
PHYSICAL REVIEW RESEARCH 4, 013078 (2022)
Editors’ Suggestion

Topological transitions in arrays of dipoles coupled to a cavity waveguide
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Topological valley-Hall edge states have been realized in a variety of photonic structures across the elec-
tromagnetic spectrum because they can be easily engineered by breaking certain lattice symmetries. However,
the valley-Chern numbers that characterize the topological phase are usually fixed by the symmetry-breaking
perturbation and therefore the valley-Hall edge states are forced to propagate in a fixed direction. Here we
consider a kagome metasurface comprised of a subwavelength array of dipole emitters/antennas, and we
unveil that one can modify the geometrical and topological properties of the polaritons by structuring the local
photonic environment. As a proof of concept, we show that one can induce topological transitions via accidental
Dirac points by embedding the metasurface inside a cavity waveguide. Varying the cavity width modifies the
nature of the dipole-dipole interactions which enables one to manipulate the Berry curvature and invert the
valley-Chern numbers without inverting the symmetry-breaking perturbation. Consequently, we demonstrate
that one can switch the chirality of the polariton valley-Hall edge states by varying only the cavity width. This
alternative approach to engineering topological transitions via structuring the photonic environment could also
have implications for other topological phases such as photonic higher-order topological insulators.
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I. INTRODUCTION

Topological phases of light exhibit unique properties be-
yond the realm of conventional photonics [1–15]. Within this
paradigm, the valley-Hall insulator has attracted considerable
interest because it does not require one to break time-reversal
symmetry; instead, the valley-Hall phase is easily induced
by breaking certain lattice symmetries [15]. Consequently,
valley-Hall insulators have been successfully realized in a
variety of photonic structures at microwave [16–18], tera-
hertz [19,20], and optical [21–25] frequencies.

These works begin with hexagonal lattices that exhibit
deterministic Dirac points and then engineer a mass gap
by breaking the inversion and/or mirror symmetries. This
generates localized Berry curvature near the inequivalent
valleys and the corresponding phase is characterized by non-
trivial valley-Chern numbers. While these are not strictly
topological invariants, there still exists a bulk-boundary cor-
respondence [26–33]. An interface separating two regions
with opposite valley-Chern numbers support valley-polarized
chiral edge states which can be exploited to transport light
through sharp bends and certain disorder that does not
strongly mix the valleys [16–25]—a tantalizing prospect that
could have crucial implications for future photonic devices.
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However, this simple geometrical origin of the valley-Hall
insulator usually comes at a price: The topological phase
is typically fixed by the symmetry-breaking perturbation
that is imprinted into the lattice design. To deterministically
change the valley-Chern numbers one needs to invert the
symmetry-breaking perturbation to induce a topological tran-
sition, passing through a critical point where the symmetry
that gives rise to the deterministic Dirac points is restored.
However, it is usually difficult to reconfigure every unit cell in
the photonic lattice after it has been fabricated. Consequently,
the valley-Chern numbers are generally fixed by design and
therefore the topological edge states are forced to propagate
in a fixed direction. This raises an intriguing question: Is it
possible to induce a topological transition without inverting
the symmetry-breaking perturbation?

To address this question, here we theoretically consider
a kagome metasurface that is comprised of a subwavelength
array of resonant dipoles, which could be realized with classi-
cal antennas or quantum emitters. The metasurface hybridizes
with the surrounding photons which give rise to polaritons
whose spectrum exhibits deterministic Dirac points due to the
underlying symmetries. To induce the valley-Hall phase we
generate a mass gap by perturbing the unit cell which breaks
the inversion and mirror symmetries. Crucially, given the hy-
brid light-matter nature of the polaritons, the Berry curvature
and corresponding valley-Chern numbers are not immutable
characteristics that are fixed by the symmetry-breaking per-
turbation; they also depend qualitatively on the local photonic
environment which mediates the dipole-dipole interactions.
This opens the possibility of engineering topological transi-
tions by structuring the local photonic environment.

As a proof of concept, we consider a minimal model of
point dipole emitters/antennas coupled to a cavity waveguide.
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FIG. 1. (a) Schematic of a kagome metasurface comprised of an array of dipole emitters/antennas with subwavelength nearest-neighbor
separation a � λ0. The induced dipole moments are assumed to point in the z direction (see inset). Furthermore, the metasurface is embedded
inside a cavity waveguide of width L, where the cavity walls are assumed to be perfect mirrors. (b) Corresponding unit cell and (c) first Brillouin
zone. (d) Expanding (left) or shrinking (right) the distance between the dipoles in the unit cell reduces the point group of the metasurface from
C6v to C3v and the little point group of the K/K′ points from C3v to C3. (e) Longitudinal Green’s function which describes the short-range
Coulomb interactions for L = 5a (dashed blue line) and L = 0.5a (solid orange line). (f) Real part of the transverse Green’s function which
describes the coherent long-range interactions mediated by the TEM cavity photons for L = 5a (dashed blue line) and L = 0.5a (solid orange
line). Varying the cavity width enables one to modify the dominant dipole-dipole coupling mechanism. Results obtained with a = 0.1λ0.

For the transverse excitations, one can modify the dominant
dipolar coupling from short-range Coulomb interactions to
long-range photon-mediated interactions by varying the cavity
width. Previously, we have shown that this mechanism can
induce exotic Dirac point merging transitions in a honeycomb
metasurface, which enables one to manipulate the properties
of type-I and type-II Dirac polaritons while preserving the
underlying symmetries [34]. More recently, we have shown
that this mechanism enables one to tune the strength of the
pseudomagnetic field in a strained metasurface without mod-
ifying the strain pattern, which leads to a collapse and revival
of the polariton Landau levels [35].

In this work we show that, for a fixed symmetry-breaking
perturbation, one can tune the Dirac mass by varying the
cavity width; in fact, one can even make the Dirac mass vanish
at a critical width without altering the lattice. This results in
accidental Dirac points emerging in the polariton spectrum,
which signifies a topological transition where the Dirac mass
and Berry curvature change sign. Consequently, we demon-
strate that one can invert the valley-Chern numbers and thus
switch the chirality of the polariton valley-Hall edge states by
modifying a single global parameter: The cavity width. While
we have focused on a cavity waveguide, we stress that there
are other ways to structure the photonic environment which
may provide alternative mechanisms of inducing topological
transitions.

II. KAGOME METASURFACE MODEL

In Fig. 1(a) we schematically depict a kagome meta-
surface that is composed of an array of polarizable dipole
emitters/antennas. We keep the model general because we
envisage that the essential physics could be realized in
a variety of experimental setups, ranging from classical
metasurfaces composed of microwave antennas [34,35] or
plasmonic particles [34,36–40] to quantum metasurfaces
comprised of excitonic particles [41,42] or atomlike emit-

ters [43–50]—although our classical analysis is only relevant
in the single-excitation subspace [51]. Consequently, we
model the dipoles with a generic bare polarizability of the
form

αB(ω) = 2ω0μ

ω2
0 − ω2 − iωγnr

, (1)

where ω0 is the free space resonant frequency, μ character-
izes the strength of the polarizability, and γnr accounts for
nonradiative losses. Furthermore, we restrict our attention to
transverse excitations where the dipole moments are oriented
in the z direction (see inset).

The kagome metasurface has three inequivalent sublattices
which are formed by placing dipoles at periodic positions
Ri = R + di where i = A, B, C labels the three sublattices.
Here the basis vectors

dA = a√
3

[0, 1], dB = a

2
√

3
[
√

3, −1],

dC = a

2
√

3
[−

√
3, −1], (2)

locate the positions of the three dipoles within each unit cell
as depicted in Fig. 1(b). Furthermore, R = l1a1 + l2a2 repre-
sents the set of lattice translation vectors, where l1, l2 ∈ Z are
integers, and

a1 = a[−1,
√

3], a2 = a[1,
√

3], (3)

are the primitive lattice vectors. The corresponding set of
reciprocal lattice vectors are g = n1b1 + n2b2, where n1, n2 ∈
Z are integers, and

b1 = π√
3a

[−
√

3, 1], b2 = π√
3a

[
√

3, 1], (4)

are the primitive reciprocal lattice vectors that define the
Brillouin zone shown in Fig. 1(c). Moreover, we consider
the nearest-neighbor separation to be subwavelength a � λ0,
where λ0 is the free space resonant wavelength, so that the
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polaritons near the K/K′ points are subradiant and evanes-
cently bound to the lattice. Finally, we embed the kagome
metasurface at the center of a cavity waveguide of width L,
where the cavity walls are assumed to be perfect mirrors.

A. Symmetry-reducing perturbations

The point-group symmetry of the kagome metasurface is
C6v , while the little point group of the K/K′ points is C3v;
consequently, the kagome metasurface can exhibit determin-
istic Dirac points at the K/K′ points [52]. Note the inversion
centers are located at the lattice sites and the corners of the
unit cell, while the C3 rotation centers are located at the center
and corners of the unit cell.

To gap out the Dirac points we introduce the following
symmetry-reducing perturbation,

di → (1 − δ)di, (5)

where the symmetry-breaking parameter δ describes the frac-
tional change in the separation distance between the dipoles
in the unit cell. Depending on the sign of δ, we have two
distinct lattices which we call the shrunken metasurface (δ >

0) and expanded metasurface (δ < 0), and the corresponding
unit cells are schematically depicted in Fig. 1(d). We note
that a similar strategy has been considered in other artificial
kagome lattices [53–59]. This perturbation breaks the inver-
sion symmetry and the mirror symmetry about the x axis,
which reduces the point-group symmetry of the metasurface
to C3v and the little point group of the K/K′ valleys to C3;
consequently, the shrunken and expanded metasurfaces do not
exhibit deterministic Dirac points [52].

B. Coupled-dipole equations

The collective dynamics of the dipoles inside the cavity
waveguide are described by a set of coupled-dipole equations

1

α(ω)
pRi

(ω) = E0(Ri ) +
∑

R′
i �=Ri

G(Ri − R′
i, ω)pR′

i
(ω)

+
∑
j �=i

∑
R j

G(Ri − R j, ω)pR j
(ω), (6)

where pRi
is the induced dipole moment located at position

R + di on the ith sublattice. Furthermore,

α(ω) = [
α−1

B (ω) − Σ (ω)
]−1

(7)

is the renormalized polarizability inside the cavity waveguide
where the polarizability correction reads [35,60]

Σ (ω) = i
2a3k3

ω

3
+ 4a3

L3
[Li3(eikωL ) − ikωL Li2(eikωL )]. (8)

Here Lin(z) = ∑∞
t=1 zt/t n is the polylogarithm of order n,

kω = ω/c and c is the speed of light in vacuum. The first term
in Eq. (8) is the usual radiative correction in free space while
the other terms encode the frequency shifts and modified
decay rates that are induced by the cavity waveguide.

Finally, in Eq. (6), E0(r) is the z component of the external
driving field, and G(r − r′, ω) is the zz component of the

cavity Green’s function which reads [35,60]

G(r − r′, ω) = i
πa3

L

∞∑
m=−∞

(
k2
ω− k2

m

)
H (1)

0

(√
k2
ω− k2

m|r − r′|).
(9)

Here H (1)
0 is the Hankel function of first kind and zeroth

order and km = 2mπ/L where m ∈ Z is an integer. Physically,
this Green’s function describes the z component of the field
generated at r by a point dipole source at r′ that is oriented
along the z direction (both located at the center of the cavity).
Therefore the first sum in Eq. (6) encodes the intrasublattice
dipole-dipole interactions which are mediated by the cavity
waveguide, while the second sum encodes the intersublattice
interactions.

C. Coulomb vs photon-mediated interactions

The Green’s function can be decomposed into its longitudi-
nal and transverse components G(r − r′, ω) = G‖(r − r′) +
G⊥(r − r′, ω) which separates the static and dynamic aspects
of the system. The longitudinal component reads [35,60]

G‖(r − r′) = −4a3

L

∞∑
m=1

k2
mK0(km|r − r′|), (10)

and describes the instantaneous Coulomb field generated by a
point dipole source, where K0 is the modified Bessel function
of zeroth order and second kind which decays like K0(x) ∼
e−x/

√
x. Therefore, the longitudinal Green’s function encodes

the short-range Coulomb interactions between the dipoles
whose strength decreases rapidly with the separation distance
as shown in Fig. 1(e).

Furthermore, the dipoles also couple to the transverse
photonic modes of the cavity waveguide which can mediate
long-range interactions between the dipoles. Since we are
interested in the regime of cavity widths L < λ0, we retain
only the dominant contribution from the fundamental trans-
verse electromagnetic (TEM) cavity mode. The corresponding
transverse Green’s function reads [35,60]

GTEM
⊥ (r − r′, ω) = i

πa3k2
ω

L
H (1)

0 (kω|r − r′|), (11)

and the Hankel function decays like H (1)
0 (x) ∼ eix/

√
x. There-

fore, the real part of the transverse Green’s function describes
coherent long-range interactions mediated by the cavity pho-
tons whose strength oscillates and decreases slowly with the
separation distance as shown in Fig. 1(f).

For large cavity widths (L ∼ λ0), the essential physics near
the Dirac points is dominated by the Coulomb interactions
due to the subwavelength spacing of metasurface. However,
for small cavity widths (L � λ0), the Coulomb interactions
are exponentially suppressed due to the screening effect of
the cavity waveguide. In stark contrast, the strength of the
photon-mediated interactions increases as the cavity width is
reduced. This is because the gapless TEM mode has no cut-off
frequency and the reducing mode volume increases the light-
matter interaction strength. Consequently, for small cavity
widths the essential physics is dominated by the photon-
mediated interactions. In what follows we show that this
transition of the dominant dipolar coupling has a dramatic
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effect on the geometrical and topological properties of the
polaritons.

III. CAVITY POLARITONS

We can exploit the periodicity of the metasurface by intro-
ducing the Fourier transform of the dipole moments

p̃i(q, ω) =
√
A

2π

∑
R

pRi
(ω)e−iq·Ri , (12)

where q = [qx, qy] is the Bloch wave vector that is restricted
to the first Brillouin zone, and A = 2

√
3a2 is the area of the

unit cell. We can then recast the coupled-dipole equations into
3 × 3 matrix eigenvalue equations in momentum space

1

α̌(ω)
|ϕ(q)〉 = [D‖(q) + D⊥(q, ω)]|ϕ(q)〉, (13)

where α̌−1(ω) = α−1
B (ω) − Re[Σ (ω)] and |ϕ(q)〉 =

[ p̃A(q), p̃B(q), p̃C(q)] is the vector of Fourier variables.
Furthermore, D‖(q) is the longitudinal dynamical matrix

which encodes the frequency shifts due to the Coulomb inter-
actions, and the matrix elements are given by

Di j
‖ (q) =

∑
R

G‖(R + di − d j )e
−iq·(R+di−d j ) − δi jG‖(0).

(14)
Since the Coulomb interactions are short range, these lattice
sums converge rapidly in real space. Note that the second term
in Eq. (14) removes the divergent term in the sum (R = 0) for
the intrasublattice matrix elements.

Moreover, D⊥(q, ω) is the transverse dynamical matrix
which encodes the frequency shifts due to the photon-
mediated interactions, and the matrix elements are given by

Di j
⊥ (q, ω) =

∑
g

ω2ξ 2φ
i j
q

ω2
q−g − ω2

− δi j Re[GTEM
⊥ (0, ω)]. (15)

Since the photon-mediated interactions are long range, here
we have used the Poisson summation technique to convert the
sum over lattice vectors to a rapidly converging sum over re-
ciprocal lattice vectors [35,60]. Furthermore, ξ =

√
4πa3/AL

parametrizes the strength of the light-matter coupling to the
TEM cavity mode which has a linear dispersion ωq−g = c|q −
g|, and the phase factors

φi j
g = eig·(d j−di ) (16)

arise due the non-Bravais nature of the lattice. Note that al-
though the intrasublattice matrix elements in Eq. (15) are well
defined, the two terms separately diverge. Therefore one needs
to use the regularization procedure outlined in Appendix A to
numerically evaluate the matrix elements.

A. Cavity polariton dispersion

We can simplify Eq. (13) by linearizing the eigenvalue
problem which captures the essential physics away from
the light-line. To do this we evaluate the polarizability
correction and the transverse dynamical matrix at the renor-
malized cavity resonant frequency ωcav which is given by

Re[α̌−1(ωcav)] = 0. We can then obtain the polariton disper-
sion by solving the following characteristic equation

det
[(

ω2 − ω2
cav

)
13 + 2ω0μD‖(q) + 2ω0μD⊥(q, ωcav)

] = 0,

(17)

where 13 is the 3 × 3 identity matrix and we have neglected
nonradiative losses for simplicity.

In Fig. 2(a) we show the polariton dispersion for the
shrunken metasurface (δ = 0.05) with a large cavity width
where the Coulomb interactions are dominant (solid line).
Note that in this panel we have neglected the weak photon-
mediated interactions which have a negligible effect near the
K/K′ valleys (see Appendix C for more details). In Fig. 2(b)
we show the polariton dispersion for the same shrunken
metasurface but now with a small cavity width where the
photon-mediated interactions are dominant (solid line). In
both interaction regimes, the symmetry-reducing perturbation
removes the deterministic Dirac points exhibited by the unper-
turbed kagome metasurface (dashed lines), thereby opening
a gap at the K/K′ points. While they share this feature, the
spectra in the two regimes look qualitatively different, for ex-
ample, the (approximate) flat band is above/below the Dirac
point for the small/large cavity width.

B. Eigenstates at the K/K′ points

To further elucidate the difference between the two
regimes, we can study the eigenstates at the K (τ = +) and K′
(τ = −) points located at τK = τ [2π/3a, 0], where τ = ± is
the valley index. Because the symmetry-reducing perturbation
preserves the C3 symmetry of the metasurface, the eigenstates
at the K/K′ points will be simultaneous eigenstates of the C3

operator

U τ
C3

∣∣ϕl
τ

〉 = ei 2π
3 l

∣∣ϕl
τ

〉
. (18)

Here the unitary operator

U τ
C3

=
⎡
⎣ 0 0 e−i π

3 (1−δ)τ

e−i π
3 (1−δ)τ 0 0
0 ei 2π

3 (1−δ)τ 0

⎤
⎦ (19)

represents a rotation of 2π/3 about the center of the unit cell,
|ϕl

τ 〉 are the corresponding eigenstates, and l = 0,±1 are the
pseudoangular momentum eigenvalues. The eigenstates at the
K point therefore read

|ϕ0
+〉 = 1√

3

[
1, e−i π

3 (1−δ), ei π
3 (1−δ)

]T
,

|ϕ−
+〉 = 1√

3

[
1, ei π

3 (1+δ), e−i π
3 (1+δ)]T

,

|ϕ+
+〉 = 1√

3

[ − 1, ei π
3 δ, e−i π

3 δ
]T

, (20)

and in Fig. 2(c) we schematically depict the corresponding
dipole distributions within a unit cell, where +/− corresponds
to anticlockwise/clockwise phase vortices. Furthermore, the
eigenstates at the K′ point are related via time-reversal sym-
metry and are given by |ϕ0

−〉 = |ϕ0
+〉∗, |ϕ−

−〉 = |ϕ+
+〉∗, and

|ϕ+
−〉 = |ϕ−

+〉∗.
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FIG. 2. (a), (b) Polariton dispersion for the kagome metasurface (dashed lines) and shrunken metasurface (solid lines) with L = 5a and
L = 0.5a, respectively. The symmetry-reducing perturbation removes the deterministic Dirac points, opening a gap at the K/K′ points. The
bands at the K point are labeled according to the pseudoangular momentum number of the eigenstates whose corresponding dipole distributions
are schematically depicted in panel (c). Here +/− denote anticlockwise/clockwise phase vortices which are located at the C3 rotation centers.
(d) Frequency evolution of the eigenstates at the K point as the cavity width is varied for the shrunken metasurface, where we observe three
band inversions (labeled 1–3). (e) Polariton dispersion at the critical cavity width (L = Lm) which exhibits accidental Dirac points. Results
obtained with δ = 0.05, a = 0.1λ0, and μ = 0.001ω0.

C. Cavity-induced band inversions

In Fig. 2(a) and Fig. 2(b) we label the polariton bands at the
K point according to the pseudoangular momentum number of
the eigenstates. Interestingly, for the same symmetry-breaking
parameter (δ = 0.05), the ordering of the eigenstates is en-
tirely reversed for the two regimes. To elucidate this further,
in Fig. 2(d) we show the frequency evolution of the eigen-
states at the K point as the cavity width is reduced. Due to
the competition between the Coulomb and photon-mediated
interactions, we observe three band inversions. The first two
band inversions result in the l = +1 eigenstate evolving from
being the lowest in frequency to the highest. However, here we
are particularly interested in the third band inversion. At this
critical cavity width L = Lm, the degeneracy between the l =
0 and the l = −1 eigenstates is restored, despite the reduced
symmetry of the metasurface. Consequently, the polariton dis-
persion exhibits accidental Dirac points at this critical cavity
width as shown in Fig. 2(e).

IV. CAVITY-INDUCED TOPOLOGICAL TRANSITIONS

To characterize the essential topology related to the third
band inversion, we will derive an effective two-band Hamil-
tonian that describes the polaritons near the K/K′ valleys
within the subspace spanned by the degenerate eigenstates
of the unperturbed lattice (see Appendix B for the derivation
and analytic expressions for the parameters). The effective
Hamiltonian reads (h̄ = 1)

Hτ = ωD(L)12 + vD(L)(τσxkx + σyky) + m(L)σz, (21)

where k = [kx, ky] is the wave vector measured from the
K/K′ point. Furthermore, 12 is the 2 × 2 identity matrix and
σi are the Pauli matrices that act in the {|ϕ0

+〉, |ϕ−
+〉} and

{|ϕ0
−〉, |ϕ+

−〉} subspace for the K and K′ valleys, respectively.
Equation (21) is equivalent to a massive Dirac Hamiltonian

where the corresponding polariton spectrum is

ωλ(k) = ωD + λ

√
v2

Dk2 + m2, (22)

as schematically depicted in Fig. 3(a). Here λ = ± labels the
upper (λ = +) and lower (λ = −) effective polariton bands,
ωD is the Dirac frequency, vD is the Dirac velocity, and m is
the Dirac mass which determines the size of the gap. Note that
the effective Hamiltonian is only valid when the third band is
separated in frequency and, therefore, it captures the essential
physics before and after the first two band inversions.

A. Inverting the sign of the Dirac mass

We can split the Dirac mass into two distinct contributions
m = m‖ + m⊥, where the longitudinal mass reads

m‖ = μ√
3

ω0

ωcav

∑
R

Re
[
iG‖(R + dA − dB)ei π

3 δe−iq·(R+dA−dB )

− iG‖(R + dA − dC)e−i π
3 δe−iq·(R+dA−dC )

− iG‖(R + dB − dC)e−i 2π
3 δe−iq·(R+dB−dC )

]
, (23)

and the transverse mass reads

m⊥ = μ√
3

ω0

ωcav

∑
g

ω2
cavξ

2

ω2
K−g − ω2

cav

Re
[
iei π

3 δφAB
g

− ie−i π
3 δφAC

g − ie−i 2π
3 δφBC

g

]
. (24)

These encode the gap that is generated by the Coulomb
and photon-mediated interactions, respectively. For the unper-
turbed kagome metasurface (δ = 0), the symmetry forces both
the longitudinal and the transverse mass to vanish separately
m‖ = m⊥ = 0, which results in deterministic Dirac points for
all cavity widths.

In Fig. 3(b) we show how these masses evolve as the cavity
width is varied for a fixed shrunken metasurface (δ = 0.05).
Crucially, the longitudinal (dashed orange line) and transverse
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FIG. 3. (a) Schematic of the massive Dirac cone spectrum that is generated by the symmetry-reducing perturbation, where the size of the
gap is determined by the Dirac mass. (b) Evolution of the longitudinal (dashed orange line), transverse (dotted blue line) and total (solid black
line) Dirac mass as the cavity width is varied for the shrunken metasurface. While the longitudinal and transverse masses never vanish, they
have opposite signs and thus tend to compensate each other. At the critical width (L = Lm) they perfectly cancel and the total mass vanishes,
leading to accidental Dirac points where the Dirac mass changes sign. (c) Localized Berry curvature corresponding to the lower band (λ = −)
near the K (top) and K′ (bottom) valleys for the shrunken metasurface with L = 5a. We also show the corresponding valley-Chern numbers.
(d) Same as panel (c) but for L = 0.5a. The transition of the dominant dipolar coupling from Coulomb to photon-mediated interactions switches
the sign of the Berry curvature within each valley and thus inverts the valley-Chern numbers. Results obtained with δ = 0.05, a = 0.1λ0 and
μ = 0.001ω0.

(dotted blue line) masses do not vanish for any cavity width
due to the reduced symmetry; however, they have opposite
signs and thus tend to compensate each other. Moreover, the
longitudinal mass dominates for large cavity widths, while the
transverse mass dominates for small cavity widths. At the crit-
ical cavity width L = Lm they perfectly cancel (|m‖| = |m⊥|)
and the Dirac mass vanishes (solid black line), giving rise to
accidental Dirac points. Therefore, by varying only the cavity
width, one can induce a topological band inversion where the
band gap closes and reopens, switching the sign of the Dirac
mass.

B. Cavity-induced inversion of the valley-Chern numbers

Using the effective Dirac Hamiltonian, the Berry curvature
for the λ band reads

F τ
λ (k) = −τλ

mv2
D

2
(
v2

D|k|2 + m2
)3/2 , (25)

and the corresponding valley-Chern numbers are given by

Cτ
λ = 1

2π

∫∫
R2

d2kF τ
λ (k) = −τλ sgn(m)

1

2
. (26)

This approximation is valid when the third band is well
separated in frequency and for small perturbations such that
the Berry curvature is localized near the K/K′ points (see
Appendix D for more details).

In Fig. 3(c) we show the Berry curvature and the valley-
Chern numbers corresponding to the lower band (λ = −)
for the shrunken metasurface (δ = 0.05) with a large cavity
width. In Fig. 3(d) we show the Berry curvature and valley-
Chern numbers for the same shrunken metasurface but now
with a small cavity width. Remarkably, the Berry curvature
changes sign due to the change in sign of the Dirac mass and,
as a result, the valley-Chern numbers become inverted in the
two regimes.

V. SWITCHING THE CHIRALITY OF THE POLARITON
VALLEY-HALL EDGE STATES

Although the valley-Chern numbers are not strictly topo-
logical invariants, there exists a bulk-boundary correspon-
dence for a domain-wall interface between two regions with
opposite valley-Chern numbers [26–33]. Provided that the
interface does not mix the two valleys and the Berry curvature
remains localized near the K/K′ points, then the change in
valley-Chern number across the interface (�Cτ

−) determines
the number of valley-polarized chiral edge states.

To see how the cavity modifies the polariton valley-Hall
edge states, we consider the interface shown in Fig. 4(a) where
region A is a shrunken metasurface (δA = 0.05) and region
B is an expanded metasurface (δB = −0.05). While the bulk
polariton dispersion is identical in both regions, they have
opposite Dirac masses (mB = −mA) and therefore opposite
valley-Chern numbers.
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FIG. 4. (a) Schematic of a domain-wall interface between two regions with opposite valley-Chern numbers, where region A is a shrunken
metasurface (δA = 0.05) and region B is an expanded metasurface (δB = −0.05). (b) Interface dispersion for L = 5a. The orange bands
correspond to the projected bulk states, while the red/blue bands correspond to the valley-Hall edge states ψ+/ψ− in the K/K′ valleys which
propagate in opposite directions by virtue of time-reversal symmetry. (c) Same as panel (b) but for L = 0.5a. The propagation direction of
the valley-Hall edge states is reversed due to the cavity-induced inversion of the valley-Chern numbers which switches their chirality. (d),
(e) Steady-state distribution of the dipole moments for an �-shaped interface (white dotted line) with L = 5a and L = 0.5a, respectively. We
excite the metasurface with a left-handed chiral source which is fixed near the interface such that it selectively couples to the K valley edge
state in both regimes. One observes that the edge state is not backscattered by the sharp bends, and the propagation direction is reversed in the
two regimes due to the cavity-induced inversion of the valley-Chern numbers. Results obtained with a = 0.1λ0 and μ = 0.001ω0. In panels
(d) and (e) we set γnr = 0.02μ.

A. Polariton valley-Hall edge states

Before we numerically calculate the interface dispersion
using the coupled-dipole equations, we can gain some ana-
lytical insight using the effective Dirac Hamiltonian in real
space,

Hτ = ωD12 − ivD(τσx∂x + σy∂y) + m(y)σz, (27)

where the interface is modeled by a spatially varying mass,

m(y) =
{+mA, for y < 0
−mA, for y > 0 . (28)

Seeking the bounded solutions to Eq. (27), one finds that each
valley supports one chiral edge state of the form

ψτ (r) ∝
[

1
sgn(vD) sgn(mA)

]
eikxxe− |mA |

|vD | |y|, (29)

which are exponentially localized at the interface—this is
expected from the bulk-boundary correspondence since the
change in valley-Chern number is |�Cτ

−| = 1. These edge
states exhibit a linear dispersion

ωτ (kx ) = ωD + sgn(�Cτ
−)|vD|kx, (30)

where their group velocity is given by

vτ = ∂ωτ

∂kx
= sgn(�Cτ

−)|vD|. (31)

Therefore the sign of �Cτ
− determines the chirality of the

valley-Hall edge states. Since we have shown that one can
invert the sign of the valley-Chern numbers by varying
the cavity width, one can anticipate that this inversion will
switch the propagation direction of the edge states along the
interface.

B. Interface dispersion

To verify these analytical predictions we go beyond the ap-
proximations of the effective Dirac Hamiltonian and calculate
the full dispersion for the interface using the coupled-dipole
equations. We consider a supercell which contains 40 unit
cells in each region and we apply periodic boundary con-
ditions along both directions. However, since we focus on
the A/B interface, for clarity we will remove the edge states
associated with the B/A interface.

In Fig. 4(b) we show the interface dispersion for a large
cavity width. Note that for clarity we have again neglected
the weak photon-mediated interactions which have a negligi-
ble effect near the K/K′ valleys (see Appendix C for more
details). The orange bands correspond to the projected bulk
states, while the red/blue bands correspond to the spectrum
of the valley-Hall edge states near the K/K′ valleys.

Since �Cτ
− = τ for large cavity widths, the K valley edge

states (ψ+) propagate to the right (red band) while the the
K′ valley edge states (ψ−) propagate to the left (blue band).
In Fig. 4(c) we show the dispersion for the same interface
but now with a small cavity width. Due to the cavity-induced
inversion of the valley-Chern numbers, we now have �Cτ

− =
−τ and, therefore, the propagation direction of the polariton
valley-Hall edge states is reversed.

C. Selective excitation of the valley-Hall edge states

Finally, we show that one can selectively excite the valley-
Hall edge states with a chiral source and route them around
sharp corners. Specifically, we consider an �-shaped interface
between a shrunken and expanded metasurface which con-
tains multiple sharp bends. Due to the lack of translational
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invariance, we have to numerically solve a large system of
coupled dipole equations in real space.

We excite the metasurface with a left-handed chiral source
which is comprised of six point dipole sources with a fixed
phase difference. The corresponding driving field reads

E0(r) ∝
6∑

m=1

e−i mπ
3 G(r − r0 − em, ω), (32)

where em = 0.01a[cos(mπ/3), sin(mπ/3)]. We chose the
driving frequencies such that they correspond to the middle of
the bulk gap at the K/K′ points. Furthermore, it is important
to stress that the Dirac velocity also has opposite signs in
the two limiting regimes, so the spinors in Eq. (29) within
each valley remain the same for the large and small cavity
widths. Therefore, we can fix the position of the chiral source
(r0) close to the interface so that it selectively excites only
the topological edge states in the K valley in both regimes.
Finally, we set the nonradiative losses to γnr = 0.02μ.

In Fig. 4(d) we plot the steady-state amplitude of the dipole
moments for a large cavity width where the Coulomb inter-
actions are dominant. One clearly observes the chiral nature
of the valley-Hall edge state which only propagates to the
right and can be routed around the sharp corners without any
significant backscattering. In Fig. 4(e) we show the simulation
for the same interface but now with a small cavity width where
the photon-mediated interactions are dominant. As predicted,
the valley-Hall edge state now propagates in the opposite di-
rection due to the cavity-induced inversion of the valley-Chern
numbers thus verifying the ability to switch their chirality by
varying only the cavity width.

VI. OUTLOOK

In this work we have shown that the geometrical and topo-
logical properties of the polaritons depend sensitively on the
local photonic environment due to their mixed light-matter
character. While the symmetry-reducing perturbation is re-
quired to induce the valley-Hall phase, we have demonstrated
that one can engineer topological transitions by structuring
the photonic environment. In particular, we have shown that
one can tune the Dirac mass and invert the valley-Chern num-
bers by embedding the metasurface inside a cavity waveguide
which modifies the nature of the dipole-dipole interactions.

While we have considered a minimal theoretical model
one could generalize the theory to include more complex
antennas that exhibit magnetic dipole or higher-order multi-
pole moments, such as split-ring resonators or dielectric Mie
resonators. Furthermore, while we have focused on a cavity
waveguide there are other ways to structure the photonic envi-
ronment which may be more suitable for certain experimental
realizations and could have other advantages. For example,
one could interface the emitters/antennas with a graphene
membrane [61] where the interactions will be mediated by
surface plasmons whose properties can be tuned via a gate
voltage. Moreover, one could interface them with a photonic
crystal where the interactions will be mediated by the guided
modes [43,62]. Here one has the freedom to engineer the
photonic band structure which could be tuned via electro-
optical or nonlinear effects. These may provide alternative

ways to induce topological transitions in arrays of interacting
emitters/antennas.

Finally, the underlying principle presented in this work
could also have implications for other topological phases
that have recently attracted considerable interest in pho-
tonics. For example, perturbed kagome lattices have also
been shown to exhibit a higher-order topological phase
with topological corner states where it is usually asserted
that the shrunken/expanded lattice is the trivial/topological
phase [59]. However, here we have shown the ability to induce
multiple band inversions without ever modifying the lattice
geometry of the metasurface; do these band inversions change
the topological phase? If so, what is the fate of the topological
corner states as the photonic environment is modified?
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APPENDIX A: REGULARIZATION OF THE DIVERGENT
TERMS

Here we outline the regularization procedure that enables
one to evaluate the transverse dynamical matrix elements in
Eq. (15). We regularize the large momentum behavior of
the TEM Green’s function by introducing a Gaussian cut-off
function into its integral representation [35,60],

ĞTEM
⊥ (r − r′, ω) = 4πa3k2

ω

L

∫∫
d2k

(2π )2

eik·(r−r′ )

k2 − k2
ω − i0+ e−η2k2

,

(A1)

where the infinitesimal imaginary term in the denominator
ensures we have outgoing waves from the point source. We
choose the cut-off parameter η � a such that the regular-
ization has a negligible effect on the interactions between
dipoles. However, the Gaussian cut-off effectively smears out
the divergent part of the transverse Green’s function over a
small area, rendering it finite and well defined at the source
location [35,60]

ĞTEM
⊥ (0, ω) = a3k2

ω

L
e−η2k2

ω

[
iπ − Ei

(
η2k2

ω

)]
, (A2)

where Ei(x) = −P.V.
∫ ∞
−x

e−w

w
dw is the exponential integral

and P.V. denotes the Cauchy principal value. After inserting
the Gaussian cut-off function, the regularized transverse dy-
namical matrix elements read

Di j
⊥ (q, ω) =

∑
g

ω2ξ 2φ
i j
q

ω2
q−g − ω2

e−η2|q−g|2 − δi j Re[ĞTEM
⊥ (0, ω)].

(A3)
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APPENDIX B: EFFECTIVE TWO-BAND HAMILTONIAN
NEAR THE K/K′ POINTS

Here we outline the derivation of the effective two-band
Hamiltonian in Eq. (21), and we focus on the K point because
the equivalent Hamiltonian near the K′ point is related via
time-reversal symmetry. To leading order in k = q − K, the
elements of the longitudinal dynamical matrix in Eq. (14)
expand as

Di j
‖,+(k) =

∑
R

G‖(R + di − d j )e
−iK·(R+di−d j )

− δi jG‖(0) − ikν

∑
R

(R + di − d j )ν

× G‖(R + di − d j )e
−iK·(R+di−d j ), (B1)

where ν = x, y, while the elements of the transverse dynami-
cal matrix in Eq. (15) expand as

Di j
⊥,+(k, ω) =

∑
g

ω2ξ 2φ
i j
g

ω2
K−g − ω2

− δi j Re[GTEM
⊥ (0, ω)]

− kν

∑
g

2c2ω2ξ 2φ
i j
g

(ω2
K−g − ω2)2

(K − g)ν . (B2)

Next we reduce the 3 × 3 matrix eigenvalue equation to an
effective 2 × 2 matrix eigenvalue equation in the {|ϕ0

+〉, |ϕ−
+〉}

subspace:

1

α̌(ω)
|ψ+(k)〉 = Deff

+ (k, ω)|ψ+(k)〉. (B3)

Here the new basis is related to the sublattice basis via

|ψ+(k)〉 =
[〈ϕ0

+|ϕ(k)〉
〈ϕ−

+|ϕ(k)〉
]
, (B4)

and the effective dynamical matrix is given by

Deff
+ (k, ω) =

[〈ϕ0
+|D+|ϕ0

+〉 〈ϕ0
+|D+|ϕ−

+〉
〈ϕ−

+|D+|ϕ0
+〉 〈ϕ−

+|D+|ϕ−
+〉

]
, (B5)

where Di j
+ (k, ω) = Di j

‖,+(k) + Di j
⊥,+(k, ω). Finally, we lin-

earize the effective eigenvalue equation in Eq. (B3) by
evaluating the polarizability correction and effective dy-
namical matrix at the cavity resonant frequency, and we
approximate ω2

cav − ω2 � 2ωcav(ωcav − ω). This allows us to
write a simplified eigenvalue equation

ω|ψ+(k)〉 = H+(k)|ψ+(k)〉, (B6)

where the effective Hamiltonian is given by

H+(k) = ωcav12 − μ
ω0

ωcav
Deff

+ (k, ωcav). (B7)

After evaluating the matrix elements in Eq. (B5) and per-
forming similar analysis for the K′ valley in the {|ϕ0

−〉, |ϕ+
−〉}

subspace, we obtain the effective Hamiltonian in Eq. (21). The
Dirac frequency can be decomposed as ωD = ωcav + ω‖ +
ω⊥, where the contribution from the Coulomb interactions is

ω‖ = −μ
ω0

ωcav

∑
R �=0

G‖(R)e−iK·R − μ

3

ω0

ωcav

∑
R

Re
[
G‖(R + dA − dB)ei π

3 δe−iK·(R+dA−dB )

+ G‖(R + dA − dC)e−i π
3 δe−iK·(R+dA−dC ) − G‖(R + dB − dC)e−i 2π

3 δe−iK·(R+dB−dC )], (B8)

and the contribution from the photon-mediated interactions reads

ω⊥ = μ
ω0

ωcav
Re[ĞTEM

⊥ (0, ωcav)] − μ
ω0

ωcav

∑
g

ω2
cavξ

2e−η2|K−g|2

ω2
K−g − ω2

cav

− μ

3

ω0

ωcav

∑
g

ω2
cavξ

2

ω2
K−g − ω2

cav

Re
[
ei π

3 δe−ig·(dA−dB )

+ e−i π
3 δe−ig·(dA−dC ) − e−i 2π

3 δe−ig·(dB−dC )
]
. (B9)

Note we have used the regularization procedure to numerically evaluate the difference between the first two divergent terms
in Eq. (B9), but we have neglected the Gaussian cut-off for the intersublattice terms because it has a negligible effect on the
interactions between dipoles. Similarly, the Dirac velocity can be decomposed as vD = v‖ + v⊥, where the contribution from the
Coulomb interactions is

v‖ = μ√
3

ω0

ωcav

∑
R

Re
[
i(R + dA − dC)yG‖(R + dA − dC)e−i π

3 δe−iK·(R+dA−dC )

− i(R + dA − dB)yG‖(R + dA − dB)ei π
3 δe−iK·(R+dA−dB )

]
, (B10)

and the contribution from the photon-mediated interactions
reads

v⊥ = μ√
3

ω0

ωcav

∑
g

2c2ω2
cavξ

2(
ω2

K−g − ω2
cav

)2 (K − g)y

× Re
[
e−i π

3 δe−ig·(dA−dC ) − ei π
3 δe−ig·(dA−dB )

]
. (B11)

Finally, the Dirac mass is given by Eq. (23) and Eq. (24).

APPENDIX C: COULOMB AND PHOTON-MEDIATED
INTERACTIONS FOR LARGE CAVITY WIDTHS

Here we show that the essential physics for large cav-
ity widths is dominated by the Coulomb interactions. In
Fig. 2(a) and Fig. 4(b) we neglected the weak photon-
mediated interactions for clarity. In Fig. 5(a) we show the
polariton dispersion for the shrunken metasurface (δ = 0.05)
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FIG. 5. (a) Polariton dispersion for the shrunken metasurface with L = 5a where we include the full dipole-dipole interactions (solid
blue line). We also show the linear dispersion of the TEM cavity mode (dashed red line) and the approximate quasistatic dispersion
where we include only the Coulomb interactions (dashed orange line). (b) Polariton dispersion for the interface with L = 5a where
we include the full dipole-dipole interactions. The color of the bands represents the IPR, where blue/yellow bands correspond to
localized/extended states. (c) Same as panel (b) but including only the Coulomb interactions. One observes that the dispersion of the
valley-Hall edge states is only slightly modified by the weak photon-mediated interactions. Results obtained with δ = 0.05, a = 0.1λ0

and μ = 0.001ω0.

with a large cavity width where we include the full dipole-
dipole interactions (solid blue line). For comparison, we
also plot the linear dispersion of the TEM cavity mode
(dashed red line) and the approximate quasistatic dispersion
where we include only the dominant Coulomb interactions
(dashed orange line). The light-matter interaction results in
a characteristic anticrossing between the bright quasistatic
mode and the TEM cavity mode, but there is very little

effect from the weak photon-mediated interactions near
the K/K′ points which is where our focus is. However,
the hybridization results in polariton states that cross the
quasistatic band gap which are predominantly of photonic
character.

In Fig. 5(b) we show the polariton dispersion for the
interface with a large cavity width where we include
the full dipole-dipole interactions, and we compare this with

FIG. 6. (a) Berry curvature (λ = −) near the K/K′ points (right/left panel) for the shrunken metasurface with L = 5a. The top panels are
obtained from the effective Dirac Hamiltonian and the bottom panels are obtained from the dynamical matrix. (b) Same as panel (a) but with
L = 0.5a. The full Berry curvature is trigonally warped and exhibits C3 symmetry about the K/K′ points, while the effective Berry curvature is
isotropic. Apart from this small difference, the Dirac Hamiltonian captures the essential Berry curvature near the K/K′ points. Results obtained
with δ = 0.05, a = 0.1λ0 and μ = 0.001ω0.

013078-10



TOPOLOGICAL TRANSITIONS IN ARRAYS OF DIPOLES … PHYSICAL REVIEW RESEARCH 4, 013078 (2022)

the approximate quasistatic dispersion in Fig. 5(c) where we
include only the dominant Coulomb interactions. The color
of the bands represents the inverse participation ratio IPR =∑

j |p j |4/(
∑

j |p j |)2, where the blue/yellow color represents
localized/extended states. Note that because we apply peri-
odic boundary conditions in the y direction, the dispersion
plots also contain the valley-Hall edge states located on the
B/A interface as well as the A/B interface. Due to the absence
of a complete band gap, the bulk photonlike states overlap
part of the edge state spectrum (blue bands). However, one
observes that the edge states only couple weakly to these bulk
states (as evidenced by the very small anticrossings), and thus
the weak photon-mediated interactions have very little effect
on the dispersion of the valley-Hall edge states for this regime
of parameters. We should emphasize that the numerical sim-
ulations in Fig. 4(d) do include the weak photon-mediated
interactions; this demonstrates that the valley-Hall edge states
can be routed around sharp corners without any significant
scattering into the bulk, despite the absence of a complete
band gap.

APPENDIX D: BERRY CURVATURE NEAR THE K/K′

POINTS

Here we show that Eq. (25) captures the essential Berry
curvature near the K/K′ points in the two limiting interaction
regimes. We can calculate the full Berry curvature from the

dynamical matrix which, for the nth band, reads

Fn(q) = i
∑
m �=n

〈ϕn(q)| ∂
∂qx

D(q)|ϕm(q)〉〈ϕm(q)| ∂
∂qy

D(q)|ϕn(q)〉[
α̌−1

m (q)− α̌−1
n (q)

]2

+ c.c. . (D1)

Here |ϕm〉 and α̌−1
m are the eigenvectors and eigenvalues of the

dynamical matrix for the mth band, respectively, where we
evaluate the dynamical matrix and polarizability correction at
the cavity resonant frequency. Note, while the effective Berry
curvature within the two-band model is only accurate when
the other band is well separated in frequency, Eq. (D1) applies
to any band and is valid for all cavity widths. Furthermore,
Eq. (D1) is valid for any perturbation while Eq. (25) is only
accurate for small perturbations.

In Fig. 6(a) we compare the Berry curvature (λ = −) cal-
culated from the effective Dirac Hamiltonian (top panels)
and the dynamical matrix (bottom panels) for the shrunken
metasurface (δ = 0.05) with a large cavity width. Figure 6(b)
is the same as Fig. 6(a) but for a small cavity width. The
full Berry curvature is trigonally warped and exhibits C3 sym-
metry about the K/K′ points; this feature is missed by the
effective Dirac Hamiltonian where the corresponding Berry
curvature is isotropic. However, apart from this slight differ-
ence, the Berry curvature peaks have very similar magnitudes
and therefore the effective Dirac Hamiltonian evidently cap-
tures the essential Berry curvature near the K/K′ points in
both limiting interaction regimes for small perturbations.
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