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The flashfm approach for fine-mapping multiple
quantitative traits

N. Hernandez® ', J. Soenksen® 23, P. Newcombe!, M. Sandhu?, |. Barroso® 2, C. Wallace® '° &
J. L. Asimit® 1™

Joint fine-mapping that leverages information between quantitative traits could improve
accuracy and resolution over single-trait fine-mapping. Using summary statistics, flashfm
(flexible and shared information fine-mapping) fine-maps signals for multiple traits, allowing
for missing trait measurements and use of related individuals. In a Bayesian framework, prior
model probabilities are formulated to favour model combinations that share causal variants
to capitalise on information between traits. Simulation studies demonstrate that both
approaches produce broadly equivalent results when traits have no shared causal variants.
When traits share at least one causal variant, flashfm reduces the number of potential causal
variants by 30% compared with single-trait fine-mapping. In a Ugandan cohort with 33
cardiometabolic traits, flashfm gave a 20% reduction in the total number of potential causal
variants from single-trait fine-mapping. Here we show flashfm is computationally efficient
and can easily be deployed across publicly available summary statistics for signals in up to six
traits.
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enome-wide association studies (GWAS) have been

extremely successful in identifying genetic variants that

are associated with a wide spectrum of diseases and
related traits!. Among these findings are many examples of
pleiotropy, where a gene affects several phenotypes?. This could
be due to a shared variant affecting a pathway involved in mul-
tiple related phenotypes. Identifying the causal mutations which
underlie such findings is key to facilitating translation into new
therapeutic targets or elucidating new biological insights. How-
ever, this is a complex task. Lead SNPs (those with the most
significant p-value) are often correlated (are in high linkage dis-
equilibrium—LD) with many other variants in the genome. In
addition, lead variants are not necessarily causal and may be
detected due to LD with the causal SNP(s). Statistical fine-
mapping is therefore needed to refine sets of potential causal
variants. The fewer the number of variants identified as poten-
tially causal, the easier it will be to perform downstream func-
tional validation experiments. Here, we focus on three fine-
mapping challenges: multiple trait analysis, missing trait values,
and related individuals in a cohort.

Bayesian approaches are common in fine-mapping, and use a
Bayes’ factor (BF) to summarise the evidence of association,
either for each SNP under the assumption of a single causal
variant, or for each combination of SNPs in the more flexible
multiple causal variant setting. In the more general multiple
causal variant setting, the BF for a model compares the evidence
for a model consisting of a particular set of SNPs that could be
causal for a trait to the null model of no causal SNPs3->. These
BFs can be calculated for different combinations of causal SNPs
and, for a specified prior probability, posterior probabilities (PP)
for each causal variant model are easily calculated, modelling the
pattern of association within a region. Models may then be
prioritised by PPs.

Current fine-mapping methods do not allow missing trait data,
so that a portion of the data is disregarded to avoid any missing
measurements. Also, fine-mapping methods that make use of
GWAS summary statistics (e.g., JAM#, FINEMAP>, CAVIARBF®
SuSiE”) assume the specified sample size N relates to independent
individuals, whilst the effective sample size after adjustment for
relatedness via a linear mixed model, is <N. Such inflated N will
suggest more certainty than actually present in the sample.

Some methods use SNP annotations to improve fine-mapping
resolution. A potential caveat of such approaches is that they
depend on the completeness of the annotation tool. This is not an
issue for some annotations that are intrinsic to the DNA itself,
such as DNA topology3-10. However, most other annotation tools
may bias results towards the biology/function that we already
understand, until the full functional effect of every variant is
known. PAINTOR! and DAP-G!2 allow for multiple causal
variants and integrate either association strength with functional
genomic annotation (PAINTOR) or enrichment-based annota-
tions that consider GWAS data from other traits (DAP-G).
PolyFUN!3 leverages functional annotations to specify prior
probabilities for existing fine-mapping methods. The
CaVEMaN !4 method estimates the probability that the lead SNP
for an expression trait is causal for that association, and could
assist in SNP prioritisation. KnockoffZoom!> localizes causal
variants at multiple resolutions by testing if a phenotype is
independent of all SNPs in a LD block, conditional on the others;
it requires individual-level data from unrelated individuals.

Jointly fine-mapping multiple traits could give an improvement
in fine-mapping accuracy and resolution, analogous to the power
increase for multi-trait GWAS, but this is computationally chal-
lenging due to the many possible combinations of models
(allowing multiple causal variants) between traits, which is not an
issue for multi-trait GWAS that involve testing only one SNP for

association with multiple traits. For this reason, few methods exist
for fine-mapping with more than two traits.

When multiple traits have signals in the same region, coloca-
lization is often used to evaluate how likely the traits share a
causal variant. In some methods colocalization includes the fine-
mapping step of identifying potential shared causal variants.
HyPrcoloc!® and mcoloc!” make the simplifying assumption of at
most one causal variant for each trait. HyPrcoloc ignores trait
correlations and is only able to incorporate trait correlations by
adjusting the prior configuration probabilities; the authors show
that ignoring this adjustment can reduce power to detect a cluster
of colocalised traits. Correlation between traits is not considered
by mcoloc, as it requires that all traits are measured in distinct
datasets of unrelated individuals. An approach that allows mul-
tiple causal variants, eCAVIAR!®, requires that the traits are
measured from independent studies. This is because eCAVIAR is
designed to assess if there are shared causal variants between a
quantitative trait from a GWAS and expression quantitative trait
loci (eQTL), which are often available in independent studies.

One approach for jointly fine-mapping signals for quantitative
traits from the same study is to limit the combinations of models
by assuming all causal variants are shared between traits and
allowing heterogeneity in effects, as in fastPAINTOR!®. Although
this greatly reduces the number of models to consider, this does
not allow traits to have different sets of causal variants. Although
multi-trait fine-mapping is motivated by traits having shared
causal variants, the possibility of a single shared causal variant
and additional trait-specific causal variants cannot be ignored, as
well as the fact that causal variants may actually differ for all
traits. An approach that does not make this assumption is
(Multinomial Fine-mapping, MFM2%) which can be used to fine-
map multiple related diseases with shared controls. This approach
is made computationally tractable by showing that the joint
Bayes’ factor (BF) for M diseases with shared controls is a
function of the individual disease BFs, model complexity and
sample sizes.

In this work, we introduce a method for general quantitative
multi-trait fine-mapping that solves the issues outlined above,
allowing for related individuals and missing trait measurements:
flashfm (flexible and shared information fine-mapping). Through
extensive simulations we demonstrate that flashfm improves fine-
mapping accuracy (mean PP increase of 0.15 for correct model)
and resolution (median percentage reduction of the number of
potential causal variants ranges from 31 to 11%) over single-trait
fine-mapping, when there is at least one shared causal variant. We
also show that flashfm gives higher prioritisation to causal SNPs
than fastPAINTOR, most notably when traits have multiple
causal variants. We subsequently apply flashfm to genetic asso-
ciation signals for 33 cardiometabolic traits measured in 6407
participants from Uganda - the largest GWAS of a single popu-
lation from Africa?l-2%; within this sample 2907/6407 are at least
second degree related. In this dataset, we see several cases where
flashfm improves on single-trait fine-mapping, distinguishing
between two models with similar levels of support under single-
trait fine-mapping and generally producing higher resolution
solutions. In particular, the groups of likely causal variants con-
structed under flashfm are subsets of those from independent
fine-mapping, resulting in finer resolution.

Results

Flashfm—conceptual framework. Flashfm uses a similar Baye-
sian framework (same prior probabilities) to MFMZ20, However,
flashfm addresses different statistical challenges than MFM, as we
now have multiple quantitative traits measured on the same
individuals, so we need to account for correlation between the
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traits. In addition, the statistical modelling differs between the
methods, as MFM uses a multinomial logistic framework,
whereas flashfm is in a multivariate regression framework.

Flashfm uses GWAS summary statistics to jointly fine-map
genetic associations for multiple quantitative traits that have
partial sample overlap, and allows flexibility for missing
measurements and for related individuals. The GWAS for each
trait could either be from a single cohort or from a meta-analysis
of multiple cohorts, where traits overlap between cohorts, though
may not be measured in all cohorts. As the traits are measured on
the same individuals, it requires the trait covariance matrix,
which may be calculated from an in-sample study or approxi-
mated from the GWAS and trait summary statistics?3. Flashfm
does not require an assumption of exchangeable effect sizes when
modelling shared genetic architecture across traits. It uses GWAS
summary statistics from each trait to fit the joint models, allowing
for multiple causal variants for each trait, with no restrictions on
shared causal variants between traits. Flashfm shares information
between traits by up-weighting joint models (combinations of
fine-mapping models across traits) that have a shared causal
variant. For each trait, flashfm outputs the top SNP models and
the model posterior probability (PP), adjusted for information
from the other traits. It also provides the marginal posterior
probability (MPP) that a SNP contributes to any model. A
schematic diagram of flashfm shows the link with single-trait
fine-mapping (Fig. 1).

In single-trait fine-mapping, models are prioritised by posterior
probabilities (PP) which are calculated from the pre-specified
prior probability and the BF that is calculated from the data. For
multi-trait fine-mapping, we first find the PP for joint models then
marginalise the joint PPs to get trait-specific PPs that are adjusted
for the other traits; when there are two traits, the multi-trait
adjusted PP for model i of trait 1, PP}, is 3-; PP}, where PP} is
the joint PP of the joint model consisting of the configuration of
model i for trait 1 and model j for trait 2. In general, for any
number of traits, the trait-adjusted PP for a particular model is
found by summing over the PPs of all joint model configurations
that contain model 7 for trait 1.

To generate posterior support for fine-mapping models, flashfm
needs to calculate the ABF (approximate Bayes’ factor) for all
possible model combinations across SNPs and traits. We find
expressions of the log(ABF) for each of the joint and marginal
models by using the approximation based on the Bayesian
information criterion (BIC)4. If the traits are independent, then
the joint ABF of M traits, denoted ABFM, is the product of the
marginal ABFs. As the traits are correlated the joint ABF is not a
simple expression, and we derive the difference, using the log-
scale: D), = log(ABFM) — Z}il log(ABF)), which simplifies to a
term that depends on GWAS summary statistics, covariance
matrix of the traits, and sample sizes; D), varies for each model
configuration. For M traits, D,; = —N /2(log|61\\,1| — log|CyD),
where |C| denotes the determinant of matrix C, Cpyis a M x M
matrix with element (3, j) equal to Cov(trait i, trait j)/Var(trait i),

and 61\\/[ is the approximation of Cy;. Cy; is constant and depends

on the trait covariance matrix, whereas 6;4 is based on the
covariance matrix of the residuals specific to each model
configuration and is approximated from the GWAS summary
statistics, sample sizes, and SNP covariance matrix from a
reference panel (Supplementary Information, Section 1.1). This
makes the approximation of ABFM computationally feasible:

log(ABFM) = 37| 1og(ABF,) + Dy.

When there are missing data, D), includes additional terms
that account for the individuals that do not have measurements
for all traits, using a combinatorial argument. The joint BF is first

expressed as the BF for the multiple traits (at a particular model
for each trait) on the portion of the sample that have no missing
data, then an additional BF is added for each combination of
traits with data available, careful to include each individual in
only one term (Supplementary Information, Section 1.2).

The prior probability for the joint models includes a term «
that gives more weight to joint models that have a shared causal
variant between the traits. For models M; (trait 1) and M; (trait 2),
with marginal prior probabilities p; and p;, we denote the joint
model as configuration C; and set the prior probability as
Pr(Cy) = piijCA/Iime¢®Tij, such that the joint prior is simply the
product of the marginal priors when there is no overlap of
variants between models, and is otherwise upweighted. The term
Kk is derived in a combinatorial manner and is identical to that
used in MFM?% It requires setting a target odds (TO) of the odds
for traits not having a shared causal variant compared to having a
shared causal variant; setting TO = 1 coincides with a 50/50
chance of shared causal variant(s) and is the setting that we use.
When x = 1, there is no weight for joint models with shared
causal variants and the flashfm PP for each model for a given trait
is the same as that from single-trait fine-mapping, which we also
refer to as independent fine-mapping, as it does not make use of
data from other traits. The term 7;; is a correction factor that
anchors the prior probabilities so that the prior probability of
traits having particular model sizes is consistent for different
values of k; identical to MFM20.

This means that rather than calculating the joint BF for each
model, the joint PP could be directly calculated from the model
PPs from single-trait fine-mapping; e.g. the model PPs from the
* config file of FINEMAP? could be input to flashfm. In the case
of two traits, the trait-adjusted PP for model y; of trait 1 is
calculated using

. 2121057 PP
Pr(y, for trait 1|Data) & PP;q 1 4+ (k — 1) —=——-7— ¢,

2.0,7;PP;

where §; = exp(D;) uses the value of Dy for M =2 traits at
models y; for trait 1 and y; for trait 2 (Supplementary

Information, Section 1.3). This gains efficiency by making use
of previously generated single-trait fine-mapping results. If single-
trait fine-mapping results are not available, flashfm includes a
function to run an expanded version of JAM4, that requires either
the SNP correlation matrix and allele frequencies or the SNP
matrix (Methods). So, flashfm requires the same information
needed for single-trait fine-mapping, as well as the trait
covariance matrix and results from single-trait fine-mapping.

In flashfm, relatedness is accounted for by making use of
GWAS summary statistics from a linear mixed model method
such as GEMMA?> or BOLT-LMM?2¢ and using the summary
statistics to approximate the effective sample size N, for each trait
- N, is approximated at each SNP and the median of the N, is
taken as the effective sample size for the trait; the Neff function in
flashfm does this calculation (Supplementary Information,
Section 1.4).

The final results of interest are the top models for each trait,
adjusted for the other traits, rather than the PP for a joint model.
This means the results can be used comparably to those from
single trait fine mapping, but with an expectation of greater
accuracy because of the leverage of information from the other
traits.

Even borrowing information across traits does not remove the
complication of LD. Two or more SNPs in high LD may provide
equivalent statistical information to explain any trait. Therefore,
in addition to single SNP posterior probabilities, flashfm output
also expresses SNP models in terms of groups of such nearly
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Fig. 1 Schematic diagram for flashfm. Flashfm is used for multiple quantitative traits that are measured in the same studies, allowing for missing

measurements and family data. First, standard analysis of single-trait fine-mapping is needed for each trait. Then the model posterior probabilities (PPs)
from each of these marginal fine-mapping analyses are combined in flashfm, using an approximation to the joint PP, based on an approximation of the joint
Bayes' factor. In addition to a SNP correlation matrix, a trait covariance approximation is also needed. Information is shared between traits via a sharing
prior that upweights joint models with shared causal variants by a factor of K. Memory requirements are reduced by storing only the trait-adjusted marginal

PPs for each trait.

equivalent SNPs, constructed so that SNPs in the same group are
in LD and rarely appear together in a model (Methods). These
SNP groups could be viewed in a similar way to the credible sets
that are constructed for single-trait fine-mapping. As flashfm
leverages information from the other traits, the per SNP PPs tend
to concentrate on fewer SNPs, so the resulting SNP groups tend
to be smaller than those from independent fine-mapping.

Flashfm improves precision over independent fine-mapping.
Extensive simulations of two quantitative traits with varying
sample size, proportion of missing trait measurements, and trait
correlation suggest the same general conclusion. Flashfm
improves precision over independent fine-mapping in terms of
higher accuracy, as flashfm gives higher levels of evidence (larger
posterior probability) for the correct model (Fig. 2), and finer
resolution, as indicated by smaller SNP groups that are con-
structed based on the PPs from flashfm.

As described in the Methods, according to the specified
simulation model, a causal variant was selected from the SNPs A,
C;, and Dy, such that one trait had two causal variants A;+D;,

and the other trait either had two causal variants A;+C;, one of
which was common, or a single distinct causal variant C;
(Supplementary Data 1.1). These SNPs were selected as they are
known to represent an example of LD with joint tagging; a
different SNP “B” jointly tags A; and D, such that when A, and
D; are causal variants, B is often chosen by fine mapping
analyses?%; this is a difficult region to fine-map due to the
potential joint tagging. The data were simulated across 345 SNPs,
including many in LD with A;, C;, and D; (Methods,
Supplementary Fig. 1). We label the groups constructed by each
fine-mapping approach such that a group that contains A; is
labelled A, and if no group contains A}, but there is a group with
a SNP that has r2 > 0.7, then this group is labelled A; likewise for
the labelling of groups B, C, D, and J.

To demonstrate that flashfm is well-calibrated, we considered
simulations of two traits such that trait 1 has causal variants A,
and D; and trait 2 has no causal variants in the region. Sample
sizes N=2000 and 5000 both give nearly identical results
between single-trait fine-mapping and flashfm: the PP of the null
model for trait 2 when N = 2000 is 0.960 (single-trait) and 0.957
(flashfm) and for N = 5000 the null model PPs are 0.966 for both
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Fig. 2 Comparison of fine-mapping from flashfm and single-trait analyses. \When traits share a causal variant, flashfm has higher accuracy than single-
trait finemapping, regardless of amount of missing data and trait correlation; both methods have similar accuracy when there are no shared causal variants.
Causal variants were simulated for two traits with models defined by SNP groups from the IL2RA region. We vary sample size when the traits share a
causal variant (a) and do not share any causal variants (b). At fixed sample size N = 3000, we vary the proportion of missing data for one trait (¢) and vary
the trait correlation (d). In a, ¢ and d Trait 1 has causal variants A+C, while trait 2 has A+D causal variants, both A causal variants with the same effect
size: pa=1og(1.4) and fp = fc = log(1.25). In a and b there are no missing data and the sample size varies from 1000 to 5000. In ¢ the sample size is fixed
at 3000 and the proportion of missing data for trait A+D varies from O to 0.5. In d the sample size is fixed as 3000 and the correlation between traits
varies. In b Trait 1 has causal variants A+D with 4 =10g(1.25) and fp = (1.25), while trait 2 has a single causal variant C with fc = log(1.25). Results are
based on 300 replications. Source data are provided in Supplementary Data 1, Supplementary Data 1.2, 1.3, 1.6, 1.7.

methods. The median difference in SNP group sizes between
those constructed from flashfm and those based on independent
fine-mapping is zero, and at a given sample size, both methods
give the same probabilities that the SNP groups contain the true
causal variants: 0.984 (A; N =2000), 0.991 (D; N =2000), 0.996
(A,D; N =5000).

In all settings, for groups C and D, there were negligible
differences in group sizes between those constructed from flashfm
and those based on independent fine-mapping; groups C and D
were not shared between traits so do not gain from shared
information. For all settings there is a negligible difference in
probability that the SNP group contains the causal variant used in
the simulation (i.e., similar coverage) between single and multi-
trait fine-mapping. We provide detailed resolution results for
group A (Table 1). From this point, the A+D trait refers to a trait
simulated to have causal variants A;+D;.

When there is no shared causal variant (trait 1 has causal
variants A;+D; and trait 2 has causal variant C,), there are
negligible differences between flashfm and independent fine-
mapping; the model PPs are nearly indistinguishable (Fig. 2;
Supplementary Data 1.2) and for each sample size the median
difference in group A sizes between the methods is zero, with
similar coverage (Table 1). Thus, application of joint fine
mapping where variants are not shared does not incur a penalty.

When both traits have two causal variants, one of which is
shared, flashfm tends to show higher support than independent
fine-mapping for the true model (mean PP increase of 0.17 with a
sample size of at least 3000; Fig. 2, Supplementary Fig. 2,
Supplementary Data 1.3-1.4). In low sample sizes independent
fine-mapping of the A+D trait either prefers B or has little
difference between A+D and B, then as sample size increases to
3000 there is a clear switch to the correct model, A+D. This
switch occurs faster for flashfm (at N=2000) due to the
borrowed information between the traits. Also, flashfm tends to
result in fewer SNPs in group A with a median size reduction of
32% for N>3000 (Table 1, Supplementary Data 1.5).

For a sample of N = 3000 and varying proportions (0 to 0.5) of
missing data from the trait with causal variants A+D, flashfm
showed an average gain of 0.20 in the level of PP support for A
+D over that of independent fine-mapping (Fig. 2; Supplemen-
tary Data 1.6). When half the data were missing for trait A+D
independent fine-mapping no longer had a preference for the true
model. There is negligible difference between mean PP for the
two methods for the trait with A4C causal variants, regardless of
the proportion of missing data for the A+D trait. Although
flashfm has finer resolution for each degree of missingness, the
improvement is highest for lower proportions of missingness
(median reduction in group size of 23%) (Table 1).
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Trait 1 (A+D); Trait 2 (A+C); Vary sample size

Table 1 Resolution comparison between single-trait fine-mapping and flashfm.

Trait 1 (A-+D; Trait 2 (A-+C); Vary proportion missing
trait 1data

N Median percentage Single-trait group  Multi-trait group A coverage Trait 1 proportion Median percentage size reduction
size reduction A coverage missing, p;
1000 O 1 0.986 0 285
2000 10.5 0.997 0.99 0.1 314
3000 285 1 1 0.2 27.8
4000 325 1 0.997 03 18.8
5000 333 1 1 0.4 16.7
0.5 10.5

Trait 1 (A-+D); Trait 2 (C); Vary sample size

Trait 1 (A+D); Trait 2 (A-+C); Vary trait correlation

N Median percentage Single-trait group  Multi-trait group A coverage Cor(Yy, Y2) Median percentage size reduction
size reduction A coverage

1000 O 0.944 0.944 0 333

2000 O 0.98 0.97 0.2 333

3000 O 1 0.99 0.4 28.5

4000 O 0.988 0.984 0.6 211

5000 O 0.996 0.996 0.8 14.3

When traits share a causal variant, flashfm tends to yield smaller SNP groups than those from single-trait fine-mapping, regardless of amount of missing data and trait correlation; both methods have
similar resolution and accuracy when there are no shared causal variants. In simulations with a shared causal variant A, (trait 1is A+D, trait 2 is A+C), fa = log(1.4) for both traits 1 and 2; trait 1 has a
second causal variant D and trait 2 has second causal variant C, both with = log(1.25). In the non-shared causal variant setting (A+D, C), all causal variants have p = log(1.25). Traits 1 and 2 have
correlation 0.4 and were both measured on all individuals, unless otherwise specified. When proportion missing data and trait correlation vary, sample size is 3000. The region has 345 SNPS and was
simulated to mimic the LD structure of the IL2RA region, 10p-6030000-6220000 (GRCh37/hg19). Results are based on 300 replications.

Table 2 Median flashfm running time (with second and third
quartiles), in seconds.

Number 250-SNP Region 500-SNP Region  1000-SNP

of Traits (67 kb) (144 kb) Region (312 kb)
2 20,7 5(2,15) 5Q,16)

3 13 (5, 33) 15 (8, 40) 16 (5, 59)

4 435 (49, 2173) 583 (116, 1790) 168 (32, 740)

Flashfm was run using cpp = 0.99 and single-trait fine-mapping results from JAM, using the
extended version (JAMexpandedCor.multi) in the flashfm package. Median time was measured
over 100 replications in simulations of 2, 3, and 4 traits having correlation 0.4 and sample size
5000. The regions were subsets of the CTLA4 region 2q-204446258-204816382 (GRCh37/
hg19).

By varying the correlation (0 to 0.8) between two traits (A+D
and A+C) we found that the PP remained similar within each
method and for trait A+D flashfm gave a median PP increase of
0.14 over independent fine-mapping (Fig. 2; Supplementary
Data 1.7). Compared to independent fine-mapping, flashfm
reduces the median group size 28.5%, with the greatest reduction
at lower levels of correlation (33.3% reduction when the trait
correlation is 0.2 or 0; Table 1). Low/moderate correlation likely
gives higher gains from sharing information between traits
because there is more for a trait to “learn” from the other trait; as
the traits are measured on the same cohort, highly correlated
traits will have similar information to each other so not as much
as a gain compared to lower correlations.

Flashfm is computationally efficient and robust. We profiled the
running time of flashfm, given input from single-trait fine-mapping
via expanded JAM that uses the SNP correlation matrix and RAFs
(JAMexpandedCor.multi;  https://github.com/jennasimit/flashfm/
blob/master/R/jamexpanded.corX.R), varying the number of SNPs
in a region and varying the number of traits in simulated data with
100 replications in each setting. All simulations were done within a
region containing CTLA4 (Methods, Supplementary Fig. 3) and we
provide the median running times, as well as second and third

quartiles (Table 2). For all three region sizes, flashfm tends to run in
under one minute when there are two or three traits; at four traits,
flashfm tends to run in under 10 min.

Within a given region size, as expected, the time increases with
the number of traits. However, there was not an observed increase
in time as the region size increases. The region that we
continuously reduced initially contained 1231 SNPs and was
previously defined for fine-mapping of autoimmune
diseases?’. JAMexpandedCor.multi involves first running JAM
single-trait fine-mapping considering multi-SNP models with tag
SNPs (2 =0.99), and then expanding these models to include
tagged SNPs by interchanging tag SNPs with their tagged SNPs
within each model. As the prior probabilities depend on the
number of SNPs in a region, the region of 1000 SNPs tended to
run faster (4 traits median 168 s) than the smaller regions (4 traits
medians 435s and 583 s for 250 and 500 SNPs, respectively).
Although there are more tagged SNPs to consider among models
in the 1000-SNP region, the PPs are also more concentrated
among these models relative to the large number of SNPs with
low evidence of association, meaning fewer models are carried
forward at cumulative PP 0.99 for consideration in flashfm.

We provide a wrap-around function that runs single-trait fine-
mapping, runs flashfm, constructs SNP groups for both methods,
and provides summary results at the SNP and SNP group levels,
FLASHEMwithJAM (https://github.com/jennasimit/flashfm/blob/
master/R/jamexpanded.corX.R).

We assess robustness of flashfm to misspecified trait correla-
tion by simulating two traits with correlation 0.4 and samples of
size 5000, for the original CTLA4 region (1231 SNPs); the traits
each have two causal variants, with one shared (Methods).
Rankings of the causal variants (using MPP) are compared
between the flashfm results using the estimated (non-shifted) trait
correlations and those that use trait correlations that are shifted
upwards/downwards by 0.1 or 0.2 from the correlation estimate.
This region is difficult to fine-map (Methods) and gives a worst
case scenario.

There is robustness in the results of flashfm, even when the
input trait correlation is shifted upwards/downwards by 0.2. For
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specified.

Trait 1 (E4+G)

Table 3 Probabilities describing the relationship between flashfm ranks of causal variants when the trait correlation is mis-

Pr(matched ranks)

Pr(matched or improved ranks)

Trait correlation shift rs1980422/E rs3087243/G rs1980422/E rs3087243/G
-0.2 0.870 0.923 0.960 0.950
-0.1 0.903 0.950 0.970 0.967
0.1 0.897 0.950 0.933 0.983
0.2 0.793 0.900 0.857 0.947
Trait 2 (E+H)
Pr(ranks match) Pr(matched or improved ranks)
Trait correlation shift rs1980422/E rs231775/H rs1980422/E rs231775/H
-0.2 0.850 0.913 0.940 0.977
—0.1 0.893 0.937 0.953 0.987
0.1 0.870 0.960 0.920 0.973
0.2 0.760 0.897 0.837 0.927

204446258-204816382 (GRCh37/hg19). Results are based on 300 replications.

Two traits were simulated to have causal variants E4+G and E4+H and trait correlation 0.4; sample size is N =3000. Comparisons are made between flashfm results using the estimated trait correlation
as input and flashfm results with this trait correlation estimate shifted upwards/downwards by 0.1 or 0.2. The region has 1231 SNPS and was simulated to mimic the LD structure of the CTLA4 region, 2qg-

all correlation shifts, the median rankings of causal variants are
identical to those based on the correlation estimate - trait 1: 4.5
(E), 1 (G); trait 2: 5.5(E), 2.5 (H). For a more thorough
assessment, we examine the probabilities that the rankings match
between the shifted and non-shifted input correlation. As
rankings that are higher in the shifted analysis are not a negative
consequence, we also consider the probability that the shifted
analysis ranks are at least as high as those from the original
analysis. Our results suggest that flashfm is robust to both positive
and negative shifts from the estimated trait correlation (Table 3).
The probability that the ranks match between shifted and non-
shifted analyses tends to be around 0.90, and ranges from 0.76 to
0.96. Probabilities that the ranking matches or is higher in the
shifted analyses over that of the original analysis tend to be
around 0.95 and range from 0.837 to 0.987.

Precision of flashfm is highest among multi-trait methods. We
performed simulations over two regions that mimic the LD
structures of IL2RA and CTLA4 and compared the results from
flashfm and fastPAINTOR!®. Both methods use GWAS summary
statistics and the SNP correlation matrix to jointly fine-map
multiple traits, allowing for multiple causal variants.
Flashfm outputs the marginal posterior probabilities (MPP) that a
SNP is a causal variant for each trait, whereas fastPAINTOR
outputs the MPP that a SNP is causal within the set of traits.
Flashfm also outputs the posterior probabilities for multi-SNP
models for each trait, whereas fastPAINTOR does not indicate
which SNPs are likely joint causal variants, appearing in a model
together. For this reason, rather than assessing accuracy in model
selection, our comparisons focus on the mean MPPs of the causal
variants for each trait and their median rankings, as well as the
probability that different proportions of causal variants appear
among the top 5 or 10 ranked SNPs for each method. In the
IL2RA region we simulated three traits with causal variants A+D,
A+4C+E, and I and, in the CTLA4 region, two traits with causal
variants E+H and E+G (Supplementary Data 1.1, Methods).

In general, flashfm gives higher prioritisation to the causal
variants (higher ranking) than fastPAINTOR, and has a higher
probability of ranking all causal variants among the top 5 (or 10)
SNPs. At shared causal variants, the fastPAINTOR MPPs are

similar to those from flashfm in the 3-trait IL2RA simulations,
and at some non-shared causal variants flashfm has higher MPPs
(Supplementary Data 1.8); e.g. at N = 5000, the MPPs for variant
I in trait 3 are 0.858 (flashfm) and 0.745 (fastPAINTOR).
However, for all causal variants, flashfm tends to have a higher
median ranking than fastPAINTOR (Supplementary Data 1.9).
For shared variant A, at N=5000, flashfm gives a median
ranking of 2 for both traits, while fastPAINTOR gives median
ranking 4. As sample size increases, both methods have a
similar probability of having at least one causal variant ranked
among the top 10 for each trait (Table 4). However, when there
are two or three causal variants, the probabilities of ranking all
causal variants among the top 10 is noticeably higher for
flashfm than fastPAINTOR, even at N=5000 (for all three A
+C+E, 0.943 (flashfm) and 0.543 (fastPAINTOR); for both A
+D, 0.897 (flashfm) and 0.670 (fastPAINTOR). These prob-
abilities have consistently higher differences for rankings
among the top 5, with flashfm consistently higher than
fastPAINTOR for two or three causal variants in the top 5
(Supplementary Data 1.10).

Similar patterns are seen in the 2-trait simulations of the
CTLA4 region. Flashfm and fastPAINTOR have similar MPPs for
causal variants (Supplementary Data 1.11). However, flashfm
gives higher prioritisation to all causal variants than fastPAIN-
TOR, even for shared causal variants (Supplementary Data 1.12).
For example, at N= 5000, flashfm median rankings for shared
causal variant E are 4.5 (trait 1) and 5.5 (trait 2), compared to
8.25 (fastPAINTOR). At all sample sizes, the probabilities of at
least one causal variant among the top 10, is higher for flashfm
than fastPAINTOR, and the flashfm probabilities of both causal
variants in the top 10 are twice that of fastPAINTOR (Table 5); at
N =5000, the probabilities that both causal variants have rank
within the top 10 for trait 1 are 0.867 (flashfm) and 0.457
(fastPAINTOR), and for trait 2 they are 0.783 (flashfm) and 0.353
(fastPAINTOR). Similar patterns are seen for top 5 ranking
probabilities, with flashfm also having noticeably higher prob-
abilities of at least 1 causal variant in the top 5, compared to
fastPAINTOR (Supplementary Data 1.13).

We also varied trait correlation from 0 to 0.8 for the 3-trait
simulations of the IL2RA region at N=3000. Trait correlation
does not appear to have a noticeable impact on the MPPs
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Table 4 Comparison of probabilities that causal variants have rank 10 or less, from flashfm and fastPAINTOR, varying sample

size.
Trait 1 (A+D) Trait 3 (I)
Pr(1 or more cvs rank <= 10) Pr(Both cvs rank <= 10) Pr(rank cv <= 10)
N flashfm fastPAINTOR flashfm fastPAINTOR flashfm fastPAINTOR
1000 0.787 0.393 0.130 0.057 0.943 0.557
2000 0.890 0.733 0.563 0.243 0.983 0.750
3000 0.910 0.873 0.750 0.413 0.997 0.850
4000 0.937 0.917 0.837 0.560 0.997 0.903
5000 0.957 0.940 0.897 0.670 1 0.943
Trait 2 (A+C+E)
Pr(1 or more cvs rank <= 100) Pr(2 or more cvs rank <= 10) Pr(All 3 cvs rank < = 10)
N flashfm fastPAINTOR flashfm fastPAINTOR flashfm fastPAINTOR
1000 0.953 0.847 0.627 0.440 0.053 0.067
2000 1.000 0.963 0.910 0.747 0.497 0.253
3000 1.000 0.993 0.977 0.827 0.743 0.400
4000 1.000 0.993 0.987 0.923 0.863 0.527
5000 1.000 0.997 0.993 0.930 0.943 0.543

(GRCh37/hg19). Results are based on 300 replications.

Flashfm tends to have higher probabilities than those from fastPAINTOR, especially for detecting all (multiple) causal variants of a trait. Three traits were simulated to have causal variants A+D, A+C+E,
and | and trait correlation is 0.4. Sample size ranges from N = 1000 to 5000. The region has 345 SNPS and was simulated to mimic the LD structure of the IL2RA region, 10p-6030000-6220000

sample size.

Trait 1 (E+G)

Table 5 Comparison of probabilities that causal variants (cvs) have rank 10 or less, from flashfm and fastPAINTOR, varying

Pr(1 or more cvs rank <= 10)

Pr(Both cvs rank <= 10)

N flashfm fastPAINTOR flashfm fastPAINTOR
1000 0.797 0.493 0.243 0.083
2000 0.937 0.757 0.530 0.187
3000 0.987 0.823 0.677 0.303
4000 1.000 0.870 0.847 0.403
5000 0.997 0.887 0.867 0.457

Trait 2 (E+H)

Pr(1 or more cvs rank <= 10)

Pr(Both cvs rank <= 10)

N flashfm fastPAINTOR flashfm fastPAINTOR
1000 0.747 0.463 0.133 0.057
2000 0.917 0.617 0.370 0.130
3000 0.960 0.737 0.600 0.237
4000 0.987 0.783 0.717 0.297
5000 0.997 0.857 0.783 0.353

For all sample sizes, flashfm consistently has larger probabilities than those from fastPAINTOR. Flashfm has twice the probability of fastPAINTOR for both causal variants to have rank 10 or lower. Two
traits were simulated to have causal variants E+G and E+H and trait correlation is 0.4. Sample size ranges from N = 1000 to 5000. The region has 1231 SNPS and was simulated to mimic the LD
structure of the CTLA4 region, 29-204446258-204816382 (GRCh37/hg19). Results are based on 300 replications.

(Supplementary Data 1.14), median rankings (Supplementary
Data 1.15), and the probabilities of causal variants in the top 5
(Supplementary Data 1.16) and top 10 (Supplementary Data 1.17).

Application to cardiometabolic traits in a Ugandan cohort.
Understanding the underlying genetic contributions to cardiome-
tabolic traits is important due to the growing global burden of
disability and death attributed to cardiometabolic disorders such as
hypertension, coronary artery disease and type 2 diabetes. We
considered genetic association signals from 33 cardio-metabolic
traits in a Ugandan cohort of 6407 individuals with 45% relatedness
of at least second degree?! (Supplementary Data 1.18 and 1.19,

Supplementary Fig. 4). Based on association signals (p < 1E-6) with
at least 2 of the traits, we constructed 56 regions for fine-mapping
(Supplementary Data 1.20 and 1.21; Supplementary Fig. 5).
Within the 56 regions the total number of potential causal
variants from the top models of FINEMAP was 1147, whereas
flashfm reduced this total by 20% to 914 variants (Supplementary
Data 2). Among these regions, 52 of them (93%) indicated
improved results of flashfm over FINEMAP® in terms of either
increased PP of the top model, finer resolution of the SNP
groups, or both. The median PP increase of flashfm over
FINEMAP was 15% (mean 24%) for these regions. The
remaining 4/56 regions had concordant SNP groups between
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Table 6 Regions with top models chosen by stepwise (SW), independent fine-mapping and Flashfm where there is a noticeable
reduction in SNP group sizes and/or PP of top model.
Region Trait Stepwise Model Independent Flashfm Change by Flashfm
Model (Group Size) PP Model (Group Size) PP PP gain Group
reduction
1:55517883-55674945  LDL rs11804420/A Airs45613943 (4) 0.5  A:rs45613943 (3) 0.63 0.13 A = 25%
(PCSK9,USP24) TC rs11804420/A Airs45613943 (4) 0.6 Airs45613943 (3) 0.76 0.2
2:62716187-62887884  ALP rs13403582/B B:rs7580494 (8) 0.66 Birs6750204 (5) 0.73 0.07 J=0
(TMEM17) PLT rs765799086/) Jirs765799086 (1) 0.46 B + ] Jirs765799086 (1) 0.62 0.16 B =38%
15:58718136-58742605 HDL rs1800588/G G:rs8033940 (5) 0.42 Girs1800588 (4) 0.52 0.0 A =20%
(LIPC) TG rs1077835/G Girs8033940 (5) 0.56 G:irs1800588 (4) 0.66 0.10
16:441156-557188 MCV rs75167983/L + L+C+A+B 042 L+C+A+B 0.46 0.04 L =75%
(LOC100134368, rs150717215/C + L:rs144739959 (4) L:irs75167983 (1) C=
NME4, DECR2, rs147633052/A C:rs150717215 (2) Cirs150717215 (2) A=0
RABTIFIP3) Airs147633052 (14) A = rs147633052 (14) B=0
B:rs116567883 (1) B = rs116567883 (1) D=0
MCH rs75167983/L + L+C+A+8B 015 L+C+A+B 0.26 0OM
rs150717215/C + L+C+A+B+D 015 L+C+A+B+D 0.16 0.01
rs147633052/A + D:rs553374841 (2) D = rs553374841 (2)
rs116567883/B.
Bilirubin L = rs75167983 L =rs144739959 (4) 0.45 L =rs75167983 (1) 0.63 0.8
19:45380937- LDL rs7412/B + E+L+B+V+D2 04 E+L+B+V+D2 0.40 0.00 B = 50%
45441453 (NECTIN2, rs34215622/V + E:rs113152469 (5) Eirs113152469 (5) E2 = 25%
TOMMA40, APOE, rs61357706/E + L:rs429358 (1) L:rs429358 (1) E=0
APOC1, APOCTPT) rs429358/L + Birs61679753 (2) B:rs7412 (1) L=0
rs367640607/D2 Virs34215622 (1) Virs34215622 (1) V=0
D2:rs367640607 (2) D2:rs367640607 (2) D2=0
TC rs7412/B + E+L+B+V 026 E+L+B+V 0.41 0.5
rs34215622/V + E+L+B+V+D2 025 E+L+B+V+D2 031 0.06
rs429358/L
TG rs12721054/1 + E+I1+Y+E2 042 E+4+ I+ X+E2 0.63 0.21
rs5112/X | = rs12721054 (1) | = rs12721054 (1)
Y = rs7260330 (3) X = rs5112 (1)
E2 = rs12721051 (4) E2 = rs12721051 (3)
HDL rs75627662/A A =rs75627662 (1) 038 B =rs7412 (1) 0.42 0.03
Each row summarises results for a single region, defined by chromosome, start and end base-pair position and nearby gene(s). Each cell lists the SNP groups in a model; model A+B indicates all 2-SNP
models with one SNP from group A and one SNP from group B. The number of SNPs in each group is given in brackets beside each group in the model. Here we list a representative SNP from each group;
rs IDs are from build GRCh37/hg19. The SNPs belonging to each group and their functional annotations are given in Supplementary Data 1.22.

the two methods, but flashfm had a slightly lower PP than
FINEMAP (median decrease 0.05%). In 36% of the regions (20/
56), flashfm gave a finer resolution than FINEMAP?, based on
the total number of SNPs in the SNP groups of the top model
(for each trait) from each method; the median reduction in the
total number of SNPs for each trait was 31% with a maximum of
91%. In 88% of the regions (49/56), flashfm had higher
confidence than FINEMAP for the top model with a median
PP increase of 18% (mean increase 29%); in half of the regions
(28/56) flashfm had a noticeable gain with an average PP
increase of 52%.

We highlight 5 regions that are improved for both higher
confidence in model selection and notable reduction of potential
causal variants in the top model of at least one trait (Table 6), and
also provide functional annotations for these SNPs, based on
HaploReg 4.127 and VEP28 (Supplementary Data 1.22).

Of particular interest is region 19:45380937-45441453 (PVLR2,
TOMMA40, APOE, APOCI1, APOCIPI), which shows association
to multiple lipid traits: LDL, TC, TG and HDL (Fig. 3). This
example highlights the utility of borrowing information between
related traits when fine mapping weaker signals. Previous studies
have concluded that the LDL association in APOE is explained by
the missense variants rs7412 and rs429358, which together define
APOE e-alleles?*-31. Both of these SNPs appear in top LDL and
TC models by FINEMAP and flashfm. These two methods

identify rs429358 as the only SNP in group L in models for LDL
and TC. Flashfm isolates rs7412 as a single SNP in group B,
whereas FINEMAP includes an additional SNP in group B,
demonstrating that flashfm refines the SNP group of FINEMAP
to the correct causal variant.

HDL shows a much weaker association than the other traits (min
p ~1079), and FINEMAP selects its top SNP rs75627662 as its best
candidate. The second strongest SNP in the region for HDL is
rs7412 (r? with rs75627662 is 0.56) and flashfm levers information
on LDL and TC to select this SNP as its best candidate for HDL.
rs75627662 is an intergenic SNP upstream of APOE, while rs7412
encodes a missense variant (Argl58Cys, which is also known as the
APOE e2 allele). Homozygous carriers for this variant have the
condition Type III hyperlipoproteinemia3? (OMIM 617347), which
is characterised by hyperlipidaemia and affected individuals are
susceptible to severe coronary artery disease. ApoE is a 34 kDa
glycoprotein, initially noted as a component of plasma VLDL and
HDL. rs7412 is known to have an effect on the efficacy of
Atorvastatin, a statin medication used to prevent cardiovascular
disease in those at high risk (ClinVar’3, accession
RCV000211178.1); Atorvastatin decreases LDL and triglycerides
in the blood and increases HDL. These observations highlight the
complex interrelation among LDL, HDL and triglycerides and their
regulation and the value of using approaches that capture
information from multiple traits.
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Fig. 3 Fine-mapping of signals for four lipid traits in region 19:45380937-45441453. The -log;op for SNPs in the top SNP groups for a LDL; b total

cholesterol (TC); ¢ triglycerides (TG); d HDL are shown for both FINEMAP and flashfm. The two methods agree on a 5-SNP model for LDL (a) and a 4-SNP
model for TC (b). The top model for TG (c) has 4 SNPs under both methods but differ in one SNP group; FINEMAP prefers 3-SNP group Y (very near one
another so appear as one) and flashfm selected single SNP group X (mean r? of SNPs in Y with X is 0.315). For HDL (d), a different single-SNP model was
selected by the two methods; FINEMAP favoured group A, whereas flashfm selected group B. The solid coloured circles show SNPs that belong to the SNP
groups constructed by both methods, the empty coloured circles represent SNPs that are only in the FINEMAP SNP group; solid grey circles show all other
SNPs in the region. In € and d an X represents a SNP that appeared in a top model for flashfm and not FINEMAP and empty circles indicate SNPs that
appeared in top models for FINEMAP and not flashfm. Position is given according to hg19/build 37. Some of the genes in this region include APOE, APOC1

and TOMMA40.

Discussion

Simultaneous fine-mapping of multiple traits helps in under-
standing pleiotropic associations by identifying sets of shared
potential causal variants that underlie multi-trait associations in
the same locus. Jointly fine-mapping traits with flashfm leads to
improvements in both accuracy and precision when there are
shared causal variants between traits, and leads to similar results
to independent fine-mapping when there is no such sharing
among traits. Importantly, the flashfm SNP groups are typically a
subset of the FINEMAP SNP groups, suggesting that flashfm
leverages the information between traits to refine the sets of
potential causal variants. This approach only requires GWAS
summary statistics, an estimate of the trait covariance matrix,
either a genotype reference panel or the covariance matrix and
MAFs from a reference panel, and single-trait fine-mapping
results (PP for each model). GWAS summary statistics could be

used to approximate the effective sample size for each trait. The
input of flashfm makes it readily applicable to meta-analysis
results from multiple traits, and the large sample sizes do not
increase computational time as only summary-level data are
needed.

Flashfm is flexible to accept output from any single-trait fine-
mapping approach and, for convenience, we include an expanded
version of JAM* to obtain single-trait fine-mapping results in the
flashfm R package. When using flashfm for the Uganda GWAS of
cardiometabolic traits, we used single-trait fine-mapping results
from both expanded JAM and FINEMAP>, which generally
resulted in concordant results.

Trait correlation could be influenced by both genetic and
environmental correlations, and genetic correlation among
traits may be used in place of trait correlation. This is especially
recommended when there are GWAS summary statistics from a
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cohort that contains related individuals, as the GWAS summary
statistics already account for relatedness, provided that a
mixed linear model approach had been used. Sodini et al. have
shown that, for 17 UK Biobank traits, the genetic correlations
calculated from LD score regression®* are predictive of trait
correlation within an independent sample from the same
population3?,

In developing flashfm, we use the BIC approximation for BFs*
to derive an expression for the joint BF, showing that the log(BF)
of a joint model for M traits may be expressed as a sum of the
marginal log(BF) and a term that depends on the GWAS sum-
mary statistics, sample sizes, trait covariance matrix, and LD;
GWAS summary statistics are used to approximate the joint SNP
effects. As our derivation provides a direct relationship between
the joint and marginal BFs and does not disregard trait correla-
tions, LD and joint SNP effects, it should give similar results to
multivariate analyses with individual-level genotype data, pro-
vided that the same Bayesian framework is used. In its joint fine-
mapping, flashfm uses a prior probability that upweights models
having a shared causal variant between traits, sharing information
between the traits, resulting in improved resolution when traits
share causal variants. As flashfm makes use of GWAS summary
statistics, it is easily scalable to large biobank-style datasets,
whereas individual-level data approaches are not scalable. When
there is access to individual-level genotype data, we recommend
using this data to calculate the SNP correlation matrix and run-
ning a single-trait fine-mapping method, such as JAM or FINE-
MAP, as input to flashfm. For smaller sample sizes (e.g.,
N=5000), users may run the required single-trait fine-mapping
with the raw genotype matrix, using the JAMexpanded.multi
function of flashfm, followed by flashfm.

Both flashfm and JAM are developed under the assumption of
conditional normality and homogeneity of variance. As with any
statistical method, departures from these assumptions could
potentially produce misleading results. When using summary
GWAS data it can be difficult to confirm that modelling
assumptions hold, so we urge users to check that these assump-
tions were tested when the original data were analysed.

Although we find a quick approximation to the joint BF that is
based on the marginal BFs, for computational efficiency, we avoid
storing these joint BFs in flashfm, and instead use these to
approximate the joint PPs (also not stored), which are used to
find the trait-adjusted PPs for each trait. Flashfm outputs pos-
terior probabilities for multi-SNP models for each trait, adjusted
for information from the other traits, as well as marginal PPs
(MPPs) for each SNP under each trait. SNPs with the highest
MPPs have more evidence for being causal and the model PPs
indicate which combinations of SNPs have evidence of being joint
causal variants. We use the MPPs and PPs, together with LD, to
construct SNP groups such that SNPs in the same group are in
LD and rarely appear in a model together. These groupings allow
us to further summarise the SNP-level PP results to SNP group
level, which simplifies interpretation and assessing fine-mapping
resolution.

As flashfm depends on GWAS summary statistics and model
PPs from single-trait fine-mapping, we advise that sample size is
assessed in the same way as for a GWAS. When selecting traits to
jointly fine-map signals in a region with flashfm, we advise that
traits should have a minimum p-value of 1E-6 in the region.
Otherwise, fine-mapping will either favour the null model or, if
the null model has prior probability of 0, spread the PP over
many models. Provided that there is sufficient power to detect a
signal in the GWAS and there is a shared causal variant, flashfm
will tend to construct SNP groups that are subsets of those from
single-trait fine-mapping. In addition, when traits have multiple
causal variants, with partial sharing of causal variants, flashfm

shows improvements in prioritising causal variants over another
multi-trait fine-mapping method, fastPAINTOR.

As with all existing fine-mapping methods that use summary
statistics, inaccurate LD information could reduce the accuracy of
the method, either missing causal variants, or inflating evidence
for non-causal variants?®. When a reference panel is the source of
the LD matrix for fine-mapping, it must be based on samples of
the same ancestry. Benner et al. also show that the size of the
reference sample must scale with the GWAS sample size; for a
GWAS sample size of 10,000, a reference panel of 1,000 samples
is sufficient to estimate LD, whereas a panel of around 10,000 is
needed for a GWAS sample size of 50,000.

With the growing availability of biobanks, there are more
potential sources for large reference panels and LDstore assists in
this as a tool for efficient estimation, storage, and sharing of LD
information??. LD matrices based on 337,000 British ancestry UK
Biobank3® samples are freely available for download at https:/
alkesgroup.broadinstitute.org/UKBB_LD!%; LD matrices for
additional ancestry groups (African, Central/South Asian, East
Asian, Middle Eastern, Admixed American) within UK Biobank
are available for download by the Pan-UKB team at https://
pan.ukbb.broadinstitute.org. 2020. Another source for African
ancestry LD is the AFR superpopulation of 1000 Genomes>” that
consists of 1,418 samples of African ancestry from both Africa
and the United States; data are available for download from
http://grch37.ensembl.org/Homo_sapiens/Tools/DataSlicer. ~ As
African Americans reflect admixture of people of West and
Central-West African descent?®, the AFR superpopulation of
1000 Genomes or the African ancestry cohort from UK Biobank
would be an appropriate source of LD for either African or
African American samples.

Our simulation studies demonstrated that flashfm tends to
give greater improvement in resolution over single-trait fine-
mapping when the traits have a common causal variant and a
moderate/low correlation between them, though even with
highly correlated traits, there is some resolution gain over single-
trait fine-mapping. Likewise, the greatest refinement in resolu-
tion within the Uganda data tended to be for sets of traits that
included at least one trait with a correlation below 0.9 and single-
trait fine-mapping top trait models with common SNP groups,
which were refined by flashfm. Replication in another data set
and downstream functional validation experiments are needed to
confirm that the SNPs excluded by flashfm are indeed unlikely to
be causal variants. These results promote the joint fine-mapping
of traits that are relevant to certain disorders (and have genetic
association in the same regions), but not usually considered
together; flashfm could not only refine the sets of potential causal
variants for the traits, but also reveal new shared causal variants
between them.

There are clear advantages to multi-trait fine-mapping with
flashfm, and the inclusion of diverse ancestries could lead to
further improvements in resolution; where ancestries have com-
mon signals, the differences in LD between the ancestries could
help pinpoint the causal variant(s)3°. A multi-ancestry version of
flashfm is in progress as a crucial extension to this software, that
will allow for multiple reference panels from the different
ancestries.

Methods

Expanded JAM. The Joint Analysis of Marginal summary statistics (JAM)* facilitates
fine-mapping from marginal summary statistics. JAM requires a thinned reference
panel such that the genotype matrix does not contain SNPs in high LD and then
infers joint LD-adjusted multi-SNP models, highlighting the best SNPs, and combi-
nations of SNPs, via a Bayesian sparse regression framework. Included in the flashfm
software, we developed expanded versions of JAM, JAMexpanded.multi (https:/
github.com/jennasimit/flashfm/blob/master/R/prep.R) and JAMexpandedCor.multi.
(https://github.com/jennasimit/flashfm/blob/master/R/jamexpanded.corX.R) that
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accounts for all SNPs that were thinned out. Each joint multi-SNP model is expanded
by considering all the possible models formed by all the combinations of SNPs in the
JAM model, in the same manner as the fine-mapping approach GUESSFM? (Sup-
plementary Information 1.3). Then, each of the expanded models is evaluated indi-
vidually via approximate Bayes' factors. The function JAMexpanded.multi requires a
SNP matrix from an in-sample or reference panel and JAMexpandedCor.multi
requires a SNP correlation matrix and allele frequencies. FLASHFMwithJAM pro-
vides a wrapper that runs JAMexpandedCor.multi, followed by flashfm, as well as
construction of SNP groups for both methods and PP summaries by SNP and by
SNP group.

SNP groups. Rather than reporting results in terms of SNPs, we construct SNP
groups using an algorithm based on the group.multi function in GUESSFM
(https://github.com/chrlswallace/ GUESSEM/blob/master/R/groups.R). SNPs with
marginal posterior probability of inclusion > 0.001 were grouped such that SNPs in
the same group are in LD - high 12 - and rarely selected together in models (model
selection correlation (rmode1) Should be negative); both 70461 and 72 are used so that
our SNP grouping is informed by both model posteriors and LD. This algorithm
was used in MEM2? to construct SNP groups based on the single-disease fine-
mapping posterior probabilities and these same groups were used to summarise the
fine-mapping results from both single-disease and multi-disease (MFM) fine-
mapping; using the same groups for both methods allows a convenient comparison
of results between the two methods.

As this grouping algorithm makes use of the model posteriors, we extended this
grouping algorithm such that the groups are constructed independently for single-
trait and multi-trait (flashfm) fine-mapping. That is, SNP groups are constructed
for both methods using the same LD information, but groups may differ due to
differences in the model PPs between the methods. Since the groups are
constructed independently, the new algorithm incorporates a mapping between the
group labels of the two sets of groups such that if a flashfm group overlaps a single-
trait fine-mapping (STEM) group, the flashfm group label takes the name of the
STFM group label. Sometimes a single STEM group overlaps multiple flashfm
groups due to the higher precision of flashfm, which could reduce a SFTM group or
split it into smaller groups. To account for this, if the STFM group has label A, each
flashfm group that intersects A is given label A.1, A.2, etc. to denote that these
flashfm groups were from the same larger group in STFM. This algorithm is
available as the makeSNPgroups2 function in flashfm (https://github.com/
jennasimit/flashfm/blob/master/R/group.multi.R).

Multiple traits simulations. Simulations were carried out under a realistic sce-
nario that mimics the MAF and 2 in the IL2RA region (345 SNPs in chromosome
10p-6030000-6220000 (GRCh37/hg19)). This region was selected as it has been
previously shown to exhibit a tagging behaviour for causal variants; when there are
two causal variants (A; = rs61839660 and D, = rs62626317), sometimes a different
variant (B, = rs2104286), that is correlated with both causal variants, is detected as
a single causal variant?%; in this region this tagging behaviour was also observed for
two causal variants, A; =rs61839660 and C; = rs11594656, jointly tagged by

J; =1s706779. For this region, we generated a population of 100,000 individuals
based on the CEU 1000 Genomes Phase 3 data®” using HapGen2#’. Details of the
LD between Ay, By, Cy, Dy, and J; and their MAFs are given in Supplementary
Data 1.1. Only variants with MAF > 0.005 were included. An LD plot of this region
is given in Supplementary Fig. 1.

For each replication, a random sample of N individuals was selected from the
population of 100,000. Causal variants for each trait were selected for a certain
disease model, such that trait 1 has two causal variants (A; and D,) and trait 2
either has two causal variants (A; and C,); shared A, with trait 1) or a single
distinct causal variant (C; = rs11594656). Various values for the SNP effects were
selected and a multiplicative model was assumed throughout. At each parameter
configuration there are 300 replications.

For M traits, the measurement for trait k of individual j, y;, is obtained from

My
Vg = El Baxij + s

where x;; is the number of non-reference alleles of variant i for individual j (i.e.
genotype score), S is the effect of causal variant i for trait k, my is the number of
causal variants for trait k, and ¢ is the kth element of the j™ multivariate Normal
distributed error variable with mean 0 and covariance X, which is the covariance
matrix of the M traits.

For each replication, Expanded JAM was used for single-trait fine-mapping
(SFTM) and used as input into flashfm. We used the makeSNPgroups2 function of
flashfm to construct two sets of SNP groups, one set based on SFTM results and
one set based on those of flashfm. Results from each method were then
summarised based on their coinciding SNP groups, such that a 2-SNP model given
by rs61839660 + rs62626317 = A;+D; is represented by A+D; model A+D
consists of all 2-SNP models where one SNP is from group A and the other is from
group D. Group labels were assigned according to the variants contained within
them, listed as in the beginning of this section for A, B, C, D, and J; if the variant is
not captured by a group, then the group is given the label of the variant if it
contains a variant that is in LD (r? > 0.7) with the group variant.

Accuracy of the fine-mapping approaches was evaluated by comparing the
mean group model PPs between the two methods. Precision was assessed by
comparing the SNP group sizes (number of SNPs in each group) of the groups
containing the causal variants for each method; within a replication, for each causal
SNP group, the size of the flashfm group was subtracted from the JAM group and
the median over the replications was used as a summary. To account for the
possibility of a method giving a smaller group size, but not containing the causal
variant, we also considered the coverage for each causal variant, defined as the
proportion of simulations in which each causal variant is captured by a SNP group.
In low power scenarios (e.g. small sample size) the methods may select the correct
SNP groups with low PP, and as in a real analysis such SNP groups would not be
followed up, we do not consider the SNP group size and coverage for a SNP group
if its marginal PP <0.1 in a replication; all replications are included in the
summaries of the model PPs.

Assessment of multi-trait fine-mapping approaches. We have also carried out
simulations that mimic the MAF and 12 in the CTLA4 region (1231 SNPs in
chromosome 2q-204446258-204816382 (GRCh37/hgl9)). This region was chosen
for its noted difficulty in fine-mapping of multiple autoimmune diseases and we
selected causal variants based on previous findings for CTLA4%0. In particular,
causal variants were selected from the SNPs rs1980422, rs231775, and rs3087243,
which we denote E, H, and G (Supplementary Data 1.1). An LD plot of this region
is given in Supplementary Fig. 3. Simulations in this region and in the IL2RA
region were used to evaluate flashfm in comparison to fastPAINTOR!®.

We include traits simulated to have between one and three causal variants and
include between two and three traits. In particular, in the IL2RA region we simulate
three traits having one, three, and two causal variants, given by rs61839660 +
1s62626317 = A+D, rs61839660 + rs11594656 + rs12220852 = A+C+E, and
15706778 = I; these SNPs are plausible, as they have been previously identified for
autoimmune diseases2?. With this setting, we vary sample size from 1000 to 5000,
in increments of 1000 and also, at fixed sample size 3000, vary trait correlation
from 0 to 0.8, in increments of 0.2. In the CTLA4 region we simulate two traits
having two causal variants each: rs19804224-rs3087243 = E4+G and
1rs1980422+rs231775 = E+-H with trait correlation 0.4 and sample sizes 1000 to
5000, in increments of 1000.

As fastPAINTOR provides the marginal PP (MPP) of a SNP being a causal
variant, and does not output the PPs for joint SNP model configurations, we focus
on the MPPs of causal variants and their rankings under each method. For each
setting, under flashfm and fastPAINTOR, we compare the following:

1. Mean MPP of SNP being a causal variant, for each causal variant of
each trait;

2. Mean and median ranking of each causal variant, for each trait;

3. Probability that at least 1, 2, or 3 (where appropriate) causal variants have
rank 5 or less and likewise, 10 or less.

Evaluation of computation cost and robustness of flashfm. We have profiled
the running time of flashfm, varying the number of traits and the number of SNPs
in a locus. This was done with the large CTLA4 region described above, reducing
this region to 1000, 500, and 250 SNPs. We simulated 2, 3, and 4 traits within each
region. These analyses were run on Intel Skylake 2.6 GHz CPU.

We assess the robustness of flashfm to misspecification of the input trait
correlation by simulating two traits in the CTLA4 region, using the same settings as
in the multi-trait methods comparison and N = 5000. For 300 replications, we run
flashfm using the estimated trait correlation as input, and also with this estimate
shifted by —0.2, —0.1, 0.1, and 0.2. For each shift, we calculate the probability that
the ranks from the shifted estimate match those of the original analysis, as well as
the probability that these ranks from the misspecified correlation match or are
higher than the original analysis.

Fine-mapping of cardiometabolic traits in a Ugandan cohort. To construct the
regions for fine-mapping we used a criterion based on the centimorgan (cM)
distance. In particular, for European ancestry populations, fine-mapping regions
are often constructed using a boundary of +0.1 cM around an association signal.
When we applied this criterion to the Ugandan cohort, the constructed genome
regions were excessively wide. In Park?! the authors show that a recombination
rate of 0.1 corresponds to an LD of 0.4 for European ancestry population, mean-
while for African populations the same level of linkage disequilibrium corresponds
to a recombination rate of 0.05. After investigating the dynamics between the
recombination rate and the LD, we found that our data required a tighter criterion
between 0.03 and 0.05 cM. In order to be conservative and align with the literature,
we selected a criterion of +0.05cM to define our fine mapping regions (Supple-
mentary Information Section 2). For each region, we also checked a block of 200
SNPs beyond each bound of the region for any SNPs having r2 > 0.4 with the lead
SNP in the region. If so, we extend the region to include such SNPs (Supple-
mentary Material Section 2). This procedure resulted in 56 regions with the
number of traits by chromosome distribution shown in Supplementary Figs. 5;
21,413,903 SNPs were considered in the analysis, (MAF > 0.005). Most chromo-
somes had 2 trait-regions which represent 74% of the 56 regions.
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Input to flashfm includes single trait fine-mapping results (model posterior
probabilities) and single-SNP effect estimates for each trait from the GWAS. We
consider two single trait fine-mapping algorithms that use GWAS summary
statistics and a reference panel: i) FINEMAP® and ii) JAM*. FINEMAP is a
Bayesian stochastic search algorithm based on summary statistics from GWAS. As
there are related samples, the effective sample size, as approximated from the
GWAS summary statistics, is used for the number of measurements for each trait;
this is easily calculated using the Neff function in flashfm (https://github.com/
jennasimit/flashfm/blob/master/R/Neffective.R).

Besides single-trait fine-mapping results, flashfm also needs the single-SNP
effect estimates, and a reference (or in-sample) genotype matrix or its covariance
matrix. If GWAS summary statistics are available, but not single-trait fine-mapping
results, then expanded JAM could be applied to provide input to flashfm. Only
SNPs that exist in both the GWAS and the reference panel are carried forward for
fine-mapping and this is automated within the flashfm software. Rather than fitting
each joint model between traits, we derived an approximation to the joint Bayes’
factor (BF) that depends on the marginal BFs, single-SNP effect estimates for each
trait, trait covariance matrix, and a reference panel. Based on the single-trait fine-
mapping results, flashfm selects the top models from each trait, which are then
carried forward for consideration in joint models between the traits. Preferably,
models are selected for each trait based on the cumulative posterior probability (cpp;
e.g. 0.99 by default), or a maximum number of models may be selected instead.

With exceptions to be clarified on a case-by-case basis, we consider a cpp of
0.99 in our analysis of the Uganda data. For ease of interpretation, as discussed in
the SNP Groups section of Methods, main results are presented in terms of SNP
groups, rather than individual SNPs; SNPs are grouped such that SNPs within each
group are in high LD and rarely appear together in a model. Also, the average LD
between groups is lower than 0.6.

For comparison purposes, in addition to results from single-trait fine-mapping
from FINEMAP (and JAM in Supplementary Data 1.23) and flashfm
(Supplementary Data 3), we also compare our results with the common approach
of identifying the best model for the region, stepwise conditional regression?43, In
general, INEMAP and JAM agree on the top model, though there are 6 regions for
which JAM could not converge. For this reason, we focus on the more complete
FINEMAP results (Supplementary Data 4).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Detailed flashfm multi-trait fine-mapping results and FINEMAP single-trait fine-
mapping results for the Ugandan cardiometabolic traits are provided in Supplementary
Data 3 and 4, respectively; summary fine-mapping results are provided in Supplementary
Data 2.pdf. The Uganda GWAS data used in this study are available in the GWAS
Catalogue under PubMed ID 31675503 (https://www.ebi.ac.uk/gwas/publications/
31675503#study_panel). The Ugandan genotype data are from the European Genome-
phenome Archive (EGA) under accession numbers EGAS00001001558
/EGAD00010000965, EGAS00001000545 /EGAD00001001639. The phenotype data used
in this study are not under restricted access and requests for access to data may be
directed to segun.fatumo@mrcuganda.org. The CEU population 1000Geomes phase 3
haplotype data that were used in our simulations are available from http://
grch37.ensembl.org/Homo_sapiens/Tools/DataSlicer.

Code availability

Our proposed multi-trait fine-mapping method, Flexible and shared information fine-
mapping (flashfm), is freely available as an R library at https://jennasimit.github.io/
flashfm/ (DOI: 10.5281/zenodo.5522915%4). Single-trait fine-mapping was performed
with FINEMAP 1.4 (http://www.christianbenner.com/), as well as our extended version
of JAM (based on JAM from R2BGLIiMS; https://github.com/pjnewcombe/R2BGLIiMS)
that is included in the flashfm package. Custom code for the analysis of the Ugandan data
is available at https://github.com/nicolashernandezb/flashfm-analysis. The annotation
tools we used are HaploReg v4.1 (https://pubs.broadinstitute.org/mammals/haploreg/
haploreg.php) and Ensembl Variant Effect Predictor (VEP) GRCh37 (https://
grch37.ensembl.org/info/docs/tools/vep/index.html). We simulated genotype data with
hapgen2 (http://mathgen.stats.ox.ac.uk/genetics_software/hapgen/hapgen2.html).
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