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Abstract Earth scientists increasingly deal with ‘big data’. For spatial interpolation
tasks, variants of kriging have long been regarded as the established geostatistical
methods. However, kriging and its variants (such as regression kriging, in which
auxiliary variables or derivatives of these are included as covariates) are relatively
restrictive models and lack capabilities provided by deep neural networks. Principal
among these is feature learning: the ability to learn filters to recognise task-relevant
patterns in gridded data such as images. Here, we demonstrate the power of feature
learning in a geostatistical context by showing how deep neural networks can automat-
ically learn the complex high-order patterns by which point-sampled target variables
relate to gridded auxiliary variables (such as those provided by remote sensing) and
in doing so produce detailed maps. In order to cater for the needs of decision makers
who require well-calibrated probabilities, we also demonstrate how both aleatoric and
epistemic uncertainty can be quantified in our deep learning approach via a Bayesian
approximation known asMonte Carlo dropout. In our example, we produce a national-
scale probabilistic geochemical map from point-sampled observations with auxiliary
data provided by a terrain elevation grid. By combining location informationwith auto-
matically learned terrain derivatives, our deep learning approach achieves an excellent
coefficient of determination (R2 = 0.74) and near-perfect probabilistic calibration on
held-out test data. Our results indicate the suitability of Bayesian deep learning and
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its feature-learning capabilities for large-scale geostatistical applications where uncer-
tainty matters.

Keywords Neural networks · Geostatistics · Feature learning · Uncertainty
quantification · Machine learning · Mapping

1 Introduction

Maps are important for our understanding of Earth and its processes, but it is generally
the case that we are unable to directly observe the variables we are interested in at
every point in space. For this reason we must use models to fill in the gaps. In order
to support decision making under uncertainty, statistical models are desirable (Berger
1985). Kriging—the original geostatistical model—provides smooth interpolations
between point observations based on the spatial autocorrelation of a target variable
(Cressie 1990; Stein 1999). However, additional sources of information are often
available, thanks in part to the rise of remote sensing (Mulder et al. 2011; Colomina
and Molina 2014), which provides grids of what we consider here to be auxiliary
variables (e.g., terrain elevation, spectral imagery, subsurface geophysics). These are
complete maps of variables that we are not directly interested in but which are likely
to contain information relating to our variables of interest.

How best to extract information from auxiliary variable grids for geostatistical
modelling tasks has remained an open question, but has often involved trial-and-
error experimentation using manually designed filters to extract features with as much
explanatory power as possible (e.g., Ruiz-Arias et al. 2011; Poggio et al. 2013; Par-
mentier et al. 2014; Shamsipour et al. 2014; Kirkwood et al. 2016; Kirkwood 2016;
Young et al. 2018; Lamichhane et al. 2019). For example, Youssef et al. (2016) use
slope angle derived froma digital terrainmodel as a feature to explain landslide suscep-
tibility, but many more complex features may be useful, and these are not necessarily
known in advance. To enable the utilisation of complex and unknown features, here
we present an end-to-end geostatistical modelling framework using Bayesian deep
learning, which frames the information extraction problem as an optimisation prob-
lem (Shwartz-Ziv and Tishby 2017), and in doing so eliminates the need for manual
feature engineering and feature selection steps. Our approach therefore has the poten-
tial to supersede traditional geostatistical approaches by bringing automatic feature
learning to probabilistic geospatial modelling tasks.

Here we present a two-branch deep neural network architecture—convolutional
layers for feature learning combined with fully connected layers for smooth
interpolation—that brings the benefits of deep learning to geostatistical applications,
and we do so without sacrificing uncertainty estimation: Our approach estimates both
aleatoric and epistemic uncertainties (via Monte Carlo dropout; Gal and Ghahramani
2016) in order to provide a theoretically grounded predictive distribution as output,
which is composed of spatially coherent realisations (see Appendix A: Simulation).
Our work brings together ideas from the fields of machine learning (Krizhevsky et al.
2012; Srivastava et al. 2014), remote sensing (Zhang et al. 2016; Zhu et al. 2017)
and Bayesian geostatistics (Handcock and Stein 1993; Pilz and Spöck 2008), and
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unites them in a general framework for solving ‘big data’ geostatistical modelling
tasks in which gridded auxiliary variables are available to support the interpolation of
point-sampled target variables. We demonstrate our approach on a national-scale geo-
chemical mapping task with encouraging results, both in terms of deterministic and
probabilistic performance on held-out test data. As far as we are aware, our framework
is the first to provide both well-calibrated probabilistic output and automated feature
learning in the context of spatial interpolation tasks. By using neural networks, we
also ensure that our framework is scalable to the largest of problems.

While the framework we present here is new, it can also be seen as a unification
and generalisation of a range of prior works. Deep learning (LeCun et al. 2015)—
machine learning using ‘deep’ neural networks consisting of multiple stacked layers
capable of learning hierarchical composite functions—has seen increasing uptake
within scientific communities in the last decade.Deepneural networks typically consist
of two components: a (deep) sequence of convolutional layers designed to extract a
hierarchicallymore efficient encoding of the signal, followed by fully connected layers
at the end to estimate the desired function from the encoded representation. Both
parts are trained jointly using stochastic gradient descent, ensuring that the learned
features are optimised for the task. The popularity of deep learning has followed from
breakthrough work by Krizhevsky et al. (2012) who achieved a new state of the art in
image classification by using deep neural networks to automatically learn informative
features from images (rather thanmanually engineering them).Deep learning has since
been widely adopted within the remote sensing community (e.g., Zhang et al. 2016;
Zhu et al. 2017; Li et al. 2017; Zuo et al. 2019) and has been applied to a variety of
problems in geoscience, for example detecting and locating earthquakes (Perol et al.
2018), detecting faults in 3D seismic data (Wu et al. 2019) and classifying lithologies
from drill core images (Alzubaidi et al. 2021). However, difficulty in obtaining reliable
uncertainty estimates from deep neural networks (Kendall and Gal 2017) has meant
that deep learning has not been widely adopted for applications where uncertainty
matters (or, as in the aforementioned works, the proposed approaches skirt around
the ever-present issue of uncertainty and simply use fixed-weight deterministic neural
networks instead).

A few authors have made use of deep learning to automate feature learning in
a geostatistical context (Padarian et al. 2019; Wadoux et al. 2019; Wadoux 2019;
Kirkwood 2020), mostly for digital soil mapping, but only one—(Wadoux 2019)—
has been able to provide uncertainty estimates, though these were achieved via a
bootstrapping approach and found to be underdispersive. Here we make use of a
theoretically grounded and practically effective approach to uncertainty estimation in
deep neural networks:MonteCarlo dropout as aBayesian approximation, as conceived
by Gal and Ghahramani (2016). The authors are aware of one prior instance of its use
in a geospatial setting: for a semantic segmentation task by Kampffmeyer et al. (2016).
While our work shares similarities with the work of Kampffmeyer et al. (2016), our
motivation is from the angle of geostatistical tasks in which the challenge is to utilise
auxiliary information to interpolate between sparsely sampled point observations,
whereas Kampffmeyer et al. (2016) tackle the remote sensing challenge of semantic
segmentation: classifying each pixel of airborne images of the urban environment with
their corresponding object class (e.g., car, building, tree) by training on fully manually
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labelled images without gaps. Both approaches require learning features from gridded
data, but only ours combines this with general spatial interpolation abilities in order
to provide a viable solution to the task of spatial interpolation in the presence of
auxiliary information. Overall, while various separate concepts behind our work may
be familiar to some readers already, here we bring them together and present Bayesian
deep learning as a general solution for big data geostatistics.

Outside of the relatively recent influences of deep learning, there have also been
longstanding works in the geoscience community to utilise Bayesian inference within
general geological modelling practices. This initially stemmed from developments in
geophysics (Tarantola and Valette 1982; Mosegaard and Tarantola 1995; Sambridge
and Mosegaard 2002) in which Monte Carlo methods were presented as a means to
deal with the uncertainty that is inherent to under-determined inverse problems (where
many different solutions are capable of generating the observed data, i.e. the solution
is non-unique—a common occurrence within the geosciences). More recently, Varga
andWellmann (2016) focused on how the Bayesian framework can be used to combine
both geological knowledge and quantitative data into geological models, a theme that
is further developed byWellmann et al. (2018), Grose et al. (2019), Schaaf et al. (2020)
and Olierook et al. (2021).

Our Bayesian deep learning approach for spatial interpolation in the presence
of auxiliary information borrows more heavily from the machine learning and geo-
statistics literature than from these geological modelling works, but we acknowledge
the background on both sides because we share the same motivations: the desire
to incorporate all sources of information into our models, and also to characterise
both aleatoric and epistemic uncertainties, such that our models will be maximally
informative while remaining honest about uncertainty. Our Bayesian deep learning
approach could be seen as the ‘data-rich, prior knowledge-poor’ end-member on a
spectrum of Bayesian modelling methods, with the above-mentioned geological mod-
elling approaches falling closer to the ‘knowledge-rich, data-poor’ end of the spectrum.
The data-rich setting brings its own set of challenges in terms of scalability, and the
need to deal with large volumes of data is a strong justification for adopting a neural
network-based approach such as the one we present here.

2 Method

2.1 Feature Learning for Geostatistics

The core domain of geostatistics has been in the spatial interpolation of point obser-
vations in order to produce continuous maps in two or three dimensions. Kriging, the
now ubiquitous geostatistical technique conceived by South African mining engineer
Danie (Krige 1951), originally accounted for only the location and spatial autocorrela-
tion of observations in order to produce smooth interpolations (or threshold-classified
smooth interpolations in the case of indicator kriging) that can be considered opti-
mal if no other information is available (Matheron 1962; Cressie 1990), often under
assumptions of stationarity and isotropy. When other information is available, as is
commonly the case today, the pursuit of optimal spatial interpolation becomes more
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complex. An extension of ordinary kriging, regression kriging (which is also mathe-
matically equivalent to universal kriging and kriging with external drift; Hengl et al.
2007), allows covariates to be included in the model: the mean of the interpolated
output is able to vary as a linear function of the value of covariates at the correspond-
ing location (Gotway and Hartford 1996). For an illustrative example, the inclusion
of elevation as a covariate in an interpolation of surface air temperature data could
be expected to result in a map that reflects the underlying elevation map, i.e. whose
mean function is a linear function of elevation. However, this quickly brings us to the
limits of regression kriging: What if a linear function of elevation does not provide
as much explanatory power to surface air temperature as some non-linear function of
elevation? What non-linear function of elevation would be the optimal one? At the
same time, what if we also have wind direction available to use as a covariate? Would
we not expect the best predictor of surface air temperature to account for not just ele-
vation, or wind direction, but how they interact, with air flowing down frommountains
expected to be cooler? We quickly find ourselves in the realms of feature engineering
and feature selection, a world of hypothesising and trial-and-error experimentation
which has become a necessary but impractical step in the traditional geostatistical
modelling process.

The defining strength of deep neural networks is their ability to learn features for
themselves owing to their hierarchical structure in which the output of each layer
(with a non-linear activation function applied) provides the input to the next. Through
back-propagation of error gradients, neural networks can automatically learn non-
linear transformations of input variables and their interactions as necessary in order
to minimise a loss function. It has also been shown that in the limit of infinite width
(infinite number of nodes), a neural network layer becomes mathematically equivalent
to a Gaussian process (Neal 1996), which is itself the same smooth interpolator con-
ceived by Danie Krige (i.e. kriging) under a different name. The deep neural network
approach we present here combines these spatial abilities with a unique ability to learn
its own features from auxiliary variable grids. We achieve this efficiently through the
use of convolutional layers: trainable filters which pass over gridded data to derive
new features, in a similar manner to how edge detection filters derive edges from
photographs (Chen et al. 2017). By stacking convolutional layers, the complexity and
scale of features that can be derived increases, along with the size of the receptive
field of the neural network (Luo et al. 2016), which allows longer-range dependence
structures to be learned.

2.2 Neural Network Architecture

As is shown in Fig. 1, our neural network, which we constructed and trained using
Tensorflow (Abadi et al. 2016) and Tensorflow Probability (Dillonet al. 2017), has two
separate input branches: a five-layer convolutional branch that takes auxiliary variable
images as input (the auxiliary information branch); and a single-layer fully connected
branch that takes location variables as input (the geographic location branch). The
outputs of these two branches are flattened and concatenated into a single 2048 dimen-
sional vector (128 from the convolutional branch, 1920 from the fully connected
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Fig. 1 Overview of our deep neural network architecture visualised with the help of NN-SVG software
(LeNail 2019). For each observation, input A feeds an image of surrounding terrain into a stack of con-
volutional layers (shown as horizontal blocks). Simultaneously, input B feeds the observation’s location
variables into a fully connected layer. These two branches of the network are then concatenated and fed
through a further two fully connected layers (shown as vertical blocks) from which the two parameters of
a Gaussian distribution are output

branch) that feeds into the final layers of our neural network, which consist of a fur-
ther two fully connected layers (1024 nodes and 256 nodes) before outputting the two
parameters—mean, μ, and variance, σ 2—of a Gaussian distribution that represents
the target variable. Throughout the network, we use the rectified linear unit (ReLU)
activation function. In total, our neural network architecture has 2.8 million trainable
parameters.

In our auxiliary information branch, the first four layers are convolutional layers,
each with 128 channels, using 3x3 kernels with a stride of 1 (apart from the first,
which uses a stride of 3 in order to rapidly reduce the spatial dimensions of the
feature learning branch from the 32x32 input image to 10x10 and therefore reduce
the number of parameters in subsequent convolutional layers). The fifth layer of the
branch is a global average pooling layer, which reduces the final convolutional layer’s
4x4 output into a 1x1 output by simply taking its mean. Pooling introduces translation
invariance into convolutional neural networks, because the exact position at which
kernels are activated is lost in the average. While it may seem counter-intuitive to
instill any level of translation invariance into a spatial mapping problem, we found
that it helps to reduce overfitting in the network, perhaps by encouraging it to learn
features that are more descriptive of general setting (e.g. rock types) rather than of the
exact location (e.g. where one specific stream meets another), and which are therefore
more useful for generalising to unseen locations. We also found that average pooling
outperformed max pooling for this use case, presumably because it produces smooth
transitions between the contextual features present at adjacent locations (rather than
having features pop in and out depending onwhether they are present anywhere within
the extent of the auxiliary information image). While the convolutional architecture
we propose here is effective, we also suspect that there is room for improvement, and
would encourage further research in this area.

The geographical location branch (from input B in Fig. 1) of our neural network is
simpler, and consists of a single fully connected layer whose output is concatenated
with the output of the auxiliary information branch before feeding into a further two
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fully connected layers prior to the neural network’s output. Without the inclusion of
the auxiliary information branch, our model would simply be a deep fully connected
neural network operating on spatial location inputs (easting, northing, elevation), and
could therefore be regarded as approximately performing ‘deep kriging’, or spatial
interpolation using deep Gaussian process regression, which is what our neural net-
work would become in the limit of infinite layer width (Neal 1996). The idea of ‘deep
kriging’ has been explored by Li et al. (2020) in their paper of the same name, who
propose a neural network architecture that uses an embedding layer to transform the
input space. The inclusion of the auxiliary information branch in our neural network,
however, turns it into something closer to ‘deep regression kriging’, a term that seems
not to have previously been coined. Unlike traditional regression kriging, not only does
our deep neural network architecture learn its own regression features automatically
from gridded auxiliary information, but also learns interactions between these features
and spatial location owing to the fact that we have subsequent hidden layers after the
auxiliary and spatial information branches are concatenated. We can therefore think
of our neural network as performing interpolation in a self-learned hybrid space—a
representation which blends global location information with local contextual infor-
mation.

Therefore, our neural network provides a forward model from the location infor-
mation and auxiliary information inputs, whose output is a Gaussian distribution
representing the target variable (stream sediment calcium concentrations in the exam-
ple we present here) via two parameters: the mean, μ, and variance, σ 2. These two
output parameters are generated by separate linear functions of the same 256 learned
features that constitute the neural network’s final hidden layer (which in this case has
256nodes).Whileμ is free to varyon the real line,we constrainσ 2 to always bepositive
(and therefore valid) by using a softplus link function: softplus(x) = log(exp(x)+1).
Because these output parameters have access to the same features, there may be some
amount of cross-talk between them. This could be forcibly avoided by using separate
neural networks to learn each of these output parameters. However, given the nature of
the problem, it is likely that both μ and σ 2 will vary according to the same underlying
processes, such as changes in lithological or hydrological setting. It therefore seems
a reasonable approach to allow both μ and σ 2 the capacity to share the same features
(and to have them jointly inform the learning of these features). The quality of our
results empirically supports this reasoning.

Our probability model p(Ys |xs, w) for our target variable Ys , at any location s,
given the inputs xs and weights of the neural network w is defined as

Ys |xs, w ∼ N (μ(xs), σ (xs)
2) (1)

μ(xs) = g(layer f inal)

σ (xs)
2 = log(exp(h(layer f inal)) + 1),

where both g and h are linear functions of the 256 features of the final hidden layer
of the neural network (layer f inal ) so that both take the form g(layer f inal) = β0 +
β1 f eature1+β2 f eature2+β3 f eature3+· · ·+β256 f eature256. Each of these 256
features is itself a learned transformation of the neural network’s inputs, xs , namely
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location information and auxiliary information (Fig. 1). The specifics of these functions
are dictated by the trainable parameters, or weights, in the neural network. In the next
section, we explain how these parameters, and the functions they induce the neural
network to represent, are learned.

2.3 Quantifying Uncertainties via Monte Carlo Dropout

Traditionally, neural networks are deterministic models in that they provide a fixed
output for a given input, subject to the values of their parameters (or weights, w).
Neural networks are commonly trained through back-propagation to converge on a
set of weights that minimise a loss function (often mean squared error in the case of
regression problems). However, in these traditional deterministic neural networks the
weights are fixed, having no distribution, which means that there is no way to estimate
the uncertainty in theseweights or therefore the uncertainty about the function ormodel
that the neural network has learned. Natural processes inevitably involve uncertainties,
and it is right that we should want to estimate these in order to provide well-calibrated
probabilistic predictions suitable for use in decision support (Yoe 2011; Fox 2011).We
do so here using the Monte Carlo dropout approach of Gal and Ghahramani (2016)
for approximate Bayesian inference, which allows us to capture both aleatoric and
epistemic uncertainty as described by Kendall and Gal (2017). Aleatoric uncertainty
can be thought of as the innate randomness in a data-generating process—irreducible
noise inherent in the observations of the target variable—and can be represented by
using a parametric distribution as the output of the neural network so that, rather than
making single point predictions, our model predicts a distribution whose variance
acknowledges the inherent randomness in the observations. In our case, our deep neural
network outputs the mean, μ(xs), and variance, σ(xs)2, of a Gaussian distribution
(Eq. 1) which provides our likelihood function for the neural network (LNN ). If we
define vector y = (y1, . . . , yn) to be the observed data on Ys (our output variable),
then the likelihood is defined as the joint probability of the data y given specific values
of μ(xs), σ(xs)2 and w. This is given by

LNN = p( y|μ(xs), σ (xs)
2, w) (2)

=
n∏

s=1

p(ys |μ(xs), σ (xs)
2, w)

=
n∏

s=1

1√
2πσ(xs)2

exp

(
− 1

2σ(xs)2
(ys − μ(xs))

2
)

= 1

(2πσ(xs)2)n/2 exp

(
− 1

2σ(xs)2s

n∑

s=1

(ys − μ(xs))
2

)
.

If we were not also interested in epistemic uncertainty—uncertainty within the
model itself—we could simply optimise the weights, w, to arrive at a fixed set which
maximises the likelihood (maximises the probability of the data given the model).
Assuming a Gaussian error distribution as we do here, maximising the likelihood
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would lead our neural network to fit the predictive mean, μ(xs), equivalently to if we
were minimising the mean squared error (MSE),

MSE =
n∑

s=1

(ys − μ(xs))
2, (3)

which is perhaps the most commonly used loss function for deterministic regression
problems. However, by having our neural network learn both the mean,μ(xs), and the
variance, σ(xs)2, of our target variable as functions of the inputs, we can learn a spa-
tially precise heteroscedastic (Kendall and Gal 2017) representation of the uncertainty
within the data—the aleatoric uncertainty.

In addition to modelling the aleatoric uncertainty, we also wish to model the
epistemic uncertainty—the uncertainty within the model itself. We do so in acknowl-
edgement of the fact that, given that we do not have complete and perfect information
(our set of observations is finite), there is uncertainty about the form of the true data-
generating process. This uncertainty can be reduced by collecting more data, but
without infinite observations there will always be room for multiple possible model
fits, or explanations, for the data we observe. If we simply task our neural network
with learning a single ‘best fit’ function to represent the data-generating process (e.g.
by maximising the likelihood), then we would be ignoring this epistemic uncertainty
about the range of possible fits, resulting in overconfident predictions and poor gen-
eralisation. Instead, to model the epistemic uncertainty, we model a distribution over
the range of possible model fits. To do so requires operating within the Bayesian
framework to learn a distribution over the neural network weights, rather than simply
learning a fixed set of weights as in traditional frequentist neural networks. However,
learning a distribution over each weight, or parameter, in the model is a challenging
proposition for large neural networks due to the extreme dimensionality of the model
(2.8 million trainable parameters in our case).

Herewe use theMonte Carlo dropout approach for approximate Bayesian inference
in deep neural networks (Gal andGhahramani 2016). This approach places a Bernoulli
prior row-wise over the weight matrices of the neural network, which means that for
every iteration of training and prediction, the nodes of the neural network each have
a probability of being switched off, or ‘dropped out’ (with weights set to zero). The
probability or rate at which nodes will drop out is a tuneable hyper-parameter. While
a Bernoulli prior may seem ‘unrealistic’—why should a parameter only exist with
a fixed probability?—the overall effect of Monte Carlo dropout on the network as a
whole is to turn our single neural network into a near-infinite self-contained ensemble.
Each different configuration of dropped nodes realises a different function (or model)
from the ensemble, so that rather than learning a single ‘best’ fit, our neural network
learns a distribution over possible fits.

The dropout rate relates to the variance we expect to see between different functions
drawn from the ensemble—it acts as our prior distribution over functions. In general,
a higher dropout rate will induce higher variance within the ensemble, as samples (or
‘ensemble members’) become less correlated. However, the dropout rate also affects
the capacity of the neural network to represent complex functions; for example, a high
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dropout rate of 0.9 would on average leave only 10% of the nodes of the network
active for any given sample, effectively causing the ensemble to be composed of much
smaller neural networkswhichwould likely beweaker learners (Srivastava et al. 2014).
In the same way that theory does not dictate the optimal neural network architecture
for a given task, so too the optimal dropout rate is task- (and architecture-)dependent.
By manually tuning the dropout rate in order to minimise loss on the evaluation set, a
well-calibrated posterior predictive distribution can be achieved. For our geochemical
mapping application, we found a dropout rate of 0.2 for the fully connected layers, and
a spatial dropout rate of 0.5 for the convolutional layers (in which filters, rather than
nodes, are dropped) to be effective. The manual tuning of dropout rates adds some
time to the model development process, but it is just one of many hyper-parameters to
consider in the design of the neural network (along with depth, layer width, activation
function, convolutional kernel size, dilation, stride, pooling, etc.). It isworth noting that
other approaches to Bayesian inference in deep neural networks have been proposed,
in what is a rapidly developing area of research [we recommend the concise review
by Wilson (2020)]. We therefore remain open-minded about what may emerge as the
‘best’ approach over the coming years, but have foundMonte Carlo dropout to perform
well in our task.

We now provide a deeper look at the principles behind Monte Carlo dropout as
a Bayesian approximation, though for the complete details, we refer readers to the
original work of Gal and Ghahramani (2016). First, consider the simpler scenario of
usingour neural networkwithout dropout. In this scenario, the gradient descent training
procedure aims to find a fixed set of weights, w∗, which maximise the likelihood: the
probability of the data given the weights, p( y|w∗). Given its enormous number of
parameters, our neural network could potentially achieve this by fitting the mean
of its Gaussian output, μ, directly through our training observations, and setting its
variance, σ 2, close to zero everywhere—although this would undoubtedly be a case of
overfitting the data. Regularisation techniques can be used to prevent this overfitting
by penalising complexity, but regardless, the outcome would still be a fixed set of
weights, w∗, which provides no estimate of epistemic uncertainty.

In order to quantify epistemic uncertainty, wewant to learn the posterior distribution
of the weights, p(w| y), given the data y. To do so in the traditional way requires
combining the likelihood, p( y|w), with a prior distribution for the weights, p(w),
through Bayes’ rule. In our case, our prior is constructed by assuming randomly
initialised fixed weights, β, and for each node of the network (each row of the neural
network’s weight matrices) a Bernoulli random variable, z ∼ Bern(π), where π =
Pr(z = 1). Then the distribution over weights is defined as p(w) = βz, which defines
whether the weight β is ‘active’ (z = 1) with probability π or ‘dropped out’ (z = 0)
with probability 1 − π , where 1 − π is the dropout rate to be tuned manually as a
hyper-parameter. Using Bayes’ rule, the posterior is defined as

p(w| y) = p( y|w)p(w)

p( y)
, (4)

but the Monte Carlo dropout approach provides an approximation whereby we obtain
the posterior by training the fixed weights, β, while dropout is active at the rate we
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specify. Once training is complete, we take the Monte Carlo dropout distribution,
βT RAI N EDz, to be our posterior, so that

p(w| y) = βT RAI N EDz. (5)

This approximation is efficient in that, once the fixed weights have been trained (for
which we can use the standard efficient optimisers for deep learning), the Monte
Carlo dropout samples immediately provide independent samples from the posterior,
p(w| y), with no burn-in or thinning required, unlike samples obtained by Markov
chain Monte Carlo (MCMC) methods [e.g. see Raftery and Lewis (1996)]. However,
it does mean that we are entirely dependent on learning an optimal set of fixed weights,
βT RAI N ED (subject to the dropout rates we specify), in order that our approximate
posterior results in awell-calibratedmodel. From the perspective of big data efficiency,
this is in fact a selling point of the Monte Carlo dropout approach, as it means we can
use the established tools for training deep neural networks very efficiently, namely
stochastic gradient descent in frameworks such as Tensorflow, and treat the dropout
rate as a hyper-parameter to be tuned in the neural network design process.

To arrive at our trained weights, βT RAI N ED , in Tensorflow, we task stochastic
gradient descent with optimising β to minimise the negative log-likelihood loss,
−log[p( y|w)], which equates to maximising the likelihood. However, with dropout
active, it is no longer sufficient for the optimiser to find a single point in parame-
ter space that provides maximal likelihood (which would likely be a sharply peaked
maximum corresponding to a model that fits perfectly through the training data but
generalises poorly to new data). Instead, the optimiser must find a maximum that can
accommodate the dispersion induced by the activity of Monte Carlo dropout. The
effect of this is that the mean of the resultant posterior is regularised compared to the
maximum likelihood estimate without Monte Carlo dropout active. In addition, the
posterior, being an optimised dropout-induced distribution over the weights given the
data, provides an estimate of the epistemic uncertainty in the model.

The uncertainty estimates obtained from Bayesian methods will always have some
sensitivity to the choice of prior. In our case, the dispersion of ourMonte Carlo dropout
posterior is sensitive to our choice of the dropout rate. Fortunately, in a big data setting
such as ours, we can use a large evaluation data set to help tune the dropout rate
and any other hyper-parameters (more details of our specific setup follow in the next
subsection). Our aimwith tuning the dropout rate is that the stochastic gradient descent
training process should arrive at a solution βT RAI N ED which corresponds to a model
that fits the training data as closely as possiblewithout overfitting, whichwould present
itself as a degradation of predictive performance on the evaluation set. We can see this
as it happens by monitoring the training and evaluation loss during the stochastic
gradient descent process in Tensorflow. With dropout at a suitable rate, training loss
will continue to decrease as stochastic gradient descent continues, while evaluation
loss will reach a low plateau and stay there. This indicates that the resultant posterior
corresponds to a model that well represents both the training data and the evaluation
data, without becoming overconfident (i.e. overfitting). The better the uncertainty
quantification, the better the predictive performance will be outside of the training
data.
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The posterior distribution is the key to capturing epistemic uncertainty—it repre-
sents the uncertainty in the function, or model, that the neural network has learned.
Given the posterior distribution over weights, p(w| y), the posterior predictive distri-
bution of any output Ys given the associated value of the input xs is given by

p(Ys |xs, y) =
∫

w

p(Ys |xs, w)p(w| y)dw, (6)

where p(Ys |xs, w) is our Gaussian model (Eq. 1). Note that Ys in Eq. 6 can be any
value of the output variable, observed and unobserved alike; e.g. Ys can be a location
s not covered by the observed data y. In practice, we calculate this integral using
Monte Carlo integration: simulating from the posterior predictive distribution for a
given input, xs , one sample at a time, where each sample is drawn from the Gaussian
distribution using a different arrangement of weights wi , sampled (by Monte Carlo
dropout) from the posterior distribution p(w| y). For more on simulation, and the
spatial properties of resultant realisations, see Appendix A.

2.4 Application to Geochemical Mapping

We applied our Bayesian deep neural network to the task of mapping stream sediment
calcium concentrations, as log(calcium oxide), across the UK. This geochemical data
set, provided by the British Geological Survey, contains 109,201 point-sampled cal-
cium observations (as well as many other elements) measured by chemical assay of
sediment collected from the beds of streams across the UK, approximately at random
(Johnson et al. 2005). For our auxiliary grid, we useNASA’s Shuttle Radar Topography
Mission (SRTM) elevation data (Van Zyl 2001), which we access via the Raster pack-
age in R (Hijmans 2017; R Core Team 2020) at a resolution of 30 arc-seconds, which
translates to a horizontal resolution of 528 m and a vertical resolution of 927 m once
projected into the British National Grid coordinate system. In total, for the UK this
provides 611,404 grid cell elevation values. We chose calcium concentration partly
for its ability to differentiate rock types: calcium carbonate is the main constituent
of chalk and a major constituent of limestones, but can be almost completely absent
from deeper marine sediments deposited below the calcite compensation depth. We
also chose calcium for how easily weathered and mobile it tends to be in the surface
environment, which means that it exhibits a complex relationship with terrain topog-
raphy. Not only can we expect terrain features to be indicative of underlying bedrock
composition (due to different rock compositions weathering differently, producing
different surface expressions), but mobile elements will also be transported according
to hydrological processes at the surface. In order to make good predictions of calcium
concentrations, our neural network therefore has to learn and combine knowledge of
both bedrock and surface processes.

Constructing our study data set required linking together the two input types (loca-
tion information, and auxiliary information in the form of an observation-centred
terrain image) to each observation of our target variable. Location information con-
sists of the easting and northing values recorded for each observation in the G-BASE
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data set, along with an elevation value extracted from the SRTM elevation grid at
that location. The observation-centred terrain images each consist of 1,024 elevation
values extracted on a regular 32x32 grid centred at the location of the observation
site. Bilinear interpolation of the elevation grid was used in all elevation extractions
in order to avoid aliasing issues in the terrain images. We extract the terrain images at
a grid cell size of 250 m, which means that the neural network has an 8x8-km square
window centred on each observation from which to learn its terrain features. Con-
structing the auxiliary information images through bilinear interpolation also means
that we are not tied to the resolution of the underlying auxiliary grids. It is worth
noting that our framework is capable of ingesting multiple auxiliary variable grids at
once (multi-channel images as input), and there is no obligation to use only terrain.
For instance, other sources of auxiliary information such as satellite or geophysical
imagery may also be available.

In order to facilitate the learning of terrain features, we normalise each 32x32 cell
image so that the centre point is at 0 elevation. Features are then learned in terms
of contextual relation to the sample site, rather than to absolute elevation. However
absolute elevation, along with easting and northing, are provided explicitly as the
second input to the neural network (after the convolutional layers—see Fig. 1) in
order to provide the network with awareness of overall location in the geographic
space as well as awareness of local topography (i.e. from the auxiliary information).
All location inputs are scaled to have a mean of 0 and standard deviation of 1, with the
elevation images also collectively scaled to have standard deviation of 1, but without
further centring beyond setting the centre of each image to 0 elevation.

In order to conduct our study, we split our assembled data set at random into ten
folds, of which one was set aside as a final test data set (from which we report our
prediction accuracy and calibration results in Sect. 3), one was used as an evaluation
set during the neural network training (to monitor loss on out-of-sample data to guide
hyper-parameter tuning, such as tuning of dropout rates), and the remaining eight
folds were used as the training set (which amounted to 87,361 training observations).
Different proportions could have been chosen for this hold-out validation scheme, but
we have chosen tenths on the basis that this is common practice and that our held-out
test set is sufficiently large (10,920 observations) for us to be confident in our results.
To train the neural network, we used the Adam optimiser (Kingma and Ba 2014) with
a learning rate of 0.001, weight decay of 1e-6 and a batch size of 4,096. With the
dropout rate tuned to a suitable value (we settled on 0.2 for the fully connected layers
and 0.5 for the convolutional layers), we found that our neural network was resistant
to overfitting even when trained for a large number of epochs. This can be seen during
training by monitoring predictive performance on the evaluation set, which plateaued
after many epochs but did not degrade. This is a good sign, as it suggests that the
posterior predictive distribution had become a good approximation of the true data
distribution. We trained our neural network for 1,000 epochs, which took about 25
minutes on a single GPU workstation (Nvidia Pascal Titan X GPU). Note that all of
our result metrics are reported from the third data set—the test data set—which was
not used during training at all. We would therefore expect the results we present in
Sect. 3 to well represent the general performance of our method in the context of
predicting values of log(CaO) at unobserved locations within the UK.
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We chose the SRTMandG-BASEdata sets for their ease of access and use aswell as
for the complexity of the spatial relationships they contain, which we believe provide
a good demonstration of the capability of our Bayesian deep learning approach for
geostatistical modelling tasks. Themethodologywe present in this paper is intended as
a general framework for data-rich geostatistical applications where gridded auxiliary
variables are available in addition to point-sampled observations of the target variable,
and we would encourage readers to use the code we share alongside this paper (avail-
able at https://github.com/charliekirkwood/deepgeostat) to test the approach on other
geostatistical applications.

3 Results and Discussion

The national-scale geochemical map that our Bayesian deep neural network has
produced (Fig. 2) is extremely detailed and appears to have successfully captured the
complex relationships between our target variable, stream sediment calcium concen-
trations as log(CaO), and our auxiliary variable grid, terrain elevation. In addition to
subjectively achieving good detail in the mapping task, our objective results on held-
out test data (unseen during the model training and hyper-parameter tuning procedure)
are very encouraging. In a deterministic sense, the mean prediction from our Bayesian
deep neural network explains 74% of the variance in our target variable (Fig. 3a). The
performance of the network in a probabilistic sense is less easily summarised by a sin-
gle number, but a comparison of the predictive distributionwith the true distribution on
the held-out test set (Fig. 3b, c) indicates a well-calibrated fit (Gneiting et al. 2007).
We have also measured performance using two proper scoring rules (Gneiting and
Raftery 2007), the continuous rank probability score (CRPS) and logarithmic score
(Fig. 3b), though these will be most useful in future comparisons with other models.

It is apparent in the observation data presented in Fig. 3 that a cluster of observations
share the same identical value of -3.69 log(CaO), which is the lowest value observed
and corresponds to 0.025 weight % CaO on the linear scale. We believe that this set of
identically valued observations are the result of a bug in error correction of the assay
data for low-calcium-concentration samples, and we are therefore not concerned by
the discrepancy between our predictions and these observations (the neural network
predicts that all should have higher values than recorded). It may even make sense
to exclude these spurious observations from our comparisons, but we leave them in
as a reminder that data sets in general are not necessarily free of defects, and that
probabilistic data models like ours can in fact be a good way to identify statistically
implausible defects like these.

Checking the coverage of our prediction intervals on the held-out test data (Fig. 3d),
we find that 94.6%, 71.4% and 51.6% of observations fall within the 95%, 70% and
50% prediction intervals, respectively. We take these numbers (which we may expect
to be slightly skewed by the above-mentioned spurious measurements in the low tail
of the data) on a relatively large held-out test set (10,920 observations, 10% of the
total data set) as evidence that our Bayesian deep neural network is providing well-
calibrated probabilities, and therefore that it would be reasonable to use the predictive
distribution to support decision making (Gneiting and Katzfuss 2014).
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Fig. 2 Predicted log(CaO) interpolated from stream sediment geochemistry observations across the UK
using auxiliary information provided by a digital elevation model. This map shows the mean of our deep
neural network’s predictive distribution, which has captured complex relationships between terrain features
and log(CaO)

We visualise the probabilistic capabilities of our deep neural network using a south–
north section line through the map along the 400,000-metre easting grid line (Fig. 4).
In doing so, we can see that the neural network is able to represent epistemic and
aleatoric uncertainty independently as necessary to minimise loss. The credible inter-
val for themean varies spatially despite the fixed rate ofMonte Carlo dropout, showing
that the neural network is able to capture spatial variability in epistemic uncertainty.
Likewise, the estimated aleatoric uncertainty also varies spatially, and can be high even
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Fig. 3 Evaluating our model’s performance on the held-out test data set (n = 10, 920). a Comparison of
observed and predicted values, taking the mean of the predictive distribution as a deterministic prediction. b
Density, c Q-Q and d prediction interval coverage plot comparisons of observed and predicted distributions

Fig. 4 South–north cross section of our Bayesian deep neural network’s output, running along a line at
400,000 metres easting BNG. Also shown are all the observations within 500 m either side of this line
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Fig. 5 Zooming in on a local area. a SRTM elevation data: the source of our auxiliary information.
b Predicted log(CaO): deterministic mean. c Uncertainty of predicted log(CaO): standard deviation of
posterior predictive distribution. All maps use linear colour scales where brighter = greater. The white inlet
is the tip of the Humber estuary

where epistemic uncertainty is low. For example, we see this behaviour exhibited just
south of 600,000 metres northing. A quick check of the British Geological Survey’s
Geology of (Britain Viewer British 2020) suggests that the geology of this section
consists of the Yoredale group of interbedded limestone, argillaceous rocks and sub-
ordinate sandstone. The interplay of these compositionally different rock types on fine
spatial scales that are unresolvable to the model (and to the geologists who classified
the formation) is likely the reason for the comparatively high aleatoric uncertainty
estimates in this area even with low epistemic uncertainty: the model has recognised
that calcium concentrations here have higher variability at short spatial scales, and
has increased its ‘nugget’ variance to account for this. This is one example of how
probabilistic machine learning can be used as a guide towards discovery of further
knowledge. By outputting a full predictive distribution, the Bayesian deep learning
approach can provide probabilistic answers to all sorts of questions (e.g., Cawley et al.
2007; Kirkwood et al. 2021). Probabilities of exceedance at any location, for exam-
ple, can be calculated simply as the proportion of probability mass in excess of any
chosen threshold. We can also obtain individual realisations from the model through
simulation. These realisations have spatial autocorrelation properties similar to that of
the data—see Appendix A for further details.

We zoom in on the national-scale map and visualise predictive uncertainty in Fig. 5.
Viewing the deterministicmeanmapat this finer scale, and comparing it to the elevation
map of the same extent reveals in more detail the ability of our deep convolutional
neural network to learn the complexways inwhich thedistributionof our target variable
relates to features of terrain. The same level of complexity is reflected in the uncertainty
map and shows that in addition to being very well calibrated (Fig. 3), our Bayesian
neural network is also very specific in its assignment of uncertainty to different spatial
locations. In other words, our predictive distribution is both honest and sharp, which
is desirable under the paradigm proposed by Gneiting et al. (2007) that probabilistic
predictions should ideally be achieved by maximising the sharpness of the predictive
distribution subject to calibration.Our combination of highmap detail (in terms of both
predictive mean and variance) and near-perfect coverage indicates that our Bayesian
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deep learning approach is successfully producing a predictive distribution that is both
sharp and well calibrated.

Our deep neural network is able to produce these specific and detailed outputs
because it is interpolating not just in geographic space—as in traditional geostatistical
models—but also in terrain feature space. This has important implications formapping
tasks. In traditional geostatistical models, any predictionsmade outside the geographic
extent of observations would be considered to be extrapolations, and are likely to have
high error and uncertainty (Journel and Rossi 1989). In our case, because our neural
network is working in a hybrid space, predictions that would be considered out of
sample geographically may still be within sample in terms of terrain features. While
regression krigingmay also be providedwith terrain features as covariates, only a deep
learning approach like ours has the capability to automatically learn complex terrain
features for itself, and therefore has the potential to discover newways to predict target
variables based on fundamental relationships with the landscape rather than relying
on spatial autocorrelation. This may have significant implications for applications like
mineral exploration, where obtaining sensible predictions for unexplored regions is a
key driver of new discoveries (Sabins 1999). It also has implications for sample design
in the age of ‘deep geostatistics’, which we leave for future work, other than to say
that sample design ought to consider both the geographic space and the terrain feature
space, and would likely be best guided by the epistemic uncertainty estimates of the
deep models themselves.

The effects of fluvial processes on calcium are perhaps the most noticeable terrain-
related effects captured in the map, with downslope ‘washing out’ of calcium apparent
in valleys. In the zoomed-in region of Fig. 5, for example, we can see elevated cal-
cium concentrations in the channels that drain away from the calcium-rich area in
the north-west of the figure (coordinates approx. 380,000, 450,000) even where these
channels cross through otherwise low-calcium areas. This suggests that the convo-
lutional branch of our neural network may have learned the concept of hydrological
catchments and associated sediment transport directly from the data, a capability that
Zuo et al. (2019) suggest will be important for improving robust mapping of geochem-
ical anomalies in the future. Further work will be needed to fully explore the capacity
of our approach to learn complex physical process by example, and perhaps also to
investigate the physical plausibility of the resultant predictions. However, the authors
are aware of no other methods that could match the capabilities of our Bayesian deep
learning approach in this geochemical mapping task. Numerical modelsmay be able to
represent physical processes more accurately, but they struggle to accurately quantify
uncertainties. Conversely, traditional geostatistical modelling approaches like regres-
sion krigingmaydowell at quantifying uncertainties, but have no capabilities in feature
learning, which limits their capacity to fully utilise the information contained within
auxiliary data sets. An approach known as topographic kriging (Laaha et al. 2014) has
been developed specifically for interpolation on stream networks, but this is unable to
generate predictions outside of the manually designated stream network, and so is of
limited use for general mapping applications.We therefore postulate that the Bayesian
deep learning approach we present here represents a step change in capabilities over
previous geostatistical approaches, for its ability to automatically learn such complex
relationships between target variables and the landscape.
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4 Conclusion

Our Bayesian deep learning approach to spatial interpolation in the presence of aux-
iliary information achieves excellent predictive performance on held-out test data
according to both probabilistic and deterministic metrics, and in doing so produces
maps with a high level of functional detail whose well-calibrated probabilities would
be suitable for use in decision support. Our approach is unique in combining the fol-
lowing capabilities: (I) automated information extraction from auxiliary variable grids
via convolution, (II) pure spatial interpolation abilities not dissimilar to that of ordi-
nary kriging (each fully connected layer in our neural network architecture would be
equivalent to a Gaussian process in the limit of infinite layer width), (III) outputting a
well-calibrated predictive distribution by using Monte Carlo dropout for approximate
Bayesian inference and (IV) the ability to handle very large data sets, including com-
patibility with GPU acceleration. As such, our approach brings new feature learning
abilities and ‘big data’ efficiencies from deep learning to the established geostatistical
domain of probabilistic spatial interpolation.

The major benefit of our end-to-end deep learning approach is the ability to auto-
matically learn and utilise the complex relationships between auxiliary grids and target
variables that it would not be possible or practical to manually specify, for example
capturing the effects of fluvial processes on calcium distributions in our demonstra-
tion. Traditional geostatistical methods have no ability to automatically learn features,
hence the significance of this work. By improving our ability to utilise auxiliary infor-
mation inmapping tasks, we also reduce reliance on spatial autocorrelation for making
predictions. This has the potential to improve the generalisation of geostatistical mod-
els, including beyond the spatial extents of a study area, owing to the potential of deep
learning approaches to learn the ‘fundamental truths’ that may relate target variables
to auxiliary grids. This potential remains to be explored.
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Appendix A: Simulation

Our Bayesian approach means that we have not learned just a single ‘best fit’ for our
neural network, but a distribution over possible fits (see Sect. 2.3) from which we can
simulate different spatially coherent maps, or realisations (Fig. 6). Each realisation
presents predictions from a possible model fit, which collectively construct our pos-
terior predictive distribution, which itself represents our current state of knowledge.
Each realisation can therefore be thought of as depicting what we might observe if
the data collection procedure was repeated (at all grid cells of the map), subject to
our current state of knowledge. We simulate these realisations by sampling from our
posterior predictive distribution (presented previously as Eq. 6),

p(Ys |xs, y) =
∫

w

p(Ys |xs, w)p(w| y)dw. (7)

We do so by iterating two steps. First, we sample wi ∼ p(w| y), which is to
say we sample one configuration of weights from our posterior distribution. Second,
we sample Ysi ∼ p(Ys |xs, wi ); in other words, for each location s across the map,
we sample one data value from our sampling distribution (the Gaussian output of
our model) conditional on both the inputs to the neural network at that location and
the configuration of weights from the first step. The form of our model—in which
we represent aleatoric uncertainty using independent Gaussian noise—means that,
conditional on xs and wi , the simulated values Ys are independent for each spatial
location s. This independent noise can also be thought of as our model’s ‘nugget
effect’ (Clark 2010).

In practice, due to the fact we are using Monte Carlo dropout, making predictions
across an entire map using the same sampled configuration of neural network weights,
wi , requires freezing the dropout mask for multiple calls to Tensorflow’s predict func-
tion (one call for each grid cell of the map). We have provided code to achieve this,
as this functionality is not built in to Tensorflow, which, when Monte Carlo dropout
is active, would normally sample a new configuration of weights for each individual
prediction, preventing spatially coherent maps of posterior predictive samples (i.e.
realisations) from being obtained.

Whether or not we use dropout mask freezing in order to realise spatially coherent
realisations, the posterior predictive distribution at any location, p(Ys |xs, y), remains
the same. In this paper, we have focused on the quality of our deep neural network’s
posterior predictive distribution, as assessed by its ability to provide good probabilistic
predictions at the locations of unseen held-out test data (see Fig. 3 and Sect. 3). This
is the general use case that we envision our Bayesian deep learning approach being
used for. However, for some applications, users may be interested in the properties
of individual realisations in addition to the properties of the predictive distribution
overall. For example, in resource estimation and mine planning, obtaining realisations
that fit the main characteristics of the revealed reality (Journel 1974, of which spatial
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Fig. 6 Nine simulated maps, or realisations, from our deep neural network. Each map is a sample from
the posterior predictive distribution. Crossing your eyes to focus on two maps at once can help to make the
differences more apparent
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Fig. 7 In blue: semi-variograms for 250 simulations of log(CaO) values predicted at the locations of
the held-out test observations (n = 10, 920). In red: semi-variogram of the held-out test observations.
Variograms produced using a bin size of 2 km

autocorrelation is seen as most important) has enabled more efficient optimisation of
mining activities (Dimitrakopoulos 1998, 2018; Menabde et al. 2018) and analysis of
risk (Vann et al. 2002).

Unlike traditional geostatistical approaches, the deep learning approach we present
here is not parameterised to model spatial autocorrelation specifically. This has bene-
fits, such as freeing us from assumptions of stationarity and isotropy, but the flexibility
of our deep neural network could come at a cost in terms of our model’s ability
to simulate realisations with spatial autocorrelation properties that match those of
observations. To investigate this, we have checked the spatial autocorrelation of 250
simulated realisations against that of the held-out test data by comparing variograms
(Fig. 7). Each realisation’s variogram is calculated by taking its values at the same
10,920 locations as the held-out test observations so as to eliminate any differences
that might arise from considering different locations. As is to be expected, each of our
realisations displays slightly different spatial autocorrelation properties, which results
in a distribution of semi-variances at each lag distance (we are using 2-km bins).

We find that for all lag distances (Fig. 7), the semi-variance of the observations is
within the range of the semi-variances of the simulated realisations, suggesting that,
overall, there is reasonable agreement between the spatial autocorrelation of realisa-
tions and the spatial autocorrelation of the data. To more critical eyes, there is some
indication that realisations may on average have slightly too much ‘nugget’ variance
(too much variability at zero distance) while not having quite enough variability at
longer ranges (Fig. 7); however, we reserve making more absolute judgements of
these higher-order properties of our model’s output for further work and testing—in
this study, our priority has been point-wise predictive performance and calibration
(Fig. 3). For use cases where the spatial autocorrelation of realisations is a priority,
we would recommend further investigation into these properties of Bayesian deep
learning approaches like ours.

Overall, on the basis of this comparison of simulation and observation variograms
using held-out test data (Fig. 7) it appears that, in addition to providing awell-calibrated
and sharp predictive distribution (Fig. 3 and Sect. 3), our Bayesian deep learning
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approach also produces realisations with similar spatial autocorrelation properties to
the observations. Each simulated realisation represents values we could observe if we
were to repeat the data collection procedure, subject to our current state of knowledge
(as represented by the posterior predictive distribution; Gelman et al. 2013).

It is an additional benefit of ourBayesian approach that obtaining realisations comes
at no additional computational cost over what is already required to make general
predictions with our model. This is because Monte Carlo sampling must be used to
obtain our otherwise intractable posterior predictive distribution, and each of these
samples is a realisation. So simulation is an innate part of our Bayesian approach. It is
also the case that Monte Carlo dropout neural networks are a computationally efficient
Bayesian method. On a single GPU workstation, it takes under 30 minutes to train
our model on 87,361 training observations. Simulation then takes about 5 seconds per
realisation for the entire 0.6 million grid cell map.
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