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Abstract. Bump attractors are wandering localized patterns observed in in vivo experiments of spa-
tially extended neurobiological networks. They are important for the brain's navigational
system and specific memory tasks. A bump attractor is characterized by a core in which
neurons fire frequently, while those away from the core do not fire. These structures have
been found in simulations of spiking neural networks, but we do not yet have a mathemati-
cal understanding of their existence because a rigorous analysis of the nonsmooth networks
that support them is challenging. We uncover a relationship between bump attractors and
traveling waves in a classical network of excitable, leaky integrate-and-fire neurons. This
relationship bears strong similarities to the one between complex spatiotemporal patterns
and waves at the onset of pipe turbulence. Waves in the spiking network are determined
by a firing set, that is, the collection of times at which neurons reach a threshold and fire as
the wave propagates. We define and study analytical properties of the voltage mapping, an
operator transforming a solution's firing set into its spatiotemporal profile. This operator
allows us to construct localized traveling waves with an arbitrary number of spikes at the
core, and to study their linear stability. A homogeneous ``laminar"" state exists in the net-
work, and it is linearly stable for all values of the principal control parameter. Sufficiently
wide disturbances to the homogeneous state elicit the bump attractor. We show that one
can construct waves with a seemingly arbitrary number of spikes at the core; the higher
the number of spikes, the slower the wave, and the more its profile resembles a stationary
bump. As in the fluid-dynamical analogy, such waves coexist with the homogeneous state,
and the solution branches to which they belong are disconnected from the laminar state;
we provide evidence that the dynamics of the bump attractor displays echoes of unstable
waves, which form its building blocks.
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1. Introduction. Understanding how networks of coupled, excitable units gener-
ate collective patterns is a central question in the life sciences and, more generally,
in applied mathematics. In particular, the study of network models is ingrained in
neuroscience applications, as they provide a natural way to describe the interaction
of neurons within a population, or of neural populations within the cortex. In the
past decades, a large body of work in mathematical neuroscience has addressed the
development and analysis of neurobiological networks, with a view to studying the
origin of large-scale brain activity [34, 13, 21] and mapping single-cell and popula-
tion parameters to experimental observations, including in vivo and in vitro cortical
waves [72, 47, 43], electroencephalogram recordings [80], and patterns in the visual
cortex [17].

This paper presents a novel mathematical characterization of a prominent exam-
ple of a spatiotemporal pattern in neuroscience applications and draws an analogy
inspired by recent progress in the fluid-dynamics literature on transition to turbu-
lence in a pipe [7]. We focus on the so-called bump attractor,1 a localized pattern

1In the neuroscience literature the term bump attractor sometimes refers to a network producing
a localized pattern, as opposed to the pattern itself. Similarly, some authors use the term ring
attractor for a network with ring topology, generating a localized activity bump. Here, we use these
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BUMPS AND WAVES IN SPIKING NETWORKS 149

Fig. 1 (a) Bifurcation diagram of traveling waves in a continuous integrate-and-fire model. (b)
Bump attractor in a discrete integrate-and-fire model with 5000 neurons (dots represent
neuronal firing events, visible in the zoomed inset). Model descriptions and parameters will
be given in section 2, Table SM1 in the Supplementary Materials, and Figures 3 and 4.
The bifurcation diagram in (a) shows selected branches of stable (blue) and unstable (gray)
traveling waves, in the continuation parameter \beta , that is, the timescale at which neurons
process incoming currents. Waves are measured using their width \Delta and are indexed by
the number of advected spikes. The profile of TW11, a representative wave with 11 spikes,
is shown. A large number of waves (TW2--TW160 in the picture, but many more unstable
branches are omitted) coexist with the trivial homogeneous state, which is the only steady
state in the model and which is stable for all values of \beta . Narrow waves are stable, with
small basins of attraction. Sufficiently large, localized disturbances of the homogeneous state
lead to the formation of a bump with a characteristic width: the bump in (b) is marked
as (2) in (a). The region in parameter space where bumps are observed is crowded with
unstable traveling waves, with a large number of spikes and a width comparable to that of the
bump. Branches of waves are detached from the homogeneous state; they originate at critical
points called grazing points (blue dots in (a)); waves that are born stable become unstable at
oscillatory bifurcations (gray dots in (a)).

of neural activity observable in experiments and numerical simulations of spatially
extended, neurobiological networks [70, 91]. Bump attractors have been associated to
working memory, the temporary storage of information in the brain, and experimen-
tal evidence supporting their existence has been found in the navigational systems of
rats [52] and flies [51, 82] and in oculomotor responses of monkeys [89].

In a bump attractor, the neural activity is localized around a particular position
in the network (see Figure 1(b)) which may encode, for instance, the animal's head
position. Bumps are elicited by transient localized stimuli, such as visual cues at
specific locations, but are sustained autonomously by the network once the stimulus is
removed (the network dynamics is attracted to the bump). These coherent structures
display a characteristic wandering motion and may exhibit discontinuous jumps if the
impinging stimulus undergoes sudden spatial shifts [51].

1.1. Model Descriptions. Mathematical neuroscience has a long-standing fas-
cination with localized bumps of activity. Neural field models, which represent the

terms to refer to patterns, following the standard convention in the dynamical systems literature.
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150 DANIELE AVITABILE, JOSHUA L. DAVIS, AND KYLE WEDGWOOD

cortex as a continuum, were introduced in the 1970s, and spatially localized solutions
to these models appeared in seminal papers on the subject by Wilson and Cowan [88]
and Amari [1]. Since then, many authors have studied localized solutions in neural
fields and addressed the derivation of neural field equations from first principles, their
relevance to a wide variety of neural phenomena, and their rigorous mathematical
treatment. We refer the reader to [34, 13, 21] for exhaustive introductions on this
topic.

Neural fields are integrodifferential equations which model the cortex as an ex-
citable, spatially extended medium. Mathematical mechanisms for pattern forma-
tion in neural fields are similar to those found in other nonlinear media, such as
reaction-diffusion systems, though their analysis requires some modifications because
these models contain nonlocal operators. Stationary bumps form via instabilities of
the homogeneous steady state and their profile depends strongly on the coupling,
which typically involves excitation on short spatial scales and inhibition on longer
scales [34, 13, 21]. Neural fields support traveling bump solutions as well as wander-
ing bumps. The latter are obtained in neural fields that incorporate stochastic terms
derived, for instance, from noisy currents [50, 60].

Neural fields are heuristic, coarse grained models, and hence they bypass micro-
scopic details that are important in bump attractors. For instance, the neural firing
rate, which is an emergent neural property and an observable in the bump attractor
experiments, is a prescribed feature in neural fields, hardwired in the model through
an ad hoc firing-rate function. On the other hand, numerical simulations of large
networks of Hodgkin--Huxley-type neurons with realistic biological details can display
emergent neural firing, but their mathematical treatment is challenging and still under
development [38, 4].

Spiking neural networks are intermediate, bottom-up models which couple neu-
rons with idealized dynamics. The salient feature of spiking models is that the firing
of a neuron is described as an event and no attempt is made to model the temporal
evolution of the membrane potential during and after the spike [49, 39, 13]. Spiking
neural networks are specified by three main ingredients: (i) an ordinary differential
equation (ODE) for the membrane potential of each neuron; (ii) rules to define the
occurrence and effects of a spike; (iii) the network coupling.

Since the introduction of the first single-cell spiking model by Lapicque [57], the
so-called leaky integrate-and-fire model, more realistic variants have been proposed,
and spiking neural networks have become a widely adopted tool in theoretical neu-
roscience [81, 15, 39]. In specific spiking models, analytical progress has been made
for single neurons and spatially independent networks using coordinate transforma-
tions [33, 63], dimension reduction [59, 64], and probabilistic methods [26] (see also the
reviews [75, 9]). Exact mean-field reductions, amenable to standard pattern formation
analysis, have been derived in selected spatially extended networks [53, 35, 16, 77], but
generally the study of bumps in spiking models has been possible only with numerical
simulations [54, 18].

This paper investigates localized patterns supported in discrete and continuous
networks of nonlocally coupled leaky integrate-and-fire neurons. In direct numerical
simulations, we use a well-known discrete model, proposed by Laing and Chow [54],
whose details will be given later. For now it will suffice to consider a cursory formu-
lation of the model, simulated in Figure 1(b). The network describes the idealized,
dimensionless voltage dynamics of n all-to-all coupled neurons, evenly spaced in a
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BUMPS AND WAVES IN SPIKING NETWORKS 151

cortex with ring geometry,

(1.1) \.vi =  - vi + Ii(t) +
n\sum 

j=1

Sij(vj , \beta ), i = 1, . . . , n.

The dynamics of the ith neuron's membrane voltage is specified in terms of an Ohmic
leakage current  - vi, an external current Ii(t), and voltage-dependent currents, re-
ceived from other neurons via synaptic connections; the latter currents, indicated by
Sij , have a characteristic timescale \beta and are caused by vj crossing a fixed threshold
(when the jth neuron fires). After a firing event, marked with a dot in Figure 1(b)
and its inset, the neuron's voltage is instantly reset to a default value from which it
can evolve again, following an ODE of type (1.1). Discrete and continuous networks
of this type are canonical models of neural activity, widely adopted in the mathemat-
ical neuroscience literature [85, 84, 30, 31, 14, 54, 67, 66, 19, 65, 63, 40]. It is now
established that such networks support bump attractors and localized waves, but an
explanation of the mathematical origins of the former is still lacking.

This paper presents a new approach to the problem and uncovers a novel bifur-
cation structure for localized traveling waves of the network, shedding light onto the
nature of the bump attractor. Our findings suggest an intriguing analogy between
the bump attractor in the integrate-and-fire network and the phenomenon of transi-
tion to turbulence in a pipe. The analogy between the bifurcation scenarios of these
two problems is notable, and we use it here to summarize our results, highlighting
similarities between the respective bifurcation structures and dynamical regimes.

1.2. Transition to Turbulence in a Pipe. Stemming from the pioneering exper-
iments of Reynolds [71], a large body of work in fluid dynamics has addressed how
high-speed pipe flows transition from a laminar state, whose analytical expression is
known in closed form, to complex spatiotemporal patterns characteristic of the turbu-
lent regime (see [7] for a recent review). In this context, the Navier--Stokes equations
are studied as a deterministic dynamical system subject to changes in the Reynolds
number, the principal control parameter. Experiments and computer simulations in-
dicate that the laminar state is stable to infinitesimal perturbations (linearly stable)
up to large values of the control parameter (up to at least Reynolds number 107 in
numerical computations) [76, 25, 62, 83, 61]. However, when a disturbance is ap-
plied at sufficiently large Reynolds numbers, a transition to turbulence is observed,
depending sensitively on the applied stimulus [25, 45]. Current opinions view the tran-
sition as being determined by traveling wave solutions to the Navier--Stokes equations
[78, 29, 36, 87, 68, 41]. These invariant states, whose spatial profiles display hallmarks
of the turbulent transition, coexist with the laminar state at intermediate Reynolds
numbers, are linearly unstable, and provide an intricate blueprint for the dynamics,
in that orbits may visit transiently these repelling solutions in phase space. Impor-
tantly, the waves lie on branches that are disconnected from the stable laminar state
and emerge at saddle-node bifurcations [36, 87]: this turbulence mechanism is there-
fore different from other paradigmatic routes to chaos, involving the destabilization
of the laminar state and the progressive appearance of more complicated structures
via a cascade of instabilities [56, 46, 74].

1.3. Summary of Results. In a series of recent papers addressing turbulence
from a dynamical system viewpoint, Barkley proposed an analogy between pipe flows
and excitable media, using the propagation of an electrical pulse along the axon
of a neuron as a metaphor for localized turbulence puffs [5, 6, 8, 7]. This paper
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152 DANIELE AVITABILE, JOSHUA L. DAVIS, AND KYLE WEDGWOOD

offers a specular view at a different scale: we are motivated by studying a canonical,
complex neurobiological network of coupled excitable neurons, supporting localized
spatiotemporal chaos, and we find a compelling similarity between the bifurcation
structure of waves in this system and that of waves in the pipe turbulence.

With reference to Figure 1, the principal control parameter of the problem is
\beta , the timescale of synaptic currents: a low \beta gives small, persisting currents, while
\beta \rightarrow \infty gives large instantaneous currents. A homogeneous steady state exists and
is linearly stable for all values of \beta (the \Delta = 0 line in Figure 1(b)), but transient
localized stimuli trigger the bump attractor [54]. In the analogy, the homogeneous
equilibrium plays the role of a ``laminar state."" We stress that the homogeneous
steady state is the only equilibrium of the model. Thus, the model cannot support
branches of stationary bump solutions. Instead, we demonstrate that traveling waves
are key to understanding the bump attractor.

We consider a spatially continuous version of model (1.1) which is known to
support waves advecting a low number of localized spikes, or having a nonlocalized
profile [31, 12, 14, 67, 66]. The traveling waves of interest to us, however, have a
localized profile and advect a large number of spikes, such as the one presented in
Figure 1(a). These structures are not accessible with the current techniques, hence we
develop here analytical and numerical tools to construct them. We define a particular
type of solutions that retain a fixed number of spikes in time; this class of solutions
is sufficiently general to incorporate traveling waves with an arbitrary, finite number
of spikes and small perturbations to them. We introduce the voltage mapping, a new
operator which formalizes an idea previously used in the literature for spiking [31, 12,
14, 67, 66, 3] and nonspiking [1, 34, 13, 21] networks. The voltage mapping is based on
level sets describing firing events, and it allows efficient traveling wave constructions
and stability computations.

Using the voltage mapping, we construct numerically waves with more than 200
concurrent spikes. These waves are spatially localized and coexist with the trivial
(laminar) state (see Figure 1(a)); most of the waves we compute are unstable, and the
stable ones have a small basin of attraction. As in the turbulence analogy, the waves
contain features of the bump attractor: they pack a seemingly arbitrary number of
spikes within the width of a bump attractor, and they advect them at an arbitrarily
slow speed, depending on \beta and on the number of carried spikes. As in the fluid-
dynamical analogy, waves are disconnected from the laminar state. Owing to the
intrinsic nonsmoothness of the network, the waves emerge primarily at grazing points
(as opposed to the saddle-node bifurcations seen in the fluid-dynamical analogy, and
also observed here in certain parameter regimes). In addition, we present numerical
evidence that the transient dynamics to the bump attractor displays echoes of the
unstable waves which, as in the fluid-dynamics analogy, form building blocks for
the localized structure. Also, the characteristic wandering of the bump attractor,
whose excursions become more prominent as \beta increases, is supported by this purely
deterministic system, akin to the pseudostochastic behavior observed in balanced
neural networks [86, 58, 73].

The paper is structured as follows: in section 2 we introduce the discrete model,
characterize it as a nonsmooth threshold network, and present numerical simulations
of bumps and waves; in section 3 we introduce the continuum model, the voltage
mapping, and the construction of traveling waves; in section 4 we discuss traveling
wave stability. We present numerical results in section 5, and we conclude in section 6.
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BUMPS AND WAVES IN SPIKING NETWORKS 153

Fig. 2 (a) Schematic of the all-to-all coupled neurons with strengths Wik = w(| xi  - xk| ). In the
model, we use a ring geometry, and hence the left neighbor of x1 is identified with xn and
the right neighbor of xn with x1. (b) The coupling (synaptic) function w(x) is chosen to
be 2L-periodic and positive (excitatory) on short spatial scales and negative (inhibitory) on
long spatial scales. (c) Time-dependent neuronal (postsynaptic) currents are modeled via the
function \alpha , which is null before a neuron fires (t < \tau ) and exponentially decaying thereafter
(see (2.3)).

2. Coherent Structures in the Discrete Model. We begin by introducing the
discrete model by Laing and Chow [54]. We characterize it as a piecewise-linear
dynamical system, and we show numerical simulations of coherent structures. An
important difference from the work by Laing and Chow is that we consider a de-
terministic model, which we call the discrete integrate-and-fire model (DIFM). We
remark that the neurons considered here, taken in isolation, are in an excitable regime;
that is, they exhibit an all-or-none response, based on the input they receive. This is
considerably different from the so-called oscillatory regime, in which neurons, when
decoupled from the network, display oscillations [85, 14, 63, 40].

2.1. Description of the DIFM. The DIFM is a spatially extended system of n
identical integrate-and-fire neurons posed on \BbbS = \BbbR /2L\BbbZ ; that is, a ring of period 2L.
Neurons are indexed using the set \BbbN n = \{ 1, . . . , n\} and occupy the discrete, evenly
spaced nodes xi =  - L+2iL/n \in \BbbS for i \in \BbbN n. Neurons are coupled via their synaptic
connections, which are modeled by a continuous, bounded, even and exponentially
decaying function w : \BbbS \rightarrow \BbbR : the strength of the connections from the kth to the
ith neuron depends solely on the distance | xi  - xk| , measured around the ring, hence
we write it as Wik = w(xi  - xk) for all i, k \in \BbbN n (see Figure 2). We note that w is
2L-periodic by definition.

To the ith neuron is associated a real-valued time-dependent voltage function
vi(t), and the coherent structures of interest are generated when voltages \{ vi\} attain
a threshold value (when neurons fire). The DIFM is formally written as follows:

\.vi(t) = Ii(t) - vi(t) +
2L

n

\sum 
k\in \BbbN n

\sum 
j\in \BbbN 

Wik\alpha (t - \tau jk) - 
\sum 
j\in \BbbN 

\delta (t - \tau ji ), i \in \BbbN n,(2.1)

vi(0) = v0i, i \in \BbbN n.(2.2)

At time \tau ji , when the voltage vi reaches the value 1 from below for the jth time, a
firing event occurs; a more precise definition of these spiking times will be given below.
The formal evolution equation (2.1) expresses the modeling assumption that, when
a neuron fires, its voltage is instantaneously reset to 0 (hence the Dirac delta), and
a so-called postsynaptic current is received by all other neurons in the network, with
intensity proportional to the strength of the synaptic connections. The time evolution
of this current is modeled via the postsynaptic function \alpha (t) = p(t)H(t), expressed as
the product of a continuous potential function p and the Heaviside function H; hence
the postsynaptic current is zero before a spike.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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In this paper, we present concrete calculations for

(2.3) \alpha (t) = \beta exp( - \beta t)H(t), w(x) = a1 exp( - b1| x| ) - a2 exp( - b2| x| ),
with \beta , a1, a2, b1, b2 > 0, though the analytical and numerical framework presented
below is valid for more generic choices, subject to general assumptions which will
be made precise in subsection 3.2. The function \alpha models exponentially decaying
currents with rate  - \beta and initial value \beta , and hence the limit \beta \rightarrow \infty approximates
instantaneous currents. Currents with an exponential rise and decay are also used
in the literature. The synaptic coupling function w is chosen so that connections
are positive (excitatory) on the lengthscale 1/b1 and negative (inhibitory) on the
lengthscale 1/b2 (see Figure 2).

In addition to the postsynaptic current, neurons are subject to an external stim-
ulus Ii(t). In certain time simulations, coherent structures are elicited with the ap-
plication of a transient, heterogeneous stimulus of the form

(2.4) Ii(t) = I + d1H(\tau ext  - t)/ cosh(d2xi), i \in \BbbN n.

Our investigation, however, concerns asymptotic states of the autonomous homoge-
neous case Ii(t) \equiv I, and hence one should assume d1 = 0 unless stated otherwise. A
description of model parameters and their nominal values can be found in Table SM1
in the Supplementary Materials.

2.2. Event-Driven DIFM. Laing and Chow studied and simulated a stochastic
version of the DIFM using the Euler method and a first-order interpolation scheme
to obtain the firing times [54]. Here we use a different approach: in preparation for
our analytical and numerical treatment of the problem, we write the formal model
(2.1)--(2.2) as a system of 2n piecewise-linear ODEs. To this end we introduce the
synaptic input variables

(2.5) si(t) =
2L

n

\sum 
k\in \BbbN n

\sum 
j\in \BbbN 

Wik\alpha (t - \tau jk), i \in \BbbN n,

and combining (2.3) and (2.1) we obtain formally

\.vi(t) = Ii(t) - vi(t) + si(t) - 
\sum 
j\in \BbbN 

\delta (t - \tau ji ),

\.si(t) =  - \beta si(t) +
2L\beta 

n

\sum 
k\in \BbbN n

\sum 
j\in \BbbN 

Wik\delta (t - \tau jk),
i \in \BbbN n.

One way to define the associated nonsmooth dynamical system is to express the model
as an impacting system, by partitioning the phase space \BbbR 2n via a switching manifold
on which a reset map is prescribed (see [27] and references therein for a discussion on
nonsmooth and impacting systems). Here, we specify the dynamics so as to expose
the firing times \{ \tau jk\} , as opposed to the switching manifold: this is natural in the
mathematical neuroscience context, and it prepares our analysis of the continuum
model. Since \{ \tau jk\} are the times at which orbits in \BbbR 2n reach the switching manifold,
a translation between the two formalisms is possible.

Following these considerations, we set \tau 0i = 0 for all i \in \BbbN n, introduce the notation
f( \cdot \pm ) = lim\mu \rightarrow 0+ f( \cdot \pm \mu ), and define firing times as follows:2

(2.6) \tau ji = inf
\bigl\{ 
t \in \BbbR : t > \tau j - 1

i , vi(t
 - ) = 1, \.vi(t

 - ) > 0
\bigr\} 
, i \in \BbbN n, j \in \BbbN .

2Note that \{ \tau 0i \} i are not firing times, but auxiliary symbols for the definition of firing times (2.6).
Indeed, since the sums in (2.1) run for j \in \BbbN , the \{ \tau 0i \} i are immaterial for the dynamics.
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BUMPS AND WAVES IN SPIKING NETWORKS 155

We arrange firing times in a monotonic increasing sequence \{ \tau jkik \} 
q
k=1 such that

(2.7) (0, T ] =
\bigcup 

k\in \BbbN q+1

\bigl( 
\tau 
jk - 1

ik - 1
, \tau jkik

\bigr] 
, 0 = \tau j0i0 < \tau j1i1 \leq \cdot \cdot \cdot \leq \tau 

jq
iq
< \tau 

jq+1

iq+1
= T,

for some time horizon T > 0, and obtain the desired set of 2n piecewise-linear ODEs

(2.8) \.vi = Ii  - vi + si, \.si =  - \beta si i \in \BbbN n, t \in 
\bigcup 

k\in \BbbN q+1

\bigl( 
\tau 
jk - 1

ik - 1
, \tau jkik

\bigr] 
,

with initial and reset conditions

vi(0) = v0i, si(0) = s0i, i \in \BbbN n,(2.9)

vik(\tau 
jk +
ik

) = 0, sl(\tau 
jk +
ik

) = sl(\tau 
jk  - 
ik

) +
2L\beta 

n
Wlik , l \in \BbbN n, k \in \BbbN q,(2.10)

respectively. Henceforth, we refer to the nonsmooth dynamical system (2.6)--(2.10)
with connectivity function w given by (2.3) and stimulus (2.4) as the event-driven
DIFM or simply DIFM ; that is, we view this model as a substitute for the formal
system (2.1)--(2.2).

Even though the firing-time notation may seem cumbersome at first, the evolution
of the DIFM is remarkably simple: Equation (2.8) states that between two consecutive
firing times, neurons evolve independently, subject to a linear ODE; a solution in
closed form can be written in terms of exponential functions, parametrized by the
firing times. Constructing a solution amounts to determining firing times (impacts
with the switching manifold), as is customary in piecewise-linear systems. This aspect
will be a recurring theme in the sections analyzing traveling waves in the continuum
model.

In simulations of the DIFM, we time step (2.8) rather than using its analytic
solution. We use an explicit adaptive 4-5th order Runge--Kutta pair with continuous
output and detect events (compute firing times) by root-finding [28, 79]. The sim-
ulation stops at each firing event and is restarted after the reset conditions (2.10)
are applied. Simulating the event-driven DIFM instead of (2.1) allows us to com-
pute firing times accurately and to evolve the system without storing in memory or
truncating the synaptic input sums in (2.1).

2.3. Coherent Structures in the DIFM. The DIFM supports standing and trav-
eling localized structures, as in the stochastic setting [54]. Bumps form robustly when
we prescribe homogeneous initial conditions3 with a short transient stimulus ((2.4)
with \tau ext = 2). Since Ii(t) \equiv I for all t > \tau ext, the structures observed over long time
intervals are solutions to a homogeneous, nonautonomous problem.

As seen in Figure 3, the bump wanders when \beta is increased. In passing, we note
that this phenomenon is not due to stochastic effects, as studied in other contexts
[50, 48, 3], because the DIFM is deterministic. For sufficiently large \beta , the system
exhibits stable traveling structures: in Figure 4 we show two coexisting waves found for
\beta = 4.5 upon varying slightly the width d1 and intensity d2 of the transient stimulus.
In each case we plot the voltage and synaptic profiles and associated raster plots. We
notice different firing patterns in the waves, involving 2 and 4 firings, respectively: the

3Typically we set v0i = u \in (0, 1), s0i = 0, for i \in \BbbN n, but the coherent structures discussed in
this paper can also be found with random, independent and identically distributed initial voltages,
for instance, v0i \sim \scrU ([0, 1]), where \scrU is the uniform distribution.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

44
.1

73
.2

55
.2

21
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



156 DANIELE AVITABILE, JOSHUA L. DAVIS, AND KYLE WEDGWOOD

(a)

vi(t){(xi, t) : vi(t) = 1}
150

t

0
−1 1xi

si(t)

−1 1xi

1.200 1

(b)

150

t

0
−1 1xi −1 1xi

Fig. 3 Bump attractors obtained via direct numerical simulation of the DIFM (2.6)--(2.10) with
external input (2.4) and connectivity function w as in (2.3). We visualize the network
voltage (center) and synaptic current (right) as functions of space and time and, in the inset
(left), a raster plot of the firing events. Parameters as in Table SM1 with n = 80, d1 = 2,
d2 = 10. The network's synaptic timescale is \beta = 1 (a) and \beta = 3.5 (b). A localized coherent
structure is visible in (a), which wanders when \beta is increased. We remark that the system
under consideration is deterministic.

wave with 2 firings travels faster, and its voltage and synaptic profiles are narrower.
We found coexisting waves with a greater number of firings and progressively lower
speed, whose existence and bifurcation structure will be at the core of the following
sections.

2.4. Remarks about Coherent Structures in the DIFM. The patterns pre-
sented so far are found in the DIFM with a finite number of neurons (n = 80).
At first sight, the raster plots of the waves seem to indicate that neurons fire simulta-
neously in pairs (Figure 4(a)) or quartets (Figure 4(b)) as the structure travels across
the network. A closer inspection of the instantaneous profiles vi(t) reveals that this is
not the case, as the threshold (red dashed line) is attained by a single neuron in Fig-
ure 4(a) and by two neurons in Figure 4(b): neurons in a raster pair fire alternately
over a short time interval, whereas a quartet displays a more complex firing pattern.

Hence, for finite n, the propagating structures displayed in Figure 4 are not strictly
traveling waves, in the sense that the profile is not stationary in the comoving frame;
their dynamics is that of saltatory waves [22, 90, 3]. The saltatory nature of the
waves, however, is an effect of the network size: as we increase n, the amplitude of

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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(a)

si(t)vi(t){(xi, t) : vi(t) = 1}

(b)

si

vi

−0.2

1.2

−1 1xi

t

0

50

−1 1xi −1 1xi

−1 1xi

si

vi

−0.2

1.2 t

0

50

−1 1xi −1 1xi

0 1 1.20

Fig. 4 Stable coexistent waves obtained via direct numerical simulation of DIFM (2.6)--(2.10) with
external input (2.4) and connectivity function w as in (2.3). Parameters as in Table SM1
with n = 80, \beta = 4.5 for both (a) and (b), but different initial stimuli: (a) d1 = 0.4, d2 = 12,
(b) d1 = 2, d2 = 10. Depending on the transient stimulus the model displays (a) a wave
propagating with positive speed, in which pairs of neurons fire asynchronously, but at short
times apart; (b) a similar structure involving a quartet of neurons. Coexisting structures with
variable numbers of firing neurons have also been found (not shown). The spatial profiles
indicate that neurons reach the threshold (dashed red line) one at a time within a pair (a)
or two at a time within a quartet (b).

temporal oscillations in the comoving frame scales as O(n - 1) and the spatiotemporal
profile converges to one of a traveling wave as n\rightarrow \infty .

In addition, the structure in Figure 3(a) is not a bump, in the sense that it
is not a spatially heterogeneous steady state of the DIFM, because the pattern is
sustained by firing events (and the presence of firing events means the voltage changes
in time). Indeed, the only equilibrium supported by the DIFM is the homogeneous
state vi(t) \equiv I, si(t) \equiv 0, i \in \BbbN n, which is linearly stable for all values of \beta , as can be
deduced by inspecting system (2.8).

By constructing traveling waves and investigating their stability in a continuum
version of the DIFM, we shall see that the structure in Figure 3(a) (and its wandering)
can be interpreted as deterministic chaotic behavior.

3. Traveling Waves in the Continuum Model. As stated in section 2, the pro-
files \{ vi(t)\} i and \{ si(t)\} i in Figure 4 behave like traveling wave solutions as n \rightarrow \infty .
Motivated by this observation, we study traveling waves in a continuum, translation-
invariant version of the DIFM: we set d1 = 0 in the stimulus (2.4), consider a contin-
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158 DANIELE AVITABILE, JOSHUA L. DAVIS, AND KYLE WEDGWOOD

uum spatial domain, and pose the model on \BbbR as opposed to \BbbS , obtaining

\partial tv(x, t) =  - v(x, t) + I +
\sum 
j\in \BbbN 

\int \infty 

 - \infty 
w(x - y)\alpha 

\bigl( 
t - \tau j(y)

\bigr) 
dy

 - 
\sum 
j\in \BbbN 

\delta 
\bigl( 
t - \tau j(x)

\bigr) 
, (x, t) \in \BbbR \times \BbbR .

(3.1)

The formal evolution equation presented above, which we henceforth call the con-
tinuous integrate-and-fire model (CIFM), has been proposed and studied by several
authors in the mathematical neuroscience literature [31, 42, 10, 12, 66, 65]. In the
CIFM, firing-time functions \tau j(x) indicate that the neural patch at position x fires for

the jth time, and they replace the discrete model's firing times \tau jk .
4 A graph of the

firing functions replaces the raster plot in the discrete model, so that a traveling wave
in the CIFM corresponding to the n \rightarrow \infty limit of the structure in Figure 4(a), for
instance, will involve 2 linear firing functions \tau 1, \tau 2, with \tau 1(x) < \tau 2(x) for all x \in \BbbR .

The existence of traveling wave solutions in (3.1) with a single spike has been
studied by Ermentrout [31], who presented various scalings of the wavespeed as a
function of control parameters. A general formalism for the construction and linear
stability analysis of wavetrains (spatially periodic traveling solutions) was introduced
and analyzed by Bressloff [12], who derived results in terms of Fourier series expan-
sions. The construction of traveling waves with multiple spikes was later studied by
O\c san and coworkers [65], though stability for these states was not presented and com-
putations were limited to a few spikes, for purely excitatory connectivity kernels. The
common thread in the past literature on this topic is the idea that traveling wave
construction and stability analysis rely entirely on knowledge of the firing function
\tau j (as in the DIFM, with firing times). A similar approach has been used effectively
in Wilson--Cowan--Amari neural field equations, where it is often called interfacial
dynamics (see [1] for the first study of this type, [20] for a recent review, and [23, 37],
among others, for examples of spatiotemporal pattern analysis).

Here we present a new treatment of traveling wave solutions that draws from this
idea; we introduce an operator, which we call the voltage mapping, with the following
aims: (i) Expressing a mapping between firing functions and solution profiles, with
the view of replacing the formal evolution equation (3.1) for traveling waves with m
spikes (where m is arbitrary). (ii) Finding conditions for the linear stability of these
waves. (iii) Using root-finding algorithms to compute traveling waves and study their
linear stability. We will refer to existing literature in our discussion.

3.1. Notation. Before analyzing solutions to the CIFM, we discuss the notation
used in this section. We use | \cdot | \infty to denote the \infty -norm on \BbbC m. We denote by
C(X,Y ) the set of continuous functions from X to Y and use C(X) when Y = \BbbR .
We denote by B(X) (BC(X)) the set of real-valued bounded (real-valued bounded,
continuous) functions defined on X. Further, for a positive number \eta , we shall use
the following exponentially weighted Banach spaces:

L1
\eta (\BbbR ) =

\Bigl\{ 
u : \BbbR \rightarrow \BbbR : \| u\| L1

\eta 
=

\int 
\BbbR 
e\eta x| u(x)| dx <\infty 

\Bigr\} 
,

C\eta (\BbbR ,\BbbC m) =
\Bigl\{ 
u \in C(\BbbR ,\BbbC m) : \| u\| Cm,\eta = sup

x\in \BbbR 
e - \eta | x| | u(x)| \infty <\infty 

\Bigr\} 
.

4The index j is used as a superscript in the firing times, but for notational convenience we use
it as a subscript in the firing functions, so that \tau j(xk) \approx \tau jk .
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BUMPS AND WAVES IN SPIKING NETWORKS 159

3.2. Characterization of Solutions to the CIFM via the Voltage Mapping. We
begin by discussing in what sense a voltage function v satisfies the CIFM formal
evolution equation (3.1). While we eschew the definition of the CIFM as a dynamical
system on a Banach space (a characterization that is currently unavailable in the
literature), we note that progress can be made for voltage profiles with a constant
and finite number of spikes for t \in \BbbR . This class of solutions is sufficiently large to
treat traveling waves and small perturbations to them.

We make a few assumptions on the network coupling, and we restrict the type of
firing functions and solutions of interest, as follows:

Hypothesis 3.1 (coupling functions). The connectivity kernel w is an even func-
tion in C(\BbbR ) \cap L1

\eta (\BbbR ) for some \eta > 0. The postsynaptic function \alpha : \BbbR \rightarrow \BbbR \geq 0 can be
written as \alpha (t) = p(t)H(t), where H is the Heaviside function and p : \BbbR \geq 0 \rightarrow \BbbR is a
bounded and everywhere differentiable Lipschitz function, hence p, p\prime \in B(\BbbR ).

Definition 3.2 (m-spike CIFM solution). Let m \in \BbbN and I \in \BbbR . A function
vm : \BbbR 2 \rightarrow \BbbR is an m-spike CIFM solution if there exists \tau = (\tau 1, . . . , \tau m) \in C(\BbbR ,\BbbR m)
such that \tau 1 < \cdot \cdot \cdot < \tau m on \BbbR and

vm(x, t) = I +
\sum 
j\in \BbbN m

\int t

 - \infty 

\int \infty 

 - \infty 
exp(z  - t)w(x - y)\alpha (z  - \tau j(y)) dy dz

 - 
\sum 
j\in \BbbN m

exp(\tau j(x) - t)H(t - \tau j(x)), (x, t) \in \BbbR 2,
(3.2)

vm(x, t) = 1, (x, t) \in \BbbF \tau ,(3.3)

vm(x, t) < 1, (x, t) \in \BbbR 2 \setminus \BbbF \tau ,(3.4)

where
\BbbF \tau =

\bigcup 
j\in \BbbN m

\{ (x, t) \in \BbbR 2 : t = \tau j(x)\} .

We call \tau and \BbbF \tau the firing functions and the firing set of vm, respectively.

The definition above specifies how we interpret solutions to (3.1) and is composed
of three ingredients: (i) equation (3.2), which derives from integrating (3.1) on ( - \infty , t)
and expresses a mapping between the set of m firing functions \tau and the voltage
profile; (ii) system (3.3), which couples the firing functions by imposing the threshold
crossings; (iii) a further condition on vm, ensuring that the solution has exactly m
spikes, attained at the firing set; this is necessary because, as we shall see below, it is
possible to find a set of m functions \tau satisfying (3.2)--(3.3) but exhibiting a number
of threshold crossings greater than m.

We now aim to characterize m-spike CIFM solutions by means of a voltage map-
ping, which can be conveniently linearized around a firing set and is a key tool to
construct waves and analyze their stability. Inspecting (3.2), we note that the voltage
profile features two contributions, one from the (synaptic) coupling functions w and
\alpha and one from reset conditions. This observation leads to the following definitions.

Definition 3.3 (synaptic, reset, and voltage mappings). Let u : \BbbR \rightarrow \BbbR . We
define the synaptic operator, S, and the reset operator, R, by

(Su)(x, t) =

\int t

 - \infty 

\int \infty 

 - \infty 
exp(z  - t)w(x - y)\alpha (z  - u(y)) dy dz, (x, t) \in \BbbR 2,(3.5)

(Ru)(x, t) =  - exp(u(x) - t)H(t - u(x)), (x, t) \in \BbbR 2.(3.6)
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160 DANIELE AVITABILE, JOSHUA L. DAVIS, AND KYLE WEDGWOOD

Further, let m \in \BbbN , I \in \BbbR , and \tau \in C(\BbbR ,\BbbR m). The m-spike voltage mapping, Vm, is
the operator defined as

(3.7) Vm\tau = I +
\sum 
j\in \BbbN m

(S\tau j +R\tau j).

These operators map univariate functions, such as a firing function, to bivariate
functions, such as the spatiotemporal voltage profile. Under Hypothesis 3.1 it holds
that S : C(\BbbR ) \rightarrow BC(\BbbR 2), R : C(\BbbR ) \rightarrow B(\BbbR 2), and hence Vm : C(\BbbR ) \rightarrow BC(\BbbR 2) (see
Lemma SM1.1).

By construction, the voltage operator characterizes m-spike CIFM solutions, as
the following proposition shows.

Proposition 3.4. Let m \in \BbbN , I \in \BbbR . An m-spike CIFM solution exists if and
only if there exists \tau \in C(\BbbR ,\BbbR m) such that

Vm\tau = 1 in \BbbF \tau ,(3.8)

Vm\tau < 1 in \BbbR 2 \setminus \BbbF \tau .(3.9)

Proof. The statement follows by setting vm(x, t) = (Vm\tau )(x, t) and applying the
definition of the voltage mapping (3.7).

Proposition 3.4 implies that the voltage of an m-spike solution can be computed
for any (x, t) \in \BbbR 2 once the firing functions \tau are known. The spatiotemporal profile
of an m-spike solution is determined entirely by its firing functions. This aspect,
which underlies the formal evolution equation (3.1) and the literature that analyzes
it, is a key part of what follows and, as we shall see below, it also suggests a natural
way to compute traveling waves and determine their linear stability. A first step in
this direction is the definition of traveling waves via the voltage mapping.

3.3. Traveling Waves with m-Spikes (TW\bfitm ). Following Proposition 3.4, we
can capture traveling waves with m spikes (TWm) using the voltage mapping and a
set of parallel firing functions. Henceforth, we will assume without loss of generality
that the propagating speed of the wave is positive: for any wave with c > 0, there
exists a wave with speed  - c and the wave profiles are related by the transformation
x\rightarrow  - x.

Definition 3.5 (TWm). Let m \in \BbbN , c > 0, and let T \in \BbbR m with T1 < \cdot \cdot \cdot < Tm.
A traveling wave with m spikes (TWm), speed c, and coarse variables (c, T ) is an
m-spike CIFM solution with firing functions \{ \tau j(x) = x/c+ Tj\} j\in \BbbN m .

To each traveling wave solution is associated a traveling wave profile that is ad-
vected with propagation speed c. From Proposition 3.4 we expect this profile to be
determined entirely by the firing functions, as confirmed in the following result.

Proposition 3.6 (TWm profile). A TWm with speed c satisfies (Vm\tau )(x, t) =
\nu m(ct - x; c, T ), and its (c, T )-dependent traveling wave profile \nu m is given by

(3.10)

\nu m(\xi ; c, T ) = I  - 
\sum 
j\in \BbbN m

exp

\biggl( 
 - \xi  - cTj

c

\biggr) 
H

\biggl( 
\xi  - cTj

c

\biggr) 

+
1

c

\sum 
j\in \BbbN m

\int \xi 

 - \infty 
exp

\biggl( 
z  - \xi 

c

\biggr) \int \infty 

0

w(y  - z + cTj)p(y/c) dy dz.

Proof. See section SM3 in the Supplementary Materials.
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BUMPS AND WAVES IN SPIKING NETWORKS 161

Proposition 3.6 shows that the traveling wave profile is completely determined by
the vector (c, T ) \in \BbbR >0 \times \BbbR m; that is, (c, T ) is a vector of coarse variables for the
traveling wave. In the discrete model we introduced an auxiliary spatially extended
variable for the model, the synaptic input \{ si(t)\} i defined in (2.5). In the continuum
model, the corresponding variable is the function sm(x, t) =

\sum 
j\in \BbbN m

(S\tau j)(x, t), which
in a TWm satisfies sm(x, t) = \sigma m(ct - x; c, T ) with

(3.11) \sigma m(\xi ; c, T ) =
1

c

m\sum 
j=1

\int \infty 

0

w(y  - \xi + cTj)p(y/c) dy.

3.4. Traveling Wave Construction. Proposition 3.6 suggests a simple way to
compute a TWm, by determining its m + 1 coarse variables (c, T ), as a solution to
the following coarse problem.

Problem 3.7 (computation of TWm). Find (c, T ) \in \BbbR >0 \times \BbbR m such that T1 <
\cdot \cdot \cdot < Tm and

T1 = 0,(3.12)

\nu m(cT - 
i ; c, T ) = 1 for i \in \BbbN m,(3.13)

\nu m(\xi ; c, T ) < 1 on \BbbR \setminus \cup j\in \BbbN m\{ cT - 
j \} .(3.14)

Equation (3.13) of the coarse problem imposes that the traveling wave profile crosses
the threshold 1 when \xi \rightarrow cT - 

j , which is a necessary and sufficient condition to ensure
vm = 1 in \BbbF \tau (see Corollary SM2.1). As expected, if \nu m is a traveling wave profile,
then so is \nu m(\xi + \xi 0) for any \xi 0 \in \BbbR ; (3.12) fixes the phase of the traveling wave by
imposing that the profile crosses the threshold as \xi \rightarrow 0 - .

If m = 1, (3.12)--(3.13) of the coarse problem reduce to a compatibility condition
for the speed c,

c

\int 0

 - \infty 

\int \infty 

0

exp(s)w
\bigl( 
c(y  - s)

\bigr) 
p(y) dy ds = I  - 1,

which implicitly defines an existence curve for TW1 in the (c,I)-plane. This result is
in agreement with what was found in [65, 31]. Existence curves in other parameters
are also possible and are at the core of the numerical bifurcation analysis presented
in detail in the sections below.

For m > 1, the coarse problem must be solved numerically. A simple solution
strategy is to find a candidate solution using Newton's method for the system of
m + 1 transcendental equations (3.12)--(3.13), with \nu m given by Proposition 3.6 and
with initial guesses estimated from direct simulation of the discrete model with large
n, or from a previously computed coarse vector. The candidate solution can then be
evaluated at arbitrary \xi \in \BbbR , and hence it is accepted if (3.13) holds on a spatial
grid covering [ - L,L] \subset \BbbR with L \gg 1. In passing, we note that this procedure is
considerably cheaper than a standard traveling wave computation for PDEs, which
requires the solution of a boundary value problem and hence a discretization of differ-
ential operators on \BbbR . Depending on the particular choice of \alpha and w, the profile \nu m
is either written in closed form, as is the case for the choices (2.3), or approximated
using standard quadrature rules.

A concrete calculation is presented in Figure 5, where we show traveling wave
profiles and speeds of a TW5 and a TW20. In passing, we note that the synaptic
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c = 0.15

(a)

−1.5 2

(b)

ξ−0.5 1ξ

0
0

11

0 cT2 cT3cT4 cT5 0 cT20
. . .

c = 0.046
ν5(ξ)

σ5(ξ)
σ20(ξ)

ν20(ξ)

Fig. 5 Wave profiles for (a) TW5 and (b) TW20 obtained by solving Problem 3.7 for m = 5 and
m = 20, respectively, and then substituting (c, T1, . . . , Tm) into the expressions for voltage
profile (3.10) and synaptic profile (3.11). The profile \nu is computable at any \xi \in \BbbR , and here
we plot it using an arbitrary grid in the intervals (a) [ - 0.5, 1] and (b) [ - 1.5, 2]. Parameters
as in Table SM1 with (a) \beta = 4.5 and (b) \beta = 7.7.

profile of a TWm at a given time is similar to a bump but displays modulations at the
core (visible in Figure 5), as predicted by the Heaviside switches in (3.11). Traveling
waves with a large number of spikes, such as these, have not been accessible to date.

Remark 3.8. Figure 5 shows that profiles with \nu m(cT - 
j ) = 1 propagate with pos-

itive speed, and this does not contradict the numerical simulations in Figure 4, where
solution profiles with vm(x, \tau j(x)

 - ) = 1 propagate with negative speed. This is a con-
sequence of choosing \xi = ct - x (as in [65]), and hence initial conditions for the time
simulations are obtained by reflecting \nu m about the y axis, since vm(x, 0) = \nu m( - x).

4. Wave Stability. The time simulations in section 2 demonstrate that, for suffi-
ciently large values of \beta , traveling waves with a variable number of spikes coexist and
are stable. It is natural to ask whether these waves destabilize as \beta , or any other con-
trol parameter of the model, is varied. An example of a prototypical wave instability
is presented in Figure 6 for TW3: a traveling wave is computed solving Problem 3.7,
and this solution is used as initial condition for a DIFM simulation with n = 1000
neurons. For sufficiently large \beta , the wave is unstable, as exemplified by the raster
plots in Figure 6(a)--(b), in that the firing functions never return to those of a TW3.

Figure 6 shows that the firing set of the solution is composed of 3 disjoint curves,
initially close to those of a TW3, from which they depart progressively. Ultimately,
some firing functions terminate, and the dynamics displays an attracting TW2 or
TW1. Capturing the transitions from a TWm to a traveling wave with fewer spikes
is a nontrivial task. Studying the nonlinear stability is not possible with the cur-
rent definition of CIFM solutions, which require a constant number of spikes. The
voltage mapping, however, opens up the possibility of studying the linear stability
of TWm: the spatiotemporal voltage profile of an m-spike solution is determined by
its firing functions, \tau , via (3.7); small perturbations \tau + \varphi to \tau induce small pertur-
bations to the spatiotemporal profile, and we expect that a suitable linearization of
the voltage mapping carries information concerning the asymptotic behavior of these
perturbations.

Building on the definitions and results in section 3, we have formalized the concept
of linear stability and developed an algorithm for TWm linear stability computations.
We give here a nontechnical summary of the main results, and we refer the reader
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τ1 + ϕ1

(a) (b)

0 x 3.5

τj(x)

t

β = 17.0

−cT3 0 x 3.5

τj(x)

β = 17.5

t −cT1

−cTm

(c)

τm + ϕm

t

x

Fig. 6 (a)--(b) Examples illustrating the destabilization of a TW3 solution. A time simulation of the
DIFM is initialized using wave profiles obtained solving Problem 3.7 for m = 3 at (a) \beta = 17
and (b) \beta = 17.5. Parameters as in Table SM1: domain half-width L = 4 and network size
n = 1,000. The firing functions \{ \tau j\} are plotted for reference. Oscillatory perturbations to
the firing functions do not decrease with time, and hence the wave is unstable. The dynamics
leads to stable (a) TW2 and (b) TW1 solutions. (c) Perturbations \tau +\varphi to the firing functions
\tau of a TWm. At t = 0 each firing function \tau i is perturbed by an amount \varphi i( - cTi). A TWm

is linearly stable if \varphi i( - cTi) being small implies that \varphi i(x) stays small for all x \in ( - cTi,\infty )
and i \in \BbbN m (see Definition A.3).

to Appendix A for a longer discussion including definitions, theorem statements, and
proofs.

Result 1 (Lemma A.1). If two distinct m-spike solutions have firing functions \tau 
and \tau + \varphi , then, to leading order, \varphi is in the kernel of a bounded linear operator,
L : C\eta (\BbbR ,\BbbR m) \rightarrow C\eta (\BbbR ,\BbbR m), obtained by linearizing the voltage mapping Vm around
\tau . We recall that \eta bounds the decay rate of the connectivity function, w \in L1

\eta (\BbbR )
(see Hypothesis 3.1). This implies that admissible perturbations \varphi are allowed to
grow exponentially as | x| \rightarrow \infty , at a rate at most equal to the decay rate of w.

Result 2 (Definition A.3 and surrounding discussion). As for TWm existence,
linear stability is characterized via firing functions: loosely speaking, a wave with
firing functions \tau is linearly stable to perturbations \varphi \in kerL if the firing sets \BbbF \tau 

and \BbbF \tau +\varphi are close around t = 0 and remain close for all positive times (see also the
caption to Figure 6(c)).

Result 3 (Lemma A.4 and following discussion). Linear stability is determined by
a complex-valued function E : \BbbD  - \eta ,\eta \rightarrow \BbbC , where \BbbD  - \eta ,\eta = \{ z \in \BbbC :  - \eta \leq Re z \leq \eta \} .
A TWm is stable to perturbations of the type \varphi (x) = \Phi e\lambda x +\Phi \ast e\lambda 

\ast x (where \Phi \in \BbbR m

and the star denotes complex conjugation) if all nonzero roots \lambda of E have strictly
negative real parts. The function E can be evaluated using the coarse wave variables
(c, T ).

5. Bifurcation Structure of Traveling Waves. The pseudo-arclength continua-
tion routines developed in [69, 2] have been used to compute solutions to Problem 3.7,
continue waves in parameter space, and investigate their stability. A TWm is con-
structed by solving Problem 3.7 in the coarse variables (c, T ) \in \BbbR >0 \times \BbbR m, which is
sufficient to reconstruct the wave profile (3.10) and the corresponding synaptic pro-
file (3.11); in addition, starting from a solution to Problem 3.7, the linear asymptotic
stability of a TWm is determined by finding roots of the (c, T )-dependent nonlinear
function E defined in (A.7).

Figure 7 shows the bifurcation structure of TW3, which is common to most travel-
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c

0.1

0.5

0 5 10 15
βG

G

βHB1

HB1
HB2

HB3

β

(a)

t

0
x

(e)

t

0
x

(f)

t

0
x

(g)

C

-5 20
-30

30
(d)

-5 20
-30

30 C
(c)

ν(ξ)

σ(ξ)0

1

0 cTG

(b)

Fig. 7 (a) Branch of TW3 solutions in the parameter \beta , using c as solution measure. The branch
originates at a grazing point G, illustrated by the profile in (b). As \beta increases, three pairs of
complex conjugate roots of E (see (A.7)) cross the imaginary axis at the oscillatory (Hopf)
bifurcation points HB1, HB2, HB3. Panels (c) and (d) show selected roots of E, before and
after HB1, at \beta = 10 and 16, respectively. (e)--(g) Raster plots for time simulations of the
DIFM with n = 500 and domain half-width L = 3, initialized from solutions to Problem 3.7
at \beta = 2.17, 10, and 16, respectively. The simulations show the dynamics of the model for
\beta < \beta G (where a TW3 does not exist in the continuum limit), for \beta \in (\beta G, \beta HB1 ) (where
TW3 is stable according to the analysis in (c)), and for \beta > \beta HB1 (where TW3 is unstable
to oscillatory perturbations, as predicted in (d)). Parameters as in Table SM1, with d1 = 0.

ing waves found in the model. The simulations in section 2 suggest taking the synaptic
timescale parameter \beta as the principal continuation parameter. We use the wavespeed
c as solution measure. A branch of solutions originates from a grazing point (G; see
below for a more detailed explanation) and it is initially stable, before destabilizing at
a sequence of oscillatory bifurcations (HB1--HB3), as seen in Figure 7(a). In passing,
we note that there exists a second, fully unstable branch of TW3 solutions charac-
terized by a slower speed and a smaller width. This branch, which we omit from the
bifurcation diagrams for simplicity, also originates at a grazing point.
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BUMPS AND WAVES IN SPIKING NETWORKS 165

5.1. Grazing Points. In a wide region of parameter space, branches of TWm

solutions originate at a grazing point \beta = \beta G, as seen in Figure 7(a)--(b) for TW3.
5

At a grazing point the TWm profile crosses the threshold m times and attains the
threshold tangentially at a further spatial location, cTG, as shown in Figure 7(b). This
tangency exists at the critical value \beta = \beta G, signaling a nonsmooth transition and a
branch termination. For \beta > \beta G we observe profiles with exactlym threshold crossings
(a branch of TWm solutions). These profiles exhibit a further local maximum, which
is strictly less than 1 by construction, at a point \xi max > cTm. As \beta \rightarrow \beta +

G , we observe
\xi max \rightarrow cT+

G and \nu (\xi max) \rightarrow 1 - , until the threshold is reached at \beta = \beta G, where the
tangency originates.

For \beta < \beta G, we find solutions to the nonlinear problem (3.12)--(3.13) for which
Vm\tau > 1 in a bounded interval of \BbbR . Since these states violate the condition (3.14),
they do not correspond to TWm solutions, and we disregard them (the branch termi-
nates at \beta G). We note, however, that in a neighborhood of \beta G there exist branches
of traveling wave solutions with different numbers of threshold crossings (as will be
shown below).

We found grazing points for every TWm with 2 \leq m \leq 230, for the parameters
in Table SM1 with d1 = 0. We observe that for \beta < \beta G the system evolves toward a
DIFM bump attractor (see Figure 7(e)). Understanding the origin of this transition
is the subject of the following sections.

Grazing points are found generically as a secondary control parameter is varied,
and 2-parameter continuations of grazing points can be obtained numerically by free-
ing one parameter and imposing tangency of the wave profile at one additional point
(see Problem SM4.1 in section SM4).

5.2. Oscillatory Bifurcations. Along the TWm branch, we compute and monitor
the roots of E with the largest real part. Figures 7(c)--(d) show examples for TW3 at
\beta = 10 and \beta = 16, respectively. At \beta = 10, we observe a root at 0, as expected, and
other roots with small negative real part: the wave is therefore linearly asymptotically
stable to firing-threshold perturbations x \mapsto \rightarrow \Phi e\lambda x + \Phi \ast e\lambda 

\ast x, with E(\lambda ) = 0 and
\Phi \in ker[D  - M(\lambda )] (see Lemma A.4), as confirmed via simulation in Figure 7(f).
In contrast, there exists a pair of unstable complex conjugate roots for the solution
at \beta = 16, indicating an oscillatory (Hopf) instability, which is also confirmed by
direct simulation in Figure 7(g): after the initial oscillatory instability, the system
destabilizes to a TW2. It should be noted that, in other regions of parameter space
and for simulations with different network sizes, we observed a TW3 destabilize to a
TW1 or the homogeneous steady state.

We expect that branches of periodically modulated TWm solutions (which are also
supported by neural fields [32, 24]) should emerge from each of the Hopf bifurcations
reported in Figure 7(a). We note that we could not find stable structures of this
type via direct simulations near the onset of the instability, indicating that the Hopf
bifurcations may be subcritical. While it is possible to extend our framework to
continue such periodic states, we did not pursue this strategy here.

As shown in Figure 7(a), the TW3 branch undergoes a sequence of Hopf bifurca-
tions \{ HBi\} i: our stability analysis shows several pairs of complex conjugate roots pro-
gressively crossing the imaginary axis as \beta increases; the computation in Figure 7(d),
for instance, is for a solution at \beta \in (\beta HB1

, \beta HB2
). We have verified numerically (not

5Note that \beta G depend on m, but we omit this dependence to simplify notation. The same is
true for other quantities in the paper such as c and TG.
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166 DANIELE AVITABILE, JOSHUA L. DAVIS, AND KYLE WEDGWOOD

shown) that the firing functions of spatiotemporal DIFM solutions in this region of
parameters behave as predicted by the leading eigenvalues in Figure 7(d); that is,
they feature two dominant oscillatory modes, one stable and one unstable. Similarly
to grazing points, Hopf bifurcations can be continued in a secondary parameter (see
Problem SM4.2 in section SM4 in the Supplementary Materials).

5.3. Nested Branches of Traveling Waves. We computed branches of TWm

solutions for increasing values of m, as shown in Figure 8(a), using DIFM simulations
as initial guesses. In Figure 1 waves were represented by their width, whereas here we
use the propagation speed c. In the region of parameter space explored in the DIFM
model, branches with m \geq 2 feature a grazing point for low \beta and branches with
m \geq 3 display sequences of Hopf bifurcations, following the scenario already discussed
in Figure 7(a). In this region, the TW1 branch has a distinct behavior, featuring a
saddle-node point in place of a grazing point. For each TWm branch terminating at a
grazing point, there is a corresponding slow unstable branch originating at a different
grazing point: in Figure 8(a) this behavior is exemplified by plotting the fully unstable
slow TW5 branch (the branch with slowest waves in the figure), but omitting the plots
for all other branches. The two TW5 branches should be understood as a ``broken
saddle node."" The bifurcation structure of Figure 8(a), valid for the CIFM, supports
numerical simulations of the DIFM in which a TWm destabilizes at HB1 and gives
rise to a new traveling wave state TWm\prime with m\prime < m (see, for instance, Figures 6
and 7).

These coexisting TWm branches are nested in a characteristic fashion, so far
unreported in the literature; the higher the value of m, the slower the wave, and
the narrower the stable interval between G and HB1. This structure is noteworthy:
first, it is known that the speed of TW1 typically changes as a secondary parameter
is varied [31, 11, 12]; however, in networks with purely excitatory kernels, waves
with multiple threshold crossings coexist and their speed does not depend strongly on
m [31], which has been a principle reason for studying approximately and analytically
the only tractable case, m = 1 [13, section 5.4] (this scenario is also confirmed by
our calculations; see Figure SM1); second, it is known that Hopf instabilities with
purely excitatory connectivity kernels are possible only if delays are present in the
network [12].

The results in Figure 8 have been obtained using a methodology that works for
arbitrary m and on generic connectivity kernels. They show that, when inhibition is
present: (i) coexisting nested branches of TWm exist; (ii) the speed of such waves
depends strongly on m and, in particular, it is possible to construct waves with
arbitrarily small speed, by increasing the number of spikes; (iii) oscillatory instabilities
are present in models without delays for sufficiently large m and/or sufficiently large
\beta . As we shall see, the latter aspect plays a role in understanding the so-called bump
attractor.

5.4. The Bump Attractor. From the grazing point of TWm, one can compute
the grazing point of TWm+1. For instance, from the TW3 grazing profile in Fig-
ure 7(b), we obtain (c, T1, T2, T3, TG). A grazing point can then be computed solv-
ing Problem SM4.1 in the Supplementary Materials, and its solution can be used to
produce an initial guess (c, T1, T2, T3, (T3 + TG)/2, TG) for a grazing point of TW4.
Exploiting this iterative strategy, we compute grazing points and branches for large
values of m, obtaining the diagram in Figure 8(b) corresponding to the shaded area
in Figure 8(a).

The branches accumulate as m increases, and for m \geq 57 they are fully unstable
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Fig. 8 Bifurcation structure of TWm branches for m = 1, . . . , 160 in the parameter \beta . (a) For
m \geq 3, branches are similar to the one shown in Figure 7(a). As m increases, the waves
become slower and their stability region narrower. The shaded area in (a) is enlarged in (b):
the inset shows selected branches for m = 2, . . . , 160; oscillatory instabilities occur within
the red segments (connecting a stable solution in blue to an unstable solution in gray), and
the branches with m \geq 57 are fully unstable (solid gray lines). We used here the same data
as in Figure 1, but we present it in terms of c, not \Delta . Parameters are as in Table SM1,
with d1 = 0.

for this parameter set. The diagrams provide evidence that there exist unstable waves
with arbitrarily many spikes (i.e., with arbitrarily large m) and vanishingly small
speed. It seems therefore natural to postulate a relationship between these waves and
the bump structures found by Laing and Chow [54] (see also Figures 1, 3, and 7(e)).

5.4.1. Spatial Profile in Nonwandering Bumps. In the CIFM, we inspected
traveling wave profiles for TWm solutions at each of the grazing points where they
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(b)(a)

102

101

100

10−1

10−2

101 102m

O(m)
Tm

c

O(m−1)

0

1.5

−0.5 1.30

(Ti+1 − Ti)
−1

ξi

m = 230

Fig. 9 (a) The quantities c and Tm, evaluated at the grazing points \beta = \beta G, are O(m - 1) and
O(m), respectively. Since T1 = 0 for all waves, the quantity cTm measures the wave width
and we expect the sequence \{ cTm\} m\in \BbbN , the sequence of wave widths, to converge to a fixed
value as m \rightarrow \infty . (b) The solid gray line is the spatial firing-rate profile proposed in [54]
for a nonwandering bump, and red dots mark the instantaneous firing rate for TW230 at the
grazing point, computed according to the formula (Ti+1  - Ti)

 - 1 at position x = cTi.

originate. The leftmost spike of each wave occurs at \xi 1 = 0 by construction (see
Problem 3.7), while its rightmost spike is at \xi m = cTm, which is therefore a proxy for
the wave's width.6 Figure 9(a) shows c and Tm, computed at the grazing points, as
functions of m: we find c = O(m - 1) and Tm = O(m), and therefore we expect the
sequence \{ \xi m\} m\in \BbbN to converge to a finite value \xi \ast as m\rightarrow \infty .

These data indicate that, as the wavespeed tends to zero, the growing number of
spikes are distributed in a fixed interval [0, \xi \ast ]. Hence, even though there exists no
stationary and spatially heterogeneous CIFM solution for finite m (this possibility is
ruled out by Definition 3.2), there is evidence that an m\rightarrow \infty limit of TWm solutions
exists, has 0 speed, and displays a spatially heterogeneous profile, localized in the
region x \in [0, \xi \ast ]. Thus, the limiting state possesses features of the stationary bumps
that are typically analyzed in continuum neural field models.

To further substantiate this claim, we compare data of the slowest computed
wave (TW230 at the grazing point) to data of a nonwandering bump in the DIFM.
The DIFM also does not admit stationary spatially heterogeneous solutions, but sup-
ports nonwandering bump attractors (see Figures 3(a) and 7(e) for examples). In
such states, the dynamics is not stationary, with many asynchronous firing events
occurring at the microscopic level; Laing and Chow noted that this state has a spa-
tially dependent firing rate, for which they provide a closed-form expression. They
also showed that their analytical prediction is in agreement with DIFM simulations
of a nonwandering bump attractor; the firing-rate profile is therefore a macroscopic
observable of a nonwandering bump.

Figure 9(b) compares Laing and Chow's firing rate profile to the inverse inter-
spike time 1/(Ti+1 - Ti) in the computed TW230; that is, a proxy for the firing rate at
x = \xi i. The agreement is excellent, confirming that, from a macroscopic viewpoint,
the DIFM bump attractors bear a strong relationship to TWm solutions in the limit
of large m.

6Recall that c is also a function of m, but we omit this dependence for ease of notation.
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5.4.2. Macroscopic Observables of Wandering Bumps. We further investigate
the bump attractor state in relation to the TWm, away from the nonwandering limit
studied above: the analysis of the CIFM, in the region of parameter space where the
bump attractor is observed, predicts the coexistence of the trivial attracting solution
v(x, t) \equiv I with arbitrarily slow, unstable waves whose spatial profile approximates
that of a bump. Following the turbulence analogy, we provide evidence that transient
states to the DIFM bump attractor, or the bump attractor itself, display features of
the underlying unstable TWm. We discuss data for three traveling wave observables:
instantaneous speed, instantaneous width, and firing sets.

Instantaneous Speed and Width. We simulate the DIFM with n = 5000, ini-
tializing the model from an unstable traveling wave of the CIFM, TW105, and esti-
mate the instantaneous speed c(t) of the numerical DIFM solution at q time points
\{ tk : k \in \BbbN q\} using a level set of the synaptic profile and finite differences, as follows:

z(t) = max\{ x \in \BbbS : s(x, t) = 0.1\} , ck = (z(tk) - z(tk - 1))/(tk  - tk - 1), k \in \BbbN q.

A CIFM traveling wave solution corresponds to a constant c: when the DIFM solution
displays a wave for large n, the sequence \{ ck\} k converges to a constant value, if one
disregards small oscillations due to the finite n which vanish as n \rightarrow \infty . On the
other hand, we expect that no differentiable function c(t) exists for a bump attractor.
However, useful information may be found in the mean, c, standard deviation, \sigma c,
and extrema, cmin, cmax, of the deterministic scalar ck:

(5.1) \=c =
1

q

\sum 
k\in \BbbN q

ck, \sigma 2
c =

1

q  - 1

\sum 
k\in \BbbN q

(ck  - \=c)2, cmin = min
k\in \BbbN q

ck, cmax = max
k\in \BbbN q

ck.

These quantities are computed for long simulations (10,000 time units) after an initial
transient (1000 time units) for various values of \beta and are superimposed on the bifur-
cation diagram of the CIFM model in Figure 10(a): we plot \=c (purple dots) and two
interval estimators, [\=c - \sigma c, \=c+ \sigma c] (dark purple shade) and [cmin, cmax] (light purple
shade). We recall that the CFIM admits branches of waves with positive and negative
speed, both plotted in the figure, and that we omit slow unstable waves such as the
one in Figure 8(a). Further, we conjectured above that branches of unstable waves
also exist in the white band around c = 0.

Figure 10 shows that the bump attractor dynamics with respect to the variable
c(t) is confined to a region where unstable TWm solutions exist for low and medium
values of \beta . Similar behavior is found for the instantaneous bump widths, \Delta (t), which
can also be estimated from z(t). The macroscopic variable \Delta (t) does not have large
variations within a bump attractor. As shown in Figure 1, the average of \Delta (t) for a
wandering bump attractor is located in the region of the bifurcation diagram where
unstable TWm are found.

For low and medium \beta values, we observe nonwandering and wandering bump
attractors, where the fine details of the dynamics depend on initial conditions. Fig-
ure 10(b) shows three examples whose estimated average speeds also appear in Fig-
ure 10(a). The space-time plots display an initial advection followed by a bump
attractor or a stable traveling wave. To gain insight into these transitions, we com-
pute histograms of ck in selected time intervals, indicated by blue, orange, yellow, and
purple bars in Figure 10(b). Histograms that are sharply peaked around a nonzero
value provide evidence that the solution spends time close to a wave. For instance, the
purple histogram in Figure 10(c), orbit 3, has been computed on a long time interval

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

44
.1

73
.2

55
.2

21
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



170 DANIELE AVITABILE, JOSHUA L. DAVIS, AND KYLE WEDGWOOD

2000

1000 (i)
(ii)
(iii)

(iv)

(v)
(vi)

C20

C22

C71

Fig. 10 (a) Mean instantaneous speed (\=c in (5.1), purple dots) and interval estimators ([\=c - \sigma c, \=c+\sigma c]
and [cmin, cmax], dark and light purple shades, respectively) in direct simulations of the
DIFM, superimposed on TWm branches of the CIFM (an inset of Figure 8(b), which has
been reflected about the c = 0 axis to signpost waves with negative speed). The bump
attractor is characterized by \=c \approx 0 and fluctuations in speed that grow with \beta . (b) Exemplary
solutions in (a) displaying an initial advection, followed by a bump attractor (1, 2) or a
stable wave (3). Snapshots of the rastergrams around times (i)--(vi) (white bars in the
contour plots) are visible in Figure 11. (c) Histograms of the solution's instantaneous speed,
computed in selected time intervals, indicated by blue, orange, yellow, and purple bars in
(b). Sharp peaks indicate proximity of the orbit to a traveling wave, whose speed is indicated
on top of the peaks (C71, C22, and C20 for TW71, TW22, and TW20, respectively); see
also Figure 11.
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2 2.5 3x
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355

t

(m,c) = (150, 0.0058)

1 1.5 2x
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t

(m,c) = (61, 0.0143)

0 0.5 1x
80

90

100

t

(m,c) = (71, 0.0123)

0 x
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110

120

t

(m,c) = (79, 0.0127)

0 x
310

320

330

t

(m,c) = (22, 0.0391)
x

1000

1010

1020

t

(m,c) = (20, 0.0428)

1 2 3

1 2

1

(i) (iv)

(ii)

(iii)

(v)

(vi)

Fig. 11 Firing set of the DIFM solutions (blue dots) and of selected CIFM waves (overlaid red
lines, with corresponding values of m and c) near the times marked with a white bar (i)--
(vi) in Figure 10(b). The firing set (vi) of orbit 3 has a recognizable traveling core which
progressively loses firing functions at the edges, until it visits the weakly unstable TW22 and
is attracted to the stable TW20. The same initial condition with a different \beta value leads
to orbit 2. The firing sets (ii) and (iii) are qualitatively similar to (vi). The chaotic bump
attractor (i) has distinctive traveling firing sets at the edges, visible in the gray raster plot:
firing lines are lost to the right and new traveling lines are injected into the core from the
left, through a repeating V-shaped pattern.

signposted with a purple bar on the right vertical axis of Figure 10(b), orbit 3. The
colormap of s(x, t) in Figure 10(b) shows that orbit 3 approaches a stable traveling
wave and the corresponding purple histogram is indeed close to a Dirac delta centered
at C20, the speed of the stable TW20.
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Before settling to TW20 the orbit spends time (orange bar in Figure 10(b), orbit
3) near the unstable TW22: there is a clear transition in Figure 10(b), orbit 3 (after
the orange bar), and the corresponding orange histogram has a tail, but is sharply
peaked around C22. This is in line with the observation that c(t) has growing oscil-
lations around C22, and indeed TW22 is unstable. Similar considerations apply to
Figure 10(b), orbit 2, which visits the unstable TW71.

Firing Sets. In addition to speed, we compare the firing sets of solutions labeled
2 and 3 in Figure 10 to those of selected TWm. The former are transient solutions,
the latter are invariant, and we overlay them in Figure 11. The firing set of solution
3 around the time labeled (iv) in Figure 10(b) is visible in Figure 11(iv). From the
initial condition at TW105, propagating with positive speed, the solution slows down
and ``sheds"" firing functions to the right of the profile, while the traveling firing set
at the core persists to oscillatory perturbations. For a visual comparison with CIFM
waves, we overlay in Figure 11(iv) a TW71 solution with a propagation speed close to
the transient. After this strongly nonlinear transient, the solution visits the weakly
unstable TW22: in this transient, the firing set of the DIFM solution clearly displays
the oscillations predicted by the linear stability theory for TW22 (see Figure 11(v)),
before losing 2 further firing curves and being attracted to the stable TW20 (see
Figure 11(iv) and the purple, sharply peaked histogram in Figure 10(c), histogram 3).

Solutions 2 and 3 in Figure 10(b) both start from TW105, and the latter displays a
similar transient dynamics to the former, with a traveling core and progressive loss of
firing functions (Figure 11(ii)--(iii)), accompanied by an increase in propagation speed.
The bump attractor alternates phases with small negative and positive propagation
speeds, as in Figure 11. As expected, it is challenging to single out a matching wave in
this highly chaotic regime, though we present a comparison with TW150. The bump
still features distinctive traveling firing sets at the edges, visible in the gray raster
plot. The right edge has a marked alignment of firing events, and some firing curves
terminate as in the other figures. Meanwhile, new firing curves are injected into the
core from the left, through a characteristic, repeated V-shaped pattern. When the
bump attractor propagates slowly with negative speeds, the V-shaped patterns are
on the right and firing lines are shed on the left (not shown).

5.5. Composite Waves. In addition to the waves studied thus far, by direct
simulation we found waves whose firing functions are split into well-separated groups;
that is, firing functions in the same group are closer to each other than they are to
those in other groups; see Figure 12. We call these structures composite waves, as
they may be formed via the interaction of traveling waves with various numbers of
spikes. As in other nonsmooth dynamical systems [44], we expect that these solutions
have discontinuities that are rearranged with respect to a TWm.

For illustrative purposes, we denote a composite wave with k \in \BbbN groups by
TWm1

+ \cdot \cdot \cdot +TWmk
, where \{ mi\} ki=1 is a sequence of positive integers specifying the

number of spikes in each group. There are constraints for the groups dictated by
dynamical considerations: for instance, a TW1 + TW3 cannot exist, because a TW1,
taken in isolation, is faster than a TW3. The construction of asymptotic profiles and
computation of linear stability for composite waves follow in the same way as defined
in sections 3 and 4.

In Figure 12(a), we show a selection of of composite waves near the TW3 branch.
Roughly speaking, the wave profile along each depicted branch comprises a TW3 as
its leading group, followed by two additional spike groups that collectively form a
compound satisfying the traveling wave conditions (e.g., branch 1 combines a TW3,
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t
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TW5+ TW9+ TW12
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Fig. 12 (a) Bifurcation diagram of selected composite waves. The red curve is a TW3 branch,
as computed in Figure 7. The blue curves are branches of composite waves, featuring an
approximate TW3 at the front of the wave. The composite waves are slightly slower than
TW3. The diagram shows selected profiles at the first oscillatory bifurcation points. (b)
Examples of composite waves obtained via collisions of multispike waves. (c) Collisions
between m-spike propagating structures and wandering bumps generate composite waves
(left) or bump repulsion (right), depending on initial conditions. Simulations in panels
(b)--(c) have a lattice spacing of \Delta x = 2L/n = 0.01.

a TW2, and a TW1). The branches of composite waves are separate from each other
and from the previously computed TWm branches in Figure 8; however, all branches
possess a bifurcation structure similar to that of the TWm discussed in the previous
section. Moreover, we see that the magnitude of the speed of the composite wave is
bounded above by the magnitude of the speed of the group at the leading edge of the
wave (the slowest wave, TW3, in this case).

Direct numerical simulation highlights that composite waves can be formed from
the interaction of multispike waves as shown in the left panel of Figure 12(b). Here
we choose an initial condition with well-separated TW1, TW2, and TW3 profiles.
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Initially, these separated structures travel with different speeds (TW1 being the fastest
and TW3 the slowest, in line with what was found in Figure 8(a)). After a transient,
the waves come closer and form a compound (the composite wave) with a common
intermediate speed. The dynamics of composite waves depends heavily on the initial
conditions: in the right panel of Figure 12(b), we see that an initial condition in
which a TW1 lies between another TW1 and a TW3 leads to the extinction of the
intermediate wave, resulting in a composite wave with a total of 4 spikes.

Composite waves can also result from the collision between waves and wandering
bumps (Figure 12(c), left panel). Here, we see a transition of two bump states into
a composite wave that is compounded with a preexisting TW5. The interaction with
the TW5 causes the leftmost bump to visit the branches of traveling wave solutions,
whereupon the combined state settles on a stable TW5 + TW9. This process is
repeated for the rightmost bump, giving rise to an overall TW5 + TW9 + TW12. In
the right panel of the Figure 12(c), we see that the same kind of collision can instead
result in the wave packet transitioning to a wandering bump itself, highlighting the
dependence of the formation of composite waves on initial conditions. In this scenario,
the bump state does not visit a stable traveling wave branch and so it only transiently
adopts a weakly unstable wave profile before returning to a bump attractor state.

6. Conclusions. We have provided evidence that the relationship between bump
attractors and traveling waves in a classical network of excitable, leaky integrate-
and-fire neurons bears strong similarities to the one between complex spatiotemporal
patterns and waves at the onset of pipe turbulence. We have made analytical and
numerical progress in the construction and stability analysis of traveling waves with
a large number of localized spikes and gained access to their intricate bifurcation
structure. This step was essential because such waves advect, at low speed, localized
patterns that resemble the bump attractor core. It should be noted that the waves
we computed are only a subset of those supported by the model.

As we completed the present paper, a recent publication [55] reported the exis-
tence of waves with vanishingly small speed and discontinuous profiles in networks
of theta neurons, which can be cast as spiking networks with a polynomial ODE of
quadratic type. A natural question arises as to whether the fluid-dynamical analogy
applies in that and other network models. The level-set approach used in the present
paper was particularly effective because one can define m-spike waves starting from
mild solutions to the formal evolution equation (3.1) and derive a relatively simple
expression for the wave profile (3.10). While this approach may be harder to carry out
in more detailed spiking models, the general idea of a relationship between localized
waves and bumps in spiking networks could be investigated, using direct simulations,
in more realistic networks (spiking or not).

An important open question concerns the definition of (3.1) and, more generally,
of spatially continuous spiking networks, as dynamical systems posed on function
spaces. This problem has been circumvented here by defining a suitable class of
solutions, introducing the voltage mapping, and then providing proofs of its rele-
vance to the construction and stability of multiple spike waves. We believe that a
full dynamical systems characterization of similar models will be a key ingredient in
uncovering further links between localized waves and bumps in complex, spatially
extended threshold networks.

Appendix A. Traveling Wave Stability. We begin by showing that if two distinct
m-spike solutions have firing functions \tau and \tau + \varphi , respectively, then the perturba-
tions \varphi satisfy a linear equation to leading order. The following lemma also specifies

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

03
/2

2/
23

 to
 1

44
.1

73
.2

55
.2

21
 . 

R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



BUMPS AND WAVES IN SPIKING NETWORKS 175

admissible perturbations, namely, \varphi are in the Banach space C\eta (\BbbR ,\BbbR m): perturba-
tions are allowed to grow exponentially as | x| \rightarrow \infty at a rate at most equal to \eta , which
bounds the decay rate of the connectivity kernel function w \in L1

\eta (\BbbR ).

Lemma A.1 (linearization of the voltage mapping operator). Assume Hypothe-
sis 3.1, and let (c, T ) be the coarse variables of a TWm with firing functions \tau . Fur-
ther, let L be the linear operator defined by L\varphi =

\bigl( 
(L\varphi )1, . . . , (L\varphi )m

\bigr) 
, where

(L\varphi )i =
\sum 
j\in \BbbN m

(\varphi i  - \varphi j)1j<i +

\int \infty 

cTji

e - y/cw(y)\psi ij(y)
\bigl[ 
\varphi i  - \varphi j( \cdot  - y)

\bigr] 
dy, i \in \BbbN m,

with coefficients Tij and functions \psi ij given by

Tij = Ti - Tj , \psi ij : [cTij ,\infty ) \rightarrow \BbbR , y \mapsto \rightarrow p(0)+

\int y/c - Tji

0

esp\prime (s) ds, i, j \in \BbbN n,

respectively. The following statements hold:
1. L is a bounded operator from C\eta (\BbbR ,\BbbC m) to itself.
2. Let 0 < \varepsilon \ll 1 and \varphi \in C\eta (\BbbR ,\BbbR m). If \tau + \varepsilon \varphi are firing functions of an
m-spike CIFM solution (a perturbation of the TWm), then

(A.1) 0 = L\varphi +O(\varepsilon ) in \BbbR .

Proof. Part 1. If \varphi \in C\eta (\BbbR ,\BbbC m), then \varphi \in C(\BbbR ,\BbbC m) and L\varphi \in C(\BbbR ,\BbbC m).
We show that for any \varphi \in C\eta (\BbbR ,\BbbC m) there exists a positive constant \kappa m,\eta such
that \| L\varphi \| Cm,\eta 

\leq \kappa m,\eta \| \varphi \| Cm,\eta 
, which implies that L is a bounded operator from

C\eta (\BbbR ,\BbbC m) to itself. We begin by estimating \psi ij : by Hypothesis 3.1 there exist con-
stants Kp, Kp\prime such that

| \psi ij(y)| \leq | p(0)| +
\int y/c - Tji

0

ez| p\prime (z)| dz

\leq Kp +Kp\prime 

\int y/c - Tji

0

ez dz = Kp +Kp\prime (ey/c - Tji  - 1);

therefore, introducing the constant K = 2max(Kp,Kp\prime )maxi,j e
 - Tji ,

(A.2) e - y/c| \psi ij(y)| \leq e - y/c(Kp +Kp\prime ey/c - Tji) \leq K

uniformly in (i, j, y) \in \BbbN m \times \BbbN m \times [cTji,\infty ).
We now fix \varphi \in C\eta (\BbbR ,\BbbC m), x \in \BbbR , and estimate

(A.3)

| (L\varphi )(x)| \infty \leq max
i\in \BbbN m

\sum 
j\in \BbbN m

\Bigl( 
| \varphi i(x)| + | \varphi j(x)| 

\Bigr) 
+ max

i\in \BbbN m

\sum 
j\in \BbbN m

\int \infty 

cTji

e - y/c| w(y)\psi ij(y)| | \varphi i(x) - \varphi j(x - y)| dy.

For the first summands in (A.3) we find

(A.4) | \varphi i(x)| + | \varphi j(x)| \leq 2| \varphi (x)| \infty \leq 2e\eta | x| \| \varphi \| Cm,\eta 
.
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For the second summands in (A.3), we estimate

(A.5)

\int \infty 

cTji

e - y/c| w(y)\psi ij(y)| | \varphi i(x) - \varphi j(x - y)| dy (by (A.2))

\leq K

\int \infty 

cTji

| w(y)| | \varphi i(x) - \varphi j(x - y)| dy

\leq K\| \varphi \| Cm,\eta 

\int \infty 

cTji

| w(y)| 
\bigl( 
e\eta | x| + e\eta | x - y| \bigr) dy

\leq Ke\eta | x| \| \varphi \| Cm,\eta 

\int \infty 

cTji

| w(y)| 
\bigl( 
1 + e\eta | y| 

\bigr) 
dy

\leq Ke\eta | x| \| \varphi \| Cm,\eta 

\biggl( 
\| w\| L1

\eta 
+

\int \infty 

cTji

| w(y)| e\eta | y| dy
\biggr) 

(w even)

\leq Ke\eta | x| \| \varphi \| Cm,\eta 

\biggl( 
\| w\| L1

\eta 
+ 2

\int \infty 

 - \infty 
| w(y)| e\eta y dy

\biggr) 
\leq 3K\| w\| L1

\eta 
e\eta | x| \| \varphi \| Cm,\eta .

Combining (A.3)--(A.5) we obtain

\| L\varphi \| Cm,\eta 
= sup

x\in \BbbR 
e - \eta | x| | L\varphi (x)| \infty 

\leq m(2 + 3K\| w\| L1
\eta 
)\| \varphi \| Cm,\eta 

:= \kappa m,\eta \| \varphi \| Cm,\eta 
,

which concludes the proof of part 1.
Part 2. We set u = \tau + \varepsilon \varphi \in C\eta (\BbbR ,\BbbR m) for 0 < \varepsilon \ll 1. By the main hypothesis,

u and \tau are firing functions of two distinct m-spike CIFM solutions. We claim that
this implies (A.1). Indeed, since u is a firing function, then Vmu = 1 on \BbbF u; that is,

(A.6) 1 = I +
\sum 
j\in \BbbN m

\Bigl( 
(Sui)(x, uj(x)) + (Ruj)(x, ui(x))

\Bigr) 
, (i, x) \in \BbbN m \times \BbbR .

We obtain

(Suj)( \cdot , ui) =
\int \infty 

 - \infty 
w( \cdot  - y)

\int 0

 - \infty 
ez\alpha (z + ui  - uj(y)) dz dy

= (S\tau j)( \cdot , \tau i) + \varepsilon 

\int \infty 

 - \infty 
w( \cdot  - y)

\bigl( 
\varphi i  - \varphi j(y)

\bigr) \int 0

 - \infty 
ez\alpha \prime (z + \tau i  - \tau j(y)) dz dy

+O(\varepsilon 2),

where we have denoted by \alpha \prime = p\prime H + p\delta the distributional derivative of \alpha . We now
manipulate the integral in the previous equation as follows:\int \infty 

 - \infty 
w( \cdot  - y)

\bigl( 
\varphi i  - \varphi j(y)

\bigr) \int 0

 - \infty 
ez\alpha \prime (z + \tau i  - \tau j(y)) dz dy

=

\int \infty 

 - \infty 
w( \cdot  - y)

\bigl( 
\varphi i  - \varphi j(y)

\bigr) \int \tau i - \tau j(y)

 - \infty 
ez+\tau i - \tau j(y)\alpha \prime (z) dz dy

=

\int \infty 

 - \infty 
w( \cdot  - y)

\bigl( 
\varphi i  - \varphi j(y)

\bigr) \int \tau i - \tau j(y)

 - \infty 
ez+\tau i - \tau j(y)

\bigl( 
p\prime (z)H(z) + p(z)\delta (z)

\bigr) 
dz dy

=

\int \tau  - 1
j (\tau i)

 - \infty 
w( \cdot  - y)

\bigl( 
\varphi i  - \varphi j(y)

\bigr) 
e\tau j(y) - \tau i

\Bigl( 
p(0) +

\int \tau i - \tau j(y)

0

ezp\prime (z) dz
\Bigr) 
dy.
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Hence, for all i, j \in \BbbN m we obtain

(Suj)( \cdot , ui) = (S\tau j)( \cdot , \tau i) + \varepsilon eTji

\int \infty 

 - \infty 
e - y/cw(y)\psi ij(y)

\bigl[ 
\varphi i  - \varphi j( \cdot  - y)

\bigr] 
dy +O(\varepsilon 2).

For the reset operator, we obtain, for all i, j \in \BbbN m,

Ruj( \cdot , u - i ) =  - lim
\kappa \rightarrow 0+

exp( - ui + \kappa + uj)H(ui  - \kappa  - uj)

= R\tau j( \cdot , \tau  - i ) + \varepsilon lim
\kappa \rightarrow 0+

exp( - Tij + \kappa )(\varphi i  - \varphi j)H(Tij) +O(\varepsilon 2)

= R\tau j( \cdot , \tau  - i ) + \varepsilon exp(Tji)(\varphi i  - \varphi j)1j<i +O(\varepsilon 2).

Combining (A.6) with the expansions obtained for S and R, exploiting the condition
Vm\tau = 1 on \BbbF \tau , and dividing by \varepsilon eTji we obtain

0 = (L\varphi )i +O(\varepsilon ) on \BbbR for all i \in \BbbN m,

which implies (A.1).

Remark A.2. Note that the operator L depends on the coarse variables (c, T ),
though we omit this dependence for notational simplicity.

We are now ready to define linear stability for a TWm, which we adapt from
[12]. Intuitively, we compare the firing set \BbbF \tau of a TWm with the firing set \BbbF \tau +\varphi of
a perturbed m-spike solution with \| \varphi \| Cm,\eta 

\ll 1, for which \varphi satisfy (A.1) to leading
order. If the sets \BbbF \tau and \BbbF \tau +\varphi are close around t = 0 and remain close for all positive
times, we deem the wave to be linearly stable. With reference to Figure 6(c), we
observe that, when TWm crosses the axis t = 0, each one of its firing functions \tau i
is perturbed by an amount \varphi i( - cTi). Roughly speaking, a TWm is linearly stable if
\varphi i( - cTi) being small implies that \varphi i(x) stays small for all x \in ( - cTi,\infty ) and i \in \BbbN m.
If a wave is linearly stable and all \varphi i decay to 0 as x \rightarrow \infty , we say that the wave is
asymptotically linearly stable. More precisely, we have the following definition.

Definition A.3 (linear stability of TWm). A TWm with coarse variables (c, T )
is linearly stable to perturbations \varphi if \varphi \in kerL and for each \varepsilon > 0 there exists \delta =
\delta (\varepsilon ) > 0 such that if | \varphi i( - cTi)| < \delta , then | \varphi i(x)| < \varepsilon for all (i, x) \in \BbbN m \times ( - cTi,\infty ).

A TWm is asymptotically linearly stable to perturbations \varphi if it is linearly stable
to perturbations \varphi and | \varphi (x)| \infty \rightarrow 0 as x\rightarrow \infty .

We have seen that a TWm can be constructed by solving a nonlinear problem in
the unknowns (c, T ). The following lemma, which is the central result of this section,
establishes that linear stability of a TWm with respect to exponential perturbations
of the firing functions can also be determined by finding roots of a (c, T )-dependent,
complex-valued function.

Lemma A.4 (TWm stability). Assume Hypothesis 3.1, let (c, T ) be coarse vari-
ables of a TWm, and let \BbbD a,b = \{ z \in \BbbC : a \leq Re z \leq b\} . Further, let E be the
complex-valued function

(A.7) E : \BbbD  - \eta ,\eta \rightarrow \BbbC , z \mapsto \rightarrow det[D  - M(z)],

where M \in \BbbC m\times m, D = diag(D1, . . . , Dm) \in \BbbR m\times m are the matrices with elements

Mij(z) = eTji

\biggl[ 
1j<i +

\int \infty 

cTji

e - (z+1/c)yw(y)\psi ij(y) dy

\biggr] 
, Di =

\sum 
k\in \BbbN m

Mik(0),

respectively. Then the following hold:
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1. If \lambda is a root of E, then its complex conjugate \lambda \ast is also a root of E, and
there exists a nonzero \Phi \in ker[D  - M(\lambda )] such that \Phi e\lambda x,\Phi \ast e\lambda 

\ast x \in kerL,
where L is defined as in Lemma A.1.

2. E has a root at 0. TWm is linearly stable (but not asymptotically linearly
stable) to perturbations \varphi : x \mapsto \rightarrow \kappa v, where \kappa \in \BbbR \setminus \{ 0\} and v = (1, . . . , 1) \in 
\BbbR m.

3. If \lambda is a root of E in \BbbD  - \eta ,0 \setminus i\BbbR , then TWm is linearly asymptotically stable
to perturbations \Phi e\lambda x +\Phi \ast e\lambda 

\ast x.

Proof. Part 1. We observe that D has purely real entries, and a direct calculation
shows M(z\ast ) = M\ast (z). If E(\lambda ) = 0, then there exists \Phi \in \BbbC m \setminus \{ 0\} such that
D\Phi =M(\lambda )\Phi , that is, \Phi \in ker[D  - M(\lambda )]. Taking the complex conjugate we obtain
D\Phi \ast =M\ast (\lambda )\Phi \ast =M(\lambda \ast )\Phi \ast ; hence E(\lambda \ast ) = 0, and therefore \lambda \ast is also a root.

We now set \varphi = \Phi e\lambda x, which is in C\eta (\BbbR ,\BbbC m) because \lambda \in \BbbD  - \eta ,\eta , and we obtain

(L\varphi )(x) = e\lambda x[D  - M(\lambda )]\Phi = 0, x \in \BbbR ,

because \Phi \in ker[D  - M(\lambda )]. The previous identity implies \Phi e\lambda x,\Phi \ast e\lambda 
\ast x \in kerL.

Part 2. By the definition of D and M we have [D  - M(0)]v = 0, and hence v is
in the kernel of D  - M(0) and E(0) = 0. We fix \kappa \in \BbbR \setminus \{ 0\} , use part 1 with \lambda = 0,
\Phi = \kappa v, and deduce that the mapping \varphi : x \mapsto \rightarrow \kappa v, which is an element of C\eta (\BbbR ,\BbbR m),
is in kerL. Since \varphi i(x) \equiv \kappa for all i \in \BbbN m, TWm is linearly stable according to
Definition A.3. However, | \varphi (x)| \infty \rightarrow \kappa \not = 0 as x\rightarrow \infty , so TWm is not asymptotically
linearly stable.

Part 3. Let \lambda = \mu + i\omega . By the main hypothesis, \mu < 0. From part 1 we deduce
that there exists \Phi \in ker[D  - M(\lambda )] such that \varphi (x) = \Phi e\lambda x + \Phi \ast e\lambda 

\ast x \in kerL. We
note that | \Phi | \infty can be fixed to an arbitrary nonzero constant, and we bound \varphi i as
follows:

(A.8) | \varphi i(x)| \leq 2| \Phi | \infty e\mu x \leq K| \Phi | \infty , K = 2 max
j\in \BbbN m

e - cTj\mu , (i, x) \in \BbbN m\times [ - cTi,\infty ).

We now fix \varepsilon > 0. The bound (A.8) and the choices \delta = \varepsilon and | \Phi | \infty < \varepsilon /K imply
that TWm is linearly stable, according to Definition A.3. Using again (A.8) we obtain

lim
x\rightarrow \infty 

| \varphi (x)| \infty \leq 2| \Phi | \infty lim
x\rightarrow \infty 

e\mu x = 0,

and therefore TWm is linearly asymptotically stable.

Lemma A.4 provides a link between exponential perturbations to the firing times
of a TWm and zeroes of the function E in the strip \BbbD  - \eta ,\eta \subset \BbbC . The function E de-
pends on (c, T ) via the entries of the matrices D,M and can be evaluated numerically
at each point z \in \BbbD  - \eta ,\eta .

In partial differential equations, linear stability of a traveling wave is determined
by the spectrum of a linear operator, which contains a 0 eigenvalue corresponding to
a translational perturbation mode. Part 2 of Lemma A.4 provides an analogous result
for a TWm, which is linearly stable, but not asymptotically linearly stable (therefore
neutrally stable) to perturbations that shift the firing functions homogeneously. Part
3 of Lemma A.4 suggests that a TWm is stable if all nonzero roots of E have strictly
negative real parts. Initial guesses for the roots can be obtained by plotting 0-level
sets of the function E, for fixed (c, T ).
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