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Abstract 7 

Resilience analysis of urban infrastructures such as sewerage systems is very important due to 8 

different stressors. Failure in these infrastructures may lead to economic, social, health and 9 

environmental consequences. The functional resilience of systems can be analyzed in all failure 10 

levels caused by unpredictable or even unknown events based on the global resilience analysis 11 

(GRA) method. To perform GRA under different scenarios of pipe collapse and blockage, the 12 

performance of the system must be evaluated in all possible link failure combinations. The time 13 

of this process might be unfeasibly long in real sewerage networks. In this paper, an open-source 14 

toolbox is developed which uses a proposed scenario selection method based on roulette wheel to 15 

perform GRA without simulating all possible scenarios. This toolbox is based on a proposed O-16 

SWMM API which is a developed version of EPA's Storm Water Management Model (SWMM) 17 

to optimize simulation time and memory usage. The results show that the mean resilience for a 18 

sample and also a real sewer network was estimated by the proposed method with RMSE less than 19 

0.025 and 0.022 respectively comparing with simulating all possible scenarios. Moreover, the 20 

GRA computation using O-SWMM API was at least 2.26 times faster than SWMM.exe.  21 
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1. Introduction 24 

Many infrastructure systems such as sewer networks must be investigated in exceptional 25 

conditions. Because, failure of these systems can lead to serious economic, social, environmental, 26 

and health consequence (Davis et al. 2013). The origin of the word resilience is the Latin word 27 

"resiliere", which means to "bounce back" (Hosseini et al. 2016). Doorn et al. (2019) used a formal 28 

concept for the resilience. They defined performance of resilience as the ability to keep or enhance 29 

certain functions. This concept was used by Chen et al. (2021) to develop a methodology for 30 

quantifying the resilience of hazardous storage systems. Mottahedi et al, (2021) suggested the 31 

definition of “the ability of a critical infrastructure system exposed to hazards to resist, absorb, 32 

accommodate to and recover from the effects of a hazard in a timely and efficient manner, for the 33 

preservation and restoration of essential services” for evaluating resilience. Cai et al. (2021) 34 

defined the resilience as the ability of systems to recover quickly after external disruptive events. 35 

In this paper the definition of resilience in Butler et al. (2014) is used. They defined resilience 36 

as “the degree to which the system minimizes level of service failure magnitude and duration over 37 

its design life when subject to exceptional conditions”. 38 

Risk analysis is commonly summarized as incorporating both the probability of an event and the 39 

consequences (Johnson et al. 2021). However, various events threaten sewer networks which some of them 40 

are unknown or unpredictable and the probability of their occurrences cannot be determined (Sweetapple 41 

et al. 2018). Moreover, each event might have several different consequences or different events can lead 42 

to the same end states (Johansson et al. 2011). Therefore, this paper focused on a middle state analysis. 43 

https://www.sciencedirect.com/science/article/abs/pii/S0957417412011189#!
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The middle state analysis method evaluates the system performance based on consequences 44 

caused by different and unknown threats and emphasizes on response of the level of service 45 

provision to system failure. It is more easily identifiable and measurable than identification and 46 

analysis of multiple threats. In the middle state analysis, the consequences of the events that result 47 

in the same system failure mode can be addressed with a single analysis regardless of their type to 48 

represent all the potential modes of failure. Therefore, it enables a more comprehensive resilience 49 

assessment and improves the adaptation development process (Butler et al. 2016). 50 

Johansson et al. (2011) presented a method for the global vulnerability analysis (GVA) of 51 

technical infrastructures and used it for an empirical analysis of the electrical distribution systems. 52 

Mugume et al. (2015) introduced global resilience analysis (GRA) in urban drainage network 53 

based on the middle state approach. The GRA investigates the network at all different failure levels 54 

(number of failed links) from zero to 100 percent in order to analyze resilience of network in different 55 

level of consequences. This method has four steps. Firstly, the failure mode (i.e., sewer collapse or 56 

blockage) needs to be identified. In the second step, the system stress (percentage of failed 57 

components i.e., earthquake, oil clogging) associated with the failure mode and the simulation 58 

manner are identified. Then, the system corresponding strain (resulting loss of system functionality) 59 

is detected and determined how to measure it. And finally, the failure mode strains are simulated 60 

under increasing stress magnitude up to 100 percent of maximum stress (Mugume et al. 2015).  61 

Sweetapple et al. (2018) presented a GRA toolbox for water distribution systems based on 62 

EPANET software application, but there is no toolbox for analyzing global resilience in sewer 63 

networks. In sewer networks, conduit blockages due to accumulation of sediment, fat, oil, and 64 

grease, or tree root penetration, can cause the sewage to be overflow in residential areas (Davis et 65 

al. 2013). Although, these threats are related to operations and management, the critical blockages 66 
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due to some threats such as earthquakes and floods can cause blockage in a large number of links 67 

in the sewer networks (Hughes et al. 2020). This number can be much more than 5 to 10 percent, 68 

especially in earthquake-prone countries such as Iran (Kamranzad et al. 2020). Heavy storms in 69 

combined networks can also cause similar consequences. These events are not generally 70 

predictable and thus, the consequences of all possible scenarios must be investigated. Such analysis 71 

is computationally expensive and quickly becomes complex for even small systems (Johnson et 72 

al. 2021). Therefore, in sewer networks with large number of conduits and manholes, simulation 73 

of all possible scenarios (GRA) is unaffordable in some circumstances. 74 

Mugume et al. (2015) used the sequential random link selections method for sewer networks in 75 

order to overcome GRA’s computational challenges. Diao et al. (2016) proposed a semi random 76 

selection method for GRA and applied it to water distribution systems. In their method, at each 77 

stress magnitude a fixed number of failure scenarios are generated randomly and 2⌊𝑐 − (𝑐𝑓 − 1)⌋ 78 

number of failure scenarios are generated in a targeted manner, where 𝑐 and 𝑐𝑓 are total and failed 79 

components, respectively. Atashi et al (2020) also used the same selection method as Diao et al. 80 

(2016) to determine the total number of scenarios in order to evaluate the resilience of water 81 

distribution systems based on location of isolation valves.  In Diao et al. (2016), the total number 82 

of scenarios is directly related to the number of links in the network but Mugume et al. (2015) used 83 

a convergence analysis method to determine the required number of scenarios. Therefore, this 84 

number is different for each sewer network and is based on the characteristics of that network. 85 

Although, this approach is used to specify sufficient number of random selections, but 86 

improving the selection method can generate results that are closer to the resilience computed 87 

using all possible scenarios. Finding the scenarios generating lowest and highest resilience in each 88 

failure level can lead to achieving this goal. 89 
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In this study, a toolbox is presented for GRA in sewer networks which make a trade-off between 90 

time and reliability of results using a proposed multi criteria selection method based on roulette 91 

wheel. This method finds the scenarios with lowest and highest resilience in each failure level 92 

named as strategical scenarios and uses them to generate the scenarios of the next failure levels. 93 

The toolbox is able to simulate the selected scenarios based on a development of the SWMM 94 

engine to reduce simulation time of each scenario.  95 

2. Parallel GRA toolbox 96 

In this study, an open-source toolbox is proposed in C# language for analyzing global resilience 97 

of complex sewer networks2. This toolbox simulates the sewer systems using a developed engine 98 

which is based on SWMM (Storm Water Management Model).  99 

The toolbox consists of three main blocks (Fig.1): scenario generator, parallel O-SWMM 100 

simulator and GRA engine. The scenarios generator block generates the compendious set of 101 

scenarios using a proposed multi criteria selection method based on roulette wheel. The generated 102 

scenarios at each failure level are simulated via parallel O-SWMM block, which contains several 103 

simulation engines (called simulator). Finally, the global resilience of sewer networks is 104 

determined by GRA engine block. These blocks are more described in the following sub-sections. 105 

                                                           
2 Availability: https://github.com/BehnazKamali/OSWMM-GRA-Toolbox 

https://github.com/BehnazKamali/OSWMM-GRA-Toolbox
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 106 

Figure 1:  Block diagram of O-SWMM Toolbox 107 

2.1 Parallel O-SWMM 108 

2.1.1 Optimized-SWMM 109 

SWMM is a dynamic rainfall-runoff model which has been developed by USEPA to simulate 110 

the performance of urban drainage and sewer networks. Although, its graphical interface simplifies 111 

usage of this engine, but it cannot be used in GRA because it requires multiple runs of model 112 

simulation. This justifies the utilization of SWMM engine (e.g., SWMM5.exe or SWMM API3) in 113 

an auxiliary software. Macro et al (2019) used this method to develop a tool for connecting 114 

                                                           
3 An Application Programming Interface (API) is a collection of entry functions included in the software 

interface that allows external applications to call them directly for interacting with software components. 
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SWMM.exe4 engine and an optimization software in order to implement green infrastructure. 115 

Banik et al (2014) developed a SWMM toolkit based on SWMM API for sewer systems to identify 116 

pollution source using genetic algorithm. In SWMM API, a number of exportable functions5 have 117 

been provided to communicate with SWMM engine before, during and after a model simulation. 118 

Riano-Briceno et al (2016) presented an open-source toolbox named as MatSWMM in which some 119 

getters, setters6 and data management functions were developed, because they needed to modify 120 

the setting of several orifices during the simulation and create for example a graph data 121 

structure from the network. Therefore, to change parameter values such as link properties during 122 

simulation and also tailor the outputs to suit specific needs, new exportable functions should be 123 

defined in SWMM engine. Moreover, in this engine there is no way to manage output file’s content 124 

such as simulation’s report file. If there are some getter functions by which the values of the desired 125 

variables can be obtained, then there is no need to report file or at least it can be summarized. 126 

Writing in a file is also a time-consuming part in each program; especially, when it needs to be 127 

repeated several times or is required to be shared among parallel processors.  128 

However, Open Water Analytics group [http://wateranalytics.org] provided a series of 129 

exportable functions to customize the use of SWMM engine, but new exportable functions are 130 

proposed in our developed engine called Optimized-SWMM (O-SWMM) to get and set the value 131 

of some attributes before and also during the simulations (Table 1). Moreover, two report file 132 

management functions were considered to reduce hard drive overhead. 133 

                                                           
4 SWMM.exe is executable SWMM engine which can be executed directly or run by an auxiliary 

application in windows. 
5 Exportable function is a type of functions which are defined in the software API for using by external 

applications. 
6 Getters and setters are API’s functions (accessor properties) which are used for accessing value of 

properties and modifying their values. 
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The swmm_setLinkGeom function which sets the geometry parameters of a link was first 134 

proposed by Martínez-Solano et al. (2016) based on EPA SWMM 5.0.022 source code, but their 135 

library is not open source and does not work with input files7 created by new versions of SWMM. 136 

The proposed O-SWMM was developed based on EPA SWMM 5.1.013 source code. Its 137 

possibility of changing Manning's n or pipe diameter before and also during simulation can be 138 

used in evaluating completely failure scenarios (such as GRA) or partial failure scenarios which 139 

are considered in the design of sewer networks to achieve better performance. In the GRA result 140 

section, this possibility is used and also significant reduction in simulation time and reducing 141 

volume of data needing to be written to the hard disk is reported using O-SWMM API. 142 

Table 1: Functions included in O-SWMM Toolbox 143 

                                                           
7 The input (.inp) file is the file format for SWMM. It contains the wastewater network propertices and 

simulation parameters. 
 

Functions Description 

swmm_getLinkGeom Gets values of xsection parameters 

swmm_setLinkGeom Sets values of xsection parameters 

swmm_getConduitLinkRoughness Gets Roughness (Manning's n) of a conduit 

swmm_setConduitLinkRoughness Sets Roughness (Manning's n) of a conduit 

swmm_setAverageDWFChangingCoef Sets a specific coefficient to change DWF inflow 

swmm_getLinkXsectType Gets link’s xsection type 

swmm_getObjectCount Gets count of specific type of SWMM objects (nodes, links…) 

swmm_getRouteModel Gets flow routing method 

swmm_getNodeInflow Gets total inflow volume to a node 

swmm_getOccuredNodeFlooding Determines whether there has been a flood in the nodes so far 

swmm_setGenerateReportFile Determines whether the report file is generated or not 

swmm_setReportFlags 
Sets report flags to determine which parts should be included 

in the report file 
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2.1.2 Parallel Implementation 144 

Some efforts have been made to parallelize the SWMM engine to increase the simulation speed 145 

of sewer systems (Burgess et al. 2000, Burger et al. (2014)). Burger et al. (2014) have considered 146 

four options of parallelization: multiple models, multiple events, multiple time step computation 147 

and multiple algorithms. They focused on the third option in which computation of conduits within 148 

a time step is distributed among available cores. The results show that the simulation time is 149 

decreased by 6 to 10 times on a twelve-core system. However, they estimated that the maximum 150 

speedup that can be achieved on any system is about 15 times regardless of the number of available 151 

threads. But, Mair et al., (2014) showed that by using first option for simulating several 152 

independent models, the result of parallelism is globally close to optimal time. In this parallelism 153 

level, the number of concurrent simulations and degree of speed increases are directly related to 154 

number of available cores and total time of simulating is absolutely reduced by adding number of 155 

cores. Therefore, in Parallel O-SWMM block, this parallelism structure was adopted to simulate 156 

independent scenarios in each GRA failure level. 157 

In Parallel O-SWMM block, the number of concurrent executable simulations depends on 158 

available logical processors. Logical processors are the number of cores times the number of 159 

threads that can run on each core through the use of hyperthreading. Management of these logical 160 

processors is performed by the O-SWMM engine’s management block. Whenever a logical 161 

processor is released, the O-SWMM engine’s management block assigns another simulation 162 

scenario to that logical processor. For implementing this ability in Visual Studio, all of the O-163 

SWMM wrappers in the block inherit from an object named O-SWMM interface and each of them 164 

is communicated to its own O-SWMM.dll API (Fig. 1). 165 

2.2 Scenario Generation 166 
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One of the advantages of GRA method is evaluating system performance in a wide range of 167 

hydraulic failure scenarios. Considering each link has two possible cases: non-failed and complete 168 

failure cases, the total number of conduit failure scenarios in the entire solution space is calculated 169 

as: 170 

  𝐹(𝑁, 𝑐𝑖) = ∑
𝑁!

(𝑁−𝑟)!𝑟!𝑟           𝑟 = 1, … , 𝑁                                                    (1)                       171 

where r and N are the failure level and the total number of sewer network’s links, respectively. 172 

In real sewer networks, considering all possible combinations of conduit failure makes the 173 

computation very time consuming or even impossible. One of the possible solutions is to generate 174 

scenarios randomly. In this method, interdependent network components (links) are blocked 175 

randomly with equal failure probability for all components (Almoghathawi et al. 2019). Mugume 176 

et al. (2015) showed that for an 81-link urban drainage system (UDS), by considering more than 177 

200 random failure scenarios the deviation percentage of GRA results are not significant, in all 178 

failure levels. It means that, for each failure level if a sufficient number of scenarios are selected 179 

randomly, the average resilience for them is approximately equal to the average resilience of all 180 

possible scenarios for that failure level.  181 

All possible scenarios of each failure level can be divided into two sets. The first set includes 182 

the extreme scenarios also called strategical scenarios of that failure level in this paper, are 183 

scenarios where the resilience function takes on an extreme value. But, the second set includes 184 

scenarios whose resilience values are close to each other. This set can be generated using the 185 

random method proposed by Mugume et al. (2015). Therefore, in order to obtain more accurate 186 

GRA results with affordable time and computational cost it is necessary to use an efficient scenario 187 

selection method which is able to discover the extreme scenarios (first set) in each failure level.  188 
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In this study, a simple multi criteria scenario selection method based on a roulette wheel is 189 

introduced to find scenarios which lead to the minimum and maximum resilience at each failure 190 

level. The Roulette/Spinning wheel (RW) method as a selection operator is often used in genetic 191 

and evolutionary algorithms. In this method, a slice of the wheel is assigned to each individual, 192 

according to its fitness. In the presented GRA toolbox, each scenario in any failure level plays the 193 

role of the individuals. The extreme scenarios from individuals of one failure level are named as 194 

strategical scenarios, because these scenarios participate in generating individuals of the next 195 

failure level. The goal is that the scenarios generated for the next failure level include the extreme 196 

scenarios of the current level.  197 

In each failure level, the probability of a scenario being strategic is estimated by a RW’s fitness 198 

function. In sewer networks, the fitness function can be resilience but it should not be used for 199 

evaluating scenarios when multi-criteria participate in scoring scenarios. For example, suppose 200 

that a number of scenarios in a failure level have the same resilience based on function of the flood 201 

volume and failure time terms. So, if this function is used as fitness function, then these scenarios 202 

have the same slice size in RW. But they may have different flooding loss and failure time values, 203 

individually.  Under this same condition, the weights of terms are usually determined in order to 204 

use in a Multi-Criteria Decision Making (MCDM) method using experimental studies based on 205 

questionnaire results or entropy, the Analytic Hierarchy Process (AHP), Analytic Network Process 206 

(ANP), or Best Worst Method (BWM) methods (Maghsoodi et al. 2018). In this paper, the entropy 207 

method which was proposed in 1948 by Shannon (Shannon, 1948) is used, because it can quantify 208 

the amount of information in each criterion based on the criterion values distribution. The criterion 209 

with more entropy is more important. So, the weight of this criterion in fitness function method is 210 

more than weights of other criteria (Long et al. 2019). Then scenarios are scored based on a fitness 211 
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function such as the Technique of Order Preference Similarity to the Ideal Solution (TOPSIS) 212 

(Hwang et al, 1993). In this method, first a positive ideal and a negative ideal solution were found 213 

and then the distance of each option from these solutions are calculated based on criteria values. 214 

The criteria can be positive or negative in nature. Wang et al. (2017) proposed a new framework 215 

based on TOPSIS to support decision making in sustainable drainage systems scheme design. For 216 

this, they used 12 criteria such as resilience, hydraulic performance and costs. 217 

In the proposed GRA scenario selection method, the aim is to look for scenarios that are close 218 

to negative or positive ideal solutions. So, scenarios with lowest and highest scores are preferred. 219 

But this method requires a pre-processing step to determine the weights of the criteria.  220 

According to these concepts, the GRA scenario selection algorithm includes the following steps 221 

at failure level r (Fig. 1): 222 

1. Assuming that 𝑆 scenarios were simulated at failure level r − 1, the weights of criteria using 223 

Shannon entropy are determined.  224 

2. The 𝑆 scenarios are scored using TOPSIS method with respect to criteria weights obtained 225 

from previous step. The fitness scores are normalized between 0 to 1. 226 

3. 𝑘𝑇𝐹 × 𝑆 number of these scenarios with the lowest scores and 𝑘𝑇𝐹 × 𝑆 with the highest 227 

scores are selected, where 𝑘𝑇𝐹 is an arbitrary coefficient between 0 and 1. These two sets of 228 

scenarios are participated in scenario generation process of next failure level 𝑟. 229 

Notice: In the first failure level, all the possible scenarios are considered and simulated. 230 

4. The roulette wheel is generated based on fitness scores of the selected scenarios. For the 231 

scenarios with highest scores, the size of slices is equal to the scores, but for the scenarios 232 

with the lowest scores, the size of slices is equal to the 1 − 𝑠𝑐𝑜𝑟𝑒. This is because the 233 
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probability of choosing them must be equal to the probability of choosing the scenarios with 234 

the highest scores in the proposed selection method. 235 

5. A random scenario is selected from the generated roulette wheel. This candidate is a 236 

combination of r − 1 conduits.  237 

6. A random conduit (except of the conduits in the candidate scenario) is added to the scenario 238 

in order to generate scenario of the next failure level. 239 

7. Steps 5 and 6 are repeated to generate a set of S distinct scenarios of the failure level 𝑟. 240 

It should be mentioned that for simple sewer network, value of 𝑆 at each failure level 𝑟 can be 241 

the number of distinct r-combinations of conduits, obtained from Eq.1. But for complex networks, 242 

value of 𝑆 can be a fixed value for all failure. Although, the number of distinct r-combinations of 243 

conduits at failure levels 1, 𝑁 − 1 and 𝑁 are equal to 𝑁, 𝑁 and 1, respectively. In these failure 244 

levels, all of the combinations are simulated by the GRA toolbox. 245 

2.3  GRA Engine 246 

After generating S scenarios for a failure level, these scenarios are simulated by parallel O-247 

SWMM simulator. Then, resilience is calculated for each of these scenarios by a predefined 248 

resilience formula proposed by Mugume et al., (2015): 249 

𝑅𝑒𝑠𝑖 = 1 − ∑ [
𝑉𝐹𝑗

𝑉𝑇
×

𝑡𝐹𝑗

𝑡𝑇
 ]𝑛

𝑗=1    , 𝑖 = 1, … , 𝑆                                                 (2)  250 

where 𝑖 and j are number of scenarios in each failure level and number of flooded nodes in each 251 

scenario, respectively. VT and VFj
 are the total inflow volume and the flood volume occurred in 252 

node j, respectively. tFj
 is failure duration of node j and tT is simulation time. It should be noted 253 

that this equation is used to verify the toolbox performance, and can be substituted by another 254 
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formula upon need. For example, Nan and Sansavini (2017) proposed a metric which integrates 255 

six measures defined based on system resilience transitions in order to evaluate the resilience in 256 

interdependent infrastructures. Sharma et al. (2018) proposed simple metrics (e.g., Center of 257 

Resilience and Resilience Bandwidth) that decompose the recovery curve for resilience 258 

quantification. Moreover, Wang et al. (2019) presented a new approach for assessing resilience of 259 

urban drainage systems using resilience profile graph which unify the concepts and metrics of 260 

reliability, robustness, resilience and failure. Cheng et al. (2021) reviewed the resilience metrics, 261 

along with their limitations and applicable scenarios. They developed multimodal resilience 262 

metrics including instantaneous resilience at specific time instants, overall resilience and average 263 

resilience over a time period. The system reliability, average robustness and average recovery 264 

ability were considered in their proposed metrics. 265 

Finally, the minimum, mean and maximum of these resilience values are calculated for each 266 

failure level. When this process was executed for all failure levels, the global resilience is 267 

illustrated vs failure levels. 268 

3. Results and discussion 269 

    Figure 2 shows proposed toolbox user interface which has two tabs for simulating and analyzing 270 

GRA results. Two types of blockage simulations can be considered on conduits by setting a non-271 

zero value for changing diameter or roughness parameters located in properties section. Start and 272 

end time of failure are specified by failure start time and failure end time parameters based on 273 

exportable function of O-SWMM API. Moreover, by changing the inflow (DWF) coefficient 274 

parameter, the inflow values to the manholes can be increased or decreased in order to investigate 275 

its effect on the resilience. The number of scenarios simulated in parallel is adjusted by logical 276 

processors parameter and the value of S and 𝑘𝑇𝐹 related to scenarios generator block can be 277 
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adjusted in the properties section. In the links section, based on a predefined conduit naming rule 278 

it can be specified which conduits can participate in the scenario generation process. This feature 279 

is useful for extracting network skeleton from large urban sewage networks in order to decrease 280 

number of possible scenarios. 281 

Four different types of GRA simulation (GRA based on simulating all scenarios using 282 

swmm.exe or O-SWMM API and also GRA based on simulating scenarios selected by two 283 

different methods: proposed roulette wheel and random selection methods) were implemented on 284 

the toolbox and used for analyzing two test cases to evaluate the performance of its blocks (Fig. 285 

2). All processes executed using a laptop with the Intel(R) Core ™ i7- 9750H CPU @ 2.60 GHz 286 

and 8GB RAM. According to its CPU architecture, 10 out of the 12 available logical processors 287 

were allocated to the Parallel O-SWMM block. 288 

289 

Figure 2:  O-SWMM Toolbox User Interface 290 
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3.1 Evaluation of O-SWMM API 291 

In the first experiment, an example network of EPA-SWMM’s manual (Gironás et al. 2010) 292 

was used to evaluate functionality of O-SWMM API compared to the original SWMM application 293 

(swmm.exe). Figure 3 shows a schematic view of the test case which includes a 29-hectare area 294 

and variety of objects such as storage units, orifices, weirs and two typical Low Impact 295 

Developments (LID).  296 

 297 

Figure 3: Sample combined sewer system for toolbox validation 298 

The network contains 20 nodes, 18 conduits and 24 sub catchments. Due to small number of 299 

conduits, all possible combinations of failed links can be simulated in a fairly short time. Therefore, 300 

262,143 simulations were performed using both EPA-SWMM and O-SWMM API for a 48-hour. 301 

Moreover, the 100-year return period storm is selected from three existed events in order to 302 

simulate an exceptional condition.  303 

To run the EPA-SWMM similar to O-SWMM API, a C# auxiliary application was developed 304 

such that multiple copies of swmm.exe could be run in a parallel manner. The structure of this 305 
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application is similar to “Parallel O-SWMM” block. For each failure scenario, a logical processor 306 

generated an input file by modifying the roughness values of selected conduits to 100 in the 307 

original input file and saved it on hard disk. Then, the related copy of swmm.exe was used to 308 

simulate the generated input file (.inp) and the result was recorded in a report file 8(.rpt). When the 309 

simulation of a scenario was completed, the report file was read by the logical processor to extract 310 

the required information for GRA calculation. The same process was repeated for O-SWMM API, 311 

except that by using proposed exportable functions, there was no need to further process for 312 

generating input files and also writing and reading report files (.rpt). The roughness of selected 313 

conduits was modified to 100 during runtime by using “swmm_setConduitLinkRoughness” 314 

exportable function. It should be noted that, for accurate comparison the “reporting options” 315 

property in original input file was set to “NONE” in order to decrease the process time of 316 

swmm.exe simulation tools.  317 

The execution time and size of written data for two simulation tools are shown in Table 2. As 318 

it can be seen, the written data and consequently execution time are significantly decreased by 319 

using O-SWMM API. When the SWMM.exe is used for global resilience analysis, the execution time 320 

and size of written data is increased for each scenario simulation. Therefore, speed of processing is slowed 321 

down because of file access. There are two clear reasons for this: 322 

1. It is required that the input file is generated and written on the hard disk for each scenario simulation. 323 

Because, each scenario has different conduits properties (diameter or Manning's n). 324 

                                                           
8 The report file is a plain text file in which SWMM simulation results include status and summary results 

reports are written. 
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2. The results of each simulation (.rpt file) are written on the hard disk by EPA SWMM and then the 325 

GRA toolbox must be read the file in order to calculate resilience of each scenario based on the total 326 

flooding loss and the flooding time. 327 

These two time-consuming operations which have programming processing and also hard disk usage 328 

are eliminated if the proposed exportable functions of O-SWMM API are used. Since conduits properties 329 

are changed by swmm_setLinkGeom or swmm_setConduitLinkRoughness functions, a unique input file 330 

for all scenarios is needed. After each simulation, the total flooding loss and the flooding time is gotten 331 

using API functions, directly. So, we disabled writing report file on hard disk by 332 

swmm_setGenerateReportFile proposed exportable function. 333 

 334 

 335 

 336 

Table 2: Computational cost comparing between O-SWMM API and EPA-SWMM 337 

In addition to computational cost, the GRA values calculated based on simulation results of O-338 

SWMM API and SWMM.exe were compared in order to evaluate performance accuracy of the 339 

developed exportable functions of O-SWMM API. Figure 4 shows minimum, mean and maximum 340 

of resilience values computed based on Eq. 2, at each failure level. The root mean square error 341 

between obtained mean resilience values using two simulation tools was equal to 1.2275 𝑒 − 11.  342 

As the number of failed conduits increases, resilience is expected to decrease, but the results 343 

show an increasing trend of the minimum resilience from failure level 4, in the sample network. 344 

To investigate the rationale behind, two scenarios named as scenarios “A” and “B” were 345 

considered. 346 

 Total Execution Time (min) Data Written on Disk (MB) 

SWMM.exe 806.15 18673 

O-SWMM API 317.80 29 
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 347 

Figure 4: Comparison of calculated resilience by EPA-SWMM and O-SWMM API 348 

In the first scenario, conduit C4 was failed in two days. In the second scenario, conduit C4 and 349 

C3 were failed during same simulation time. In this sample network, junction depth of all three 350 

nodes J15, J3 and J4 is 3 ft. These conduits and nodes are shown in figure 3. The simulation results 351 

showed that in both scenarios one of these nodes was flooded, node J4 in scenario A and node J3 352 

in scenario B. In the second scenario, the failure time was less than first one. The failure interval 353 

for each scenario is shown in figure 5 with a red highlight and it is about 1.42 and 1.16 hours for 354 

scenario A and B, respectively. Moreover, the total flood volume of scenario A is higher than 355 

scenario B. The flood volume for these scenarios was 12𝐸4 gallons and 4𝐸4 gallons, respectively. 356 

Therefore, according to equation 2 the resilience of scenario A with one failed conduit is less than 357 

scenario B in which two conduits were failed. 358 

In this example, there were two reasons for increased resilience with increasing number of 359 

failed conduits. First, non-failed conduits can act as storage reservoir when other conduits are 360 

failed and retain some of the inflow. In the scenario B, conduit C15 stored about 33000 gallons 361 

during simulation time and a smaller amount of inflow entered to J4 because failed conduit C3 362 
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was not able to transfer sewage effluent. So, unlike to the scenario A flooding loss did not occur 363 

in J4. This was the second reason for the resilience increasing.  364 

The node depth of the sewage effluent in three junctions J3, J4 and J15 during simulation time 365 

are shown in figure 5. The red dashed line shows allowed depth of effluent in these junctions. As 366 

it can be seen, the height of the sewage effluent in junction J3 is equal to the depth of this junction 367 

almost all along the simulation time. But, flooding loss at this junction is not occurred after 02:30 368 

on the first day, because the total inflow entered to this junction is zero from this time until the end 369 

of the simulation. 370 

 371 

Figure 5: Comparison of node depth and total inflow in two scenario A (blockage in C4) and B, (blockage in C3 and 372 
C4).  373 

3.2 Evaluation of Scenario Selection Approach   374 
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To evaluate the proposed scenario selection method, the GRA results were compared with GRA 375 

results of simulating all possible scenarios in the mentioned sample network and also in a real 376 

sewer network.  377 

In the first step, the toolbox was run to analyze global resilience of the sample network. The 378 

values of 𝑆 and 𝑘𝑇𝐹 were considered to be 100 and 0.1 in the proposed scenario selection method. 379 

Moreover, two criteria (total flooding loss and mean failure time) were considered in Shannon 380 

entropy and TOPSIS processes to score simulated scenarios. The GRA results with this approach 381 

were then compared with all possible scenarios results (Figure 6). The minimum, mean and 382 

maximum resilience for the sample sewer network was estimated by proposed method with RMSE 383 

equal to 0.12, 0.08 and 0.02 which are quite satisfactory. 384 

 385 

Figure 6: Comparison of GRA results obtained from proposed selection method and all possible scenarios 386 

simulation for the sample sewer network. 387 
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Then performance of the presented GRA toolbox was evaluated in a real separate sewer system 388 

for sanitary, a town in the north east of Iran. This fairly complex network (figure 7), consists of 389 

1005 conduits and 999 nodes and designed for 42,000 citizens. Firstly, to make the simulation of 390 

all possible scenarios achievable, 20 zones were identified in the network and their outlet conduits 391 

were selected as representative conduits which participate in the failure scenarios. Figure 7 shows 392 

these 20 zones in different colors and red circles represent conduits participated in GRA. 393 

 394 

Figure 7: The real sewer network in Iran. The red circles indicate the representative links of each zone. 395 

According to these 20 conduits, all 1,048,575 possible scenarios were simulated and GRA 396 

results were calculated based on Eq. 2. The toolbox was then run in which the values of 𝑆 and 𝑘𝑇𝐹 397 

were considered to be 100 and 0.1. The total flooding loss and mean failure time criteria were 398 

considered in Shannon entropy and TOPSIS processes. Figure 8 has compared GRA results 399 

calculated by selected scenarios using proposed method with all possible scenarios values. The 400 

minimum, mean and maximum resilience for the real sewer network was estimated with RMSE of 401 

0.033, 0.022 and 0.002 by simulating 20 × 100 scenarios, in overall.  402 
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 403 

Figure 8: Comparison of GRA results obtained from proposed selection method and all possible scenarios 404 
simulation for the real sewer network. 405 

3.3 Evaluation of the Toolbox  406 

In the final evaluation, out of 1005 existing conduits, 275 conduits (network skeleton) were 407 

selected to be participated in analyzing global resilience by the toolbox. These conduits consisted 408 

of main transmission line, collectors and pipes in the main streets which selected based on an 409 

engineering judgment. Noteworthy that all conduits were participated in the network simulation 410 

but the link blockage (failure) was assumed to be occurred in these 275 conduits. 411 

A standard sewage daily pattern was used to determine the peak time of sewage inflow to 412 

evaluate the network performance in critical situations. Figure 9 shows the dry weather inflow and 413 

the outfall diagrams in which the highest rate of network input occurs in the time interval from 10 414 

am to 3 pm. Therefore, at this time interval in each scenario simulation, the roughness of selected 415 

conduits was increased to 100 during runtime by using “swmm_setConduitLinkRoughness” 416 

exportable function of O-SWMM API. 417 
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 418 

Figure 9: Dry weather inflow and the outfall diagrams. The dashed red lines show failure interval 419 

In this experiment, simulating the total number of all possible scenarios could take long time, 420 

because all 275 conduits were participated in analyzing global resilience. Therefore, performance 421 

of proposed scenarios selection method was evaluated by comparing it’s results with GRA results 422 

obtained using random scenarios selection method proposed by Mugume et al. (2015). To analyze 423 

the global resilience, Mugume et al. (2015) used a convergence analysis to determine the minimum 424 

required number of scenarios for different failure levels. For a comprehensive comparison, this 425 

convergence method was also performed in this section to determine the value of 𝑆, in our 426 

proposed method.  427 

3.3.1 Convergence Analysis 428 

For convergence analysis and determining the value of 𝑆, the following steps were taken. 429 

1) Seven different set were simulated which are: 5 random sequences (5 scenarios × 275 430 

failure levels), 10 (2750 failure scenarios), 25 (6,875 failure scenarios), 50 (13,750 failure 431 

scenarios), 100 (27500 failure scenarios), 200 (55,000 failure scenarios), 500 (137,500 432 

failure scenarios), 1000 (275000 failure scenarios).  433 
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2) The mean of the total flood volume in each failure level was determined for all random 434 

sequence sets. 435 

3) The percentage deviation between each consecutive set was calculated based on the 436 

computed mean values, i.e., deviation between {5,10}; {10, 25}; {25,50}; {50,100}; 437 

{100,200}; {200,500}; {500,1000}. 438 

Figure 10 shows the result of convergence analysis for the sets. For the first time, a convergence 439 

was obtained in set {50,100}.  The maximum deviation of this set was 8.53%. In the three other 440 

sets, the maximum deviation was also reduced to 6.96%, 5.54% and 4.81%, respectively.  441 

 442 

Figure 10: Convergence of GRA results for random links failure sequences 443 

3.3.2 Performance Evaluation 444 

Based on the obtained deviation results, the value of 𝑆 was considered as 1000. The value of 445 

𝑘𝑇𝐹 like previous experiments was set to 0.1; thus 200 strategical scenarios (100-minimum and 446 

100-maximum points of RW fitness function) participated in selecting scenarios of the next failure 447 

level to generate first set of scenarios. Moreover, 1000 scenarios in each failure level were selected 448 

randomly in order to generate second set of scenarios. To evaluate the performance of the proposed 449 
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scenario selection method, the GRA results of two generated sets are shown in fig. 11, separately. 450 

The results showed that the minimum and maximum of GRA calculated by the proposed method 451 

are significantly different from random selection results. The pattern of mean resilience resulted 452 

by using these two methods is also different. In the random selection results, the mean resilience 453 

has an increasing trend from 28% to 53% of failed links. But, the mean resilience in the proposed 454 

selection method has a sharp decrease at around 60% of failed links and before and after this point 455 

the resilience is decreasing with a slight slope. A convergence analysis method was used to 456 

determine the minimum required number of scenarios for each failure level, but finding and 457 

considering the extremum points of the resilience in each failure level can make more accurate 458 

GRA result, when a trade-off between execution time and reliability of result is inevitable. 459 

Moreover, the equation 2 is only used to calculate resilience of scenarios selected by two methods 460 

in order to compare their GRA results. But if another model (formula) is used to calculate the 461 

resilience, the variables of that formula should be used as criteria in TOPSIS, when our proposed 462 

scenario selection method is used. 463 

 464 

Figure 11: Comparison of GRA results generated using the proposed roulette wheel and the random selection 465 
methods 466 
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Simulation of each failure scenario of the real sewer network alone takes 107 seconds, if the 467 

original SWMM is used. According to 275 conduits, the total number of all possible scenarios is 468 

around 6.07 𝑒 + 82 and simulating this number of scenarios could take long time around 9 𝑒 + 75 469 

years. But, 2.75e5 failure scenarios were only simulated by presented GRA toolbox based on RW 470 

scenario selection method. If the original SWMM is used, simulating this number of scenarios in 471 

parallel manner takes about 34 days, using 10 logical processors. But the proposed toolbox 472 

analyzed global resilience of the network just in 15 days using O-SWMM API which reduced the 473 

execution time by 56% (2.26 times faster). 474 

4. Conclusions 475 

In this article, an open-source toolbox was presented for investigating functional resilience in 476 

sewer networks based on GRA. To properly cover the large space of failure scenarios that is a 477 

challenge in the real networks, a simple method is proposed based on the roulette wheel to identify 478 

the most strategical combination of failed pipes in each failure level. For two case studies (sample 479 

and real networks), the global resilience was estimated by simulating a small number of scenarios 480 

with RMSE 0.025 and 0.022 comparing with simulating all possible scenarios. Moreover, using 481 

O-SWMM API which is an optimized development of EPA’s SWMM, the GRA execution was 482 

2.5 and 2.26 times faster.  483 

The proposed API provides the ability to modify roughness and links properties during 484 

simulation to simulate quantitative failures. Future work will focus on developing O-SWMM API 485 

to modify quality parameters in order to analyze global resilience of the system to sewage quality 486 

disturbance. 487 

 488 
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