCI vs MCI-AD 

Gene Position Gene Feature n p-value Šidák-p 

Average Methylation 
% 

MCI-MCI MCI-AD 

CHKB-CPT1B; 

CPT1B;CHKB 

chr22: 51016501 - 51017433 nc_intron;TSS+intron+exon+utr5;exon+utr3 14 2.05E-14 8.84E-12 64.92 61.26 

SMC1B;RIBC2 chr22: 45809319 - 45810044 TSS+intron+utr5+cds;TSS+intron+utr5+cds 15 8.26E-09 4.57E-06 24.62 26.62 

TMEM184A chr7: 1595602 - 1596261 TSS+intron+exon+utr5 6 2.41E-08 1.47E-05 45.33 43.31 

KCNAB3 chr17: 7832680 - 7833238 TSS+cds 7 8.11E-08 5.83E-05 80.31 76.73 

GABBR1 chr6: 29599012 - 29599391 intron+exon+utr5;intron+cds 10 9.72E-08 1.03E-04 63.80 61.48 

FIGN chr2: 164204628 - 164205344 intergenic 6 3.58E-07 2.01E-04 52.84 56.10 

PRDM1 chr6: 106546704 - 106546825 TSS+exon+utr5;intron 5 1.04E-07 3.45E-04 62.01 58.89 

FLJ37453 chr1: 16163555 - 16164123 nc_intron 6 5.92E-07 4.18E-04 29.67 27.34 

OR56A3;TRIM5 chr11: 5959658 - 5960214 intergenic 5 9.68E-07 6.98E-04 81.17 77.54 

 
Table 3.7 DMRs associated with future conversion to AD in blood. 

DMRs in a comparison of CTL, MCI, and AD blood samples. Shown are DMRs for the MCI-MCI to MCI-AD comparison. Displayed for each region is the UCSC gene 

name, chromosomal position (genome build 37), gene feature (TSS = transcription start site; utr5 = 5' untranslated region; utr3 = 3' untranslated region; cds = coding 

sequence), number of probes in region (n), p-value and multiple testing-corrected p-value (Šidák-p), and average β-value per group. 
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Figure 3.7 The CPT1B-CHKB DMR associated with future conversion to AD.  

The CPT1B-CHKB DMR reflected differences between MCI-AD converterd (dark green, shown on the right), and stable MCI-MCI (light green, shown on the left). 

Displayed are the methylation levels of all probes (p < 0.05) within the genomic location covered by the DMR, ordered by genomic location. Methylation values have 

been corrected for covariates age, sex, cell type proportion, batch, and baseline MMSE score. 
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Figure 3.8 The TMEM184A DMR associated with future conversion to AD.  

The TMEM184A DMR reflected differences between MCI-AD converterd (dark green, shown on the right), and stable MCI-MCI (light green, shown on the left). 

Displayed are the methylation levels of all probes (p < 0.05) within the genomic location covered by the DMR, ordered by genomic location. Methylation values have 

been corrected for covariates age, sex, cell type proportion, batch, and baseline MMSE score. 
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Figure 3.9 The KCNAB3 DMR associated with future conversion to AD.  

The KCNAB3 DMR reflected differences between MCI-AD converterd (dark green, shown on the right), and stable MCI-MCI (light green, shown on the left). Displayed 

are the methylation levels of all probes (p < 0.05) within the genomic location covered by the DMR, ordered by genomic location. Methylation values have been 

corrected for covariates age, sex, cell type proportion, batch, and baseline MMSE score. 
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Figure 3.10 The GABBR1 DMR associated with future conversion to AD.  

The GABBR1 DMR reflected differences between MCI-AD converterd (dark green, shown on the right), and stable MCI-MCI (light green, shown on the left). Displayed 

are the methylation levels of all probes (p < 0.05) within the genomic location covered by the DMR, ordered by genomic location. Methylation values have been 

corrected for covariates age, sex, cell type proportion, batch, and baseline MMSE score. 
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Figure 3.11 The PRDM1 DMR associated with future conversion to AD.  

The PRDM1 DMR reflected differences between MCI-AD converterd (dark green, shown on the right), and stable MCI-MCI (light green, shown on the left). Displayed 

are the methylation levels of all probes (p < 0.05) within the genomic location covered by the DMR, ordered by genomic location. Methylation values have been 

corrected for covariates age, sex, cell type proportion, batch, and baseline MMSE score. 
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Figure 3.12 The FLJ37453 DMR associated with future conversion to AD.  

The FLJ37453 DMR reflected differences between MCI-AD converterd (dark green, shown on the right), and stable MCI-MCI (light green, shown on the left). Displayed 

are the methylation levels of all probes (p < 0.05) within the genomic location covered by the DMR, ordered by genomic location. Methylation values have been 

corrected for covariates age, sex, cell type proportion, batch, and baseline MMSE score. 
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Figure 3.13 The OR56A3 and TRIM5 DMR associated with future conversion to AD.  

The OR56A3 and TRIM5 DMR reflected differences between MCI-AD converterd (dark green, shown on the right), and stable MCI-MCI (light green, shown on the 

left). Displayed are the methylation levels of all probes (p < 0.05) within the genomic location covered by the DMR, ordered by genomic location. Methylation values 

have been corrected for covariates age, sex, cell type proportion, batch, and baseline MMSE score. 
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Figure 3.14 The SMC1B and RIBC2 DMR associated with future conversion to AD.  

The SMC1B and RIBC2 DMR reflected differences between MCI-AD converterd (dark green, shown on the right), and stable MCI-MCI (light green, shown on the left). 

Displayed are the methylation levels of all probes (p < 0.05) within the genomic location covered by the DMR, ordered by genomic location. Methylation values have 

been corrected for covariates age, sex, cell type proportion, batch, and baseline MMSE score. 
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Figure 3.15 The FIGN DMR associated with future conversion to AD.  

The FIGN DMR reflected differences between MCI-AD converterd (dark green, shown on the right), and stable MCI-MCI (light green, shown on the left). Displayed are 

the methylation levels of all probes (p < 0.05) within the genomic location covered by the DMR, ordered by genomic location. Methylation values have been corrected 

for covariates age, sex, cell type proportion, batch, and baseline MMSE score. 
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3.4.3. Validation of the AD-associated DMR in HOXB6 by pyrosequencing 

Interestingly, differential DNA methylation at the most significant locus within the 

HOXB6 DMR (cg17179862) has been previously reported in AD hippocampus 

(Altuna et al., 2019). In order to further explore AD-associated hypermethylation 

in this gene we used pyrosequencing to validate our HOXB6 DMR, covering two 

CpG sites on the array (cg17179862, cg03803541) as well as three neighbouring 

CpG sites that were not covered by the 450K array (chr17:46681421, 

chr17:46681394, and chr17:46681383). We found significant differences 

between groups at all five CpG sites (Table 3.8, Figure 3.16A), and when 

averaged over the full five probes (Figure 3.16B), demonstrating 

hypermethylation in AD samples relative to CTL. The pattern of DNA methylation 

quantified by the 450K array and pyrosequencing was similar for both 

cg03803541 (Figure 3.17A) and cg17179862 (Figure 3.17B), with a significant 

correlation of the methylation values estimated by the two technologies for both 

cg03803541 (Figure 3.18A; r = 0.957, p = 2.69×10-142) and cg17179862 (Figure 

3.18B: r = 0.934, p = 5.03×10-68).
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Genomic position F p (F) 
CTL vs MCI CTL vs AD MCI vs AD 

Difference Tukey's p Difference Tukey's p Difference Tukey's p 

chr17: 46681421 4.972 7.61E-03 3.378 0.16 6.246 5.26E-03 2.868 0.29 

chr17: 46681401 (cg03803541) 4.650 1.04E-02 3.837 0.10 6.012 8.50E-03 2.175 0.49 

chr17: 46681394 4.315 1.44E-02 3.294 0.16 5.580 1.09E-02 2.286 0.42 

chr17: 46681383 4.207 1.59E-02 3.613 0.11 5.407 1.42E-02 1.794 0.59 

chr17: 46681362 (cg17179862) 3.625 2.91E-02 3.012 0.37 6.573 2.17E-02 3.561 0.25 

Region Average 4.519 1.18E-02 3.484 0.13 5.717 9.15E-03 2.233 0.45 

 
Table 3.8 Replication of AD-associated hypermethylation in HOXB6 by pyrosequencing. 

An analysis of DNA methylation levels in the HOXB6 DMR in CTL, MCI, and AD samples. Each CpG site is indicated by its genomic location (genome build 37), with 

the 450K probe ID shown in parentheses if covered by the array. Results are displayed as the ANOVA F-statistics, accompanying p-values, and per two-group 

comparison the difference in methylation, and the p-value corrected for multiple comparisons by Tukey's HSD. Methylation data has been corrected for the covariates 

of age, sex, cell type proportion, and batch number prior to this analysis. 
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Figure 3.16 Validation of the HOXB6 differentially methylated region (DMR).  

DNA methylation was assessed via pyrosequencing and significant changes were found between CTL and individuals with AD, but not MCI at all five CpG sites 

assessed (A) and when averaged over all five probes (B).  

  

A. B. 
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Figure 3.17 Comparison of DNA methylation patterns quantified by the 450K array and pyrosequencing. 

DNA methylation levels within the AD-associated HOXB6 DMR were validated using pyrosequencing. Patterns of DNA methylation were similar for cg03803541 (C) 

and cg17179862 (D), the two probes located within the HOXB6 DMR. 

A. B. 
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Figure 3.18 Correlations of DNA methylation patterns quantified by the 450K array and pyrosequencing. 

DNA methylation levels within the AD-associated HOXB6 DMR were validated using pyrosequencing. The DNA methylation levels quantified by the 450K array and 

pyrosequencing were significantly correlated for cg03803541 (A) and cg17179862 (B), the two probes located within the HOXB6 DMR. 

  

A. B. 
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3.4.4. Transcriptional differences in genes containing DMRs 

In order to explore the relationship between DNA methylation and expression, we 

first assessed whether the expression levels of genes containing the four baseline 

diagnosis-associated DMRs or the nine conversion DMRs were different in the 

diagnostic groups. Expression data was only available for two of the six genes 

we identified as containing DMRs in the baseline group analysis (HOXB6, and 

CSNK1E associated with the readthrough transcription region of TPTEP2-

CSNK1E; Table 3.9). Of these two genes, CSNK1E, which had shown increased 

DNA methylation in MCI samples, also showed a significant difference in gene 

expression between groups (F = 15.94, p = 3.25×10-7). More specifically, we 

observed significantly increased mRNA expression in both MCI and AD subjects 

relative to CTL (Tukey’s p = 1.46×10-7 and p = 2.66×10-3, respectively; Figure 

3.19A). Although there was significantly higher gene expression and DNA 

methylation (across the DMR), there was no correlation of expression and 

methylation across all samples, or when we performed correlations separately in 

the three diagnostic groups (Figure 3.19C; Table 3.10). Although we did not 

observe any significant differences in gene expression for HOXB6 (Figure 3.20A), 

we did find a correlation of expression and methylation when performing 

correlations in the AD group only (r = -0.24, p = 4.07×10-2; Figure 3.20C; Table 

3.10). 

 

Expression data was also available for five of the nine significant DMRs we 

identified in our analysis of progression from MCI to AD (GABBR1, PRDM1, 

FLJ37453, TRIM5, and CPT1B/CHKB). The CPT1B/CHKB DMR was covered by 

three probes on the gene expression microarray, one probe measuring CPT1B 

expression and two probes measuring CHKB expression (ILMN_2331205 and 
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ILMN_1659054). Although none of these genes showed differential expression in 

MCI subjects who progressed to AD (Table 3.11), CPT1B/CHKB showed a 

significant positive correlation of methylation across the DMR and CPT1B gene 

expression (Table 3.12). The average methylation level across the CPT1B/CHKB 

DMR was significantly correlated with gene expression across all samples (r = 

0.40, p = 8.62×10-5, Figure 3.21), which appeared to be primarily driven by a 

correlation observed in the MCI-MCI samples (r = 0.49, p = 7.27×10-5) and not 

the MCI-AD samples. 
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Expression 
Probe ID 

Gene Chr 
ANOVA CTL vs MCI CTL vs AD MCI vs AD 

F p (F) Difference (CI) p CvM Difference (CI) p CvA Difference (CI) p MvA 

ILMN_2415235 CSNK1E 22 15.937 3.25E-07 0.18 (0.1 - 0.25) 1.46E-07 0.11 (0.03 - 0.19) 2.66E-03 -0.07 (-0.14 - 0) 0.07 

ILMN_1667831 HOXB6 17 0.882 0.415 -0.01(-0.05 - 0.03) 0.84 -0.03 (-0.07 - 0.02) 0.39 -0.01 (-0.06 - 0.03) 0.68 

 

Table 3.9 Expression of genes containing DMRs associated with baseline diagnosis. 

Changes in the expression of genes containing DMRs associated with a baseline diagnosis of CTL, MCI, or AD. An ANOVA was performed to analyse changes in 

gene expression levels in these transcripts, whilst controlling for the covariates of age, sex, and cell type proportions. Shown for each probe is the Illumina transcript 

ID, chromosome (genome build 37), ANOVA F-statistic, accompanying p-value (p (F)), and per two-group comparison the difference in expression, lower and upper 

confidence interval (CI) and the p-value corrected for multiple comparisons by Tukey's HSD. For the TPTEP2-CSNK1E DMR, expression of CSNK1E was examined, 

as this locus is a readthrough transcription which encodes the same protein as CSNK1E. 
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Figure 3.19 Associations between gene expression and DNA methylation in CSNK1E.  

(A) Average gene expression levels of CSNK1E in individuals with AD (yellow), MCI (green), or CTL (blue), controlling for covariates. (B) Average DNA methylation 

levels of CSNK1E across its associated DMR in AD, MCI and CTL subjects, controlling for covariates. (C) Correlations of DNA methylation and gene expression in 

CSNK1E, shown by disease group (blue: CTL, green: MCI, yellow: AD), and across all samples (black dotted line). 

A. B. C. 
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Gene 

All samples CTL only MCI only AD only 

r p-value r p-value r p-value r p-value 

HOXB6 -0.090 0.17 -0.170 0.17 0.108 0.30 -0.235 4.07E-02 

TPTEP2-CSNK1E; CSNK1E 0.055 0.40 -0.166 0.18 0.029 0.78 0.072 0.54 

  

Table 3.10 Correlation of methylation and expression for HOXB6 and TPTEP2-CSNK1E. 

Pearson correlations of gene expression levels to mean DMR methylation values. Genes containing DMRs associated with with a baseline diagnosis of CTL, MCI, or 

AD were analysed across all three groups. Covariates were regressed out of methylation and expression data prior to performing these correlations. The methylation 

levels of the TPTEP2-CSNK1E region were correlated to expression of CSNK1E, as this locus is a readthrough transcription which encodes the same protein as 

CSNK1E.  
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Figure 3.20 Associations between gene expression and DNA methylation in HOXB6. 

(A) Average gene expression levels of HOXB6 in individuals with AD (yellow), MCI (green), or CTL (blue), controlling for covariates. (B) Average DNA methylation 

levels of HOXB6 across its DMR in AD, MCI and CTL subjects, controlling for covariates. (C) Correlations of DNA methylation and gene expression in HOXB6 shown 

by disease group (blue: CTL, green: MCI, yellow: AD), and across all samples (black dotted line). 

A. B. C. 
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ProbeID Gene Chromosome Regression coefficient p-value 

ILMN_1791754 CPT1B 22 -0.068 0.10 

ILMN_1659054 CHKB 22 -0.006 0.84 

ILMN_2331205 CHKB 22 0.002 0.97 

ILMN_2404665 TRIM5 11 -0.026 0.30 

ILMN_2395375 GABBR1 6 0.041 0.37 

ILMN_1655077 PRDM1 6 0.015 0.77 

ILMN_1769571 FLJ37453 1 -0.006 0.83 

 
Table 3.11 Expression of genes containing DMRs associated with conversion from MCI to 
AD. 

Changes in the expression of genes containing DMRs associated with progression of MCI to AD. 

A linear regression was performed to analyse changes in gene expression levels in these 

transcripts, whilst controlling for the covariates of age, sex, cell type proportions, and baseline 

MMSE score. Shown for each probe is the Illumina transcript ID, chromosome (genome build 37), 

regression coefficient, and accompanying p-value.  

 

Gene 

All samples MCI-MCI MCI-AD 

r p-value r p-value r p-value 

CPT1B 0.400 8.62E-05 0.486 7.27E-05 0.122 0.52 

CHKB (ILMN_2331205) -0.194 0.07 -0.221 0.09 -0.163 0.39 

CHKB (ILMN_1659054) -0.179 0.09 -0.139 0.29 -0.302 0.10 

GABBR1 -0.114 0.28 -0.184 0.15 0.083 0.66 

TRIM5 0.060 0.57 -0.108 0.41 0.225 0.23 

PRDM1 0.018 0.87 0.107 0.41 -0.134 0.48 

FLJ37453 -0.002 0.99 -0.098 0.45 0.170 0.37 

 Table 3.12 Correlation of methylation and expression of DMRs associated with 
progression of MCI to AD. 

Pearson correlations of gene expression levels to mean DMR methylation values. Genes 

containing DMRs associated with conversion from MCI to AD, were analysed across the subset 

of MCI-MCI and MCI-AD samples. Covariates were regressed out of methylation and expression 

data prior to performing these correlations. 
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Figure 3.21 Correlation of DNA methylation and gene expression in CPT1B. 

Correlations are shown by disease group (light green: MCI-MCI, dark green: MCI-AD), and across 

all samples (black dotted line). A significant correlation was observed across all samples (r = 0.4, 

p = 8.62×10-5), which was primarily driven by a correlation observed in the MCI-MCI samples (r = 

0.49, p = 7.27×10-5) and not the MCI-AD samples.  
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3.4.5. Clusters of methylated loci associated with MCI and AD 

To identify clusters of probes that are co-methylated and are therefore 

hypothesised to share a common function, we performed WGCNA and classified 

the entire filtered dataset of 200,633 probes into 16 modules (as described in 

Chapter 2 section 2.4.2.1). These modules were correlated to the group 

comparisons of diagnostic status at baseline, as well as to several other traits of 

interest (Figure 3.22), after controlling for covariates. The brown module, which 

consists of 11,794 probes, was negatively correlated with differences between 

CTL and MCI (ρ = -0.16, p = 2.31×10-2), and correlated positively with an 

individual’s number of education years (r = 0.13, p = 3.59×10-2). Three more 

modules also showed a correlation with MCI versus CTL; the lightcyan module 

consisting of 133 probes (ρ = 0.18, p = 1.2×10-2), and the yellow module which 

consists of 10,635 probes (ρ = 0.17, p = 1.51×10-2). The yellow module further 

correlates to the structural imaging variable MET (r = -0.14, p = 4.26×10-2). The 

purple module (792 probes), also correlates to MCI versus CTL (ρ = -0.17, p = 

1.98×10-2), as well as the majority of structural imaging variables: REV (r = 0.21, 

p = 3.16×10-3), TEV (r = 0.18, p = 9.85×10-3), MET (r = 0.25, p = 3.22×10-4), VV 

(r = -0.18, p = 9.25×10-3), LHV (r = 0.22, p = 1.19×10-3), RHV (r = 0.20, p = 

3.31×10-3), THV (r = 0.22, p = 1.46×10-3), and WBV (r = 0.20, p = 3.55×10-3). 

Finally, the cyan module (280 probes) correlates to an individual’s number of 

APOE ε4 alleles (ρ = -0.14, p = 1.75×10-2). 

 

Subsequently, we investigated whether the probes that are integral to a specific 

module are also the probes that are driving the association with the relevant 

diagnosis or trait. We did this by correlating and plotting MM and PSvalues, and 

focusing on those modules that showed positive (r > 0, p < 0.05) correlations 
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between MM and PS (Table 3.13). Significant positive MM to PS correlations 

were found in the brown (r = 0.26, p = 5.93×10-179), purple (r = 0.19, p = 9.18×10-

8), and yellow (r = 0.25, p = 6.64×10-153) modules in association with CTL vs MCI. 

The brown module further showed significant positive MM to PS correlations in 

relation to education years (r = 0.11, p = 2.40×10-32). The yellow module 

displayed a positive MM to PS correlation (r = 0.22, p = 6.42×10-117) in association 

with MET, and the cyan module showed a positive MM to PS correlation in 

association with the number of APOE ε4 alleles (r = 0.20, p = 6.42×10-4). These 

modules were the primary focus of our pathway analyses. MM and PS plots for 

these modules are shown in Figure 3.23; for a full overview of all MM and PS 

correlations, see Table 3.13. 
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Figure 3.22 Correlations between module eigengenes and traits of interest. 

Module names are shown along the y-axis. Correlation estimates are reported, with p-values in parentheses. Spearman correlations were performed for the CTL 

versus AD comparison, CTL versus MCI comparison, the MCI versus AD comparison, and the number of APOE-ε4 alleles (APOE #4). Pearson correlations were 

calculated for the number of education years (Education_Yrs), MMSE scores, and structural imaging measurements. Modules with a correlation p-value <0.05 were 

selected for further analysis
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MM-PS correlation r p-value 

Trait: CTL vs MCI 

Lightcyan module 0.026 0.76 

Yellow module 0.251 6.64E-153 

Purple module 0.188 9.18E-08 

Brown module 0.258 5.93E-179 

Trait: APOE #ε4 alleles 

Cyan module 0.203 6.42E-04 

Trait: Education years 

Brown module 0.109 2.40E-32 

Trait: REV 

Purple module -0.222 2.58E-10 

Trait: TEV 

Purple module -0.031 0.38 

Trait: MET 

Purple module -0.249 1.22E-12 

Yellow module 0.220 6.42E-117 

Trait: WBV 

Purple module -0.019 0.59 

Trait: VV 

Purple module 0.024 0.50 

Trait: LHV 

Purple module -0.075 3.44E-02 

Trait: RHV 

Purple module 0.006 0.87 

Trait: THV 

Purple module -0.024 0.51 

 

Table 3.13 Correlations of MM and PS. 

Pearson correlations of MM and PS values for each module that showed a significant correlation 

to a specific trait. Abbreviations: number of APOE ε4 alleles (APOE#4), number of education 

years (Education years), and the following structural imaging measures: right and total entorhinal 

volume (REV and TEV, respectively), mean entorhinal thickness (MET),whole brain volume 

(WBV), ventricular volume (VV), and left, right and total hippocampal volume (LHV, RHV, and 

THV, respectively
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Figure 3.23 Modules showing positive correlations between MM and PS. 

Shown are modules that have positive MM to PS correlations, and that were associated with diagnosis or a trait. The (A) brown, (B) purple, and (C) yellow modules 

were associated with changes MCI subjects relative to CTL. (D) The brown module was associated with the number of education years. The (E) yellow module was 

associated with MET, and (F) the cyan module associated with the number of APOE ε4 alleles.

A. B. C. 

D. E. F. 
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3.4.6. Functional role of modules associated with MCI and AD 

We sought to identify pathways that were enriched in modules that were affected 

in disease or were associated with certain traits. For this purpose, we performed 

GO and KEGG enrichment analyses, with for large (i.e., yellow and brown) 

modules only the core probes being used for the enrichment analyses. Pathways 

related to the brown (Figure 3.24), purple, yellow (Figure 3.25), and cyan (Figure 

3.26) modules all passed false discovery rate (FDR) multiple testing correction. 

A large number of GO terms were associated with the core of the brown module, 

which was related to MCI relative to CTL as well as number of education years, 

among which were ‘extracellular matrix’ (q = 4.23×10-7), ‘channel activity’ (q = 

3.19×10-5), and ‘passive transmembrane transporter activity’ (q = 3.19×10-5; 

Figure 3.24A). Furthermore, KEGG terms related to this module included ‘Protein 

digestion and absorption’ (q = 1.06×10-2), ‘Oxytocin signalling pathway’ (q = 

1.06×10-2), and ‘Regulation of actin cytoskeleton’ (q = 1.10×10-2; Figure 3.24B). 

The core of the yellow module showed differences related to MCI, relative to CTL, 

as well as MET, and we found in our enrichment analyses of the core probes that 

the top GO terms included ‘leukocyte activation’ (q = 7.46×10-13), ‘cell activation’ 

(q = 7.46×10-13), and ‘immune response’ (q = 5.84×10-11), whilst the top KEGG 

terms included ‘platelet activation’ (q = 1.93×10-2), ‘adrenergic signalling in 

cardiomyocytes’ (q = 1.93×10-2), and ‘sphingolipid signalling pathway’ (q = 

2.34×10-2; Figure 3.25). The purple module, which was also associated with 

differences related to MCI relative to CTL, was connected with one GO term; 

‘vesicle-mediated transport’ (q = 4.35×10-2), but no significant KEGG terms. 

Finally, the cyan module, which was associated with the number of APOE ε4 

alleles, was related to a number of GO terms, including ‘cell activation’ (q = 

3.07×10-4), ‘regulation of cell adhesion’ (q = 4.51×10-4), ‘leukocyte activation’ (q 
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= 4.51×10-4) and ‘regulation of cell death’ (q = 8.32×10-4; Figure 3.26) and one 

KEGG pathway: ‘T cell receptor signalling pathway’ (q = 3.73×10-2).  
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Figure 3.24 Pathways related to the brown MCI- and education years-associated module. 

The top 20 significant GO terms (A) and significant KEGG terms (B) related to the core probes within the brown module, which was associated with MCI relative to 

CTL, and number of education years. The x-axis displays the number of altered genes in the pathway. 

A. B. 
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Figure 3.25 Pathways related to the yellow MCI- and MET-associated module. 

The top 20 significant GO terms (A) and significant KEGG terms (B) related to the core probes within the yellow module, which was associated with MCI relative to 

CTL, and the structural imaging measurement of MET. The x-axis displays the number of altered genes in the pathway. 

  

A. B. 
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Figure 3.26 Pathways related to the cyan APOE carrier status-associated module. 

The top 20 significant GO terms related to the cyan module, which was associated with number of APOE ε4 alleles. The x-axis displays the number of altered genes 

in the pathway.
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3.4.7. Investigating clusters of co-methylated loci associated with 

progression to AD 

In addition to modules associated with baseline diagnosis of MCI and AD, we 

also identified 31 modules of highly co-methylated loci in the subset of MCI-MCI 

and MCI-AD samples (as described in Chapter 2 section 2.4.2.1.). Only one of 

these modules, the orange module, was shown to be significantly associated with 

future progression to AD (β = -0.04, p = 4.38×10-2). We then correlated the MM 

to the PS for this module and found a significant positive correlation (r = 0.36, p 

= 9.40×10-6). Following GO and KEGG pathway analysis, we found no GO terms 

passing FDR multiple testing correction, but top KEGG terms included ‘renal cell 

carcinoma’ (q = 1.21×10-2), ‘non-homologous end-joining’ (q = 2.00×10-2), and 

‘ErbB signalling pathway’ (q = 2.00×10-2; Figure 3.27). 
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Figure 3.27 Significant KEGG terms related to the MCI to AD conversion-associated orange 
module. 

KEGG terms are related to the probes within the orange module, which was associated with 

conversion from MCI to AD. The x-axis displays the number of altered genes in the pathway. 
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3.5. Discussion 

 

The present study, which reflects the first large-scale EWAS of AD blood 

samples, identified epigenetic signatures related to AD and MCI, as well as 

signatures associated with future conversion from MCI to AD.  

 

The HOXB6 gene contained a DMR that reflected differences in methylation in 

AD relative to CTL, which were validated using pyrosequencing. HOXB6 encodes 

the homeobox protein B6, which is part of a larger cluster of homeobox B genes 

located on chromosome 17. Homeobox genes are DNA binding proteins that 

have been implicated in early body morphogenesis as well as hematopoietic 

development. Specifically, HOXB6 has been shown to be required for normal 

generation of granulocytes and monocytes (Giampaolo et al., 2002). 

Interestingly, a recent EWAS of AD hippocampus has shown DNA methylation 

differences in cg17179862, which was the most significant probe in the DMR we 

identified and validated (Altuna et al., 2019). The study by Altuna et al. further 

showed that increased methylation at this locus was positively correlated with tau 

burden.  

 

MOV10L1, which was associated with differences between all three groups, 

encodes an RNA helicase. This protein was shown to be crucial for the production 

of Piwi-interacting RNAs (piRNAs) by Vourekas et al. (2015). PiRNAs represent 

small non-coding RNAs involved in epigenetic regulation, which can bind to PIWI 

proteins and may induce gene silencing via DNA methylation (Aravin et al., 2008; 

Girard et al., 2006), or RNA-cleavage (for a review see Luteijn and Ketting 

(2013)). Although initially believed to be mainly present in germline cells, piRNAs 
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have been shown to be stably expressed in human blood (X. Yang et al., 2015), 

and have also been shown to be downregulated in tumour tissue and upregulated 

in blood of renal carcinomas (Iliev et al., 2016). Interestingly, Watson et al. (2016) 

performed an EWAS of AD superior temporal gyrus and identified a DMR 

spanning 13 probes, including all ten probes we identified in the MOV10L1 gene 

in the current study. Of note, where Watson et al. detected AD-related 

hypermethylation in these ten probes, we found hypermethylation in MCI when 

compared to AD and CTL individuals, while methylation levels of AD subjects 

were not distinct from CTL individuals.  

 

Of the nine DMRs that were related to future conversion to AD, our most 

significant region was located in CPT1B, which encodes the protein carnitine 

palmitoyltransferase 1B. Differential DNA methylation in CPT1B has been 

previously identified in blood and foetal cortex of Down syndrome patients (El Hajj 

et al., 2016; Kerkel et al., 2010). This is interesting as individuals with Down 

syndrome often develop AD as a result of trisomy of chromosome 21, causing 

them to have an additional copy of the APP gene. The study by El Hajj et al. 

(2016) identified a DMR in CPT1B consisting of 18 probes in Down syndrome 

foetal cortex samples, which spanned the region discovered in the present study. 

They detected hypermethylation in 13 probes in Down syndrome, whilst we 

observed hypomethylation in those MCI individuals who convert to AD. Kerkel et 

al. (2010) similarly detected hypermethylation at one CpG site in our CPT1B DMR 

in peripheral blood leukocytes of individuals with Down syndrome, concomitant 

with significant overexpression of the gene. While we observed hypomethylation 

of the DMR, the positive relationship found between methylation and expression 

for this region was replicated in our study. Of note, overexpression of CPT1B has 
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also been found in blood from soldiers with post-traumatic stress disorder (Zhang 

et al., 2015), a known risk factor for developing AD (Agís‐Balboa et al., 2017; 

Yaffe et al., 2010). Interestingly, no overlap was found between DMRs associated 

with conversion and DMRs related to diagnosis at baseline. This may reflect 

limited power in our MCI conversion analysis due to sample size, or could reflect 

temporal patterns of DNA methylation in the process of conversion from MCI to 

AD. 

 

In addition to DMRs, by using WGCNA and subsequent pathway analyses, we 

further identified biological mechanisms affected in disease. The cyan module 

which was linked to the number of APOE ε4 alleles, is involved in GO pathways 

related to the immune system, which is interesting given that the immune system 

is known to be activated in AD (Heppner et al., 2015), and as APOE ε4 is the 

strongest genetic risk factor for sporadic AD (Lambert et al., 2013). The core of 

the brown module which reflects methylomic differences related to an individual’s 

number of education years, and differences in MCI relative to CTL, was shown to 

be involved in transmembrane processes (GO), as well as oxytocin signalling 

(KEGG). The oxytocin signalling pathway is linked to social behaviours, as well 

as several psychiatric disorders (e.g., depression, Feldman et al., 2016) 

Interestingly, a DMR was recently identified in the oxytocin gene (OXT), which 

was hypomethylated in the AD brain (Lardenoije et al., 2019; Watson et al., 2016) 

and hypermethylated in the blood in individuals who subsequently converted to 

AD (Lardenoije et al., 2019). Oxytocin is involved in the modulation of stress, 

social behaviours, and associative learning (Olff et al., 2013), and altered levels 

of oxytocin have been reported in AD post-mortem brain tissue (Mazurek et al., 

1987) and CSF (North et al., 1992). It is interesting that the sphingolipid signalling 
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pathway is found in the KEGG results from the core probes of the yellow module 

related to differences in MCI relative to CTL. Multiple studies have indicated that 

sphingolipid signalling pathways are implicated in AD (Crivelli et al., 2020; 

Giovagnoni et al., 2021), and the measurement of lipids in the pathway is being 

explored as a potential biomarker of AD and neurodegeneration (Mielke & 

Lyketsos, 2010). Similar to the cyan module, the majority of GO terms in the core 

of the yellow module are related to various processes of immune activation. In 

our network analysis examining conversion from MCI to AD, we identified a 

pathway in the orange module associated with non-homologous end-joining. 

Non-homologous end-joining activity is involved in repairing double strand DNA 

breaks, and has been reported to be decreased in AD brain (Kanungo, 2013; 

Shackelford, 2006). 

 

In summary, this is the first EWAS to identify epigenetic signatures and functional 

pathways specific to MCI, AD, and conversion to AD in blood. However, there are 

some limitations to our study. First, we have profiled DNA methylation patterns in 

whole blood and it is known that there are subtle alterations in the abundance of 

specific blood cell types in MCI and AD (Lunnon et al., 2012). Although we have 

controlled for the proportions of these different cells, it will be of interest to 

investigate disease-associated signatures in individual cell types. Second, 

individuals were only followed up clinically for up to two years following the 

baseline assessment and further studies should profile cohorts consisting of CTL 

and MCI subjects with long term clinical follow up to identify preclinical changes. 

In addition, biomarkers were not available to support the clinical diagnosis of AD. 

Third, our comparisons of DNA methylation and gene expression were limited to 

only those genes with variable expression levels in the previous study (Lunnon 
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et al., 2012) and did not examine transcript variants. Fourth, we have not 

replicated our findings in an independent study cohort. Although we did validate 

our HOXB6 DMR in the same samples using an alternative technology, in the 

future it will be interesting to verify the loci we identified in a different set of 

samples. Finally, although there is some communication between the brain and 

the blood, not all differences found to be associated with AD in the blood may be 

functionally related to the processes taking place in the brain. Differences in DNA 

methylation may be the result of parallel effects or comorbidities, and may not be 

causally related to disease, but could reflect mediating or downstream effects. It 

would be interesting for future studies to explore the exact role of the epigenetic 

signatures identified in this study, and to explore their potential as biomarkers for 

an early diagnosis of AD and therapeutic targets. 
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CHAPTER 4. DNA METHYLOMIC PATTERNS IN BLOOD ASSOCIATED 

WITH AGE, SEX, AND ALZHEIMER’S DISEASE  
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4.1. Introduction 

 

A multitude of risk factors have been identified and studied in the field of AD 

research (see Chapter 1.1.5). When discussing risk factors for AD, the focus is 

often directed at genetic risk factors such as the APOE gene, followed by 

modifiable risk factors (e.g. diet, smoking). However, age poses by far the 

greatest risk for developing AD (“2020 Alzheimer’s Disease Facts and Figures,” 

2020; J. H. Chen et al., 2009). In a US study conducted in 2010 it was estimated 

that 3% of all individuals aged 65 - 74 were affected by AD at that time, compared 

to 17.6% of those aged 75 - 84 years, and 32.3% of those over 85 years old 

(Hebert et al., 2013). An earlier meta-analysis had found that the incidence rate 

of AD triples every five years before the age of 64, doubles before the age of 75, 

and shows a 1.5 times increase around age 86 (Gao et al., 1998). The fact that 

the disease, even in those genetically predisposed, usually does not develop until 

middle age, indicates that age is an important factor in the development of AD. It 

should be noted, however, that AD is not simply a consequence of normal ageing 

(Nelson et al., 2011). 

 

Ageing is also a major influencer of DNA methylation levels in multiple tissues 

including blood cells. Early studies found global hypomethylation and region-

specific changes related to ageing (Ahuja & Issa, 1986; Bjornsson et al., 2008), 

though this seemed to be location- and context-dependent (Christensen et al., 

2009; Jones et al., 2015). Several cross-sectional studies have shown that 

patterns of DNA methylation are distinctly different over time and across tissues 

(Hernandez et al., 2011; Heyn et al., 2012). In this respect, the increased 

variability of the methylomic landscape as a consequence of ageing is also called 
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‘epigenetic drift’. Diverging patterns of DNA methylation over time have been 

found in monozygotic twin studies. Fraga et al. (2005) found that while 

monozygotic twins were very similar in terms of DNA methylation patterns at a 

young age, they were epigenetically more different at an older age. This indicates 

that these changes can occur independent of genotype and may be influenced 

by other factors. 

 

Alterations in DNA methylation with ageing are robust enough to predict 

chronological age (Hannum et al., 2013; Horvath, 2013), and can be used to 

derive a surrogate measure of accelerated or reduced biological ageing, where 

an individual’s predicted methylation age deviates from their chronological age. 

In the development of the DNA methylation age calculator by Hannum et al. 

(2013), the authors found that the methylome of men aged 4% faster than the 

methylome of women. Furthermore, researchers have found that an increased 

DNA methylation age is associated with mortality (B. H. Chen et al., 2016; 

Christiansen et al., 2016), and that accelerated biological ageing in blood is 

associated with higher mortality risk, even when controlling for various health and 

lifestyle influences, including APOE genotype (Marioni et al., 2015). While 

accelerated methylation ageing has been associated with various risk factors for 

AD (McCartney et al., 2018), a recent study by Sibbett et al. found no evidence 

for a positive relationship between accelerated methylated ageing and risk for 

dementia (Sibbett et al., 2020).  

 

In addition to age, an individual’s sex may constitute another risk factor for AD, 

although this is subject to debate. Sex differences have been found in both 

pathological changes and clinical symptoms of AD (Mazure & Swendsen, 2016), 
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and while it is clear that more women suffer from AD than men (“2020 Alzheimer’s 

Disease Facts and Figures,” 2020), the cause of this remains unclear. Many 

factors could influence this difference in prevalence. First and foremost, the 

slightly longer lifespan of women compared to men has been suggested to play 

an important role (Austad, 2006). As age is the greatest risk factor for AD, this 

could explain why the disease is more prevalent in women. However, studies of 

sex differences in AD prevalence among individuals of the same age have led to 

mixed findings. Some studies found no sex differences at any given age (Hebert 

et al., 2001; Kawas et al., 2000), while others have found a higher incidence in 

women (Fratiglioni et al., 1997; Gao et al., 1998; Letenneur et al., 1999), or even 

in men (Matthews et al., 2016). Of note, most studies that did not find any 

differences were conducted in US populations, while other studies that did find 

differences were conducted in European populations. This has led researchers 

to suggest that sex differences may be dependent on geographic region and/or 

time period (Mielke et al., 2018). Therefore, it is especially important to take sex 

differences into account when studying European populations. 

 

Other explanations for sex differences seen in AD may be an unbalanced 

distribution of other established risk factors (see Chapter 1.1.5). Limited 

education constitutes a risk factor for AD and has been hypothesised to influence 

sex differences (Rocca et al., 2014), since educational inequality has historically 

affected women more than men. Comparably, a study by Chêne et al. (2015) 

found a selective survival effect in men, with men older than 65 years of age 

having a healthier cardiovascular risk profile, thus leading to a lower risk for AD. 

Furthermore, the largest genetic risk factor for AD, the APOE- ε4 genotype, has 

been found to have sex- and age-specific effects. Neu et al. (2017) found that, 
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while there were no sex differences in risk of developing AD overall, women 

between the ages of 65 and 75 carrying one APOE ε4 allele were at an increased 

risk of developing AD compared to men, whilst women between the ages of 55 

and 70 carrying one APOE ε4 allele were more at risk of developing MCI than 

men were. Independently of sex, a recent study has found that the APOE 

genotype affects DNA methylation patterns in blood (Walker et al., 2021). The 

interplay between these different risk factors and potential sex effects is very 

interesting, though more research is required to unravel the underlying causal 

mechanisms.  

 

Sex, like age, is also associated with DNA methylation differences across and in 

different tissue types (Liu et al., 2010; McCarthy et al., 2014), including blood 

(Singmann et al., 2015). A recent study by McCartney et al. (2019) found age-by-

sex interaction effects in DNA methylation patterns in blood on both autosomal 

and X chromosome loci.  

 

These findings, taken together with the importance of both age and sex in the 

context of AD, highlight that it is important for AD research to study sex- and age-

specific effects, and take into account their interaction effects on DNA methylation 

patterns.  
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4.2. Aims 

 

The aims of this chapter are: 

1. To identify differential DNA methylation patterns associated with sex, age, 

and the interactions between sex, age, and diagnosis of AD and MCI in 

the AddNeuroMed cohort. 

2. To replicate the findings from Aim 1 in the ADNI cohort. 

3. To identify biological pathways that are associated with sex, age, and the 

interactions between sex, age, and diagnosis of AD and MCI in the 

AddNeuroMed cohort. 
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4.3. Materials and methods 

 

This chapter uses the epigenome-wide DNA methylation data from the 

AddNeuroMed cohort, which is described in Chapter 2.1, as well as data from the 

ADNI cohort, described in Chapter 2.3. Analyses have been run to identify 

differentially methylated positions, regions, and pathways associated with sex, 

age, and their interaction with disease within the AddNeuroMed cohort. 

Additionally, a replication analysis for DMPs and DMRs was carried out in the 

ADNI cohort.  

 

4.3.1. Sex, age, and disease interaction model for identifying DMPs and 

DMRs 

Prior to carrying out an ANOVA for the identification of DMPs, normalised data 

from the AddNeuroMed cohort was corrected for covariates as described in 

Chapter 2.4.1. As formal education has been suggested to influence the sex-

associated risk for AD, we tested whether the number of education years differed 

between males and females in the AddNeuroMed dataset. No significant 

difference was found (t (261) = -0.998, p = 0.32), and therefore education years 

was not included as a covariate. As sex and age are both variables of interest in 

this chapter, rather than covariates, only the variables of cell type proportion and 

bisulfite treatment batch were regressed out of the data. To investigate whether 

any single locus or region was associated with sex, age, and their interaction with 

each other and with disease, an interaction model was run on the data as follows. 

A type III ANOVA was used, which included the main terms of sex, age, and 

diagnosis, and the interaction effects of sex and age, sex and diagnosis, and age 

and diagnosis. Q-Q plots were inspected for inflation, and the comb-p module 
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was applied using a 1000 bp sliding window to identify DMRs, as described in 

2.4.1.  

 

4.3.2. Replication of DMPs and DMRs in ADNI 

With the aim of replicating DMPs and DMRs identified in the AddNeuroMed data, 

pre-processed and normalised ADNI data (see Chapter 2.3.2) was analysed in a 

manner comparable to the analysis described in 4.3.1. The cell type proportion 

covariates were first regressed out of the normalised ADNI data, after which an 

ANOVA identical to the model described in section 4.3.1 was carried out, and 

DMRs were identified using identical comb-p settings to those described in 

Chapter 2.4.1. The overlap in DMPs and DMRs was examined, and for each 

effect of interest (i.e. the main effects of age and sex, or the interaction effects of 

sex and age, sex and diagnosis, or age and diagnosis), the top 10 most significant 

DMPs found in AddNeuroMed were extracted from the ADNI results. The probes 

within the top DMRs found in AddNeuroMed (for each effect of interest) were also 

extracted from the ADNI results.  

 

4.3.3. Identification of altered biological pathways 

To examine whether any pathways were altered in relation to sex, age, diagnosis, 

or their interactions, the previously generated WGCNA modules were used (that 

were also utilised in Chapter 3). These modules had been generated on the full 

DNA methylation data from the AddNeuroMed cohort (see also Chapter 2.4.2 for 

a description of the WGCNA methods), and represent clusters of co-methylated 

sites within the blood dataset. First, the MEs which had previously been 

calculated for these modules were corrected for the covariates of cell type 

proportion and batch. Following regression, the module eigengenes were 
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inspected for extreme outliers (MEs exceeding the threshold of mean ME ± 5 × 

SD). Two extreme outliers were found and set to NA. On these corrected MEs, 

the same type III ANOVA model was run as described in 4.3.1, in order to identify 

which modules were associated with sex, age, or the interactions between sex 

and age, sex and diagnosis, or age and diagnosis. Consistent with the pipeline 

used in Chapter 3, modules showing a nominally significant (p < 0.05) association 

with any of these traits were considered for further analysis. For each module 

associated with a trait, the module membership (MM; i.e. the strength of 

association for a probe to the module) and probe significance (PS; i.e. the 

association between a probe and the trait of interest) were calculated. MM values 

were correlated to PS values, and only the modules that showed significant 

positive correlations (r > 0, p < 0.05) were taken forward into pathway analyses. 

Pathway analyses were carried out using the missMethyl package, as described 

in 2.4.2.1. 
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4.4. Results 

 

4.4.1. The effects of sex and age on DNA methylation 

Focusing on the main effects that sex and age have on DNA methylation in blood, 

there were numerous nominally significant (p < 0.05) DMPs associated with both 

variables in the AddNeuroMed cohort. For the effect of sex, the most significant 

DMP (probe cg21437028, p = 6.61×10-8) passed the established epigenome-

wide significance threshold of 2.4×10-7 (Saffari et al., 2018). This DMP was 

located in an intron of the SHOX2 gene on chromosome 3, and while significant, 

it showed a very small effect of hypomethylation in males compared to females 

(Figure 4.1A). The top 10 most significant DMPs associated with sex are shown 

in Table 4.1. With regards to age, there were two DMPs that passed the 

epigenome-wide significance threshold. The top DMP was probe cg02843237 (p 

= 9.07×10-8), and is annotated to the gene ADM. A decrease in DNA methylation 

was observed at this site with an increasing age of subjects (Figure 4.2 A). The 

second DMP which showed epigenome-wide significance was located at the 

cg00664416 probe, in the MANEAL gene located on chromosome 1. This site 

showed hypermethylation with an increasing age of subjects (Figure 4.2, Figure 

4.3 A). The top 10 most significant DMPs associated with age are displayed in 

Table 4.2. It should be noted that an inflation of p-values was observed in the Q-

Q plots of the main effects, particularly concerning the effects of age (Figure 4.4).  

 

With the p-value inflation in mind, as well as the general importance of replication, 

the replication of these results was explored in the ADNI cohort. As shown in 

Figure 4.1B, the epigenome-wide significant DMP related to sex did show a 

similar direction of effect in ADNI, but this effect was not nominally significant (p 
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> 0.05). None of the other top 10 DMPs related to sex in the AddNeuroMed cohort 

reached nominal significance in the ADNI cohort (Table 4.1). The same holds true 

for the top 10 DMPs associated with age, i.e. none of those identified in the 

AddNeuroMed cohort were nominally significant in the ADNI replication cohort, 

though a small but similar direction of effect was seen for the top two DMPs 

(Figure 4.2 B and Figure 4.3 B; Table 4.2). 
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Figure 4.1 The top DMP associated with sex in the AddNeuroMed cohort.  

The cg21437028 probe which is annotated to the SHOX2 gene showed epigenome-wide significance in the AddNeuroMed cohort (A) but not in the ADNI cohort (B). 

Displayed methylation values have been corrected for the covariates of cell type proportions and batch effects, as well as the effects of age and diagnosis.  

A. B. 
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Top 10 sex DMPs 

ProbeID Position 
AddNeuroMed ADNI UCSC 

Gene 
UCSC Gene 
Group 

GREAT Annotation 
F p (F) Δ M-F F p (F) Δ M-F 

cg21437028 chr3: 157816403 30.846 6.61E-08 ↓ 0.973 0.32 ↓ SHOX2 Body VEPH1 (-595268), SHOX2 
(+7548) 

cg24560809 chr2: 95939339 23.233 2.38E-06 ↓ 0.086 0.77 ↑ PROM2 TSS1500 PROM2 (-861) 

cg03604067 chr7: 1980273 22.166 3.98E-06 ↑ 0.876 0.35 ↑ MAD1L1 Body ELFN1 (+231476), MAD1L1 
(+292309) 

cg02153041 chr12: 131502934 20.428 9.22E-06 ↓ 0.001 0.98 ↓ GPR133 Body SFSWAP (-692700), GPR133 
(+64483) 

cg12131219 chr1: 25558575 20.194 1.03E-05 ↑ 0.6 0.44 ↑ SYF2 Body SYF2 (+437) 

cg12855310 chr10: 134215035 19.421 1.51E-05 ↑ 0.1 0.75 ↓ PWWP2B Body INPP5A (-136317), STK32C (-
93559) 

cg26298737 chr1: 225964937 19.317 1.58E-05 ↓ 0.192 0.66 ↓ SRP9 TSS1500 SRP9 (-577) 

cg25274468 chr7: 114570498 18.718 2.13E-05 ↑ 1.232 0.27 ↓ MDFIC Body MDFIC (+8290) 

cg01319471 chr19: 12759546 18.064 2.93E-05 ↑ 3.176 0.08 ↑ MAN2B1 Body MAN2B1 (+18044), ZNF791 
(+37815) 

cg11128045 chr9: 140395219 17.907 3.17E-05 ↓ - - - PNPLA7 Body NELF (-41434), PNPLA7 (+49766) 

 

Table 4.1 Top 10 DMPs associated with sex in the AddNeuroMed cohort.  

Shown for each probe is the genomic location, ANOVA F-statistic, associated p-value, and the direction of change (Δ M-F; ↓ = lower levels of methylation in males, ↑ 

= higher methylation levels in males) in the AddNeuroMed cohort as well as the ADNI replication cohort. Probes are annotated using UCSC gene name and gene 

group (genome build 37), and GREAT annotation genes with the TSS distance indicated in parentheses. 
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Figure 4.2 The cg02843237 DMP associated with age in the AddNeuroMed cohort.  

The cg02843237 probe showed hypomethylation with increasing age in AddNeuroMed (A), and is annotated to the ADM gene. This effect was not seen in the ADNI 

replication cohort (B). Displayed methylation values have been corrected for the covariates of cell type proportions and batch effects, as well as the effects of sex and 

diagnosis.  

A. B. 
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Figure 4.3 The cg00664416 DMP associated with age in the AddNeuroMed cohort.  

Probe cg00664416, annotated to the gene MANEAL, displayed hypermethylation with increasing age in the AddNeuroMed cohort (A). This methylation pattern was 

not reflected in the ADNI replication cohort (B). Displayed methylation values have been corrected for the covariates of cell type proportions and batch effects, as well 

as the effects of sex and diagnosis.  

A. B. 
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Top 10 age DMPs 

ProbeID Position 

AddNeuroMed ADNI 
UCSC Gene 

UCSC Gene 
Group GREAT Annotation 

F p (F) Δ F p (F) Δ 
   

cg02843237 chr11: 10326289 30.163 9.07E-08 ↓ 0.002 0.97 ↓ ADM TSS1500 ADM (-352) 

cg00664416 chr1: 38261192 28.402 2.06E-07 ↑ 0.402 0.53 ↑ MANEAL Body,5'UTR,1st
Exon 

MANEAL (+1419), YRDC (+12672) 

cg18714712 chr19: 49866917 27.617 2.98E-07 ↓ 0.001 0.98 ↑ DKKL1 TSS200;TSS15
00 

TEAD2 (-1204), DKKL1 (-124) 

cg14382215 chr1: 161169007 27.272 3.50E-07 ↑ 0.147 0.70 ↓ NDUFS2;ADAMTS4 TSS200;TSS20
0 

NDUFS2 (-2929), ADAMTS4 (-163) 

cg00248903 chr19: 3834516 25.338 8.73E-07 ↑ 0.456 0.50 ↓ ZFR2 Body MATK (-48102), ZFR2 (+34510) 

cg03669268 chr20: 23549106 23.777 1.84E-06 ↑ 0.051 0.82 ↓ CST9L 1stExon,5'UTR CST9L (+279) 

cg22095582 chr15: 90131512 22.683 3.10E-06 ↑ 0.174 0.68 ↑ C15orf42 Body C15orf42 (+12695), KIF7 (+67169) 

cg08108321 chr17: 40713991 21.72 4.93E-06 ↓ 0.659 0.42 ↓ COASY TSS200 COASY (-100) 

cg00583492 chr11: 66610708 21.534 5.39E-06 ↓ 0.001 0.97 ↑ RCE1;C11orf80 TSS200;3'UTR RCE1 (-174) 

cg00959725 chr1: 33282965 21.294 6.06E-06 ↓ 0.549 0.46 - S100PBP;YARS TSS1500;1stEx
on,5'UTR 

S100PBP (-210), YARS (+667) 

 
Table 4.2 Top 10 DMPs associated with age in the AddNeuroMed cohort.  

Shown for each probe is the genomic location, ANOVA F-statistic, associated p-value, and direction of effect (Δ: ↓ = decreased methylation with ageing, ↑ = increased 

methylation with ageing) in the AddNeuroMed cohort as well as the ADNI replication cohort. Probes are annotated using UCSC gene name and gene group (genome 

build 37), and GREAT annotation genes with the TSS distance indicated in parentheses. 

 



228 
 

 

Figure 4.4 Q-Q plots of p-values of the main effects of sex (A) and age (B). 

Inflation is observed, particularly in the p-values related to the effects of age. 

A. B. 
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4.4.2. Interactions between sex, age, and diagnosis  

Three interaction effects were of interest in this study: the interaction between 

sex and age, between sex and diagnosis, and between age and diagnosis. One 

epigenome-wide significant DMP was found to show an interaction effect for sex 

and age (cg21437028, p = 9.03×10-8). This DMP is annotated to SHOX2 and is 

the same CpG that was the top DMP associated with sex, and should therefore 

be interpreted in the context of both sex and its interaction with age. In female 

subjects, this DMP showed hypermethylation with increasing age, whereas male 

subjects displayed hypomethylation with increasing age (Figure 4.5A). The top 

10 DMPs associated with sex and age interaction are shown in  

Table 4.3. Neither the interaction between sex and diagnosis, nor the interaction 

between age and diagnosis had any probes passing the epigenome-wide 

significance threshold. The top probe associated with a sex and diagnosis 

interaction was cg02429945 (p = 9.76×10-7), which is located on chromosome 5, 

but does not currently have a UCSC gene annotation. This probe showed 

opposite methylation patterns in males and females across diagnosis, with male 

participants tending to show hypermethylation in the MCI stage compared to CTL 

and AD, and female participants showed hypomethylation in MCI relative to CTL 

and AD (Figure 4.6A). Table 4.4 displays the top 10 probes associated with an 

interaction between sex and diagnosis. In the age by diagnosis assessment, the 

top probe was cg16415340 (p = 8.88×10-7). This probe is annotated to the INS-

IGF2 and IGF2 genes on chromosome 11, and showed an interesting pattern of 

methylation where individuals with MCI or AD displayed hypermethylation with 

increased age, yet in CTL individuals, methylation levels decreased with age 

(Figure 4.7A). An overview of the top 10 probes associated with interactions 

between age and diagnosis can be found in Table 4.5. 
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As also seen in the assessment of the main effects of sex and age, the Q-Q plots 

for the interaction terms showed slight inflation of the p-values (Figure 4.8) and 

thus the findings were explored for replication in an independent dataset. The 

replication analysis in ADNI showed that the top DMP associated with an 

interaction between sex and age did not display a similar effect (Figure 4.5 B). 

However, the probe cg14437986 was found to be nominally significant in both 

cohorts (Table 4.3). This site is located on chromosome 6 and is annotated to 

C6orf25. None of the top probes associated with the interaction of sex and 

diagnosis in AddNeuroMed were found to be nominally significant in ADNI, 

whereas the one probe associated with an age by diagnosis interaction was 

replicated. The cg21484956 probe was nominally significant in both datasets and 

was annotated to CSRP2 on chromosome 12. 
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Figure 4.5 The SHOX2 DMP showing a sex and age interaction in the AddNeuroMed cohort.  

The cg21437028 probe showed hypermethylation in female subjects with increasing age, and hypomethylation in male participants in the AddNeuroMed cohort, and 

is annotated to the SHOX2 gene (A). No interaction effect is seen in the ADNI replication cohort (B). Displayed methylation values have been corrected for the 

covariates of cell type proportions and batch effect, as well as the effects of diagnosis.  

A. B. 
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Table 4.3 Top 10 DMPs associated with the sex and age interaction in the AddNeuroMed cohort.  

Shown for each probe is the genomic location, ANOVA F-statistic and associated p-value for each variable in the AddNeuroMed cohort and the ADNI replication 

cohort, UCSC gene name and group (genome build 37), and GREAT annotation genes with the TSS distance indicated in parentheses. 

  

Top 10 sex × age DMPs 

ProbeID Position 
AddNeuroMed ADNI 

UCSC 
Gene 

UCSC 
Gene 
Group 

GREAT Annotation 

F (Sex × 
Age) 

p (Sex × 
Age) 

F (Sex × 
Age) 

p (Sex × 
Age) 

   

cg21437028 chr3: 157816403 30.172 9.03E-08 1.070 0.30 SHOX2 Body VEPH1 (-595268), SHOX2 
(+7548) 

cg02153041 chr12: 131502934 21.844 4.64E-06 0.006 0.94 GPR133 Body SFSWAP (-692700), GPR133 
(+64483) 

cg03604067 chr7: 1980273 21.466 5.57E-06 0.948 0.33 MAD1L1 Body ELFN1 (+231476), MAD1L1 
(+292309) 

cg24560809 chr2: 95939339 21.378 5.82E-06 0.239 0.63 PROM2 TSS1500 PROM2 (-861) 

cg12855310 chr10: 134215035 20.268 9.97E-06 0.125 0.72 PWWP2B Body INPP5A (-136317), STK32C (-
93559) 

cg25274468 chr7: 114570498 19.004 1.85E-05 1.266 0.26 MDFIC Body MDFIC (+8290) 

cg26298737 chr1: 225964937 18.853 1.99E-05 0.130 0.72 SRP9 TSS1500 SRP9 (-577) 

cg14437986 chr6: 31691035 18.609 2.24E-05 4.296 3.90E-02 C6orf25 TSS200 LY6G6C (-1525), C6orf25 (-85) 

cg11128045 chr9: 140395219 18.112 2.86E-05   PNPLA7 Body NELF (-41434), PNPLA7 
(+49766) 

cg12131219 chr1: 25558575 17.96 3.09E-05 0.664 0.42 SYF2 Body SYF2 (+437) 
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Figure 4.6 The top DMP showing an interaction between sex and diagnosis in the AddNeuroMed cohort.  

The cg02429945 probe showed hypermethylation in male participants with MCI, and hypomethylation in female subjects in AddNeuroMed (A), but not ADNI (B). 

Displayed methylation values have been corrected for the covariates of cell type proportions and batch effects, as well as the effect of age. 

A. B. 
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Top 10 sex × diagnosis DMPs 

ProbeID Position 
AddNeuroMed ADNI 

UCSC Gene 
UCSC Gene 
Group 

GREAT Annotation F (Sex × 
Diagnosis) 

p (Sex × 
Diagnosis) 

F (Sex × 
Diagnosis) 

p (Sex × 
Diagnosis) 

cg02429945 chr5: 29150410 14.563 9.76E-07 1.648 0.19  
 

 

cg21163392 chr12: 112681365 13.731 2.07E-06 0.995 0.37 C12orf51 Body TRAFD1 (+118017), C12orf51 
(+138530) 

cg23205949 chr10: 91140307 12.583 5.92E-06 0.277 0.76 IFIT1L Body IFIT1 (-12014), IFIT1B (+2495) 

cg10920302 chr3: 45430089 12.211 8.31E-06 1.020 0.36 LARS2 5'UTR,1stEx
on 

LARS2 (+15) 

cg07607921 chr17: 4047574 12.088 9.31E-06 0.503 0.61 ZZEF1;CYB5D2 TSS1500;Bo
dy 

ZZEF1 (-1322), CYB5D2 (+1113) 

cg02596175 chr7: 151574762 12.079 9.39E-06 0.281 0.76 PRKAG2 TSS1500 PRKAG2 (-447) 

cg10658516 chr2: 98612531 11.927 1.08E-05 0.385 0.68 TMEM131 TSS200 TMEM131 (-178) 

cg20310759 chr1: 87618313 11.818 1.19E-05 0.291 0.75 LOC339524 Body LMO4 (-175837), LOC339524 
(+20634) 

cg16532399 chr1: 38031726 11.644 1.40E-05 1.221 0.30 DNALI1 3'UTR DNALI1 (+9207), GNL2 (+29859) 

cg02098565 chr16: 89168508 11.549 1.53E-05 0.918 0.40 ACSF3 Body CDH15 (-69654), ACSF3 (+8292) 

 
Table 4.4 Top 10 DMPs associated with the sex and diagnosis interaction in the AddNeuroMed cohort.  

Shown for each probe is the genomic location, ANOVA F-statistic and associated p-value for each variable in the AddNeuroMed cohort and the ADNI replication 

cohort, UCSC gene name and group (genome build 37), and GREAT annotation genes with the TSS distance indicated in parentheses. 
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Figure 4.7 The top DMP showing an interaction between age and diagnosis in the AddNeuroMed cohort.  

The cg16415340 probe showed hypermethylation in MCI and AD with increasing age, and hypomethylation in CTL in AddNeuroMed (A), but not in ADNI (B). Displayed 

methylation values have been corrected for the covariates of cell type proportions and batch effects, as well as the effect of sex.  

A. B. 
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Top 10 age × diagnosis DMPs 

ProbeID Position 
AddNeuroMed ADNI 

UCSC Gene 
UCSC Gene 
Group 

GREAT Annotation F (Age × 
Diagnosis) 

p (Age × 
Diagnosis) 

F (Age × 
Diagnosis) 

p (Age × 
Diagnosis) 

cg16415340 chr11: 2160964 14.668 8.88E-07 0.237 0.79 INS-IGF2;IGF2AS; 
IGF2 

Body;TSS1500; 
Body,5'UTR,TSS1
500 

IGF2 (+1376), MRPL23 
(+192463) 

cg16068383 chr15: 56201496 14.498 1.04E-06 0.199 0.82 NEDD4 Body PRTG (-166320), 
NEDD4 (+7832) 

cg15988010 chr4: 166033722 14.108 1.47E-06 - - TMEM192 Body TMEM192 (+301) 

cg06214716 chr4: 10118677 13.809 1.93E-06 0.054 0.95 WDR1 TSS200 WDR1 (-105) 

cg14277392 chr19: 57018933 13.403 2.80E-06 0.425 0.65 ZNF471 TSS1500 ZNF471 (-278) 

cg20303995 chr10: 104159500 13.389 2.83E-06 0.827 0.44 NFKB2 Body NFKB2 (+5162), PSD 
(+19400) 

cg21484956 chr12: 77273469 13.366 2.89E-06 4.663 1.00E-02 CSRP2 TSS1500 CSRP2 (-671) 

cg21875080 chr1: 46598774 13.247 3.22E-06 0.007 0.99 PIK3R3 TSS200,TSS1500 PIK3R3 (-395) 

cg00060606 chr1: 45140440 13.205 3.35E-06 - - C1orf228;TMEM5
3 

5'UTR,1stExon;TS
S1500 

TMEM53 (-342), 
C1orf228 (+47) 

cg10953131 chr1: 17997665 13.042 3.89E-06 4.483 1.20E-02 ARHGEF10L Body ACTL8 (-84142), 
ARHGEF10L (+131336) 

Table 4.5 Top 10 DMPs associated with an interaction between age and diagnosis in the AddNeuroMed cohort.  

Shown for each probe is the genomic location, ANOVA F-statistic and associated p-value for each variable in the AddNeuroMed cohort and the ADNI replication 

cohort, UCSC gene name and group (genome build 37), and GREAT annotation genes with the TSS distance indicated in parentheses. 
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Figure 4.8 Q-Q plots of sex, age, and diagnosis interaction effects. 

Q-Q plots of the p-values associated with interaction effects of sex and age (A), sex and diagnosis (B), and age and diagnosis (C) are shown. 

A. B. C. 



238 
 

4.4.3. Sex, age, and interaction DMRs 

Following the identification of DMPs associated with sex, age, and their 

interactions with diagnosis, comb-p was used to identify DMRs. Twelve significant 

DMRs were found with regard to sex, with the most significant region being 

annotated to the genes GNA12 and AMZ1 (904bp; Table 4.6). The other identified 

DMRs were annotated to the genes MPIG6B (909 bp), SLC17A8 (579 bp), CIB1 

and TTLL13P (757 bp), PIGZ (270 bp), CFAP161 (474 bp), ANXA2R and 

LOC648987 (825 bp), CNKSR1 (397 bp), NRXN2 (566 bp), STING1 (610 bp), 

ALLC (608 bp), and RASSF4 (258 bp). There were 25 DMRs identified that 

showed significant methylation differences with age. The most significant region 

spanned 1,743 bp, and is annotated to the genes ANXA2R and LOC648987. Of 

note, this region fully overlapped the DMR associated with sex that is annotated 

to the same genes. Several other genomic regions also contained DMRs that 

were associated with both sex and age. The PIGZ gene on chromosome 3 

contained a DMR associated with both sex and age spanning the exact same 

270 bp region. The sex-associated DMR in NRXN2 on chromosome 11 also 

overlapped with an extended DMR associated with age (1113 bp). Additionally, 

the gene ALLC contains a DMR associated with both sex and age, which starts 

at the same site, but the age-associated DMR spans 210 probes further (818 bp 

in total). A table of all DMRs related to age is shown in Table 4.7.  

 

In addition to DMRs associated with the main effects, there were a number of 

regions that were associated with the interactions between sex, age, and 

diagnosis. Regions that reflected significant interactions between sex and age 

(Table 4.8) included a DMR in MPIG6B (909 bp), which exactly matched the DMR 

associated with sex. In fact, of the nine DMRs displaying a sex by age interaction, 
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the majority exactly matched or overlapped with DMRs related to sex. In addition 

to the DMR in MPIG6B, this included DMRs in the genes CIB1 and TTLL13P, 

SLC17A8, PIGZ, CFAP161, NRXN2, CNKSR1, and ANXA2R and LOC648987. 

Furthermore, the sex by age associated DMR in PIGZ exactly overlapped the 

DMR identified in association with both sex and age. The 448 bp DMR annotated 

to ANXA2R and LOC648987 was fully spanned by DMRs identified in both age 

and sex.  

 

A total of 27 significant DMRs were found in the analysis of the interaction 

between sex and diagnosis (Table 4.9). The most significant DMR was located 

on chromosome 7, spanned 1,728 bp, and was annotated to the HOXA4 gene. 

One gene located on chromosome 16 contained two regions: the ACSF3 gene 

contained one DMR spanning 365 bp, and, separated by 3,608 bp, another DMR 

spanning only 38 bp. In addition to these two DMRs displaying a sex by diagnosis 

interaction, the same gene contained a DMR (156 bp) displaying a sex by age 

interaction, though this region did not overlap with either of the other DMRs 

annotated to this gene. Notably, none of the sex by diagnosis DMRs exactly 

matched with the sex DMRs, but one DMR overlapped with an age-related DMR. 

This DMR is annotated to C10orf90 on chromosome 10, and spans 173 bp.  

 

With regard to the interaction between age and diagnosis, nine significant DMRs 

were found (Table 4.10). The most significant DMR was located in MAD1L1 on 

chromosome 7 (925 bp). This interaction effect also has an associated DMR in 

the ANXA2R and LOC648987 genomic region, though this 755 bp region only 

partially overlaps the DMRs associated with either sex, or age. The age and 

diagnosis interaction DMR did fully overlap the sex and age interaction DMR. 
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DMRs associated with sex 

Gene Position Gene Feature n p-value Šidák-p Overlap DMR 

GNA12;AMZ1 chr7: 2802073 - 2802977 intron+TSS+utr5+cds;intron 7 6.10E-13 2.71E-10 Sex × Age 

MPIG6B chr6: 31690904 - 31691813 TSS+intron+utr5+cds 22 3.12E-12 1.38E-09 Sex × Age† 

SLC17A8 chr12: 100750473 - 100751052 TSS+exon+utr5 8 1.16E-08 8.03E-06 Sex × Age† 

CIB1;TTLL13P chr15: 90792300 - 90793057 nc_intron;nc_intron+nc_exon 9 2.19E-08 1.16E-05 Sex × Age† 

PIGZ chr3: 196705629 - 196705899 intergenic 5 8.85E-09 1.32E-05 Age†, Sex × 
Age† 

CFAP161 chr15: 81426347 - 81426821 TSS+intron+utr5+cds 9 3.59E-08 3.04E-05 Sex × Age† 

ANXA2R;LOC648987 chr5: 43040174 - 43040999 TSS+exon;nc_intron 8 3.85E-07 1.87E-04 Age, Sex × 
Age, Age × 
Diag 

CNKSR1 chr1: 26503623 - 26504020 TSS+exon+utr5 8 2.78E-07 2.80E-04 Sex × Age† 

NRXN2 chr11: 64374653 - 64375219 intron+utr3+cds;utr3+cds 3 1.29E-06 9.15E-04 Age, Sex × 
Age† 

STING1 chr5: 138861832 - 138862442 TSS+intron+exon+utr5 6 2.16E-06 1.42E-03  

ALLC chr2: 3698746 - 3699354 intergenic 5 3.17E-06 2.09E-03 Age 

RASSF4 chr10: 45477550 - 45477808 intron 3 2.54E-06 3.94E-03  

 
Table 4.6 DMRs associated with sex in AddNeuroMed.  

Displayed are the DMRs associated with the main effects of sex in blood. For each DMR the UCSC annotated gene is shown, its chromosomal position (genome build 

37), gene feature (cds = coding sequence; TSS = transcription start site; utr5 = 5' untranslated region; utr3 = 3' untranslated region, nc_ = non-coding), number of 

probes in region (n), p-value and multiple testing-corrected p-value (Šidák-p). The column ‘Overlap DMR’ indicates whether regions partially overlap, or fully match 

(indicated by †) another DMR identified in this chapter, and which main- or interaction effect that DMR is associated with (Age, Sex × Age, Sex × Diagnosis (Diag), or 

Age × Diagnosis). 
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DMRs associated with age 

Gene Position Gene Feature n p-value Šidák-p Overlap DMR 

ANXA2R;LOC648987 chr5: 43039410 - 43041153 TSS+cds;nc_intron 12 2.03E-18 4.67E-16 Sex, Sex × Age, Age × Diag 

ZNF580;ZNF581 chr19: 56154382 - 56155152 utr3+cds;TSS+intron+exon+utr5 9 7.45E-11 3.88E-08  

FUT11 chr10: 75533025 - 75533432 cds 5 3.79E-09 3.73E-06  

FAAP20 chr1: 2120985 - 2121725 nc_intron+nc_exon+intron+ 
exon+utr5+utr3+cds 

6 1.62E-08 8.78E-06  

ALLC chr2: 3698746 - 3699564 intergenic 6 2.10E-08 1.03E-05 Sex 

OXT chr20: 3051954 - 3052484 TSS+intron+utr5+cds 10 1.83E-08 1.39E-05  

NRXN2 chr11: 64374653 - 64375766 intron+utr3+cds 4 5.62E-08 2.03E-05 Sex, Sex × Age 

MMACHC;CCDC163 chr1: 45965343 - 45966116 TSS+intron+utr5+cds+exon; 
TSS+exon+utr5+nc_intron+nc_exon 

12 5.15E-08 2.67E-05  

INPP5A chr10: 134361949 - 134362171 intron 4 5.81E-08 1.05E-04  

PIGZ chr3: 196705629 - 196705899 intergenic 5 9.23E-08 1.37E-04 Sex†, Sex × Age† 

CYP2E1 chr10: 135341933 - 135343194 intron+cds 7 7.48E-07 2.38E-04  

GTPBP10 chr7: 89975649 - 89976217 TSS+intron+utr5+cds 9 6.98E-07 4.93E-04  

ZNF471 chr19: 57018614 - 57019374 TSS+intron+exon+utr5 8 1.26E-06 6.67E-04  

PRSS16 chr6: 27173574 - 27173992 intergenic 5 1.43E-06 1.37E-03  

DSCR9 chr21: 38593042 - 38593285 nc_exon 2 1.12E-06 1.85E-03  
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DMRs associated with age (Continued) 

Gene Position Gene Feature n p-value Šidák-p Overlap DMR 

PARD3 chr10: 34408530 - 34408655 intron+cds 3 5.99E-07 1.92E-03  

LAMB2 chr3: 49170496 - 49170669 intergenic 3 1.15E-06 2.67E-03  

SNX33 chr15: 75940301 - 75940556 exon+utr5 3 1.70E-06 2.67E-03  

VPS26C chr21: 38630234 - 38630729 intron 4 3.47E-06 2.81E-03  

SUN3 chr7: 48031468 - 48031801 intron 3 2.56E-06 3.08E-03  

HLA-E chr6: 30457711 - 30458602 intron+cds 12 9.54E-06 4.29E-03  

C10orf90 chr10: 128152075 - 128152248 nc_intron;intron 4 2.03E-06 4.70E-03 Sex × Diag† 

MANEAL chr1: 38261057 - 38261402 intron+TSS+exon+utr5 3 7.12E-06 8.25E-03  

TUBA4A chr2: 220116179 - 220116295 intron+cds 2 2.94E-06 1.01E-02  

NDUFC1 chr4: 140216957 - 140217099 exon+utr5 5 8.65E-06 2.41E-02  

 
Table 4.7 DMRs associated with age in AddNeuroMed.   

Displayed are the DMRs associated with the main effects of age in blood. For each DMR the UCSC annotated gene is shown, its chromosomal position (genome build 

37), gene feature (cds = coding sequence; TSS = transcription start site; utr5 = 5' untranslated region; utr3 = 3' untranslated region, nc_ = non-coding), number of 

probes in region (n), p-value and multiple testing-corrected p-value (Šidák-p). The column ‘Overlap DMR’ indicates whether regions partially overlap, or fully match 

(indicated by †) another DMR identified in this chapter, and which main- or interaction effect that DMR is associated with (Sex, Sex × Age, Sex × Diagnosis (Diag), or 

Age × Diagnosis). 
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DMRs associated with sex × age 

Gene Position Gene Feature n p-value Šidák-p Overlap DMR 

MPIG6B chr6: 31690904 - 31691813 TSS+intron+utr5+cds 22 1.55E-12 6.86E-10 Sex† 

GNA12;AMZ1 chr7: 2802374 - 2802977 Intron,TSS+utr5+cds;intron 6 2.11E-10 1.41E-07 Sex 

CIB1;TTLL13P chr15: 90792300 - 90793057 nc_intron;nc_intron+nc_exon 9 6.22E-09 3.30E-06 Sex† 

SLC17A8 chr12: 100750473 - 100751052 TSS+exon+utr5 8 6.24E-09 4.33E-06 Sex† 

PIGZ chr3: 196705629 - 196705899 intergenic 5 3.61E-09 5.37E-06 Sex†, Age† 

CFAP161 chr15: 81426347 - 81426821 TSS+intron+utr5+cds 9 1.24E-08 1.05E-05 Sex† 

NRXN2 chr11: 64374653 - 64375219 intron+utr3+cds 3 3.31E-07 2.35E-04 Sex†, Age 

CNKSR1 chr1: 26503623 - 26504020 TSS+exon+utr5 8 1.65E-06 1.67E-03 Sex† 

ANXA2R;LOC648987 chr5: 43040174 - 43040622 TSS+exon;nc_intron 4 2.47E-06 2.21E-03 Sex, Age, Age × Diag 

 
Table 4.8 DMRs associated with a sex by age interaction in AddNeuroMed.   

Displayed are the DMRs associated with the interaction effect of sex and age in blood. For each DMR the UCSC annotated gene is shown, its chromosomal position 

(genome build 37), gene feature (cds = coding sequence; TSS = transcription start site; utr5 = 5' untranslated region; utr3 = 3' untranslated region, nc_ = non-coding), 

number of probes in region (n), p-value and multiple testing-corrected p-value (Šidák-p). The column ‘Overlap DMR’ indicates whether regions partially overlap, or fully 

match (indicated by †) another DMR identified in this chapter, and which main- or interaction effect that DMR is associated with (Sex, Age, Sex × Diagnosis (Diag), or 

Age × Diagnosis). 
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DMRs associated with sex × diagnosis 

Gene Position Gene Feature n p-value Šidák-p Overlap DMR 

HOXA4 chr7: 27169674 - 27171402 TSS+intron+utr5+cds 23 2.42E-17 5.62E-15  

ZNF649-AS1;ZNF577 chr19: 52390810 - 52391790 nc_intron+nc_exon;nc_exon, 
TSS+intron+exon+utr5,TSS+exon+utr5 

13 4.84E-10 1.98E-07  

SVIL-AS1 chr10: 29697905 - 29699044 nc_intron+nc_exon 9 7.28E-10 2.56E-07  

CDK11B;SLC35E2B chr1: 1609388 - 1609973 intron,intron+utr5;intron+utr5 3 2.30E-09 1.58E-06  

C5orf63 chr5: 126408756 - 126409554 TSS+intron+exon+utr5 13 4.51E-09 2.27E-06  

CD247 chr1: 167408509 - 167409199 intron+cds 7 1.66E-08 9.64E-06  

PM20D1 chr1: 205818956 - 205819610 nc_intron+nc_exon,TSS+intron+utr5+cds 8 1.89E-08 1.16E-05  

TMEM72-
AS1;TMEM72 

chr10: 45406187 - 45406848 nc_intron;TSS+exon+utr5 6 3.18E-08 1.93E-05  

ACSF2;CHAD chr17: 48545805 - 48546621 nc_intron,intron;TSS+utr5+cds 11 1.31E-07 6.44E-05  

KHDC3L chr6: 74071738 - 74072821 TSS+intron+utr5+cds 9 4.48E-07 1.66E-04  

ADGRD1 chr12: 131488390 - 131488927 intron+cds 6 2.33E-07 1.74E-04  

LINC00533 chr6: 28601269 - 28601520 intergenic 11 1.18E-07 1.88E-04  

ACSF3 chr16: 89168599 - 89168964 intron+utr5,intron,nc_intron 2 1.77E-07 1.94E-04  

LINC02470 chr12: 10095902 - 10096153 nc_exon 5 1.30E-07 2.08E-04  

GLIPR1L2;CAPS2 chr12: 75784617 - 75785296 TSS+intron+utr5+cds, nc_intron+nc_exon; 
TSS+intron+utr5+cds,TSS+intron+exon+utr5, 
nc_intron+nc_exon 

10 5.69E-07 3.36E-04  

PTCHD3 chr10: 27702774 - 27703548 TSS+utr5+cds 8 6.67E-07 3.46E-04  

PTGDR chr14: 52734156 - 52734530 TSS+exon+utr5 8 6.23E-07 6.68E-04  
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DMRs associated with sex × diagnosis (Continued) 

Gene Position Gene Feature n p-value Šidák-p Overlap DMR 

ARID5B chr10: 63809073 - 63809150 TSS+exon+utr5,intron 5 1.57E-07 8.20E-04  

PTPRN2 chr7: 158045980 - 158046359 intron 6 1.96E-06 2.07E-03  

C10orf90 chr10: 128152075 - 128152248 nc_intron,intron 4 1.22E-06 2.84E-03 Age† 

LEP chr7: 127911258 - 127911968 intergenic 4 5.26E-06 2.97E-03  

ACSF3 chr16: 89164953 - 89164991 intron+utr5,nc_intron 2 3.24E-07 3.41E-03  

VSTM5 chr11: 93583253 - 93583764 intron+utr5+cds 7 5.28E-06 4.13E-03  

AKTIP chr16: 53543985 - 53544099 intergenic 3 1.40E-06 4.91E-03  

LOC105377162 chr3: 72704324 - 72704702 intergenic 5 4.79E-06 5.07E-03  

NEAT1 chr11: 65194933 - 65195040 nc_exon 4 2.87E-06 1.07E-02  

NCALD chr8: 103129227 - 103129371 intron+utr5 4 5.08E-06 1.41E-02  

 
Table 4.9 DMRs associated with a sex by diagnosis interaction in AddNeuroMed.   

Displayed are the DMRs associated with the interaction effect of sex and diagnosis in blood. For each DMR the UCSC annotated gene is shown, its chromosomal 

position (genome build 37), gene feature (cds = coding sequence; TSS = transcription start site; utr5 = 5' untranslated region; utr3 = 3' untranslated region, nc_ = non-

coding), number of probes in region (n), p-value and multiple testing-corrected p-value (Šidák-p). The column ‘Overlap DMR’ indicates whether regions partially overlap, 

or fully match (indicated by †) another DMR identified in this chapter, and which main- or interaction effect that DMR is associated with (Sex, Age, Sex × Age, or Age 

× Diagnosis). 
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DMRs associated with age × diagnosis 

Gene Position Gene Feature n p-value Šidák-p Overlap DMR 

MAD1L1 chr7: 1895903 - 1896828 intron 6 7.90E-13 3.43E-10  

ANXA2R;LOC648987 chr5: 43039867 - 43040622 TSS+cds;nc_intron 7 7.03E-12 3.74E-09 Sex, Age, Sex × Age 

CHI3L1 chr1: 203155737 - 203156626 TSS+utr5+cds 6 3.46E-08 1.56E-05  

VTRNA2-1 chr5: 135415693 - 135416530 nc_gene 14 4.18E-08 2.00E-05  

LOC100131289 chr6: 27730016 - 27730564 nc_intron+nc_exon 4 3.67E-08 2.69E-05  

KCNMB3 chr3: 178978849 - 178979014 intron 5 8.70E-08 2.12E-04  

LINC00424 chr13: 22615049 - 22615335 intergenic 5 5.18E-07 7.27E-04  

HCG15 chr6: 28945182 - 28945508 intergenic 6 6.55E-07 8.06E-04  

MAST4 chr5: 66461884 - 66462472 cds 3 1.44E-06 9.85E-04  

 
Table 4.10 DMRs associated with an age by diagnosis interaction in AddNeuroMed.   

Displayed are the DMRs associated with the interaction effect of age and diagnosis in blood. For each DMR the UCSC annotated gene is shown, its chromosomal 

position (genome build 37), gene feature (cds = coding sequence; TSS = transcription start site; utr5 = 5' untranslated region; utr3 = 3' untranslated region, nc_ = non-

coding), number of probes in region (n), p-value and multiple testing-corrected p-value (Šidák-p). The column ‘Overlap DMR’ indicates whether regions partially overlap, 

or fully match (indicated by †) another DMR identified in this chapter, and which main- or interaction effect that DMR is associated with (Sex, Age, Sex × Age, or Sex 

× Diagnosis (Diag)). 
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4.4.4. Replication of DMRs in ADNI 

For each effect investigated in the AddNeuroMed cohort, probes located within 

these DMRs were extracted from the ADNI EWAS results. For example, probes 

within the GNA12- and AMZ1-annotated DMR associated with sex and the 

interaction of sex and age in AddNeuroMed were extracted from the ADNI data 

and inspected for significance in association with sex and sex by age. The 

majority of probes within AddNeuroMed DMRs were not significant in the ADNI 

dataset, and several DMRs only contained one nominally significant probe in 

ADNI. There were a few notable exceptions, and the focus of this section is 

placed on an arbitrarily set ‘level of replication’: DMRs where the significance of 

more than one third of the probes in the region was replicated in ADNI. Of the 

overlapping ALLC DMRs that were associated with both sex and age in 

AddNeuroMed, three out of six age-associated probes were nominally significant 

in ADNI for age (min. p = 0.006), and one other probe showed a nominally 

significant effect of sex (p = 0.024). Similarly, the ZNF471 age-associated DMR 

in AddNeuroMed consisted of eight probes in total, of which three showed a 

nominally significant effect of age in ADNI (min. p = 0.03). Also associated with 

age, the DMR located in VPS26C contained four probes in the AddNeuroMed 

dataset, and the age effect was replicated in two of these probes in ADNI (min. p 

= 0.024). Of the DMRs associated with interaction effects, none passed the 

selected level of replication for the relevant interaction effects in ADNI, though a 

few interaction DMRs contained probes that were nominally significant for an 

associated main effect in ADNI. For example, the DMR annotated to CDK11B 

and SLC35E2B that reflected an interaction of sex and diagnosis in 

AddNeuroMed, contained three probes of which two showed a significant effect 

of sex in ADNI (min. p = 0.002). Similarly, the sex by diagnosis interaction region 
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in PTPRN2 contained six probes of which five were associated with sex in ADNI 

(min. p = 0.006). Lastly, two of the three probes in the MAST4 DMR that reflected 

an age by diagnosis interaction in AddNeuroMed were nominally significant for 

age in ADNI (min. p = 0.006). 

 

4.4.5. Pathways altered in association with sex, age and their interactions 

with disease 

Using the 16 WGCNA modules generated as described in Chapter 2.4.2 for the 

AddNeuroMed data (Figure 2.25), it was investigated whether any biological 

pathways were altered in association with sex, age, or the interactions of sex and 

age, sex and diagnosis, and age and diagnosis. The covariates of cell type 

proportions and batch were regressed out of the MEs, and extreme outliers 

(exceeding > 5 SD) were removed. The association between the variables of 

interest and the modules was tested by running an ANOVA interaction model as 

described in 4.3.1. Several modules were found to show a nominally significant 

(p <0.05) association with age or the interaction between sex and diagnosis 

(Figure 4.9). The modules greenyellow (F = 5.1, p = 0.02), pink (F = 4.6, p = 0.03), 

and green (F = 4.5, p = 0.03) reflected differences in age, and the salmon module 

showed an interaction effect between sex and diagnosis (F = 4.8, p = 0.009). For 

these modules, MM to PS correlations and plots were generated, to test whether 

the probes central to these modules also showed the strongest association with 

age or a sex by diagnosis interaction. Only the modules showing significant 

positive MM to PS correlations (i.e. r > 0, p < 0.05) were selected for further 

pathway analysis. For age, the greenyellow and green modules passed this 

selection criterion (Figure 4.10), whereas the salmon module linked to a sex and 

diagnosis interaction did not pass the criterion (Figure 4.11). Using the 
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missMethyl package, GO and KEGG enrichment analyses were run on the 

greenyellow and green modules. A FDR multiple testing correction was carried 

out for all terms, and only terms with q < 0.05 were considered significant. A total 

of 26 GO terms were found to be significant in the green module related to age, 

and the top GO terms were ‘mRNA metabolic process’ (q = 5.18×10-5), and ‘RNA 

processing’ (q = 5.18×10-5). Only three significant KEGG terms were identified, 

i.e. ‘spliceosome’ (q = 2.93×10-3), ‘systemic lupus erythematosus’ (q = 8.52×10-

3), and ‘alcoholism’ (q = 0.02). The significant GO terms and the significant KEGG 

terms are displayed in Figure 4.12. The greenyellow module, which also reflected 

differences in age, had one significant GO term, i.e. ‘homophilic cell adhesion via 

plasma membrane adhesion molecules’ (q = 0.022), and two significant KEGG 

terms, i.e. ‘human papillomavirus infection’ (q = 1.05×10-3) and ‘basal cell 

carcinoma’ (q = 1.61×10-3). 
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Figure 4.9 Heatmap of module-trait relationships.  

An interaction model consisting of the main effects of sex, age, and diagnosis, and the interactions 

of sex × age, sex × diagnosis, and age × diagnosis, was run on the MEs for each module. 

Displayed are ANOVA F-statistics for each association (also indicated by colour), and p-values in 

parentheses.  
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Figure 4.10 Module membership (MM) to probe significance (PS) correlations for modules associated with age in AddNeuroMed. 

Only those modules showing positive and significant (i.e. r > 0, p < 0.05) MM to PS correlations were selected for pathway analyses. 

 

A. B. C. 
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Figure 4.11 Module membership (MM) to probe significance (PS) correlations for the 
salmon module associated with a sex and diagnosis interaction in AddNeuroMed. 

As this module did not show a positive and significant (i.e. r > 0, p < 0.05) MM to PS correlation, 

this module was not selected for pathway analyses. 
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Figure 4.12 GO and KEGG terms enriched in the green module associated with age.  

GO and KEGG terms are shown with the number of altered genes in the pathway shown on the x-axis, and terms are coloured by q-value (FDR-value). All significant 

GO terms are shown in A, and the three significant KEGG terms are shown in B.  

A. B. 
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4.5. Discussion 

 

The current study identified several epigenome-wide significant positions, 

regions, and pathways that are associated with sex, age, and their interactions 

with each other and diagnosis.  

 

A DMP was found in the short stature homeobox 2 gene (SHOX2), which showed 

a pattern of decreased DNA methylation with ageing in male participants, and the 

opposite pattern in female participants. The SHOX2 gene is part of the homeobox 

family of genes, which is involved in hematopoietic development as well as early 

body morphogenesis (Krumlauf, 1994). The role of SHOX2 in later ageing and 

sex differences is unknown, though methylation of this gene has been suggested 

as a diagnostic biomarker for lung cancer in plasma and lung tissue (Kneip et al., 

2011; Q.-T. Zhao et al., 2015). 

 

The first of the two epigenome-wide significant DMPs associated with age 

(cg02843237) was located in the proadrenomedullin gene (ADM), which encodes 

the peptides adrenomedullin (ADM), proadrenomedullin N-terminal 20 (PAMP), 

and adrenotensin, in addition to mid-regional pro-adrenomedullin (MR-proADM), 

which currently has no known effect (Valenzuela-Sánchez et al., 2016). Initial 

studies discovered that ADM plays a role in hypotension (Kitamura et al., 1993), 

though it has been shown to have pleiotropic effects (Kato & Kitamura, 2015). In 

the context of ageing, it has been observed levels of ADM increase with age in 

plasma (Kato et al., 2002), as well as in the brain of healthy human subjects 

(Larrayoz et al., 2017). ADM and MR-proADM are produced in equal amounts, 

and as MR-proADM is more stable, this has often been used to assess ADM 
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levels and similar effects of age have been found in blood (Lorubbio et al., 2018; 

J. G. Smith et al., 2009). Furthermore, the study by Larrayoz et al. (2017) 

discovered that aged mice lacking ADM and PAMP expression performed better 

on a memory task, and that this effect was more evident in female mice. 

Additionally, these female mice showed lower phosphorylated tau accumulation 

than wild type (WT) mice. This suggests not only a link between ADM and ageing, 

but also sex and AD, though the current study only found an effect of age on ADM 

DNA methylation. Of note, CpG sites annotated to the ADM gene have been used 

as surrogate markers for plasma levels of ADM, and have been used in the 

‘GrimAge’ DNA methylation biomarker of epigenetic acceleration of ageing (Lu et 

al., 2019). 

 

The second age-associated DMP (cg00664416) was also located within an age-

associated DMR and is annotated to the mannosidase endo-alpha like 

(MANEAL) gene. A study of long-lived individuals (> 90 years of age) found that 

MANEAL gene expression was upregulated in these individuals in comparison to 

younger CTLs (20 - 55 years of age). These results were confirmed using the 

same dataset by Wierczeiko et al. (2018), who also showed an association of 

methylation levels in the promoter region of MANEAL with age. 

 

Of the top 10 most significant DMPs for each effect, two were nominally 

significant in both AddNeuroMed and ADNI: cg14437986, which reflects a sex by 

age effect and is annotated to C6orf25, and cg21484956, which reflects an age 

by diagnosis effect and is annotated to CSRP2. C6orf25 is an alias for the 

megakaryocyte and platelet inhibitory receptor G6b (MPIG6B) gene, and the 

cg14437986 probe is located within the sex and sex by age DMR annotated to 
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MPIG6B. The MPIG6B gene is located in the major histocompatibility complex 

(MHC) class III region, and is part of the immunoglobulin superfamily (de Vet et 

al., 2001). Although the link between sex, age, and MPIG6B is unclear, a recent 

study of osteosclerosis caused by a lack of MPIG6B expression in mice found 

that the effect of the Mpig6b deficiency was modulated by female sex hormones 

(Stavnichuk et al., 2021). CSRP2, or the ‘cysteine and glycine rich protein 2’ 

gene, has not previously been associated with AD. 

 

Two other notable DMRs are those located in the OXT and HOXA4 genes, 

associated with age and a sex by diagnosis effect, respectively. The ten-probe 

OXT region has previously been identified as a DMR associated with future 

progression to AD in blood as well as diagnosis of AD in the middle temporal 

gyrus (MTG, Lardenoije et al., 2019), and an overlapping region containing one 

additional probe in the superior temporal gyrus (STG, Watson et al., 2016). In 

both studies, the OXT DMR was found to be hypomethylated in AD brain, though 

Lardenoije et al. (2019) found hypermethylation in blood. The HOXA4 DMR was 

first identified in an EWAS of AD neuropathology, which detected 

hypermethylation across an extended HOXA gene region in the prefrontal cortex 

(PFC) and the superior temporal gyrus (STG; R. G. Smith et al., 2018). The region 

identified in the current study in blood consists of 23 probes, which completely 

spans the 21-probe region identified in Smith et al. (2018). The results from the 

current study show that in blood, hypermethylation is observed in female subjects 

at the MCI stage in comparison to CTL and AD, while hypomethylation is 

observed at this stage in male subjects.  
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Of note, the top 10 DMPs for each effect, and all identified DMRs were compared 

to results from the study of McCartney et al. (2019), who identified DMPs 

associated with sex, age, and sex by age interactions in two large cohorts of 

participants. While both studies found several methylomic differences annotated 

to the same genes, none of the regions or probes overlapped. For example, 

McCartney et al. identified four DMPs annotated to the PIGZ gene (chr3: 

196693980 – 196694932) which were associated with sex, though this did not 

overlap the sex-, age- and sex by age DMR identified in the current study (chr3: 

196705629 – 196705899). One possible explanation for a lack of overlap in 

results may be that the McCartney et al. study included a much wider age range 

of participants, and did not contain individuals with MCI or AD. 

 

To conclude, the current study has identified several epigenetic signatures in 

blood, which are related to age, sex, and the interactions of these risk factors with 

each other and with disease. The importance of not only correcting for risk 

factors, but examining their interactions with disease has been highlighted, as 

this may mask findings of interest. However, some limitations of this study should 

be noted. As mentioned in Chapter 3, while the proportion of cell types is 

controlled for within this study, it is known that the abundance of specific cell types 

differs slightly in MCI and AD (Lunnon et al., 2012), which may require the 

investigation of individual cell types. A major limitation of this study is the sample 

size: while the sample size of the AddNeuroMed cohort is sufficient to detect 

methylomic differences in AD (Chapter 3), and sex and age in the current chapter, 

the addition of interaction effects may require investigation of these signatures in 

larger cohorts. Additionally, inflation was observed in the p-values of the main 

effects of age and age by diagnosis. Although the influence of confounders 
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cannot be ruled out, previous studies have shown that many loci are associated 

with age (Hannum et al., 2013; Peters et al., 2015). In view of the inflation and 

the limited sample size, a replication analysis was carried out in ADNI, though 

little overlap between the two cohorts was found. As the AddNeuroMed cohort is 

European, and the ADNI cohort North-American, the lack of overlap may be 

related to geographic region. This may be related to the discrepancies found in 

studies of sex differences in the incidence of AD, where differences were reported 

in European studies, but no differences were found in studies conducted in the 

United States (Mielke et al., 2018). Additionally, while the samples in the ADNI 

cohort were selected to match those in the AddNeuroMed cohort, a significant 

difference in age between the CTL groups was found (see Chapter 2.3), with 

ADNI CTLs being slightly older than the CTL subjects in AddNeuroMed. This may 

also be related to the lack of overlap between the two cohorts in the results related 

to age and age interactions. Finally, as the AddNeuroMed cohort is targeted at 

investigating AD, the subjects included in this study were 65 years of age or older, 

which provides a limited age range for the investigation of age-associated effects 

on DNA methylation. It would be interesting for future studies to further explore 

the interactions between sex, age, and diagnosis in cohorts that include 

participants with a wider age range. This, in combination with an increased 

sample size, would also enable the investigation of the interactions of age and 

sex in the context of future conversion to AD.  
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CHAPTER 5. DNA METHYLATION ON THE X AND Y CHROMOSOME IN 

ALZHEIMER’S DISEASE AND MILD COGNITIVE IMPAIRMENT 
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5.1. Introduction 

 

Due to different sex chromosome pairs in human karyotypes, and the resulting 

inequality of gene content, the epigenetic landscape of the sex chromosomes 

requires additional regulation in comparison to autosomes. In order to balance 

the gene dosage between XX females and XY males, X chromosome inactivation 

(XCI) has evolved as a compensatory mechanism to partially silence 

transcription. In each cell containing two or more X-chromosomes, one of the two 

will be inactivated (Xi) while the other remains active (Xa), and this silencing is 

carried out by various epigenetic mechanisms, including DNA methylation. 

However, this process does not affect all genes on the Xi chromosome; around 

23% of genes escape inactivation, and this may vary by individual, tissue type, 

and cell type (Tukiainen et al., 2017). In some instances, the selection of which 

X chromosome is inactivated is not entirely random. This skewed XCI may be 

caused by structural abnormalities of the X chromosome, or by stochastic 

variation (Brown & Robinson, 2000). Skewing may occur in healthy females, and 

has been found to increase with age (Wong et al., 2011), particularly in blood 

cells (Sharp et al., 2000). In some cases, skewing may lead to disease 

phenotypes or increased severity of disease, or inversely, X-linked syndrome 

carriers where the X chromosome containing the mutation is almost fully silenced 

(Ørstavik, 2006; Vacca et al., 2016). Of note, severely skewed XCI has been 

reported in peripheral blood samples from women with AD (Bajic et al., 2015). 

Furthermore, altered gene dosage of the X chromosome has been shown to 

influence not only gene expression of the X and Y chromosomes, but also 

influence expression of genes on autosomal chromosomes (Raznahan et al., 

2018). 
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Another X chromosome-related irregularity, which has been found in both 

lymphocytes and neurons of female AD patients, is premature centromere 

division (PCD; Spremo-Potparevic et al., 2015; Spremo-Potparević et al., 2008). 

A study by Spremo-Potparevic et al. (2015) found that PCD of a single X 

chromosome in lymphocytes occurred more often in AD patients compared to 

CTL. Early studies of PCD of the X chromosome have found that this 

phenomenon predominantly occurs on partially inactive X chromosomes 

(Abruzzo et al., 1985; Fitzgerald & McEwan, 1977). PCD is an occurrence that 

may lead to aneuploidy, an imbalance of chromosomes, which has been found 

to have a higher occurrence in brains of AD patients, and which has been 

hypothesised as a cause of neuronal loss (Mosch et al., 2007; Y. Yang et al., 

2001). Although the exact mechanisms underlying centromere regulation and 

chromosome instability are not yet fully determined, DNA methylation has been 

suggested to play a role (for a review see Herrera et al., 2008; Scelfo & Fachinetti, 

2019).  

 

Although DNA methylation assessment at the centromere is very challenging due 

to its repetitive sequence, and the methodology used in this thesis cannot assess 

centromere methylation or skewed inactivation, these various irregularities found 

in X chromosome regulation may indicate a role for this particular chromosome 

in AD. This is especially interesting, as in most EWAS studies, the X and Y genes 

are excluded from analyses, as they cannot be analysed in the same way as 

autosomal chromosomes. As a result, little is known about the DNA methylation 

profile of sex chromosomes and the Xi chromosome in AD blood. In this chapter, 

an EWAS on DNA methylation data from the AddNeuroMed cohort is carried out 

on the X, and the X and Y chromosomes for females and males, respectively, in 
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a stratified manner. Additionally, the DNA methylation profile of the Xi 

chromosome in females with AD or MCI was assessed using the method 

described by Cotton et al. (2015).  
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5.2. Aims 

 

The aims of this chapter are as follows: 

1. Identify AD or MCI-associated DMPs and DMRs on the X chromosome in 

females, and the X and Y chromosomes in males in the AddNeuroMed 

cohort . 

2. Identify AD or MCI-associated DMPs and DMRs on the Xi chromosome in 

females in the AddNeuroMed cohort. 

3. Replicate the DMPs and DMRs identified in AddNeuroMed in the 

independent ADNI cohort.  
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5.3. Materials and methods 

 

This chapter uses the epigenome-wide DNA methylation data from the 

AddNeuroMed cohort, as described in Chapter 2.1. In the current chapter, two 

analyses were carried out: (1) a stratified analysis on sex chromosomes for males 

and females separately, and (2) an analysis of X chromosome inactivation in 

females. 

 

5.3.1. Stratified analysis of the X and Y chromosomes 

The normalised data from the AddNeuroMed cohort of AD, MCI, and CTL 

samples (as described in Chapter 2.2) was split into a set of female-only samples, 

and a set of male-only samples. The datasets were filtered to include only X 

chromosome probes, or X and Y chromosome probes for females and males, 

respectively. With the exception of sex, the same covariates as described in 

Chapter 2.2.4 (age, cell type proportion, and batch) were regressed out from the 

sets of male data and female data. For each dataset, an ANOVA and subsequent 

Tukey’s HSD test were carried out to identify DMPs (see Chapter 2.4.1), and p-

value inflation was inspected using Q-Q plots (Figure 5.1). A comb-p regional 

analysis was carried out to identify DMRs (described in Chapter 2.4.1). 
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Figure 5.1 Q-Q plots of ANOVA p-values for the X and Y chromosomes in AddNeuroMed. 

Shown are the p-values resulting from the analysis of the X chromosome in females (A) and the X and Y chromosomes in males (B). 

A. B. 
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5.3.2. Analysis of the Xi DNA methylation profile 

Cotton et al. (2015) have described a method to impute methylation at the Xi by 

subtracting the mean male DNA methylation at X chromosome probes 

(representing the Xa methylation) from total DNA methylation levels found at X 

chromosome probes in females (which contains both Xa and Xi). This gives: 

𝑋𝑖 =  (𝑋𝑎 +  𝑋𝑖) −  𝑋𝑎 

As the aim of this chapter is to identify DNA methylation changes between 

individuals with AD, individuals with MCI, and CTLs, this equation was applied to 

each group separately. The datasets were handled as described in 5.3.1, with the 

data being split into sets of male- or female-only samples, and the covariates of 

age, cell type proportion and batch were regressed out from each set. 

Subsequently, for each diagnostic group an average methylation value was 

calculated for each X chromosome probe in males. This average was then 

subtracted from each X chromosome probe in females, separated by diagnostic 

group. An ANOVA and Tukey’s HSD were then run on the dataset of Xi data 

containing all three groups (CTL, MCI, and AD), as described in Chapter 2.4.1. 

The Q-Q plot of ANOVA p-values showed a large effect of inflation (Figure 5.2). 

A DMR analysis was carried out as detailed in Chapter 2.4.1. 
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Figure 5.2 Q-Q plots of Xi ANOVA p-values in AddNeuroMed. 

Shown are the p-values resulting from the analysis of Xi methylation in females.  
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5.3.3. Correction of Xi inflation 

The large inflation effect seen in the p-values of the Xi data may be driven by 

large biological effects, technical effects and/or unknown variables. To account 

and adjust for effects of the latter type, two methods were employed in separate 

models. The first method consisted of a correction using principal components as 

covariates in the ANOVA model, whereas the second correction model was run 

using surrogate variables (SVs). For the first method, principal components of the 

Xi data were generated using the prcomp function in R, and the components 

accounting for the largest amount of variance in the data were selected for further 

analysis. To ensure only unwanted variation would be removed, each principal 

component was correlated to diagnosis, and those showing significant 

correlations were removed from the analysis. Models were then run in an iterative 

manner, starting with the largest principal component regressed out prior to 

running the ANOVA analysis of diagnosis, and adding the next largest component 

in a subsequent model. A total of five models were run, regressing out one to five 

principal components.  

 

An alternative method of inflation correction was performed using the sva 

package, which was specifically designed for the removal of unwanted sources 

of variation from high-throughput data (Leek et al., 2012). A total of 43 SVs were 

generated after the removal of SVs that correlated to diagnosis. In a similar 

manner to the models run with principal components, ANOVA models were run 

with one to five SVs regressed out, as well as 10 and all 43 SVs regressed out. 

Reports of the results and Q-Q plots for each of the principal component and SV 

models can be found at https://github.com/JanouR/PhD_Thesis. As none of 

https://github.com/JanouR/PhD_Thesis
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these methods or models greatly impacted p-value inflation, the original model 

as described in 5.3.2 was selected for this thesis. 

 

5.3.4. Replication analysis 

To test the validity of the findings in this chapter, and in view of the inflation found 

in the Xi results, the stratified and Xi analyses were replicated in the ADNI cohort. 

The data from this cohort was pre-processed and normalised as described in 

Chapter 2.3.2, and the analyses were carried out as described in 5.3.1 for the 

stratified analysis, and 5.3.2 for the analysis of Xi DNA methylation. As no bisulfite 

batch information was available for the ADNI cohort, only the covariates of age 

and cell type were regressed out. Similar to the results from the AddNeuroMed 

cohort, the Q-Q plots of ANOVA p-values in ADNI from the stratified analysis 

show no large inflation of p-values (Figure 5.3), whereas the p-values from the Xi 

analysis again show a considerable degree of inflation (Figure 5.4). 
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Figure 5.3 Q-Q plots of ANOVA p-values in ADNI. 

Shown are the p-values resulting from the analysis of the X chromosome in females (A) and the X and Y chromosomes in males (B) in the ADNI replication cohort.  

A. B. 
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Figure 5.4 Q-Q plots of Xi ANOVA p-values in ADNI. 

Shown are the p-values resulting from the analysis of Xi methylation in females in the ADNI 

cohort. 
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5.4. Results 

 

5.4.1. Differentially methylated positions on the X and Y chromosomes in 

AddNeuroMed 

In the stratified analysis of the association of DNA methylation and diagnosis in 

males and females separately, a number of nominally significant sites were found 

in the AddNeuroMed data. However, none of these sites passed the 450K array 

epigenome-wide significance threshold of p < 2.4×10-7 , or the Bonferroni p-value 

threshold of p < 5.18×10-6 for females, and p < 5.17×10-6 for males (Figure 5.5; 

Saffari et al., 2018). In the female-only dataset, 644 nominally significant probes 

(p < 0.05) were found, of which the top 10 most significant probes are shown in 

Table 5.1. The most significant DMP, cg17460003, is located near the EDA gene 

and its ANOVA F-statistic significance was primarily driven by differences 

between the CTL and MCI group (difference (CI): -0.03 (-0.049 - -0.011), p = 

8.85×10-4) and the MCI and AD group (difference (CI): 0.029 (0.01 - 0.048), p = 

1.09×10-3). The pattern of methylation at the cg17460003 locus showed 

hypomethylation in MCI in comparison to CTL and AD.  

 

In males, none of the probes located on the Y chromosome differed in methylation 

levels between the diagnostic groups (p < 0.05). Of the probes located on the X 

chromosome, there were 411 nominally significant sites associated with 

diagnosis, of which the most significant probes are shown in Table 5.2. The 

methylation changes in the most significant probe from the ANOVA, cg26747413, 

appeared to be driven by differences between the CTL group and the MCI 

(difference (CI): 0.023 (0.003 - 0.042), p = 1.72×10-2) and between the CTL and 

AD groups (difference (CI): 0.039 (0.017 - 0.061), p = 1.33×10-4). The MCI and 
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AD groups showed hypermethylation at the cg26747413 locus in comparison to 

CTL. This site is annotated to the genes INE2 and ZRSR2. Of the 644 nominally 

significant DMPs in females, and the 411 nominally significant DMPs in males, 

26 probes overlapped, though in only 10 of these probes the methylation 

differences appeared to be driven by the same diagnostic groups. Out of the 10 

overlapping probes, four showed the same direction of effect in the relevant post-

hoc comparisons of diagnostic groups. Hypomethylation in AD relative to CTL 

was found in two of these probes: cg06444329, annotated to CXorf26 (females: 

difference (CI): -0.014 (-0.028 - 0), p = 4.13×10-2, males: difference (CI): -0.012 

(-0.021 - -0.002), p = 1.47×10-2), and cg17280129, annotated to NHS (females: 

difference (CI): -0.028 (-0.046 - -0.01), p = 1.08×10-3, males: difference (CI): --

0.011 (-0.022 - -0.001), p = 3.27×10-2). The probe cg05788681 showed 

hypermethylation in AD relative to MCI (females: difference (CI): 0.023 (0.006 - 

0.04), p = 5.77×10-3, males: difference (CI): 0.018 (0.001 - 0.035), p = 2.95×10-

2). Finally, cg12115759 was hypermethylated in MCI relative to CTL (females: 

difference (CI): 0.04 (0.005 - 0.076), p = 2.28×10-2, males: difference (CI): 0.013 

(0.002 - 0.023), p = 1.26×10-2). 

. 
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Figure 5.5 Manhattan plots of ANOVA p-values for diagnosis in AddNeuroMed.  

Displayed are the ANOVA p-values for the X chromosome in females (A), and the X and Y chromosomes in males (B). The Bonferroni-adjusted significance threshold 

at 5.18×10-6 for females and 5.17×10-6 for males is highlighted in red.  

A. B. 
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Top 10 DMPs from the ANOVA in Females 

ProbeID Position F p (F) UCSC Gene UCSC Gene Group GREAT Annotation 

cg17460003 chrX:68834205 9.025 1.90E-04 
  

EDA (-1705) 

cg14917571 chrX:79269151 8.927 2.07E-04 TBX22 TSS1500 ITM2A (-646103), TBX22 (-8590) 

cg00123001 chrX:13395880 8.483 3.10E-04 
  

EGFL6 (-191813), ATXN3L (-57363) 

cg09990582 chrX:102941884 8.296 3.67E-04 MORF4L2 TSS200,5'UTR MORF4L2 (1201), TCEAL1 (57993) 

cg01337545 chrX:2847549 8.236 3.88E-04 ARSD TSS200 ARSD (-134) 

cg04667267 chrX:73513464 7.787 5.84E-04 NCRNA00182 TSS200 ZCCHC13 (-10560), CHIC1 (730481) 

cg21559133 chrX:2847557 7.725 6.18E-04 ARSD TSS200 ARSD (-142) 

cg17280129 chrX:17678361 7.72 6.21E-04 NHS Body SCML1 (-77230), NHS (284819) 

ch.X.112118442F chrX:112231786 7.675 6.47E-04 
  

AMOT (-165415) 

cg08129292 chrX:20155820 7.602 6.92E-04 SCARNA9L;EIF1AX TSS1500;Body CXorf23 (-167439), EIF1AX (4145) 

 

Table 5.1 The top 10 most significant DMPs for diagnosis on the female X chromosome in AddNeuroMed. 

DNA methylation profiles were assessed on the X chromosome in females, shown are the top 10 DMPs associated with differences in CTL, MCI or AD diagnosis. For 

each ProbeID, the genomic location is shown (genome build 37), along with the ANOVA F-statistic and associated p-value (p (F)), the UCSC gene annotation and 

group, and the GREAT annotation with the distance to the nearest transcription start site in parentheses. 
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Top 10 DMPs from the ANOVA in Males 

ProbeID Position F p (F) UCSC Gene UCSC Gene Group GREAT Annotation 

cg26747413 chrX:15807140 9.223 1.97E-04 INE2;ZRSR2 TSS1500;TSS1500 ZRSR2 (-1433) 

cg23137494 chrX:73639809 8.039 5.49E-04 SLC16A2 TSS1500 SLC16A2 (-1275) 

cg15465642 chrX:153218916 7.511 8.72E-04 HCFC1 Body RENBP (-8685), HCFC1 (17902) 

cg12720637 chrX:151619769 7.383 9.77E-04 GABRA3 1stExon,5'UTR GABRA3 (61) 

cg02049865 chrX:117973548 7.331 1.02E-03 
  

LONRF3 (-135164), ZCCHC12 (15762) 

cg02940221 chrX:153536952 7.307 1.04E-03 TKTL1 Body TKTL1 (12926), FLNA (66053) 

cg13075926 chrX:72668640 7.214 1.13E-03 CDX4 Body CHIC1 (-114343), CDX4 (1551) 

cg16821967 chrX:102348005 7.055 1.31E-03 NXF3 5'UTR,1stExon NXF3 (16) 

cg26070134 chrX:153678842 6.7 1.79E-03 FAM50A 3'UTR PLXNA3 (-7780), FAM50A (6370) 

cg15878116 chrX:73524046 6.513 2.12E-03 ZCCHC13 1stExon,5'UTR ZCCHC13 (22) 

 
Table 5.2 The top 10 most significant DMPs for diagnosis on the male X and Y chromosomes in AddNeuroMed. 

DNA methylation profiles were assessed on the X and Y chromosomes in males, displayed are the top 10 DMPs associated with differences in CTL, MCI or AD 

diagnosis. For each ProbeID the genomic location is shown (genome build 37), along with the ANOVA F-statistic and associated p-value (p (F)), the UCSC gene 

annotation and group, and the GREAT annotation with the distance to the nearest transcription start site in parentheses.
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5.4.1.1. Diagnostic group-specific DMPs in AddNeuroMed  

Individual diagnostic groups were compared to each other via the application of 

Tukey’s HSD test following the ANOVA. The site cg14917571 was the most 

significant DMP in the comparison of MCI to CTL in females. This DMP is 

annotated to the TBX22 gene, and hypomethylation was found in MCI relative to 

CTL (difference (CI): -3.39% (-5.33% - -1.44%), p = 1.76×10-4). In males, the top 

DMP in the MCI to CTL comparison (cg26070134) is annotated to the FAM50A 

gene, and the locus showed hypermethylation in MCI samples (difference (CI): 

0.97% (0.32% - 1.62%), p = 1.62×10-3). The top 10 most significant probes in the 

CTL vs. MCI comparison can be found in Table 5.3 for females, and Table 5.4 for 

males. 

 

When comparing AD to CTL (Table 5.5), it was found that in females the top DMP 

was cg15737490, which is annotated to the NLGN3 gene, and which showed 

hypermethylation in AD (difference (CI): 2.82% (1% - 4.63%), p = 9.69×10-4). In 

males, the most significant difference between AD and CTL was in the 

cg26747413 probe (hypermethylated in AD: difference (CI): 3.94% (1.73% - 

6.14%), p = 1.33×10-4; Table 5.6), which was also the most significant site in the 

ANOVA comparison of all groups (as described above). 

 

Finally, in the comparison of MCI to AD, the cg09990582 probe was found to be 

the top significant DMP in females (Table 5.7). This probe is annotated to the 

MORF4L2 gene, and the site showed hypermethylation in AD compared to MCI 

(difference (CI): 4.48 (1.88 - 7.08), p = 2.12×10-4). In males, the top probe was 

cg02940221, which displayed hypomethylation in AD compared to MCI 

(difference (CI): -0.016 (-0.027 - -0.006), p = 9.29×10-4). This locus is annotated 
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to the TKTL1 gene. The top 10 probes associated with differences between MCI 

and AD in males are shown in Table 5.8.  

 

The comb-p analysis for the identification of DMRs did not detect any DMRs 

associated with baseline diagnosis, or in any of the subgroup comparisons.
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Top 10 CTL vs MCI DMPs in Females 

ProbeID Position Difference (CI) p CvM UCSC Gene UCSC Gene Group GREAT Annotation 

cg14917571 chrX:79269151 -3.39 (-5.33 - -1.44) 1.76E-04 TBX22 TSS1500 ITM2A (-646103), TBX22 (-8590) 

cg00123001 chrX:13395880 -1.42 (-2.24 - -0.6) 1.88E-04 
  

EGFL6 (-191813), ATXN3L (-57363) 

cg04882894 chrX:130423289 3.61 (1.4 - 5.83) 4.78E-04 IGSF1 5'UTR,1stExon,TSS1500 IGSF1 (113) 

cg05554396 chrX:102510120 2.01 (0.76 - 3.25) 5.60E-04 TCEAL8 1stExon,5'UTR TCEAL8 (0) 

cg16888859 chrX:10123962 -1.81 (-2.94 - -0.69) 5.79E-04 CLCN4 TSS1500 CLCN4 (-1022) 

cg21559133 chrX:2847557 2.52 (0.91 - 4.13) 8.23E-04 ARSD TSS200 ARSD (-142) 

cg17460003 chrX:68834205 -2.97 (-4.88 - -1.07) 8.85E-04 
  

EDA (-1705) 

cg09614279 chrX:84189578 -3.5 (-5.74 - -1.25) 9.26E-04 UBE2DNL Body UBE2DNL (422) 

cg08129292 chrX:20155820 -1.61 (-2.65 - -0.57) 9.67E-04 SCARNA9L;EIF1AX TSS1500;Body CXorf23 (-167439), EIF1AX (4145) 

cg01851385 chrX:10125135 4.54 (1.54 - 7.54) 1.29E-03 CLCN4 5'UTR,1stExon CLCN4 (151) 

 
Table 5.3 The top 10 most significant DMPs in MCI compared to CTL in females in AddNeuroMed. 

DNA methylation profiles were assessed on the X chromosome in females; displayed are the top 10 DMPs associated with differences in MCI diagnosis relative to 

CTL. For each ProbeID the genomic location is shown (genome build 37), along with the DNA methylation percentage difference between the groups (MCI – CTL), 

with the confidence interval (CI) in parentheses, the associated Tukey’s HSD p-value (p CvM), the UCSC gene annotation and group, and the GREAT annotation with 

the distance to the nearest transcription start site in parentheses. 
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Top 10 CTL vs MCI DMPs in Males 

ProbeID Position Difference (CI) p CvM UCSC Gene UCSC Gene Group GREAT Annotation 

cg26070134 chrX:153678842 0.97 (0.32 - 1.62) 1.62E-03 FAM50A 3'UTR PLXNA3 (-7780), FAM50A (6370) 

cg15465642 chrX:153218916 -1.47 (-2.48 - -0.47) 2.02E-03 HCFC1 Body RENBP (-8685), HCFC1 (17902) 

cg16248169 chrX:48334308 0.38 (0.12 - 0.64) 2.34E-03 FTSJ1 TSS1500 FTSJ1 (-240) 

cg03768687 chrX:70288358 -0.62 (-1.06 - -0.19) 2.60E-03 SNX12 TSS200 SNX12 (-128) 

cg00739582 chrX:145077291 -2.1 (-3.56 - -0.63) 2.76E-03 MIR888;MIR890 TSS1500;TSS1500 CXorf1 (168364) 

cg11663393 chrX:100663213 -0.46 (-0.78 - -0.13) 3.01E-03 HNRNPH2;GLA 1stExon,5'UTR;TSS1500 GLA (-213), HNRNPH2 (93) 

cg25832410 chrX:153096039 -0.56 (-0.96 - -0.16) 3.10E-03 PDZD4 TSS200 PDZD4 (-37) 

cg15878116 chrX:73524046 1.12 (0.33 - 1.92) 3.10E-03 ZCCHC13 1stExon,5'UTR ZCCHC13 (22) 

cg03944921 chrX:117479980 0.7 (0.2 - 1.2) 3.41E-03 WDR44 TSS200 WDR44 (-55) 

cg02049865 chrX:117973548 -0.88 (-1.51 - -0.25) 3.49E-03 
  

LONRF3 (-135164), ZCCHC12 (15762) 

 
Table 5.4 The top 10 most significant DMPs in MCI compared to CTL in males in AddNeuroMed. 

DNA methylation profiles were assessed on the X and Y chromosomes in males; displayed are the top 10 DMPs associated with differences in MCI diagnosis relative 

to CTL. For each ProbeID the genomic location is shown (genome build 37), along with the DNA methylation percentage difference between the groups (MCI – CTL), 

with the confidence interval (CI) in parentheses, the associated Tukey’s HSD p-value (p CvM), the UCSC gene annotation and group, and the GREAT annotation with 

the distance to the nearest transcription start site in parentheses.
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Top 10 CTL vs AD DMPs in Females 

ProbeID Position Difference (CI) p CvA UCSC Gene UCSC Gene Group GREAT Annotation 

cg15737490 chrX:70390672 2.82 (1 - 4.63) 9.69E-04 NLGN3 3'UTR GJB1 (-44389), NLGN3 (25992) 

cg17280129 chrX:17678361 -2.79 (-4.6 - -0.97) 1.08E-03 NHS Body SCML1 (-77230), NHS (284819) 

cg01337545 chrX:2847549 2.57 (0.85 - 4.29) 1.57E-03 ARSD TSS200 ARSD (-134) 

cg26481961 chrX:3263474 1.94 (0.63 - 3.26) 1.76E-03 MXRA5 5'UTR MXRA5 (1209), ARSF (305200) 

cg04667267 chrX:73513464 3.02 (0.95 - 5.09) 2.08E-03 NCRNA00182 TSS200 ZCCHC13 (-10560), CHIC1 (730481) 

cg24636657 chrX:105280886 -2.09 (-3.54 - -0.64) 2.42E-03 SERPINA7 1stExon SERPINA7 (1831), NRK (214351) 

cg02746718 chrX:103294519 -1.04 (-1.77 - -0.3) 2.91E-03 H2BFM;MIR1256 1stExon,5'UTR;Body H2BFM (4) 

cg15322420 chrX:102942967 3.63 (1.05 - 6.21) 3.14E-03 MORF4L2 5'UTR,1stExon,TSS1500 MORF4L2 (118) 

cg14736837 chrX:15333837 -1.72 (-2.96 - -0.49) 3.43E-03 ASB11 TSS1500,TSS200 ASB11 (-92) 

cg23726559 chrX:70288735 2.23 (0.61 - 3.85) 3.93E-03 SNX12 TSS1500 SNX12 (-505) 

 
Table 5.5 The top 10 most significant DMPs in AD compared to CTL in females in AddNeuroMed. 

DNA methylation profiles were assessed on the X chromosome in females; displayed are the top 10 DMPs associated with differences in AD diagnosis relative to CTL. 

For each ProbeID the genomic location is shown (genome build 37), along with the DNA methylation percentage difference between the groups (AD – CTL), with the 

confidence interval (CI) in parentheses, the associated Tukey’s HSD p-value (p CvA), the UCSC gene annotation and group, and the GREAT annotation with the 

distance to the nearest transcription start site in parentheses.
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Top 10 CTL vs AD DMPs in Males 

ProbeID Position Difference (CI) p CvA UCSC Gene UCSC Gene Group GREAT Annotation 

cg26747413 chrX:15807140 3.94 (1.73 - 6.14) 1.33E-04 INE2;ZRSR2 TSS1500;TSS1500 ZRSR2 (-1433) 

cg23137494 chrX:73639809 -2.18 (-3.49 - -0.88) 3.74E-04 SLC16A2 TSS1500 SLC16A2 (-1275) 

cg12720637 chrX:151619769 3.51 (1.28 - 5.75) 8.78E-04 GABRA3 1stExon,5'UTR GABRA3 (61) 

cg16821967 chrX:102348005 4.16 (1.4 - 6.92) 1.45E-03 NXF3 5'UTR,1stExon NXF3 (16) 

cg13075926 chrX:72668640 -2.56 (-4.32 - -0.81) 2.12E-03 CDX4 Body CHIC1 (-114343), CDX4 (1551) 

cg00399450 chrX:73834086 -0.54 (-0.91 - -0.17) 2.26E-03 RLIM 5'UTR RLIM (374) 

cg02049865 chrX:117973548 -1.01 (-1.72 - -0.3) 2.89E-03   LONRF3 (-135164), ZCCHC12 (15762) 

cg04768884 chrX:19443172 -3.77 (-6.46 - -1.08) 3.34E-03 MAP3K15 Body PDHA1 (81162), MAP3K15 (90206) 

cg15465642 chrX:153218916 -1.56 (-2.69 - -0.43) 3.94E-03 HCFC1 Body RENBP (-8685), HCFC1 (17902) 

cg11864566 chrX:99667214 2.54 (0.7 - 4.38) 4.00E-03   PCDH19 (-1944) 

 
Table 5.6 The top 10 most significant DMPs in AD compared to CTL in males in AddNeuroMed. 

DNA methylation profiles were assessed on the X and Y chromosomes in males; displayed are the top 10 DMPs associated with differences in AD diagnosis relative 

to CTL. For each ProbeID the genomic location is shown (genome build 37), along with the DNA methylation percentage difference between the groups (AD – CTL), 

with the confidence interval (CI) in parentheses, the associated Tukey’s HSD p-value (p CvA), the UCSC gene annotation and group, and the GREAT annotation with 

the distance to the nearest transcription start site in parentheses.
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Top 10 MCI vs AD DMPs in Females 

ProbeID Position Difference (CI) p MvA UCSC Gene UCSC Gene Group GREAT Annotation 

cg09990582 chrX:102941884 4.48 (1.88 - 7.08) 2.12E-04 MORF4L2 TSS200,5'UTR MORF4L2 (1201), TCEAL1 (57993) 

cg08681413 chrX:105969177 -4.19 (-6.83 - -1.55) 6.86E-04 RNF128 TSS1500,Body RNF128 (-716) 

cg04778337 chrX:135228444 2.14 (0.78 - 3.5) 7.71E-04 FHL1 TSS1500 FHL1 (-1114) 

cg23857909 chrX:153362596 2.15 (0.78 - 3.52) 8.00E-04 MECP2 Body,5'UTR MECP2 (591) 

cg17460003 chrX:68834205 2.91 (1.02 - 4.81) 1.09E-03   EDA (-1705) 

cg26486175 chrX:18658942 -4.15 (-6.87 - -1.43) 1.19E-03 CDKL5;RS1 Body;3'UTR RS1 (31280), CDKL5 (215218) 

cg00695046 chrX:100545995 -4.54 (-7.61 - -1.47) 1.73E-03 TAF7L Body,5'UTR TAF7L (2063), DRP2 (71063) 

cg12469471 chrX:153151235 3.28 (1.05 - 5.52) 1.83E-03   AVPR2 (-19192), L1CAM (-9837) 

cg24401049 chrX:11157158 -4.24 (-7.15 - -1.34) 2.02E-03 ARHGAP6 Body AMELX (-154374), HCCS (27753) 

cg03552552 chrX:73512004 4.23 (1.33 - 7.13) 2.05E-03 NCRNA00182 Body ZCCHC13 (-12020), CHIC1 (729021) 

 
Table 5.7 The top 10 most significant DMPs in AD compared to MCI in females in AddNeuroMed. 

DNA methylation profiles were assessed on the X chromosome in females; displayed are the top 10 DMPs associated with differences in AD diagnosis relative to MCI 

diagnosis. For each ProbeID the genomic location is shown (genome build 37), along with the DNA methylation percentage difference between the groups (AD – MCI), 

with the confidence interval (CI) in parentheses, the associated Tukey’s HSD p-value (p MvA), the UCSC gene annotation and group, and the GREAT annotation with 

the distance to the nearest transcription start site in parentheses.
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Top 10 MCI vs AD DMPs in Males 

ProbeID Position Difference (CI) p MvA UCSC Gene UCSC Gene Group GREAT Annotation 

cg02940221 chrX:153536952 -1.65 (-2.7 - -0.59) 9.29E-04 TKTL1 Body TKTL1 (12926), FLNA (66053) 

cg23737407 chrX:40029094 1.73 (0.55 - 2.91) 2.10E-03 BCOR 5'UTR ATP6AP2 (-411121), BCOR (-72376) 

cg23722334 chrX:106515943 3.13 (0.97 - 5.29) 2.33E-03   KIAA1817 (-327691), NUP62CL (-66274) 

cg06578851 chrX:101315561 4.28 (1.3 - 7.26) 2.58E-03   ZMAT1 (-128523), TCEAL2 (-65098) 

cg21893284 chrX:92928508 -0.66 (-1.14 - -0.18) 4.25E-03 FAM133A;NAP1L3 TSS1500;1stExon,5'UTR NAP1L3 (173) 

cg05129588 chrX:69425049 0.98 (0.25 - 1.71) 5.28E-03 DGAT2L6 3'UTR AWAT1 (-29455), DGAT2L6 (27714) 

cg05483199 chrX:154056033 3.22 (0.81 - 5.63) 5.48E-03 LOC100132963 Body MPP1 (-22232), CXorf68 (6903) 

cg09673331 chrX:153692567 0.56 (0.12 - 1.01) 8.15E-03 PLXNA3 Body PLXNA3 (5945), LAGE3 (15028) 

cg00321056 chrX:53311582 -1.78 (-3.18 - -0.38) 8.85E-03 IQSEC2 Body,TSS1500 KDM5C (-56979), IQSEC2 (38939) 

cg13243388 chrX:129088172 -2.25 (-4.02 - -0.48) 8.91E-03   BCORL1 (-50991), UTP14A (48076) 

 
Table 5.8 The top 10 most significant DMPs in AD compared to MCI in males in AddNeuroMed. 

DNA methylation profiles were assessed on the X and Y chromosomes in males; displayed are the top 10 DMPs associated with differences in AD diagnosis relative 

to MCI diagnosis. For each ProbeID the genomic location is shown (genome build 37), along with the DNA methylation percentage difference between the groups (AD 

– MCI), with the confidence interval (CI) in parentheses, the associated Tukey’s HSD p-value (p MvA), the UCSC gene annotation and group, and the GREAT 

annotation with the distance to the nearest transcription start site in parentheses.
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5.4.2. Replication of X and Y linked DMPs in the ADNI cohort 

The stratified assessment of DNA methylation on the X and Y chromosomes was 

repeated on the ADNI cohort data, which had been pre-processed and 

normalised (as described in Chapter 2.3.2). As also found in the AddNeuroMed 

cohort, no epigenome-wide significant DMPs were identified at the epigenome-

wide threshold established for the EPIC array (p < 9×10-8; Mansell et al., 2019), 

or at the Bonferroni-corrected p-value threshold for females (p < 2.83×10-6) or 

males (p < 2.81×10-6; Figure 5.6). For the purpose of replication the results were 

examined for MCI or AD-related probes that were nominally significant (p < 0.05) 

and showed the same direction of effect in both cohorts.  

 

In the set of female data, there were a total of 34 probes that were nominally 

significant in both datasets. Looking at the between-group differences, there were 

seven probes in the CTL vs MCI comparison in females which overlapped 

between cohorts (Table 5.9). Not only did these probes show the same direction 

of effect, they also showed a similar magnitude of effect between both cohorts. 

Hypomethylation in MCI relative to CTL was found in three probes, annotated to 

the genes HUWE1 (cg18450499), WWC3 (cg03449040), and IQSEC2 

(cg03832506). The other four probes showed hypermethylation, and were 

annotated to the genes SMARCA1 (cg17420696), HTR2C (cg02918903), SMPX 

(cg27013947), and PRKX (cg25396787). 

 

In the comparison of CTL to AD in females, there were five loci that fulfilled the 

criteria of nominal significance and same direction of effect (Table 5.10). All 

probes showed hypermethylation in AD in comparison to CTL, and these sites 

were annotated to NLGN3 (cg15737490), TSPYL2 (cg23612178), ARMCX3 
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(cg05453458), and PHKA2 (cg06104510). One site (cg05548952) did not have a 

UCSC annotated gene, but the closest TSS was located in the gene UTP14A. 

For each of these sites, the effect size was slightly larger in the ADNI cohort 

compared to the AddNeuroMed cohort. 

 

Two dataset-overlapping loci were identified in the comparison of MCI to AD 

(Table 5.11). One probe (cg07112779) annotated to ERAS, showed 

hypermethylation in AD, while the other probe (cg10841338) was 

hypomethylated in AD relative to MCI. The nearest TSS to this probe is annotated 

to the gene GPR50.  

 

Less overlap was found in the DNA methylation profiles of the male X and Y 

chromosomes: only 10 probes had a nominally significant F-statistic for the 

overall ANOVA test in both cohorts. In the comparison of between-group 

differences, there were several probes overlapping, but only in the CTL to MCI 

comparison did two probes show the same direction of effect (Table 5.12). In both 

probes hypomethylation was found in MCI relative to CTL, and these probes were 

annotated to LOC100132963 (cg05483199), and DUSP9 (cg26159385). 

 

Finally, a DMR analysis was run on the ADNI cohort data for the separate female 

and male datasets. However, the analysis did not identify any regions of interest, 

similarly to the AddNeuroMed data. 
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Figure 5.6 Manhattan plots of ANOVA p-values for diagnosis in the ADNI replication cohort. 

Displayed are the ANOVA p-values for the X chromosome in females (A), and the X and Y chromosomes in males (B). The Bonferroni-adjusted significance threshold 

at 2.83×10-6 for females and 2.81×10-6 for males is highlighted in red. 

A. B. 
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Female CTL vs MCI DMPs 

ProbeID Position 
AddNeuroMed ADNI UCSC 

Gene 
UCSC Gene 
Group 

GREAT Annotation 
Difference p CvM Difference p CvM 

cg18450499 chrX:53707967 -2.69 (-4.52 - -0.87) 1.76E-03 -1.99 (-3.76 - -0.21) 2.43E-02 HUWE1 5'UTR HSD17B10 (-246645), 
HUWE1 (5705) 

cg17420696 chrX:128657092 3.19 (0.37 - 6.01) 2.22E-02 2.95 (0.03 - 5.87) 4.66E-02 SMARCA1 Body SMARCA1 (367)  

cg25396787 chrX:3733991 1.37 (0.12 - 2.62) 2.78E-02 1.26 (0.02 - 2.5) 4.53E-02 
  

PRKX (-102317) 

cg02918903 chrX:114141866 3.75 (0.25 - 7.24) 3.25E-02 3.39 (0.29 - 6.5) 2.84E-02 HTR2C Body IL13RA2 (110340), 
HTR2C (323316) 

cg03449040 chrX:10094363 -0.69 (-1.34 - -0.04) 3.54E-02 -0.7 (-1.17 - -0.23) 1.68E-03 WWC3 Body CLCN4 (-30621), 
SHROOM2 (339868) 

cg03832506 chrX:53286187 -2.21 (-4.29 - -0.12) 3.54E-02 -2.38 (-4.06 - -0.7) 2.84E-03 IQSEC2 Body KDM5C (-31584), 
IQSEC2 (64334) 

cg27013947 chrX:21776178 2.29 (0.01 - 4.57) 4.83E-02 2.69 (0.65 - 4.73) 5.96E-03 SMPX 1stExon,5'UTR SMPX (99) 

 
Table 5.9. AddNeuroMed DMPs replicated in the ADNI cohort for the female X chromosome in the MCI to CTL comparison.  

Shown are probes that were nominally significant (p < 0.05) in the comparison of MCI diagnosis to CTL, and showed the same direction of effect in the AddNeuroMed 

cohort as well as the ADNI cohort. Shown for each ProbeID is the genomic location (genome build 37), the group difference in % methylation (MCI – CTL), confidence 

interval (CI), and p-value as calculated with Tukey’s HSD test in the AddNeuroMed and ADNI cohorts, the UCSC gene annotation and group, and the GREAT 

annotation with the distance to the nearest transcription start site in parentheses. 
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Female CTL vs AD DMPs 

ProbeID Position 
AddNeuroMed ADNI UCSC 

Gene 
UCSC Gene 
Group 

GREAT Annotation 
Difference p CvA Difference p CvA 

cg15737490 chrX:70390672 2.82 (1 - 4.63) 9.69E-04 3.21 (0.49 - 5.94) 1.62E-02 NLGN3 3'UTR GJB1 (-44389), NLGN3 
(25992) 

cg23612178 chrX:53111677 1.74 (0.13 - 3.35) 3.09E-02 2.63 (0.15 - 5.11) 3.51E-02 TSPYL2 1stExon,5'UTR TSPYL2 (136) 

cg05548952 chrX:129068271 2.92 (0.18 - 5.65) 3.40E-02 3.45 (0.17 - 6.74) 3.64E-02 
  

BCORL1 (-70892), 
UTP14A (28175) 

cg05453458 chrX:100878340 2.11 (0.02 - 4.2) 4.68E-02 2.74 (0.04 - 5.44) 4.62E-02 ARMCX3 TSS200,5'UTR ARMCX3 (221) 

cg06104510 chrX:19002482 1.85 (0 - 3.69) 4.96E-02 4.4 (0.99 - 7.81) 7.43E-03 PHKA2 TSS200 PHKA2 (-3) 

 
Table 5.10 AddNeuroMed DMPs replicated in the ADNI cohort for the female X chromosome in the AD to CTL comparison.  

Shown are probes that were nominally significant (p < 0.05) in the comparison of AD diagnosis to CTL, and showed the same direction of effect in the AddNeuroMed 

cohort as well as the ADNI cohort. Shown for each ProbeID is the genomic location (genome build 37), the group difference in % methylation (AD – CTL), confidence 

interval (CI), and p-value as calculated with Tukey’s HSD test in the AddNeuroMed and ADNI cohorts, the UCSC gene annotation and group, and the GREAT 

annotation with the distance to the nearest transcription start site in parentheses. 
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Female MCI vs AD DMPs 

ProbeID Position 
AddNeuroMed ADNI 

UCSC Gene UCSC Gene Group GREAT Annotation 
Difference p MvA Difference p MvA 

cg07112779 chrX:48687187 1.87 (0.53 - 3.2) 3.28E-03 2.16 (0.17 - 4.14) 2.97E-02 ERAS TSS200 ERAS (-95) 

cg10841338 chrX:150342651 -2.7 (-5.32 - -0.09) 4.10E-02 -4.5 (-8.39 - -0.61) 1.88E-02 
  

GPR50 (-2404) 

 
Table 5.11 AddNeuroMed DMPs replicated in the ADNI cohort for the female X chromosome in the AD to MCI comparison.  

Shown are probes that were nominally significant (p < 0.05) in the comparison of AD to MCI diagnosis, and showed the same direction of effect in the AddNeuroMed 

cohort as well as the ADNI cohort. Shown for each ProbeID is the genomic location (genome build 37), the group difference in % methylation (AD – MCI), confidence 

interval (CI), and p-value as calculated with Tukey’s HSD test in the AddNeuroMed and ADNI cohorts, the UCSC gene annotation and group, and the GREAT 

annotation with the distance to the nearest transcription start site in parentheses. 
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Male CTL vs MCI DMPs 

ProbeID Position 
AddNeuroMed ADNI 

UCSC Gene 
UCSC Gene 
Group 

GREAT 
Annotation Difference p CvM Difference p CvM 

cg05483199 chrX:154056033 -2.63 (-4.95 - -0.31) 2.21E-02 -2.24 (-4.33 - -0.16) 3.15E-02 LOC100132963 Body MPP1 (-22232), 
CXorf68 (6903) 

cg26159385 chrX:152912611 -0.67 (-1.35 - 0) 5.00E-02 -0.82 (-1.6 - -0.03) 3.85E-02 DUSP9 5'UTR DUSP9 (4715), 
PNCK (27204) 

Table 5.12 AddNeuroMed DMPs replicated in the ADNI cohort for the male X chromosome.  

Shown are probes that are nominally significant (p < 0.05) and showed the same direction of effect in the AddNeuroMed cohort as well as the ADNI cohort. In the male 

dataset, replicated probes were only found in the CTL versus MCI comparison. Shown for each ProbeID is the genomic location (genome build 37), the group difference 

in % methylation (MCI – CTL), confidence interval (CI), and p-value as calculated with Tukey’s HSD test in the AddNeuroMed and ADNI cohorts, the UCSC gene 

annotation and group, and the GREAT annotation with the distance to the nearest transcription start site in parentheses. 
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5.4.3. DMPs on Xi in AddNeuroMed 

For the second goal of this chapter, the DNA methylation values of the Xi 

chromosome were calculated as detailed in section 5.3.2, and an ANOVA was 

performed to assess diagnosis-associated differences. A total of 112 DMPs were 

found to pass the Bonferroni-adjusted p-value threshold of p < 5.18×10-6, of which 

49 passed the epigenome-wide threshold (p < 2.4×10-7, Figure 5.7) The 10 most 

significant DMPs are shown in Table 5.13, a list of all Bonferroni-significant DMPs 

can be found in Appendix D. As noted, p-values were found to be inflated (Figure 

5.2). To minimise effects of confounding variables, alternative models were run 

to correct for inflation (see 5.3.3), though these models showed no improvement 

in the inflation of the p-values. Therefore, the results reported here refer to the 

initial ANOVA model which included only the covariates of age, cell type, and 

batch.  

 

The most significant DMP associated with overall differences in diagnostic status 

was cg22822140, which is annotated to the first exon of the SRPK3 gene. This 

significance was driven by differences between the CTL and AD groups and the 

MCI and AD groups, with hypomethylation observed in the AD group compared 

to CTL (difference (CI): -9.53% (-11.83% - -7.22%), p = 4.92×10-14) and MCI 

(difference (CI): -8.86% (-11.12% - -6.59%), p = 4.98×10-14). This DMP was also 

the top-ranking DMP for the CTL to AD comparison, in which 40 DMPs were 

found to pass the Bonferroni-adjusted threshold (see Table 5.14 for the top 10 

DMPs, and Appendix E for a full list of all 40 significant DMPs). Of note, six of the 

40 CTL vs. AD DMPs were annotated to the SRPK3 gene. Furthermore, the MCI 

to AD comparison identified 38 DMPs, of which five were located in SRPK3 and 

overlapped with those identified in the CTL to AD comparison.  
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Further examining the between-group comparisons, 55 DMPs were associated 

with differences in the CTL and MCI groups (see Table 5.15 for the top 10, or 

Appendix F for the full list). The most significant DMP (cg24605338) is annotated 

to the gene NHS, and was found to be hypomethylated in MCI relative to CTL 

(difference (CI): -3.68% (-4.8% - -2.56%), p = 2.63×10-12). In the MCI to AD 

comparison the top DMP is annotated to TAF7L (Top 10: Table 5.16, full list: 

Appendix G), and was hypermethylated in AD in comparison to MCI (difference 

(CI): 2.84% (2.15% - 3.53%), p = 4.79×10-14). 
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Figure 5.7 Manhattan plot of the Xi ANOVA p-values in AddNeuroMed. 

Imputed Xi DNA methylation values were assessed for differences associated with diagnostic 

status (CTL, MCI, and AD). Shown are the log-inverted p-values from the ANOVA model, with 

annotations for the top 10 most significant loci. The red line indicates the Bonferroni-adjusted 

significance threshold of p < 5.18×10-6. 
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Top 10 ANOVA Xi DMPs 

ProbeID Position F p (F) UCSC Gene UCSC Gene Group GREAT Annotation 

cg22822140 chrX:153046577 60.317 1.92E-20 SRPK3 1stExon SRPK3 (122) 

cg13009143 chrX:100548223 47.710 4.08E-17 TAF7L TSS200 TAF7L (-165) 

cg12230162 chrX:153046482 46.334 9.84E-17 SRPK3 5'UTR,1stExon SRPK3 (27) 

cg24496423 chrX:153046480 43.144 7.85E-16 SRPK3 5'UTR,1stExon SRPK3 (25) 

cg16152676 chrX:10126878 36.492 7.10E-14 CLCN4 5'UTR CLCN4 (1894), MID1 (724930) 

cg03360001 chrX:53453272 35.944 1.04E-13 RIBC1 Body SMC1A (-3655) 

cg12468189 chrX:153046767 34.577 2.72E-13 SRPK3 Body SRPK3 (312) 

cg09768654 chrX:153046386 30.912 3.79E-12 SRPK3 TSS200 SRPK3 (-69) 

cg16529483 chrX:153046451 30.870 3.91E-12 SRPK3 TSS200 SRPK3 (-4) 

cg21252909 chrX:30326328 30.829 4.03E-12 NR0B1 1stExon NR0B1 (1166) 

 
Table 5.13 Top 10 Xi DMPs associated with CTL, MCI, and AD in AddNeuroMed. 

Top 10 most significant loci displaying DNA methylation differences on the Xi chromosome related to CTL, MCI, or AD status. All probes are shown by ProbeID, 

genomic location (genome build 37), ANOVA F-statistic and p-value, UCSC gene and group annotation, and GREAT annotation with distance to the nearest TSS in 

parentheses. A full list of all DMPs passing the Bonferroni-adjusted p-value threshold of p < 5.18×10-6 is shown in Appendix D. 
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Top 10 CTL vs AD DMPs 

ProbeID Position Difference (CI) p CvA UCSC Gene UCSC Gene Group GREAT Annotation 

cg22822140 chrX:153046577 -9.53 (-11.83 - -7.22) 4.92E-14 SRPK3 1stExon SRPK3 (122) 

cg12468189 chrX:153046767 -5.4 (-6.94 - -3.86) 1.52E-13 SRPK3 Body SRPK3 (312) 

cg12230162 chrX:153046482 -8.72 (-11.28 - -6.16) 4.81E-13 SRPK3 5'UTR,1stExon SRPK3 (27) 

cg24496423 chrX:153046480 -6.66 (-8.68 - -4.63) 2.27E-12 SRPK3 5'UTR,1stExon SRPK3 (25) 

cg19938385 chrX:107020894 -5.93 (-7.81 - -4.06) 1.24E-11 
  

TSC22D3 (-1878) 

cg17405188 chrX:73164102 1.72 (1.17 - 2.27) 1.80E-11 LOC554203 TSS200 ZCCHC13 (-359922), CHIC1 (381119) 

cg16529483 chrX:153046451 -7.68 (-10.23 - -5.12) 1.01E-10 SRPK3 TSS200 SRPK3 (-4) 

cg23914849 chrX:52950051 0.68 (0.45 - 0.91) 3.43E-10 
  

FAM156B (21967), FAM156A (74599) 

cg04710661 chrX:2848381 1.87 (1.19 - 2.56) 3.84E-09 ARSD TSS1500 ARSD (-966) 

cg04768884 chrX:19443172 3.71 (2.3 - 5.13) 1.34E-08 MAP3K15 Body PDHA1 (81162), MAP3K15 (90206) 

 
Table 5.14 Top 10 Xi DMPs associated with AD in AddNeuroMed. 

DNA methylation differences on the Xi chromosome related to diagnosis of AD in comparison to CTL. The top 10 most significant probes are shown by ProbeID, 

genomic location (genome build 37), the group difference in % methylation (AD – CTL), confidence interval (CI), and p-value as calculated with Tukey’s HSD test, 

UCSC gene and group annotation, and GREAT annotation with distance to the nearest TSS in parentheses. The full list of all DMPs passing the Bonferroni-adjusted 

p-value threshold of p < 5.18×10-6 is shown in Appendix E. 
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Top 10 CTL vs MCI DMPs 

ProbeID Position Difference (CI) p CvM UCSC Gene UCSC Gene Group GREAT Annotation 

cg24605338 chrX:17395856 -3.68 (-4.8 - -2.56) 2.63E-12 NHS Body SCML1 (-359735), NHS (2314) 

cg17003204 chrX:102861456 -3.76 (-5.02 - -2.5) 1.21E-10 TCEAL3 TSS1500 TCEAL3 (-1377) 

cg19280671 chrX:149013642 1.76 (1.17 - 2.35) 1.63E-10 MAGEA8 Body MAMLD1 (-517908), MAGEA8 (3702) 

cg16152676 chrX:10126878 4.18 (2.74 - 5.62) 4.19E-10 CLCN4 5'UTR CLCN4 (1894), MID1 (724930) 

cg17513789 chrX:73073251 -4.75 (-6.42 - -3.07) 9.34E-10 XIST TSS1500 ZCCHC13 (-450773), CHIC1 (290268) 

cg15907464 chrX:70712790 -3.53 (-4.8 - -2.27) 1.37E-09 BCYRN1;INGX Body;TSS200 OGT (-40121), TAF1 (126677) 

cg14917571 chrX:79269151 -5.32 (-7.26 - -3.37) 3.18E-09 TBX22 TSS1500 ITM2A (-646103), TBX22 (-8590) 

cg16122592 chrX:26210712 -3.11 (-4.25 - -1.97) 3.57E-09 MAGEB6 5'UTR MAGEB6 (156) 

cg06452970 chrX:13835264 5.1 (3.2 - 7.01) 6.56E-09 GPM6B 1stExon,5'UTR,Body GPM6B (49) 

cg09953945 chrX:150345040 -2.98 (-4.1 - -1.86) 7.92E-09 GPR50 TSS200 GPR50 (-15) 

 
Table 5.15 Top 10 Xi DMPs associated with MCI in AddNeuroMed. 

DNA methylation differences on the Xi chromosome related to diagnosis of MCI in comparison to CTL. The top 10 most significant probes are shown by ProbeID, 

genomic location (genome build 37), the group difference in % methylation (MCI – CTL), confidence interval (CI), and p-value as calculated with Tukey’s HSD test, 

the UCSC gene annotation and group, and the GREAT annotation with the distance to the nearest transcription start site in parentheses. The full list of all DMPs 

passing the Bonferroni-adjusted p-value threshold of p < 5.18×10-6 is shown in Appendix F. 
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Top 10 MCI vs AD DMPs 

ProbeID Position Difference (CI) p MvA UCSC Gene UCSC Gene Group GREAT Annotation 

cg13009143 chrX:100548223 2.84 (2.15 - 3.53) 4.79E-14 TAF7L TSS200 TAF7L (-165) 

cg22822140 chrX:153046577 -8.86 (-11.12 - -6.59) 4.98E-14 SRPK3 1stExon SRPK3 (122) 

cg12230162 chrX:153046482 -9.17 (-11.68 - -6.65) 6.34E-14 SRPK3 5'UTR,1stExon SRPK3 (27) 

cg03360001 chrX:53453272 2.12 (1.53 - 2.71) 8.63E-14 RIBC1 Body SMC1A (-3655) 

cg24496423 chrX:153046480 -7 (-8.99 - -5.01) 1.45E-13 SRPK3 5'UTR,1stExon SRPK3 (25) 

cg21252909 chrX:30326328 -7.69 (-10.01 - -5.37) 1.56E-12 NR0B1 1stExon NR0B1 (1166) 

cg16152676 chrX:10126878 -4.73 (-6.17 - -3.3) 2.08E-12 CLCN4 5'UTR CLCN4 (1894), MID1 (724930) 

cg09768654 chrX:153046386 -7.07 (-9.35 - -4.8) 2.41E-11 SRPK3 TSS200 SRPK3 (-69) 

cg22926378 chrX:6144633 -2.13 (-2.86 - -1.41) 2.60E-10 NLGN4X 5'UTR NLGN4X (2072) 

cg25896901 chrX:125300481 -7.5 (-10.11 - -4.89) 5.28E-10 DCAF12L2 TSS1500 DCAF12L1 (386360) 

 
Table 5.16 Top 10 Xi DMPs associated with differences in AD relative to MCI in AddNeuroMed. 

DNA methylation differences on the Xi chromosome related to diagnosis of AD in comparison to MCI. The 10 most significant probes are shown by ProbeID, genomic 

location (genome build 37), the group difference in % methylation (AD – MCI), confidence interval (CI), and p-value as calculated with Tukey’s HSD test, UCSC gene 

and group annotation, and GREAT annotation with distance to the nearest TSS in parentheses. The full list of all DMPs passing the Bonferroni-adjusted p-value 

threshold of p < 5.18×10-6 is shown in Appendix G. 
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5.4.4. Replication of Xi DMPs in ADNI 

A replication analysis was also carried out for the analysis of Xi DNA methylation 

in the ADNI cohort. Similar to the results from the AddNeuroMed cohort, a large 

inflation of ANOVA p-values was found in the ADNI cohort (Figure 5.2; Figure 

5.4). In the ANOVA comparison of all groups, 21 DMPs were found which passed 

the Bonferroni-adjusted p-value threshold of p < 2.83×10-6, of which 10 passed 

the epigenome-wide threshold established for the EPIC array (9×10-8; Mansell et 

al., 2019; Figure 5.8). Of the Bonferroni-significant DMPs identified in the ADNI 

cohort, two DMPs overlapped with the Bonferroni-significant DMPs discovered in 

the AddNeuroMed cohort. In ADNI, the most significant ANOVA DMP was found 

to be probe cg09513996, which does not have an associated UCSC gene 

annotation, but is annotated to the gene ERAS in the GREAT annotation (F = 

39.295, p = 6.34×10-15). The changes at this site were driven by differences 

between the MCI and AD groups (difference (CI): 5.58% (4.09% - 7.07%), p = 

6.49×10-14). However, while this site was also identified as a DMP related to MCI 

in comparison to AD in AddNeuroMed (F = 19.303, p = 2.87×10-8), it was found 

to have the opposite effect in the discovery cohort. Whereas hypermethylation in 

AD relative to MCI was observed in the ADNI cohort, hypomethylation in AD was 

observed in AddNeuroMed (difference (CI): -3.47% (-4.86% - -2.08%), p = 

5.67×10-8).  

 

The second replicated DMP associated with overall diagnosis, was cg27558057 

(AddNeuroMed: F = 14.353, p = 1.77×10-6, ADNI: F = 24.999, p = 2.52×10-10). In 

ADNI, the differences at this site were driven by hypomethylation in AD relative 

to both CTL (difference (CI): -5.22% (-7.15% - -3.29%), p = 4.12×10-9) and MCI 

(difference (CI): -5.36% (-7.26% - -3.46%), p = 9.33×10-10). Conversely, in 
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AddNeuroMed the group differences were driven by hypomethylation in MCI 

relative to CTL (difference (CI): -3% (-4.33% - -1.67%), p = 9.5×10-7). This locus 

is annotated to the genes BCYRN1 and INGX.  
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Figure 5.8 Manhattan plot of the Xi ANOVA p-values in the ADNI cohort. 

Imputed Xi DNA methylation values were assessed for differences associated with diagnostic 

status (CTL, MCI, and AD). Shown are the log-inverted p-values from the ANOVA model, with 

annotations for the top 10 most significant loci. The Bonferroni-adjusted threshold of p < 2.83×10-

6 is indicated by the red line.  
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5.4.4.1. Diagnostic group-specific Xi DMPs replicated in ADNI 

In view of the large amount of inflation observed in both cohorts, the focus of this 

section is placed on probes passing the following criteria set for replication: 

showing nominal significance in both cohorts, as well as the same direction of 

effect. Of all nominally significant probes in relation to overall diagnostic status in 

AddNeuroMed, 308 were found to be nominally significant in ADNI, and of the 

Bonferroni-significant DMPs in AddNeuroMed, 26 were nominally significant in 

ADNI. Specifically focusing on between-group comparisons, and therefore also 

the direction of effect, of all nominally significant probes in the comparison of MCI 

to CTL in AddNeuroMed, 57 probes were nominally significant in ADNI and 

showed the same direction of effect. Of the Bonferroni-significant DMPs in the 

same comparison in AddNeuroMed, six probes passed the replication criteria in 

ADNI (Table 5.17A). The most significant of these DMPs (cg17513789), located 

near the gene XIST, was hypomethylated in MCI relative to CTL in both cohorts, 

though the effect size in AddNeuromed (difference (CI): -4.75% (-6.42% - -

3.07%), p = 9.34×10-10) was larger than the effect size in ADNI (difference (CI): -

0.53% (-0.94% - -0.12%), p = 6.63×10-3). 

 

Examining the CTL to AD comparison, 45 probes were found to be nominally 

significant and showing the same direction of effect in both cohorts. Of the 

Bonferroni-significant DMPs identified in AddNeuroMed, one DMP was nominally 

significant in ADNI (Table 5.17B). This DMP is annotated to the gene ARSD and 

showed hypermethylation in AD relative to CTL (AddNeuroMed: difference (CI): 

1.87% (1.19% - 2.56%), p = 3.84×10-9, ADNI: difference (CI): 0.94% (0.11% - 

1.77%), p = 2.20×10-2). 
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In the comparison of MCI to AD, 15 probes showed the same direction of effect 

and were nominally significant in both cohorts. Four Bonferroni-significant DMPs 

in the AddNeuroMed cohort were also found to be significant in ADNI, though all 

but one of these sites displayed opposite directions of effect in the two cohorts 

(Table 5.17C). One of the sites displaying opposite methylation patterns 

(cg09513996) is the DMP near the ERAS gene, which was epigenome-wide 

significant in both cohorts, as discussed above. The DMP which was fully 

replicated in ADNI (cg09167861) is annotated to FHL1, and showed 

hypomethylation in AD relative to MCI (AddNeuroMed: difference (CI): -2.1% (-

3.07% - -1.12%), p = 2.79×10-6, ADNI: difference (CI): -2.64% (-5.27% - -0.01%), 

p = 4.87×10-2). 
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A. CTL vs MCI 

ProbeID Position AddNeuroMed ADNI UCSC 
Gene 

UCSC Gene 
Group 

GREAT Annotation 

Difference (CI) p CvM Difference (CI) p CvM 
 

 
 

cg17513789 chrX:73073251 -4.75 (-6.42 - -3.07) 9.34E-10 -0.53 (-0.94 - -0.12) 6.63E-03 XIST TSS1500 ZCCHC13 (-450773), 
CHIC1 (290268) 

cg25433595 chrX:100183764 4.52 (2.62 - 6.43) 2.42E-07 2.7 (0.86 - 4.55) 1.96E-03 XKRX 5'UTR,1stExon XKRX (133) 

cg11179997 chrX:119125670 2.7 (1.54 - 3.87) 4.48E-07 1.2 (0.04 - 2.37) 4.14E-02 
  NKAP (-47936), RHOXF2 

(86036) 

cg25396787 chrX:3733991 2.88 (1.63 - 4.13) 5.42E-07 1.34 (0.1 - 2.58) 3.06E-02   PRKX (-102317) 

cg03035653 chrX:99662932 4.01 (2.16 - 5.86) 2.44E-06 2.44 (0.4 - 4.48) 1.44E-02 PCDH19 1stExon PCDH19 (2338) 

cg03449040 chrX:10094363 -1.39 (-2.04 - -0.74) 3.63E-06 -0.94 (-1.41 - -0.47) 1.43E-05 WWC3 Body 
CLCN4 (-30621), 
SHROOM2 (339868) 

B. CTL vs AD 

ProbeID Position AddNeuroMed ADNI UCSC 
Gene 

UCSC Gene 
Group 

GREAT Annotation 

Difference (CI) p CvA Difference (CI) p CvA 

cg04710661 chrX:2848381 1.87 (1.19 - 2.56) 3.84E-09 0.94 (0.11 - 1.77) 2.20E-02 ARSD TSS1500 ARSD (-966) 

C. MCI vs AD 

ProbeID Position AddNeuroMed ADNI UCSC 
Gene 

UCSC Gene 
Group 

GREAT Annotation 

  Difference (CI) p MvA Difference (CI) p MvA 

cg09167861 chrX:35251741 -2.1 (-3.07 - -1.12) 2.79E-06 -2.64 (-5.27 - -0.01) 4.87E-02 FHL1 Body,1stExon,
5'UTR,TSS200 

FHL1 (22183), MAP7D3 
(81996) 

 
Table 5.17 Overlap of Xi DMPs in the AddNeuroMed and ADNI cohorts. 

Shown are the DMPs that were significant after Bonferroni correction (p < 5.18×10-6) in the AddNeuroMed cohort, and were found to be at least nominally significant 

(p < 0.05) in the ADNI cohort for diagnosis-associated differences of imputed Xi DNA methylation. Additionally, only probes which displayed the same direction of 

effect in both cohorts are shown. For each ProbeID, the genomic location is indicated (genome build 37), along with the group difference in % methylation (MCI – CTL, 

and AD – CTL), confidence interval (CI), and p-value as calculated with Tukey’s HSD test for the AddNeuroMed and ADNI cohorts, the UCSC gene name and group 

annotation, and the GREAT annotation with the distance to the transcription start site indicated in parentheses.  
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5.4.5. Regions on the Xi chromosome associated with diagnosis in 

AddNeuroMed 

The imputed DNA methylation profiles of the Xi chromosome were analysed to 

identify regions of altered methylation in the diagnosis of MCI and AD. In 

association with diagnostic status across all three groups (the ANOVA 

comparison of CTL, MCI, and AD), a total of 119 DMRs were identified. The 20 

most significant DMRs are shown in Table 5.18, the full list of DMRs can be found 

in Appendix H. The most significant DMR was annotated to the SRPK3 gene and 

spanned nine probes (chrX: 153046175 – 153046895, Šidák-p = 4.37×10-43). The 

same region was also identified as a DMR in two post-hoc group comparisons, 

with an average relative hypomethylation of -5.36% and -5.15% observed in AD 

compared to CTL and MCI, respectively (Figure 5.9). In both post-hoc 

comparisons, the SRPK3 region was the most significant DMR identified out of 

20 DMRs identified in AD versus CTL (Table 5.19), and 10 DMRs identified in AD 

versus MCI (Table 5.20). 

 

The comparison of CTL to MCI led to the identification of 22 DMRs, of which the 

most significant DMR is annotated to the genes TAF1 and INGX (chrX: 70712215 

– 70713214, Šidák-p = 2.9510-17). This nine bp region is hypomethylated in MCI 

relative to CTL (-2.61% methylation difference). An overview of all DMRs 

associated with MCI relative to CTL is presented in Table 5.21. 
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ANOVA Xi DMRs 

Gene Position n p-value Šidák-p 
Average Methylation % 

CTL MCI AD 

SRPK3 chrX:153046175 - 153046895 9 3.27E-44 4.37E-43 1.46 1.25 -3.9 

TAF1;INGX chrX:70712215 - 70713214 9 1.39E-18 1.34E-17 1.29 -1.32 0.57 

CLCN4 chrX:10126321 - 10126882 5 8.3E-15 1.43E-13 -0.73 0.56 -0.07 

LOC389906 chrX:3732500 - 3734340 4 4.95E-14 2.6E-13 -1.27 0.77 0.37 

PCDH19 chrX:99661860 - 99663331 6 2.82E-11 1.85E-10 -1.22 -0.03 1.41 

PNCK chrX:152938698 - 152940275 11 1.03E-10 6.3E-10 0.2 -0.12 -0.15 

FHL1 chrX:135228207 - 135228445 3 3.06E-11 1.24E-09 1.95 -1.6 0.03 

FGF13 chrX:137950565 - 137951119 3 1.04E-10 1.81E-09 1.59 -1.2 -0.11 

L1CAM chrX:153141451 - 153141906 5 1.46E-10 3.09E-09 0.61 0.05 -0.77 

OFD1;TRAPPC2 chrX:13751423 - 13753382 9 1.3E-09 6.41E-09 -0.27 0.12 0.12 

MAGIX chrX:49019804 - 49021149 4 1.92E-09 1.38E-08 -0.13 -0.06 0.18 

DUSP21 chrX:44703819 - 44703984 2 2.8E-10 1.64E-08 0.97 -0.04 -1.02 

ASB11 chrX:15333348 - 15334256 5 2.17E-09 2.31E-08 1.05 -0.73 -0.22 

XIST chrX:73073251 - 73073712 3 3.62E-09 7.58E-08 1.28 -0.76 -0.41 

PRAF2 chrX:48929808 - 48930361 3 7.66E-09 1.34E-07 -0.19 1.73 -2.45 

ZRSR2 chrX:15807140 - 15808693 9 3.29E-08 2.04E-07 0.03 0.04 -0.16 

MAGEE2 chrX:75004943 - 75005361 8 9.36E-09 2.16E-07 1.82 -0.57 -1.06 

FAM156A;FAM156B chrX:52950051 - 52950333 2 6.8E-09 2.33E-07 -0.21 -0.14 0.38 

TEX13B chrX:107226253 - 107226612 2 9.73E-09 2.61E-07 0.9 -0.63 -0.03 

TAF7L chrX:100547965 - 100548224 5 7.3E-09 2.72E-07 0.31 -0.35 0.17 

 
Table 5.18 Top 20 DMRs on the Xi chromosome associated with diagnostic status in AddNeuroMed.  

Shown are DMRs for the overall three group (ANOVA) comparison of CTL to MCI to AD. Displayed for each region is the UCSC gene name, chromosomal position 

(genome build 37), number of probes in region (n), p-value and multiple testing-corrected p (Šidák-p), and average relative methylation values per group. 
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Figure 5.9 The SRPK3 DMR on the Xi chromosome showed hypomethylation in AD in AddNeuroMed. 

The DMR located in SRPK3 was identified in a comparison of baseline diagnosis of MCI, AD, and CTL, as well as post-hoc comparisons of AD to CTL and MCI. 

Displayed are the relative Xi methylation levels of individual probes located within the DMR, ordered by genomic location. Methylation values have been corrected for 

the covariates of age, cell type proportion and batch. 
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CTL vs. AD Xi DMRs 

Gene Position n p-value Šidák-p 
Average Methylation % 

CTL MCI AD 

SRPK3 chrX:153046175 - 153046895 9 2.37E-35 3.18E-34 1.46 1.25 -3.9 

L1CAM chrX:153141451 - 153141906 5 1.30E-09 2.75E-08 0.61 0.05 -0.77 

DUSP21 chrX:44703819 - 44703984 2 5.39E-09 3.15E-07 0.97 -0.04 -1.02 

FAM156A;FAM156B chrX:52950051 - 52950333 2 8.40E-08 2.87E-06 -0.21 -0.14 0.38 

MAGEE2 chrX:75004943 - 75005361 8 2.09E-07 4.83E-06 1.82 -0.57 -1.06 

BCOR chrX:40004432 - 40004482 2 7.36E-07 1.42E-04 1.11 0.72 -2.15 

ZNF75D chrX:134429653 - 134429973 4 5.59E-06 1.68E-04 2.05 -0.78 -0.97 

PCDH19 chrX:99661860 - 99661877 2 3.50E-07 1.98E-04 -1.32 -0.98 2.96 

CAPN6 chrX:110513791 - 110514232 5 1.47E-05 3.22E-04 -1.83 0.77 0.95 

XIST chrX:73073251 - 73073712 3 1.62E-05 3.39E-04 1.28 -0.76 -0.41 

PCDH19 chrX:99194929 - 99195116 2 1.30E-05 6.70E-04 -2.82 1.1 1.86 

NXF3 chrX:102347925 - 102348040 3 8.58E-06 7.20E-04 1.29 -0.29 -1.01 

DANT1;DANT2 chrX:114957471 - 114957791 2 3.09E-05 9.30E-04 -1.37 0.65 0.57 

ARSD chrX:2848021 - 2848382 2 3.85E-05 1.03E-03 -0.44 -0.16 0.69 

TKTL1 chrX:153533256 - 153533552 3 3.48E-05 1.13E-03 1.21 -0.15 -1.12 

CDX4 chrX:72668487 - 72668848 3 5.31E-05 1.42E-03 -1.09 0.49 0.41 

SMC1A;RIBC1 chrX:53449423 - 53449901 10 7.70E-05 1.55E-03 -1.07 0.22 0.82 

PTCHD1-AS chrX:23016709 - 23017134 2 1.13E-04 2.55E-03 0.79 -0.05 -0.81 

MAP3K15 chrX:19443172 - 19443223 2 5.89E-05 1.11E-02 -0.81 -0.6 1.64 

JPX chrX:73164228 - 73164391 2 2.63E-04 1.55E-02 -0.63 0.25 0.38 

 
Table 5.19 DMRs on the Xi chromosome associated with diagnostic status of AD in AddNeuroMed.  

Shown are DMRs for the post-hoc AD to CTL comparison. Displayed for each region is the UCSC gene name, chromosomal position (genome build 37), number of 

probes in region (n), p-value and multiple testing-corrected p (Šidák-p), and average relative methylation values per group. 
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MCI vs. AD Xi DMRs 

Gene Position n p-value Šidák-p 
Average Methylation % 

CTL MCI AD 

SRPK3 chrX:153046175 - 153046895 9 3.37E-36 4.52E-35 1.46 1.25 -3.9 

CLCN4 chrX:10126668 - 10126882 3 7.65E-13 3.45E-11 -1.49 1.73 -0.99 

PRAF2 chrX:48929808 - 48930361 3 7.08E-10 1.24E-08 -0.19 1.73 -2.45 

TAF1 chrX:70712403 - 70712811 7 1.42E-08 3.36E-07 1.22 -1.41 0.72 

ARHGAP6 chrX:11157142 - 11157611 5 1.77E-07 3.65E-06 -0.29 1.8 -1.91 

POU3F4 chrX:82764385 - 82764538 2 1.15E-07 7.22E-06 0.16 1.45 -2.23 

RHOXF1P1 chrX:119125659 - 119125723 3 5.63E-07 8.49E-05 -0.2 0.98 -1.2 

FAM50A chrX:153674100 - 153674275 2 1.02E-05 5.60E-04 -0.02 0.47 -0.61 

BCOR chrX:40004432 - 40004482 2 1.12E-05 2.16E-03 1.11 0.72 -2.15 

PCDH19 chrX:99661860 - 99661877 2 8.40E-06 4.76E-03 -1.32 -0.98 2.96 

 
Table 5.20 DMRs on the Xi chromosome associated with diagnostic status of AD compared to MCI in AddNeuroMed.  

Shown are DMRs for the post-hoc AD to MCI comparison. Displayed for each region is the UCSC gene name, chromosomal position (genome build 37), number of 

probes in region (n), p-value and multiple testing-corrected p (Šidák-p), and average relative methylation values per group. 
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CTL vs. MCI Xi DMRs 

Gene Position n p-value Šidák-p 
Average Methylation % 

CTL MCI AD 

TAF1;INGX chrX:70712215 - 70713214 9 3.05E-18 2.95E-17 1.29 -1.32 0.57 

LOC389906 chrX:3732500 - 3734340 4 6.95E-13 3.64E-12 -1.27 0.77 0.37 

FHL1 chrX:135228207 - 135228445 3 6.02E-12 2.44E-10 1.95 -1.6 0.03 

FGF13 chrX:137950565 - 137951119 3 4.89E-11 8.51E-10 1.59 -1.2 -0.11 

CT45A1 chrX:134846527 - 134847107 3 1.75E-08 2.90E-07 0.98 -1.01 0.21 

MAGEA8-AS1 chrX:149009554 - 149009914 4 3.95E-07 1.06E-05 -1.08 0.89 -0.29 

NHS chrX:17395816 - 17395857 2 8.14E-08 1.91E-05 0.27 -0.49 0.33 

TEX13B chrX:107226253 - 107226612 2 3.28E-06 8.81E-05 0.9 -0.63 -0.03 

DANT1;DANT2 chrX:114957471 - 114957791 2 4.76E-06 1.43E-04 -1.37 0.65 0.57 

TCEAL7 chrX:102584953 - 102585355 6 8.91E-06 2.14E-04 -1.82 1.26 0.06 

ZNF75D chrX:134429653 - 134429973 4 9.08E-06 2.74E-04 2.05 -0.78 -0.97 
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CTL vs. MCI Xi DMRs (Continued) 

Gene Position n p-value Šidák-p 
Average Methylation % 

CTL MCI AD 

TAF7L chrX:100547965 - 100548224 5 8.13E-06 3.03E-04 0.31 -0.35 0.17 

XIST chrX:73073251 - 73073712 3 1.71E-05 3.57E-04 1.28 -0.76 -0.41 

CLCN4 chrX:10126668 - 10126882 3 9.63E-06 4.34E-04 -1.49 1.73 -0.99 

DENND10P1 chrX:129657974 - 129658062 2 4.06E-06 4.45E-04 -1.73 1.73 -0.65 

CAPN6 chrX:110513791 - 110514232 5 2.51E-05 5.50E-04 -1.83 0.77 0.95 

ASB11 chrX:15333584 - 15334256 4 3.90E-05 5.60E-04 0.95 -0.83 0.03 

SOX3 chrX:139592127 - 139592513 3 2.45E-05 6.12E-04 0.12 0.58 -0.84 

CA5B;CA5BP1-CA5B chrX:15807140 - 15807819 2 8.10E-05 1.15E-03 1.5 -0.66 -0.93 

PNCK chrX:152939615 - 152940158 3 1.22E-04 2.17E-03 -0.07 0.71 -0.95 

MAGEE2 chrX:75004943 - 75005361 8 1.41E-04 3.24E-03 1.82 -0.57 -1.06 

GPR50-AS1 chrX:150343097 - 150343149 2 3.39E-05 6.26E-03 -1.97 0.99 0.74 

 
Table 5.21 DMRs on the Xi chromosome associated with diagnostic status of MCI in AddNeuroMed.  

Shown are DMRs for the post-hoc MCI to CTL comparison. Displayed for each region is the UCSC gene name, chromosomal position (genome build 37), number of 

probes in region (n), p-value and multiple testing-corrected p (Šidák-p), and average relative methylation values per group. 
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5.4.6. Replication of Xi DMRs in ADNI 

As carried out for all analysis performed on the AddNeuroMed data in this 

chapter, the identification of DMRs associated with Xi DNA methylation was 

repeated in the ADNI cohort to examine the replication of results. In the ADNI 

dataset, 26 DMRs were associated with the overall three-group comparison. Five 

of these DMRs were annotated to genes that were found to contain diagnosis-

associated DMRs in the AddNeuroMed cohort (Table 5.22). These DMRs were 

located in the genes CLCN4, XIST, ERAS, GPC3, and AFF2, although the 

AddNeuroMed and ADNI DMRs did not overlap. One further DMR of six bp in the 

ADNI cohort (chrX: 75005028 – 75005361, Šidák-p = 6.97×10-4), was spanned 

by an eight bp DMR identified in AddNeuroMed (chrX: 75004943 – 75005361, 

Šidák-p = 4.83×10-6). This DMR is located in the gene MAGEE2, and is 

hypomethylated in MCI (-2.39%) and AD (-2.88%) relative to CTL in 

AddNeuroMed (Figure 5.10). However, in ADNI the region is hypermethylated in 

MCI and AD compared to CTL (2.29% and 3.29%, respectively; Figure 5.11). 

Within the ERAS gene, separate regions were identified as DMRs. In 

AddNeuroMed, a three bp DMR was associated with overall group differences in 

AddNeuroMed, which was mainly driven by hypomethylation in the MCI group 

relative to CTL (-2.93%, Figure 5.12). In ADNI, three DMRs of varying lengths 

(between five to seven bp) were identified that had the same endpoint, though 

they did not overlap the AddNeuroMed DMR. The two ERAS-annotated DMRs 

identified in the ANOVA analyses in both cohorts were separated by a 639 bp 

distance. In ADNI, the group difference also appeared to be mainly driven by 

hypomethylation in MCI, though particularly in comparison to AD (4.8%, Figure 

5.13). 
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In the post-hoc group comparisons, no DMRs were identified in the comparison 

of CTL to MCI in ADNI, though three DMRs were associated with differences in 

AD relative to CTL, and two DMRs were related to MCI versus AD differences. 

Other than the ERAS DMR in both comparisons, a DMR in the gene CXorf51B 

was associated with diagnosis of AD relative to CTL (in the ADNI cohort only), 

and a DMR in TAF1 was associated with AD in comparison to the CTL group as 

well as the MCI group. Interestingly, the TAF1 DMR exactly matched an MCI 

versus AD DMR identified in AddNeuroMed. The seven bp DMR was 

characterised by hypermethylation in AD relative to MCI in AddNeuroMed 

(2.13%, Figure 5.14), whereas the ADNI data showed hypomethylation in AD 

relative to CTL (4.09%) and MCI (4.84%, Figure 5.15). 
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ADNI AddNeuroMed 

Gene Position n p-value Šidák-p 
Average Methylation % 

Position 
Average Methylation % 

CTL MCI AD CTL MCI AD 

CLCN4 chrX:10134966 - 10135224 2 6.19E-05 4.24E-03 -1.84 0.38 1.89 chrX:10126321 - 10126882 -0.73 0.56 -0.07 

XIST chrX:73051811 - 73051896 2 5.38E-05 0.01 0.31 -0.21 0.08 chrX:73073251 - 73073712 1.28 -0.76 -0.41 

MAGEE2 chrX:75005028 - 75005361 6 1.31E-05 6.97E-04 -1.75 0.54 1.54 chrX:75004943 - 75005361 1.82 -0.57 -1.06 

ERAS chrX:48684558 - 48685304 7 2.17E-18 5.13E-17 -0.03 -1.44 3.36 chrX:48685943 - 48686201 1.95 -0.98 -0.28 

GPC3 chrX:133119645 - 133119964 8 8.18E-06 4.54E-04 -0.73 0.1 0.99 chrX:133118088 - 133118345 -1.61 0.56 0.92 

AFF2 chrX:147581919 - 147582072 6 9.68E-06 1.12E-03 -1.13 0.41 0.87 chrX:147582939 - 147583280 -0.02 -0.1 0.22 

 
Table 5.22 Overlapping genes containing Xi DMRs in the ADNI and AddNeuroMed overall group comparisons. 

Displayed are the genes in which DMRs were identified in the ANOVA comparison in the AddNeuroMed cohort as well as the ADNI cohort. Displayed for each region 

is the UCSC gene name, chromosomal position (genome build 37), number of probes in region (n), p-value and multiple testing-corrected p (Šidák-p), and average 

relative methylation values per group. Chromosomal position and average methylation values in the DMR within the same gene in AddNeuroMed have been added 

for comparison. 
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Figure 5.10 The MAGEE2 DMR on the Xi chromosome showed hypomethylation in AD and MCI in AddNeuroMed. 

The DMR located in MAGEE2 was identified in a comparison of baseline diagnosis of MCI, AD, and CTL, and post-hoc comparisons of MCI and AD to CTL. Displayed 

are the relative Xi methylation levels of individual probes located within the DMR, ordered by genomic location. Methylation values have been corrected for the 

covariates of age, cell type proportion and batch. 
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Figure 5.11 The MAGEE2 DMR on the Xi chromosome showed hypermethylation in AD and MCI in ADNI. 

The DMR located in MAGEE2 was identified in a comparison of baseline diagnosis of MCI, AD, and CTL. Displayed are the relative Xi methylation levels of individual 

probes located within the DMR, ordered by genomic location. Methylation values have been corrected for the covariates of age and cell type proportion. 
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Figure 5.12 The ERAS DMR on the Xi chromosome showed hypomethylation in MCI relative to CTL in AddNeuroMed. 

The DMR located in ERAS was identified in a comparison of baseline diagnosis of MCI, AD, and CTL. Displayed are the relative Xi methylation levels of individual 

probes located within the DMR, ordered by genomic location. Methylation values have been corrected for the covariates of age, cell type proportion and batch. 
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Figure 5.13 The ERAS DMR on the Xi chromosome showed hypomethylation in MCI and CTL relative to AD in ADNI. 

The DMR located in ERAS was identified in a comparison of baseline diagnosis of MCI, AD, and CTL, and post-hoc comparisons of AD to CTL and MCI. Displayed 

are the relative Xi methylation levels of individual probes located within the DMR, ordered by genomic location. Methylation values have been corrected for the 

covariates of age and cell type proportion. 
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Figure 5.14 The TAF1 DMR on the Xi chromosome showed hypermethylation in AD relative to MCI in AddNeuroMed. 

The DMR located in TAF1 was identified in a post-hoc comparison of MCI to AD. Displayed are the relative Xi methylation levels of individual probes located within 

the DMR, ordered by genomic location. Methylation values have been corrected for the covariates of age, cell type proportion and batch. 
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Figure 5.15 The TAF1 DMR on the Xi chromosome showed hypomethylation in AD relative to CTL and MCI in ADNI. 

The DMR located in TAF1 was identified in a comparison of baseline diagnosis of MCI, AD, and CTL, and post-hoc comparisons of AD to CTL and MCI. Displayed 

are the relative Xi methylation levels of individual probes located within the DMR, ordered by genomic location. Methylation values have been corrected for the 

covariates of age and cell type proportion.  
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5.5. Discussion 

 

In this chapter, DNA methylation changes associated with diagnosis on the X, Y, 

and Xi chromosomes were assessed. This was achieved through a stratified 

analysis of males and females to profile DNA methylation on the X and Y 

chromosomes, and though an analysis of imputed Xi methylation values in 

females. 

 

In the analysis of X and Y chromosome methylation, no epigenome-wide 

significant DMPs or DMRs were identified in the AddNeuroMed cohort. However, 

several nominally significant DMPs were replicated in the ADNI cohort. 

 

In males, two replicated DMPs on the X chromosome were found to be 

associated with MCI status. The first, annotated to LOC100132963, is a relatively 

unknown locus, whereas the second DMP identified is annotated to DUSP9, of 

which epigenetic silencing has been associated with progression of various types 

of cancer (Qiu et al., 2020; F. Wu et al., 2015). Though DUSP9 has not been 

linked to MCI or AD yet, it is also a candidate gene for type 2 diabetes mellitus, 

where sex differences in DNA methylation of this probe in pancreatic islets have 

been reported previously (Hall et al., 2014). Of note, type 2 diabetes has been 

identified as a risk factor for AD, and studies have examined common 

pathological processes between the two diseases (L. Li & Hölscher, 2007). 

 

A total of 14 DMPs on the X chromosome were identified and replicated across 

the different group comparisons in females, of which seven were associated with 

DNA methylation differences related to MCI status relative to CTL. Loci in 
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HUWE1 (cg18450499), WWC3 (cg03449040), IQSEC2 (cg03832506) were 

hypomethylated in MCI, while loci in SMARCA1 (cg17420696), HTR2C 

(cg02918903), SMPX (cg27013947), and PRKX (cg25396787) were 

hypermethylated. Of particular interest is the DMP in WWC3, as gene expression 

of WWC3 has been found to be upregulated in the hippocampus of AD patients 

(Yaping Wang & Wang, 2020). Most importantly, the study by Wang & Wang 

(2020) found that differential expression of WWC3 in the blood of AD patients 

could be used to distinguish AD patients from healthy CTLs, highlighting the 

biomarker potential of this gene. Although the connection between WWC3 and 

AD requires further study, WWC3 has been found to act on the Wnt/β-Catenin 

signalling pathway (Yanni Wang et al., 2017) which has been hypothesised to be 

a causal mechanism in the development and progression of AD (Ferrari et al., 

2014). 

 

Associated with diagnosis of AD relative to CTL were five DMPs located in or 

near NLGN3 (cg15737490), TSPYL2 (cg23612178), ARMCX3 (cg05453458), 

PHKA2 (cg06104510), and UTP14A (cg05548952), all of which were 

hypermethylated in AD. Though none of these genes have been linked to AD 

before, gene expression of ARMCX3 has been found to display sex differences 

in early stages of human development (Gonzalez et al., 2018), as does UTP14 

expression in cancers associated with TP53 mutations (Lopes-Ramos et al., 

2020). 

 

Finally, in the comparison of MCI to AD in females, two DMPs were replicated, 

located in GPR50 (cg10841338) and ERAS (cg07112779). The gene GPR50 is 

part of the family of G protein-coupled receptors (GPCRs), which have been 
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implicated in the pathogenesis of AD (Thathiah & De Strooper, 2011). The gene 

GPR50 itself is also a sex-specific genetic risk factor for bipolar affective disorder 

(Thomson et al., 2005). Conversely, a study conducted by Chen et al. (2019) 

found hypomethylation of the GPR50 promoter in blood of males diagnosed with 

AD relative to CTL. It should be noted, however, that this study did not correct for 

the influence of cell types.  

 

The ERAS gene contained a (replicated) DMP associated with MCI versus AD 

differences in females, as well as a separate epigenome-wide significant DMP on 

the Xi chromosome, though this second DMP was not replicated in ADNI. 

Furthermore, two DMRs annotated to ERAS (separated by 639 bp) were 

identified in the AddNeuroMed cohort and the ADNI cohort. The ERAS gene 

stands for Embryonic Stem Cell-Expressed Ras, and is expressed in 

undifferentiated embryonic stem cells as well as several cancer cell lines (Yasuda 

et al., 2007). Though multiple studies examining its role in different types of 

cancer exist, this is the first time the gene has been linked to AD and sex 

differences. 

 

A large number of epigenome-wide significant DMPs associated with diagnosis 

were identified on the Xi chromosome. Notably, a large amount of inflation was 

observed in the p-values of the statistical model, and various models aimed at 

correcting for inflation and unwanted variation did not deflate the p-values, and 

the same inflation was also observed in the independent ADNI replication cohort. 

Although technical artefacts or inflation induced by the imputation of the Xi 

methylation values are not ruled out, these data lend some confidence that this 

is not an effect of confounders. Additionally, severely skewed XCI has been found 
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in peripheral blood of females with AD (Bajic et al., 2015), which may be a 

biological mechanism contributing to the observed Xi inflation. As this is still rather 

speculative, the focus is placed on results that could be replicated in the ADNI 

cohort.  

 

Firstly, eight DMPs were identified in the AddNeuroMed cohort that were 

replicated in ADNI. In a comparison of CTL to AD, a hypermethylated locus was 

identified near ARSD (cg04710661), which has not been studied yet in the 

context of AD. A second DMP (cg09167861), showing hypomethylation in AD 

relative to MCI, was annotated to the gene FHL1. Expression of this protein has 

previously been found to be increased in the hippocampus, in early Braak stages 

of AD (Hondius et al., 2016). The majority of the replicated DMPs were found in 

the comparison of MCI to CTL. Of note, one of the replicated Xi DMPs 

(cg03449040, annotated to WWC3) matched the DMP identified on the X 

chromosome in the stratified analysis of females, and hypomethylation in MCI 

relative to CTL was found in both analyses. The most significant DMP in the 

comparison of MCI and CTL, annotated to the gene XIST (cg17513789), was 

hypomethylated in MCI. Interestingly, the gene XIST was also found to contain 

two DMRs associated with differences across all three diagnosis groups in 

AddNeuroMed and ADNI, although these DMRs did not overlap. The DMR in 

AddNeuroMed was specifically associated with hypomethylation in the MCI and 

AD groups relative to CTL. While an overall difference between the diagnosis 

groups was identified in ADNI, the Xi DNA methylation pattern did not match the 

pattern seen in AddNeuroMed. Interestingly, the gene XIST (X-inactive Specific 

Transcript) is an indispensable initiator of the XCI process. Its product, the long 

non-coding RNA Xist, attaches to an X chromosome which triggers the process 
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of transcriptional silencing (Strehle & Guttman, 2020). Altered gene expression 

of XIST and potential dysregulation of XCI have been suggested to play a role in 

AD, though its exact involvement remains to be studied (Chanda & 

Mukhopadhyay, 2020). 

 

Although this chapter has identified novel loci and regions related to AD and MCI, 

several limitations must be taken into account. First, the stratification of the male 

and female data for the first goal of identifying disease-associated loci and 

regions on the X and Y chromosome leads to a limited sample size. In order to 

detect effect sizes of the magnitude seen in the overall diagnosis-associated 

DMPs identified in Chapter 3 with a power of 0.8, a sample size of 161 would be 

required per group. Second, although all processed data was adjusted for cell 

type proportions, recent studies have highlighted the importance of studying 

sorted or single-cell populations in the context of AD (L. Guo et al., 2021). An 

imbalance of cell populations associated with AD pathology may exist between 

the sexes in blood. This has been detected in female brain cells, where AD 

pathology-associated populations were enriched compared to male brain cells, 

and where cell type-specific gene expression was different between males and 

females (Mathys et al., 2019). Third, this study makes use of imputed Xi 

chromosome data, which may introduce technical artefacts in the data. This 

method relies on the assumption that, within a specific diagnostic group, the 

average Xa methylation pattern in males corresponds to the average Xa 

methylation pattern in females. Ideally, Xi DNA methylation would be assessed 

directly, using methods such as allele specific DNA methylation sequencing 

(Akbari et al., 2021). Additionally, skewed XCI reported in AD (Bajic et al., 2015) 

could lead to the overrepresentation of one chromosome in any type of Xi 
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analysis, though the effect this may have on the results is unknown. Of note, while 

multiple DMRs were identified on the Xi chromosome, no DMRs were identified 

in the stratified analysis in either of the cohorts. While the results on the Xi may 

be related to the nature of XCI (i.e. effective gene silencing requiring multiple 

methylated CpGs; Curradi et al., 2002), the lack of DMRs identified in the 

stratified analysis may be related to the coverage of probes on the X and Y 

chromosomes. Although the Y chromosome is relatively short (57,227,415 bp), 

the X chromosome spans 156,040,895 bp, which is similar to the length of 

chromosome 7 (159,345,973 bp; Piovesan et al., 2019). In comparison, 

chromosome 7 is covered by 24,547 probes, while the X chromosome is only 

covered by 9,647 probes. Although this is highly speculative and requires further 

confirmation, this may decrease the number of adjacent probes that can be 

detected in the 1,000 bp sliding window used to identify DMRs. Finally, the 450K 

array does not allow assessment of DNA methylation at the centromere. If, as 

suggested in previous studies, centromere (dys)regulation and PCD may play a 

role in AD, it would be interesting to study this mechanism in other datasets (e.g. 

whole genome bisulfite sequencing data) which cover DNA methylation across 

the whole genome.  

 

To conclude, this chapter characterises genome-wide DNA methylation patterns 

that are present on the X, Y, and Xi chromosomes, and which are associated with 

a diagnosis of MCI or AD. As many of the loci and regions identified here have 

not been linked to sex differences or diagnosis of MCI or AD before, this 

emphasises the importance of accounting for and studying sex differences in 

autosomes as well as allosomes in AD research.  
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CHAPTER 6. DISCUSSION 
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6.1. Introduction 

 

The main aim of this thesis was to characterise DNA methylation changes in 

blood in AD and MCI, and to investigate the effects of the risk factors sex and 

age on blood DNA methylation and their interaction with disease. In this chapter, 

I will summarise the key findings of this thesis, and discuss the strengths and 

limitations associated with the work in this thesis. Finally, I will outline my future 

perspective for this field, and discuss how future studies might overcome 

limitations I was unable to address in this thesis.  
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6.2. Key Findings from this Thesis 

 

6.2.1. Chapter 3: An Epigenome-Wide Association Study of Alzheimer's 

Disease Blood Highlights Robust DNA Hypermethylation in the HOXB6 

Gene 

The primary aim of Chapter 3 was to carry out an EWAS of AD and MCI blood in 

the AddNeuroMed cohort, in order to identify DNA methylation profiles associated 

with MCI, AD, and progression to AD. The second aim was to validate the most 

interesting AD-associated DMR using an independent method (pyrosequencing), 

and to examine the relationship between differential methylation and gene 

expression within the same samples. 

 

The results from Chapter 3 showed that a robust DNA methylation signal can be 

detected in blood of AD patients within the HOXB6 gene, a finding that was 

validated using pyrosequencing. This homeobox gene is involved in 

hematopoietic development and early body morphogenesis (Krumlauf, 1994), 

and is required for the normal generation of granulocytes and monocytes 

(Giampaolo et al., 2002). Furthermore, the most significant locus within the 

HOXB6 DMR has been previously identified as a DMP in AD hippocampal tissue, 

and has been correlated to tau burden (Altuna et al., 2019). In addition to the 

HOXB6 DMR, three other regions were associated with overall differences 

between CTL, MCI, and AD (annotated to the genes MOV10L1, CBFA2T3, and 

TPTEP2-CSNK1E), and nine regions were associated with future progression to 

AD (annotated to the genes CPT1B and CHKB, SMC1B and RIBC2, TMEM184A, 

KCNAB3, GABBR1, FIGN, PRDM1, FLJ37453, and OR56A3 and TRIM5).  
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In addition to genomic regions associated with disease, pathways altered in 

association with MCI, AD-associated variables (e.g. APOE carrier status), and 

progression from MCI to AD were also identified in Chapter 3 using WGCNA. 

Biological pathways were found to be altered in association with MCI diagnosis 

(relative to CTL), carrier status of APOE ε4 alleles, an individual’s number of 

education years, and the MRI measurement of MET. Interestingly, several of 

these altered pathways were found to be involved in immune system function, 

which is known to be dysregulated in AD (Heppner et al., 2015). Additionally, this 

study identified a cluster of co-methylated loci that was associated with future 

progression to AD. This cluster was involved in pathways related to non-

homologous end-joining, which is involved in double-stranded DNA repair and is 

known to be affected in the AD brain (Kanungo, 2013; Shackelford, 2006). 

 

6.2.2. Chapter 4: DNA Methylomic Patterns in Blood Associated with Age, 

Sex and Alzheimer’s Disease  

The aim of Chapter 4 was to characterise DNA methylation profiles associated 

with the AD-risk factors sex and age, and study whether and, if so, how they 

interact with each other and with disease.  

 

The first analysis of this study identified DMPs related to sex, age, and the 

interactions of sex by age, sex by diagnosis, and age by diagnosis. Two DMPs 

were identified in AddNeuroMed and replicated in the ADNI cohort. The most 

interesting DMP was located in C6orf25, which is an alias for MPIG6B, and was 

associated with an interaction between sex and age. This DMP was also located 

within a DMR identified in AddNeuroMed, which was related to sex and sex by 

age differences. MPIG6B is located within the MHC class III region, and is part of 
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the immunoglobulin superfamily (de Vet et al., 2001). Though female sex 

hormones have been found to modulate effects of the Mpig6b protein (Stavnichuk 

et al., 2021), the link between sex, age, and MPIGB6 requires further study. The 

second DMP that was replicated was annotated to the gene CSRP2, and showed 

effects of an age by diagnosis interaction. Interestingly, this gene has not 

previously been associated with MCI or AD. 

 

This study further identified DMRs associated with the risk factors and their 

interactions. Of particular interest are the DMRs identified in OXT (associated 

with age), and HOXA4 (associated with a sex by diagnosis interaction). Although 

these DMRs could not be replicated in the ADNI cohort, the OXT DMR has 

previously been identified in both brain and blood in the context of AD (Lardenoije 

et al., 2019; Watson et al., 2016), and the HOXA4 DMR has been associated with 

AD neuropathology in the brain (R. G. Smith et al., 2018).  

 

Finally, this study examined clusters of co-methylated loci through WGCNA, and 

identified two clusters which were both associated with age. These clusters were 

involved in the RNA processing and homophilic cell adhesion.  

 

6.2.3. Chapter 5: DNA Methylation on the X And Y Chromosome in 

Alzheimer’s Disease and Mild Cognitive Impairment 

The primary aim of Chapter 5 was to characterise AD- and MCI-associated DNA 

methylation profiles on the X chromosome in females and the X and Y 

chromosomes in males. Through the imputation of Xi methylation, I was able to 

fulfil the secondary aim of profiling DNA methylation on the female Xi 

chromosome in order to investigate patterns associated with disease.  
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The first analysis conducted in this study, in line with the primary aim, assessed 

DMPs related to AD and MCI on the sex chromosomes in males and females 

separately. As the sample size in the AddNeuroMed discovery cohort was too 

small to identify DMPs, a replication analysis was performed in the ADNI cohort. 

This led to the identification of two MCI-associated DMPs on the X chromosome 

in males, located in LOC100132963 and DUSP9, which had not previously been 

associated with MCI or AD. In females, 14 disease-associated DMPs were 

identified, of which seven were associated with MCI (in the genes HUWE1, 

WWC3, IQSEC2, SMARCA1, HTR2C, SMPX, and PRKX), five were associated 

with AD (in the genes NLGN3, TSPYL2, ARMCX3, PHKA2, and UTP14A), and 

two DMPs were associated with differences between MCI and AD (in the genes 

GPR50 and ERAS). Of particular interest was the DMP located in WWC3 

(cg03449040), which is involved in Wnt/β-Catenin signalling (Yanni Wang et al., 

2017), and has been found to be differentially expressed in the AD hippocampus 

(Yaping Wang & Wang, 2020). Most importantly, gene expression of WWC3 in 

blood has been shown to be of use as a diagnostic biomarker for AD (Yaping 

Wang & Wang, 2020). It would be interesting to further explore the biomarker 

potential of the WWC3 gene, and in particular of the DMP identified in this study, 

as DNA methylation has been found to be more stable than RNA (Gosselt et al., 

2021; Huang et al., 2017) and may therefore be a more robust target. In addition 

to studying the biomarker potential of the WWC3 DMP, future studies would need 

to investigate the temporal pattern and sex-specificity of WWC3 DNA methylation 

and expression, as hypomethylation in females has been associated with MCI in 

this study, yet increased expression was associated with AD across both sexes 

in the study by Yaping Wang & Wang (2020). 

 



333 
 

In relation to the second aim, the analyses carried out in Chapter 5 identified and 

replicated eight DMPs on the Xi chromosome. Six of these DMPs were 

associated with MCI relative to CTL (annotated to the genes XIST, XKRX, NKAP 

PRKX, PCCDH19, and WWC3), one DMP was associated with AD relative to 

CTL (annotated to ARSD), and one DMP was associated with AD relative to MCI 

(annotated to FHL1). Of note, the WWC3 DMP identified in this analysis matched 

the DMP identified in the stratified analysis described above. It is therefore also 

important for future studies investigating this locus to take into account that the 

association with MCI in females may be driven by DNA methylation on the Xi 

chromosome. The most interesting finding in this analysis was the DMP 

annotated to the gene XIST (cg17513789), which was hypomethylated in MCI 

relative to CTL. Furthermore, in both the AddNeuroMed cohort and the ADNI 

cohort, Xi DMRs were identified in this gene. The DNA methylation patterns 

between the cohorts did not match, though this may be related to the ~21 Kb 

distance between the DMRs. XIST is particularly interesting in this study of the Xi 

chromosome, as the gene constitutes a crucial part of the XCI process and 

initiates transcriptional silencing (Strehle & Guttman, 2020). Altered DNA 

methylation of this gene may either cause or result from altered XCI, and as XCI 

is established in early development, it would be interesting for future studies to 

investigate the longitudinal pattern of DNA methylation in this gene in the 

development of MCI and AD.  
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6.3. Strengths, limitations and future perspectives 

 

In addition to strengths, several limitations to the studies described in this thesis 

must be noted. In this section, I will describe the strengths and limitations that are 

applicable to multiple chapters of this thesis, the mitigating steps I have taken, 

and how these limitations could be addressed in future studies. 

 

6.3.1. Strengths 

This thesis contains the first EWAS of its size of AD, MCI, and future conversion 

to AD, as well as a characterisation of disease associated DNA methylation 

profiles on the X, Y, and Xi chromosomes. The use of ANOVA models for all 

analyses allowed for the exploration of non-linear relationships between the CTL, 

MCI, and AD groups. Though the limitation of sample size is discussed below, 

the AddNeuroMed cohort was of a sufficient size to detect a DMR in the HOXB6 

region in association with AD, which was also validated using pyrosequencing. 

The identification of this DMR provides an interesting target for future studies of 

diagnostic biomarkers for AD. Additionally, the identification of clusters of loci 

associated with MCI as well as future progression to AD indicates that these 

clusters, rather than individual loci, may have potential as diagnostic and 

prognostic biomarkers. A further strength of the studies described in this thesis is 

the use of the ADNI cohort for replication analyses in Chapters 4 and 5, which 

lends confidence to the findings in the AddNeuroMed cohort.  
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6.3.2. Limitations 

 

6.3.2.1. Sample size 

The first limitation that is common to all chapters, and indeed common to many 

studies, is that of sample size. In order to detect effect sizes similar to those 

detected in the overall diagnosis-associated DMPs (Chapter 3), a sample size of 

161 would be required per diagnostic group with a power set to 0.8. The limited 

sample size is particularly a concern for the more complex interaction model used 

in Chapter 4, and the analysis stratified by sex in Chapter 5. I have mitigated this 

limitation by validating the AD-associated DMR (HOXB6) identified in the 

AddNeuroMed cohort in Chapter 3 using an independent technique 

(pyrosequencing), and by running replication analyses using the ADNI cohort for 

Chapters 4 and 5.  

 

6.3.2.2. Cohort limitations 

There are several cohort characteristics that pose limitations to the studies 

reported in this thesis. First, the MCI-AD individuals in the AddNeuroMed cohort 

converted to AD within one year of baseline DNA sampling, whilst due to the 

limited follow up period we do not know if any of the MCI-MCI individuals 

converted to AD at a later time. This may limit the overlap of results found in the 

AddNeuroMed cohort to results found in other cohorts, as the combined MCI-MCI 

and MCI-AD individuals may be temporally closer to AD-like profiles than 

individuals at earlier stages of MCI. In the ADNI replication cohort, this has been 

taken into account in the selection criteria of MCI-AD individuals, and in the ratio 

of MCI-AD to MCI-MCI individuals selected. 
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Limitations that apply to the ADNI cohort include missing data on the bisulfite 

treatment batch of samples, for which the data could not be corrected. 

Additionally, the CTL samples in ADNI were significantly older than those in 

AddNeuroMed (Chapter 2.3).To prevent further loss of samples, and since all 

diagnostic groups matched in terms of MMSE scores, the distribution of APOE 

ε4 alleles, and the MCI and AD groups matched in age, no CTL samples were 

removed from the ADNI cohort in order to match the AddNeuroMed age. As the 

ADNI cohort contains longitudinal data, and samples were selected to match 

AddNeuroMed samples, some of the selected samples were not taken at 

baseline. Since repeated exposure to cognitive tests such as MMSE has been 

shown to facilitate learning effects (Jolles et al., 1998), this may influence 

performance and therefore results of the MMSE test. While only MMSE scores 

from the AddNeuroMed cohort were used in Chapter 3 to study associations with 

biological pathways, the ADNI study used cognitive test scores to assist in 

diagnostic assessment, which could in theory be influenced by learning effects. 

These limitations specific to the ADNI cohort may contribute to the lack of overlap 

seen between the ADNI and AddNeuroMed cohorts in Chapter 4 and Chapter 5.  

 

Finally, there are limitations that apply to both cohorts. Several types of 

medication may influence DNA methylation levels (Boks et al., 2012), which 

makes distinguishing these effects from disease effects on DNA methylation 

challenging, particularly in AD. Additionally, many of the findings in this thesis 

were related to differences in the MCI group. As there is currently no standard 

treatment for MCI available, medication use may be less common in this group, 

which could explain these findings.   
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The second limitation applicable to both cohorts is related to the exclusion of 

comorbidities. For example, both cohorts exclude individuals with depression, 

while depressive symptoms have been associated with a prodromal stage of AD 

and risk of progression to AD (Amieva et al., 2008; Copeland et al., 2003). While 

this exclusion criterion eliminates potential confounders from the studies, it may 

also exclude part of the population that is of interest. In line with the exclusion of 

comorbidities, it should be noted that the results found in thesis should be 

investigated for AD-specificity. While I was not able to do this in the current 

cohorts, it would be interesting for future research to examine whether the 

HOXB6 DMR, for example, is specific to AD, or whether it is a marker of general 

neurodegeneration.  

 

6.3.2.3. DNA methylation array limitations 

DNA methylation arrays, unlike sequencing-based approaches, are targeted at 

specific regions of the genome, and therefore provide less coverage. The 450K 

array was initially designed to target the promoter region, the 5’ untranslated 

region (UTR), first exon, gene body, and 3’UTR of known genes. It was 

superseded by the EPIC array, which covered many of the loci included on the 

450K array, and added numerous sites targeted at enhancer regions. However, 

the nature of arrays is such that each genomic element is often only covered by 

a single probe. In order to increase coverage, and thereby gain a more complete 

assessment of blood DNA methylation, a sequencing approach such as whole 

genome bisulfite sequencing (WGBS) could provide a solution, although this may 

be cost prohibitive.  

 



338 
 

In addition to limitations regarding coverage, the 450K array and the EPIC array 

both work with two types of probes (as detailed in Chapter 2.2.2). Due to the 

nature of the type I probe, which assumes that neighbouring CpGs have the same 

methylation status, a bias is created. Each probe is 50 bp long, and if one or more 

CpG sites other than the query site are located within the complementary 

sequence to the probe, type I probes are more likely to bind to the DNA sequence 

if the CpG sites have the same methylation status. This limitation was solved in 

type II probes, through the use of degenerate R [A/G] bases. However, type II 

probes only have degenerate R bases for up to three CpG sites within the 

complementary sequence. This is the reason type I probes are enriched in CpG 

islands, and are known to cover more unmethylated loci than type II probes (as 

seen in the beta distribution in Figure 2.8 and Figure 2.19). 

 

6.3.2.4. Limitations related to methodology 

The DNA methylation profiles described in this thesis are based on β-values. An 

alternative method of analysis may be based on M-values, which have a logistic 

relationship to β-values. M-values have been suggested to be statistically 

preferable to β-values, as β-values show heteroscedasticity for highly methylated 

or highly unmethylated loci (Du et al., 2010). This may be particularly relevant for 

the analysis of the Xi chromosome, which is highly methylated, though it is not 

currently known to what extent this may bias results. However, β-values, unlike 

M-values, are biologically interpretable as they range from 0 (not methylated) to 

1 (fully methylated). Additionally, β-values are used in the majority of EWAS of 

AD, thereby making results based on β-values more comparable across studies. 

Taking these factors into account, I opted to use β-values in the studies described 

in this thesis. 
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A second limitation that should be noted is the cross-sectional nature of the 

research conducted for this thesis. Although the primary AddNeuroMed cohort 

did not include DNA sampling at follow-up measurements, the ADNI cohort does 

include longitudinal data. Temporal patterns of DNA methylation, and further 

characterisation of the development and progression of AD for biomarker 

development, would be interesting to study in the ADNI cohort as well as other 

longitudinal cohorts of AD.  

 

6.3.2.5. Tissue- and cell-heterogeneity 

Closely related to the β-value range described above, is the fact that DNA 

methylation at a given locus is a dichotomous measure – a site is either 

methylated or it is not. However, the β-values calculated using the 450K array are 

continuous, which reflects the fact that samples are comprised of multiple cell 

types or a population of multiple cells. A methylation value that is between 0 and 

1 therefore reflects that a proportion of query loci within the sample are 

methylated (Birney et al., 2016). As DNA methylation is both tissue-specific as 

well as cell type-specific, this makes the interpretation of the generated data more 

complex. Additionally, the use of heterogeneous blood tissue could obscure cell-

type specific modifications related to the disease, as changes in one cell type 

could negate or distort changes in another, as has been previously shown in the 

context of AD brain (Blalock et al., 2011). In all analyses described in this thesis, 

the limitation of cell type heterogeneity has been mitigated by correcting for cell 

type composition imputed from DNA methylation levels (Houseman et al., 2012). 

In order to disentangle DNA methylation profiles specific to certain cell types, 

future research would ideally use methods such as fluorescence-activated cell 
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sorting (FACS), or single-cell genome-wide bisulfite sequencing (Smallwood et 

al., 2014). However, the implementation of these methods is more expensive and 

time-consuming than the use of DNA methylation arrays. 

 

6.3.2.6. Blood as a surrogate for brain tissue 

Though not necessarily a limitation of the research presented in this thesis, it 

should be noted that, as AD is a neurodegenerative disease, the DNA methylation 

profile detected in blood may not match the profile in brain tissue. Blood DNA 

methylation may reflect parallel effects, comorbidities, mediating effects, or 

downstream effects, and may therefore not be functionally related to AD-related 

processes in the brain. This is not considered a limitation as the current studies 

are not aimed at assessing causality, but aim to characterise patterns of DNA 

methylation of interest to future biomarker development. With this aim in mind, 

robustness and AD-specificity of identified markers are of primary importance for 

future studies. 

 

6.3.2.7. Outlook on future perspectives 

To follow up the research presented in this thesis, and to summarise the future 

research suggested in the sections above, there are a few next steps I would 

recommend taking. First, I would further investigate the biomarker potential of the 

HOXB6 DMR, by assessing AD-specificity and sensitivity for the diagnosis of AD. 

Second, I would investigate the diagnostic and prognostic biomarker potential of 

clusters of co-methylated loci, as Chapter 3 has shown that these clusters are 

altered in association with MCI and progression to AD. I would investigate 

whether these could be used to reliably diagnose MCI and/or AD, or predict 

progression to AD, using unsupervised classification methods such as random 
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forest models. Third, in order to develop biomarkers associated with progression 

to AD, I would examine temporal DNA methylation patterns in longitudinal cohorts 

such as ADNI, thereby also extending the limited time to conversion that is 

studied in this thesis. Fourth, as Chapter 4 has underscored the importance of 

investigating sex-specificity, ideally I would conduct the research described 

above across both sexes and in a stratified manner, to examine whether 

diagnostic or prognostic biomarkers may be different in females and males. 

However, it may be challenging to obtain a single cohort of sufficient sample size 

to conduct this research. Fifth, in view of the effects of age and age by diagnosis 

interactions identified in Chapter 4, it would be interesting to explore the 

relationship between accelerated DNA methylation ageing (Horvath, 2013) and 

diagnosis of MCI and AD. Accelerated ageing has been previously linked to risk 

factors of AD (McCartney et al., 2018), though a recent study found no 

association with risk of dementia in individuals over 79 years old (Sibbett et al., 

2020). It would be interesting to study accelerated ageing in young individuals 

who later progress to AD. Finally, I would further investigate the validity of the Xi 

DNA methylation findings presented in Chapter 5, through allele-specific DNA 

methylation sequencing.  

 

Broadly speaking, I see future studies of AD moving toward cell-sorted or single-

cell DNA methylation sequencing studies, which would eliminate the limitations 

of genomic coverage by arrays as well as cell-type heterogeneity. Furthermore, 

as AD is a complex disease and the current research in the field does not indicate 

causality of a single gene or locus, I believe it is important for future research to 

include multi-omics investigations of AD, in order to study the interplay between 

different biological systems such as genomics, epigenomics, transcriptomics and 



342 
 

proteomics. However, it may be very challenging to obtain a sizeable, well-

defined cohort of samples which addresses the limitations described above, and 

which has different modalities of data available. 
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6.4. Conclusions 

 

To summarise, the studies described in this thesis have provided novel insights 

into DNA methylation profiles in blood of individuals with AD or MCI, the effects 

of the risk factors age and sex, and disease-associated DNA methylation profiles 

on the sex chromosomes. The HOXB6 gene has been presented as an 

interesting and robust target for future diagnostic biomarker studies of AD. 

Moreover, future studies on DNA methylation in MCI and AD should not only 

correct for covariates, but should also take into account sex and age interactions.  
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APPENDIX A: EPIGENETICS AND DNA METHYLOMIC PROFILING IN 

ALZHEIMER’S DISEASE AND OTHER NEURODEGENERATIVE DISEASES 
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Abstract
Recent studies have suggested a role for epigenetic
mechanisms in the complex etiology of various neurode-
generative diseases. In this review, we discuss advances
that have been made toward understanding the role of
epigenetic processes in neurodegenerative disorders, with
a particular focus on Alzheimer’s disease, where
the most extensive studies have been undertaken to date.

We provide a brief overview of DNA modifications, followed
by a summarization of studies of DNA modifications
in Alzheimer’s disease and other neurodegenerative
diseases.
Keywords: Alzheimer’s disease, DNA hydroxymethylation,
DNA methylation, epigenetic, epigenome-wide association
study, genetic.
J. Neurochem. (2017) 143, 158–170.

The complex etiology of Alzheimer’s disease

Alzheimer’s disease (AD) has the largest burden of disease
among all neurodegenerative disorders, with prevalence of
dementia expected to rise to over 115 million cases
worldwide by 2050 (Prince et al. 2013). AD is characterized
by severe memory loss and cognitive deterioration, resulting
in a complete dependency on others, and a greatly decreased
life expectancy (Reisberg et al. 1985; Smolarek et al. 2010).
Pathological hallmarks of the disease, including aggregations
of extracellular amyloid-b protein, intracellular neurofibril-
lary tangles of hyperphosphorylated tau protein and progres-
sive neuronal cell death (Yates and McLoughlin 2008), are
thought to occur years before a clinical diagnosis can be
made (Amieva et al. 2008; Jack et al. 2010). In the early
stages of disease, these hallmarks are most prevalent in the
brainstem, hippocampal and entorhinal areas of the brain,
and spread to the temporal, parietal and frontal cortex as the
disease progresses (Dubois et al. 2010; Iatrou et al. 2017).
Early onset of AD (< 65 years) is generally associated with
Mendelian patterns of inheritance, caused by mutations in the
amyloid precursor protein (APP), and presenilin 1 and 2
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genes. However, the exact cause of the far more common,
sporadic, late-onset form of the disease (accounting for
> 95% of cases) remains unclear (Bertram et al. 2010; Reitz
and Mayeux 2014).
To elucidate the complex etiology of sporadic AD, a

considerable amount of research has focused on identifying
DNA sequence variation, mainly through genome-wide
association studies (GWAS). Such studies have nominated
a number of common variants, although these tend to have a
low effect size, with the exception of apolipoprotein E
(APOE) (Lambert et al. 2013). However, a recent study has
suggested that genetic variation only accounts for ~30% of
phenotypic variance (Ridge et al. 2013). Furthermore,
observations of monozygotic twins have shown discordance
in AD development and onset (Plomin et al. 1994; Gatz
et al. 1997; Mastroeni et al. 2009), implicating a role for
non-genetic factors in the development of AD, and which has
led to a rapidly expanding number of studies investigating a
role for epigenetic modifications in AD. Epigenetics refers to
the mitotically and meiotically heritable changes in gene
expression without alterations in the underlying DNA
sequence. This also potentially allows for alterations in gene
expression in response to environmental variation, such as
stress, diet or exposure to environmental chemicals. Of the
various known mechanisms, DNA modifications of the
cytosine base are perhaps the most researched and, as such,
will be the focus of this review. We will provide a brief
overview of DNA modifications, describing the current
literature that has examined their role in neurodegenerative
diseases, with a particular focus on AD.

Epigenetic DNA modifications and their role in the
brain

Currently, the cytosine base is known to exist in five states:
as unmodified cytosine (C), 5-methylcytosine (5mC),
5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC)
and 5-carboxylcytosine (5caC). The most common state of
cytosine in the brain, after the unmodified state, is 5mC,
which is mainly located in cytosine-phosphate-guanine
(CpG) dinucleotides. Genome-wide distribution studies have
found 5mC in a large majority of CpG dinucleotides, with the
exception of high-density CpG areas, known as CpG islands,
which largely remain unmethylated (Meissner et al. 2008;
Lister et al. 2009; Li et al. 2010). Unmodified DNA can be
methylated through DNA methyltransferases (DNMTs) that
transfer a methyl group from S-adenosyl methionine (SAM)
to the 5 position of cytosine (Fig. 1). DNMT3A and
DNMT3B are de novo methyltransferases, acting on unmod-
ified cytosine, while DNMT1 is thought to be largely
responsible for the maintenance of methylation through cell
divisions (Chen and Riggs 2011). DNA methylation plays a
crucial role in several key processes, such as genomic
imprinting and X-chromosome inactivation (Bonasio et al.
2010). Although it was originally believed to be solely
associated with transcriptional repression, recent evidence
suggests a differential effect on gene expression depending
on location in or around the gene (Ziller et al. 2013), with
intragenic DNA methylation shown to modulate alternative
splicing (Maunakea et al. 2013) and gene body methylation
associated with increased expression (Varley et al. 2013).
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Fig. 1 Cycle of cytosine modifications.
Unmethylated cytosine (C) can be converted

into 5-methylcytosine (5mC) through DNA
methyltransferases (DNMTs). Active
demethylation of 5mC, 5-hydroxymethyl-

cytosine (5hmC), 5-formylcytosine (5fC) and
5-carboxylcytosine (5caC) occurs via ten-
eleven translocation (TET) enzymes and

decarboxylation.
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Demethylation, the transition from methylation to unmodi-
fied cytosine, can occur either passively or actively (Delatte
and Fuks 2013). Passive demethylation takes place over
several DNA replication cycles, during which DNMT1 is
inhibited or absent from the process, leaving the newly
synthesized DNA strand unmethylated. Active demethylation
refers to the enzymatic conversion of 5mC to cytosine, which
is initiated by oxidation of 5mC into 5hmC by a family of
ten-eleven translocation (TET) proteins (Tahiliani et al.
2009; Guo et al. 2011; Delatte and Fuks 2013). Initially
believed to be a transient step in the demethylation process,
in recent years, 5hmC has been shown to be a potentially
independent and functional epigenetic marker (van den Hove
et al. 2012; Sun et al. 2014). It has been found to be present
in most tissues and cell types, but is particularly abundant in
the brain (Wen and Tang 2014), where it shows a genomic
region-specific distribution (Lunnon et al. 2016). 5hmC can
be further oxidized into 5fC by TET enzymes, which in turn
can be oxidized into 5caC in the demethylation process (He
et al. 2011; Ito et al. 2011). Finally, the demethylation
process can be completed through decarboxylation of 5caC
into unmodified cytosine (Wu and Zhang 2010; Ito et al.
2011).

A role for DNA modifications in AD?

Initially, most human epigenetic studies focused on identi-
fying changes in global DNA methylation in post-mortem
brain tissue, employing immunohistochemical techniques
with antibodies specific for 5mC or 5hmC (Table 1A). These
studies highlight the potential tissue specificity of epigenetic
modifications, as some studies of the hippocampus (5mC +
5hmC; (Chouliaras et al. 2013)), temporal neocortex (5mC;
(Mastroeni et al. 2009)) and entorhinal cortex (5mC; (Mas-
troeni et al. 2010), 5hmC; (Condliffe et al. 2014)) have
found a global decrease in DNA modifications in AD
patients compared to controls. However, a study of the
middle temporal gyrus and middle frontal gyrus demon-
strated elevated levels of 5mC and 5hmC in neurons of AD
patients (Coppieters et al. 2014). While other studies have
published conflicting evidence; Bradley-Whitman and Lovell
showed increased 5mC and 5hmC in the hippocampus in AD
(Bradley-Whitman and Lovell 2013), and Lashley et al.
(2015) showed no global changes in either modification in
the entorhinal cortex. A recently published study using the
more specific technique of gas chromatography/mass spec-
trometry (GC/MS) examined global levels of methylation
and hydroxymethylation in the superior temporal gyrus and
middle temporal gyrus, hippocampus/parahippocampal
gyrus, cerebellum and the inferior parietal lobe across
various stages of AD (Ellison et al. 2017). It was found
that brain regions affected by AD pathology show global
alterations in 5mC and 5hmC in the early stages of AD; yet,
in later stages of the disease, these global levels have

reversed to levels observed in controls. This disease
progression-related change in global DNA methylation and
hydroxymethylation levels could contribute to the contradic-
tory results found in the previous immunohistochemical
studies, although methodological differences in tissue pro-
cessing may also play an important role.
Although global DNA modification studies in AD have

highlighted a potential role for epigenetic mechanisms in
AD, it is, however, important that changes in individual
genes are studied, to allow us to better understand mecha-
nisms and pathways. Candidate gene studies have mainly
focused on methylation profiling of a vast array of genes, the
majority of which were studied based on previous association
with either early- or late-onset AD (see Table 1B). Initially,
studies focused on APP gene methylation in AD, although
these have been relatively inconsistent; an early study of APP
methylation found AD-associated hypomethylation of APP
in the temporal lobe (West et al. 1995), while more recent
studies have found no AD-related changes in DNA methy-
lation (Barrachina and Ferrer 2009; Brohede et al. 2010), or
even increased APP DNA methylation (Iwata et al. 2014).
However, the use of different techniques in each of these
studies, the limited sample numbers and the use of hetero-
geneous tissue could be responsible for conflicting results.
Since the initial study of APP, a wide range of other
candidate genes has been studied. DNA methylation alter-
ations have been found in a number of genes, including
PP2AC (Sontag et al. 2004), S100A2 and SORBS3 (Sieg-
mund et al. 2007), BDNF, SYP, NF-jb, and COX-2 (Rao
et al. 2012) and TREM2 (Celarain et al. 2016; Smith et al.
2016). Studies of alterations in MAPT DNA methylation in
AD are currently inconclusive, with reports of both
AD-associated hypomethylation (Iwata et al. 2014) and no
AD-related changes (Barrachina and Ferrer 2009).
In recent years, major technological advances have allowed

the first epigenome-wide association studies (EWAS) in AD
(Table 1C) (Smith and Lunnon 2017). The first AD EWAS
utilized the Illumina Infinium Human Methylation 27K array
(27K array) to study > 27,000 CpG sites in 14,475 genes
(Bakulski et al. 2012). The study identified 948 CpG sites
spanning 918 unique genes associated with late-onset AD, in a
comparison of frontal cortex tissue from 12 AD cases and 12
age- and gender-matched controls. The most significant
AD-associated CpG site showed hypomethylation in the
TMEM59 gene, with a 7.3% difference on the 27K array
between AD patients and controls, and a 2.7% difference shown
via pyrosequencing validation. Sanchez-Mut et al. (2014) also
used the 27K array, and examined hippocampal tissue of five
Braak stage I–II cases, five Braak stage III–IV cases, five Braak
stage V–VI cases and five controls. Braak-associated DNA
methylation alterations were found in four loci, of which two
resided inDUSP22, and one locus each inCLDN15 andQSCN6.
The group also reported that hypermethylation of DUSP22
correlated with its decreased RNA expression.

© 2017 International Society for Neurochemistry, J. Neurochem. (2017) 143, 158--170
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Table 1. (continued)

Article Sample type

Number of samples
Type of

modification Approach Method Main findingsAD Control

Sontag et al. 2004 MFG, STG, CER 48 24 5mC PP2AC targeted

methylation analysis

Western blot AD-associated

decreased PP2AC
methylation

Siegmund et al.

2007

ALTLC 18 39 5mC* 50 target genes RT-PCR (MethyLight) AD-associated

decreased S100A2
methylation and
increased SORBS3

methylation
Wang et al. 2008 PFC, lymphocytes Blood: 6

Brain: 24
Blood: 6
Brain: 10

5mC* 12 target genes
previously

associated with AD

MALDI-TOF mass
spectrometry

Identified epigenetic drift
from the norm in late-

onset AD
Barrachina and
Ferrer 2009

FC, HIP Stage I–II: 17
Stage III–IV: 15
Stage V–VI: 12

26 5mC* MAPT, APP, PSEN1,
RAGE, ADORA2A
and UCHL1 targeted

analysis of 5mC in
AD and other
tauopathies

MALDI-TOF mass
spectrometry

No AD-associated
methylation differences
found in any of the

target genes

Brohede et al.
2010

FC, PC, TC, CER 6 – 5mC* 5mC analysis
targeted at CpG
island at 50 end of

APP gene

Capillary electrophoresis No methylation at APP
CpG island in any of the
investigated brain

regions
Rao et al. 2012 FC (BA9) 10 10 5mC Global 5mC, and 8

target genes known
for differential

expression in AD

RT-PCR (MethyLight) Increased methylation of
BDNF and
synaptophysin,

decreased methylation
of NF-jb and COX-2

Furuya et al.

2012b

EC, AC, HIP, blood Blood: 34

Brain: 10

Blood: 22

(young), 23
(elderly)
Brain: 10

5mC* SNAP25 promoter

targeted

MALDI-TOF mass

spectrometry

No AD-associated

methylation differences
in SNAP25 promoter in
brain or blood

Furuya et al.
2012a

EC, AC, HIP, blood Blood: 36
Brain: 12

Blood: 25
(young), 23
(elderly)

Brain: 10

5mC* SORL1 and SIRT1
promoter targeted

MALDI-TOF mass
spectrometry

No AD-associated
methylation differences
in SORL1 and SIRT1

promoters in brain or
blood

(continued)
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The 27K array was superseded by the Illumina Infinium
Human Methylation 450K array (450K array), which is
currently the most widely used method for EWAS. It
interrogates more than 485,000 CpG sites covering 98.9% of
known UCSC RefGenes and 96% of CpG islands (Bibikova
et al. 2011). Watson et al. (2016) recently used this
technique to examine superior temporal gyrus tissue from
34 patients with late-onset AD, and an equal number of age-,
race-, and gender-matched non-demented controls. They
analyzed neighboring AD-associated CpG sites and identi-
fied 479 differentially methylated regions (DMRs) with an
average size of 927 bp, the majority of which were found to
be hypermethylated in AD. Of the 25 most significant
DMRs, eight genes (LOC100507547, PRDM16, PPT2,
PPT2-EGFL8, PRRT1, C10orf105, CDH23 and RNF39)
had been previously reported in the first AD EWAS studies
(De Jager et al. 2014; Lunnon et al. 2014). Lunnon et al.
(2014) studied a cohort of 122 donors in a cross-tissue
approach, using tissue from the superior temporal gyrus,
entorhinal cortex, prefrontal cortex, cerebellum and pre-
mortem blood. These regions are known to be affected
differentially by AD, with the entorhinal cortex showing
pathology early in the disease process, and the cerebellum
remaining relatively unaffected (Wenk 2003). Initially
focusing on the entorhinal cortex, the study found two
differentially methylated positions located in the ANK1 gene
among the most significant Braak stage-associated sites.
These results were replicated in the prefrontal cortex and
superior temporal gyrus in the same individuals; yet, no
disease-associated changes in these loci were found in the
cerebellum or pre-mortem blood. The study also validated
AD-associated ANK1 hypermethylation in a further three
validation cohorts, including one that used another technol-
ogy (bisulfite pyrosequencing). Genetic variation in ANK1
has been associated with diabetes (Imamura et al. 2012;
Harder et al. 2013) and, interestingly, DNA methylation
changes in this gene were implicated in AD in the study by
De Jager et al. (2014). Their EWAS study determined
dorsolateral prefrontal cortex DNA methylomic profiles
associated with amyloid-b plaque burden in 708 individuals,
and identified 71 plaque burden-associated CpG sites.
Twelve of these nominated loci were validated in data taken
from the Lunnon et al. study, reaching Bonferroni signifi-
cance. Of the genes identified, ANK1, CHD23, DIP2A,
RHBDF2, RPL13, SERPINF1 and SERPINF2 were found to
show significant AD-associated gene expression changes,
indicating a potential functional role for the DNA modifica-
tions identified in AD.
One caveat with the EWAS studies described above is that

they have all used bisulfite-treated DNA, which means that
5mC and 5hmC are indistinguishable, and results actually
represent the sum of the two modifications. A recent
adaptation to the protocol, whereby DNA is first oxidized
prior to bisulfite treatment, allows measurement of 5mCT
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alone. Furthermore, by performing an oxidative-bisulfite
treatment in parallel with a bisulfite treatment, one can
subtract one value from the other to generate a measurement
of 5hmC in isolation (Fukuzawa et al. 2016). To date, only
one EWAS of 5hmC in AD has been published (Zhao et al.
2017). This study used high-throughput sequencing to
examine the distribution of 5hmC in dorsolateral prefrontal
cortex tissue of 20 AD patients, 4 mild cognitive impairment
patients and 6 non-demented controls. A total of 517 plaque-
associated differentially hydroxymethylated regions were
identified, along with 60 neurofibrillary tangles-associated
differentially hydroxymethylated regions (at q < 0.05).
However, because of the low sample size these results will
require replication in further studies. It should also be noted
that because of low sequencing resolution, this study was not
able to differentiate 5mC and 5hmC, and the measures
reported are that of the combined signal. Further AD EWAS
studies using oxidative-bisulfite-treated DNA are highly
anticipated.

DNA modifications in other neurodegenerative
diseases

Although not as extensively studied as AD, a number of
human studies have examined the role of DNA modifications
in other neurodegenerative diseases, particularly in Parkin-
son’s disease (PD) and amyotrophic lateral sclerosis (ALS).
Most studies have investigated global DNA methylation
within a specific brain region affected by the disease, or
focused on candidate genes previously linked to the disease.
For instance, in ALS, a disease that causes loss of motor
neurons in the brainstem, spinal cord and motor cortex
(Robberecht and Philips 2013), global DNA methylation and
hydroxymethylation were found to be increased in the spinal
cord compared to controls (Chestnut et al. 2011; Figueroa-
Romero et al. 2012). However, in blood, contradictory
studies have been published, with one highlighting increased
global DNA methylation in ALS (Tremolizzo et al. 2014),
while another showed no change in global 5mC and 5hmC
(Figueroa-Romero et al. 2012). In PD and the related
disorder, dementia with Lewy bodies (DLB), a global
decrease in 5mC of up to 30% was found in the frontal
cortex of patients compared to non-demented controls
(Desplats et al. 2011). This study went on to examine the
candidate genes SNCA, SEPW1 and PRKAR2A, which had
been previously implicated in PD. Intron 1 of SNCA was
found to be hypomethylated in both DLB and PD, and
regulatory regions of SEPW1 and PRKAR2A were found to
be hypomethylated in DLB and PD, respectively. Most
candidate gene studies of PD have focused on intron 1 of
SNCA, a gene that has been causally associated with
Mendelian forms of PD (Singleton et al. 2003; Chartier-
Harlin et al. 2004) and shown to be a risk factor for non-
Mendelian PD (Edwards et al. 2010). The majority of these

studies have reported hypomethylation of SNCA intron 1 in
both the brain (substantia nigra, putamen and cortex) and
blood of PD patients (Jowaed et al. 2010; Ai et al. 2014;
Tan et al. 2014; Pihlstrøm et al. 2015), although some other
studies found no DNA methylation changes in white blood
cells (Richter et al. 2012; Song et al. 2014) or substantia
nigra brain tissue (Guhathakurta et al. 2017). Other candi-
date gene studies of PD have reported hypomethylation of
the NPAS2 promoter in blood (Lin et al. 2012), and
alterations in MAPT in the cerebellum and putamen (Cou-
pland et al. 2014).
In studies of ALS, a number of candidate gene studies

have found alterations in the ALS and frontotemporal
dementia-associated gene C9orf72, across several tissues
(Xi et al. 2013, 2015; Russ et al. 2015). Furthermore,
promoter regions of other genes previously associated with
ALS, such as SOD1 and VEGF, were found to be largely
unmethylated in both brain and blood of ALS patients and
controls (Oates and Pamphlett 2007). The study of DNA
methylation in Huntington’s disease (HD) is still in its
infancy. However, one study on putamen tissue from HD
patients and controls demonstrated an increase in 5mC and a
decrease in 5hmC in the 50 untranslated region of the
ADORA2A gene (Villar-Men�endez et al. 2013), the expres-
sion of which is known to be altered in HD (Martinez-Mir
et al. 1991; Glass et al. 2000).
With the exception of AD, a limited number of EWAS

studies have been performed in neurodegenerative diseases.
A study employing the 27K array to examine cortex and
putamen tissue from six PD patients and six controls
identified a number of genes altered in PD, including
LOC84245, PPP4R2, CYP2E1, CAT, DEFA1 and CHFR
(Kaut et al. 2012). Of these, only CYP2E1 showed
hypomethylation in both the cortex and putamen. Masliah
et al. (2013) studied frontal cortex tissue and peripheral
blood leukocytes of five PD patients and six controls using
the 450K array. They identified 2,908 and 3,897 CpG sites
showing differential methylation in the brain and blood,
respectively. A number of these CpG sites were located in
genes previously shown to be deregulated in PD or
implicated in genome-wide association studies of PD,
among which were HLA-DQA1, GFPT2 and MAPT.
However, because of the low sample size these results will
need further validation. To date, two EWAS studies have
been performed in ALS. The first made use of GeneChip
Human Tiling 2.0R Arrays to examine epigenome-wide
DNA methylation in the frontal cortex of 10 male sporadic
ALS patients and 10 age- and gender-matched controls
(Morahan et al. 2009). A total of 38 DMRs were identified,
mapping to 23 genes, of which the most significant resided
in ATRN, MSRA, PRDM16 and SGCZ. The second EWAS
study of ALS examined spinal cord tissue from 12 sporadic
ALS patients and 11 age- and gender-matched controls
using the 27K array (Figueroa-Romero et al. 2012). This
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study identified 4,261 differentially methylated CpG sites,
which represented 3,574 genes.

Study design caveats for EWAS in
neurodegenerative diseases

This review has highlighted that further EWAS are still
required in a number of neurodegenerative diseases, partic-
ularly with larger sample numbers. However, in order to
examine the epigenome in neurodegenerative diseases in the
brain, there are a few study design caveats to initially
consider (Lunnon and Mill 2013). First, it is known that
DNA methylation changes occur with aging, with both
hypermethylation and hypomethylation observed depending
on tissue and genomic location (Christensen et al. 2009;
Horvath 2013). This highlights the importance of balancing
age across study groups. Second, is the issue of the tissue
specificity of epigenetic modifications. Neurodegenerative
diseases mainly affect a specific brain region, or are
characterized by a specific spatiotemporal pattern of changes,
affecting specific regions of the brain as the disease
progresses. It is therefore important to carefully select the
brain region to be examined, as brain regions could be
affected differentially across the different disease stages.
Ideally, an investigation of multiple brain regions would
allow for the identification of spatiotemporal epigenetic
changes related to the disease, although this raises the issue
of sample size; it may be challenging to obtain a sizeable,
well-defined cohort of samples with tissue available from
multiple brain regions. Third, and related to this issue, is cell-
type specificity. Neurodegenerative diseases are character-
ized by neuronal loss, which will alter the cell-type
composition of diseased samples, which in turn makes the
interpretation of generated data difficult. Additionally, the
use of heterogeneous tissues, such as brain, could obscure
cell-type specific modifications related to the disease, as
changes in one cell type could negate or distort changes in
another, as has been previously shown in the context of AD
(Blalock et al. 2011). A solution to these issues could be the
use of laser capture microdissection, fluorescence-activated
cell sorting or magnetic-activated cell sorting in order to
acquire cell-type specific samples. However, these tech-
niques are often expensive and time-consuming. Another
method frequently used is to correct for cell-type composi-
tion using bioinformatic approaches. For example, one can
estimate neuron-glia cellular proportions in the brain tissue
that has been analyzed, based on DNA methylation values in
the generated EWAS data, and then control for this in
downstream analyses (Guintivano et al. 2013). Furthermore,
individual cells may also differ in their pattern of epigenetic
modifications, and the heritability of different epigenetic
modifications across multiple cell divisions may vary, which
complicates the examination of epigenetic modifications in
bulk tissue, such as brain samples. A potential solution to this

problem is presented by the use of advanced single-cell
sequencing techniques to investigate cell-specific epigen-
omes (Bheda and Schneider 2014). Finally, many people
with neurodegenerative diseases also suffer from other
comorbidities. Particularly, comorbidity with another neu-
rodegenerative disease is not uncommon, for example, AD
and PD have been shown to occur together (Poblador-Plou
et al. 2014). This could hinder the identification of specific
DNA methylomic profiles to a particular disease.
Many of the issues associated with studying epigenetic

changes in the brain are also applicable to studies in the
blood, for example, sample cell-type composition and
comorbidity also play a major role. Similar to the cellular
proportion corrections that can be performed in brain EWAS
data, cell-specific DNA methylation markers in the blood can
be used to identify cell-type proportions within samples
(Houseman et al. 2012; Horvath 2013). In the context of
blood studies, environmental factors have also been shown to
alter blood DNA methylation profiles, for example, smoking
(Zeilinger et al. 2013), nutrition (Friso and Choi 2002) and
environmental chemicals (Hou et al. 2012). Similarly,
comorbidity with systemic diseases may affect DNA methy-
lation patterns in blood, as is the case with hypertension,
which is commonly associated with AD (Smolarek et al.
2010; Gerritsen et al. 2016).

Future perspectives

The continued development of genomic technologies will
lead to more in-depth analyses of DNA modifications. The
recent development of the Illumina Infinium Methylation
EPIC BeadChip array allows for the interrogation of over
850,000 CpG sites across the genome. Although, to date, no
studies using this technique have been published in
neurodegenerative diseases, studies using this approach
with bisulfite-treated and oxidative-bisulfite-treated DNA, to
specifically analyze 5mC and 5hmC in parallel, are
anticipated in the AD research field. Most studies examin-
ing DNA modifications in the context of AD have focused
on DNA methylation and, more recently, DNA hydrox-
ymethylation. However, 5fC has recently been demonstrated
to be a stable modification in mice, showing differential
levels to 5hmC which may suggest a functional role.
Whether 5fC and possibly 5caC could function as indepen-
dent epigenetic markers remains to be determined (Bach-
man et al. 2015), although 5fC and 5caC are far less
abundant than 5hmC and 5mC (Song and He 2013).
Additionally, methylation of non-CpG cytosines has been
identified in human brain tissue, and has been shown to be
negatively correlated with the associated gene expression in
dentate neurons of adult mice (Guo et al. 2014). Further-
more, methylation of the adenine base, which was initially
believed to occur mainly in prokaryotes (Ratel et al. 2006),
has recently been detected in mammalian genomes (Koziol
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et al. 2016; Wu et al. 2016), although its exact regulatory
potential remains unclear.
At present, the major limitation of the studies discussed in

this review, and epigenetic studies in general, is the issue of
causality. Alterations in DNA modifications could be either
causal in the disease process, or could themselves arise as a
result of the pathological changes associated with disease. It
is expected that the use of novel (epi)genetic editing
techniques will allow DNA methylation to be altered at
specific loci. Clustered regularly interspersed short palin-
dromic repeats (CRISPR) uses RNA-guided Cas9 nucleases
to allow the introduction of novel sequences to a strand of
DNA. It is now possible to fuse the Cas9 protein with the
enzymatic domains of DNMT3A or TET1 to add, or remove,
methyl groups to DNA, respectively (Liu et al. 2016). The
use of this technology will ultimately allow the field to
determine the functional consequence of loci nominated from
EWAS and to establish whether these represent a cause, or a
consequence, of the disease process. Furthermore, as epige-
netic changes are potentially reversible, the identification of
disease-causative mechanisms may provide realistic targets
for future therapeutic interventions.
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NeuroMed study, which included 89 nondemented controls, 86 patients with Alzheimer’s disease, and
109 individuals with mild cognitive impairment, including 38 individuals who progressed to Alzheimer’s
disease within 1 year. We identified significant differentially methylated regions, including 12 adjacent
hypermethylated probes in the HOXB6 gene in Alzheimer’s disease, which we validated using pyrose-
quencing. Using weighted gene correlation network analysis, we identified comethylated modules of
genes that were associated with key variables such as APOE genotype and diagnosis. In summary, this
study represents the first large-scale epigenome-wide association study of Alzheimer’s disease and mild
cognitive impairment using blood. We highlight the differences in various loci and pathways in early
disease, suggesting that these patterns relate to cognitive decline at an early stage.
� 2020 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
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1. Introduction

With an increasingly aging population the prevalence of de-
mentia is expected to almost double in the coming 20 years, with
Alzheimer’s disease (AD) being the greatest contributor. AD pre-
sents itself as a heterogeneous, multifaceted disease, and this
complexity is reflected in the challenges researchers face in eluci-
dating the exact mechanisms underlying this disorder. A number of
genome-wide association studies (GWAS) have identified suscep-
tibility loci associated with the more common, sporadic form of AD
(Lambert et al., 2013). However, these do not account fully for dis-
ease risk, and the exact processes involved in the development and
progression of this neurodegenerative disorder remain unknown.

A growing number of studies have investigated the role of
epigenetic mechanisms in the etiology and progression of AD.
Epigenetic mechanisms refer to the reversible regulation of gene
expression that occurs independently of the underlying DNA
sequence. One such mechanism is DNA methylation, which in-
volves the addition of a methyl group to an unmodified base, most
commonly cytosine (yielding 5-methylcytosine: 5mC), and plays a
critical role in the regulation of gene expression (Maunakea et al.,
2013; Varley et al., 2013; Ziller et al., 2013). Recently, numerous
epigenome-wide association studies (EWAS) have explored DNA
methylomic variation in postmortem human brain tissue from AD
patients and elderly controls and have highlighted a number of
loci that show robust differences in DNA methylation in the cortex
across independent cohorts (Altuna et al., 2019; De Jager et al.,
2014; Gasparoni et al., 2018; Lardenoije et al., 2019; Lunnon
et al., 2014; Smith et al., 2018, 2019, 2020; Watson et al., 2016).
There is communication between the brain and the blood, espe-
cially in disease. In recent years, several studies have identified
transcriptomic (Booij et al., 2011; Fehlbaum-Beurdeley et al., 2012;
Lunnon et al., 2012, 2013, 2017; Rye et al., 2011) or proteomic (Hye
et al., 2006; O’Bryant et al., 2010, 2011, 2016) alterations in the
blood early in the disease and these signatures have been used for
identifying novel dysfunctional pathways and biomarkers in the
blood. Although valuable, the use of systemic gene expression or
protein markers for this purpose still yields some pitfalls due to
the dynamic nature of gene and protein expression. For example,
sampling methods can significantly alter the expression levels by
inducing ex vivo mRNA expression (Asare et al., 2008; Thach et al.,
2003). Similarly, differences in processing methods between re-
searchers (e.g., handling methods, sample processing methods)
can affect the quality of mRNA and protein and impinge on
downstream analyses (Vartanian et al., 2009; Zhao et al., 2012).
DNA methylation levels are reported to be more stable than mRNA
levels (Paziewska et al., 2014) and as such studying this in AD
blood could be more informative of important biological pathways
specifically altered in disease. To date, most blood DNA methyl-
ation studies have focused on specifically investigating candidate
genes (da Silva et al., 2014; Furuya et al., 2012b,a; Wang et al.,
2008). Four EWAS of AD blood have been published so far,
which have identified a number of disease-associated loci. How-
ever, these studies used a limited set of (nondemented) samples
and/or did not include any individuals with mild cognitive
impairment (MCI) (Kobayashi et al., 2016; Lardenoije et al., 2019;
Lunnon et al., 2014; Madrid et al., 2018).

To understand changes in the blood related to the development
and progression of AD, it is important to include MCI individuals in
addition to AD patients and controls. Often viewed as an early stage
of AD, MCI is characterized by memory and other cognitive com-
plaints and impairment, although these have no significant impact
at this stage on daily living, as is seen in AD (Petersen et al., 1999).
Although individuals with MCI may remain stable over time or
develop another neurodegenerative disorder, MCI subjects,
particularly those with amnestic MCI (aMCI), are at an increased
risk of progressing to AD (Jicha et al., 2006). In these cases, the early
clinical symptoms reflect the underlying pathological changes
related to AD that occur years before the disease fully manifests
(Hardy, 1997; Jack et al., 2010). Previous research has shown that
disease-related changes in gene expression can be detected in pe-
ripheral blood from individuals with MCI and AD, with results
indicating that some peripheral differences in AD can be detected in
MCI subjects (Lunnon et al., 2012). Taken together, the identification
of blood methylation patterns related to MCI and AD is of great
interest, as it may increase our understanding of peripheral, as well
as central changes that occur early in the disease.

In the current study, we have generated genome-wide DNA
methylation data from well-characterized control, MCI and AD
subjects with detailed demographic, clinical, neuroimaging, and
transcriptomic data previously collected. We have used this dataset
to identify differentially methylated loci and epigenetic differences
in specific biological processes in blood, which are associated with
disease status, or future progression from MCI to AD.

2. Methods

2.1. Subjects

We analyzed a subset of 284 blood samples selected for our
study from the larger AddNeuroMed cohort on the basis of addi-
tional phenotypic information being available, including genomic
(Furney et al., 2011b), transcriptomic (Lunnon et al., 2012, 2013),
and magnetic resonance imaging (MRI) data (Furney et al., 2011a,b;
Westman et al., 2011). The cross-European AddNeuroMed study is
aimed at the identification of biomarkers for AD (Lovestone et al.,
2007, 2009) and consists of 6 sites across Europe (Kuopio,
Finland; qód�z, Poland; London, United Kingdom; Perugia, Italy;
Thessaloniki, Greece; Toulouse, France). Informed consent was
obtained from each participant according to the Declaration of
Helsinki, and ethical approval was obtained at each site. All sites
followed standardized procedures.

Within our subset, the subjectswere classified into one of 3 groups
according to their status at sample collection: AD (n ¼ 86), MCI (n ¼
109), or elderly control (CTL; n ¼ 89). The diagnosis of AD was made
according to the National Institute of Neurological and Communica-
tive Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association (NINCDS-ADRDA) criteria (McKhann et al.,
1984), and the fourth edition of the Diagnostic and Statistical
Manual of Mental Disorders (DSM-IV) (del Barrio, 2004). Subjects in
theMCI groupweremainly recruited frommemory clinics and scored
0.5 on the total Clinical Dementia Rating Scale (CDR) or 0.5 or 1 on the
memory category of the CDR (Morris, 1993). All MCI individuals re-
ported memory problems but showed no significant impairment in
daily living according to Petersen’s criteria of MCI (Petersen et al.,
1999). Further details are provided elsewhere (Liu et al., 2011). A
subset of MCI subjects progressed to ADwithin 1 year of the baseline
measurement (MCI-AD, n ¼ 38), while others remained stable (MCI-
MCI, n ¼ 67). A subset of 4 MCI subjects converted to AD at an un-
known time after baseline collection and were excluded from any
conversion analysis. Elderly CTLswere defined as showing no signs of
cognitive impairment. Subjects were excluded from this study if they
had any other significant psychiatric or neurological illness, were
younger than 65 years of age, or were not white Caucasian. MRI data
were collected for 213 individuals as described previously (Simmons
et al., 2011). To obtain demographic information and medical data,
semistructured interviewswere carried out for all subjects. A number
of neuropsychological assessments were also performed, including
the mini-mental state examination (MMSE) (Folstein et al., 1975). An
overview of individuals included in this study can be found in Table 1.



Table 1
Cohort demographics

Control MCI AD

MCI-MCI MCI-AD

N 89 67 42a 86
Gender (M/F) 34/55 34/33 16/26 30/56
Age (mean � SD) 73.8 � 5.3 75.1 � 5.6 76.3 � 5.3 76.8 � 5.6
MMSE (mean � SD) 29 � 1.2 27.3 � 1.7 26.3 � 2.2 20.8 � 4.5
Center (N)
Kuopio (Finland) 22 17 16 27
qód�z (Poland) 13 5 1 8
London (United Kingdom) 22 6 3 7
Perugia (Italy) 19 19 14 23
Thessaloniki (Greece) 4 16 5 16
Toulouse (France) 9 4 3 5

Subject characteristics of the 284 samples that passed QC. Shown are sample numbers (N), sex (males [M]/females [F]), mean age (� standard deviation [SD]), mean mini-
mental state examination (MMSE) � SD, and sample numbers per source (Center). Of the 109 mild cognitive impairment (MCI) subjects, 67 remained MCI-stable (MCI-
MCI) over the 1 year after sample collections, while 42 converted to AD (MCI-AD), with 38 converting within 1 year of sample collections.

a Four MCI-AD subjects were excluded from the analysis of MCI to AD conversion (but included in the ANOVA analysis of baseline diagnosis), as the exact time of conversion
was not known. All individuals used in this study were white Caucasian.
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2.2. DNA methylation analysis

DNAwas extracted from the blood samples collected at baseline
as described by Furney et al. (2011). The DNA was tested for
degradation and purity. 500 ng DNA from each sample was sodium
bisulfiteetreated using the Zymo EZ-96 DNAmethylation kit (Zymo
Research, CA, USA) according to the manufacturer’s standard pro-
tocol. Samples were assessed using the Illumina Infinium Human
Methylation 450K BeadChip array (450K array; Illumina, CA, USA)
using an Illumina HiScan System (Illumina, CA, USA). All samples
were assigned a unique code for the purpose of the experiment and
randomized with respect to sex, center, and disease status to avoid
batch effects, and processed in batches of 4 BeadChips.

Raw intensity data files were imported into the R statistical
environment (version 3.5.2) (R Core Team, 2018) using the wateR-
melon (Pidsley et al., 2013) package as a methylumi object. Data
quality control (QC) and preprocessing was carried out using the
packages wateRmelon and minfi (Aryee et al., 2014). Initial QC
checks on the data included labeling checks via sex and genetical
identity, and the removal of cross-hybridizing probes, probes
located on the sex chromosomes, and probes containing a single
nucleotide polymorphism in the probe sequence or within 10 bp
(Chen et al., 2013; Price et al., 2013). The p-filter function was
applied, followed by the outlyx function within the wateRmelon
package, with none of the 284 samples identified as outliers.
Quantile normalization was then carried out using the dasen
function within wateRmelon, with 401,266 probes taken forward
for analysis. Blood cell type proportions were calculated using the
Houseman referenceebased method (Houseman et al., 2012). DNA
methylation data can be found on GEO under the accession number
GSE144858.

Before we identified differentially methylated positions (DMPs)
associated with diagnosis, we first regressed out the effect of spe-
cific covariates that correlatedwith the first 3 principal components
of the normalized data (Supplementary Fig. 1), with these variables
being age, sex, blood cell type proportion (CD4 and CD8 T lym-
phocytes, natural killer cells, B cells, monocytes, granulocytes), and
bisulfite conversion batch. An analysis of variance (ANOVA) was
then performed on the residuals from the linear regression, to test
for DNA methylation differences across all 3 groups. A post-hoc
Tukey’s honest significant difference (HSD) test (Tukey, 1949) was
applied to the results to compare methylation levels between each
of the 3 diagnostic groups at baseline (CTL, MCI, AD). For the pur-
pose of these analyses, the MCI group included both MCI-MCI and
MCI-AD as both groups were classified as MCI at baseline, which
was the time point when blood sampling occurred. To identify
differentially methylated regions (DMRs), which represent areas of
the DNA containing multiple adjacent DMPs, we used the DMPs
from both the ANOVA and the individual between group Tukey’s
tests and applied the comb-p module (Pedersen et al., 2012) in
Python (version 2.7.5) (Rossum and Boer, 1991), assessing regions of
1000 base pairs, with a p-value threshold of p < 0.01. We selected
only regions containing �2 probes, and that had a multiple testing-
corrected p < 0.05, which was corrected using the �Sidák method
(�Sidák, 1967). To identify DMPs and DMRs relating to the future
conversion from MCI to AD we performed an analysis comparing
the MCI-MCI subjects and the MCI-AD subjects, by first regressing
out age, sex, blood cell type proportion, batch, and baseline MMSE
score. Baseline MMSE score was included as a covariate as we
observed a small, but significant difference in baseline MMSE be-
tween the MCI-MCI and MCI-AD groups. We then used a linear
regression to compare the 2 groups and performed comb-p analysis
as described above. Quantile-quantile (QQ)-plots of the p-values
from both the ANOVA and linear regression can be found in
Supplementary Fig. 2.

2.3. Generation of weighted gene correlation networks

In order to identify clusters, or “modules”, of highly comethy-
lated sites in the genome, we made use of the R package for
weighted gene correlation network analysis (WGCNA) (Langfelder
and Horvath, 2008). The hypothesis underlying this method is
that genes that highly co-vary, share the same underlying biological
processes. Prior to creating the modules, all nonvariable probes
(variance < median variance) were first removed from the
normalized data, leaving 200,633 probes for analysis. Samples were
then clustered based on their Euclidean distance, and clustering
dendrograms were visually inspected to identify outlier samples,
which were not detected. Network construction and module
detection was then performed in a block-wise manner and con-
structed irrespective of the direction of correlation between probes
(unsigned). The connection strength between 2 probes was
weighted using a soft threshold value of 9 in the baseline group
analysis and 8 in the comparison of MCI converters to MCI non-
converters, which emphasizes high correlations over low correla-
tions. The soft threshold values were selected using the
pickSoftThreshold function within the WGCNA package. In the
resulting modules, each module is identified by an arbitrarily
assigned color, and the gray module is disregarded from further
analyses as it contains unassigned probes. Module eigengenes
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(MEs) were calculated for each module, as the first principal
component across probes assigned to each module. The ME is a
single value for each sample and represents the shared methylation
profile of the module. Modules were generated twice: once for the
baseline group analysis, which compared CTL to MCI to AD, and
once for the conversion analysis using only the subset of MCI-MCI
and MCI-AD samples.

2.4. Association of modules to traits of interest

Covariates (age, sex, blood cell type proportions, and batch
number) were regressed out from the MEs, and extreme outliers
(exceeding >5 standard deviations) were removed. Modules were
then associated with baseline diagnosis groups and traits of interest
by performing pairwise Pearson or Spearman correlations for
continuous or ordinal variables, respectively. Correlations were
performed using dummy variables of baseline diagnosis categories
to investigate all permutations of comparisons (i.e., CTL versus MCI,
CTL versus AD, andMCI versus AD), with the group not used in each
comparison set to NA. Additional traits of interest included number
of education years, number of APOE ε4 alleles, MMSE score, and the
following structural MRI measurements: left, right, and total en-
torhinal cortex volume (LEV, REV, and TEV, respectively), left, right,
and total hippocampal volume (LHV, RHV, and THV, respectively),
ventricular volume (VV), and whole brain volume (WBV). Similarly,
regression of the same covariates (with the addition of baseline
MMSE score) and outlier removal was also performed for MEs
generated from the MCI-MCI and MCI-AD samples. The residuals
from this regression were then used to run a linear regression,
comparing nonconverters to converters.

2.5. Module membership and probe significance

For each of the modules showing significant (p < 0.05) associ-
ations with one of the 3 baseline groups, conversion to AD, or traits
of interest, we calculated the module membership (MM) and probe
significance (PS). MM was calculated as the Pearson correlation
between the methylation value of each probe and the ME values,
representing the strength of association between a probe and the
module it belongs to. PS represents the strength of the correlation
between a probe’s methylation value and the diagnosis or trait of
interest, as performed by Pearson correlations for continuous traits,
and Spearman correlations for ordinal traits or diagnostic groups.
We correlated and plotted MM to PS for modules of interest and
focused on those that showed significant positive correlations (i.e.,
r > 0, p < 0.05), which would indicate that probes more integral to
the module are mainly driving the association with the trait of in-
terest. Underlying biological processes and pathways were then
examined for the modules selected, using Gene Ontology (GO) and
Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses. For modules containing a large number of
probes (>10,000), we performed these pathway analyses on the
probes that were central to the module (i.e., core probes). We set
this threshold at 15%, thus selecting the top 15% of probes with the
highest MM. Analyses were performed using the missMethyl pack-
age (Phipson et al., 2015), taking into account the differing number
of probes covering each gene on the array.

2.6. Analysis of gene expression data and association with
methylation data

Normalized gene expression data from Illumina Human HT-12
v3 Expression BeadChip arrays (HT-12 arrays) was obtained from
a previous study by Lunnon et al. (2012), for 237 individuals
included in the current study. Expression data for all genes
containing DMRs identified in this study were extracted for analysis
if available. For genes nominated from the diagnostic category
analysis (CTL, MCI, AD), the covariates of age, sex, and cell type
proportions (estimated using Houseman’s referenceebased
method) were regressed out of the expression data and an
ANOVA and subsequent Tukey’s HSD were then performed on the
residuals of the regression to identify diagnostic category differ-
ences in expression levels of genes containing DMRs. For genes that
contained DMRs associated with the progression to AD, only the
MCI-MCI and MCI-AD samples were analyzed, with age, sex, cell
type proportions, and baseline MMSE score regressed out of the
expression data, with a subsequent linear regression analysis per-
formed to assess gene expression differences betweenMCI-MCI and
MCI-AD individuals in DMR genes.

Next, methylation values within a DMR were correlated to gene
expression values of an annotated gene. Methylation values that had
previously been corrected for covariates (i.e., residuals) were
extracted for 450K array probes located within each DMR based on
genomic location of the DMRs. Pairwise Pearson correlations were
then performed between the covariate-adjusted gene expression
levels and covariate-adjusted methylation values, for individual
450K probes within a DMR. We also performed correlations of gene
expression and mean methylation levels from all 450K probes in the
DMR. To determine whether the association between gene expres-
sion andmethylation differed between CTL and individuals withMCI
or AD, ANOVAs were performed on gene expression levels which
included an interaction term between methylation and baseline
diagnostic groups (i.e., expression ~ methylation*group). This was
performed on the probe most significantly associated with the dis-
ease for each DMR, and the mean methylation value in the DMR.
Similar analyseswere performed on theMCI-MCI andMCI-AD subset
of individuals, for DMRs associated with progression to AD.
2.7. Validation of the HOXB6 differentially methylated region using
pyrosequencing

For the purpose of validating our findings, we designed a pyro-
sequencing assay to quantify DNA methylation at the most signifi-
cant sites (cg17179862 and cg03803541) within the HOXB6 region
(chr17:46681111e46682414), which was shown to be a DMR in AD
relative to CTL. Pyrosequencing assays were designed with the
PyroMark Assay Design software 2.0 (Qiagen). In addition to the 2
CpG sites the assay was designed for, further 3 CpG sites that were
not assessed on the 450K array were also covered. Out of the original
284 samples, 264 were used for pyrosequencing. Samples were
semi-randomly selected, keeping the group sample number ratios as
equal as possible, and randomly distributing samples across plates. A
single amplicon of 303 base pairs was amplified using designed
primers, and tested for specificity (forward primer ¼
TTTTTGGTGAGGGGGGAGT, reverse primer ¼ CCTACCATCCCTCCCT-
TATCT, sequencing primer ¼ CTCTAACTATTACCCC). The level of DNA
methylation was then quantified using the Pyromark Q24 system
(Qiagen), following the standard protocol as provided by the
manufacturer and the Pyro Q24 CpG 2.0.6.20 software.

Pyrosequencing data QCwas performed using the Pyromark Q24
software, in addition to a visual inspection of the data and signal
intensities, with all 264 samples passing QC (CTL: n ¼ 83, MCI: n ¼
102, AD: n¼ 79). DNAmethylation percentages at specific CpG sites
were calculated by the software and exported to the R statistical
environment. Subsequently, an ANOVAwas performed for each CpG
site covered by the assay, as well as the average methylation value
across the region. This analysis was identical to the analysis per-
formed on the 450K data, and the covariates of age, sex, cell type
proportion, and batch were included.
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3. Results

3.1. Identification of differentially methylated loci in mild cognitive
impairment and Alzheimer’s disease blood

The cohort characteristics are shown in Table 1. We first investi-
gated whether any individual loci showed DNA methylation differ-
ences in eitherMCI or AD relative to CTL using an ANOVAmodel after
adjusting for the covariates of age, sex, cell proportions, and batch
(Supplementary Table 1). No DMPs reached the experiment-wide
significance threshold that has been established for the 450K array
(2.4 � 10�7) (Saffari et al., 2018) with the smallest ANOVA p-value
being 5.58 � 10�6 for probe cg26146855, of which the closest tran-
scription start site is located in the TFAMP1 gene. The top 1000 most
significant probes resulting from the post-hoc Tukey’s HSD tests
comparing CTL to MCI, MCI to AD, and CTL to AD can be found in
Supplementary Tables 2, 3, and 4, respectively. In addition to
comparing methylation levels at baseline between the 3 groups, we
were also interested in identifying differences within the MCI pop-
ulation that were predictive of later progression to AD. For this
purpose, we compared the MCI-MCI group to the MCI-AD group.
While no DMPs passed the experiment-wide significance threshold,
the most significant DMP was located in the TRIM62 gene and
showed hypomethylation in converters (probe cg25342005, p ¼
1.67 � 10�6; Supplementary Table 5).

3.2. A number of significant differentially methylated regions can be
identified in mild cognitive impairment and Alzheimer’s disease
blood

We next used a sliding window approach to identify the regions
spanning multiple adjacent DMPs that were significantly different
inMCI and AD.We found 4 DMRs associated with differences across
Table 2
Differentially methylated regions in blood

Gene Position Gene feature

A. ANOVA: CTL versus
MCI versus AD
HOXB-AS3; HOXB6 chr 17: 46681111 - 46682414 nc_intronþnc_exon;

intronþexonþutr5
MOV10L1 chr 22: 50528179 - 50528753 TSSþintronþutr5þcd

TSSþexonþutr5
CBFA2T3 chr 16: 88937216 - 88937798 Intergenic
TPTEP2-CSNK1E chr 22: 38714166 - 38714467 intronþutr5

B. CTL vs. AD
HOXB-AS3; HOXB6 chr 17: 46681111 - 46682414 nc_intronþnc_exon;

intronþexonþutr5

Gene Position Gene feature

C. MCI-MCI vs. MCI-AD
CHKB-CPT1B; CPT1B;
CHKB

chr 22: 51016501 - 51017433 nc_intron; TSSþintro
exonþutr5; exonþut

SMC1B; RIBC2 chr 22: 45809319 - 45810044 TSSþintronþutr5þcd
intronþutr5þcds

TMEM184A chr 7: 1595602 - 1596261 TSSþintronþexonþu
KCNAB3 chr 17: 7832680 - 7833238 TSSþcds
GABBR1 chr 6: 29599012 - 29599391 intronþexonþutr5; i

cds
FIGN chr 2: 164204628 - 164205344 Intergenic
PRDM1 chr 6: 106546704 - 106546825 TSSþexonþutr5; intr
FLJ37453 chr 1: 16163555 - 16164123 nc_intron
OR56A3; TRIM5 chr 11: 5959658 - 5960214 Intergenic

Differentially methylated regions (DMRs) in a comparison of control (CTL), mild cognitive
(A) the overall three group (ANOVA) comparison, the post-hoc (B) CTL versus AD compar
Displayed for each region is the UCSC gene name, chromosomal position (genome build 37
untranslated region; cds ¼ coding sequence), number of probes in region (n), p-value an
the 3 baseline groups (CTL, MCI, and AD) (Table 2A). A 10-probe
DMR of 574 bp was identified in MOV10L1 (Fig. 1A), as well as a 5-
probe (582 bp) intergenic DMR annotated to CBFA2T3 (Fig. 1B),
with probes in both DMRs generally showing hypermethylation in
MCI samples, with levels in AD samples similar to CTL. An 8-probe
DMRof 301 bpwas found in the readthrough transcription region of
TPTEP2-CSNK1E, which appeared to be mainly driven by hyper-
methylation in the MCI group (Fig. 1C).

One of the 4 identified DMRswas driven by a difference between
the CTL and AD groups (Table 2B); we identified a 1303 bp DMR in
the HOXB6 gene, containing 12 probes (Figs. 1D and 2). Each of the
12 probes showed hypermethylation in AD.

In our analysis of MCI conversion to AD, we identified 9 signif-
icant DMRs (Table 2C; Fig. 3). We found DMRs showing decreased
methylation in MCI-AD converters relative to MCI-MCI non-
converters in the genes CPT1B and CHKB (932 bp; 14 probes)
(Fig. 3A), TMEM184 A (659 bp; 6 probes) (Fig. 3B), KCNAB3 (558 bp; 7
probes) (Fig. 3C), GABBR1 (379 bp; 10 probes) (Fig. 3D), PRDM1
(121 bp; 5 probes) (Fig. 3E), FLJ37453 (568 bp; 6 probes) (Fig. 3F),
and OR56A3 and TRIM5 (556 bp; 5 probes) (Fig. 3G). Hyper-
methylation in MCI-AD converters relative to MCI-MCI non-
converters was seen in 2 DMRs located in the genes SMC1B and
RIBC2 (725 bp; 15 probes) (Fig. 3H), and an intergenic region near
the gene FIGN (716 bp; 6 probes) (Fig. 3I).

3.3. Validation of the Alzheimer’s diseaseeassociated differentially
methylated region in HOXB6 by pyrosequencing

Interestingly, differential DNA methylation at the most signifi-
cant locus within the HOXB6 DMR (cg17179862) has been previ-
ously reported in AD hippocampus (Altuna et al., 2019). To further
explore AD-associated hypermethylation in this gene, we used
pyrosequencing to validate our HOXB6 DMR, covering 2 CpG sites
n p-value �Sidák-P Average methylation %

CTL MCI AD

TSSþ 12 2.79E-14 8.58E-12 56.59 58.79 60.81

s; 10 2.03E-07 1.42E-04 68.38 70.18 68.23

5 2.61E-07 1.80E-04 42.57 44.66 42.34
8 1.87E-06 2.49E-03 41.21 42.29 41.69

TSSþ 12 3.36E-16 1.03E-13 56.59 58.79 60.81

n p-value �Sidák-P Average methylation %

MCI-MCI MCI-AD

nþ
r3

14 2.05E-14 8.84E-12 64.92 61.26

s; TSSþ 15 8.26E-09 4.57E-06 24.62 26.62

tr5 6 2.41E-08 1.47E-05 45.33 43.31
7 8.11E-08 5.83E-05 80.31 76.73

ntronþ 10 9.72E-08 1.03E-04 63.80 61.48

6 3.58E-07 2.01E-04 52.84 56.10
on 5 1.04E-07 3.45E-04 62.01 58.89

6 5.92E-07 4.18E-04 29.67 27.34
5 9.68E-07 6.98E-04 81.17 77.54

impairment (MCI), and Alzheimer's disease (AD) blood samples. Shown are DMRs for
ison, and (C) the MCI-stable (MCI-MCI) versus MCI-converter (MCI-AD) comparison.
), gene feature (TSS¼ transcription start site; utr5¼ 50 untranslated region; utr3¼ 30

d multiple testing-corrected p-value (�Sidák-P), and average beta per group.



Fig. 1. Differentially methylated regions (DMRs) in a comparison of baseline diagnosis of mild cognitive impairment and Alzheimer's disease relative to controls. DMRs shown are
located in or near the genes MOV10L1 (A), CBFA2T3 (B), TPTEP2-CSNK1E (C), and HOXB6 (D). Displayed for each DMR are the methylation levels of individual probes located within
the DMR, ordered by genomic location. Methylation values have been corrected for covariates age, sex, cell type proportion, and batch.
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on the array (cg17179862, cg03803541) as well as 3 neighboring
CpG sites that were not covered by the 450K array (chr17:46681421,
chr17:46681394, and chr17:46681383). We found significant
differences between groups at all 5 CpG sites (Supplementary
Table 6, Fig. 4A), and when averaged over the full 5 probes
(Fig. 4B), demonstrating hypermethylation in AD samples relative
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to controls. The pattern of DNA methylation quantified by the 450K
array and pyrosequencing was similar for both cg03803541 (Fig. 4C)
and cg17179862 (Fig. 4D), with a significant correlation of the
methylation values estimated by the 2 technologies for both
cg03803541 (Fig. 4E: r ¼ 0.957, p ¼ 2.69 � 10�142) and cg17179862
(Fig. 4F: r ¼ 0.934, p ¼ 5.03 � 10�68).
3.4. Transcriptional differences in genes containing differentially
methylated regions

To explore the relationship between DNA methylation and
expression, we first assessedwhether the expression levels of genes
containing the 4 baseline diagnosis-associated DMRs or the 9



Fig. 2. The HOXB6 DMRs, shown to be altered in Alzheimer's disease (AD) relative to controls (CTL). The region spanned by the DMRs is highlighted in red, and genomic location and
UCSC gene annotations are shown, in addition to a mini-Manhattan plot of the p-values of probes within and neighboring the DMR, p-values related to changes in AD relative to CTL
are shown in orange, mild cognitive impairment (MCI) relative to CTL in green, and AD relative to MCI in purple. The bottom panel shows relative methylation levels across the
region, with methylation in AD in orange, MCI in green, and CTL in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version
of this article.)
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conversion DMRs were different in the diagnostic groups. Expres-
sion data were only available for 2 of the 6 genes we identified as
containing DMRs in the baseline group analysis (HOXB6, and
CSNK1E associated with the readthrough transcription region of
TPTEP2-CSNK1E) (Supplementary Table 7). Of these 2 genes,
CSNK1E, which had shown increased DNA methylation in MCI
samples, also showed a significant difference in gene expression
between groups (F ¼ 15.94, p ¼ 3.25 � 10�7). More specifically, we
observed significantly increased mRNA expression in both MCI and
AD subjects relative to control (Tukey’s p ¼ 1.46 � 10�7 and p ¼
0.003, respectively, Supplementary Fig. 3A). Although there was
significantly higher gene expression and DNA methylation (across
the DMR), there was no correlation of expression and methylation
across all samples, or whenwe performed correlations separately in
the 3 diagnostic groups (Supplementary Fig. 3C, Supplementary
Table 8). Although we did not observe any significant differences
in gene expression for HOXB6 (Supplementary Fig. 4A), we did find
a correlation of expression and methylation when performing
correlations in the AD group only (r ¼ -0.24, p ¼ 0.041)
(Supplementary Fig. 4C, Supplementary Table 8).

Expression data were also available for 5 of the 9 significant
DMRs we identified in our analysis of progression from MCI to AD
(GABBR1, PRDM1, FLJ37453, TRIM5, and CPT1B/CHKB). The CPT1B/
CHKB DMR was covered by 3 probes on the gene expression
microarray, one probe measuring CPT1B expression and 2 probes
measuring CHKB expression (ILMN_2331205 and ILMN_1659054).
Although none of these genes showed differential expression in
MCI subjects who progressed to AD (Supplementary Table 9),
CPT1B/CHKB showed a significant positive correlation of methyl-
ation across the DMR and CPT1B gene expression (Supplementary
Table 10). The average methylation level across the CPT1B/CHKB
DMR was significantly correlated with gene expression across all
samples (r ¼ 0.40, p ¼ 8.62 � 10�5, Supplementary Fig. 5), which
appeared to be primarily driven by a correlation observed in the
MCI-MCI samples (r ¼ 0.49, p ¼ 7.27 � 10�5) and not the MCI-AD
samples.



Fig. 3. Differentially methylated regions (DMRs) in a comparison of mild cognitive impairment (MCI) individuals who converted to Alzheimer's disease (AD) within 1 year after
baseline assessment (MCI-AD; dark green, shown on the right) and those who remained stable (MCI-MCI; light green, shown on the left). DMRs shown are located in or near the
genes CPT1B (A), TMEM184 A (B), KCNAB3 (C), GABBR1 (D), PRDM1 (E), FLJ37453 (F), OR56A3 and TRIM5 (G), SMC1B and RIBC2 (H), and FIGN (I). Displayed for each DMR are the
methylation levels of all probes (p < 0.05) within the genomic location covered by each DMR, ordered by genomic location. Methylation values have been corrected for covariates
age, sex, cell type proportion, batch, and baseline mini-mental state examination score. (For interpretation of the references to color in this figure legend, the reader is referred to
the Web version of this article.)
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3.5. Clusters of methylated loci associated with mild cognitive
impairment and Alzheimer’s disease

To identify clusters of probes that are comethylated and are
therefore hypothesized to share a common function, we performed
WGCNA and classified the entire filtered data set of 200,633 probes
into 16 modules (Fig. 5A). These modules were correlated to the
group comparisons of diagnostic status at baseline, as well as to
several other traits of interest (Fig. 5B, Supplementary Table 11),
after controlling for covariates. The brown module, which consists
of 11,794 probes, was negatively correlated with differences be-
tween CTL and MCI (r ¼ �0.16, p ¼ 2.31 � 10�2) and correlated
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positively with an individual’s number of education years (r ¼ 0.13,
p ¼ 3.59 � 10�2). Three more modules also showed a correlation
with MCI versus CTL; the light cyan module consisting of 133
probes (r ¼ 0.18, p ¼ 1.2 � 10�2), and the yellow module which
consists of 10,635 probes (r ¼ 0.17, p ¼ 1.51 � 10�2). The yellow
module further correlates to the structural imaging variable MET
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(r ¼ �0.14, p ¼ 4.26 � 10�2). The purple module (792 probes) also
correlates to MCI versus CTL (r ¼ �0.17, p ¼ 1.98 � 10�2), as well as
the majority of structural imaging variables: REV (r ¼ 0.21, p ¼
3.16 � 10�3), TEV (r ¼ 0.18, p ¼ 9.85 � 10�3), MET (r ¼ 0.25, p ¼
3.22 � 10�4), VV (r ¼ -0.18, p ¼ 9.25 � 10�3), LHV (r ¼ 0.22, p ¼
1.19 � 10�3), RHV (r ¼ 0.20, p ¼ 3.31 � 10�3), THV (r ¼ 0.22, p ¼
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1.46 � 10�3), and WBV (r ¼ 0.20, p ¼ 3.55 � 10�3). Finally, the cyan
module (280 probes) correlates to an individual’s number of APOE
ε4 alleles (r ¼ �0.14, p ¼ 1.75 � 10�2).

Subsequently, we investigated whether the probes that are in-
tegral to a specific module are also the probes that are driving the
association with the relevant diagnosis or trait. We did this by
correlating and plotting MM and PS values, and focusing on those
modules that showed positive (r> 0, p< 0.05) correlations between
MM and PS (Supplementary Table 12). Significant positiveMM to PS
correlations were found in the brown (r ¼ 0.26, p ¼ 5.93 � 10�179),
purple (r ¼ 0.19, p ¼ 9.18 � 10�8), and yellow (r ¼ 0.25, p ¼ 6.64 �
10�153) modules in association with CTL versus MCI. The brown
module further showed significant positiveMM to PS correlations in
relation to education years (r ¼ 0.11, p ¼ 2.40 � 10�32). The yellow
module displayed a positive MM to PS correlation (r ¼ 0.22, p ¼
6.42�10�117) in associationwithMET, and the cyanmodule showed
a positive MM to PS correlation in association with the number of
APOE ε4 alleles (r ¼ 0.20, p ¼ 6.42 � 10�4). These modules were the
primary focus of our pathway analyses. MM and PS plots for these
modules are shown in Supplementary Fig. 6; for a full overviewof all
MM and PS correlations, see Supplementary Table 12.

3.6. Functional role of modules associated with mild cognitive
impairment and Alzheimer’s disease

We sought to identify the pathways that were enriched in
modules that were affected in disease or were associated with
certain traits. For this purpose, we performed GO and KEGG
enrichment analyses, with for large (i.e., yellow and brown) mod-
ules only the core probes being used for the enrichment analyses.
Pathways related to the brown (Supplementary Fig. 7), purple,
yellow (Supplementary Fig. 8), and cyan (Supplementary Fig. 9)
modules all passed false discovery rate (FDR) multiple testing
correction. A large number of GO terms were associated with the
core of the brown module, which was related to MCI relative to CTL
as well as number of education years, among which were “extra-
cellular matrix” (q ¼ 4.23 � 10�7), “channel activity” (q ¼ 3.19 �
10�5), and “passive transmembrane transporter activity” (q¼ 3.19�
10�5) (Supplementary Fig. 7A). Furthermore, KEGG terms related to
thismodule included “Protein digestion and absorption” (q¼ 1.06�
10�2), “Oxytocin signaling pathway” (q ¼ 1.06 � 10�2), and
“Regulation of actin cytoskeleton” (q¼ 1.10� 10�2) (Supplementary
Fig. 7B). The core of the yellow module showed differences related
to MCI, relative to CTL, as well as MET, and we found in our
enrichment analyses of the core probes that the top GO terms
included “leukocyte activation” (q ¼ 7.46 � 10�13), “cell activation”
(q¼ 7.46� 10�13), and “immune response” (q¼ 5.84�10�11), while
the top KEGG terms included “platelet activation” (q¼ 1.93� 10�2),
“adrenergic signaling in cardiomyocytes” (q ¼ 1.93 � 10�2), and
“sphingolipid signaling pathway” (q¼ 2.34�10�2) (Supplementary
Fig. 8). The purple module, which was also associated with differ-
ences related to MCI relative to CTL, was connected with one GO
term; “vesicle-mediated transport” (q ¼ 4.35 � 10�2), but no sig-
nificant KEGG terms. Finally, the cyan module, which was associ-
ated with the number of APOE ε4 alleles, was related to a number of
GO terms, including “cell activation” (q ¼ 3.07 � 10�4), “regulation
of cell adhesion” (q ¼ 4.51 � 10�4), “leukocyte activation” (q ¼
4.51 � 10�4), and “regulation of cell death” (q ¼ 8.32 � 10�4)
(Supplementary Fig. 9) and one KEGG pathway: “T cell receptor
signaling pathway” (q ¼ 3.73 � 10�2).

3.7. Investigating clusters of comethylated loci associated with
progression to Alzheimer’s disease

In addition tomodules associatedwith baseline diagnosis of MCI
and AD, we also identified 31 modules of highly comethylated loci
in the subset of MCI-MCI and MCI-AD samples (Supplementary
Fig. 10). Only one of these modules, the orange module, was
shown to be significantly associated with future progression to AD
(b ¼ -0.04, p ¼ 4.38 � 10�2; Supplementary Table 13). We then



Fig. 4. Validation of the HOXB6 differentially methylated region. DNA methylation was assessed via pyrosequencing and significant changes were found between controls and
individuals with Alzheimer's disease, but not mild cognitive impairment at all 5 CpG sites assessed (A) and when averaged over all 5 probes (B). DNA methylation patterns
quantified by the Illumina 450K array and pyrosequencing were similar for cg03803541 (C) and cg17179862 (D) and were significantly correlated (E and F, respectively).
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correlated the MM to the PS for this module and found a significant
positive correlation (r ¼ 0.36, p ¼ 9.40 � 10�6). Following GO and
KEGG pathway analysis, we found no GO terms passing FDR mul-
tiple testing correction, but top KEGG terms included “renal cell
carcinoma” (q ¼ 1.21 � 10�2), “nonhomologous end-joining” (q ¼
2.00 � 10�2), and “ErbB signaling pathway” (q ¼ 2.00 � 10�2)
(Supplementary Fig. 11).
4. Discussion

The present study, which reflects the first large-scale EWAS of
AD blood samples, identified epigenetic signatures related to AD
and MCI, as well as signatures associated with future conversion
from MCI to AD.
The HOXB6 gene contained a DMR that reflected differences in
methylation in AD relative to CTL, which were validated using
pyrosequencing. HOXB6 encodes the homeobox protein B6, which
is part of a larger cluster of homeobox B genes located on chro-
mosome 17. Homeobox genes are DNA-binding proteins that have
been implicated in early body morphogenesis (Krumlauf, 1994) as
well as hematopoietic development. Specifically, HOXB6 has been
shown to be required for normal generation of granulocytes and
monocytes (Giampaolo et al., 2002). Interestingly, a recent EWAS of
AD hippocampus has shown DNA methylation differences in
cg17179862, which was the most significant probe in the DMR we
identified and validated (Altuna et al., 2019). The study by Altuna
et al. further showed that increased methylation at this locus was
positively correlated with tau burden.



Fig. 4. (continued).

J.A.Y. Roubroeks et al. / Neurobiology of Aging 95 (2020) 26e4540
MOV10L1, which was associated with differences between all 3
groups, encodes an RNA helicase. This protein was shown to be
crucial for the production of Piwi-interacting RNAs (piRNAs) by
Vourekas et al. (2015). PiRNAs represent small noncoding RNAs
involved in epigenetic regulation, which can bind to PIWI proteins
and may induce gene silencing via DNA methylation (Aravin et al.,
2008; Girard et al., 2006), or RNA-cleavage (for a review, see
Luteijn and Ketting (2013)). Although initially believed to be mainly
present in germline cells, piRNAs have been shown to be stably
expressed in human blood (Yang et al., 2015) and have also been
shown to be downregulated in tumor tissue and upregulated in
blood of renal carcinomas (Iliev et al., 2016). Interestingly, Watson
et al. (2016) performed an EWAS of AD superior temporal gyrus
and identified a DMR spanning 13 probes, including all ten probes
we identified in the MOV10L1 gene in the current study. Of note,
whereWatson et al. detected AD-related hypermethylation in these
10 probes, we found hypermethylation inMCI when comparedwith
AD and CTL individuals, while methylation levels of AD subjects
were not distinct from CTL individuals.

Of the 9 DMRs that were related to future conversion to AD, our
most significant region was located in CPT1B, which encodes the
protein carnitine palmitoyltransferase 1B. Differential DNA



Fig. 5. Clusters (or “modules”) of highly comethylated loci identified in the full dataset of 284 samples (A). Modules are hierarchically clustered based on calculated module
eigengenes (representative of the methylation values within each module), and the number of probes included in each module are indicated along the x-axes. The color of each
module is assigned in an arbitrary manner. (B) Correlations between module eigengenes and traits of interest, with module names shown along the y-axis. Correlation estimates are
reported, with p-values in parentheses. Spearman correlations were performed for the controls (CTL) versus Alzheimer's disease (AD) comparison, CTL versus mild cognitive
impairment (MCI) comparison, the MCI versus AD comparison, and the number of APOE-ε4 alleles (APOE #4). Pearson correlations were calculated for the number of education
years (Education_Yrs); mini mental state examination (MMSE) scores; and the following structural imaging measurements: right, left, and total entorhinal volume (REV, LEV, and
TEV, respectively); mean entorhinal thickness (MET); ventricular volume (VV); left, right and total hippocampal volume (LHV, RHV, and THV, respectively); and whole brain volume
(WBV). Modules with a correlation p-value <0.05 were selected for further analysis. (For interpretation of the references to color in this figure legend, the reader is referred to the
Web version of this article.)
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methylation in CPT1B has been previously identified in blood and
fetal cortex of patients with Down syndrome (El Hajj et al., 2016;
Kerkel et al., 2010). This is interesting as individuals with Down
syndrome often develop AD as a result of trisomy of chromosome
21, causing them to have an additional copy of the amyloid pre-
cursor protein (APP) gene. The study by El Hajj et al. (2016) iden-
tified a DMR in CPT1B consisting of 18 probes in Down syndrome
fetal cortex samples, which spanned the region discovered in the
present study. They detected hypermethylation in 13 probes in
Down syndrome, while we observed hypomethylation in those MCI
individuals who convert to AD. Kerkel et al. (2010) similarly
detected hypermethylation at one CpG site in our CPT1B DMR in
peripheral blood leukocytes of individuals with Down syndrome,
concomitant with significant overexpression of the gene. While we
observed hypomethylation of the DMR, the positive relationship
found between methylation and expression for this region was
validated in our study. Of note, overexpression of CPT1B has also
been found in blood from soldiers with post-traumatic stress dis-
order (Zhang et al., 2015), a known risk factor for developing AD
(Agís-Balboa et al., 2017; Yaffe et al., 2010). Interestingly, no overlap
was found between DMRs associated with conversion and DMRs
related to diagnosis at baseline. This may reflect limited power in
our MCI conversion analysis due to sample size or could reflect
temporal patterns of DNA methylation in the process of conversion
from MCI to AD.

In addition to DMRs, by using WGCNA and subsequent pathway
analyses we further identified biological mechanisms affected in
disease. The cyan module that was linked to the number of APOE ε4
alleles is involved in GO pathways related to the immune system,
which is interesting given that the immune system is known to be
activated in AD (Heppner et al., 2015), and as APOE ε4 is the
strongest genetic risk factor for sporadic AD (Lambert et al., 2013).
The core of the brown module, which reflects methylomic differ-
ences related to an individual’s number of education years and
differences in MCI relative to CTL, was shown to be involved in
transmembrane processes (GO), as well as oxytocin signaling
(KEGG). The oxytocin signaling pathway is linked to social behav-
iors, as well as several psychiatric disorders (e.g., depression)
(Feldman et al., 2016) Interestingly, a DMR was recently identified
in the oxytocin gene (OXT), which was hypomethylated in AD brain
(Lardenoije et al., 2019; Watson et al., 2016) and hypermethylated
in the blood in individuals who subsequently converted to AD
(Lardenoije et al., 2019). Oxytocin is involved in the modulation of
stress, social behaviors, and associative learning (Olff et al., 2013),
and altered levels of oxytocin have been reported in AD postmor-
tem brain tissue (Mazurek et al., 1987) and cerebrospinal fluid
(North et al., 1992). It is interesting that the sphingolipid signaling
pathway is found in the KEGG results from the core probes of the
yellowmodule related to differences inMCI relative to CTL. Multiple
studies have indicated that sphingolipid signaling pathways are
implicated in AD (Crivelli et al., 2020), and the measurement of
lipids in the pathway is being explored as a potential biomarker of
AD and neurodegeneration (Mielke and Lyketsos, 2010). Similar to
the cyan module, the majority of GO terms in the core of the yellow
module are related to various processes of immune activation. In
our network analysis examining conversion from MCI to AD, we
identified a pathway in the orange module associated with
nonhomologous end-joining. Nonhomologous end-joining activity
is involved in repairing the double-strand DNA breaks and has been
reported to be decreased in AD brain (Kanungo, 2013; Shackelford,
2006).

In summary, this is the first EWAS to identify epigenetic signa-
tures and functional pathways specific to MCI, AD, and conversion
to AD in the blood. However, there are some limitations to our
study. First, we have profiled DNA methylation patterns in whole
blood, and it is known that there are subtle alterations in the
abundance of specific blood cell types in MCI and AD (Lunnon et al.,
2012). Although we have controlled for the proportions of these
different cells, it will be of interest to investigate disease-associated
signatures in individual cell types. Second, individuals were only
followed up clinically for up to 2 years following the baseline
assessment and further studies should profile cohorts consisting of
CTL and MCI subjects with long-term clinical follow-up to identify
the preclinical changes. In addition, biomarkers were not available
to support the clinical diagnosis of AD. Third, our comparisons of
DNA methylation and gene expression were limited to only those
genes with variable expression levels in the previous study (Lunnon
et al., 2012) and did not examine transcript variants. Fourth, we
have not replicated our findings in an independent study cohort.
Although we did validate our HOXB6 DMR in the same samples
using an alternative technology, in the future it will be interesting
to verify the loci we identified in a different set of samples. Finally,
although there is some communication between the brain and the
blood, not all differences found to be associated with AD in the
blood may be functionally related to the processes taking place in
the brain. Differences in DNA methylation may be the result of
parallel effects or comorbidities, and may not be causally related to
disease, but could reflect mediating or downstream effects. It would
be interesting for future studies to explore the exact role of the
epigenetic signatures identified in this study, and to explore their
potential as biomarkers for an early diagnosis of AD and therapeutic
targets.
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Abstract

Background: Late-onset Alzheimer’s disease (AD) is a complex multifactorial affliction, the pathogenesis of which is
thought to involve gene-environment interactions that might be captured in the epigenome. The present study
investigated epigenome-wide patterns of DNA methylation (5-methylcytosine, 5mC) and hydroxymethylation (5-
hydroxymethylcytosine, 5hmC), as well as the abundance of unmodified cytosine (UC), in relation to AD.

Results: We identified epigenetic differences in AD patients (n = 45) as compared to age-matched controls (n = 35)
in the middle temporal gyrus, pertaining to genomic regions close to or overlapping with genes such as OXT (−
3.76% 5mC, pŠidák = 1.07E−06), CHRNB1 (+ 1.46% 5hmC, pŠidák = 4.01E−04), RHBDF2 (− 3.45% UC, pŠidák = 4.85E−06),
and C3 (− 1.20% UC, pŠidák = 1.57E−03). In parallel, in an independent cohort, we compared the blood methylome
of converters to AD dementia (n = 54) and non-converters (n = 42), at a preclinical stage. DNA methylation in the
same region of the OXT promoter as found in the brain was found to be associated with subsequent conversion to
AD dementia in the blood of elderly, non-demented individuals (+ 3.43% 5mC, pŠidák = 7.14E−04).

Conclusions: The implication of genome-wide significant differential methylation of OXT, encoding oxytocin, in
two independent cohorts indicates it is a promising target for future studies on early biomarkers and novel
therapeutic strategies in AD.

Keywords: Alzheimer’s disease, Epigenetics, DNA methylation, DNA hydroxymethylation, Brain, Middle temporal
gyrus, Blood

Background
The neuropathological cascade of the world’s leading
cause of dementia, late-onset Alzheimer’s disease (AD),
is characterized by the progressive accumulation of

extracellular amyloid plaques and intracellular neurofib-
rillary tangles, followed by neuronal cell death. The sus-
ceptibility to AD is determined by the complex
interaction of genetic, environmental, and life-style fac-
tors, as well as epigenetic factors. Genetic research has
been successful in identifying genetic variants modulat-
ing susceptibility to AD, including the first and strongest
genetic risk factor for AD in the APOE gene. In addition
to APOE, large-scale genome-wide association studies
looking at AD have identified a number of independent
common variants with a small-to-modest effect size [1].
Besides genetics, recent studies have suggested an
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important role for epigenetic mechanisms in the etiology
of AD [2], with reports of both global and gene-specific
alterations in epigenetic modifications [3–6].
Several types of epigenetic DNA modifications have been

described, including DNA methylation (5-methylcytosine,
5mC) and DNA hydroxymethylation (5-hydroxymethylcyto-
sine, 5hmC). While the best studied epigenetic DNA modifi-
cation, 5mC, plays an important gene regulatory role in most
tissues, 5hmC seems to have a different impact on gene ex-
pression and is particularly enriched in the brain [7, 8],
where it may play an important role in learning and memory
[9, 10]. Unfortunately, conventional bisulfite (BS) conversion,
a widely used procedure when quantifying DNA methyla-
tion, does not distinguish between 5mC and 5hmC. How-
ever, combining measurements from BS- and oxidative BS
(oxBS)-converted DNA now allows for the quantification of
both 5mC and 5hmC levels (Fig. 1).
Where genetic factors can identify persons at risk for

developing AD from birth, epigenetic markers may offer
more dynamic views on trajectories of biological change
and may therefore be able to offer an improved, chrono-
logical insight into the sequence of events at different
stages of AD. As brain tissue cannot be readily sampled
in living humans, blood may offer an alternative. Avail-
able research on the blood DNA methylome in relation
to AD is limited and mainly focuses on the direct com-
parison of AD cases and healthy controls [3, 11, 12].
Identifying disease-predicting biological profiles at pre-
dementia stages of AD may provide improved precision
in predicting onset of dementia and give potential treat-
ments a better timeframe to successfully impede, or even
halt disease progression [13, 14].
In the present study, we explored the association be-

tween AD and epigenetic dysregulation by quantifying
5mC and 5hmC, as well as unmodified cytosine (UC)
proportions [15], at a single-site resolution in middle
temporal gyrus (MTG) tissue obtained from AD patients
(n = 45) and elderly, non-demented controls (n = 35; see
Table 1 and the “Materials and methods” section for de-
tailed demographics) [16]. This brain region was selected
as the MTG is known as a site of early AD pathology
[17], and differences in global levels of DNA methylation
and hydroxymethylation have previously been reported
in this brain region in AD [18]. While informative on its
own, the inclusion of UC measurements also allows us
to better compare our findings with previous studies
using conventional BS conversion, since UC is deter-
mined by subtracting the BS signal (5mC + 5hmC) from
1 (Fig. 1). Even though the effects will be opposite from
directly using the BS signal, incorporating UC in our
study represents a crucial legacy analysis that enables
the comparison with previous studies solely relying on
the BS signal. Moreover, mechanistically, as an example,
the affinity of a transcription factor may be different in

the presence of UC, 5mC, or 5hmC, implicating that dif-
ferential levels of UC (in the absence of significantly dif-
ferent 5mC or 5hmC levels) may have direct functional
implications on gene expression. We followed up the
brain analysis exploring DNA methylation in whole
blood in an independent cohort, including samples from
AD-converters and non-converters at two time points,
before (54 converters, 42 controls) and after (41 con-
verters, 42 controls) conversion to clinical AD (see
Table 2 and the “Materials and methods” section for de-
tailed demographics). Blood DNA methylomic markers
were measured using only BS-converted DNA, as 5hmC
has a very low prevalence in blood [8].

Results
Middle temporal gyrus
Site-specific 5mC, 5hmC, and UC levels were deter-
mined for the MTG using Illumina’s Infinium Human-
Methylation450K microarray (HM 450K array) with BS
and oxBS-converted DNA (Fig. 1; see Tables 1 and 2 for
cohort demographics). An epigenome-wide association
study (EWAS) was performed for each DNA modifica-
tion to identify the association with AD. The adjusted
linear models showed no signs of inflation (all lambda
values were between 0.95 and 1.05; see Additional file 2:
Figure S1 for QQ plots). None of the AD-associated
CpG sites in the MTG passed false discovery rate (FDR)
correction (Additional file 1: Tables S1–S3).
A structural and functional genomic annotation enrich-

ment analysis on the 1000 highest ranked sites indicated a
significant enrichment of several CpG island features, gene
features, and alternative transcription events. This included
an enrichment of mainly gene body sites for the 5mC (fold
enrichment = 1.42, p= 1.17E−10) and 5hmC (fold enrich-
ment = 1.17, p= 3.64E−03) results and mainly intergenic sites
for the UC (fold enrichment = 1.59, p= 1.67E−09) results
(Additional file 2: Figure S8; Additional file 1: Table S7).
A regional analysis, looking at the spatial correlation of

adjacent modified positions, detected 1 differentially
methylated region (DMR), 1 differentially hydroxymethy-
lated region (DHR), and 11 differentially unmodified re-
gions (DURs) that were associated with AD in the MTG
(Table 3; Additional file 2: Figure S3). Analysis of MTG
expression data of genes annotated to DMRs, DHRs, and
DURs showed a significant negative correlation between a
DUR associated with RHBDF2 and RHBDF2 RNA expres-
sion (ρ = -0.39, pFDR = 4.37E−03) (Additional file 1: Table
S10). Of note, although the DHR residing in the transcrip-
tion start site (TSS) of CHRNB1, of which all probes show
hyperhydroxymethylation in the AD cases, did not correl-
ate with CHRNB1 mRNA expression (ρ = − 0.09, pFDR >
0.05), a linear regression analysis of regressed MTG
expression data of CHRNB1 showed a significant elevation
of CHRNB1 mRNA levels in AD cases (estimate = 0.13,
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p = 1.37E−04) (Additional file 2: Figure S4). For a full tran-
scriptomic investigation of the MTG cohort used in the
present study, see the recent publication of Piras et al. [19].
Next, a gene regulatory network (GRN) analysis was

performed with the unique genes annotated to the 1000
highest ranked probes. Because of different numbers of
associated genes from each dataset, we obtained contex-
tualized networks with varying number of interactions.
The number of interactions in the contextualized GRNs
representing the differential 5mC, 5hmC, and UC MTG

states were 325, 398 and 244, respectively. Differential
GRN analysis identified several candidate genes highly
influential in the simulated transition from a diseased to-
wards a healthy phenotype. Based on a score indicating
for each gene, when changed, the number of other genes
in the network that were predicted to show altered ex-
pression, IL6 (score = 55), SIAH1 (score = 78), and EGF
(score = 55) were found to be the most influential in the
5mC, 5hmC, and UC networks, respectively (Additional
file 1: Table S9).

Fig. 1 Overview of the procedure to detect unmodified cytosines (C), 5-methylcytosine (5mC), and 5-hydroxymethylcytosine (5hmC). Naturally, C can be
converted to 5mC by DNA methyltransferases (DNMTs) and 5mC can be oxidized by ten-eleven translocation (TET) enzymes, resulting in 5hmC. There are
several proposed demethylation pathways through which 5mC and 5hmC can be converted back to C. DNA samples were split in two, one half was only
treated with bisulfite (BS), which converts C into thymine (T). 5mC and 5hmC are protected against this conversion, and will be read as a C on the array.
The detected C signal after BS conversion is thus actually the combined 5mC and 5hmC signal. As the signals are converted to fractions, with C + 5mC+
5hmC= 1, the fraction of C in the input DNA can be determined by subtracting the C signal after BS conversion (representing the combined 5mC and
5hmC fraction in the input DNA) from 1. The other half of the DNA sample was first oxidized, which converts 5hmC into 5-formylcytosine (5fC), and then
treated with BS. 5fC is not protected against the BS conversion, so it also turns into T. C detected on the array after this oxidative BS (oxBS) conversion thus
represents the fraction of 5mC in the input DNA. The 5hmC fraction in the input DNA can be determined by subtracting the fraction of 5mC (detect C
after oxBS) from the combined 5mC and 5hmC fraction (detected C after BS). This procedure results in three readout signals: unmodified C, 5mC, and
5hmC. Note that 5fC, and probably also 5-carboxylcytosine, are included in the unmodified C fraction.
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Blood
Since 5hmC is not enriched in the blood, only BS conversion
was used to measure site-specific 5mC levels, also with the
HM 450K array. A blood EWAS investigating the association
between DNA methylation and conversion to AD was per-
formed at baseline and at follow-up, leading to the identifica-
tion of 3 differentially methylated positions at baseline and
266 at follow-up (Additional file 1: Tables S4–S6). No signifi-
cant inflation was detected (Additional file 2: Figure S2; see
the “Materials and methods” section for details).
Genomic annotation enrichment analysis of the top sites

in blood showed enrichment of mainly intergenic sites (fold
enrichment = 1.32, p= 5.80E−04) at baseline and proximal
promoters (fold enrichment = 0.79, p= 1.60E−04) at follow-
up (Additional file 2: Figure S9; Additional file 1: Table S8).

The regional analysis found 15 and 21 DMRs associ-
ated with conversion to AD at baseline and follow-up,
respectively (Table 4; Additional file 2: Figure S5).
GRNs representing the blood baseline and follow-up

states contained 475 and 277 interactions, respectively. Dif-
ferential GRN analysis identified WNT3A (score = 50) as
the most influential gene in the baseline network, and SHH
(score = 33) in the follow-up network (Additional file 1:
Table S9).

Overlap
Only 1 blood DMR, close to GLIPR1L2, showed hyperme-
thylation in relation to AD conversion at both the baseline
(+2.72%, pŠidák = 1.40E−04) and follow-up (+ 1.34%, pŠi-
dák = 6.94E−06) time points. Extracting the probes located
in this blood GLIPR1L2 DMR from the MTG EWAS for
comparison showed, in AD cases, lower UC levels (9/10
probes with negative log2 fold change [logFC]), mixed
changes for 5mC (6/10 probes with positive logFC), and
lower 5hmC levels for the probes that passed the detection
threshold (2/2 probes with negative logFC). Even though
the UC observations in the MTG are in line with the
blood findings, only for one UC probe (cg07311024) the
change was nominally significant (logFC = − 0.01, p =
3.88E−02). A targeted linear regression analysis of the
regressed MTG expression data of GLIPR1L2 showed a
significant decrease in AD cases (estimate = -0.10, p =
3.12E−04) (Additional file 2: Figure S6).
Interestingly, close to the TSS of OXT, we observed a

DMR which was detected both in the MTG (− 3.76%, pŠi-
dák = 1.07E−06), as well as in the blood dataset (at baseline,
+ 3.43%, pŠidák = 7.14E−04) (see Additional file 2: Figure
S7 for the probe positions of both OXT DMRs). MTG
OXT methylation across Braak stages, as a proxy indicator
of disease progression, is displayed in Fig. 2 and suggest
OXT hypermethylation towards Braak 3-4 stages and OXT
hypomethylation during later stages. Moreover, in the dif-
ferential GRN analysis, OXT came forward as an influen-
tial gene. In case of the 5mC and 5hmC MTG states, a
change in OXT was predicted to alter the expression of 39
and 54 other genes in the networks, respectively, and in
the blood baseline state, OXT was predicted to alter 41
genes in the network (Additional file 2: Figures S10–S12;
Additional file 1: Table S9).

Discussion
For the current study, we aimed to identify AD-related
changes in epigenetic DNA modifications, comparing brain
tissue from AD patients and age-matched controls. In
addition, we explored DNA methylation in blood samples
from AD-converters and non-converters, both at a preclin-
ical stage and after conversion, identifying an AD-associated
DMR in OXT in both the brain and blood datasets.

Table 1 Cohort demographics—brain tissue

AD patients Non-demented controls

N 45 35

Gender(m/f) 22/23 17/18

Age of death (mean ± SD) 85.09 (6.24) 84.46 (5.50)

PMI (Mean ± SD) 2.77 (0.69) 2.87 (1.03)

Plaque total (mean ± SD) 12.97 (2.25) 4.65 (4.30)

Tangle total (mean ± SD) 11.02 (4.16) 3.96 (2.10)

Braak stage (range (median)) II–VI (V) I–IV (III)

The brain tissue cohort consisted of 80 middle temporal gyrus (MTG) tissue
samples obtained from the Banner Sun Health Research Institute (Sun City, AZ,
USA), from which HM 450K array BS and oxBS data was generated. Displayed
is the number of samples in each group and the distributions of gender, age,
postmortem interval (hours), Braak stage, and plaque and tangle total (the
sum of average Aβ plaque densities and tangle densities (resp.) in the
entorhinal cortex, hippocampus, parietal lobe cortex, temporal lobe cortex and
frontal lobe cortex)

Table 2 Cohort demographics—blood samples

Controls Converters

Baseline (T1)

N 42 54

Gender (m/f) 10/32 17/34

Age at baseline (mean ± SD) 81.00 ± 3.11 82.31 ± 3.55

APOE4 carriers 43% 43%

Follow-up (T2)

N 42 41

Gender (m/f) 10/32 13/28

Age at baseline (mean ± SD) 81.00 ± 3.11 82.01 ± 3.51

APOE4 carriers 43% 41%

Blood samples were obtained from the German Study on Ageing, Cognition
and Dementia in Primary Care Patients (AgeCoDe) cohort, and HM 450K array
BS data was generated. The cohort includes controls, who showed no signs at
baseline or follow-up, and converters who showed no signs of dementia at
baseline, but were diagnosed with AD dementia at follow-up. DNA samples
were collected at baseline and follow-up for both groups. Displayed is the
number of samples in each group, the distributions of Gender and Age at
baseline, and the percentage of APOE ɛ4 allele carriers
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The DHR identified in the MTG resided in the promo-
tor of CHRNB1, which encodes acetylcholine receptor
subunit beta and is important for cholinergic neuro-
transmission. In combination with the observed in-
creased levels of CHRNB1 mRNA in the MTG, this
potentially reflects a compensatory mechanism to main-
tain acetylcholine signaling in AD. Indeed, the
acetylcholine-related pathway is known to be altered in
AD and, as such, remains an important target in the de-
velopment of novel treatment options [20]. Previous epi-
genomic studies of AD using standard BS-conversion
have found associations between AD and RHBDF2
methylation in multiple cortical regions [3, 4]. We repli-
cated these findings; observing an AD-associated DUR
in RHBDF2, which included the previously detected
CpG sites (cg13076843, cg05810363, and cg12163800)
and showed the same direction of effect as previously re-
ported. For instance, using conventional bisulfite (BS)
conversion, a 3.36% increase in DNA methylation level
of cg05810363 has been observed across cortical regions
in association with AD neuropathology [3]. Interestingly,
a negative correlation between UC levels within the
RHBDF2 DUR and RHBDF2 mRNA expression was ob-
served in the MTG. RHBDF2 is thought to be important
for the release of tumor necrosis factor, a major inflam-
matory cytokine associated with neuroinflammation ob-
served in AD [21, 22]. C3, another gene with an AD-
associated DUR, encodes a central component of the
complement system and mediates developmental

synapse elimination by phagocytic microglia. C3 has pre-
viously been implicated in mediating synaptic loss in the
early stages of AD [23].
The top DMR from the baseline blood analysis, showing

hypermethylation in AD, is close to the LDLRAD4 gene.
This gene has previously been associated with schizophre-
nia and blood pressure and is thought to suppress trans-
forming growth factor (TGF)-β signaling [24–27]. TGF-β
is an inflammatory cytokine playing a role in cell survival
and synaptic transmission, and various isoforms have been
associated with AD [28]. Additional baseline blood DMRs
were close to TENM3, involved in neurite growth [29],
SYMPK, involved in polyadenylation regulation of gene
expression and which showed increased expression in AD
[30], SLC44A4, associated with type 1 diabetes mellitus
and human aging [31], ZMAT2, which had decreased ex-
pression in AD [32], ULK1, which may play a role in the
autophagic degradation of amyloid beta (Aβ) [33], and
RUNX2, which links bone health and cognitive function
and anxiety-like behavior [34]. The DMR that was found
both at baseline and follow-up is associated with
GLIPR1L2. GLIPR1L2 also showed decreased expression
in the MTG. The function of this gene is not well known,
but it may play a role in tumor suppression and immune
function [35, 36]. The top AD-associated blood DMR at
follow-up, showing hypomethylation, is located in
GSDMD, which encodes a critical factor in pyroptosis; a
form a cell death that may be triggered by Aβ [37, 38].
Other genes with a nearby AD-associated blood DMR at

Table 3 Differentially methylated, hydroxymethylated, and unmodified regions in the middle temporal gyrus

Gene Position Gene feature n p value Šidák P Average Δ% (range Δ%)

5mC

OXT chr20:3051954-3052484 TSS; Intron; 5′UTR; CDS 10 (0 up; 10 down) 1.43E−09 1.07E−06 − 3.76 (− 6.94:− 0.43)

5hmC

CHRNB1 chr17:7348322-7348439 TSS; Exon; 5′UTR 5 (5 up; 0 down) 2.63E−07 4.01E−04 1.46 (0.70:1.96)

UC

ACTR3C; LRRC61 chr7:150019955-150020946 TSS; Intron; Exon; 5′UTR 17 (1 up; 16 down) 3.54E−12 1.42E−09 − 0.57 (− 1.34:0.02)

RHBDF2 chr17:74475240-74475403 Intron; CDS 5 (0 up; 5 down) 1.99E−09 4.85E−06 − 3.45 (− 4.71:− 1.42)

TMC8 chr17:76128522-76128907 Intron; CDS 8 (0 up; 8 down) 3.29E−09 3.39E−06 − 1.26 (− 2.84:− 0.26)

ASPG chr14:104551867-104552210 TSS; Intron; 5′UTR; CDS 5 (0 up; 5 down) 1.00E−08 1.16E−05 − 1.21 (− 2.49:− 0.28)

PIEZO1 chr16:88844969-88845205 Intron 3 (0 up; 3 down) 1.87E−07 3.14E−04 − 3.08 (− 3.76:− 2.32)

VWA7 chr6:31734106-31734472 Intron; CDS 10 (10 up; 0 down) 2.04E−07 2.21E−04 3.39 (2.24:4.23)

CLMAT3; SPARC chr5:151066460-151066731 Exon; TSS; 5′UTR 6 (0 up; 6 down) 5.21E−07 7.62E−04 − 0.29 (− 0.64:0.21)

KIAA1522 chr1:33231070-33231314 TSS; Exon; 5′UTR; Intron 6 (0 up; 6 down) 8.48E−07 1.38E−03 − 1.85 (− 2.43:− 1.3)

C3 chr19:6713227-6713460 Intron; CDS 3 (1 up; 2 down) 9.21E−07 1.57E−03 − 1.20 (− 2.1:0.46)

PRSS22 chr16:2908157-2908246 TSS; Exon; 5′UTR 4 (0 up; 4 down) 1.02E−06 4.52E−03 − 1.56 (− 1.91:− 1.39)

FRAT1 chr10:99080756-99081017 Exon 3 (3 up; 0 down) 1.50E−06 2.28E−03 2.34 (1.57:3.03)

Differentially methylated (5mC), hydroxymethylated (5hmC), and unmodified (UC) regions in a comparison of Alzheimer’s disease patients (n = 45) and controls
(n = 35). Displayed for each region is the UCSC gene name, chromosomal position (genome build 37), gene feature (TSS, transcription start site; 5′UTR, 5′
untranslated region; CDS, coding sequence), number of probes in region and number of upregulated and downregulated probes (n), p value and multiple testing-
corrected p (Šidák-P), and average change in beta value (Alzheimer’s disease - control), including the range of the probe differences
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follow-up include KHDRBS2, previously identified in a
genome-wide association interaction analysis in relation to
AD [39], RARRES2, encoding an adipokine that has been
linked to inflammation, obesity, diabetes, and cardiovascu-
lar diseases [40], and GNG7, for which Braak stage-
associated differential methylation has been reported in
cortical glial cells of AD patients [41].
Taken together, the observation of epigenetic modifi-

cations in several inflammation-associated genes in both
brain and blood aligns with the amyloid cascade-
inflammatory hypothesis of AD [42]. These findings could
reflect either downstream effects resulting from the in-
flammatory activation seen in AD, or, particularly in the
brain, reflect mediating effects of DNA modifications on
inflammation as a causative factor. Exploring the exact na-
ture of the AD-associated epigenetic modifications in
inflammation-associated genes and the potential for blood
biomarkers is thus a pivotal aim for future studies.
Strikingly, our methylomic profiling in MTG and whole

blood both led to the identification of a common DMR as-
sociated with AD, close to the transcription start site of
OXT. Our design allowed for the disentanglement of spe-
cific 5mC and 5hmC signals in the MTG, which, in the case
of OXT, suggests they change in opposite directions in rela-
tion to AD. The detection of a DMR near OXT is in line

with a recent report of a nearly identical AD-associated
OXT DMR (containing 1 additional probe) in the superior
temporal gyrus (STG) [43]. This area is located directly
above the MTG. Furthermore, using GRN analysis address-
ing the overlap between the top influential genes in the net-
works and genes with significant differentially modified
regions, we observed OXT to consistently appear as one of
the most influential genes in both brain and blood GRNs.
OXT encodes oxytocin, a neuropeptide involved in the neu-
romodulation of social behavior, stress regulation, and asso-
ciative learning [44]. Interestingly, the functional impact of
OXT promoter methylation at the same genomic locus has
been recently shown [45]. It was linked to several measures
of sociability, superior temporal sulcus activity during social
cognition tasks, as well as fusiform gyrus gray matter vol-
ume, a brain region closely related to the MTG.
The paraventricular nucleus and supraoptic nucleus

are thought to be the main sites of central oxytocin pro-
duction [46], areas which reportedly undergo cell loss
during AD [47]. The remaining neurons are thought to
undergo a, potentially compensatory, hypertrophy. One
might hypothesize that this activation could initially lead
to higher than normal oxytocin levels, before synthesis
collapses during the final stages of AD. Interestingly, en-
hanced levels of hippocampal oxytocin have been

Figure 2. Methylation, hydroxymethylation and expression of OXT across Braak staging. Regressed OXT expression values and average regressed
5mC and 5hmC values of 10 and 9 overlapping probes within the OXT DMR are shown. Regressed values were generated by taking the residuals
of a model fitted with the covariates age, gender, and 5 surrogate variables, but excluding the predictor of interest AD diagnosis. Error bars
represent mean ± SEM. N = 76 for each line.
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associated with memory impairment, and AD-associated
elevations of oxytocin have been reported in the hippo-
campus and temporal cortex [48]. There is also limited
evidence oxytocin is reduced in cerebrospinal fluid of
manifest AD [49]. Additionally, it has been suggested
that co-damage to the locus coeruleus and hypothalamic
nuclei could happen early during AD pathogenesis [50],
substantiating the hypothesis that oxytocin could serve
as an early diagnostic biomarker for AD.
In line with an AD-related increase in temporal cortex

oxytocin levels [48], all ten CpG sites within the MTG OXT
DMR showed decreased levels of methylation in AD cases.
Conversely, we observed OXT hypermethylation in the
DNA from peripheral blood of participants who progressed
to dementia. The OXT blood DMR was not observed after
conversion. Research has shown that independent mecha-
nisms may be involved in peripheral and central regulation
of OXT expression, supporting this apparent discrepancy
observed in blood and brain [51]. Alternatively, these obser-
vations suggest there may be a temporal change in OXT
methylation during AD progression. Looking at MTG OXT
methylation across Braak stages appears to support the ob-
servation of OXT hypermethylation at earlier stages, as also
seen in the blood, and OXT hypomethylation at more ad-
vanced stages. Notably, it has recently been reported that
oxytocin administration was able to improve social cogni-
tion and behavior in frontotemporal dementia patients [52],
illustrating the complex modulatory function of oxytocin in
different brain regions and its potential use in the treatment
of certain manifestations of dementia. Whether oxytocin
represents a suitable therapeutic agent for AD remains to
be elucidated.
Even though we detect several targets relevant in light

of AD, a general lack of overlap between the different
analyses presented here might be noted, an observation
which is true for EWAS and epigenetics studies in AD
in general. Others have discussed a myriad of possible
reasons for discrepancies between studies, such as meth-
odological differences, differences in tissue type and pro-
cessing, study designs, and samples sizes [53]. In view of
this, the detection of a common OXT DMR in two com-
pletely independent cohorts and two different types of
tissue, further supported by a recent similar EWAS on
the STG [43], makes it an even more promising target
for future studies. However, the differences in direction
of change and the OXT methylation pattern observed
over Braak stages indicates these epigenetic changes
should be further studied in a longitudinal fashion to es-
tablish a clear relationship with AD neuropathology, as
well as clinical manifestations of AD.
Given the detection of several regions of interest, it should

be noted that the lack of positions significantly associated
with AD in the MTG after FDR correction may be the result
of a limited sample size. Genome-wide site-specific AD-

related epigenetic changes should thus be further
investigated using studies with larger sample sizes or meta-
analyses. Alternatively, future studies may focus on candi-
date genes identified in the present work, such as OXT.

Conclusions
Our novel approach confirms some previous epigenetic
findings identified in the central nervous system, including
RHBDF2, as well as revealed novel targets, such as in
CHRNB1, involving dysregulated DNA hydroxymethyla-
tion. Furthermore, the nearly identical OXT DMRs found
in both the blood and brain suggest a systemic epigenetic
dysregulation in AD involving OXT. The detection of the
OXT DMR at pre-dementia stages suggests its potential
relevance as a novel biomarker and may offer new treat-
ment strategies to be explored in future studies.

Materials and methods
Patients
Informed consent was obtained from all human participants.
This includes donors of the Banner Sun Health Research In-
stitute (BSHRI) Brain and Body Donation Program (BBDP),
who signed an Institutional Review Board-approved in-
formed consent form, including specific consent to the use
of donated tissue for future research [16, 54]. The German
Study on Ageing, Cognition and Dementia in Primary Care
Patients (AgeCoDe) study protocol was approved by the
local ethics committees at the University of Bonn (Bonn,
Germany), the University of Hamburg (Hamburg, Germany),
the University of Duesseldorf (Duesseldorf, Germany), the
University of Heidelberg/Mannheim (Mannheim, Germany),
the University of Leipzig (Leipzig, Germany), and the Tech-
nical University of Munich (Munich, Germany).
DNA from the MTG was obtained from 82 AD pa-

tients and neurologically normal control BBDP donors
stored at the Brain and Tissue Bank of the BSHRI (Sun
City, AZ, USA) [16, 54] (Table 1). The organization of
the BBDP allows for fast tissue recovery after death,
resulting in an average post-mortem interval of only 2.8
h for the included samples. Braak staging was carried
out for AD neurofibrillary pathology. A consensus diag-
nosis of AD or non-demented control was reached by
following National Institutes of Health AD Center cri-
teria [54]. Comorbidity with any other type of dementia,
cerebrovascular disorders, mild cognitive impairment
(MCI), and presence of non-microscopic infarcts was ap-
plied as exclusion criteria. Although this may limit the
generalizability of the current study, these strict exclu-
sion criteria were applied to enhance the detection of
AD-specific dysregulation, not confounded by common
comorbidities. Detailed information about the BBDP has
been reported elsewhere [16, 54].
AgeCoDe is a prospective longitudinal study including

3327 non-demented individuals at baseline, initiated to
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investigate the early detection of MCI and dementia in
primary care [55]. Participants were randomly selected
from the general practice registry in six German cities
and cognition was assessed at approximately 18-month
intervals and 10-month intervals after visit 7, for up to
11 years after baseline. For this study, whole blood DNA
was obtained from a subsample of 99 individuals aged
above 75 years from this AgeCoDe cohort (Table 2). Of
these, 42 were converters: they had no dementia at base-
line, had DNA samples available at baseline and follow-
up (after ~ 4.5 years), and had sufficient information
available for a diagnosis of AD dementia to be made at
the 4.5-year follow-up. There were 44 control subjects,
who had to adhere to the same criteria, except that they
should have no signs of dementia at neither baseline,
nor the 4.5-year follow-up, and all subsequent cognitive
assessments up to 11 years after baseline. The remaining
13 participants had not yet converted at the 4.5-year
follow-up (when blood was drawn), but were diagnosed
during a later follow-up, up to a maximum of 11 years
after baseline [56]. These samples were grouped together
with the other converters.
The groups were matched for age, gender, and APOE

genotype. The presence of dementia was assessed in all
subjects with the Structured Interview for Diagnosis of
Dementia of Alzheimer Type, Multi-infarct Dementia,
and Dementia of Other Etiology [57] based on the DSM-
IV criteria. The dementia diagnosis in subjects who were
not personally interviewed was based on the Global De-
terioration Scale [58] (≥ 4) and the Blessed Dementia
Rating subscales. The etiological diagnosis of AD was
based on the criteria of the National Institute of Neuro-
logical and Communicative Disorders and Stroke and
the Alzheimer’s Disease and Related Disorders Associ-
ation [59] for probable AD and was only assigned in case
of sufficient information provided. All final diagnoses
were a consensus between the interviewer and an experi-
enced geriatrician or geriatric psychiatrist. More detailed
information about the AgeCoDe cohort has been pub-
lished previously [55, 56].

(Hydroxy)Methylomic profiling
For the BBDP samples, the TrueMethylTM 24 Kit version
2.0 by CEGXTM (Cambridge Epigenetix Limited, Cam-
bridge, UK) was used for BS and oxBS conversion of
genomic DNA (gDNA) extracted from frozen MTG tis-
sue. All laboratory procedures were performed at Geno-
meScan (GenomeScan B.V., Leiden, the Netherlands),
without knowledge of the phenotypic characteristics of
the samples and according to the manufacturer’s in-
structions. Prior to conversion, high molecular weight
(HMW) gDNA was quantified using a PicoGreen assay
(Invitrogen, Carlsbad, CA, USA), and gel-electrophoresis
was performed to assess gDNA quality. All samples were

of sufficient quantity and quality. A volume of 1 μg
HMW gDNA was used per sample, which, after purifica-
tion and denaturation, was split into two samples that
underwent either DNA oxidation (oxBS samples) or
mock DNA oxidation (BS samples). Subsequently, all
samples were BS-treated, and the yield of the samples
was assessed by a Qubit ssDNA assay (Invitrogen). An
additional quality control, using a restriction enzyme
only able to cut unconverted cytosines, was performed
for a qualitative assessment of 5hmC oxidation and BS
conversion. From each BS/oxBS-treated DNA sample,
8 μL was amplified and hybridized on HM 450K arrays
(Illumina, Inc., San Diego, CA, USA), and the Illumina
iScan was used for imaging of the array. Sample prepar-
ation, hybridization, and washing steps for the Illumina
Infinium Methylation Assay of the BeadChip arrays were
performed according to the manufacturer’s protocol.
For the AgeCoDe samples, gDNA was isolated from

whole blood and DNA concentration and purity was de-
termined using the NanoDrop ND1000 spectrophotom-
eter (Thermo Fisher Scientific). All samples were of
sufficient quantity and quality. Five hundred nanograms
of gDNA was used for BS conversion, using a Qiagen
EpiTect 96 Bisulfite Kit (Qiagen, Hilden, Germany) ac-
cording to the manufacturer’s protocol. A total of 200 ng
of BS converted DNA was analyzed using HM 450K ar-
rays according to the manufacturer’s instructions. The
Illumina iScan was used for imaging of the array.

Transcriptomic profiling
Total RNA extracted from frozen MTG, from matched sam-
ples as used for the epigenetic MTG analyses, was isolated
with the RNeasy Mini Kit (Qiagen) starting with at least 60
mg of tissue. Raw expression data was obtained at the
BSHRI, using the HumanHT-12 v4 BeadChip (Illumina).

Statistical analysis
All computational and statistical analyses were per-
formed using the statistical programming language R
(version 3.3.2) [60] and RStudio (version 1.0.136) [61],
unless otherwise specified. Raw IDAT files from the Illu-
mina iScan were loaded into R using the minfi package
(version 1.20.2) [62]. To confirm that the longitudinal
samples were from the same donor a genetic fingerprint-
ing test was performed based on the 65 SNP probes in-
cluded on the HM 450K chip, as implemented in the
ewastools package [63]. Based on this test, 2 donors with
mismatching samples were detected and excluded from
the blood data. Next, the gender of the samples was pre-
dicted based on X chromosome methylation using the
DNAmArray package (version 0.0.2) [64], compared with
the assumed gender, and mismatches were excluded (1
mismatched sample was excluded from the blood data).
Cross-hybridizing probes and probes containing a
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common SNP in the sequence or within 10 bp of the se-
quence were removed [65]. The “pfilter” function of the
wateRmelon package (version 1.18.0) [66] was used for
probe filtering (6 969 and 1 437 probes were removed
from the MTG and blood data, respectively). The
remaining probe data was normalized using the dasen
method, as implemented in the wateRmelon package
[66]. Probes on the X and Y chromosomes were ex-
cluded from further analyses.
Following normalization, two sets of beta values, from the

standard BS arrays (5mC+ 5hmC) and from the oxBS arrays
(5mC), were generated in case of the MTG. By subtracting
oxBS beta values from the BS beta values (ΔβBS-oxBS) for
each probe in each sample, 5hmC levels were calculated
(Fig. 1). UC values were determined as 1-BS (1-βBS). It
should be noted that other DNA demethylation intermedi-
ates, such as 5-formylcytosine (5fC) and 5-carboxylcytosine
may be represented in the BS or UC levels, as it is currently
unclear how these intermediates respond to oxBS conver-
sion [67]. However, these intermediates are present at very
low levels and are not enriched in brain tissue like 5hmC is
[68]. In order to reduce noise and filter out non-
hydroxymethylated sites, outliers deviating more than ± 2SD
from the probe mean in the 5hmC dataset were determined
and set to the mean ± 2SD first, and subsequently, a thresh-
old of zero was applied to the mean of individual probes
(218,009 5hmC values were excluded). Boxplots and density
plots of raw and normalized beta values per sample were
inspected for clear outliers (2 MTG samples were excluded
due to clear deviation from the other samples; data not
shown). After data processing, 80 MTG and 96 blood sam-
ples remained, with 396,600 remaining probes for MTG
5mC and UC, 178,591 5hmC MTG probes, and 402,480
remaining probes in the blood datasets. The case-control
analysis of the blood baseline data included all 96 samples
(54 converters, 42 controls), while follow-up data included
83 samples, including the 41 converters that had already
converted to AD at the 4.5-year follow-up and excluding
those that had converted later. All individuals in the follow-
up analysis were also included in the baseline analysis.
An initial model with beta values as outcome, AD

diagnosis/conversion as predictor, and age and gender as
covariates was used for a surrogate variable (SV) analysis
with the sva package (version 3.22.0) [69]. The first 5
SVs of this analysis were added to the model to adjust
for unobserved confounders, including potential batch
effects and differences in cell type composition. As the
addition of SVs still resulted in inflation of the regres-
sion statistics (lambda = 1.43) of the blood follow-up
analysis, and none of the SVs strongly correlated with
the HM 450K chip IDs (which was the case for the other
analyses), the chip IDs were also added to the model for
this analysis. This successfully eliminated the inflation
(lambda = 1.00).

Linear regression was performed using the limma
package (version 3.30.11) [70] to test the association
between the beta values and AD diagnosis/conversion.
Test statistics were adjusted for bias and inflation
with the bacon package (version 1.2.0) [71]. An FDR
correction for multiple testing was applied to the p
values to identify differentially (hydroxy)methylated
and unmodified positions (probes with pFDR < 0.05).
Individual probes were annotated using Illumina
UCSC annotation.
To examine the distribution of 5mC, 5hmC, and UC

levels across genomic regions, we annotated the 1000
highest ranking probes (Additional file 1: Tables S2–S7)
using ENCODE annotation data, as described by Slieker
et al. [72]. Fisher’s exact test was used to assess enrich-
ment in specific genomic regions.
To identify differentially (hydroxy)methylated and un-

modified regions (DHRs/DMRs/DURs), spatial correlations
between p values of the association analysis were deter-
mined using comb-p [73] with a seeding p value of 0.01 and
a window size of 1000 bp. Obtained p values were Stouffer-
Liptak-Kechris corrected for adjacent p values and were
subsequently corrected for multiple testing using the Šidák
correction. Of the regions detected by comb-p, only those
containing at least 3 CpGs and having a pŠidák < 0.05 were
accepted as differentially modified regions.
GRNs have been extensively used to achieve deeper

understanding of disease related mechanisms [74]. Dif-
ferent topological characteristics of these networks, such
as connectivity of nodes [75] or gene-gene interaction
tendency in cell/tissue specific contexts [76], have been
used to predict disease-related genes. Here, we have
employed an in-house developed differential GRNs in-
ference approach [77], which relies on gene expression
data to infer GRNs specific to a given gene expression
program. The initial set of interactions among the genes
of interest was compiled from literature-based database
ARIADNE [78] and consists of interactions belonging to
the categories of “Direct Regulation,” “Expression,” and
“Promoter Binding.” The obtained set of interactions is
not context-specific as they are reported to happen in
different cell/tissue types and organisms. To obtain
context-specific networks from the literature interaction
maps, the pruning of interactions incompatible with the
gene expression state was carried out, which resulted in
contextualized networks compatible with the given gene
expression state of the system. As a differential expres-
sion setting was used here, we obtained two contextual-
ized GRNs for each state, representing the different
network topology of diseased and healthy phenotype.
The differential network topology helps us in identifying
the set of genes that are regulated by different transcrip-
tion factors in both networks. These genes formulate an
ideal set of candidate perturbagens, as to change their
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expression state we have to perturb them individually.
The obtained contextualized networks were used to
identify genes in the common elementary circuits (posi-
tive and negative circuits) that can also serve as a set of
candidate genes for perturbation. Genes in elementary
circuits have been reported to play a crucial role in
maintaining network stability [79] and are considered as
a necessary condition for a network to have an attractive
cycle [80]. In this regard, genes present in the common
elementary circuits are considered to be the backbone of
the network and any perturbations in the expression
levels of these genes might lead the system to deviate
from the normal steady state of the system, which can
be described as a transition from healthy to a diseased
state. Once we obtained a set of optimal perturbation
candidates, we performed single-gene perturbation sim-
ulations to see the effect of change in expression of a
single gene on all the other genes in the GRN. This
measure tells us about the influential capability of the
selected gene in the network; the higher the number of
downstream genes being affected by perturbing a candi-
date gene, the more crucial is its role in the regulation
of other genes in the GRN.
Positions from the AD association analyses were

ranked based on a combined p value and log2 fold
change ranking score. The GRN analysis was then con-
ducted separately for the genes annotated to the 1000
highest ranked sites in the MTG (5mC, 5hmC, and UC
separately) and blood (baseline and follow-up separately)
(Additional file 1: Tables S2–S7). Closest UCSC TSS an-
notation was used to obtain unique genes. After applying
the differential GRN analysis on the contextualized net-
works, we ranked the key candidate genes based on their
scores. This score represents the number of genes whose
gene expression is changed (shifted from diseased to-
wards the healthy phenotype) upon perturbation of the
candidate gene.
Raw RNA expression data was exported from Illu-

mina’s GenomeStudio (version 2011.1) with the Ex-
pression Module (v1.9.0) for further analysis in R. Of
the 80 subjects used for the epigenetic analyses, 1
case was not included on the expression array, and 3
additional cases were excluded after quality control of
the data, due to extreme outlying values or failed
reads, leaving 76 subjects for further analyses. Data
was quantile-quantile normalized. Using the same
model as for the regression analysis, the sva package
was used to determine SVs for the epigenetic and ex-
pression datasets. The effects of age, gender, and 5
SVs were regressed out of the epigenetic and expres-
sion data using limma (i.e., “regressed data” refers to
the residuals of a model fitted with the covariates, ex-
cluding the predictor of interest, being AD diagnosis
or conversion in this case). Spearman correlations

were determined for the expression data and the
average of the regressed beta values of the probes in
the DMRs, DHRs, and DURs, as well as correlations
between the different epigenetic markers (5mC,
5hmC, and UC) for these probes, using the Hmisc
package (version 4.0-2) [81].
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ANOVA Xi DMPs in AddNeuroMed 

ProbeID Position F p (F) UCSC Gene UCSC Gene Group GREAT Annotation 

cg22822140 chrX:153046577 60.317 1.92E-20 SRPK3 1stExon SRPK3 (122) 

cg13009143 chrX:100548223 47.71 4.08E-17 TAF7L TSS200 TAF7L (-165) 

cg12230162 chrX:153046482 46.334 9.84E-17 SRPK3 5'UTR,1stExon SRPK3 (27) 

cg24496423 chrX:153046480 43.144 7.85E-16 SRPK3 5'UTR,1stExon SRPK3 (25) 

cg16152676 chrX:10126878 36.492 7.10E-14 CLCN4 5'UTR CLCN4 (1894), MID1 (724930) 

cg03360001 chrX:53453272 35.944 1.04E-13 RIBC1 Body SMC1A (-3655) 

cg12468189 chrX:153046767 34.577 2.72E-13 SRPK3 Body SRPK3 (312) 

cg09768654 chrX:153046386 30.912 3.79E-12 SRPK3 TSS200 SRPK3 (-69) 

cg16529483 chrX:153046451 30.87 3.91E-12 SRPK3 TSS200 SRPK3 (-4) 

cg21252909 chrX:30326328 30.829 4.03E-12 NR0B1 1stExon NR0B1 (1166) 

cg19938385 chrX:107020894 30.752 4.26E-12 
  

TSC22D3 (-1878) 

cg19280671 chrX:149013642 30.44 5.35E-12 MAGEA8 Body MAMLD1 (-517908), MAGEA8 (3702) 

cg24605338 chrX:17395856 30.05 7.12E-12 NHS Body SCML1 (-359735), NHS (2314) 

cg17405188 chrX:73164102 27.494 4.77E-11 LOC554203 TSS200 ZCCHC13 (-359922), CHIC1 (381119) 

cg17003204 chrX:102861456 26.96 7.13E-11 TCEAL3 TSS1500 TCEAL3 (-1377) 

cg25896901 chrX:125300481 26.155 1.31E-10 DCAF12L2 TSS1500 DCAF12L1 (386360) 

cg22926378 chrX:6144633 25.983 1.50E-10 NLGN4X 5'UTR NLGN4X (2072) 

cg06452970 chrX:13835264 23.847 7.76E-10 GPM6B 1stExon,5'UTR,Body GPM6B (49) 

cg23914849 chrX:52950051 23.755 8.33E-10 
  

FAM156B (21967), FAM156A (74599) 

cg16122592 chrX:26210712 23.27 1.22E-09 MAGEB6 5'UTR MAGEB6 (156) 

cg07069575 chrX:49688313 22.786 1.78E-09 CLCN5 5'UTR CLCN5 (1089), AKAP4 (277350) 

cg26484667 chrX:2733164 22.63 2.01E-09 XG 3'UTR GYG2 (-13698), XG (63072) 
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ANOVA Xi DMPs in AddNeuroMed (Continued) 

ProbeID Position F p (F) UCSC Gene 
UCSC Gene 
Group 

GREAT Annotation 

cg17513789 chrX:73073251 22.467 2.29E-09 XIST TSS1500 ZCCHC13 (-450773), CHIC1 (290268) 

cg15907464 chrX:70712790 21.952 3.43E-09 BCYRN1;INGX Body;TSS200 OGT (-40121), TAF1 (126677) 

cg17219209 chrX:149009840 21.658 4.33E-09 MAGEA8 TSS200 MAGEA8 (-100) 

cg04710661 chrX:2848381 21.513 4.87E-09 ARSD TSS1500 ARSD (-966) 

cg04768884 chrX:19443172 21.379 5.41E-09 MAP3K15 Body PDHA1 (81162), MAP3K15 (90206) 

cg14917571 chrX:79269151 20.935 7.71E-09 TBX22 TSS1500 ITM2A (-646103), TBX22 (-8590) 

cg00190642 chrX:103268431 20.518 1.08E-08 H2BFWT;MIR1256 TSS200;Body H2BFWT (-176) 

cg09953945 chrX:150345040 19.926 1.73E-08 GPR50 TSS200 GPR50 (-15) 

cg11179997 chrX:119125670 19.905 1.77E-08 
  

NKAP (-47936), RHOXF2 (86036) 

cg00805156 chrX:3264341 19.889 1.79E-08 MXRA5 5'UTR MXRA5 (342) 

cg09661041 chrX:153141905 19.818 1.89E-08 L1CAM TSS1500 L1CAM (-507) 

cg00123001 chrX:13395880 19.591 2.27E-08 
  

EGFL6 (-191813), ATXN3L (-57363) 

cg24352688 chrX:13751727 19.572 2.31E-08 TRAPPC2;OFD1 5'UTR;TSS1500 OFD1 (-1104), TRAPPC2 (1026) 

cg09513996 chrX:48685182 19.303 2.87E-08 
  

ERAS (-2100) 

cg06068202 chrX:150343148 19.185 3.16E-08 
  

GPR50 (-1907) 

cg02329520 chrX:153740317 19.162 3.22E-08 FAM3A Body SLC10A3 (-21316), FAM3A (4248) 

cg08630881 chrX:70713213 19.093 3.41E-08 BCYRN1;INGX Body;TSS1500 OGT (-39698), TAF1 (127100) 

cg22574818 chrX:55479616 18.874 4.07E-08 MAGEH1 1stExon,3'UTR MAGEH1 (1079), USP51 (36014) 

cg01737010 chrX:101772014 18.852 4.15E-08 TMSB15A TSS1500 TMSB15A (-316) 

cg08464958 chrX:2852845 18.811 4.29E-08 ARSE 3'UTR ARSD (-5430), ARSE (29648) 

cg26101161 chrX:122736584 18.311 6.46E-08 THOC2 3'UTR THOC2 (130319), GRIA3 (418489) 

cg13788827 chrX:12990209 18.054 7.97E-08 
  

TMSB4X (-3016) 

cg04817724 chrX:103809991 18.025 8.17E-08 IL1RAPL2 TSS1500 IL1RAPL2 (-1004) 
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ANOVA Xi DMPs in AddNeuroMed (Continued) 

ProbeID Position F p (F) UCSC Gene UCSC Gene Group GREAT Annotation 

cg21364342 chrX:107226611 17.69 1.08E-07 TEX13B TSS1500 VSIG1 (-61588), MID2 (157528) 

cg08333400 chrX:10126881 16.903 2.06E-07 CLCN4 5'UTR CLCN4 (1897), MID1 (724927) 

cg07344627 chrX:125687011 16.858 2.14E-07 DCAF12L1 TSS200 DCAF12L1 (-170) 

cg14306994 chrX:49019804 16.805 2.24E-07 MAGIX Body,TSS1500 GPKOW (-39726), PLP2 (-8379) 

cg08867267 chrX:130033963 16.57 2.73E-07 ENOX2 5'UTR ENOX2 (3244), RBMX2 (498021) 

cg22090245 chrX:99661860 16.522 2.84E-07 PCDH19 1stExon PCDH19 (3410) 

cg24834461 chrX:153637645 16.433 3.06E-07 DNASE1L1 TSS200,5'UTR TAZ (-2231) 

cg08850124 chrX:118207749 16.35 3.28E-07 
  

PGRMC1 (-162461), LONRF3 (99037) 

cg25433595 chrX:100183764 16.329 3.33E-07 XKRX 5'UTR,1stExon XKRX (133) 

cg00072799 chrX:78427682 16.296 3.43E-07 GPR174 1stExon,3'UTR GPR174 (1214), ITM2A (195366) 

cg25177692 chrX:129193893 16.251 3.56E-07 
  

ELF4 (50794), BCORL1 (54730) 

cg26747413 chrX:15807140 16.179 3.78E-07 INE2;ZRSR2 TSS1500;TSS1500 ZRSR2 (-1433) 

cg16508637 chrX:132094977 15.993 4.42E-07 HS6ST2 5'UTR HS6ST2 (445) 

cg07395961 chrX:25041645 15.969 4.51E-07 
  

ARX (-7581) 

cg12039689 chrX:153141750 15.907 4.75E-07 L1CAM TSS1500 L1CAM (-352) 

cg06616051 chrX:153094332 15.857 4.95E-07 PDZD4 Body IDH3G (-34366), PDZD4 (1670) 

cg00977690 chrX:24167334 15.855 4.96E-07 
  

ZFX (-427) 

cg17662252 chrX:54560704 15.76 5.37E-07 GNL3L Body GNL3L (4061), ITIH6 (263968) 

cg07892139 chrX:84192519 15.757 5.39E-07 
  

APOOL (-66378), UBE2DNL (3363) 

cg05889382 chrX:70887722 15.74 5.46E-07 BCYRN1 Body PIN4 (-513803), CXCR3 (-49356) 

cg26468081 chrX:69501565 15.594 6.18E-07 ARR3;RAB41 Body;TSS1500 RAB41 (-456) 

cg10482495 chrX:71351314 15.588 6.21E-07 NHSL2;RGAG4 Body;1stExon CXCR3 (-512948), PIN4 (-50211) 

cg25958561 chrX:110187179 15.482 6.79E-07 PAK3 TSS1500 PAK3 (-179125), CHRDL1 (-148104) 

cg02754763 chrX:44403388 15.468 6.87E-07 FUNDC1 TSS1500 DUSP21 (-299860), EFHC2 (-200466) 
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ANOVA Xi DMPs in AddNeuroMed (Continued) 

ProbeID Position F p (F) UCSC Gene UCSC Gene Group GREAT Annotation 

ch.X.1639000R chrX:113225430 15.448 6.99E-07 
  

HTR2C (-593120) 

cg20814574 chrX:92928640 15.348 7.60E-07 FAM133A;NAP1L3 TSS1500;TSS200 NAP1L3 (41) 

cg10288121 chrX:53247489 15.33 7.72E-07 KDM5C Body KDM5C (7114), TSPYL2 (135948) 

cg09626131 chrX:82764537 15.301 7.91E-07 POU3F4 3'UTR,1stExon CYLC1 (-351632), POU3F4 (1269) 

cg09979033 chrX:16726904 15.151 8.98E-07 CTPS2 5'UTR CTPS2 (4154), S100G (58624) 

cg20784188 chrX:44703983 15.026 9.98E-07 DUSP21 3'UTR,1stExon DUSP21 (735) 

cg25396787 chrX:3733991 15.013 1.01E-06 
  

PRKX (-102317) 

cg26486175 chrX:18658942 14.896 1.12E-06 CDKL5;RS1 Body;3'UTR RS1 (31280), CDKL5 (215218) 

cg04867253 chrX:70472827 14.778 1.23E-06 ZMYM3;BCYRN1 Body;Body ZMYM3 (1210), GJB1 (37766) 

cg00928753 chrX:36976515 14.676 1.34E-06 
  

PRRG1 (-232012), CXorf59 
(911463) 

cg04751886 chrX:53220515 14.649 1.37E-06 KDM5C 3'UTR KDM5C (34088), TSPYL2 
(108974) 

cg25880538 chrX:68840309 14.515 1.54E-06 EDA Body EDA (4399), AWAT2 (429478) 

ch.X.94051109R chrX:94164453 14.486 1.58E-06 
   

cg03449040 chrX:10094363 14.473 1.60E-06 WWC3 Body CLCN4 (-30621), SHROOM2 
(339868) 

cg16801826 chrX:54587084 14.415 1.68E-06 GNL3L 3'UTR GNL3L (30441), ITIH6 (237588) 

cg07089438 chrX:133988190 14.415 1.68E-06 FAM122C 3'UTR,Body PLAC1 (-195678), MOSPD1 
(61106) 

ch.X.153018199F chrX:153365005 14.369 1.75E-06 
  

MECP2 (-1818) 

cg27558057 chrX:70712724 14.353 1.77E-06 BCYRN1;INGX Body;TSS200 OGT (-40187), TAF1 (126611) 

cg13976265 chrX:3732500 14.27 1.90E-06 
  

PRKX (-100826) 

cg02048654 chrX:132551786 14.255 1.92E-06 
  

GPC4 (-2582) 

cg16975981 chrX:55246829 14.125 2.15E-06 PAGE5 5'UTR,1stExon MAGEH1 (-231708), MTRNR2L10 
(-37886) 

cg12461113 chrX:13587550 13.921 2.56E-06 EGFL6 TSS200 EGFL6 (-143) 

cg01067505 chrX:107178820 13.845 2.73E-06   VSIG1 (-109379), MID2 (109737) 
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ANOVA Xi DMPs in AddNeuroMed (Continued) 

ProbeID Position F p (F) UCSC Gene 
UCSC Gene 
Group 

GREAT Annotation 

cg08119631 chrX:118822815 13.763 2.93E-06 SEPT6 Body NKRF (-82970), SEPT6 (4517) 

cg24401049 chrX:11157158 13.728 3.02E-06 ARHGAP6 Body AMELX (-154374), HCCS (27753) 

cg24743423 chrX:8701002 13.49 3.71E-06 KAL1 TSS1500 KAL1 (-776) 

cg22268449 chrX:47053156 13.482 3.73E-06 UBA1 TSS200,5'UTR CDK16 (-29260), UBA1 (2958) 

cg05148324 chrX:153211181 13.464 3.79E-06 RENBP TSS1500 RENBP (-950) 

cg05091491 chrX:114423926 13.431 3.90E-06 RBMXL3;LRCH2 TSS200;Body RBMXL3 (-36) 

cg00695046 chrX:100545995 13.394 4.03E-06 TAF7L Body,5'UTR TAF7L (2063), DRP2 (71063) 

cg01975035 chrX:24761808 13.389 4.05E-06 SCARNA23;POLA1 TSS1500;Body POLA1 (49745), ARX (272256) 

cg06068891 chrX:135228207 13.38 4.07E-06 FHL1 TSS1500 FHL1 (-1351) 

cg05860920 chrX:11679501 13.344 4.20E-06 ARHGAP6 Body ARHGAP6 (4319), AMELX (367969) 

cg03198117 chrX:152939967 13.302 4.36E-06 PNCK TSS1500,TSS200 PNCK (-152) 

cg03670113 chrX:153640589 13.287 4.42E-06 TAZ;DNASE1L1 Body;TSS200 DNASE1L1 (-163), TAZ (713) 

cg03035653 chrX:99662932 13.277 4.46E-06 PCDH19 1stExon PCDH19 (2338) 

cg24636657 chrX:105280886 13.198 4.77E-06 SERPINA7 1stExon SERPINA7 (1831), NRK (214351) 

cg03800724 chrX:53253348 13.186 4.82E-06 KDM5C Body KDM5C (1255), TSPYL2 (141807) 

cg04553232 chrX:8700576 13.168 4.89E-06 KAL1 TSS1500 KAL1 (-350) 

cg06138173 chrX:16668923 13.154 4.96E-06 CTPS2;S100G Body;5'UTR S100G (643) 

cg12720637 chrX:151619769 13.145 4.99E-06 GABRA3 1stExon,5'UTR GABRA3 (61) 

cg25831435 chrX:137714452 13.144 5.00E-06 FGF13 3'UTR FGF13 (572732) 

cg22964346 chrX:109411307 13.131 5.06E-06 TMEM164 Body AMMECR1 (150072), TMEM164 
(164966) 

Appendix D: Xi DMPs associated with CTL, MCI, and AD in AddNeuroMed. 

DNA methylation differences on the Xi chromosome related to CTL, MCI, or AD status. All probes passing the Bonferroni-adjusted p-value threshold 

of p < 5.18×10-6 are shown by ProbeID, genomic location (genome build 37), ANOVA F-statistic and p-value, UCSC gene and group annotation, 

and GREAT annotation with distance to the nearest TSS in parentheses. 
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APPENDIX E: XI DMPS ASSOCIATED WITH AD IN ADDNEUROMED 
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CTL vs AD Xi DMPs 

ProbeID Position Difference (CI) p CvA UCSC Gene 
UCSC Gene 
Group GREAT Annotation 

cg22822140 chrX:153046577 -9.53 (-11.83 - -7.22) 4.92E-14 SRPK3 1stExon SRPK3 (122) 

cg12468189 chrX:153046767 -5.4 (-6.94 - -3.86) 1.52E-13 SRPK3 Body SRPK3 (312) 

cg12230162 chrX:153046482 -8.72 (-11.28 - -6.16) 4.81E-13 SRPK3 5'UTR,1stExon SRPK3 (27) 

cg24496423 chrX:153046480 -6.66 (-8.68 - -4.63) 2.27E-12 SRPK3 5'UTR,1stExon SRPK3 (25) 

cg19938385 chrX:107020894 -5.93 (-7.81 - -4.06) 1.24E-11 
  

TSC22D3 (-1878) 

cg17405188 chrX:73164102 1.72 (1.17 - 2.27) 1.80E-11 LOC554203 TSS200 ZCCHC13 (-359922), CHIC1 (381119) 

cg16529483 chrX:153046451 -7.68 (-10.23 - -5.12) 1.01E-10 SRPK3 TSS200 SRPK3 (-4) 

cg23914849 chrX:52950051 0.68 (0.45 - 0.91) 3.43E-10 
  

FAM156B (21967), FAM156A (74599) 

cg04710661 chrX:2848381 1.87 (1.19 - 2.56) 3.84E-09 ARSD TSS1500 ARSD (-966) 

cg04768884 chrX:19443172 3.71 (2.3 - 5.13) 1.34E-08 MAP3K15 Body PDHA1 (81162), MAP3K15 (90206) 

cg22574818 chrX:55479616 -6.02 (-8.34 - -3.7) 1.82E-08 MAGEH1 1stExon,3'UTR MAGEH1 (1079), USP51 (36014) 

cg09768654 chrX:153046386 -5.97 (-8.28 - -3.66) 2.11E-08 SRPK3 TSS200 SRPK3 (-69) 

cg02329520 chrX:153740317 -1.98 (-2.77 - -1.19) 4.73E-08 FAM3A Body SLC10A3 (-21316), FAM3A (4248) 

cg07344627 chrX:125687011 -6.12 (-8.61 - -3.62) 9.71E-08 DCAF12L1 TSS200 DCAF12L1 (-170) 

cg09661041 chrX:153141905 -6.06 (-8.54 - -3.59) 9.82E-08 L1CAM TSS1500 L1CAM (-507) 

cg00805156 chrX:3264341 4.09 (2.41 - 5.77) 1.27E-07 MXRA5 5'UTR MXRA5 (342) 

cg06068202 chrX:150343148 4.71 (2.76 - 6.67) 1.51E-07 
  

GPR50 (-1907) 

cg06616051 chrX:153094332 4.3 (2.48 - 6.13) 2.99E-07 PDZD4 Body IDH3G (-34366), PDZD4 (1670) 

cg00123001 chrX:13395880 -1.96 (-2.79 - -1.13) 3.01E-07 
  

EGFL6 (-191813), ATXN3L (-57363) 

cg25896901 chrX:125300481 -6.23 (-8.88 - -3.58) 3.25E-07 DCAF12L2 TSS1500 DCAF12L1 (386360) 

ch.X.163900
0R 

chrX:113225430 1.69 (0.97 - 2.41) 3.37E-07   HTR2C (-593120) 

cg24352688 chrX:13751727 1.65 (0.94 - 2.35) 3.55E-07 TRAPPC2;
OFD1 

5'UTR;TSS150
0 

OFD1 (-1104), TRAPPC2 (1026) 

cg08850124 chrX:118207749 -1.64 (-2.35 - -0.93) 4.60E-07   PGRMC1 (-162461), LONRF3 (99037) 
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CTL vs AD Xi DMPs (Continued) 

ProbeID Position Difference (CI) p CvA UCSC Gene 
UCSC Gene 
Group 

GREAT Annotation 

cg00072799 chrX:78427682 -3.38 (-4.83 - -1.92) 4.86E-07 GPR174 1stExon,3'UTR GPR174 (1214), ITM2A 
(195366) 

cg12039689 chrX:153141750 -5.08 (-7.28 - -2.88) 4.94E-07 L1CAM TSS1500 L1CAM (-352) 

cg20814574 chrX:92928640 1.29 (0.73 - 1.86) 5.43E-07 FAM133A;NAP1L3 TSS1500;TSS200 NAP1L3 (41) 

cg00928753 chrX:36976515 5.02 (2.83 - 7.21) 6.26E-07 
  

PRRG1 (-232012), CXorf59 
(911463) 

cg02048654 chrX:132551786 6.34 (3.48 - 9.2) 1.43E-06 
  

GPC4 (-2582) 

cg16122592 chrX:26210712 -2.55 (-3.71 - -1.39) 1.60E-06 MAGEB6 5'UTR MAGEB6 (156) 

cg26101161 chrX:122736584 -2.29 (-3.33 - -1.25) 1.70E-06 THOC2 3'UTR THOC2 (130319), GRIA3 
(418489) 

cg01975035 chrX:24761808 -2.42 (-3.53 - -1.31) 1.95E-06 SCARNA23;POLA1 TSS1500;Body POLA1 (49745), ARX 
(272256) 

cg24636657 chrX:105280886 -3.15 (-4.61 - -1.7) 2.39E-06 SERPINA7 1stExon SERPINA7 (1831), NRK 
(214351) 

cg01961936 chrX:102349348 -2.02 (-2.96 - -1.08) 3.17E-06 NXF3 TSS1500 NXF3 (-1327) 

cg16170760 chrX:153708103 -1.81 (-2.65 - -0.96) 3.34E-06 LAGE3 TSS1500 LAGE3 (-508) 

cg20784188 chrX:44703983 -2.24 (-3.29 - -1.19) 3.73E-06 DUSP21 3'UTR;1stExon DUSP21 (735) 

cg21364342 chrX:107226611 -2.22 (-3.27 - -1.17) 4.15E-06 TEX13B TSS1500 VSIG1 (-61588), MID2 
(157528) 

cg22964346 chrX:109411307 -1.11 (-1.64 - -0.59) 4.18E-06 TMEM164 Body AMMECR1 (150072), 
TMEM164 (164966) 

cg26747413 chrX:15807140 -3.71 (-5.47 - -1.96) 4.23E-06 INE2;ZRSR2 TSS1500;TSS150
0 

ZRSR2 (-1433) 

cg00977690 chrX:24167334 1.14 (0.6 - 1.68) 4.98E-06 
  

ZFX (-427) 

cg02754763 chrX:44403388 -1.58 (-2.34 - -0.83) 5.16E-06 FUNDC1 TSS1500 DUSP21 (-299860), EFHC2 (-
200466) 

Appendix E: Xi DMPs associated with AD in AddNeuroMed. 

DNA methylation differences on the Xi chromosome related to diagnosis of AD in comparison to CTL. All DMPs passing the Bonferroni-adjusted p-

value threshold of p < 5.18×10-6 are shown by ProbeID, genomic location (genome build 37), the group difference in % methylation (AD – CTL), 

confidence interval (CI), and p-value as calculated with Tukey’s HSD test, UCSC gene and group annotation, and GREAT annotation with distance 

to the nearest TSS in parentheses. 
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APPENDIX F: XI DMPS ASSOCIATED WITH MCI IN ADDNEUROMED 
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CTL vs MCI Xi DMPs  

ProbeID Position Difference (CI) p CvM UCSC Gene UCSC Gene Group GREAT Annotation 

cg24605338 chrX:17395856 -3.68 (-4.8 - -2.56) 2.63E-12 NHS Body SCML1 (-359735), NHS (2314) 

cg17003204 chrX:102861456 -3.76 (-5.02 - -2.5) 1.21E-10 TCEAL3 TSS1500 TCEAL3 (-1377) 

cg19280671 chrX:149013642 1.76 (1.17 - 2.35) 1.63E-10 MAGEA8 Body MAMLD1 (-517908), MAGEA8 
(3702) 

cg16152676 chrX:10126878 4.18 (2.74 - 5.62) 4.19E-10 CLCN4 5'UTR CLCN4 (1894), MID1 (724930) 

cg17513789 chrX:73073251 -4.75 (-6.42 - -3.07) 9.34E-10 XIST TSS1500 ZCCHC13 (-450773), CHIC1 

(290268) 
cg15907464 chrX:70712790 -3.53 (-4.8 - -2.27) 1.37E-09 BCYRN1;ING

X 
Body;TSS200 OGT (-40121), TAF1 (126677) 

cg14917571 chrX:79269151 -5.32 (-7.26 - -3.37) 3.18E-09 TBX22 TSS1500 ITM2A (-646103), TBX22 (-8590) 

cg16122592 chrX:26210712 -3.11 (-4.25 - -1.97) 3.57E-09 MAGEB6 5'UTR MAGEB6 (156) 

cg06452970 chrX:13835264 5.1 (3.2 - 7.01) 6.56E-09 GPM6B 1stExon,5'UTR,Body GPM6B (49) 

cg09953945 chrX:150345040 -2.98 (-4.1 - -1.86) 7.92E-09 GPR50 TSS200 GPR50 (-15) 

cg17219209 chrX:149009840 2.15 (1.33 - 2.97) 1.39E-08 MAGEA8 TSS200 MAGEA8 (-100) 

cg26484667 chrX:2733164 -3.16 (-4.39 - -1.93) 2.30E-08 XG 3'UTR GYG2 (-13698), XG (63072) 

cg08630881 chrX:70713213 -2.83 (-3.93 - -1.73) 2.38E-08 BCYRN1;ING
X 

Body;TSS1500 OGT (-39698), TAF1 (127100) 

cg04817724 chrX:103809991 5.25 (3.17 - 7.32) 3.94E-08 IL1RAPL2 TSS1500 IL1RAPL2 (-1004) 

cg19938385 chrX:107020894 -4.59 (-6.44 - -2.74) 7.28E-08 
  

TSC22D3 (-1878) 

cg08867267 chrX:130033963 -2.5 (-3.53 - -1.47) 1.22E-07 ENOX2 5'UTR ENOX2 (3244), RBMX2 (498021) 

cg14306994 chrX:49019804 3.27 (1.92 - 4.62) 1.34E-07 MAGIX Body,TSS1500 GPKOW (-39726), PLP2 (-8379) 

cg08464958 chrX:2852845 -2.28 (-3.23 - -1.34) 1.42E-07 ARSE 3'UTR ARSD (-5430), ARSE (29648) 

cg13009143 chrX:100548223 -1.68 (-2.37 - -0.98) 1.57E-07 TAF7L TSS200 TAF7L (-165) 

cg24834461 chrX:153637645 1.68 (0.98 - 2.38) 2.05E-07 DNASE1L1 TSS200,5'UTR TAZ (-2231) 

cg25433595 chrX:100183764 4.52 (2.62 - 6.43) 2.42E-07 XKRX 5'UTR,1stExon XKRX (133) 

cg11179997 chrX:119125670 2.7 (1.54 - 3.87) 4.48E-07 
  

NKAP (-47936), RHOXF2 
(86036) 

cg25396787 chrX:3733991 2.88 (1.63 - 4.13) 5.42E-07 
  

PRKX (-102317) 

cg25177692 chrX:129193893 -2.58 (-3.71 - -1.45) 6.61E-07 
  

ELF4 (50794), BCORL1 (54730) 

cg07089438 chrX:133988190 -2.62 (-3.77 - -1.47) 7.81E-07 FAM122C 3'UTR,Body PLAC1 (-195678), MOSPD1 
(61106) 
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CTL vs MCI Xi DMPs (Continued) 

ProbeID Position Difference (CI) p CvM UCSC Gene UCSC Gene Group GREAT Annotation 

cg09979033 chrX:16726904 -1.83 (-2.64 - -1.02) 8.24E-07 CTPS2 5'UTR CTPS2 (4154), S100G (58624) 

cg26468081 chrX:69501565 -1.51 (-2.18 - -0.84) 8.84E-07 ARR3;RAB41 Body;TSS1500 RAB41 (-456) 

cg27558057 chrX:70712724 -3 (-4.33 - -1.67) 9.50E-07 BCYRN1;ING
X 

Body;TSS200 OGT (-40187), TAF1 (126611) 

cg21364342 chrX:107226611 -2.33 (-3.37 - -1.29) 9.94E-07 TEX13B TSS1500 VSIG1 (-61588), MID2 (157528) 

cg26101161 chrX:122736584 -2.31 (-3.34 - -1.28) 1.01E-06 THOC2 3'UTR THOC2 (130319), GRIA3 

(418489) 
cg25958561 chrX:110187179 3.22 (1.79 - 4.65) 1.02E-06 PAK3 TSS1500 PAK3 (-179125), CHRDL1 (-

148104) 
cg00123001 chrX:13395880 -1.84 (-2.66 - -1.02) 1.07E-06 

  
EGFL6 (-191813), ATXN3L (-
57363) 

cg12461113 chrX:13587550 -8.01 (-11.6 - -4.42) 1.21E-06 EGFL6 TSS200 EGFL6 (-143) 

cg05889382 chrX:70887722 -2.09 (-3.03 - -1.15) 1.25E-06 BCYRN1 Body PIN4 (-513803), CXCR3 (-49356) 

cg07892139 chrX:84192519 -4.58 (-6.66 - -2.5) 1.76E-06 
  

APOOL (-66378), UBE2DNL 
(3363) 

cg16508637 chrX:132094977 2.67 (1.45 - 3.89) 1.93E-06 HS6ST2 5'UTR HS6ST2 (445) 

cg00805156 chrX:3264341 3.64 (1.97 - 5.3) 1.96E-06 MXRA5 5'UTR MXRA5 (342) 

ch.X.153018
199F 

chrX:153365005 -1.02 (-1.49 - -0.55) 2.18E-06 
  

MECP2 (-1818) 

cg03035653 chrX:99662932 4.01 (2.16 - 5.86) 2.44E-06 PCDH19 1stExon PCDH19 (2338) 

cg06068891 chrX:135228207 -4.97 (-7.27 - -2.68) 2.48E-06 FHL1 TSS1500 FHL1 (-1351) 

cg06138173 chrX:16668923 -3.18 (-4.64 - -1.71) 2.50E-06 CTPS2;S100
G 

Body;5'UTR S100G (643) 

cg25831435 chrX:137714452 -3.18 (-4.65 - -1.71) 2.70E-06 FGF13 3'UTR FGF13 (572732) 

cg22926378 chrX:6144633 1.58 (0.84 - 2.31) 2.82E-06 NLGN4X 5'UTR NLGN4X (2072) 

ch.X.112118
442F 

chrX:112231786 1.28 (0.68 - 1.87) 2.96E-06 
  

AMOT (-165415) 

cg05860920 chrX:11679501 5.9 (3.14 - 8.65) 3.20E-06 ARHGAP6 Body ARHGAP6 (4319), AMELX 
(367969) 

cg03800724 chrX:53253348 2.56 (1.36 - 3.76) 3.31E-06 KDM5C Body KDM5C (1255), TSPYL2 
(141807) 
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CTL vs MCI Xi DMPs (Continued) 

ProbeID Position Difference (CI) p CvM UCSC Gene UCSC Gene Group GREAT Annotation 

cg03449040 chrX:10094363 -1.39 (-2.04 - -0.74) 3.63E-06 WWC3 Body CLCN4 (-30621), SHROOM2 
(339868) 

cg08333400 chrX:10126881 5.54 (2.93 - 8.14) 3.74E-06 CLCN4 5'UTR CLCN4 (1897), MID1 (724927) 

cg17397814 chrX:100670855 4.59 (2.43 - 6.76) 3.90E-06 
  

ARMCX1 (-134658), HNRNPH2 
(7735) 

cg09641151 chrX:153693918 2.86 (1.51 - 4.21) 4.09E-06 PLXNA3 Body PLXNA3 (7296), LAGE3 (13677) 

cg11837390 chrX:106957165 -2.14 (-3.16 - -1.13) 4.49E-06 TSC22D3 3'UTR TSC22D3 (61851), PRPS1 
(85512) 

cg05091491 chrX:114423926 -2.85 (-4.2 - -1.5) 4.57E-06 RBMXL3;LR
CH2 

TSS200;Body RBMXL3 (-36) 

cg20881335 chrX:14547172 6.61 (3.47 - 9.74) 4.60E-06 GLRA2 TSS1500 GLRA2 (-247) 

cg06068202 chrX:150343148 4.06 (2.13 - 5.99) 4.68E-06 
  

GPR50 (-1907) 

cg08119631 chrX:118822815 -2.71 (-4 - -1.42) 5.00E-06 SEPT6 Body NKRF (-82970), SEPT6 (4517) 

Appendix F: Xi DMPs associated with MCI in AddNeuroMed. 

DNA methylation differences on the Xi chromosome related to diagnosis of MCI in comparison to CTL. All DMPs passing the Bonferroni-adjusted p-

value threshold of p < 5.18×10-6 are shown by ProbeID, genomic location (genome build 37), the group difference in % methylation (MCI – CTL), 

confidence interval (CI), and p-value as calculated with Tukey’s HSD test, UCSC gene and group annotation, and GREAT annotation with distance 

to the nearest TSS in parentheses. 
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APPENDIX G: XI DMPS ASSOCIATED WITH AD RELATIVE TO MCI IN 

ADDNEUROMED 
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MCI vs AD Xi DMPs 

ProbeID Position Difference (CI) p MvA 
UCSC 
Gene 

UCSC Gene 
Group 

GREAT Annotation 

cg13009143 chrX:100548223 2.84 (2.15 - 3.53) 4.79E-14 TAF7L TSS200 TAF7L (-165) 

cg22822140 chrX:153046577 -8.86 (-11.12 - -6.59) 4.98E-14 SRPK3 1stExon SRPK3 (122) 

cg12230162 chrX:153046482 -9.17 (-11.68 - -6.65) 6.34E-14 SRPK3 5'UTR,1stExon SRPK3 (27) 

cg03360001 chrX:53453272 2.12 (1.53 - 2.71) 8.63E-14 RIBC1 Body SMC1A (-3655) 

cg24496423 chrX:153046480 -7 (-8.99 - -5.01) 1.45E-13 SRPK3 5'UTR,1stExon SRPK3 (25) 

cg21252909 chrX:30326328 -7.69 (-10.01 - -5.37) 1.56E-12 NR0B1 1stExon NR0B1 (1166) 

cg16152676 chrX:10126878 -4.73 (-6.17 - -3.3) 2.08E-12 CLCN4 5'UTR CLCN4 (1894), MID1 (724930) 

cg09768654 chrX:153046386 -7.07 (-9.35 - -4.8) 2.41E-11 SRPK3 TSS200 SRPK3 (-69) 

cg22926378 chrX:6144633 -2.13 (-2.86 - -1.41) 2.60E-10 NLGN4X 5'UTR NLGN4X (2072) 

cg25896901 chrX:125300481 -7.5 (-10.11 - -4.89) 5.28E-10 DCAF12L
2 

TSS1500 DCAF12L1 (386360) 

cg07069575 chrX:49688313 -3.39 (-4.6 - -2.17) 1.87E-09 CLCN5 5'UTR CLCN5 (1089), AKAP4 (277350) 

cg16529483 chrX:153046451 -6.89 (-9.4 - -4.38) 2.91E-09 SRPK3 TSS200 SRPK3 (-4) 

cg19280671 chrX:149013642 -1.59 (-2.18 - -1) 4.85E-09 MAGEA8 Body MAMLD1 (-517908), MAGEA8 (3702) 

cg00190642 chrX:103268431 4 (2.5 - 5.51) 8.25E-09 H2BFWT;
MIR1256 

TSS200;Body H2BFWT (-176) 

cg01737010 chrX:101772014 -2.47 (-3.45 - -1.5) 3.98E-08 TMSB15A TSS1500 TMSB15A (-316) 

cg13788827 chrX:12990209 2.32 (1.4 - 3.25) 4.96E-08 
  

TMSB4X (-3016) 

cg09513996 chrX:48685182 -3.47 (-4.86 - -2.08) 5.67E-08 
  

ERAS (-2100) 

cg06452970 chrX:13835264 -4.4 (-6.3 - -2.5) 4.50E-07 GPM6B 1stExon,5'UTR,
Body 

GPM6B (49) 

cg26484667 chrX:2733164 2.82 (1.6 - 4.04) 5.13E-07 XG 3'UTR GYG2 (-13698), XG (63072) 

cg10482495 chrX:71351314 2.13 (1.19 - 3.06) 7.13E-07 NHSL2;R
GAG4 

Body;1stExon CXCR3 (-512948), PIN4 (-50211) 

cg11179997 chrX:119125670 -2.64 (-3.8 - -1.48) 7.26E-07 
  

NKAP (-47936), RHOXF2 (86036) 

cg26486175 chrX:18658942 -6.16 (-8.88 - -3.44) 8.42E-07 CDKL5;R
S1 

Body;3'UTR RS1 (31280), CDKL5 (215218) 

cg07395961 chrX:25041645 4.71 (2.62 - 6.79) 8.72E-07 
  

ARX (-7581) 

cg09626131 chrX:82764537 -4.15 (-5.99 - -2.31) 9.57E-07 POU3F4 3'UTR,1stExon CYLC1 (-351632), POU3F4 (1269) 
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MCI vs AD Xi DMPs (Continued) 

ProbeID Position Difference (CI) p MvA 
UCSC 
Gene 

UCSC Gene 
Group 

GREAT Annotation 

cg24352688 chrX:13751727 1.56 (0.86 - 2.25) 1.03E-06 TRAPPC2
;OFD1 

5'UTR;TSS150
0 

OFD1 (-1104), TRAPPC2 (1026) 

cg24401049 chrX:11157158 -6.43 (-9.34 - -3.53) 1.47E-06 ARHGAP
6 

Body AMELX (-154374), HCCS (27753) 

cg22090245 chrX:99661860 5.96 (3.26 - 8.67) 1.58E-06 PCDH19 1stExon PCDH19 (3410) 

cg04867253 chrX:70472827 3.62 (1.98 - 5.27) 1.62E-06 ZMYM3;B
CYRN1 

Body;Body ZMYM3 (1210), GJB1 (37766) 

cg16801826 chrX:54587084 1.92 (1.04 - 2.79) 1.82E-06 GNL3L 3'UTR GNL3L (30441), ITIH6 (237588) 

cg17003204 chrX:102861456 2.73 (1.48 - 3.99) 2.04E-06 TCEAL3 TSS1500 TCEAL3 (-1377) 

cg00695046 chrX:100545995 -6.63 (-9.7 - -3.56) 2.68E-06 TAF7L Body,5'UTR TAF7L (2063), DRP2 (71063) 

cg09167861 chrX:135251741 -2.1 (-3.07 - -1.12) 2.79E-06 FHL1 Body,1stExon,
5'UTR,TSS200 

FHL1 (22183), MAP7D3 (81996) 

cg24743423 chrX:8701002 -3.75 (-5.51 - -2) 3.36E-06 KAL1 TSS1500 KAL1 (-776) 

cg09661041 chrX:153141905 -5.18 (-7.61 - -2.75) 3.54E-06 L1CAM TSS1500 L1CAM (-507) 

cg03198117 chrX:152939967 -3.91 (-5.75 - -2.07) 4.03E-06 PNCK TSS1500,TSS2
00 

PNCK (-152) 

cg17662252 chrX:54560704 2.92 (1.54 - 4.29) 4.29E-06 GNL3L Body GNL3L (4061), ITIH6 (263968) 

cg08333400 chrX:10126881 -5.46 (-8.06 - -2.87) 4.52E-06 CLCN4 5'UTR CLCN4 (1897), MID1 (724927) 

cg17219209 chrX:149009840 -1.72 (-2.54 - -0.9) 4.96E-06 MAGEA8 TSS200 MAGEA8 (-100) 

Appendix G: Xi DMPs associated with AD relative to MCI in AddNeuroMed. 

DNA methylation differences on the Xi chromosome related to diagnosis of AD in comparison to MCI. All DMPs passing the Bonferroni-adjusted p-

value threshold of p < 5.18×10-6 are shown by ProbeID, genomic location (genome build 37), the group difference in % methylation (AD – MCI), 

confidence interval (CI), and p-value as calculated with Tukey’s HSD test, UCSC gene and group annotation, and GREAT annotation with distance 

to the nearest TSS in parentheses. 
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APPENDIX H: DMRS ON THE XI CHROMOSOME ASSOCIATED WITH DIAGNOSTIC 

STATUS OF CTL, MCI, OR AD 
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ANOVA Xi DMRs 

Gene Position n p-value Šidák-P 
Average Methylation % 

CTL MCI AD 

SRPK3 chrX:153046175 - 153046895 9 3.27E-44 4.37E-43 1.46 1.25 -3.9 

TAF1;INGX chrX:70712215 - 70713214 9 1.39E-18 1.34E-17 1.29 -1.32 0.57 

CLCN4 chrX:10126321 - 10126882 5 8.3E-15 1.43E-13 -0.73 0.56 -0.07 

LOC389906 chrX:3732500 - 3734340 4 4.95E-14 2.6E-13 -1.27 0.77 0.37 

PCDH19 chrX:99661860 - 99663331 6 2.82E-11 1.85E-10 -1.22 -0.03 1.41 

PNCK chrX:152938698 - 152940275 11 1.03E-10 6.3E-10 0.2 -0.12 -0.15 

FHL1 chrX:135228207 - 135228445 3 3.06E-11 1.24E-09 1.95 -1.6 0.03 

FGF13 chrX:137950565 - 137951119 3 1.04E-10 1.81E-09 1.59 -1.2 -0.11 

L1CAM chrX:153141451 - 153141906 5 1.46E-10 3.09E-09 0.61 0.05 -0.77 

OFD1;TRAPPC2 chrX:13751423 - 13753382 9 1.3E-09 6.41E-09 -0.27 0.12 0.12 

MAGIX chrX:49019804 - 49021149 4 1.92E-09 1.38E-08 -0.13 -0.06 0.18 

DUSP21 chrX:44703819 - 44703984 2 2.8E-10 1.64E-08 0.97 -0.04 -1.02 

ASB11 chrX:15333348 - 15334256 5 2.17E-09 2.31E-08 1.05 -0.73 -0.22 

XIST chrX:73073251 - 73073712 3 3.62E-09 7.58E-08 1.28 -0.76 -0.41 

PRAF2 chrX:48929808 - 48930361 3 7.66E-09 1.34E-07 -0.19 1.73 -2.45 

ZRSR2 chrX:15807140 - 15808693 9 3.29E-08 2.04E-07 0.03 0.04 -0.16 

MAGEE2 chrX:75004943 - 75005361 8 9.36E-09 2.16E-07 1.82 -0.57 -1.06 

FAM156A;FAM156B chrX:52950051 - 52950333 2 6.8E-09 2.33E-07 -0.21 -0.14 0.38 

TEX13B chrX:107226253 - 107226612 2 9.73E-09 2.61E-07 0.9 -0.63 -0.03 

TAF7L chrX:100547965 - 100548224 5 7.3E-09 2.72E-07 0.31 -0.35 0.17 

CT45A1 chrX:134846527 - 134847107 3 2.27E-08 3.78E-07 0.98 -1.01 0.21 

S100G;CTPS2 chrX:16668107 - 16668981 4 6.65E-08 7.34E-07 1.01 -0.68 -0.2 

ARHGAP6 chrX:11157142 - 11157611 5 4.51E-08 9.28E-07 -0.29 1.8 -1.91 

MAGEA8-AS1 chrX:149009554 - 149009914 4 3.53E-08 9.45E-07 -1.08 0.89 -0.29 

RENBP chrX:153211181 - 153211712 3 8.07E-08 1.47E-06 0.09 0.45 -0.62 

SOX3 chrX:139592127 - 139592513 3 8.94E-08 2.23E-06 0.12 0.58 -0.84 
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ANOVA Xi DMRs (Continued) 

Gene Position n p-value Šidák-P 
Average Methylation % 

CTL MCI AD 

ANOS1 chrX:8700172 - 8701003 10 2.95E-07 3.42E-06 -0.26 0.64 -0.55 

NAP1L3;FAM133A chrX:92928229 - 92929039 10 3.4E-07 4.04E-06 -0.44 0.29 0.17 

JPX chrX:73164102 - 73164391 6 1.27E-07 4.22E-06 -0.36 0.04 0.36 

ARSD chrX:2847354 - 2848382 9 5.26E-07 4.93E-06 -0.77 0.33 0.4 

RHOXF1P1 chrX:119125659 - 119125723 3 4.77E-08 7.2E-06 -0.2 0.98 -1.2 

ZNF75D chrX:134429653 - 134429973 4 2.95E-07 8.89E-06 2.05 -0.78 -0.97 

TXLNG chrX:16804211 - 16805692 10 1.44E-06 9.39E-06 -0.15 0.14 0.01 

TNIP2P1 chrX:40693177 - 40693704 3 6.75E-07 1.24E-05 0.73 -0.13 -0.57 

POU3F4 chrX:82764385 - 82764538 2 2.53E-07 1.59E-05 0.16 1.45 -2.23 

IL1RAPL2 chrX:103809062 - 103810167 6 1.91E-06 1.66E-05 -0.88 0.56 0.05 

CAPN6 chrX:110513791 - 110514232 5 9.97E-07 2.18E-05 -1.83 0.77 0.95 

DANT1;DANT2 chrX:114957471 - 114957791 2 8.58E-07 2.59E-05 -1.37 0.65 0.57 

BCOR chrX:40004432 - 40004482 2 1.5E-07 2.89E-05 1.11 0.72 -2.15 

NHS chrX:17395816 - 17395857 2 1.37E-07 3.23E-05 0.27 -0.49 0.33 

FAM47A chrX:34165195 - 34165644 2 3.05E-06 6.54E-05 0.17 -0.17 0 

GPM6B chrX:13835198 - 13835569 5 2.73E-06 7.09E-05 -0.71 0.46 0.15 

CA5BP1-CA5B;CA5BP1 chrX:15692851 - 15693957 11 1.14E-05 9.9E-05 -0.4 -0.13 0.57 

ATP7A chrX:77225299 - 77225754 2 6.24E-06 0.000132 0.81 -1.06 0.49 

HS6ST2 chrX:132094977 - 132095283 2 4.57E-06 0.000144 -1.1 1.02 -0.17 

PAGE5 chrX:55246455 - 55247169 3 1.3E-05 0.000175 0.63 0.25 -1.09 

CDX4 chrX:72668487 - 72668848 3 7.62E-06 0.000204 -1.09 0.49 0.41 

MAGEH1 chrX:55478539 - 55479617 5 2.53E-05 0.000226 0.25 0.28 -0.56 

NXF3 chrX:102347925 - 102348040 3 2.99E-06 0.000251 1.29 -0.29 -1.01 

PNMA3 chrX:152224966 - 152225367 2 1.09E-05 0.000263 -1.36 1.9 -1.15 

KIAA1210 chrX:118284520 - 118285065 10 1.55E-05 0.000275 0.91 0.43 -1.98 

PCDH19 chrX:99194929 - 99195116 2 5.96E-06 0.000308 -2.82 1.1 1.86 

PDZD4 chrX:153094195 - 153094595 3 1.34E-05 0.000323 -0.37 -0.8 1.42 



414 
 

ANOVA Xi DMRs (Continued) 

Gene Position n p-value Šidák-P 
Average Methylation % 

CTL MCI AD 

SMC1A;RIBC1 chrX:53449152 - 53449901 11 3.26E-05 0.00042 -1.05 0.21 0.81 

GPR50-AS1 chrX:150343097 - 150343149 2 2.7E-06 0.0005 -1.97 0.99 0.74 

PTCHD1-AS chrX:23016709 - 23017134 2 2.42E-05 0.000549 0.79 -0.05 -0.81 

DENND10P1 chrX:129657974 - 129658062 2 6.41E-06 0.000702 -1.73 1.73 -0.65 

RTL5;NHSL2 chrX:71350942 - 71351315 2 2.92E-05 0.000755 -0.73 0.33 0.53 

GPC4 chrX:132551364 - 132551787 2 3.71E-05 0.000846 -1.62 0.24 1.44 

CENPI chrX:100446496 - 100446737 3 2.13E-05 0.000852 0.92 0.56 -1.69 

TCEAL7 chrX:102584953 - 102585355 6 3.97E-05 0.000951 -1.82 1.26 0.06 

KLHL34 chrX:21676081 - 21676872 8 9.02E-05 0.0011 0.41 -0.6 0.35 

PAK3 chrX:110186893 - 110187601 8 9.05E-05 0.001232 -0.74 0.58 -0.03 

STS chrX:7066487 - 7066774 3 4.27E-05 0.001435 -0.33 0 0.31 

MAP3K15 chrX:19443172 - 19443223 2 7.91E-06 0.001496 -0.81 -0.6 1.64 

FRMPD3-AS1 chrX:106749745 - 106750343 5 0.000102 0.00164 -0.96 -0.75 1.92 

FAM50A chrX:153674100 - 153674275 2 3.07E-05 0.001689 -0.02 0.47 -0.61 

SERPINA7 chrX:105280566 - 105280887 2 5.95E-05 0.001788 1.36 -0.45 -0.83 

PRRG1 chrX:37208111 - 37208438 5 6.16E-05 0.001815 0.59 -0.71 0.28 

UBA1 chrX:47053017 - 47053605 9 0.000112 0.001827 -0.21 0.1 0.07 

TKTL1 chrX:153533256 - 153533552 3 6.11E-05 0.00199 1.21 -0.15 -1.12 

BCORL1 chrX:129193893 - 129194323 4 9.03E-05 0.002024 0.63 -0.69 0.22 

MXRA5 chrX:3264341 - 3264729 6 8.74E-05 0.002171 -0.88 0.21 0.7 

H2BW1 chrX:103268125 - 103268177 2 1.18E-05 0.002189 0.36 -1.59 1.57 

ERAS chrX:48685943 - 48686201 3 6.33E-05 0.002366 1.95 -0.98 -0.28 

GPR50-AS1 chrX:150344901 - 150345041 2 3.49E-05 0.002399 0.87 -0.78 0.13 

SH2D1A chrX:123480277 - 123480595 3 8.18E-05 0.002479 -0.09 -0.42 0.57 

NR0B1 chrX:30326328 - 30326677 3 9.85E-05 0.002718 -0.21 0.89 -1.09 

WDR44 chrX:117479618 - 117480247 9 0.000178 0.00273 -0.28 -0.2 0.5 

TCEAL8 chrX:102510111 - 102510315 6 5.79E-05 0.002733 -0.71 0.65 -0.02 
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ANOVA Xi DMRs (Continued) 

Gene Position n p-value Šidák-P 
Average Methylation % 

CTL MCI AD 

CLTRN chrX:15683007 - 15683428 6 0.000125 0.002855 0.54 0.03 -0.61 

SHROOM2 chrX:9858470 - 9858994 6 0.000169 0.003114 0.27 -0.07 -0.22 

ZIC3 chrX:136649093 - 136649490 2 0.000151 0.003664 -0.38 0.65 -0.34 

MTCP1;CMC4 chrX:154293390 - 154293851 2 0.000181 0.003781 0.89 -0.25 -0.48 

BCOR chrX:40017092 - 40017470 3 0.000222 0.005655 -1.08 1.03 -0.19 

MAGEA5;MAGEA10-MAGEA5 chrX:151286380 - 151286549 2 9.96E-05 0.00567 0.93 -1.04 0.45 

GPC3 chrX:133118088 - 133118345 3 0.000155 0.005785 -1.61 0.56 0.92 

IGSF1 chrX:130423014 - 130423459 9 0.000274 0.005917 -0.95 0.17 0.79 

EOLA2;LINC00894 chrX:149106299 - 149107030 13 0.000483 0.006354 -0.45 0.09 0.36 

PNCK chrX:152931217 - 152931545 2 0.000221 0.006491 -1.42 0.51 0.85 

WWC3 chrX:10094051 - 10094364 3 0.000222 0.006824 0.27 -0.44 0.29 

CLCN5 chrX:49776519 - 49776568 2 3.52E-05 0.00691 0.96 -0.54 -0.33 

LINC00269 chrX:68441389 - 68441691 2 0.000218 0.006937 -0.01 1.53 -1.68 

MIR450A1 chrX:133674329 - 133674439 2 9.03E-05 0.007891 1.15 -0.64 -0.31 

ZCCHC12 chrX:117958532 - 117958794 2 0.000222 0.008128 1.02 -0.83 -0.08 

TTC3P1 chrX:74963322 - 74963720 2 0.000356 0.008598 0.13 -0.17 -0.03 

FIRRE chrX:130964695 - 130965144 6 0.000441 0.009442 -0.49 0.12 0.45 

SLITRK4 chrX:142723457 - 142723827 4 0.000374 0.009711 -0.72 -0.35 1.34 

LOC101059915 chrX:70887583 - 70887941 4 0.000372 0.00997 0.45 -0.07 -0.41 

PRRG3 chrX:150865927 - 150866111 2 0.000203 0.01059 0.18 -0.24 0.06 

AFF2 chrX:147582939 - 147583280 3 0.000402 0.01131 -0.02 -0.1 0.22 

GS1-594A7.3 chrX:15621084 - 15621478 3 0.000477 0.0116 0.77 -0.48 -0.18 

FHL1 chrX:135251416 - 135251742 4 0.000432 0.01269 -0.28 0.63 -0.59 

TSPAN6 chrX:99891789 - 99892068 7 0.000369 0.01269 -0.33 -0.11 0.48 

BEX1 chrX:102319998 - 102320381 2 0.000584 0.01461 1.06 -0.48 -0.46 

MAGEB6 chrX:26210302 - 26210713 7 0.000684 0.01592 0.37 0.02 -0.42 

GLRA2 chrX:14547147 - 14547321 3 0.00029 0.01596 -1.92 1.32 -0.03 
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ANOVA Xi DMRs (Continued) 

Gene Position n p-value Šidák-P 
Average Methylation % 

CTL MCI AD 

KDM5C chrX:53254643 - 53254819 7 0.000312 0.01698 -0.26 0.16 0.08 

MAMLD1 chrX:149613398 - 149613746 4 0.00063 0.01731 -1.09 0.7 0.33 

FRMD7 chrX:131263364 - 131263424 2 0.000125 0.01984 0.6 -0.49 0.02 

NDUFB11 chrX:47003160 - 47003363 2 0.000468 0.022 0.62 0.04 -0.73 

GAGE10 chrX:49159887 - 49160074 3 0.00047 0.02395 0.24 0.2 -0.54 

ZIC3 chrX:136632433 - 136632533 2 0.000255 0.02426 0.43 0.14 -0.36 

STS chrX:7070284 - 7070452 2 0.000453 0.02569 -0.61 0.33 0.2 

PAGE2 chrX:55115294 - 55115457 5 0.000458 0.02676 0.9 -0.52 -0.13 

DCAF12L1 chrX:125687720 - 125687857 2 0.000486 0.03363 1.21 0.28 -1.87 

PCDH19 chrX:99665948 - 99666347 5 0.001655 0.03927 0.39 -0.43 0.15 

ARL13A chrX:100224631 - 100224723 2 0.000397 0.04076 1.26 -0.66 -0.51 

MIR507 chrX:146312598 - 146312952 3 0.001874 0.04984 0.68 -0.71 q0.24 

Appendix H: DMRs on the Xi chromosome associated with diagnostic status of CTL, MCI, or AD. 

Shown are DMRs for the overall three group (ANOVA) comparison. Displayed for each region is the UCSC gene name, chromosomal position 

(genome build 37), number of probes in region (n), p-value and multiple testing-corrected p (Šidák-p), and average relative methylation values per 

group. 
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