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Abstract 18 

Ecological assessment of large rivers such as the Danube is a challenging task. Eutrophication was 19 

reported as one of the main drivers of aquatic community structures in the Danube basin. Due to their 20 

sedentary nature, relatively slow growth/ long life spans, and engineering role in aquatic ecosystems, 21 

macrophytes are widely used in the detection of nutrient enrichment. In this study, macrophyte 22 

presence-absence data within the 3 km long reaches obtained from the JDS3 survey were used to 23 

predict the water quality of the Danube river and its main tributaries. For each water quality variable 24 

(dissolved oxygen, nitrate-nitrogen, and orthophosphates), a feed-forward artificial neural network 25 

model (ANN) with the backpropagation algorithm was constructed using the macrophytes as 26 

explanatory variables. Despite the limited number of samples along the wide trophic gradient of the 27 
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Danube river from the source to the mouth, the model showed good predictive performances for the 28 

main river channel (the prediction rate: 82.93% for the dissolved oxygen model, 74.80% for the 29 

nitrate-nitrogen model and 71.55% for the orthophosphates model). From 64 analysed macrophyte 30 

species, 28 were selected by sensitivity analysis as significant water quality indicators for at least one 31 

environmental variable. Indicator species mainly belonged to the eutrophic tolerant submerged or 32 

emerged species with broad ecological amplitude. The developed ANN architecture represents the 33 

modelling approach which could be applied to other lotic systems and biological quality elements.  34 

Keywords: ANN; Aquatic Vegetation; Eutrophication; Joint Danube Survey. 35 

 36 

1. Introduction 37 

Ecological assessment of large rivers such as the Danube, the second-largest river basin in Europe, is 38 

a challenging task (Birk et al., 2012; Chapman et al., 2016, Milosevic et al, 2018). Monitoring of 39 

these systems requires the balancing of sampling efforts with available resources, given research 40 

programmatic goals and objectives (Flotemersch et al., 2006). The most comprehensive investigative 41 

programs in the Danube Basin is the Joint Danube Survey (JDS) (Liška et al., 2015). The key purpose 42 

of JDS is to produce reliable and comparable information on carefully selected elements of water 43 

quality for the length of the Danube River and its tributaries. According to the Joint Danube Surveys  44 

conducted during the 2007 and 2013 , increasing eutrophication was reported as one of the main 45 

drivers structuring aquatic communities in the basin (Birk et al., 2012; Chapman et al., 2016). While 46 

agriculture was recognized as a major source of nitrogen emissions, the urban settlements were 47 

reported as significant sources for phosphorus emissions (ICPDR, 2010). According to Chapman et al. 48 

(2016), observations of nitrate-nitrogen and phosphorus from JDS3 showed high comparability with 49 

the time-corresponding data (August–September) from the long-term ICPDR surveillance monitoring 50 

(Liška et al., 2015). Understanding and modelling of this complex human pressure are of high 51 

importance for reaching/ maintaining the good ecological status of the Danube. However, the 52 

relatively small number of JDS2/3 sampling sites (and even smaller in JDS4), compared to other 53 



3 
 

relevant studies (Gebler et al., 2014; 2017; 2018), makes the modelling of this ecological processes  54 

challenging. 55 

Water quality models are  important for effective environmental management (Wang et al., 2013). 56 

Worldwide, hundreds of these models have been developed, including models for prediction of 57 

riverine eutrophication. Some of them aimed to predict dissolved oxygen and biochemical oxygen 58 

demand by other nutrients or basic physico-chemical parameters as explanatory variables (Singh et al. 59 

2009; Atanasijević et al. 2013; Atanasijević et al., 2014), while others aimed to explore the 60 

relationship between nutrients and biological quality elements (Gebler et al., 2014; 2017; 2018; 61 

Milošević et al., 2018). The majority of these models were based on Artificial Neural Networks, 62 

which are advanced algorithms capable to extracting complex, nonlinear relationships among aquatic 63 

communities and eutrophication variables.  64 

Due to their sedentary nature and relatively slow growth/ long life spans, macrophytes are widely 65 

used in the detection of nutrient enrichment (Pall and Moser, 2009). Compared to other aquatic 66 

organisms, macrophyte species could be with a few exceptions identified immediately on the field, 67 

which makes them suitable for in situ assessment of trophic status. River trophic conditions are 68 

simultaneously influenced by multiple other factors (Birk et al., 2012), including catchment land-use, 69 

hydromorphological features, water velocity, habitat degradation, erosion, shoreline modification, etc. 70 

These habitat characteristics may influence macrophyte vegetation as well (Demars and Edwards, 71 

2009). On the other hand, macrophytes are considered as an important constituent of lotic ecosystems 72 

as they directly influence the hydrology and sediment dynamics (O’Hare et al., 2018). They can 73 

engineer fine-scale physical heterogeneity and hydrogeomorphological processes in riverine habitats 74 

(O’Briain et al. 2017; Hood, 2012). Through their large surface area for hosting nitrifying and 75 

denitrifying organisms, macrophytes may increase the quantity of nitrite-nitrogen produced (Hood, 76 

2012).  On the other hand, aquatic plants may obtain nitrogen and phosphorus from the sediment and 77 

then release these elements into the water. These plants function as a source for nutrients, by trapping 78 

fine organic and inorganic particles, enhancing mineralization of organic matter through oxidation of 79 

the sediments, and altering the localized environment, thus enabling phosphorus release through 80 
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reducing conditions and increased pH and temperature (Thiébaut, 2008). Therefore, macrophytes are 81 

considered as indicators of complex habitat conditions (Gebler et al., 2017; Gebler et al., 2018), while 82 

the best indicating results provide together with other biological quality elements (Birk et al., 2012). 83 

Macrophyte composition and quantitative indices were found to be effective predictors of habitat 84 

characteristics (Demars and Edwards, 2009; Thomasen & Chow-Fraser, 2012), as well as prognostic 85 

parameters for modelling of different management options (Baart et al., 2010). Gebler et al. (2017) 86 

demonstrated that non-linear pressure-impact relationships occurring in aquatic ecosystems can be 87 

analysed with good results through advanced data analysis methods using macrophytes. Gebler et al. 88 

(2018) showed that ecological assessment of rivers based on macrophyte metrics does not only reflect 89 

the water quality but also the hydromorphological status as well. Advanced models considering 90 

macrophytes and eutrophication variables were the topic of many previous studies (Gebler et al., 91 

2014; 2017; 2018). Still, none of them attempts to predict a river water quality using macrophytes as 92 

explanatory variables.   93 

Therefore, the aim of this study was to develop a predictive model, based on artificial neural 94 

networks, for the water quality of the Danube river and its main tributaries using macrophytes as 95 

model inputs. To realize the main goal of the study, the following tasks were set: 1) to build the model 96 

based on macrophytes and environmental data, 2) to test the contribution of each of variables in the 97 

developed model and define macrophyte taxa with the highest indicator potential,  and 3) to explore 98 

the ecological amplitude and position of selected indicator species within the water trophic gradient.  99 

2. Material and Methods 100 

2.1 Study area and field survey data 101 

The research included the Danube river and its main tributaries (Appendix A). The Danube is the 102 

second largest river in Europe, having a length of 2860 km and a river basin covering an area of 103 

approximately 817,000 km2. 104 

This study included macrophyte and environmental data extracted from the Joint Danube Survey 3 105 

database (Liška et al., 2015), obtained within the EU-funded SOLUTIONS project. The general 106 
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objective of the JDS3 was to undertake an international longitudinal survey that would produce 107 

comparable and reliable information on water quality for the whole of the length of the Danube River 108 

including the major tributaries on a short-term basis. The JDS3 survey was carried out during 2013 109 

and included assessment of macrophyte vegetation of the Danube main channel and some mouth 110 

sections of important tributaries (Morava (Hainburg), Drava, Sava, Tisza, Velika Morava, Olt, Arges, 111 

Braila, etc., Appendix A ). In total, 68 sites were sampled along a 2581 km stretch of the Danube 112 

(Figure 1), 15 of which were located in the mouths of tributaries. Survey units were of 1 km length, 113 

covering 3 river km on each side of the river in the main channel, thus resulting in 6 river km (6 114 

samples) sampled at each sampling site. Abundance assessment followed European Standard EN 115 

14184, comprising the assessment of individual species and their relative abundance per sampling site 116 

(Kohler and Janauer, 1994). Water samples were collected directly from the river together with the 117 

biological samples (Liška et al., 2015). In this study, environmental data included nitrate nitrogen, 118 

dissolved oxygen, and orthophosphates. 119 

 120 

 121 

Figure 1. Map and scheme of the macrophyte sampling sites. 122 

2.2 Data sets 123 
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Samples without recorded aquatic vegetation were omitted from the analysis. To eliminate statistical 124 

noise, invasive emergent and all semi-aquatic plant species were excluded from the data matrix. 125 

Invasive species were excluded due to broad tolerances to environmental changes which otherwise 126 

disturb the rest of the community (Holt and Miller, 2010). On the other hand, semi-aquatic species 127 

were excluded from the analysis because they are significantly influenced by the terrestrial 128 

environment. From 78 plant species recorded in the water during the JDS3 expedition, 64 macrophyte 129 

taxa (82%) were used for the model development. In order to increase the model prediction rate and 130 

accuracy, the number of null data was reduced by merging of 1 km survey units within the same 131 

sample site and the same river side into a single sample. Due to the impossibility of merging species 132 

abundance values, presence/ absence data were used in the final matrix. The final macrophyte data set 133 

included 123 samples and 64 macrophyte species.  134 

Since there is no unique water quality classification system for the Danube river, for the purpose of 135 

this study, water quality classes were compiled considering the national water quality standards and 136 

boundaries of all Danube countries: Germany (Arle et al., 2014), Slovakia (Pekárová et al., 2009; 137 

Slobodnik et al., 2012), Austria (BGBl, 2006); Bulgaria (Sommerwerk et al., 2010), Ukraine (WHO, 138 

2011), Croatia (Vlada Republike Hrvatske, 2019), Serbia (National Assembly of the Republic of 139 

Serbia, 2011); Hungary (Varga et al., 1990; Schiemer et al., 2004; Szilágyi et al., 2008); Romania 140 

(Apele Române, 2019); Moldova (Duca, 2014). The developed classification scheme included 7 141 

quality classes for nitrate-nitrogen, dissolved oxygen, and orthophosphates (Table 1). 142 

Table 1. Water quality classes (WQC) were compiled considering the national water quality standards 143 

and boundaries of all Danube countries 144 

WQC Dissolved oxygen 

[mg/l] 

Nitrate-nitrogen 

[mg/l] 

Orthophosphates 

[mg/l] 

        I >9 0-0.019 0-0.019 

       II 7-8.9 0.02-0.9 0.02-0.039 
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       III 5-6.9 1-2.9 0.04-0.09 

       IV 4-4.9 3-4.9 0.1-0.19 

       V  3 – 3.9 5-6.9 0.2-0.49 

      VI 2-2.9 7-10 0.5-0.8 

      VII <2 >10 >0.8 

 145 

2.3 Data analysis 146 

The artificial neural network employs the model structure and working principle inspired by 147 

biological neural networks. It is a  powerful computational technique for modelling complex non-148 

linear relationships. The Backpropagation Neural Network (BPN) also called multi-layer feed-forward 149 

neural network or multi-layer perceptron is  popular and is used more than other neural network types 150 

for a wide variety of tasks (Lek and Guégan, 1999). The architecture of the BPN is a layered 151 

feedforward neural network, in which the non-linear elements (neurons) are arranged in successive 152 

layers, and the information flows unidirectionally, from the input layer to the output layer, through the 153 

hidden layer(s).  The signal passing through the neuron is modified by weights and transfer functions. 154 

The number of input and output units depends on the representations of the input and the output 155 

objects, respectively. In this study, three feed-forward neural networks with backpropagation learning 156 

were constructed for prediction of the river water quality classes (for dissolved oxygen, nitrate-157 

nitrogen, and orthophosphates).   158 

One artificial neural network model architecture was constructed and further generated and trained 159 

three times, for each environmental parameter separately (dissolved oxygen, nitrate-nitrogen, and 160 

orthophosphates). The artificial neural network model consisted of four layers: an input layer 161 

including 64 neurons, representing 64 macrophyte species; two hidden layers (12 and 8 neurons) and 162 

one output layer consisting of seven neurons, representing the seven water quality classes (Figure 2). 163 

The number of hidden layers and neurons in each layer was determined according to Keeni et al. 164 

(1999). Training started with many hidden units and then the network pruning was performed to the 165 

architecture with highest prediction rate (Equation 1) and minimal percentage of absolute errors 166 

(Equation 2).  167 

 168 
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  169 

Figure 2. Diagram of the artificial neural network used in the modelling. Acronyms of aquatic 170 

macrophytes are listed within the input layer.  171 

 172 

The Rectified Linear Activation Function (ReLu) was used for activation of the hidden layers, while 173 

the Sigmoid function was used for activation of the output layer. Currently, the ReLU is one of the 174 

most popular activation functions for deep neural networks (LeCun et al., 2015), while the sigmoid 175 

function is widely used activation function for ANNs (Acheampong and Boateng, 2015). Since the 176 

output layer consisted of 7 neurones, and only one is activated during each iteration, the Binary Cross-177 

Entropy Function was used along the Adam Optimizer for the ANN model training. 178 

Due to the limited number of samples, the Leave- one – out cross-validation approach was used to 179 

evaluate the model. In this approach, all samples except one is used to train the model. The model is 180 

then tested on that single sample that is left out. The process is then repeated for all samples (e.g., 181 

Wong, 2015). This implies that 123 iterations (one for each sample) with the training of the algorithm 182 

were performed for each environmental variable. In each iteration, the ‘most excited’ neuron in the 183 
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output layer, corresponding to the particular water quality class, was considered as the output result. 184 

The results of the model cross-validation were summarized using the confusion matrix, constructed 185 

for each environmental variable.  186 

 187 

 188 

Therefore, common approaches for the model accuracy evaluation, such as the mean square error, was 189 

not applicable in this study. Therefore, the Prediction rate (Pr), representing the overall accuracy of 190 

the model was calculated for each environmental variable, as a percentage of samples for which the 191 

predicted water quality class matched the observed ones: 192 

�� =
��

�
∗ 100%         (1) 193 

N is a total number of samples; Np is a number of samples for which the predicted water quality class 194 

matched the observed one.  195 

The prediction rate shows how the model is successful in the prediction of exactly the right water 196 

quality class as it was measured in the field. The higher percentage rate value is, the better 197 

performances of the model is. However, in environmental management, when the model predicts one 198 

water quality class above or below the real values, it is in fact a better result compared to the situation 199 

when this discrepancy goes over two or more classes. In order to estimate this kind of discordance 200 

between predicted and observed values, the Percentage of absolute errors (Pa) was calculated as 201 

follows: 202 

�� =
∑   ( |��� – ���   �

���  |   )

��
∗ 100%                             (2)                 203 

where ti  
e is expected water quality class, and ti 

p
   is predicted water quality. The lower value of the 204 

percentage absolute error is, the better the prediction accuracy is.  205 

The agreement between observed and predicted water quality classes, as well as the degree to which 206 

this agreement can be attributed to chance, was estimated using the Kappa Index (Cohen, 1960). A 207 
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Kappa of 0 (or lower) is associated with a random classification result, while a Kappa of 1 indicates a 208 

perfect classification.  209 

The sensitivity analysis was further performed to evaluate how ‘important’ the particular macrophyte 210 

species is for a model using a modified ‘Improved stepwise’ method (Gevrey et al., 2003). This 211 

approach is based on the construction of a new equivalent model consisting of one neuron less in the 212 

input layer compared to the original model (the model being tested by sensitive analysis). After that, 213 

the new equivalent model is generated and trained as many times as there are input variables in the 214 

original one, every time excluding another input. For each iteration, the model error is calculated. The 215 

variable that gives the largest error when eliminated is the most important. Hence, the model designed 216 

for sensitivity analysis in this research consisted of four layers: an input layer including  63 neurons, 217 

representing 63 macrophyte species; two hidden layers (12 and 8 neurons) and one output layer 218 

consisting of seven neurons, representing the seven water quality classes.  For each environmental 219 

attribute, this additional ANN model was generated and trained 64 times, each time consisting of one 220 

species less. The decrease in Pr and increase in Pa values identified the most important species for the 221 

model. This allow species to be classified by order of their significance for the model. Based on these 222 

results, for each environmental parameter, a list of the best indicator species was created. The best 223 

indicator taxa were considered those showing at least 1.50% decrease of Pr value for all 224 

environmental variables and at least 1.45% increase ofPa value for orthophosphates and 0.66 % for 225 

dissolved oxygen and nitrate-nitrogen models. These thresholds represent the values at which the Pr 226 

and the Pa curves reach the plateaus when the species are ordered after the sensitivity analysis 227 

(Appendix A. Supplementary data 2. Figures 1-3). Modelling was carried out using the Python 228 

programming language and Keras library (Chollet, 2015).  229 

Ecological amplitude and position of selected indicator species (species trophic ranks) within the 230 

water trophic gradient were further explored in order to get additional insights into the model 231 

applicability and its relationship with the existing macrophyte bioindication frame for rivers in Europe 232 

(Ellenberg, 1979; Ellemberg et al., 1992; Haury et al., 2006: Szoszkiewicz et al., 2010; Dawson et al., 233 

1999; Schneider and Melzer, 2003). Trophic preferences of selected indicator species and those that 234 
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the model found less significant were compared using the Mann-Whitney test (P<0.05) in the SPSS 235 

program package. The Mann-Whitney test was chosen due to the ordinal scale of data. Therefore, for 236 

each macrophyte trophic rank or ecological amplitude (Ellenberg, 1979; Ellemberg et al., 1992; Haury 237 

et al., 2006: Szoszkiewicz et al., 2010; Dawson et al., 1999; Schneider and Melzer, 2003) (Table 6), 238 

two group of species trophic values were compared: : i) nitrate-nitrogen indicators and the rest of 239 

species; ii)  dissolved oxygen indicators  and the rest of species; iii) orthophosphates indicators and 240 

the rest of species; and finally iv) all species which were identified as good indicators for any of 241 

environmental variables against the rest of species. This analysis allows to explore which ecological 242 

role (e.g., tolerance/ sensitivity to eutrophication, narrow/ wide trophic amplitude), underlying 243 

grouping of the indicator species. 244 

The species trophic preferences which were analysed were: Ellenberg N value (Ellenberg, 1979; 245 

Ellemberg et al., 1992), the Macrophyte Biological Index for Rivers (IBMR) (Haury et al., 2006), the 246 

Macrophyte Index of Rivers (MIR) (Szoszkiewicz et al., 2010), the Mean Trophic Rank (MTR, the 247 

Species Trophic Rank -STR) (Dawson et al., 1999), the Trophic Index of Macrophytes -TIM 248 

(Schneider and Melzer, 2003). The Ellenberg N indicator values represent species requirements for 249 

nutrients and were designed on the basis of field experience for Central Europe (Ellenberg et al., 250 

1992). The MTR system was developed for British rivers and was successfully applied across Europe 251 

(Brabec at al., 2006). In this system, Species Trophic Rank values are assigned to macrophyte species 252 

depending on their tolerance to eutrophication. The IBMR is an index created for estimating whether 253 

or not a river is affected by nutrient inputs (eutrophication) and/or heavy organic pollution in France 254 

(Haury et al., 2006). Moreover, the Macrophyte Index of Rivers (MIR) (Szoszkiewicz et al., 2010) is 255 

part of Polish national monitoring system which was found to correlate significantly with river trophic 256 

and hydromorphological conditions (Gebler et al., 2017; 2018), while the Trophic Index of 257 

Macrophytes -TIM (Schneider and Melzer, 2003) was developed from the same purpose in Germany.  258 

3. Results 259 

3.1 The model prediction performances and validation 260 
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One artificial neural network architecture was constructed and applied to each of water quality 261 

parameters. In total, three different models (dissolved oxygen, nitrate-nitrogen and orthophosphates), 262 

were generated, trained, tested and verified by the sensitivity analysis. The best prediction 263 

performances were obtained for the dissolved oxygen model, having a prediction rate of  82.93% and 264 

the percentage of absolute errors of 3.04%. The value of Kappa Index (Ka 0.61) for this model 265 

indicates  a good agreement between measured and predicted water quality classes. The model for 266 

nitrate-nitrogen matched the correct water quality class for this parameter in 74.80 % of cases (Pa), 267 

with a relatively small percentage of absolute errors (5.42 %) and high the Kappa Index (0.64). 268 

Similar results were obtained for the orthophosphates model (Pr 71.55%, Pa 8.99%), but with the low 269 

level of agreement between observed and predicted water quality classes (Ka 0.17). 270 

 271 

The Danube water quality according to JDS3 dataset and proposed classification scheme matched I-272 

IV quality classes for dissolved oxygen, IV-VII classes range for nitrate-nitrogen content, and I and 273 

IV-V quality classes for orthophosphates.  For the dissolved oxygen, the most frequent error of the 274 

model was the prediction of one water quality class higher compared to the observed values (Tables 275 

2-4). The exceptions from this general pattern were the samples collected in tributaries or downstream 276 

from the tributaries mouth, where the model predicted lower-quality classes compared to the 277 

measured (Appendix A). 278 

The predicted values for the nitrate-nitrogen model almost equally deviated above and below 279 

observed values. However, the orthophosphates model predicted lower quality class in 24 cases and 280 

higher class in 16 samples, than it was recorded on the field (Table 3).  281 

The model errors for nitrate-nitrogen and orthophosphates quality classes didn’t show any spatial 282 

pattern and were evenly distributed among all Danube reaches (Appendix A). 283 

Generally, the highest discrepancy between observed and predicted water quality classes for all three 284 

environmental parameters together was obtained for the Danube tributaries, the Tisza and the Arges 285 
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rivers (Appendix A). In these samples, the model mostly predicted lower (better) water quality classes 286 

compared to measured ones. 287 

Table 2. Confusion matrix for dissolved oxygen water quality classes. The correctly predicted values 288 

are shown on the diagonal from the top left to the bottom-right of the matrix. 289 

Observed water quality classes 
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 I II III IV V VI VII 

I 4 2 0 0 0 0 0 

II 6 86 5 1 0 0 0 

III 0 4 14 0 0 0 0 

IV 0 0 0 1 0 0 0 

V 0 0 0 0 0 0 0 

VI 0 0 0 0 0 0 0 

VII 0 0 0 0 0 0 0 

 290 

Table 3. Confusion matrix for orthophosphates water quality classes. The correctly predicted values 291 

are shown on the diagonal from the top left to the bottom-right of the matrix. 292 

Observed water quality classes 
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 I II III IV V VI VII 

I 5 0 2 9 1 0 0 

II 0 0 0 0 0 0 0 

III 0 0 0 0 0 0 0 

IV 7 0 4 77 10 0 1 
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V 1 0 0 4 1 0 1 

VI 0 0 0 0 0 0 0 

VII 0 0 0 0 0 0 0 

 293 

 294 

Table 4. Confusion matrix for nitrat-nitrogen water quality classes. The correctly predicted values are 295 

shown on the diagonal from the top left to the bottom-right of the matrix. 296 

Observed water quality classes 
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 I II III IV V VI VII 

I 0 0 0 0 0 0 0 

II 0 0 0 0 0 0 0 

III 0 0 0 0 1 0 0 

IV 0 0 0 33 8 0 1 

V 0 0 3 8 44 5 0 

VI 0 0 0 0 3 7 0 

VII 0 0 0 0 0 0 10 

 297 

 298 

3.2 Sensitivity analysis and trophic ranks of indicator species 299 

From 64 analysed macrophyte species, 28 were selected by the sensitivity analysis as significant water 300 

quality indicators for at least one environmental variable (Table 6). Only four species were found to 301 

be good predictors for all three water quality parameters together: Amblistegium riparium, Agrostis 302 
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stolonifera, Phragmites communis, and Myriophyllum spicatum. Selected indicator species covered 303 

wide trophic range and included species tolerant and sensitive to eutrophication (Table 5).  304 

Table 5. Trophic ranks of macrophyte species used in the analysis and indicator species selected by 305 

the sensitivity analysis 306 

 307 

Species name 
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Ellen. 
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IBMR 
(CSI) 

IBMR 
(EI) 

MI
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(L) 

MI
R 

(W) 
STR 

TIM 
 

Agrostis stolonifera L. + + + + 5 10 1     

Alopecurus geniculatus L.     7   4 1   

Amblystegium riparium (Hed
w.) Schimp. 

+ + + +    1 1 1  

Azolla filiculoides Lam.     8 6 3   3  

Bidens frondosus L.     8       

Bidens tripartitus L.     8       

Butomus umbellatus L.     7 9 2   5 2.98 

Carex acuta L.   + + 5   5 1 5  

Carex elata All.     5       

Carex riparia Curtis     4   4 2 4  

Ceratophyllum demersum L.     8 5 2 2 3 2 3.18 

Cinclidotus riparius (Host ex 
Brid.) Arn. 

     13 2     

Cladophora glomerata (Linna
eus) Kützing 1843 

  + +  6 1 1 2 1  

Cyperus fuscus L.  + + + 4       

Cyperus michelianus (L.) Link +   + 6       

Eleocharis acicularis (L.) 
Roem. & Schult. 

    2       

Eleocharis palustris (L.) R. 
Br. 

+   +  12 2 6 2 6  

Elodea nuttallii (Planch.) H. 
St. John 

 +  + 7 8 2   3 2.75 

Equisetum fluviatile L.  +  + 5 12 2 6 2 5  

Fontinalis antipyretica Hedw.   + +  10 1 6 2 5  

Glyceria fluitans (L.) R. Br.  +  + 7 14 2 5 2   

Glyceria maxima (Hartm.) 
Holmb. 

+   + 9   3 1 3 3.00 

Gnaphalium uliginosum L.     4       

Hydrocharis morsus-ranae L.   + + 6   6 2 6  

Iris pseudacorus L.  +  + 7 10 1 6 2 5  

Lemna gibba L.   + + 8 5 3 1 3 2  

Lemna minor L.     6 10 1 2 2 4  
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Lemna turionifera Landolt            

Lythrum salicaria L.     x       

Mentha aquatica L.   + + 5 12 1 5 1  2.00 

Mentha pulegium L.     7       

Myriophyllum spicatum L.     7 8 2 3 2 3 2.83 

Najas marina L. + + + + 6 5 3     

Najas minor All.     4 6 3     

Nuphar lutea (L.) Sm.     6 9 1 4 2 3 3.15 

Nymphoides peltata (S. G. 
Gmel.) Kuntze 

 +  + 7 10 2   2  

Persicaria hydropiper (L.) 
Delarbre 

+ + + + 8 8 2 3 1   

Persicaria lapathifolia (L.) 
Delarbre 

+  + + 8       

Phalaroides arundinacea (L.) 
Rauschert 

    7 10 1 2 1   

Phragmites australis (Cav.) 
Steud. 

    7 9 2   4  

Potamogeton crispus L. +  + + 5 7 2 4 2 3 2.88 

Potamogeton friesii Rupr.     6 10 1 3 2 3 2.68 

Potamogeton gramineus L.     5 13 2 7 1 7  

Potamogeton lucens L. +   + 7 7 3 4 3 3 2.65 

Potamogeton natans L.     5 12 1 4 1 5 2.00 

Potamogeton nodosus Poir.     5 4 3 3 2  3.10 

Potamogeton perfoliatus L.     6 9 2 4 2 4 2.38 

Potamogeton pusillus L. +   + 5   4 2 4 2.40 

Potamogeton trichoides 
Cham. & Schltdl. 

    4 7 2 2 2 2  

Ranunculus fluitans Lam.     8 10 2 7 2 7 3.00 

Riccia crystallina L.            

Rorippa amphibia (L.) Besser   + + 8 9 1 3 1 3  

Salvinia natans (L.) All. +  + + 7       

Schoenoplectus lacustris (L.) 
Palla 

    6     3  

Sparganium emersum 
Rehmann 

    7 13 2 4 2 3 2.78 

Sparganium erectum L.     7 10 1 3 1 3 3.00 

Spirodela polyrhiza (L.) 
Schleid. 

    6 6 2 2 2 2  

Stratiotes aloides L.     6   6 2   

Stuckenia pectinata (L.) 
Börner 

+    8 2 2 1 1 1  

Trapa natans L.     8 10 3     

Typha angustifolia L.   + + 7 6 2 3 2 2  

Typha latifolia L.     8 8 1 2 2 2  

Vallisneria spiralis L.     7 8 2     

Zannichellia palustris L.     8 5 1 2 1 2 2.93 

Trophic index range 
(sensitive – tolerant)     1-9 20-0  10-1  10-1 1-4 
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Indicator weight value / 
Ecological amplitude(wide 
amplitude –narrow 
amplitude) 

      1-3  1-3   

Maximal - minimal (median) 
indicator values for all 
macrophyte species 

    2-9 
 (7) 

2-14 
(9) 

1-3  
(2) 

1-7 
(4) 

1-3 
(2) 

1-7 
(3) 

2-3.18 
(2.855

) 

Maximal - minimal (median) 
indicator values for selected 
indicator species 

       

1-7 
(5) 

**** 

1-2 
(1) 

** 

3-7 
(5) 

*** 

 

Maximal - minimal (median) 
indicator values for selected 
non-indicator species 

       

1-5 
(3) 

**** 

1-3 
(2) 

** 

1-5 
(3) 

*** 

 

Ellen. N - Ellenberg N value (Ellenberg, 1979; Ellenberg et al., 1992);  IBMR (CSI) - the Macrophyte Biological Index for 308 

Rivers (Species Score); IBMR (EI) - the Macrophyte Biological Index for Rivers (Ecological Amplitude) (Haury et al., 309 

2006); MIR (L) - the Macrophyte Index of Rivers (Species index value) (Szoszkiewicz et al., 2010); MIR (W) - the 310 

Macrophyte Index of Rivers (Species index weight) (Szoszkiewicz et al., 2010); TIM - the Trophic Index of Macrophytes -311 

TIM (Schneider and Melzer, 2003); STR  -the Species Trophic Rank -STR (Dawson et al., 1999). ** Values for nitrate-312 

nitrogen indicator species. *** Values orthophosphates indicator species. ****Values for all indicator species. 313 

 314 

Trophic preferences of selected indicator species and those that the model found less significant were 315 

compared for each environmental variable (Table 7). Significant differences (Mann-Whitney, p<0.05) 316 

were obtained for species trophic values (MIR(L)) and ecological amplitude (MIR(W)) according to 317 

the Polish Macrophyte Index for Rivers (Szoszkiewicz et al., 2010); and for species trophic ranks 318 

(STR) defined for UK rivers by Dawson et al. (1999). 319 

The MIR(L) trophic values in the nitrate-nitrogen indicator group were significantly lower than for 320 

the rest of species (Mann-Whitney, U =57, p = 0.018). All species together which were identified as 321 

good indicators for any of the environmental variables showed significantly higher species MIR(W) 322 

weights (ecological amplitude), compared to the rest of the species (Mann-Whitney, U =116, p = 323 

0.027). On the other hand, the species trophic ranks (STR) for orthophosphates indicator species were 324 

higher compared to the rest of species (Mann-Whitney, U =12, p = 0.024). 325 

 326 
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Table 7. Results of Mann-Whitney Test for the comparison of trophic ranks and ecological amplitude 327 

of selected indicator macrophytes against the rest of species. Only statistically significant results were 328 

presented (p<0.05).  329 

Macrophyte 

trophic 

preferences 

Test groups of 

species 

N Mean Rank Sum of Ranks 

Mann-

Whitney U 

Asymp. Sig. 

(2-tailed) 

MIR(W)_N indicators 7 12.14 85.00 57 0.018 

non-indicators 33 22.27 735.00 

STR _P indicators 4 19.50 78.00 12 0.024 

non-indicators 20 11.10 222.00 

MIR(L)_All indicators 17 25.18 428.00 116 0.027 

non-indicators 23 17.04 392 

MIR(W)_N -comparison of species weights (ecological amplitudes) according to the Macrophyte Index of Rivers (Species 330 

index weight) (Szoszkiewicz et al., 2010) for nitrate-nitrogen indicator species against the rest of the species; STR _P - 331 

comparison of species trophic ranks according to Dawson et al., (1999) for orthophosphates indicator species against the rest 332 

of the species; MIR(L)_All -comparison of species trophic values according to the Macrophyte Index of Rivers (Species 333 

index weight) (Szoszkiewicz et al., 2010) for all indicator species against the rest of the species. 334 

 335 

4.  Discussion  336 

The modelling approach applied in this study predicted the Danube trophic conditions with a high 337 

prediction rate using raw binary macrophyte data as explanatory variables. Modelling of habitat 338 

conditions by presence/ absence or abundance of indicator organisms is a basic task of bioindication 339 

(Schleiter et al., 2006). Since the variables may change in short time scales, biological indicators are 340 

adequate long-term probes for environmental quality. Schleiter et al. (1999) showed that 341 

environmental properties of lotic ecosystems, including dissolved oxygen, total phosphorus and 342 

nitrate-nitrogen could be successfully predicted by macroinvertebrate assemblages using artificial 343 

neural network. In a similar study, Schleiter et al. (2001), found that better predictive performances of 344 

the water quality model could be obtained using presence/ absence data compared to the abundance 345 

data.  346 
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In this study, the presence-absence data model was performed to reduce the number of null-data and 347 

to increase model performance. However, the long survey units of 3 river km may mask small scale 348 

habitat conditions and also weaken the ability of the data to detect linkages between local river 349 

conditions and the drivers of those conditions. Therefore, even better predictive performances of the 350 

developed models could be expected in the case of small sub-reaches sampling designs with multiple 351 

data points (Jusik et al., 2015). Nevertheless, the use of binary macrophyte data potentially eliminates 352 

the statistical noise of the water velocity, the  important factor structuring the macrophyte 353 

assemblages in the Danube and the lotic systems at all (Janauer et al., 2010). To a certain extent, the 354 

water velocity may influence the aquatic plants abundance by simple physical removal of individuals, 355 

leaving species composition unchanged (Franklin et al, 2008). If water velocity exceeds 1 m s−1, 356 

macrophytes are only present in negligible quantities or are completely absent (Franklin et al, 2008). 357 

This implies that the use of the developed predictive model is restricted to the river sections having 358 

water velocity below this threshold value. 359 

 360 

Moreover, collecting the presence-absence macrophyte data is cost-effective and could be potentially 361 

performed on the Danube more frequently than JDS expeditions. Together with the fact that 362 

macrophyte species could be easily identified on the field, this may allow time-effective assessment of 363 

the river trophic state. 364 

Some previous studies attempted to correlate water quality and habitat degradation along the Danube 365 

using various macrophyte metrics (Birk et al., 2012). Birk et al. (2012) demonstrated using the Joint 366 

Danube Survey 2 data that apart from macrophyte composition, macrophyte trophic metrics failed to 367 

reflect the Danube habitat conditions  since the majority of macrophyte species belonged to 368 

eutrophication tolerant. Indicator species selected by sensitivity analysis in this study are mostly 369 

eutrophic tolerant as well, with broad ecological amplitude.  Ecological amplitude (MIR_W), of 370 

nitrate-nitrogen indicator species, were relatively wider in comparison with the rest of the species. 371 

Moreover, species trophic values (MIR_L), classified all indicator species as eutrophic tolerant. In 372 

some previous studies, this Macrophyte Index of Rivers (MIR) (Szoszkiewicz et al., 2010) was shown 373 
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to be a good predictor of various forms of nutrients, including nitrate nitrogen and orthophosphates 374 

(Szoszkiewicz et al., 2020).  On the other hand, the orthophosphates indicator species group had a 375 

slightly higher STR value compared to the rest of the species, but still in the meso-eutrophic water 376 

quality spectrum. This implies that orthophosphates were better predicted with eutrophication 377 

sensitive species. This is in accordance with the conclusions of previous studies that macrophytes 378 

should be treated as indicators of river ecological degradation caused by complex trophic factors, not 379 

necessarily correlating among each other (Gebler et al., 2017; Gebler et al., 2018).  380 

With a few exceptions, indicator species included submerged species such as Potamogeton crispus, P. 381 

lucens, and perennial emergent species (Amblystegium riparium, Glyceria fluitans, Glyceria maxima, 382 

Mentha aquatica, Typha angustifolia, etc.). Szoszkiewicz et al. (2017) demonstrated that on the 383 

lowland rivers in Poland, with wide trophic range, the most distinctive species, found exclusively in 384 

one trophic level, were predominantly emergent and amphibian species. Analysis of JDS2 data (Birk 385 

et al., 2012) obtained similar results for submerged pondweed species, which were found to 386 

characterise less disturbed river sections. Generally, submerged macrophytes have a strong ability to 387 

absorb phosphorus from the water column (Zhang et al., 2011; Christiansen et al., 2016), and clearly 388 

respond to changes of phosphorus concentrations in the water (Søndergaard et al., 2010). The 389 

percentage cover of these functional groups in the littoral zone of lakes was recognised as reliable and 390 

good performing water quality indicators (Kolada, 2014). While emergent species are more associated 391 

with waters having high nutrient and chlorophyll-a concentration, submerged species are good 392 

predictors of mesotrophic conditions (Kolada, 2014). 393 

The highest prediction rate, which shows a model's ability to predict the right water quality class was 394 

calculated for the dissolved oxygen model. On the other hand, all three models showed good 395 

performances considering the percentage of absolute errors. For the main river channel, the model 396 

mostly showed equal distribution or errors around observed environmental values. The exceptions 397 

from this role were the samples collected in tributaries or downstream from the tributaries mouth, 398 

where the model predicted more frequently lower (better) quality classes compared to the observed 399 

once. This was pronounced for the orthophosphates, especially in the case of samples from the Tisza 400 
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and the Arges rivers (Appendix A). In general, this prediction pattern is probably due to species 401 

sorting mechanisms, where these tributaries with better water quality (Liška et al., 2015) contributed 402 

to the Danube sample species pool (Heino et al., 2013). This also might be the reason for the lower 403 

value of the Kappa index for the orthophosphates model in comparison with the dissolved oxygen and 404 

nitrate nitrogen models. 405 

 406 

5.  Conclusions 407 

In this study, macrophyte presence-absence data within the 3 km long Danube reaches obtained from 408 

the JDS3 survey were used to predict water quality classes. Instead of using macrophyte variables as 409 

the model outputs (dependent variables), an opposite approach  was applied to develop ANN 410 

predictive model for the Danube trophic variables (dissolved oxygen, nitrate-nitrogen and 411 

orthophosphates). Despite the  limited number of samples along the  wide trophic gradient of the 412 

Danube river from the source to the mouth, the model showed good predictive performances for the 413 

main river channel. From 64 analysed macrophyte species, 28 were selected by sensitivity analysis as 414 

significant water quality indicators for at least one environmental variable. Indicator species mainly 415 

belonged to the eutrophic tolerant submerged or emerged species with broad ecological amplitude. 416 

This reflects the significance of the developed model for use on rivers significantly impacted by 417 

eutrophication such as the Danube. However, the use of the developed predictive model is restricted 418 

to the river sections with water velocity suitable for macrophytes growth. On the other hand, the 419 

developed ANN architecture represents the modelling approach which could be applied to other 420 

biological quality elements. Nevertheless, compared to other biological quality elements, macrophytes 421 

could be easily identified immediately on the field, allowing in situ assessment of river trophic 422 

conditions.  423 
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