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A B S T R A C T

Train timetable rescheduling — the practice of changing the routes and timings of trains in real-time to respond
to delays — can help to reduce the impact of reactionary delay. There are a number of existing optimisation
models that can be used to determine the best way to reschedule the timetable in any given traffic scenario.
However, many of these models do not adequately account for the acceleration and deceleration required for
trains to achieve the rescheduled timetable. The few models that do account for this are overly complex and
cannot be solved to optimality in sufficiently short times. In this study, we propose a new model for train
timetable rescheduling that uses statistical methods and historical data to parsimoniously take train speed into
account. The model is tested using a new set of instances based on real data from Derby station in the UK.
We show that the improved accuracy of the proposed model comes with little to no trade-off in terms of run
time compared to fixed-speed timetable rescheduling models.
1. Introduction

Reactionary delays are a significant problem in railway systems.
These are delays that are caused by the knock-on effect of prior delays.
In 2019, reactionary delays were responsible for 64.35% of total train
delay minutes in Great Britain (statistic provided by Network Rail). The
problem is particularly acute in large, busy station areas, where the
limited capacity of the station creates a bottleneck.

Reactionary delays can be reduced by performing timetable
rescheduling. Timetable rescheduling involves changing the planned
schedules of trains in real-time to respond to unexpected delays. The
aim of solving the Train Timetable Rescheduling Problem (TTRP) (Cac-
chiani et al., 2014) is to find a way to reschedule the timetable that is
achievable in practice and optimises some objective. TTRP models must
take into account the speed profile of each train, which describes how
the velocity of the train changes over time. If the speed profiles of trains
are not modelled with sufficient accuracy, then TTRP solutions may
perform worse than expected in practice. This has been demonstrated
by Hosteins et al. (2019) using a detailed railway simulator. Lack of
attention to speed profile modelling is therefore a significant risk to
the validity of TTRP models.

The focus of this paper is the development of techniques for im-
proving the modelling of speed profiles in TTRP models. In particular,
the model proposed by Reynolds et al. (2020) is extended to include
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approximate train speed trajectories. Using a new set of realistic in-
stances from Derby station in the UK, we show that this extended model
can be solved to optimality in times comparable to the original model
of Reynolds et al. (2020).

1.1. Problem description

The TTRP is solved following a disturbance to the timetable to
calculate an optimal rescheduled timetable. This disturbance could
consist of any set of delays that results in two trains requiring the
same infrastructure at the same time (a conflict), making the current
timetable infeasible. The rescheduled timetable — the solution to the
TTRP — consists of a new route and set of timings (i.e. a new schedule)
for each controlled train. Controlled trains are those that are forecast to
be inside a defined area of track during a time horizon. New routes can
involve stopping at different platforms from those originally planned,
taking different approaches to planned platform stops, or cancelling
stops altogether. The rescheduled timetable must contain no conflicts
and therefore be capable of being carried out in practice, respecting the
constraints of the signalling system. A solution is considered optimal if
it maximises a utility function representing the preferences of Network
Rail, the infrastructure manager in Great Britain. This is modelled as
the total weighted utility over all train stops which are carried out,
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where at each stop the utility disfavours lateness, platform change and
cancellation.

1.2. Structure of the paper

Key concepts and relevant literature are reviewed in Section 2.
Section 3 provides an overview of our proposed model and approach
to modelling speed profiles. Methods for estimating traversal times
are developed in Section 4. The model is then described in full in
Section 5. Section 6 presents a computational study. Section 7 contains
our conclusions and suggestions for future research.

2. Literature review

Many different variants of the TTRP have been described in the
literature. As a result, many different models have been proposed.
Much of this research is detailed in the surveys of Cacchiani et al.
(2014), Fang et al. (2015) and Corman and Meng (2015). The variants
of the TTRP discussed in this paper involve modelling the speed that
trains traverse sections of track using speed profiles. A speed profile
is commonly used to describe the evolution of speed either over time
or space. In this paper, speed profiles are defined over time. Formally,
the speed profile of a train 𝑘 is a continuous, non-linear function 𝑣𝑘 ∶
[0, 𝑇 ] → R+ mapping each time 𝑡 in the time horizon to the velocity 𝑣𝑘(𝑡)
of the train at that instant. However, it is computationally impractical
to optimise such a function for each train within a TTRP model. Our
literature review will focus specifically on the ways in which train
speed profiles have been approximated in TTRP models.

2.1. Fixed-speed and variable-speed models

Timetable rescheduling models can be classified as either fixed-
speed or variable-speed models, depending on how speed profiles are
modelled. An early reference to this terminology appears in Cordeau
et al. (1998, p. 393–396). In fixed-speed models, speed profiles are im-
plicitly modelled via the specification of a fixed minimum time that is
required for each train to traverse each segment of railway track. These
are called minimum traversal times because whilst trains are permitted
to stop in any segment and hence spend longer than this minimum
time, they cannot traverse the segment in a shorter amount of time.
In fixed-speed models, minimum traversal times are pre-computed and
apply regardless of the rescheduling actions that are proposed by the
model or the speed profiles required in practice to achieve them. The
fixed minimum traversal time of a segment may be the same for every
train that traverses it. Alternatively, minimum traversal times may be
calculated based on assumptions about the likely speed profile of a
particular train carrying out its originally planned schedule. There are
many examples of fixed-speed TTRP models, such as those presented
by Corman et al. (2010), Meng and Zhou (2014), Pellegrini et al.
(2014), Lamorgese et al. (2016) and Reynolds et al. (2020).

Fixed-speed models are an approximation of railway operations and,
as such, produce solutions that may be infeasible in practice. This situa-
tion is illustrated in Fig. 1. Consider a train traversing three segments of
track 𝑟0, 𝑟1 and 𝑟2 in sequence. If the train maintains a constant velocity,
then the traversal times of the segments are 𝑡𝑟0 , 𝑡𝑟1 and 𝑡𝑟2 , respectively.
Now suppose that the train comes to an unplanned stop in 𝑟2 as a result
of a rescheduling decision. A fixed-speed model will use the same fixed
traversal times for each segment, with an additional waiting time of
𝐷 in 𝑟2. However, in reality the train’s speed profile must change so
that it decelerates in order to stop, and accelerates afterwards. This
changes the real traversal times to 𝑡𝑣𝑎𝑟𝑟0

> 𝑡𝑟0 , 𝑡
𝑣𝑎𝑟
𝑟1

> 𝑡𝑟1 and 𝑡𝑣𝑎𝑟𝑟2
> 𝑡𝑟2 . As

a result, the disparity between actual traversal times and the traversal
times in a fixed-speed model can be large. The negative effects of these
disparities have been observed by Hosteins et al. (2019). They find that
high-quality solutions produced by the fixed-speed optimisation model
of Pellegrini et al. (2014) do not always perform well when tested using
2

microscopic railway simulation. They find that the extent of the issue
s dependent on the granularity of the model and the objective function
sed.
Variable-speed models attempt to overcome this problem by making

raversal times dependent on rescheduling actions. One way of achiev-
ng this is by iterating between a fixed-speed rescheduling model and
speed profile optimisation model. Speed profile optimisation models

re detailed kinetic models that optimise the speed profile of a single
rain carrying out a fixed schedule to minimise journey times or energy
onsumption. The relevant literature is summarised by Yang et al.
2016), Scheepmaker et al. (2017) and Yin et al. (2017). The traversal
imes in the fixed-speed model are updated in each iteration according
o the speed profiles required to achieve the rescheduling solution
hat it produced in the previous iteration. This iterative approach
as been explored by both D’Ariano et al. (2007b) and Mazzarello
nd Ottaviani (2007). Whilst iterative approaches laudably avoid the
eed for fundamental changes to rescheduling models, they do not
uarantee convergence to a solution that is feasible for both models.
oreover, it can be time consuming to solve a fixed-speed model mul-

iple times, which makes the iterative approach especially unsuitable
or the real-time environment in which rescheduling takes place.

To overcome these problems with the iterative approach, speed pro-
iles can be modelled directly within the rescheduling model. Several
uthors have suggested simple ways to account for the disparity that
rises between fixed traversal times and actual traversal times following
nplanned stops (as described in the example above). Hosteins et al.
2019) suggest adding a fixed additional time to the traversal time of
ny segment in which a train comes to a stop. Rodriguez (2007) sug-
ests adding an additional time to the traversal time of the subsequent
egment that depends linearly on the amount of time the train stops
or. Whilst these methods have the merit of being simple and leading
o linear constraints, they are clearly very approximate. In reality, the
dditional acceleration time is not a fixed constant, and it is not linear
n the amount of stopping time. Lusby et al. (2013) show that speed
rofiles can be modelled within the subproblem of a model solved
sing column generation. This allows speed profiles to be modelled in
more sophisticated way using kinematic formulae. A similar column

eneration approach to that of Lusby et al. (2013) is used in this paper.
owever, speed profiles are modelled differently to overcome some

pecific problems that are discussed in Section 4.
A different approach is to select the speed profile of each train in

dvance and then disallow rescheduling actions that would compromise
heir validity. This approach, taken by both Corman et al. (2009)
nd Caimi et al. (2012), is suitable if a green wave policy is in operation.
green wave policy dictates that trains must only come to a stop within

tations, thereby reducing unnecessary braking and acceleration and
aving energy. However, it does not solve the problem of modelling
peed profiles within the general TTRP, where trains may come to a
top anywhere on the track network.

More recently, different ways of integrating the TTRP with speed
rofile optimisation have been proposed by Xu et al. (2017), Zhou
t al. (2017) and Luan et al. (2018a,b). These models seek to deter-
ine the actual speed profile to be used by each train simultaneously
ith carrying out timetable rescheduling. The principal benefit of

his integration is that by solving the two problems simultaneously,
olutions with better overall quality can be achieved. However, to
ntegrate the problems it is necessary to assume that precise real-time
nformation about both train speed profiles and signalling states are
entrally available, and that both can be centrally and automatically
ontrolled. In other words, these models are only useful for railways in
hich the functions of traffic control and train operation are integrated

see Yin et al., 2017, p. 568 for a discussion of this integration). They
re typically only integrated on new and expensive high-speed lines. As
result, the integration of the TTRP with speed profile optimisation is

nappropriate for practical use on the majority of railways.
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Fig. 1. An example of how the speed profile assumptions made in fixed-speed models compare to actual speed profiles. The plots depict a scenario in which a train traverses 𝑟0,
1 and 𝑟2 in sequence. On the left, the train does not stop; on the right, the train stops in 𝑟2.
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.2. Physics-based and data-driven models

Each of the models proposed by Lusby et al. (2013), Xu et al.
2017), Zhou et al. (2017) and Luan et al. (2018a,b) are physics-based.
his means that traversal times of track segments are derived from ki-
etic speed profile modelling. Track segment distances and train speed
apabilities are combined with assumptions about the tractive force
pplied by the driver to calculate traversal times. This kind of kinetic
odelling has traditionally been used to estimate running times for

imetable construction and evaluation — an introduction to this topic
s provided by Brünger and Dahlhaus (2014). Luan et al. (2018a,b)
ncorporate much of this kinetic modelling into a mixed-integer non-
inear programming formulation, and propose two heuristics for solving

linearised version of the formulation. Heuristics are used because
ealistic instances cannot be solved to optimality in suitable compu-
ation times. Both Xu et al. (2017) and Zhou et al. (2017) discretise
elocity, thus avoiding direct representation of the non-linear kinetics
f train motion. Xu et al. (2017) extend the Alternative Graph model
see D’Ariano et al. (2007a)) to incorporate speed-dependent traversal
imes. Zhou et al. (2017) propose a time–space–speed network model
or the offline train timetabling problem on a high-speed line with
ower supply constraints.

The physics-based approach to traversal time modelling has practi-
al disadvantages. Detailed information about the physical properties
f the track and trains is required, despite the fact that it can be hard
o obtain. For example, Luan et al. (2018b) use physical parameters
or the resistance between train and track that are individualised for
ach train and block section. Finding this information is not simply a
ata collection exercise: many parameters need to first be estimated
nd then calibrated within the overall model. Although sophisticated
ethods such as those of Bešinović et al. (2013) have been developed

o estimate the parameters used in physical speed profile calculations,
ach estimated parameter is still subject to uncertainty. The effect of
his uncertainty on rescheduling models is not well understood. Our
odel bypasses the need for these physical parameters, and is therefore

ignificantly less onerous to test and deploy. It is also easier to adapt to
hanges in infrastructure than physics-based models, since any changes
ill be reflected in the data and can be used to update traversal times.
hese are significant advantages given that practical implementations
f the TTRP are still rare (see Lamorgese et al. (2018) for a description
f the state of implementation).

There are also important modelling disadvantages to using the
hysics-based approach. In a physics-based model, the modeller must
ake assumptions about which speed profiles should be feasible. For

xample, Lusby et al. (2013) and Zhou et al. (2017) assume constant
ates of acceleration over each section of track and each time interval,
espectively. Lusby et al. (2013) allow trains to travel at any real-valued
3

peed below the speed limit, whilst Zhou et al. (2017) and Xu et al.
2017) allow trains to travel only at one of a few pre-defined speeds
n each block section. Zhou et al. (2017) allow trains to transition
etween any two speed levels provided limits on the acceleration and
eceleration capabilities of the train are respected, whilst Xu et al.
2017) allow trains to transition only between adjacent speed levels. All
f these approaches to constraining speed profiles run the simultaneous
isks of both eliminating perfectly reasonable speed profiles from the
easible space, and including many speed profiles that are very unlikely
o arise in practice.

In this paper, we avoid these problems by taking a data-driven
pproach. This terminology refers to the fact that we infer traversal
imes from historical observations, leading to an innovative synthesis
f statistical techniques with optimisation. Our data-driven approach
rovides a natural way to model traversal times that reflects speed
rofiles that have actually arisen in the past on the parts of track that
re modelled. Rather than making assumptions about how to constrain
peed profiles, our approach allows the data to speak for itself. Results
or our application show that the use of more than one traversal time is
ustified by the data on only a subset of the routes. This highlights an
dditional advantage of our data-driven approach. It is able to target
ncreased model complexity (a higher number of possible traversal
imes) at parts of the track where it can be best justified by the data.
he result is a significantly more parsimonious model than any of the
hysics-based models that have been mentioned.

.3. Contributions

The contributions made by this paper can be summarised as follows:

1. We propose a new variable-speed model for the TTRP in complex
station areas. The model utilises a time–space–type graph to
approximate train speed profiles.

2. We show how the application of statistical methods to histor-
ical data can be used to model traversal times in a variable-
speed model. This data-driven approach results in a parsimo-
nious model that is less onerous to test and deploy than existing
physics-based models. Moreover, it avoids the need to make
restrictive assumptions about speed profiles.

3. We present a new set of instances based on real data from Derby
station in the UK.

4. We show that these instances can be solved to optimality or
provably near to optimality in times suitably short for real-time
operations. In particular, the solving times are comparable with
the fixed-speed model proposed by Reynolds et al. (2020).
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Fig. 2. The route graph 𝐺𝑟 for the area centred on Derby station that is used in our computational experiments.
3. Model overview

This paper presents a model for the TTRP that is based on a
time–space–type (TST) graph. This is a directed graph 𝐺 = (𝑁0 ∪
{𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘}, 𝐴) that models the state of each train over the time
horizon using a path from the 𝑠𝑜𝑢𝑟𝑐𝑒 node to the 𝑠𝑖𝑛𝑘 node. Each node
in 𝑁0 represents a state in which a train could be, whilst each arc
represents a possible transition between these states.

Each node in 𝑁0 corresponds to a combination (𝑟, 𝑡, 𝑣) of a route 𝑟, a
time interval 𝑡 and a speed profile type 𝑣. These are defined as follows:

• A route is a short length of track that runs from one railway signal
to another. The controlled area of track is formed of a set of routes
𝑁𝑟, that can be modelled as a route graph 𝐺𝑟 = (𝑁𝑟, 𝐴𝑟), where
the arcs in 𝐴𝑟 represent feasible route transitions. Fig. 2 shows
the route graph for an area centred on Derby station.

• Time intervals are periods of time, each of length 10 s, that
together form a partition  of the time horizon. The time horizon
begins at the time the model is solved and lasts for one hour.

• Each traversal of a route 𝑟 ∈ 𝑁𝑟 by a train is modelled as having
a speed profile type. The minimum number of time intervals 𝐿𝑣

𝑟
required to traverse 𝑟 is dependent on the speed profile type 𝑣 that
is used. In general, the set of speed profile types is unrestricted,
i.e. 𝑁𝑣 = {𝑣0, 𝑣1,… , 𝑣𝑛}. Whilst there is a general set of all types
𝑁𝑣, the possible speed profile types for any given route 𝑟 are
𝑁𝑣

𝑟 ⊆ 𝑁𝑣. The definition of these speed profile types and the
calculation of the traversal times is the subject of Section 4.

The transition between speed profile types is modelled using a
speed profile type graph 𝐺𝑣 = (𝑁𝑣, 𝐴𝑣), where 𝐴𝑣 = {(𝑣𝑖, 𝑣𝑖), (𝑣𝑖, 𝑣𝑖+1),
(𝑣𝑖+1, 𝑣𝑖)|𝑖 ∈ 0, 1, 2,… , 𝑛 − 1}. The speed profile type used by a train on
a given route is constrained to be adjacent in the type graph 𝐺𝑣 to the
type used on the preceding route. This requirement is enforced by the
arc set 𝐴𝑣. While the transition through consecutive speed profile types
can be prohibitive for large values of 𝑛, i.e. transitioning from 𝑣𝑛 to 𝑣0
requires the use of 𝑛 routes, we will show in Section 4 that for small 𝑛
this restriction is supported by railway operational data. The rationale
for only allowing consecutive speed profile type transitions is that fast
speeds and stopping must be separated by periods of acceleration or
deceleration that involve slower speeds. Note that this assumption is
similar to the constraint of Xu et al. (2017) stating that the speed levels
on consecutive block sections must be at most one level apart. However,
we use speed profile types instead of physically defined speed levels
(e.g. 250–300 km/h).

3.1. Example TST graph

A small explanatory example of a TST graph is depicted in Fig. 3.
In this example, the route graph is given by

𝑁𝑟 = {𝐴𝐵,𝐵𝐶,𝐶𝐷,𝐷𝐸} and 𝐴𝑟 = {(𝐴𝐵,𝐵𝐶), (𝐵𝐶,𝐶𝐷), (𝐶𝐷,𝐷𝐸)}

and the time horizon  = {0,… , 7} consists of eight time intervals.
There are three speed profile types, 𝑣0, 𝑣1 and 𝑣2, although type 𝑣2 is
not possible in routes 𝐶𝐷 or 𝐷𝐸 (𝑁𝐶𝐷 = {𝑣 , 𝑣 } = 𝑁𝐷𝐸). Type 𝑣
4

𝑣 0 1 𝑣 0
corresponds to stopping, since the arcs join nodes corresponding to the
same route at consecutive time intervals. The traversal times of type 𝑣1
are 𝐿1

𝐴𝐵 = 3, 𝐿1
𝐵𝐶 = 2 and 𝐿1

𝐶𝐷 = 2. The traversal times of type 𝑣2,
𝐿2
𝐴𝐵 = 1 and 𝐿2

𝐵𝐶 = 1, are shorter. The graph 𝐺 contains arcs allowing
movement between speed profile types, but movement between types
𝑣0 and 𝑣2 is not possible. The thick blue line is an example 𝑠𝑜𝑢𝑟𝑐𝑒−𝑠𝑖𝑛𝑘
train path in 𝐺. It corresponds to a sequential traversal of all routes,
with 𝐴𝐵 and 𝐶𝐷 traversed with speed profile type 𝑣1, 𝐵𝐶 with type 2,
and the train coming to a stop in 𝐷𝐸.

A solution to the problem (i.e. the new schedule) comprises one
𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑠𝑖𝑛𝑘 path in 𝐺 for each controlled train 𝑘 ∈ . This path
completely describes the sequence of routes to be traversed by 𝑘, the
time intervals in which each route traversal begins and the speed profile
type of each traversal.

3.2. Speed profile types

In fixed-speed models, the traversal time of a route 𝑟 ∈ 𝑁𝑟 is
represented by a single value 𝐿𝑟. Trains are usually permitted to come
to a stop on any route. As a result, 𝐿𝑟 is merely the minimum traversal
time because a train may spend longer than 𝐿𝑟 in route 𝑟 by stopping
in it. Whilst 𝐿𝑟 may depend on the train, route or pre-planned speed
profile, it does not depend on the speed profile required to achieve the
rescheduled solution. We refer to stopping (denoted by 𝑣0) and ordinary
traversal (denoted by 𝑣) as speed profile types. In this case, the speed
profile type graph 𝐺𝑣 contains only two nodes, with the arcs permitting
the transition between these two speed profile types. Fig. 4 presents 𝐺𝑣
for fixed-speed models. This figure visualises the fact that both stopping
and ordinary traversal are possible on any route, regardless of which
type occurred on the previous route.

In this paper, we propose a natural extension to this idea by defining
one or more traversal times for each route. As such, the set of possible
times for a train to traverse route 𝑟 is denoted by 𝑟 = {𝐿1

𝑟 , 𝐿
2
𝑟 ,… , 𝐿𝑛

𝑟},
where 𝐿1

𝑟 > 𝐿2
𝑟 > ⋯ > 𝐿𝑛

𝑟 . The traversal time that is selected from
𝑟 depends on the speed profile required to perform the rescheduled
solution. Replacing the single traversal time of fixed-speed models with
a set of traversal times leads to a variable-speed model for the TTRP.

The speed profile type graph for variable-speed models is presented
in Fig. 5. This figure shows that it is only possible for a train to
transition between adjacent speed profile types for consecutive routes.
Such speed profile type graphs approximate the actual speed profile
types that are used by trains in railway operations. The discretisation of
the speed profile types given by 𝐺𝑣 provides flexibility in the modelling
of the TTRP where different sets of speed profile types are used for each
route 𝑟. The estimation of traversal times and the methods to construct
the most appropriate 𝐺𝑣 for each route 𝑟 are discussed in Section 4.

4. Traversal time estimation

It is important to address the question of how to calculate the
variable traversal times for each 𝐿 ∈ 𝑟. This is because the extent to
which these values are representative of the actual traversal times of

trains with different speed profiles is a major determinant of whether
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Fig. 4. Speed profile type graph for a fixed-speed model.

he solutions produced by the model are achievable in practice. The
alculation of traversal times is therefore an inextricable part of the
odelling methodology. In the practical application of the TTRP con-

idered in this paper, the railway operational data indicates that at
ost two traversal times are required for each route. Thus, the traversal

imes 𝐿1
𝑟 and 𝐿2

𝑟 must be calculated for each route 𝑟.
In fixed-speed models, traversal times can be estimated using classi-

al running time estimation techniques — see (Brünger and Dahlhaus,
014) for a review. Stochastic running time estimation methods have
lso been proposed for use in timetable simulation (Yuan and Medeossi,
014). However, the question of how to calculate traversal times for
ariable-speed TTRP models has not been adequately addressed. This
ask poses several unique challenges that straddle the topics of running
ime estimation and timetable rescheduling. In our case, two times 𝐿1

𝑟
nd 𝐿2

𝑟 that represent trains with different speed profiles are required.
hese must be meaningful in the sense that it should be rare or

mpossible for a train to use types 𝑣0 and 𝑣2 in consecutive routes, but
possible for any other combination to occur. An additional challenge is
posed by the discrete nature of time in the model, meaning that times
must correspond to a whole number of time intervals. Finally, routes
in station areas are often much shorter than the distances over which
running times are typically calculated.

Our approach involves estimating traversal times based on historical
data. The data that is used was collected by a Train Describer over a
seven month period. A Train Describer is a real-time information system
that records the sequence of routes traversed by each train and the
number of seconds spent in each one.

4.1. Method 1: Estimating a single time (fixed-speed)

First we summarise the method employed by Reynolds et al. (2020)
for estimating a single traversal time 𝐿𝑟 for a given route 𝑟 ∈ 𝑁𝑟
in a fixed-speed model. The data used is 𝐲𝑟 = (𝑦𝑟1,… 𝑦𝑟𝑛𝑟 ), a vector
containing the number of seconds spent in 𝑟 by 𝑛𝑟 different trains.
Unimodal statistical distributions are generally not appropriate for
modelling 𝐲𝑟. This is because the times arise from different processes
5

according to the speed profile used by a train in 𝑟. By modelling each
speed profile type as a different process, we can model 𝐲𝑟 as a mixture
of unimodal distributions. The speed profile type of each observation
is unobserved, but this can be estimated by fitting a mixture model.
Specifically, we fit a Gaussian Mixture Model (GMM) to each 𝐲𝑟 using
the Expectation-Maximisation (EM) algorithm. This is a model-based
clustering technique that identifies groups of historical times (called
clusters) that approximately follow a Gaussian distribution. An intro-
duction to GMMs and the EM-algorithm is provided by Bouveyron et al.
(2019).

To fit a GMM to 𝐲𝑟, the number of clusters (each corresponding to
a speed profile type) must be specified in advance. The appropriate
number is different for each route. For example, on the open line
where trains rarely travel below the line speed there is often only
one process occurring and therefore a single cluster is appropriate.
Conversely, up to three different speed profile types are discernible
on many routes within stations. To decide the number of clusters, we
fit three models with 1, 2 and 3 clusters respectively, and choose the
model that optimises the Bayesian Information Criterion (Bouveyron
et al., 2019, p. 51).

In the fixed-speed model, a single time 𝐿𝑟 must be chosen for each
oute from the fitted mixture distribution. The cluster with the smallest
ean is selected, since this reflects the times of trains travelling close

o the speed limit. From this component, the mean is rounded up to the
earest number of whole time intervals to produce 𝐿𝑟. Whilst rounding
ntroduces approximation error, rounding up ensures that the feasibility
f a solution to the model is not compromised. An example of the result
f this clustering process is shown in Fig. 6.

.2. Method 2: Extension to multiple times (variable-speed)

The method presented in Section 4.2 can be extended to produce
wo traversal times, 𝐿1

𝑟 and 𝐿2
𝑟 , for routes with three clusters. The

raversal times 𝐿1
𝑟 and 𝐿2

𝑟 are calculated by taking the smallest and
second smallest means of the clusters, respectively, and rounding up to
the nearest whole number of time intervals. This allows more speed
profile types to be represented in the model. Trains travelling close
to the speed limit have a traversal time of 𝐿1

𝑟 , whilst trains that
accelerate/decelerate or coast below the speed limit have a traversal
time of 𝐿2

𝑟 . Observations in the third cluster are discarded, since these
correspond to stopping, and that is not modelled using a traversal time.

Given the assumptions made about how clusters correspond to
speed profile types, we expect to observe that when trains traverse
two routes consecutively, the respective traversals are rarely of types
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Fig. 5. A general speed profile type graph 𝐺𝑣 = (𝑁𝑣 , 𝐴𝑣) for variable-speed models.
Fig. 6. The histogram of historical traversal times for route 5332_5330. The three clusters identified are shown in different colours. The rounded mean of each cluster is shown
as a vertical line. The left-most vertical line (40 s, or 𝐿𝑟=4) is used as the final estimate of the route traversal time.
𝑣0 → 𝑣2 or 𝑣2 → 𝑣0. This is because these transitions represent an
abrupt change between stopping and a fast speed within the space of a
single route. To test whether this is the case, a model of transitions
between different clusters is created using historical data from the
Train Describer. For each historical train journey 𝑗, this transition data
consists of both the sequence (𝑟𝑗1,… , 𝑟𝑗𝑛𝑗 ) ∈ (𝑁𝑟)

𝑛𝑗 of routes traversed,
and the corresponding sequence (𝑡𝑗1,… , 𝑡𝑗𝑛𝑗 ) ∈ R𝑛𝑗

+ of traversal times
for each route in seconds. Since the clustering process classifies each
traversal time 𝑡𝑗𝑖 as belonging to a particular speed profile type, the
journey can also be represented as a sequence (𝑖𝑗1,… , 𝑖𝑗𝑛𝑗 ) ∈ {𝑣0, 𝑣1, 𝑣2}

𝑛𝑗

of speed profile types.
In order to test the suitability of the clustering method, we model

the speed profile type sequences probabilistically using a discrete
Markov chain (𝑋𝑡)𝑡∈N with state space 𝑁𝑣 = {𝑣0, 𝑣1, 𝑣2}. This means
that for each time step 𝑡 ∈ N = {0, 1, 2,…}, 𝑋𝑡 is a discrete random
variable taking values in 𝑁𝑣, such that

• Markov Property
P
(

𝑋𝑡+1 = 𝑖𝑡+1|𝑋𝑡 = 𝑖𝑡,… , 𝑋0 = 𝑖0
)

= P
(

𝑋𝑡+1 = 𝑖𝑡+1|𝑋𝑡 = 𝑖𝑡
)

for
any 𝑡 ≥ 1 and 𝑖𝑡 ∈ 𝑁𝑣.
In our application, the Markov property means that the condi-
tional probability of a train using a speed profile type, given the
types used on all previous route traversals, only depends on the
type used on the most recently traversed route.

• Time homogeneous
P
(

𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖
)

= P
(

𝑋𝑡 = 𝑗|𝑋𝑡−1 = 𝑖
)

for any 𝑡 ≥ 1 and 𝑖, 𝑗 ∈
𝑁𝑣.
This means that the probability of transitioning from state 𝑖 to 𝑗
is independent of 𝑡, and we denote this transition probability by
𝑝𝑖𝑗 .

The transition probabilities of this Markov chain can be inferred
from the data. If 𝑛𝑖𝑗 is the number of times 𝑗 immediately follows 𝑖
in a speed profile type sequence for a train journey in the data, then
𝑝𝑖𝑗 is estimated by

𝑝𝑖𝑗 =
𝑛𝑖𝑗

∑

𝑚∈𝑁𝑣
𝑛𝑖𝑚

. (1)

The clustering and transition probabilities were calculated using
data from Derby station, and the estimated transition probabilities
are shown in Fig. 7. Whilst 𝑝𝑣0𝑣2 = 0.01 is small, which is expected,
𝑝 = 0.21 is higher than expected. It would be problematic to disallow
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𝑣2𝑣0
Fig. 7. The Markov chain (𝑋𝑡)𝑡∈N, with estimated transition probabilities shown.
Probabilities are rounded to two decimal places.

transitions from 𝑣2 to 𝑣0 in our optimisation model when the historical
data shows that this occurs after as many as 21% of type 𝑣2 traversals.

The higher than expected value of 𝑝𝑣2𝑣0 could result from inade-
quacies in the clustering methodology that lead to misclassification of
traversal times. One particular concern is that the Gaussian distribution
may not be appropriate to model clusters. Another possibility is that
distinct and meaningful clusters do not exist for some routes, or do not
strongly correspond to speed profile types. A third possibility is that
𝑝𝑣2𝑣0 is a poor estimate of the true transition probability. This could
have arisen because for some routes, the cluster representing type 𝑣2
has only a small number of data points. Finally, it may be inappropriate
to assume that the Markov property holds. For example, the distribution
of 𝑋𝑡 given the values at each previous time step might be dependent
on the value of 𝑋𝑡−2 in a way that our probabilistic model has failed to
reflect.

The potential problems that have been identified may affect dif-
ferent route transitions to different extents. It is possible to estimate
transition probabilities 𝑝𝑟,𝑟

′

𝑖𝑗 for each route transition (𝑟, 𝑟′) ∈ 𝑁𝑟 sepa-
rately. The probabilities 𝑝𝑟,𝑟

′

𝑖𝑗 are calculated in the same way as 𝑝𝑖𝑗 using
formula (1) with one difference. The difference is that 𝑛𝑖𝑗 is replaced
by 𝑛𝑟𝑖𝑗 , the number of observations of (𝑟, 𝑡) → (𝑟′, 𝑡′) in the transition
data such that 𝑡 is classified as type 𝑖 and 𝑡′ is classified as type 𝑗. The
distributions of 𝑝𝑟,𝑟

′
𝑣0𝑣2 and 𝑝𝑟,𝑟

′
𝑣2𝑣0 over all route transitions (𝑟, 𝑟′) ∈ 𝑁𝑟 are

shown in Fig. 8. There is considerable variation across different route
transitions, with 𝑝𝑣2𝑣0 being acceptably low for some, and unacceptably
high for others.
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Fig. 8. Boxplots showing the distribution of transition probabilities for types 𝑣0 → 𝑣2 and 𝑣2 → 𝑣0.
A severe limitation of this approach is that the transition data is
used only for validation and not for the clustering, which is performed
separately for each route. The transition data potentially contains useful
information that could be used when performing the clustering. For
example, a transition from a cluster of type 𝑣2 to a cluster of type 𝑣0
might indicate that the second observation is misclassified and should
be in cluster 𝑣1. Transition patterns also contain useful information for
selecting the number of clusters. This limitation is addressed in the next
section, where the full transition data is utilised.

4.3. Method 3: Transition-based multiple traversal time estimation

This method for estimating differentiated traversal times is designed
to address the problems identified with Method 2. It uses the full
transition data to estimate the traversal times, and it does not rely
on the Markov property or assume that the data follows a Gaussian
distribution.

There are four main steps involved in Method 3. The first step is to
identify, for each route 𝑟 ∈ 𝑁𝑟, which observations from 𝐲𝑟 arise from a
train coming to a complete stop in 𝑟 (type 𝑣0). This is performed using
traversal time data alone, without transition data. The distributions of
times recorded for each route are very heterogeneous, which makes
using standard parametric distribution fitting challenging. We therefore
take an ad hoc approach. Any observation that is longer than 120 s, or in
the top 10% of observations is assumed to arise from a train coming to
a stop. These values (120 s and 10%) are selected using our familiarity
with the specific area being modelled.

The second step is to classify the remainder of the traversals as
either type 𝑣1 or type 𝑣2. This is performed using the transition data
alongside our classification of type 𝑣0 transitions from the first step.
Specifically, a route traversal is classified as type 𝑣1 if it occurs imme-
diately before or after another route traversal that has been classified as
type 𝑣0. Conversely, route traversals that are not adjacent to traversals
of type 𝑣0 are classified as type 𝑣2. This completes the classification of
each route traversal into a speed profile type.

The third step is to calculate the traversal times 𝐿1
𝑟 and 𝐿2

𝑟 using the
classification from step two. For 𝑖 = 1, 2, the median 𝑙𝑖𝑟 (in seconds) of
type 𝑣𝑖 observations is divided by 10 (the length of a time interval) and
rounded up to the nearest whole number to obtain 𝐿𝑖

𝑟. Medians are used
because they are not unduly influenced by more extreme observations
in each group. The rounding process is necessary as a result of the
discretisation of time in the TST graph.

The fourth and final step is to decide, for each route, whether the
data supports using two different traversal times or whether a single
traversal time is more appropriate. Due to rounding, routes 𝑟 for which
𝑙1𝑟 − 𝑙2𝑟 < 10 have 𝐿1

𝑟 = 𝐿2
𝑟 , so these should have only one traversal time

i.e. 𝑁𝑣
𝑟 = {𝑣0, 𝑣1}. For other routes, we check for statistical evidence

that the true values 𝑙1𝑟 and 𝑙2𝑟 of the medians of groups 𝑣1 and 𝑣2 are
significantly different (𝑙1𝑟 and 𝑙2𝑟 are estimates of 𝑙1𝑟 and 𝑙2𝑟 , respectively).
Mood’s test for a difference in medians (Mood, 1950) is used to assess
this. A one-tailed test is performed at significance level 95% to test
the null hypothesis that 𝑙2𝑟 = 𝑙1𝑟 against the alternative hypothesis that
𝑙2𝑟 > 𝑙1𝑟 . When the null hypothesis is rejected, both of the traversal times,
𝐿1
𝑟 and 𝐿2

𝑟 , are used. For the remaining routes, only 𝐿1
𝑟 is used because
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there is a lack of statistical evidence that using a second traversal time
is justified. An illustration of the method for a particular route that is
given two traversal times is shown in Fig. 9. The results of carrying out
this method on all routes for Derby station are described and discussed
in Section 6.2.

5. Model description and solution method

The results obtained from traversal time estimation are used to
determine both the TST graph, and sets of graph arcs that are used
to model track capacity constraints. These objects, in turn, are used to
define a Mixed Integer Programming model for the TTRP that is solved
using a branch-and-price algorithm.

5.1. TST graph

Recall from Section 3 that 𝐺𝑟 = (𝑁𝑟, 𝐴𝑟) is the route graph and that
𝐺𝑣 = (𝑁𝑣, 𝐴𝑣) is the speed profile type graph. The set of discrete time
intervals is denoted by  , whilst  is the set of trains. For each route
𝑟, 𝑁𝑣

𝑟 ⊆ 𝑁𝑣 is the set of possible speed profile types for route 𝑟.
The TST graph is given by

𝐺 = (𝑁0 ∪ {𝑠𝑜𝑢𝑟𝑐𝑒, 𝑠𝑖𝑛𝑘}, 𝐴),

where, in addition to the artificial source and sink, the nodes of 𝐺 are
given by

𝑁0 =
{

(𝑟, 𝑡, 𝑣) ∈ 𝑁𝑟 ×  ×𝑁𝑣 ∶ 𝑣 ∈ 𝑁𝑣
𝑟
}

.

The directed arc set 𝐴 =
⋃6

𝑖=1 𝐴𝑖 of 𝐺 consists of six different arc types.
These six types and their interpretations are given below. Fig. 10 shows
an example arc of each different type in a small artificial example of
𝐺.

• 𝐴1 = {(𝑠𝑜𝑢𝑟𝑐𝑒, (𝑟𝑘0 , 𝑎
𝑘
0 , 𝑣

𝑘
0)) ∶ 𝑘 ∈ }

Entering from the source node to the first known position 𝑟𝑘0 of train
𝑘 within the time horizon and modelled area, at time interval 𝑎𝑘0 , and
speed profile type 𝑣𝑘0 .

• 𝐴2 = {((𝑟, 𝑡, 𝑣0), (𝑟, 𝑡 + 1, 𝑣0)) ∶ (𝑟, 𝑡, 𝑣0) ∈ 𝑁0 and (𝑟, 𝑡 + 1, 𝑣0) ∈ 𝑁0}
Waiting in route 𝑟 for one time interval when speed profile type is 0
(i.e. train is stopped).

• 𝐴3 = {((𝑟, 𝑡, 𝑣0), (𝑟, 𝑡, 𝑣1)) ∶ (𝑟, 𝑡, 𝑣0) ∈ 𝑁0 and (𝑟, 𝑡, 𝑣1) ∈ 𝑁0}
Transitioning from speed profile type 0 (stopped) to type 1 so that
the train can begin traversing 𝑟 again.

• 𝐴4 = {((𝑟, 𝑡, 𝑣), (𝑟′, 𝑡 + 𝐿𝑣
𝑟 , 𝑣

′)) ∶ (𝑟, 𝑟′) ∈ 𝐴𝑟, (𝑣, 𝑣′) ∈ 𝐴𝑣,
(𝑟, 𝑡, 𝑣), (𝑟′, 𝑡 + 𝐿𝑣

𝑟 , 𝑣
′) ∈ 𝑁0, 𝑣 ≠ 𝑣0}

Traversing 𝑟 with speed profile type 𝑣, and arriving in a successive
route 𝑟′ with speed profile type 𝑣′ after a traversal time of 𝐿𝑣

𝑟 .
• 𝐴5 = {((𝑟, 𝑇 , 𝑣), 𝑠𝑖𝑛𝑘) ∶ 𝑟 ∈ 𝑁𝑟, 𝑣 ∈ 𝑁𝑣}
Exiting to the sink node at the end of the time horizon.

• 𝐴6 = {((𝑟, 𝑡, 𝑣), 𝑠𝑖𝑛𝑘) ∶ 𝜎+(𝑟) = ∅ and (𝑟, 𝑡, 𝑣) ∈ 𝑁, 𝑣 ≠ 𝑣0}
Exiting to the sink node from a node at the boundary of the area of
track modelled. The train cannot exit whilst stationary.
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Fig. 9. A histogram of historical traversal times for a particular route. The three estimated groups are shown in different colours, and estimates for 𝐿1
𝑟 and 𝐿2

𝑟 are marked vertical
lines.
Fig. 10. An example TST graph, with examples of arcs from different sets 𝐴1–𝐴6 labelled.
5.2. Track capacity constraints

A feasible solution to the TTRP is a set of 𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑠𝑖𝑛𝑘 paths
in 𝐺, one for each train, that collectively satisfy the constraints of
the signalling system. The signalling system is a safety system that
limits track capacity and regulates train movements to avoid physical
collisions. The type of signalling system modelled is a sectional-release
interlocking system. This takes into account track subdivisions smaller
than routes, called track circuits. All of the track circuits in a route are
locked before a train may enter the route, and then released individually
once the train has vacated each track circuit. Between locking and
release, a track circuit cannot be locked by any other train. Because
track circuits can form part of more than one route, the capacities of
routes are not always independent.

The constraints induced by the signalling system can be modelled
as capacities in the time–space–speed graph. Each pair (𝑟, 𝑡) ∈ 𝑁𝑟× of
one route and one time interval is regarded as a time-space resource. The
capacity of these resources can be consumed by trains in two different
ways: occupying and banning. Resource (𝑟, 𝑡) is occupied by a train if and
only if it has traversed 𝑟 and at least one of the track circuits in 𝑟 is still
locked during time interval 𝑡. By contrast, a train bans a time-space
resource (𝑟′, 𝑡) if it makes route 𝑟′ unavailable during time interval 𝑡
as a result of occupying (𝑟, 𝑡), where 𝑟 is a distinct route with track
circuits in common with 𝑟′. These terms are illustrated in more detail
by Reynolds et al. (2020).
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The capacity of each time-space resource (𝑟, 𝑡) is subject to two
constraints:

1. (𝑟, 𝑡) cannot be occupied more than once; and
2. (𝑟, 𝑡) cannot be both banned and occupied.

To enforce these constraints using the capacities of arcs in 𝐺, two sets of
arcs, 𝐴𝑟,𝑡 and 𝐴̄𝑟,𝑡, are defined for each time-space resource (𝑟, 𝑡). These
are defined such that a train path contains an arc in 𝐴𝑟,𝑡 if and only
if it occupies (𝑟, 𝑡), whilst a train path contains an arc in 𝐴̄𝑟,𝑡 if and
only if it bans (𝑟, 𝑡). Reynolds et al. (2020) show how these sets can
be constructed on a time-space graph without speed profile types. We
extend this to show how they can be constructed on the TST graph 𝐺.
Fig. 11 visualises an example of a set 𝐴𝑟,𝑡.

A train occupies (𝑟, 𝑡) if and only if the 𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑠𝑖𝑛𝑘 path in 𝐺
assigned to that train contains a node from the set

𝑊𝑟,𝑡 =
{

(𝑟, 𝑡′, 𝑣′) ∶ 𝑣′ ∈ 𝑁𝑟
𝑣 , 𝑡

′ ∈ {𝑡 − (𝐿𝑣′
𝑟 + ℎ𝑟) + 1,… , 𝑡}

}

,

where ℎ𝑟 is headway time left for the release of route 𝑟 to occur. To see
this, suppose that a train path contains such a node (𝑟, 𝑡′, 𝑣′). Then the
track circuits of 𝑟 cannot all be released until the train has traversed 𝑟,
and the headway time ℎ𝑟 has elapsed. This cannot occur before time
interval 𝑡′ +𝐿𝑣′

𝑟 +ℎ𝑟 ≥ 𝑡− (𝐿𝑣′
𝑟 +ℎ𝑟) + 1+ (𝐿𝑣′

𝑟 +ℎ𝑟) = 𝑡+1, meaning that
at least some track circuits are still locked during time interval 𝑡.
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Fig. 11. An illustration of 𝑊𝑟,𝑡 and 𝐴𝑟,𝑡 for a specific time-space resource (𝑟, 𝑡) ∈ 𝑁𝑟 ×  in an example graph 𝐺. The nodes in 𝑊𝑟,𝑡 and arcs in 𝐴𝑟,𝑡 are highlighted in red. The
relevant times are ℎ𝑟 = 1, 𝐿0

𝑟 = 0, 𝐿1
𝑟 = 2 and 𝐿2

𝑟 = 1.
A train bans (𝑟, 𝑡) if and only if the 𝑠𝑜𝑢𝑟𝑐𝑒− 𝑠𝑖𝑛𝑘 path in 𝐺 assigned
to that train contains a node from the set

𝑊̄𝑟,𝑡 =
{

(𝑟′, 𝑡′, 𝑣′) ∶ 𝑟′ ∈ 𝑆𝑟, 𝑣
′ ∈ 𝑁𝑟

𝑣 , 𝑡
′ ∈ {𝑡 − 𝑡(𝑟′, 𝑣′, 𝑟) + 1,… , 𝑡}

}

,

where 𝑆𝑟 is the set of routes distinct from 𝑟 that share at least one
track circuit with 𝑟. The quantity 𝑡(𝑟′, 𝑣′, 𝑟) is the minimum number of
time intervals between the track circuits of route 𝑟′ being locked, and
all of the track circuits common to 𝑟 and 𝑟′ being released, when 𝑟′ is
traversed using speed profile type 𝑣′. This is given by

𝑡(𝑟′, 𝑣′, 𝑟) = ⌈𝜃(𝑟′, 𝑟)𝐿𝑣′
𝑟′ + ℎ𝑟′⌉,

where 𝜃(𝑟′, 𝑟) is the proportion of the traversal of 𝑟′ after which 𝑟 is
released. That quantity is calculated from the track circuit data as
described by Reynolds et al. (2020).

Using the definitions of 𝑊𝑟,𝑡 and 𝑊̄𝑟,𝑡, 𝐴𝑟,𝑡 and 𝐴̄𝑟,𝑡 can be defined
as:
𝐴𝑟,𝑡 =

⋃

𝑛∈𝑊𝑟,𝑡

𝜎−(𝑛) ⧵
⋃

𝑛∈𝑊𝑟,𝑡

𝜎+(𝑛)

𝐴̄𝑟,𝑡 =
⋃

𝑛∈𝑊̄𝑟,𝑡

𝜎−(𝑛) ⧵
⋃

𝑛∈𝑊̄𝑟,𝑡

𝜎+(𝑛),

where 𝜎−(𝑛) and 𝜎+(𝑛) are used to denote the set of directed arcs of
𝐺 entering a node 𝑛 and leaving a node 𝑛, respectively. A path in 𝐺
contains an arc in 𝐴𝑟,𝑡 (respectively 𝐴̄𝑟,𝑡) if and only if it contains a
node in 𝑊𝑟,𝑡 (respectively 𝑊̄𝑟,𝑡). Therefore a path in 𝐺 contains an arc
in 𝐴𝑟,𝑡 (respectively 𝐴̄𝑟,𝑡) if and only if it occupies (respectively bans)
time-space resource (𝑟, 𝑡).

The track capacity constraints described above can be formulated in
the following way. A set of 𝑠𝑜𝑢𝑟𝑐𝑒−𝑠𝑖𝑛𝑘 paths in 𝐺 is a feasible solution
to the problem if and only if among all of the paths:

1. At most one arc in 𝐴𝑟,𝑡 is used; and
2. If an arc in 𝐴𝑟,𝑡 is used then no arcs in 𝐴̄𝑟,𝑡 are used.

5.3. Antichain condition

Analogously to the model presented by Reynolds et al. (2020), our
formulation of the track capacity constraints is correct if and only
if it is not possible for a train to violate the operational constraints
single-handedly. We give conditions under which this is true below.

Definition 1. An antichain in a directed graph 𝐺 = (𝑁,𝐴) is a set
𝑍 ⊆ 𝐴 of arcs such that for all (𝑖, 𝑗) pairs, where 𝑖, 𝑗 ∈ 𝑁 , each path
9

between 𝑖 and 𝑗 contains at most one arc in 𝑍.
Definition 2. For two routes 𝑟1, 𝑟2 ∈ 𝑁𝑟, let

𝐿(𝑟1, 𝑟2) = min

⎧

⎪

⎨

⎪

⎩

∑

𝑟′∈𝑝⧵𝑟2

min
𝑣=1,2

𝐿𝑣
𝑟′ ∶ 𝑝 is an 𝑟1-𝑟2 path in 𝐺𝑟

⎫

⎪

⎬

⎪

⎭

be a lower bound on the minimum total traversal time from 𝑟1 up
to but not including 𝑟2. For example, if (𝑟1, 𝑟2) ∈ 𝐴𝑟 then 𝐿(𝑟1, 𝑟2) =
min{𝐿1

𝑟1
, 𝐿2

𝑟1
}.

Assumption 1. For each (𝑟, 𝑡) ∈ 𝑁0, 𝐴𝑟,𝑡 ∩ 𝐴̄𝑟,𝑡 = ∅ and 𝐴𝑟,𝑡 ∪ 𝐴̄𝑟,𝑡 is an
antichain in 𝐺.

Proposition 1. Assumption 1 is true if for each 𝑟 ∈ 𝑁𝑟, either

(i) 𝑆𝑟 ∪ {𝑟} is an antichain in 𝐺𝑟, or
(ii) 𝐿(𝑟1, 𝑟2) ≥ max𝑣 𝐿𝑣

𝑟1
+ ℎ𝑟1 for each pair 𝑟1, 𝑟2 ∈ 𝑆𝑟 ∪ {𝑟}.

Proof. Let (𝑟, 𝑡) ∈ 𝑁0. Since 𝑟 ∉ 𝑆𝑟 by definition, 𝑊𝑟,𝑡 ∩ 𝑊̄𝑟,𝑡 = ∅ and
hence 𝐴𝑟,𝑡 ∩ 𝐴̄𝑟,𝑡 = ∅.

Suppose for contradiction that at least one of (i) and (ii) holds, and
that there is a path 𝑝 in 𝐺 that contains two distinct arcs ((𝑟0, 𝑡0, 𝑤0),
(𝑟1, 𝑡1, 𝑤1)) and ((𝑟2, 𝑡2, 𝑤2), (𝑟3, 𝑡3, 𝑤3)) in 𝐴𝑟,𝑡 ∪ 𝐴̄𝑟,𝑡, where without loss
of generality 𝑡1 ≤ 𝑡3. By the definitions of 𝐴𝑟,𝑡 and 𝐴̄𝑟,𝑡, the routes 𝑟1
and 𝑟3 are in 𝑆𝑟 ∪ {𝑟}. However, since 𝑡1 ≤ 𝑡3, there must be a subpath
𝑞 of 𝑝 from (𝑟1, 𝑡1, 𝑤1) to (𝑟3, 𝑡3, 𝑤3), and hence a path from 𝑟1 to 𝑟3 in
𝐺𝑟, contradicting (i). Furthermore,

𝑡 − (𝐿𝑤1
𝑟1

+ ℎ𝑟1 ) + 1 + 𝐿(𝑟1 , 𝑟3) ≤ 𝑡1 + 𝐿(𝑟1 , 𝑟3) (𝑟1 , 𝑡1 , 𝑤1) ∈ 𝑊𝑟,𝑡 ∪ 𝑊̄𝑟,𝑡

≤ 𝑡3 𝑞 must span at least 𝐿(𝑟1 , 𝑟3) time intervals

≤ 𝑡. (𝑟3 , 𝑡3 , 𝑤3) ∈ 𝑊𝑟,𝑡 ∪ 𝑊̄𝑟,𝑡

This rearranges to 𝐿(𝑟1, 𝑟3) ≤ 𝐿𝑤1
𝑟1 +ℎ𝑟1−1, which contradicts (ii). There-

fore neither (i) nor (ii) holds, and the result is proved by
contradiction. □

Note that the conditions of Proposition 1 can be checked much more
easily than checking Assumption 1 directly. Condition (i) is satisfied for
all routes in our instances for Derby station.

5.4. Objective function and arc weights

The quality of a given solution to the TTRP is measured as the sum
of the weights of the paths in the solution. A smaller sum corresponds

to a better solution, so the problem is a minimisation problem. The
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weight of a given path for train 𝑘 is the sum of the weights 𝑐𝑘𝑎 of the
arcs 𝑎 that make up the path. These weights depend on both the arc and
the particular train, so each arc 𝑎 in 𝐺 has a set of weights {𝑐𝑘𝑎 ∶ 𝑘 ∈ }.

The weights are selected such that the negative of the sum of the
eights of the paths in a solution corresponds to the utility associated
ith the solution by Network Rail. This utility is modelled as the total
eighted utility over all trains 𝑘 and scheduled events 𝑗, given by

=
∑

𝑘∈
𝛼𝑘

𝐽𝑘
∑

𝑗=1
𝛽𝑗𝑘𝑈

𝑗
𝑘 .

rain priorities and event priorities are controlled by parameters 𝛼𝑘 and
𝑗
𝑘, respectively. The set of events 𝐽𝑘 for each train 𝑘 includes all of its
tation stops and its exit from the modelled area. Each event 𝑗 specifies
oth a route 𝑟𝑘𝑗 and a time interval 𝑎𝑘𝑗 in which the train should arrive
nto the route. The quantity 𝑈 𝑗

𝑘 is the utility accrued by train 𝑘 at stop 𝑗.
t is equal to zero if train 𝑘 does not visit 𝑟𝑗 at all, and 𝛾(𝑡−𝑎𝑘𝑗 ) = 𝜙−𝜔|𝑡−𝑎𝑘𝑗 |

f train 𝑘 enters 𝑟𝑗 in time interval 𝑡 (and hence 𝑡−𝑎𝑘𝑗 time intervals late).
To facilitate the representation of this objective function, the

eights 𝑐𝑘𝑎 take the following values:

• 𝑐𝑘𝑎 = 0 if 𝑎 ∈ 𝐴2, 𝐴3, 𝐴5, 𝐴6 for all 𝑘 ∈ .
• 𝑐𝑘𝑎 = ∞1{𝑗≠𝑘} for all 𝑘 ∈  and 𝑎 = (𝑠𝑜𝑢𝑟𝑐𝑒, (𝑟𝑗0, 𝑎

𝑗
0, 𝑣

𝑗
0)) ∈ 𝐴1. This

ensures that trains begin in their initial position, rather than the
initial position of a different train.

• Let 𝑗 ∈ 𝐽𝑘 be a scheduled event for train 𝑘 ∈  that requires train
𝑘 to arrive into route 𝑟𝑘𝑗 at time interval 𝑎𝑘𝑗 . Let 𝑡 ∈  be a time
interval. Then:

– If the event requires the train to stop at a platform, then
all arcs 𝑎 ∈ 𝐴4 that enter node (𝑟𝑘𝑗 , 𝑡, 𝑣0) have weight 𝑐𝑘𝑎 =
−𝛼𝑘𝛽

𝑗
𝑘𝛾(𝑡 − 𝑎𝑘𝑗 ).

– If the event doesn’t require the train to stop (e.g. passing a
junction), then the weight 𝑐𝑘𝑎 = −𝛼𝑘𝛽

𝑗
𝑘𝛾(𝑡−𝑎𝑘𝑗 ) applies to arcs

in 𝑎 ∈ 𝐴4 that enter any of the nodes (𝑟𝑘𝑗 , 𝑡, 𝑣) where 𝑣 ∈ 𝑁
𝑟𝑘𝑗
𝑣 .

– If the event has a departure time that is later than 𝑡, then
all arcs 𝑎 ∈ 𝐴4 starting at any of the nodes (𝑟𝑘𝑗 , 𝑡, 𝑣), where

𝑣 ∈ 𝑁
𝑟𝑘𝑗
𝑣 , have 𝑐𝑘𝑎 = ∞. This prevents train 𝑘 from leaving 𝑟𝑘𝑗

for another route before the scheduled departure time.

All other arcs 𝑎 ∈ 𝐴4 have weight 𝑐𝑘𝑎 = 0 for each 𝑘.

Note that weights 𝑐𝑘𝑎 with value ∞ ensure that an optimal solution
will never contain a path for train 𝑘 that contains arc 𝑎. In compu-
tations, a sufficiently large floating point value is used to represent
∞.

5.5. MIP formulation and solution

Although the model presented in this paper differs from that pre-
sented by Reynolds et al. (2020), it can be formulated as a Mixed Inte-
ger Program analogously and therefore solved using the same branch-
and-price algorithm. This is because the differences between the models
are expressed in the definitions of both the graph 𝐺 on which the
problem is defined, and the sets 𝐴𝑟,𝑡 and 𝐴̄𝑟,𝑡.

The formulation is a path-based flow formulation with binary vari-
ables 𝜆𝑘,𝑝 used to indicate which 𝑠𝑜𝑢𝑟𝑐𝑒 − 𝑠𝑖𝑛𝑘 path 𝑝 ∈ 𝑃 𝑘 in the TST
graph is selected for each train 𝑘. Thus, the formulation of the TTRP is
given by

min
∑

𝑘∈

∑

𝑝∈𝑃 𝑘

(

∑

𝑎∈𝐴
𝑐𝑘𝑎𝑥

𝑘,𝑝
𝑎

)

𝜆𝑘,𝑝 (2a)

s.t.
∑ ∑

⎛

⎜

⎜

∑

𝑥𝑘,𝑝𝑎 + 𝛿
∑

𝑥𝑘,𝑝𝑎

⎞

⎟

⎟

𝜆𝑘,𝑝 ≤ 1 ∀(𝑟, 𝑡) ∈ 𝑁𝑟 ×  (2b)
10

𝑘∈ 𝑝∈𝑃 𝑘
⎝

𝑎∈𝐴𝑟,𝑡 𝑎∈𝐴̄𝑟,𝑡 ⎠
∑

𝑝∈𝑃 𝑘

𝜆𝑘,𝑝 = 1 ∀𝑘 ∈  (2c)

𝜆𝑘,𝑝 ∈ {0, 1} ∀𝑘 ∈ , 𝑝 ∈ 𝑃 𝑘, (2d)

where 𝛿 > 0 is a small positive constant, and each 𝑥𝑘,𝑝𝑎 is a constant that
is equal to 1 if path 𝑝 ∈ 𝑃 𝑘 for train 𝑘 contains arc 𝑎 ∈ 𝐴, and equal to
0 otherwise.

The objective (2a) is to minimise the total weight of all of the
selected train paths. This corresponds to maximising Network Rail’s
utility. Constraint (2b) ensures that the track capacity constraints out-
lined in Section 5.2 are respected. For example, if a time-space resource
(𝑟, 𝑡) is occupied twice, then the left hand side of (2b) is 2, violating
he constraint. Similarly, if (𝑟, 𝑡) is both occupied and banned, then
he left hand side of (2b) is 1 + 𝛿, which also violates the constraint.
owever, the constant 𝛿 is given a small value so that the resource
an be banned multiple times without violating the constraint. In our
nstances, a value of 𝛿 = 0.05 was sufficient to ensure that there was no
ractical constraint on the number of times a resource could be banned.
onstraint (2c) ensures that exactly one path is selected for each train.
inally, constraint (2d) states that the variables are all binary.

This problem can be solved using the branch-and-price algorithm
escribed by Reynolds et al. (2020). Column generation is used to
olve the LP relaxation at each node of the branch-and-bound tree.
ariables are generated in each column generation iteration from the
olution of one subproblem for each train. These subproblems are
hortest-path problems on 𝐺, which is a directed acyclic graph. Both
artial pricing and reduced cost variable fixing are used as column
eneration acceleration strategies. A customised branching rule is used
hat branches on conflicts between pairs of trains over resources (𝑟, 𝑡)
n the track capacity constraints.

.6. Relationship between fixed-speed and variable-speed models

The variable-speed model for the TTRP presented in this paper is an
xtension of the fixed-speed model proposed by Reynolds et al. (2020).
hese two models are distinguished by the method used to calculate the
raversal times — discussed in Section 4. Specifically, the two models
re considered in this paper are:

(FS) The fixed-speed model proposed by Reynolds et al. (2020), with
traversal times calculated using Method 1 (see Section 4.1).

(VS) The variable-speed model proposed in this paper, with traver-
sal times calculated using the transition-based Method 3 (see
Section 4.3).

The relationship between (FS) and (VS) is dependent on the traver-
al times of the corresponding routes in each model. Since the traversal
imes used in (FS) are less than or equal to the smallest traversal time
n (VS) for all routes, (FS) is a relaxation of (VS). This is because all
olutions for (FS) can be translated into a solution for (VS) by making
rains wait in berths for an amount of time equal to the difference
etween the (FS) and (VS) traversal times.

Consider the variable-speed example given in Section 3.1. The fixed-
peed version of this example has only a single traversal time for each
oute, which are the minimum traversal times given by 𝐿𝐴𝐵 = 1,
𝐵𝐶 = 1, and 𝐿𝐶𝐷 = 2. The route depicted in Fig. 3, traversing AB,
C, CD and then stopping in DE, takes a total of 6 time steps in the
ariable-speed model. The equivalent route in the fixed-speed model
ould take 4 time steps, without intermediate stopping. However, with

ntermediate stopping, the variable-speed path could be achieved by the
ixed-speed model by traversing AB in 1 time step, waiting for 2 time
teps before traversing BC in 1 time step, traversing CD in 2 time steps,
nd finally stopping in DE. The resulting path has a total length of 6
ime steps, equal to the path found in the variable-speed model.

Since (FS) is relaxation of (VS) the expected utility of the former is at
east as good as that achievable by the latter. However, (FS) can deliver
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Fig. 12. A berth diagram of the modelled area (own image). Routes with multiple traversal times in (VS) are highlighted with thick red lines (see Section 6.2).
Fig. 13. A histogram showing the distribution of the number of trains in each instance.

olutions that are infeasible in practice. This is due to sudden changes
n speed that result from traversing a route and then stopping in the
ubsequent route without any deceleration being prescribed by the
odel. The increased granularity of traversal times introduced by (VS)

ims to address the potential infeasibility of TTRP solutions that arises
rom the use of single traversal times for each route. The improved
odelling of traversal times in (VS), while imposing greater restrictions

n the solution of the TTRP, is expected to produce solutions that will
chieve a better realised utility than solutions to (FS).

. Computational study

A computational study has been carried out to compare (FS) and
VS). The two goals of this computational study are to (i) determine
here greater accuracy in the traversal times is required and (ii)
valuate the computational cost of this increased accuracy. The first
oal is a major contribution of this paper, where the traversal time
stimation technique presented in Section 4.3 is used to determine
ocations in the railway infrastructure that require more than one
raversal time. This process aims to improves the accuracy of the TTRP
nly for the parts of the network where it is most necessary. The second
oal evaluates the impact of this increased granularity of traversal times
n the computational performance of the branch-and-price algorithm
hen solving the TTRP. It is expected that the time required to solve

VS) will be greater than that required to solve (FS). This computational
tudy will evaluate the extent to which the times for solving the TTRP
ill increase as a result of the improved modelling accuracy. Since the

mprovement in realised utility that can be achieved by (VS) over (FS)
an only be observed in real-world railway operations or microscopic
imulations, such analysis is out of scope for this paper.

Traversal time estimation methods were implemented in the Python
.6 language, using the package Scikit-learn 0.20.3 (Pedregosa et al.,
11
Fig. 14. A comparison between (FS) and (VS) of number of conflicts.

2011) for fitting Gaussian mixture models, and the package SciPy
1.2.1 (Virtanen, 2020) for performing Mood’s test. The branch-and-
price algorithm is implemented using SCIP 6.0.2 (Gleixner et al., 2018)
as a branch-and-price framework. Custom plugins for SCIP are written
in the C language, and Gurobi 9.0 (Gurobi Optimization LLC, 2020) is
used as the linear programming solver. The experiments were carried
out on a computing node equipped with an 18 core Intel Xeon E5-2699
v3 CPU with 2.30 GHz and 500 GB of RAM, running Ubuntu 16.04.

Section 6.1 describes the new set of instances for Derby station
in the UK that are used for our computational study. Section 6.2
compares the traversal times produced by the different estimation
methods. Finally, Section 6.3 evaluates the performance of the branch-
and-price solution algorithm for the two models. Full tables of results
are available online (see Reynolds, 2020).

6.1. Instance data

A new set of 310 instances has been created for the computational
study. These instances are based on real data from an area of railway
centred around Derby station in the UK. Derby station lies on both
the Midland Main Line and the Cross Country Route, two heavily
used, double-track, inter-city lines connecting London with Leeds, and
Bristol with York via Birmingham, respectively. The station also hosts
local services to Nottingham and Matlock. In 2018–2019, Derby station
had 3,902,000 passenger entries and exits and 619,000 passenger
interchanges. Lying at the confluence of several lines, Derby Station
is regarded as a traffic bottleneck. This makes it suitable for testing our
model.

The area modelled is shown in Fig. 12. Derby station has 6 bidirec-
tional platforms and 204 track circuits. The area as a whole contains
portions of three double track lines, and consists of 142 routes in total,
with 228 valid berth transitions, which correspond, respectively, to the
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Fig. 15. A comparison between (FS) and (VS) of traversal time lengths for routes that have two traversal times in (VS).
umber of nodes and edges in the route graph. The area under con-
ideration includes five small stations in addition to Derby: Spondon,
eartree, Duffield, Belper and Ambergate.

Each one of the 310 instances covers a different hour long period.
en instances, covering between 8 am and 6 pm, are used from each of
he 31 days in January 2020. They were created using real timetables,
nd real data about traffic perturbations. The level of traffic perturba-
ion varies considerably between the instances. However, they provide

representative sample of traffic conditions at Derby over January
020.

The number of trains in each instance is shown as a histogram in
ig. 13. The most common number of trains is 19, whilst the largest
umber is 23. The number of conflicts in each instance for both (FS) and
VS) is shown in Fig. 14. This is defined as the number of track capacity
onstraints that are violated by the solution obtained from solving each
odel without any track capacity constraints. The number of conflicts

n a given instance can be different for models (FS) and (VS) because
he differing traversal times result in trains reaching different parts of
he track at different times. Nevertheless, we see that there is a strong
ositive relationship because although the models and traversal times
iffer, the TTRP instances used are identical. Table 1 compares the
umber of train pair conflicts in the instances when using (FS) and (VS).
his is the number of unique train pairs involved in at least one conflict
ogether. Measuring train pair conflicts can be more informative than
easuring conflicts. This is because each train pair can only have at
ost one train pair conflict, where several conflicts can occur for the

ame train pair in consecutive time intervals over the same route. Both
he number of conflicts and the number of train pair conflicts have
een shown by Reynolds et al. (2020) to be correlated with the number
f branch-and-bound nodes required to solve instances to optimality.
iscrepancies between (FS) and (VS) can therefore cause differences in

he performance of the solution algorithm.

.2. Traversal time estimation

Historical Train Describer data was used to estimate traversal times
or routes in Derby station using Method 3 (see Section 4.3). The
pplication of Method 3 identified that 15 out of the 140 routes
equired two different traversal times for (VS). For these 15 routes,
ufficient evidence was found for a difference of at least one time
12

nterval between the traversal times of speed profile types 𝑣1 and 𝑣2 — s
Table 1
A comparison between (FS) and (VS) of train pair conflicts. Values are frequencies of
instances.

(VS)

0 1 2 3 4 5 6 7 8

0 16 6 1 0 0 0 0 0 0
1 2 17 10 4 1 0 0 0 0
2 1 10 40 26 6 3 0 0 0

(FS) 3 1 5 22 33 18 9 0 1 0
4 0 0 8 10 14 9 1 1 0
5 0 1 0 1 4 6 7 2 0
6 0 0 0 0 2 2 4 0 1
7 0 0 0 0 1 0 1 2 1
8 0 0 0 0 0 0 0 0 0

sufficient evidence was not found for the remainder of the routes. This
shows that our statistical method requires a high standard of evidence
for using two traversal times for a route. The effect of this is that
nodes of speed profile type 𝑣2 in the TST graph are included sparingly,
resulting in a parsimonious optimisation model. Including two traversal
times for a route introduces additional complexity and increases the
size of the model, so it is important to do this only where it can be
shown statistically to be most important.

The routes with two traversal times are highlighted in red in Fig. 12.
Some of these routes are adjacent to routes that frequently have con-
flicts, such as the routes entering platform 3 (the third platform from
the top in Fig. 12) at Derby station. This is likely to arise from the fact
that some trains stop in preceding routes as a result of conflicts, whilst
others do not — affecting the speed at which they traverse the route.
Other routes with two traversal times are adjacent to stations at which
only some trains stop, such as Peartree, Duffield and Belper. Trains that
stop at these stations must decelerate or accelerate through adjacent
routes, whilst trains that do not can continue at the line speed. These
patterns conform to our expectations and therefore give us confidence
that the traversal time estimation method is performing well.

The traversal times of routes that have three speed profile types
(i.e. two traversal times) in the (VS) model (using Method 3) are shown
in Fig. 15 alongside the corresponding traversal times for (FS) (which
uses Method 1). It shows that traversal times in (FS) are often similar
to or the same as for traversal type 𝑣2 for (VS). This is because the

mallest cluster mean for each route is used as the traversal time in (FS),
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Fig. 16. Cumulative histograms comparing (FS) and (VS) over the set of instances with a time limit of 600 s. Note the 𝑥-axis is log-scaled.
nd the observations in that cluster overlap strongly with observations
hat are categorised as type 𝑣2 in (VS). Whilst the difference between
raversal times for 𝑣1 and 𝑣2 in (VS) is not large for most routes, even

single time interval (10 s) difference can be enough to affect the
ptimal rescheduled timetable. An exception to this is the traversal
imes 𝐿1

𝑟 = 12 and 𝐿2
𝑟 = 6 for route 𝑟 = DY551_DC5108, which differ

y a whole minute. This is a relatively long route on the open line in
hich trains stopping at Duffield station and trains not stopping there
re likely to be travelling at very different speeds.

.3. Algorithmic performance

There are many aspect to the solution algorithm that will be as-
13

essed in the computational experiments. The main goal of this section
is to demonstrate that the improved accuracy of (VS) over (FS) comes
at little to no computational cost.

6.3.1. Size of MIP formulations
While the (FS) and (VS) have very similar integer programming for-

mulations, the multiple traversal times on a subset of routes introduces
additional constraints to the latter problem. As a result, (FS) and (VS)
comprise 139,682 and 144,362 constraints respectively. For both (FS)
and (VS), the number of constraints correspond to the number of nodes
in the underlying time-space and time–space–type graph, respectively.
The additional 4680 constraints (nodes) arise from the 15 routes for
which there is sufficient evidence to require more than one traversal

time. This small increase in the model size, while gaining improved
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Fig. 17. Cumulative histogram of optimality gaps after 20 s for (FS) and (VS). Note the 𝑥-axis is log-scaled.
s
3
t
a
q
f
r
f
t
a
s
w
p

v
i
r
i

7

t
T
a
D

s
r
m
I
t
f
c

i
a
p
d
a
o
p
f
a
p

ccuracy, is a significant benefit of the data-driven modelling approach
roposed in this paper.

Since the TTRP, for both (FS) and (VS), is solved by branch-and-
rice, the number of variables is dependent on the algorithmic perfor-
ance. The number of variables generated while solving the TTRP will

e discussed in the following section.

.3.2. Evaluating the branch-and-price algorithm
To understand how our branch-and-price algorithm performs when

olving both models (FS) and (VS), each of the real instances from
erby station were solved with a time limit of 600 s. Within this

ime limit, 282 of the 310 instances were solved to optimality with
FS), and 287 were solved to optimality with (VS). This is a good
esult because it means that all but the most difficult instances can
e solved to optimality with the more accurate (VS). The solving
imes of the instances that could be solved to optimality are shown in
ig. 16(a) (note that the 𝑥-axis is logarithmic with base 2). This figure
emonstrates that the distribution of solving times over the instance
et are very similar for (FS) and (VS). However, the higher blue line
ndicates that (VS) has a better solving performance than (FS) among
odels that took over 100 s to solve. Specifically, the average solving

imes for all solved instances are 43.67 and 53.69 s for (VS) and (FS)
espectively.

The explanation for the better performance of (VS) on difficult
nstances can be seen by studying Figs. 16(b) and 16(c). These show
he number of branch-and-bound nodes explored, and the number of
ariables (columns) generated, respectively, during the solving process.
ig. 16(c) shows that the number of columns generated during the com-
lete branch-and-price algorithm was almost identical. In particular,
he average number of columns generated for (FS) and (VS) is 74.4
nd 77.8 respectively. This indicates that convergence of the column
eneration algorithm for solving LP relaxations was not affected by
ifferences between (FS) and (VS). On the other hand, Fig. 16(b) shows
hat there are more instances with a smaller number of branch-and-
ound nodes for (VS) compared to (FS). This is particularly evident for
nstances requiring between 20 and 600 nodes. Further, it is observed
hat across the complete set of instances (FS) required an average of
2.5 branch-and-bound nodes compared to an average of 76.04 for
VS). This difference in the number of branch-and-bound nodes is the
ikely to be the reason for the better solution times for (VS) on difficult
nstances. It is conjectured that this result arises from the difference
n the quantity and quality of conflicts due to using more accurate
raversal times in (VS) compared to (FS).

.3.3. Solving with restricted time limits
Both of the models were also evaluated using a time limit of 20 s.
14

his reflects the short amount of time that is typically available for w
olving TTRP instances in practical, real-time environments. Of the
10 instances, 174 were solved to optimality by both models within
his time limit. The optimality gaps for the remaining 136 instances
re plotted in Fig. 17. It shows that with both (FS) and (VS), high-
uality solutions that are provably within 10% of optimality were found
or the vast majority of instances. For each, only two instances had
emaining optimality gaps exceeding 20%. This reinforces the evidence
ound by Reynolds et al. (2020), using instances for a different station,
hat the developed algorithm is suitable for real-time operations. Fig. 17
lso shows that whilst the distribution of remaining optimality gaps is
imilar for (FS) and (VS), (VS) has a larger concentration of instances
ith very small gaps. This corroborates our observation of better
erformance for (VS) when the time limit was 600 s.

Based on the results presented, we conclude that the benefits of
ariable speed modelling in (VS) compared with fixed speed modelling
n (FS) come at no price for computational performance. This striking
esult highlights the value of applying a data-driven approach for
mproving the accuracy of the TTRP.

. Conclusion

In this paper, we present a new variable-speed model for the TTRP
hat uses a time–space–type graph to approximate train speed profiles.
o achieve this, the notion of a discrete speed profile type is introduced,
nd techniques for estimating traversal times based on historical Train
escriber data are developed.

Our approach is tested using a new set of real instances for Derby
tation in the UK. These tests show that our data-driven approach
esults in a parsimonious model that is able to improve speed profile
odelling relative to fixed-speed models in parts of the track network.

n addition, these modelling enhancements come at no cost, in the sense
hat they do not lead to longer solving times in comparison with the
ixed-speed model of Reynolds et al. (2020). This represents a major
ontribution to modelling approaches for the variable speed TTRP.

Further work is needed to quantify the inaccuracies that still remain
n speed profile modelling. For example, a simulation study using

microscopic railway simulator could be used to evaluate solutions
roduced by our model and compare them to solutions produced by
ifferent variable speed models. Our data-driven modelling approach
lso creates exciting opportunities to improve the statistical method-
logy for estimating traversal times based on speed profile types. One
ossibility is to use a Hidden Markov Model (see Zucchini et al., 2016
or an introduction), in which speed profile types are the ‘hidden’ states,
nd traversal times are the observed data. This could open up the
ossibility of fitting mixture models for each route (as in Method 2)

hilst additionally using the full transition data.
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