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Abstract

Freezing is an involuntary stopping of gait observed in late-stage Parkinson’s disease

(PD) patients. It is a highly debilitating symptom lacking a clear understanding of its

causes and is challenging to predict. This thesis addresses (1) machine-learning-based

prediction of freezing for better management of the disease and (2) neuromechanical

modelling to explain the underpinnings of the symptom.

A data-driven approach is proposed in chapter 4 for predicting freezing events

using a machine learning approach, specifically Random Forrest (RF), Neural Network

(NN), and Naive Bayes (NB). Data sampled using a force platform were used for this

purpose. This data was collected from PD subjects as they stepped in place until they

had at least one freezing episode. The F1 scores of the machine learning algorithms

were computed for different windowing parameters. These parameters represent the

input data length (IL) and how early the freezing event is predicted (GL). The IL that

maximised the F1 score is approximately equal to 1.13 s, indicating the physiological

changes leading to a freeze take effect at least one step before the freezing incident.

The prediction deteriorated as one tried to predict it early, evidenced by a negative

correlation between GL and F1 scores. Our algorithm has the potential to support

the development of devices to detect and then potentially prevent freezing events in

people with Parkinson’s, which might occur if left uncorrected.

As the second contribution, mathematical models of PD-Gait are developed

with varying complexity and generality to explain the observed gait characteristics

of PD. The first mathematical model described in chapter 5 consists of the stance

leg modelled as a simple inverted pendulum acted upon by the ankle-push off forces

from the trailing leg and pathological forces by the plantar-flexors of the stance

leg. Freezing and irregular walking are demonstrated in a biped model as well as
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the inverted pendulum model. The inverted pendulum model is further studied

semi-analytically to show the presence of horseshoe and chaos to explain the cause

of variability in PD-Gait. The model reveals that these opposing forces generated by

the plantar flexors can induce freezing and variability. The model also explains gait

abnormalities such as reduction in step length close to a freeze and irregular walking

patterns. However, the model proposed in chapter 5 does not explicitly address the

effect of central pattern generators (CPG), feedback from the limbs, and the transition

to walking from FoG observed in PD-Gait. Therefore, a generalisation of the model

is developed in chapter 6 by coupling the hybrid mechanical model with a model of

CPG and event dependent feedback. The model demonstrates gait characteristics

relevant to PD, such as freezing, high variability and stable gait. The model’s ability

to capture the PD-related characteristics across a wide parameter range showed its

robustness. Moreover, the effect of augmented feedback on the model is studied to

understand different FoG management methods, such as sensory and auditory cues.

While this model explains variability, freezing, the effect of feedback, and transitions

from freezing to walking, there is further scope to generalise this model, considering

that phase coordination is affected in PD-Gait. This generalisation requirement is

addressed in chapter 7. Here, a set of maps are derived, combining both the neural

and mechanical aspects of the PD-Gait. Phase reset curves (PRC) that correspond

to the oscillators are used to abstract the neuronal dynamics, and a simple inverted

pendulum model is used to describe the motion. Gait variability, freezing, the effect

of PPN stimulation in PD-Gait are explained using this model. The model is also

extensible to be used with different PRCs. To summarise, the thesis has potential

implications in FoG management using sensory cues, and it takes a step forward

in explaining the underpinnings of PD-Gait characteristics such as freezing and

variability.
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1. Introduction

Parkinson’s disease (PD) is a neurodegenerative disorder affecting more than 16

million people worldwide (Mazilu et al., 2015) which includes approximately 1% of

the population over the age of 60 years (Lewis and Barker, 2009). The aetiology of

the disorder involves the death of dopaminergic neurons in the substantia nigra pars

compacta of the basal ganglia (Kandel et al., 2000). Both cognitive (e.g., depression

and sleep difficulties) and motor (e.g., tremor, rigidity, bradykinesia, changes in

speech and Freezing of gait (FoG)) symptoms are associated with PD (Schapira,

Chaudhuri and Jenner, 2017). FoG is a motor disability in PD patients where subjects

experience an “episodic absence or marked reduction of forward progression of the

feet despite the intention to walk” (page 734, (Nutt et al., 2011)). The onset of FoG

typically occurs in advanced stages of the disease progression (Giladi et al., 2001) and

is one of the most debilitating features of PD, affecting the well-being and quality of

life between 20-80% of patients. Additionally, falls and FoG are interconnected in PD

patients (Bloem et al., 2016; Bloem et al., 2004) further complicating the problem.

Furthermore, PD could also result in defective utilization of afferent feedback inputs,

(Dietz and Colombo, 1998) necessitating augmented feedback (Hwang et al., 2012).

One could divide the domains of research associated with PD-Gait into two.

Firstly, the one related to the cure and management of PD, where one aims to

develop solutions to manage or cure the disease. The second one is associated with

understanding the disorder, where one seeks to discover the underlying mechanisms

linked to FoG. There is no permanent cure for PD. Current therapies include

medications (e.g., Levo-Dopa) and Deep Brain Stimulation (DBS) (Gilat et al.,

2018b; Marsden and Parkes, 1977; Breit, Schulz and Benabid, 2004; Anidi et al.,

2018; Syrkin-Nikolau et al., 2017). However, freezing pathology is often resistant
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to pharmacological and surgical interventions, thus emphasizing a need to develop

alternative strategies to help people avoid freezing in daily life (Nonnekes et al., 2015).

Cueing strategies (augmented feedback Hwang et al., 2012) form one of the most

non-invasive and effective management options available to the patients affected with

for stabilising (Nonnekes et al., 2015; Rubinstein, Giladi and Hausdorff, 2002; Dean

et al., 2020) and, potentially delaying onset (Gilat et al., 2018b). However, it is not

practical for users to continuously listen to sensory cues and focus their attention

on walking as sensory systems such as vision are required for other functions such

as route planning and avoiding hazards. This poses a potential requirement for

predicting the possible onset of such that the total time of application of the sensory

feedback is minimum. The pathophysiology of is not yet conclusively established,

and further neurophysiological and biomechanical explanations related to are to be

sought. While a set of correlations between the neural inputs (e.g. dysfunction of

visuomotor and occipito-parietal pathways) and bio-mechanical variables (e.g. gait

pattern generation) of have been studied (Heremans, Nieuwboer and Vercruysse,

2013a), its causality is not well established. Apart from freezing, abnormal gait

patterns in PD consist of high stride time variability with less reduction in stride

length (Heremans, Nieuwboer and Vercruysse, 2013a). The relationship between the

abnormal gait patterns and freezing is also not well understood.

Detection and prediction of freezing have been attempted using kinematic and

electrophysiological data extracted using wearable sensors such as electrocardiograph,

skin conductance device, and accelerometer (Mazilu et al., 2015; Pham et al., 2017;

Pardoel et al., 2019). These methodologies do not use kinetic data, which could

have subtleties related to the loading and unloading dynamics, necessitating further

exploration. Additionally, methods that use pre-/ based classification (Mazilu et al.,

2013) may not be accurate, as the stream of data could contain a combination of and

pre- states. The techniques involving multiple sensors such as EEG and accelerometer

are often inconvenient from the perspective of personalized daily use. This, therefore,

necessitates the exploration of other sensor modalities.

Mathematical modelling of normal gait has been around for quite some
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time (McGeer et al., 1990), yet, to the best of our knowledge, modelling in PD

has only been attempted recently in literature (Muralidharan et al., 2018). The

study of bipedal gait historically has been along two lines: firstly, to build machines

that mimic human or animal locomotion and secondly, to understand the biological

underpinnings of locomotion. While there are several commonalities between these

two approaches, such as understanding the stability of gait and bifurcations, there are

stark contrasts. For example, physiologically relevant gait models aim to reproduce

pathological gait and relate to the experimental motor-control and human-gait

literature. However, models built for robotics can deviate from the experimental

motor control literature focusing more on developing a stable and robust walking

system, rather than understanding and reproducing the pathophysiology of human

gait.

Mathematical models of passive gait have been studied extensively by several

researchers to understand their stability and different bifurcations present in their

governing equations (Goswami, Thuilot and Espiau, 1996a; Manchester et al., 2011;

Dai and Tedrake, 2013; Sadeghian and Barkhordari, 2020; Iqbal et al., 2014; Fath-

izadeh, Taghvaei and Mohammadi, 2018; Mahmoodi, Ransing and Friswell, 2013;

Znegui, Gritli and Belghith, 2020; Fathizadeh, Mohammadi and Taghvaei, 2019).

In McGeer et al., 1990 the effect of environmental condition ramp on stability was

addressed. Impulsive dissipation at heel strike is studied for a multidimensional biped

model in Ros et al., 2015. There are other motor control models where minimization

of a cost functional is used for the control of motor action, or for parameter extraction,

from the motor control data (Dorschky et al., 2019; Pekarek, Ames and Marsden,

2007; Flash and Hogan, 1985; Parakkal Unni et al., 2017; Delp et al., 2007). These

models are not sufficient to understand human locomotion in PD patients, as these

papers have focused on generating stable periodic behaviour and its control. They do

not address explicitly how the external stimuli result in high variability, and freezing

observed in PD-Gait (Heremans, Nieuwboer and Vercruysse, 2013a).

On the other hand, general biophysical models of gait such as the ones

proposed in (Taga, 1995; Aoi et al., 2010) considers the interaction with the Central
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Pattern Generators (CPG). The aim of these models are primarily to demonstrate

walking as a stable limit cycle that emerges from the dynamic interaction between

neural oscillation originating in CPG and the pendulum oscillation of body linkages,

rather than involuntary stoppage of gait and variability. CPG-based model, proposed

in Aoi et al., 2010 and Taga, 1995 depends on multiple parameters such as the

strength of neural connections, the magnitude of the coefficients in the rhythmic

force controller, and strength of sensory inputs, to yield a desired locomotor pattern.

The dependency on an excessive number of intricate and sensitive parameters become

a stumbling block in the adaptability of the model for wider generic use. To identify

and tune such parameters for attaining involuntary freezing and variability of gait

behaviour for a wider population of patients is rather an arduous trial-and-error or

learning and optimization based task. Involuntary stoppage of gait and variability are

the two key aspects that a model needs to exhibit to be considered as a PD-Gait model.

The model by Muralidharan et al., 2018 make use of the neural dynamics of basal

ganglia (BG) but does not focus on the mechanics of movement. A model combining

the Lorentz system with the passive dynamic walker by Montazeri Moghadam et al.,

2018 do not model . Their model combines the bipedal walking mechanics with a

chaotic system to generate variability. This makes it less relevant biophysically. In

Sarbaz et al., 2012, a ‘sine circle map’ based discrete model is proposed, and this

model exhibits the variability in PD-Gait. However, the biophysical meaning of

this map-based model is difficult to ascertain. The motivation here is to develop a

model which exhibits and variability in PD-Gait while addressing the mechanical

and neurophysiological aspects of the gait pathophysiology. Though there exist vast

literature using mathematical models to understand the effect of sensory feedback

on normal gait (Taga, 1995; Aoi and Tsuchiya, 2006; Tamura et al., 2020) there is a

need for further mathematical modelling research looking into how FoG relates to

feedback.

Aim: The overall aim of the thesis is to develop mathematical explanations

of the underpinnings of PD-Gait and design machine-learning-based tools striving

to improve the sensory cue-based management of FoG. The biophysical modelling
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aims to explain the attributes of PD-Gait such as variability, freezing, ‘reduction in

step size before a freeze’ and the effect of proprioceptive feedback. Modelling also

attempts to address the role of phase, its synchronisation against feedback, and the

desynchronisation on FoG. Ultimately, the object is to develop a modular system to

study phase perturbations due to feedback and higher-level neuronal control.

In the data analysis front, the aim is to develop a machine learning-based

solution for the real-time prediction of FoG in PD-Gait using stepping time series

data. The analysis seeks to develop a real-time application to be used in the future

with sensory and auditory cueing.

1.1 Approach

In this thesis, force-plate based measurements and machine learning ideas have been

used to predict FoG. This prediction is aimed to be one with the potential to be

used with sensory cues to prevent freezing of gait. Secondly, simple lower-order

mathematical models have been proposed which effectively show FoG and variability

common in people affected with PD. The mathematical model also explains the effect

of feedback and external inputs on gait. The word model is used in this thesis in

the most general sense. In the context of machine learning, the word model is used

to represent the ML algorithm after fitting to data. In the biophysical approach,

models represent the equations that are used to describe the biophysics.

Data analysis approach: Freezing of gait (FoG) is often resistant to phar-

macological interventions. The prediction of freezing events might optimize novel

treatment options that make use of auditory or sensory cues. These predictions can

help trigger external sensory cues when walking behaviour is changed to indicate an

impending freeze. Therefore, these predictions could help deliver cues when the user

needs them the most rather than continuously providing cue information, improving

walking performance less obtrusively. A data-driven approach is proposed for pre-

dicting freezing events using three different machine learning algorithms - Random

Forrest (RF), Neural Network (NN), and Naive Bayes (NB) classifiers. Data from a

force platform were collected from a set of patients affected with PD as they stepped
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in place for the analysis. The performance scores of RF/NN/NB based algorithms

were computed for different size of inputs to the machine learning algorithm and how

early the freezing event is predicted. Moreover, the system’s real-time-performance

capability is demonstrated, and the ability to control sensitivity and specificity in

FoG prediction by way of combining the ensemble of ML models is also tested. The

algorithm’s real-time performance capability is achieved by ensuring the algorithm

uses only a window of data before the target data for prediction. Furthermore, the

time that the algorithm takes for prediction is negligible (compared to the gait cycle

and how early the algorithm could make predictions).

Modelling approach: Physiologically relevant mathematical modelling is used

for explaining the underpinnings of the PD-Gait and the abnormal characterist-

ics associated with it. Specifically, modelling aims to understand the underlying

mechanism of freezing, high variability and the effect of feedback on the PD-Gait.

The modelling is accomplished in three stages. Firstly, a simple inverted pendulum

based, hybrid mathematical model under ankle push-off forcing is built and is tested

for its ability to explain FoG and variability in PD-Gait as a function of model

parameters, specifically the phase difference between the opposing forces. Secondly,

the model is extended to include CPG oscillators, where the phase difference between

the opposing forces naturally emerge. This model is tested for its capacity to explain

the effect of feedback and external inputs on gait and the transition of PD-Gait from

walking to freezing and vice-versa. Thirdly, a discrete phase reset curve (PRC) based

model is built simultaneously, generalizing and simplifying the previous modelling

approaches. This is accomplished through abstracting away the perturbations on the

CPG oscillators using PRC functions. The capability of the model to test multiple

PRC functions representing different characteristics of the neuronal system against

perturbation is also evaluated.
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1.2 Contribution

Specifically, this work makes the following contributions:

Data analysis contributions: A machine learning-based approach is proposed to

predict freezing events from force data collected from the people affected with PD

while they stepped in place. This ‘Kinetic’ data is used in such a way that can

be used for real-time prediction. A systematic analysis is carried out to determine

how the performance changes for different windowing parameters characterising the

training data.

Research outcomes:

• M. Parakkal Unni, P. P. Menon, L. Livi, M. R. Wilson, W. R. Young, H. M.

Bronte-Stewart and K. Tsaneva-Atanasova (2020a). ‘Data-Driven Prediction

of Freezing of Gait Events From Stepping Data’. In:Frontiers in Medical

Technology, p. 13.

Modelling contributions: In this thesis, a novel hybrid dynamical model has

been proposed to explain FoG and high variability in PD-Gait. Subsequently, this

model is extended using the ideas of the CPG oscillators to explain the effect of

feedback, external inputs representing augmented feedback and transitions from

freezing to walking and vice versa. Finally, the mathematical description of the

PD-Gait is further generalized to a discrete system by abstracting away the role

of the CPG, higher-level neural control and sensory feedback using the concept of

phase reset curves. The discrete model, apart from explaining the characteristics of

PD-Gait, is highly extensible to test different neuromechanical hypotheses associated

with PD-Gait.

Research outcomes:

• M. Parakkal Unni, P. P. Menon, M. R. Wilson and K. Tsaneva-Atanasova

(2020c). ‘Ankle Push-Off Based Mathematical Model for Freezing of Gait in

Parkinson’s Disease’. In:Frontiers in Bioengineering and Biotechnology, p.

1197.
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• M. Parakkal Unni, P. P. Menon. ‘Modeling and Analysis of Parkinsonian

Gait’ In:Nonlinear Dynamics (In Review).

1.3 Thesis Organization

Chapter 2 starts by providing the general background of the motor control physiology,

pathology of PD, focusing specifically on FoG. As part of FoG pathology, a summary

of connections governing gait is described, along with a description of the current

understanding of PD-Gait and its treatment options. Successively, the prior literature

on the data analysis for FoG prediction and the mathematical models governing

FoG is provided, focusing on CPG based walking models, gait models in robotics

and how motor redundancy is addressed in different fields. The chapter ends with a

description of dynamical system models and the role of phase and phase response

curves in neuro-mechanical models.

Chapter 3 addresses one of the problems posed in the introduction, namely the

prediction of freezing of gait using stepping data to aid the treatment methodologies

that use augmented feedback. The chapter describes the methodology used for

developing a machine learning algorithm for predicting freezing from the stepping

data, a cross-validation procedure, a real-time demonstration of the algorithm and

the performance scores.

Chapter 4 develops a mathematical model of FoG based on the ankle push-off

forces acting on the stance legs, where the stance leg is modelled as an inverted

pendulum. This model forms the preliminary framework to understand PD-Gait

mainly from the limb mechanics perspective. Here, a mathematical model and a

map governing the PD-Gait is prescribed and analysed to show characteristics of

PD-Gait, such as variability, ‘reduction in step length’ before a freeze and freezing.

Chapter 5 provides a generalised version of the ankle push-off model extending

the simple model developed in chapter 4, using oscillators, phenomenologically

representing the CPG controllers. The effect of augmented feedback on gait is

demonstrated and analysed to understand its frequency-dependent behaviour. The

chapter also analyses the parameters governing the neural control to understand its
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effect on the freezing fraction and variability.

Chapter 6 further generalises the FoG modelling using a discrete map-based

model. The oscillator dynamics governing the PD-Gait are accommodated in this

model in a PRC function. The PRC function also implicitly models the effect of

augmented feedback. The model is analysed to show the high variability, chaos and

freezing in PD-Gait. This model has the advantage of being modular, where one

could replace the PRC function with another experimentally obtained PRC function

to understand its effect on gait. Moreover, the relatively simpler nature of the model

permits the use of this model in systems with lower computational capabilities.
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2. Background - Physiology of

Gait and Pathophysiology of FoG

Movement is the crucial aspect of physiology that differentiates animals from plants,

making motor physiology one of the most critical aspects of animal biology. Human

motor control is hierarchical (Grillner, 2003) with the control flowing from brain

through spinal-cord to the limbs and the sensory information flowing the other way

around as shown in Fig 2.1. Gait is shown in the Fig. 2.1 as an example of motor

control. The brain (basal ganglia, cortical and subcortical areas) control the spinal

cord central pattern generators (CPG) which in turn control motor control physiology

(e.g. gait).

CPG are neuronal circuits that can generate rhythmic motor patterns in

the absence of sensory inputs (Grillner, 2021) - a structure which is still not fully

understood (Grillner, 2021). While CPG produces the underlying motor pattern the

higher brain areas and sensory inputs control the timings, and the magnitude of the

activations (Büschges, 2005)

Motor ControlBrain Spinal Chord

Figure 2.1: Hierarchy of the motor control in general is depicted.

The pathophysiology relevant to PD-Gait and physiology of gait is described

in the coming sections in this chapter. The control of bipedal gait is highly complex

at the level of the brain, which gets simpler at the level of the spinal cord and limb
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dynamics. The system’s complexity increases as one moves from the lower level

structures (e.g. limbs and CPG) to higher-level structures (e.g. cortex, subcortical

structures and brain stem). This hierarchy is described in the following sections

starting from 2.1 essentially delineating how several structures converge to CPG and

motor neurons (MN). A bottom-up approach is chosen for the modelling of gait by

several authors (Taga, 1995; Aoi et al., 2019), and a similar strategy for modelling

PD-Gait in this work. In this bottom-up approach, first, the lower limb kinetics

relevant to PD-Gait is modelled. Successively, the model is extended into a CPG

based control of lower limb kinetics. This approach has the potential to investigate

different mechanisms that lead to PD-Gait. Moreover, the models developed this

way could be modified further as more findings on the higher structures emerge.

2.1 Physiology of Walking and Pathology of FoG

Understanding the physiology of gait is paramount to understanding the patho-

physiology of FoG. This section aims to shed light on the physiology and patho-

physiology of gait and related anatomical structures relevant to FoG. FoG is also

seen in diseases such as progressive supranuclear palsy, multiple system atrophy, and

vascular parkinsonism (Factor, 2008; Gurevich and Giladi, 2003). In the case of PD,

while the basal ganglia (BG) and the related dynamics explain the PD pathology, the

lower structures determine how it reflects in PD-Gait. Fig. 2.2 shows the elaborate

connections between different regions of the brain ending in motor neurons (MN).

The nodes with high degree-centrality have been used to scale the size of the nodes.

At the lowest level, the gait is believed to be controlled by CPG, however,

this is debatable (Minassian et al., 2017). In the current section, the focus is on

the connectivity and physiology of subcortical and brain stem structures and their

relation to the CPG in the spinal cord.

Anatomically positioned below the BG, various areas in the brain stem play

their own critical roles in the physiology of walking as well as FoG via their inputs to

the CPGs, either directly or indirectly via intermediate areas. As shown in Fig. 2.2,

the areas include the Nucleus reticularis gigantocellularis (NRGc), Nucleus reticularis
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Figure 2.2: Physiology of walking. The size of the nodes represent the degree
centralities associated with the nodes.
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magnocellulari (NRMc), Locus coeruleus (LC)/Raphe nuclei (RN) and Corticospinal

tract (from motorcortex). CPG, which control the limbs, are affected by the inputs

from NRGc, NRMc, LC/RN and Corticospinal tract (from motor cortex). Inhibitory

NRGc input is modulated by the Pontine reticular formation (PRF) regulated by

Pedunculopontine nucleus PPN. PPN, an area that controls posture and regulates

muscle tone, receives projections from Globus pallidus internus and Substantia nigra

pars reticulata (GPi and SNr), the input to which is defective in PD. Moreover, one

could hypothesise that the MRF inputs (midbrain reticular formation, which consists

of NRGc and NRMc) and LC/RN regulate CPG neurons (Lemieux and Bretzner,

2019) changing their behaviour against perturbations.

Neuro-mechanical control of bipedal walking can be classified into two. The

first one corresponding to mechanical walking without any adjustments to external

inputs or perturbations such as auditory or visual proprioceptive inputs and the

second one correlates with walking whilst adjusting to external demands/inputs

which require refined movements, learning and sensory integration. Even though this

categorisation helps to understand the physiology better, the roles of the regions

corresponding to mechanical walking and the one corresponding to refined movements

are not fully demarcated. Experiments on decerebrate animals have shown that

stimulation of mesencephalic locomotor region (MLR) is sufficient to elicit locomotion

despite its ‘machine-like’ nature Snijders et al., 2016. Subthalamic locomotor region

(SLR) connections to MLR are believed to be playing the role of postural and

equilibrium control. Even though debatable, PPN and the adjacent areas such as

the cuneiform nucleus (CN) and the subcuneiform nucleus form the MLR (Alam,

Schwabe and Krauss, 2011). Neurons of the PPN region with its connection towards

several areas in the brain, such as BG, limbic areas, thalamus, brain stem, spinal

cord, and cerebellum, make the different regions’ functional understanding quite

difficult. PPN neurons suppress the muscle tone and also has a role in modulating

locomotion. Loops from motor cortical areas to BG and cerebellum, believed to

play a role in the adaptive control of locomotion (Takakusaki, 2013). BG controls

locomotion through GABAergic SNr outputs, and these outputs are affected in
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PD. SNr has connections to MLR. Lateral SNr blocks PPN induced suppression of

muscle tone, and medial SNr suppresses locomotion induced by MLR. The excessive

inhibition of the MLR through SNr in PD might cause the gait symptoms in

PD (Snijders et al., 2016). Supplementary motor area (SMA) and premotor area

(PM) are believed to involve movement initiation where finer control is necessary.

Furthermore, Sergei et al.’s study on cat lesions has revealed the role of pyramidal

tract neurons (PTNs) in the motor cortex in anticipatory postural adjustments

(Yakovenko and Drew, 2009). The role of proprioception in human gait is well

established (Frost et al., 2015). Ian Waterman’s case study illustrates this point

accurately, where he lost the sensory perception from the neck down due to a rare

autoimmune disorder. Even though he could contract his muscles, he lost control

of his movements, including his gait. This difficulty in coordinating gait could be

attributed almost entirely to feedback or proprioception (Tuthill and Azim, 2018).

Ankle proprioceptive feedback is affected in the case of people affected with PD

(Khudados, Cody and O’Boyle, 1999; Klockgether et al., 1995; Rickards and Cody,

1997). Dysfunction of the affected ankle proprioceptive feedback seems to contribute

to the gait abnormalities (Teasdale, Preston and Waddington, 2017; Khudados, Cody

and O’Boyle, 1999). As the actual sensory signal is believed to be unaffected in PD,

the effect of the proprioceptive signal on the motor circuit is assumed to be affected

(Khudados, Cody and O’Boyle, 1999). BG neurons are shown to respond to the

passive and active movements of the limbs (Konczak et al., 2009). However, studies

in monkeys treated with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) to

induce parkinsonian show a reduction of BG specificity against sensory inputs, this

lack of specificity to sensory inputs affects proprioception (Konczak et al., 2009).

The motor neurons from the spinal cord innervate muscles of the lower limbs causing

muscle contraction and successively resulting in bipedal gait. Abnormalities such as

premature activation of plantar flexors have been shown to accompany a freezing

episode in EMG studies by Nieuwboer et al., 2004. The muscles that can help in

plantar flexion are gastrocnemius, peroneus longus and soleus (Duysens et al., 1990;

Sammarco, 1995). Moreover, during horizontal walking, most of the energy is spent
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on lifting the body against gravity, and the ankle muscles accomplish this during

plantar flexion. Therefore plantar flexors form a crucial set of muscles for PD-Gait

modelling.

The general aspects of motor physiology are described in Appendix A.1, the

physiology of basal ganglia in Appendix A.2 and the pharmacological and surgical

interventions used in PD in Appendix A.3.

In summary, the cortical inputs to BG and brain stem regions play a significant

role in locomotor control. The role of feedback from limbs to CPG, and the effect of

stimulation of PPN are key aspects relevant to the future sections of the thesis.
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3. Background - Data Analysis

and Modelling for FoG

This chapter provides the relevant background to the data analysis for FoG prediction

and biophysical mathematical modelling of FoG. The section on the biophysical

modelling also briefly covers the general mathematical models of gait relevant to

human motor physiology.

3.1 Data driven prediction of freezing

In recent years, there has been much interest in developing novel and practical

algorithms for the detection and prediction of FoG by making use of the physiological

data. Two main areas of focus are (1) detection of FoG episodes from the time series

data collected over a finite duration of time after it has happened (2) prediction

(forecasting) of imminent FoG episode using physiological time series data gathered

over a finite duration of time.

While there are several studies (Pardoel et al., 2019) on the detection front,

the prediction studies are rather limited (Pardoel et al., 2019; Mazilu et al., 2015;

Pham et al., 2017). Typically, kinematic measurements using sensors such as

accelerometer, gyroscope are used by authors (Pardoel et al., 2019) for detection and

prediction of FoG. There is also a prevalence of the use of measurements of EEG

(electroencephalogram), EMG (electromyogram), GSR (galvanic skin response) for

FoG detection, for example by (Handojoseno et al., 2012), (Cole, Roy and Nawab,

2011) and (Mazilu et al., 2015) respectively.

There are very few research studies reported as of today that present results
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Time Series (e.g. EEG, ECG, Acceleration)

Region of time series labelled as FoG

Region of time series labelled as Pre - FoG

Region of time series labelled as normal (e.g. walking)

Figure 3.1: Illustration of FoG and pre-FoG. The black square represents an arbitrary
time series. The red, yellow and green regions represent part of the time series
labelled as FoG, pre-FoG and normal region. The yellow region always precedes an
FoG labelled red region.
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Figure 3.2: The figure shows the angular velocities of the sensors on the left (red)
and right (blue) ankles. The segmentation of the data into Insufficient motion, Gait,
pre-FoG and FoG are indicated. This is an example to illustrate the literature on
pre-FoG/FoG classification. This figure is adapted from (Palmerini et al., 2017) with
permission. Only a subset of approximately 70 s time-series data from (Palmerini
et al., 2017) is depicted here, as this is only for the illustration of data segmentation
methods used in previous literature.
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on predicting or forecasting FoG using physiological time series. A typical strategy

used in the FoG prediction is by converting the problem into a classification problem

by segmenting the data into pre-FoG/FoG (Borzì et al., 2021; Arami et al., 2019).

The data-segmenting involves partitioning the data into (a) pre-FoG, (b) FoG, and

(c) normal where FoG is the time series duration where freezing happens, pre-FoG

is the data before the freezing episode for a pre-defined period (e.g. 1 s to 11 s in

Mazilu et al., 2013 ) and normal is the data which is neither FoG nor pre-FoG. In

this framework, the two-class classification problem of classifying FoG from every

other kind is considered FoG detection and the three-class classification problem

of classifying data into pre-FoG, FoG and normal is considered as prediction. An

illustration of the segmentation of the data into pre-FoG and FoG in a general time

series is illustrated in Fig. 3.1, and an example of the same adapted from Palmerini

et al., 2017 is given in Fig. 3.2. In the particular case of Palmerini et al., 2017 the

data segmentation is done on the angular velocity measured in rad. s−1. Mazilu et al.,

2013 has developed a decision tree classifier for pre-FoG, FoG, and normal-locomotion

classification with an F1-score of 0.56 for FoG prediction.

In Mazilu et al., 2015 their previous work has been extended using skin

conductance and ECG measurements with a prediction using multivariate Gaussian

model resulted in an accuracy of 71.3%. The accuracy is calculated in this work by

computing the fraction of freezing episodes predicted out of the total number of 184

freezing events. Handojoseno et al., 2014 work of EEG based FoG prediction used

a multilayer perceptron (MLP) with Fourier and Wavelet-based features and other

nonlinear univariate and bivariate features. They also showed that theta oscillations in

the human cortex increase during transition to freezing and during freezing, consistent

with the earlier studies which suggest a relationship between FoG and motor planning

impairments (Knobl, Kielstra and Almeida, 2012). This was later extended using

Bayesian neural nets in Gilat et al., 2018a. The study by Palmerini et al., 2017 that

tried to identify a common evident pattern coming prior to the occurrence of FoG is

done using linear discriminant analysis to differentiate pre-FoG from normal gait. In

addition to predicting FoG, a reduction in the symmetry between the limbs before
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a freeze is demonstrated in Palmerini et al., 2017, making the work physiologically

very interesting. They also show high-frequency movement before a freeze, thereby

posing questions for mechanistic explanations. Moreover, several authors recently

have tried using neural nets for the prediction of FoG (Torvi, Bhattacharya and

Chakraborty, 2018; Zia et al., 2016). More recently, pre-FoG detection work using

machine learning by Borzì et al., 2021 show that dopaminergic therapy affects

the pre-FoG gait patterns. More recently, a random forest-based classifier with

an orthogonal experimental design has been used for the pre-FoG/FoG/normal

classification using a random forest algorithm and a set of signals (accelerometer,

gyroscope and magnetometer) generated from an inertial measurement unit (IMU;

BMI160, Bosch, Germany) at 100 HzChen et al., 2021. Furthermore, there has

been other explorations on pre-FoG/FoG/Normal classification using other machine

learning approaches such as support vector machines, gradient boosting and naive

Bayes classifiers using accelerometer data set Orphanidou et al., 2018.

The FoG prediction literature (Mazilu et al., 2013; Mazilu et al., 2015;

Handojoseno et al., 2014; Borzì et al., 2021) focuses on segmenting the data into

pre-FoG, FoG and normal states. One drawback with this classification is that in

a real-time prediction scenario, the window of data used for prediction at a given

time can contain a combination of these states. For example, the data may contain

a walking region and transition to a freeze (pre-FoG) region. Here, an algorithm

trained using the three-state classifications may not be suitable as it has not been

trained in combinations of the states. This three-class classification scheme also will

be affected by the offset between the windows used for sampling the data before being

fed to the prediction algorithm. Furthermore, even though the sensing modalities

such as EEG, accelerometers, skin conductances, ECG are explored in literature,

there is a need to explore sensing modalities that make kinetic measurements such

as force-plates.
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3.1.1 Sensory cues for managing PD

As defined by Konczak et al., 2009 proprioception is ‘unconscious processing of

proprioceptive signals used for reflexive and postural motor control’. The definition

encompasses both the sense of limb position and limb movement. This definition is

adopted for proprioception throughout this thesis. In other words, proprioception

forms the ‘feedback’ that one uses for executing motor functions. However, one

could note that there are alternative definitions where one separates the position

sense from the sense of movement (Konczak et al., 2009). Proprioceptive feedback is

affected in PD, and the management options of PD focus on providing sensory and

auditory cues and augmented feedback (Hwang et al., 2012; Nonnekes et al., 2015;

Nieuwboer, 2015) to manage FoG. There are two main types of cueing strategies that

one could adopt: (1) open-loop cueing (2) closed-loop cueing. In open-loop cueing,

the strategy is to supply sensory cues in a preset manner independent of the user

performance (Muthukrishnan et al., 2019). On the other hand, closed-loop cueing

depends on the users’ gait performance (Muthukrishnan et al., 2019).

One hypothesis of action of the cues on PD-Gait is by increasing cortical

activation, thereby reducing the pathological basal ganglia activity (Muthukrishnan

et al., 2019). Moreover, it is hypothesised that an alternative pathway involving the

cerebellum, sensorimotor cortex, and lateral premotor cortex is activated in the pro-

cess of compensating for BG deterioration (El-Tamawy, Darwish and Khallaf, 2012).

Furthermore, the augmented proprioceptive feedback also could be compensating for

the reduced proprioception in PD. However, the exact mechanism of action of these

cues is still subject of research (Ginis et al., 2018).

Several cueing strategies (e.g., auditory and visual) exist that often induce

clear benefits in terms of stabilizing gait (Nonnekes et al., 2015; Rubinstein, Giladi

and Hausdorff, 2002; Dean et al., 2020) and, potentially delaying the FoG onset (Gilat

et al., 2018b). However, it is not practical for users to continuously listen to sensory

cues and focus their attention on walking as sensory systems such as vision are

required for other functions such as route planning and avoiding hazards. Therefore,

a more efficient strategy would be to initiate the sensory cues only at times when the
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user needs them most (i.e., at a time when they are about to freeze). Understanding

the behavioural factors that are predictive of upcoming freeze events could help

to progress our understanding of underlying neurophysiological mechanisms that

cause and exacerbate freezing. While there are several recent contributions applying

machine learning to Parkinsonian tremors (Livi, Sadeghian and Sadeghian, 2016)

and gait analysis (Frohlich et al., 2017) as well as the freezing of gait detection

(Pham et al., 2017; Amini, Banitsas and Young, 2019), to our knowledge, no work

has used measurements of stepping actions, i.e. using kinetic data alone, to predict

an upcoming freezing event.

3.2 Mathematical Modelling of FoG

Gait has been studied fundamentally from two different perspectives. One approach

is robotics and control, and the second is biophysical. In the area of PD-Gait, only a

few studies are available in the literature. The model of PD-Gait by Muralidharan

et al., 2014 successfully captures the neural dynamics of basal ganglia (BG) but

does not focus on the mechanics. A recent model which combines the chaotic region

of the Lorentz system with the passive dynamic walker is provided by Montazeri

Moghadam et al., 2018. In this model, chaos is added externally, making it less

relevant biophysically. As chaos is known to be absent in the basal ganglia (BG) in

PD state (Mandali et al., 2015) the neuromechanical interactions need to be studied

to find out the underpinnings of the variability in PD-Gait.

Forthcoming sections explain the modelling of gait in human motor control

and robotics from different perspectives.

3.2.1 Central Pattern generators and its relevance to PD-

Gait

Central pattern generators (CPG), typically argued to be fundamental to most

rhythmic behaviours, are a group of neurons with interconnections that generates

a fictive motor pattern when appropriately activated. CPG is used to drive the
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Source Methodology Results Limitations
(Muralidharan et
al., 2018)

ODE and RL
based model of
BG & CPG.

Explanation of
PD-Gait char-
acteristics such
as step length
reduction and
variability.

No FoG and
hybrid nature of
walking. Inad-
equate kinetic
aspects of the
PD-Gait.

(Montazeri
Moghadam et
al., 2018)

Rigid body dynam-
ics of the limbs.
Externally added
chaos through lo-
gistic map and
Lorenz system.

Explains the PD-
Gait variability

The biophysical
meaning is diffi-
cult to ascertain
. Absence of
FoG. No neuronal
controller.

(Sarbaz et al.,
2012)

Discrete map
based model

Simple model and
easier to be used
with the data.

The biophysical
meaning is diffi-
cult to ascertain.
FoG is absent

(Goswami, Thuilot
and Espiau, 1996a;
Manchester et al.,
2011; Dai and
Tedrake, 2013;
Sadeghian and
Barkhordari,
2020; Iqbal et al.,
2014; Fathizadeh,
Taghvaei and
Mohammadi,
2018; Mahmoodi,
Ransing and
Friswell, 2013;
Znegui, Gritli
and Belghith,
2020; Fathizadeh,
Mohammadi and
Taghvaei, 2019)

Rigid body mech-
anics. Passive gait
is modelled.

Explains passive
gait and stability,
highly relevant to
robotics. Plaus-
ibly passive gait is
disturbed in PD.

Not directly relev-
ant to PD. Do not
explain the mech-
anism of human
gait, CPG, variab-
ility in PD-Gait or
FoG

(Aoi and Tsuchiya,
2006; Aoi et al.,
2010; Aoi et al.,
2019)

ODE based model
of CPG and Rigid
body mechanics.
Muscle synergy
hypothesis is im-
plicitly employed.

Explains the nor-
mal gait controlled
by the CPG.

Not directly rel-
evant to PD-Gait.
Do not explain the
pathophysiology in
PD-Gait or FoG.

Table 3.1: A summary of gait literature relevant to PD.
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mechanical systems in several models of human locomotion. CPG based gait models

assume that the CPG receive feedback (perturbations) from the sensory system

(or indirectly get modulated by the brain) such that the overall system consisting

of the CPG and rigid-bodies representing the limbs are synchronised (Yamasaki,

Nomura and Sato, 2003). Yamasaki et al. in (Yamasaki, Nomura and Sato, 2003)

take a control systems-based approach to the problem using a simple model for

the CPG. Their model also uses an IDM (inverse dynamics model) module, the

physiological correlates of which is assumed or speculated to be in the cerebellum.

In Aoi et al., 2010 the authors have made the model more physiologically relevant

using the experimental findings from Ivanenko, Poppele and Lacquaniti, 2004. There

are two difficulties associated with using these models for understanding freezing,

(1) a large number of parameters, resulting in a scenario where identifying the

cause of freezing becomes difficult (2) the use of dimensionality reduction based

approximations, resulting in a model, which explains the normal behaviour well

but can not be directly extended to pathological scenarios such as freezing. While

Aoi et al.’s model is an excellent candidate for understanding normal walking, it is

challenging to use such a model for understanding FoG. This difficulty is because

of many tuned parameters and the difficulty of judging which component’s failure

caused FoG. Also, the muscle synergy and factor analysis based approximations

may not be valid in a pathological scenario as these approaches focus on normal

walking scenarios. Sensory feedback to the brain and CPG are crucial aspects of gait

addressed in the modelling literature over the years (Taga, 1995; Aoi and Tsuchiya,

2006; Tamura et al., 2020); however, to the best of our knowledge, current literature

seem to lack details on how FoG is related to feedback from the limbs. Moreover,

how PD-Gait changes from walking to freezing and back also needs a physiologically

relevant explanation.

Muscle coordination can be quantified using the phase associated with the

muscle activation. The activation of muscle is assumed to be controlled by the CPG

in the spinal cord. CPG is typically modelled as limit cycle oscillators (Ijspeert,

2008). These limit cycle oscillators can be ‘perturbed’ by the sensory inputs from the
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legs, or inputs from the brain which could lead to entrainment (Taga, 1994). Phase

reset curves (PRC) can quantify the effect of such perturbations on the state of the

CPG (Izhikevich, 2003) close to its limit cycle. The brain stem regions connected to

the CPG receive perturbations associated with freezing episodes. As an example, an

EEG study by Shine et al., 2014 has revealed abnormal oscillatory activity in the

brain associated with a freezing episode. Moreover, a transient inhibitory input from

the BG resulting in a decreased activity of brain stem structures is claimed to be

causing FoG in Lewis and Shine, 2016. These transient changes affecting brain stem

structures (Lewis and Shine, 2016) could induce changes in the PRC characteristics

of the CPG neurons. Therefore, a careful study is needed on the different PRC

characteristics that induce freezing episodes.

3.2.2 Robotics related models of gait

While studying gait, it is impossible to ignore the robotics literature. The passive

gait is the link that connects the robotic literature with the biophysical models as the

fundamental difference between the robotic models and the biophysical models lie in

the control aspect. McGeer et al.’s early work in passive gait models (McGeer et al.,

1990) show the stability and effect of external inputs on passive gait. Several others

have also studied the passive gait models and their bifurcations (Goswami, Thuilot

and Espiau, 1996a; Manchester et al., 2011; Dai and Tedrake, 2013; Sadeghian

and Barkhordari, 2020; Iqbal et al., 2014; Fathizadeh, Taghvaei and Mohammadi,

2018; Mahmoodi, Ransing and Friswell, 2013; Znegui, Gritli and Belghith, 2020;

Fathizadeh, Mohammadi and Taghvaei, 2019). The fully actuated bipedal robots are

in the other end of the spectrum where typically feedback linearization is used to

nullify the ‘natural’ dynamics of the robot (Gupta and Kumar, 2017). On the other

hand, underactuated robots use the ‘natural’ dynamics of the rigid body system

while simultaneously providing some actuation (Gupta and Kumar, 2017). However,

these models cannot directly explain PD pathology due to the lack of actuation or

actuation’s biological nature.
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3.2.3 Addressing motor redundancy

Muscles act as the actuators of the neuromuscular system. The aim of neuromechan-

ical modelling is to explain the control scheme used by the brain to achieve normal

and pathophysiological motor control. Several muscles act on a joint to achieve

motion, thereby increasing the number of actuators relative to the degree of free-

dom. These redundancies in actuation result in a scenario where there are multiple

ways to achieve the same movement. Explaining how the brain chooses the set of

muscles for a particular movement is one of the problems in neuromuscular control.

Optimal-control formalism addresses this issue to some extent and forms an alternat-

ive approach to modelling motor control. This approach assumes a cost-functional (e.

g. integral of the jerk), which is minimised during motor action. This is very suitable

for robotic applications (Ishihara, Itoh and Morimoto, 2019; Pekarek, Ames and

Marsden, 2007). Inverse optimal control can be used to circumvent the assumption

of the cost functions, such as minimising jerk or overall torque applied by inferring it

from the data. Nevertheless, this necessitates formulating the problem in such a way

that there is a cost function that is minimised during a motor action (Rebula et al.,

2019; Parakkal Unni et al., 2017; Mombaur, Truong and Laumond, 2010).

The equilibrium point hypothesis (Duan, Allen and Sun, 1997; Feldman,

1986) suggests that the limb movements are the result of active changes in the

equilibrium state of the motor system. The equilibrium state is governed by the

torque-length characteristics of the motor system. A neural controller can change

torque-length characteristics of the muscles to achieve motion. It has been shown

that the muscles act synergistically to reduce the variability in the targeted action.

For example, the uncontrolled manifold hypothesis by Latash, Scholz and Schöner,

2002 explains the variability in the muscle recruitment as ‘good’ and ‘bad’ regions

of variability, depending on whether they achieve the targeted action or not. The

muscle recruitments that achieve targeted action are considered ‘good’ regions of

variability, whereas the muscle recruitments that do not achieve targeted action are

considered ‘bad’ regions of variability. The Equilibrium point approach (Feldman,

1986) makes the electromyogram (EMG) activity implicit. The empirical determina-
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tion of invariant characteristics (Sainburg, 2015) such as torque-length characteristics

(Feldman, 1986) is necessary for validating the equilibrium point hypothesis. A way

in which it is achieved is by asking the subjects ‘not to intervene’ (Sainburg, 2015;

Feldman, 1986) while doing a task such as unloading, and assuming these result

in stabilisation of central commands to muscles (Sainburg, 2015). However, this

assumption is not necessarily true, as there could be involuntary responses resulting

in muscle contraction. The use of muscle synergies (Latash, 2010) in models is one

way to address redundancies. These models assume co-activation of a set of muscles

as motor primitives to address the redundancy associated with muscle activation

(Aoi et al., 2019; Tamura et al., 2020). The idea of muscle synergy is still debated

and is considered difficult to refute or falsify by any empirical evidence (Popper,

2002; Olszewski and Sandroni, 2011) by some authors (Tresch and Jarc, 2009).

3.2.4 Walking is a hybrid system

Hybrid systems are dynamical systems, which exhibit both continuous and discrete

dynamics. Walking involves the interaction of continuous differential dynamics

governing the limbs and their neural control and discrete dynamics due to the

leg’s impact on the ground. Naturally, this results in a hybrid dynamical system.

The hybrid systems’ theory becomes extremely relevant in modelling PD-Gait and

studying its orbital stability. While orbital stability of smooth systems have been well

studied (Glendinning, 1994) the study of orbital stability of hybrid systems is relatively

recent. Hybrid systems can result from combinations of linear or nonlinear differential

equations and discrete dynamics. The emerging hybrid dynamical system can show

richer dynamics than that offered by the systems individually. Mathematically, there

are three aspects to a hybrid system: (1) A set of differential equations defining

the smooth flow, (2) a reset surface or surfaces and (3) a map to apply when the

trajectory reaches a reset surface or surfaces. Understanding the stability of the

hybrid dynamical system is vital to explain its long term behaviour. One approach to

studying the stability of the hybrid dynamical system is by using contraction analysis.

A non-singular Jacobian is essential to the contraction analysis of the system, which
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is based on variational methods of the differential dynamics (Lohmiller and Slotine,

1998; Tang and Manchester, 2014). However, biologically relevant gait models with

event-driven feedback can have a singular Jacobian. A general methodology to

address the problems arising in hybrid systems is to use Poincare section based

techniques such as the one given by Goswami, Thuilot and Espiau, 1996a.

3.2.5 Introduction to Hybrid systems

Hybrid systems are a class of dynamical systems, which exhibit both continuous and

discrete dynamics. These systems are often associated with events such as resets or

jumps, and switching. A system of ordinary differential equations typically governs

the continuous behaviour, and a vector-valued function governs the discrete part.

The general hybrid dynamical system is of the form,

ż(t) = F(z(t), λ), z(t)− /∈ S , (3.1)

z(t)+ = ∆(z(t)−, λ), z(t)− ∈ S, (3.2)

where z ∈ Z represents the state variables and Z ⊂ Rn is the state manifold.

In Eq. 3.1, F(z(t), λ) : Z × Λ → Rn is a continuous vector valued function.

Further, λ ∈ Λ ⊂ Rm represents a vector of adjustable constant parameters of

the system and Λ characterises a set of admissible parameter values. In this case,

F(z(t), λ) : Z × Λ → TZ is C∞ vector field, in which TZ is the tangent bundle of

state manifold Z. The solution curve of the system is denoted as ζ(t, z0, λ), such

that z(t) = ζ(t, z0, λ) is the solution at time t > 0 of the system with an initial state

z(0) = z0 at time t = 0.

In hybrid systems, the state can instantaneously reset to a discrete time part

according to a C∞ reset map ∆(z(t)−, λ) : Z × Λ → Z in Eq. 3.2.

The switching surface is defined as

S := { z(t) ∈ Z
∣∣ gr(z(t)) = 0 } , (3.3)

where gr(z(t)) : Z → R is a C∞ real valued switching function, satisfying the
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condition ∂gr
∂z

(z) 6= 0. The system with the reset, or so-called impulse effect, brings

forth the possibility of the state’s jumping (also known as ‘resets’) when certain

boundaries are crossed. In general, these boundaries are subsets of the space, S ⊂ Z.

The difference between a smooth system and a hybrid one lies in the fact that when

the flow ζ(t, z0, λ) reaches the switching surface Eq. 3.3, a reset map in Eq. 3.2 is

applied.

Figure 3.3: Illustration of the trajectory in the hybrid system. The dashed line
correspond to the discrete mode dynamics, whereas the solid line corresponds to the
continuous part of the hybrid system.

The time to reset function is then defined as T : Z×Λ → R+ as the first time

at which the continuous part solution ζ(t, z0, λ) intersects the switching manifold S:

T (z0, λ) := inf{ t > 0 | ζ(t, z0, λ) ∈ S } . (3.4)

A Poincaré map, which describes the motion of the point of intersection of a

differential dynamical system with a lower dimensional subspace traverse to the flow,

P : Z × Λ → Z, is defined by

P (z, λ) := ζ(T (∆(z, λ), λ), ∆(z, λ), λ) , (3.5)

and describes the evolution of the hybrid model in Eq. 3.1 - Eq. 3.2 on the switching

surface, S, which is considered as the Poincaré section (indicated in Fig. 3.3)

28



according to a discrete time dynamics

z[k + 1] = P (z[k], λ), k = 0, 1, 2, · · · (3.6)

Typically a periodic orbit is transversal, i.e., not tangent, to the switching manifold

S, and the fixed point for the Poincaré map in Eq. 3.5 is

P (z∗, λ) = z∗, ∀λ ∈ Λ. (3.7)

In the hybrid walking system described here, a Poincare map may be constructed by

choosing the switching surface S as the Poincare section (Wendel and Ames, 2010;

Ames, 2014). The discrete dynamics on the Poincaré section is defined as follows:

P : z[k + 1] = P (z[k], λ) (3.8)

One could note that the variable z when used as an argument to the Poincare map

is indicated with square braces to indicate the discrete nature of the map.

3.2.6 Phase and phase response curves

Synchronisation is central to the neuroscience and dynamical-systems theory of

oscillators. Typical oscillators observed in biology are limit-cycle oscillators; this

partly owes to the homeostatic mechanisms providing the necessary dissipative forcing.

Periodic orbit is a solution of a dynamical system that repeats itself after a constant

time. A “limit-cycle is an isolated closed trajectory of a dynamical system” (Sun and

Lei, 2013). The neighbouring trajectories spiral into or out of the limit-cycle. One

could also define an asymptotic phase for the points in the basin of attraction of the

limit cycle by mapping points in the basin of attraction to ‘points on the limit cycle’.

The set of points having the same asymptotic phase is called an isocron. This way of

defining an asymptotic phase and isocrons allows a description of the system based

on the phase of the system, ignoring the exact amplitude of the oscillation. Applying

a brief stimulus (brief so that the point does not leave the basin of attraction) to a
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Isochrons

Limit Cycle

Perturbation

Figure 3.4: Illustration of the relationship between isochrons, PRC and perturbation
of a limit cycle.

point on the limit cycle can move it to a different point in the basin of attraction

where the asymptotic phase is different. This results in a change in the phase of the

system, and the corresponding change in phase is quantified using a phase reset curve

(PRC) (Ermentrout and Terman, 2010a). An illustration of how ‘a perturbation

moves a point from one isochron to another as defined by the PRC’ is depicted in

Fig. 3.4. The useful aspect of PRC is that it could be measured in real neurons or

ensembles of neurons (Ermentrout and Terman, 2010a). Moreover, one could use

PRC to convert the differential dynamics of the neurons close to a limit cycle to

maps that are easier to study (Izhikevich, 2007).

Neuronal activity is affected by multiple cellular and extracellular perturba-

tions such as channel conductances and synaptic activity. Internal feedback mech-

anisms and environmental factors such as pH and temperature also influence the

cell. However, the earlier notions of one-to-one correspondence between properties

of an ion channel and its function need study and further amendments (Goaillard

and Marder, 2021). This is because several sets of conductances and associated

currents can lead to similar firing patterns in the cells (Alonso and Marder, 2019).

Hence, one way to study the effect of the change of conductance (or any other

perturbation) on the activity of the neuron and network properties is to look at its

effect on PRC. In general, one could perturb a neuron by either a depolarisation

(increasing the electromagnetic potential inside the cell) or hyperpolarisation (de-
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creasing the electromagnetic potential inside the cell) current. CPGs, when supplied

with excitatory (depolarising) feedbacks, need precise tuning to control, which is

suggested in literature (Sieling, Canavier and Prinz, 2009) as a plausible explanation

why most of the CPG synapses are inhibitory. One could obtain a general shape of

PRC corresponding to a CPG against inhibitory perturbation (Oprisan, Thirumalai

and Canavier, 2003). In Oprisan, Thirumalai and Canavier, 2003, the point at which

the spiking threshold is reached is labelled as the start of the phase (phase ‘0’). An

inhibitory pulse applied during the burst (early part of the phase) makes the next

pulse appear faster (or advances the phase). Initiation of a burst is delayed if an

inhibitory pulse is applied slightly before the burst. Soofi and Prinz, 2015 show how

conductance changes affect the PRC of CPG neurons, especially that an increase

in the hyperpolarisation-activated conductance changes the PRC. As conductances

are modulated by neuromodulators such as dopamine, these effects become highly

relevant in PD.

Furthermore, the use of PRC in human locomotion studies is not new

(Yamasaki, Nomura and Sato, 2003; Aoi et al., 2010; Funato et al., 2016; Tamura

et al., 2020). The assumption behind the use of this approach is that the CPG receive

feedback (perturbations) from the sensory system (from the limbs or indirectly from

the brain through visual or auditory feedback) such that the overall system (neural

and mechanical system) is synchronised (Yamasaki, Nomura and Sato, 2003). The

control systems based approach by Yamasaki et al.’s (Yamasaki, Nomura and Sato,

2003) has a simple model for the CPG but uses an inverse dynamics model, modelling

the cerebellum.

3.2.7 Neural oscillators and phase

As described in Sec. 3.2.6 ideas of phase, phase-reduction and PRC can be applied

to the limit-cycle oscillators describing the CPG. This section defines phase math-

ematically and how PRC can reduce the multidimensional oscillator dynamics into

simpler discrete or continous equations.

A conventional phase reduction approach is aimed at explaining the dynamics
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of a system near a limit-cycle. In this approach, irrespective of the dimension of

the system, the underlying dynamics are represented in terms of a single variable,

the so-called phase variable. Suppose a generic n-dimensional nonlinear dynamical

system,

ẋ = F(x), x ∈ Rn, n ≥ 2 (3.9)

has a stable periodic orbit ϕ̃(t) with period T .

Definition 3.2.1 For each point x∗ in the basin of attraction of the periodic orbit

ϕ̃(t) of the oscillator, there exists a unique function φ(x∗) such that

lim
t→∞

|x(t)− ϕ̃(t+ φ(x∗))| = 0, (3.10)

where x(t) is the flow of the initial point x∗ under the vector field F(·). The value

φ(x∗) is called the asymptotic phase or phase of x∗, and takes values in [0, T ), or

in [0, 2π) with appropriate scaling (Josic, Shea-Brown and Moehlis, 2006).

When the oscillator’s trajectory is in the basin of attraction of the limit cycle, φ(·)

could be used to determine its phase v := φ(x∗) of the oscillator and isochrons

are the level sets of the phase function φ(·). Furthermore, as the flow vector F(·)

maps isochrons to isochrons, on and close to the limit-cycle, the following is true

(Izhikevich, 2007),

φ̇ := 1 (3.11)

= ∇φ(x).ẋ (by chain rule) (3.12)

= ∇φ(x).F(x) (3.13)

The system is assumed to be close to the limit-cycle ϕ̃(t) even under small perturba-

tions. Given a system evolving close to a limit-cycle and perturbed by a weak input,

one could define a function PRC(·) which characterises the response of the system

to the weak perturbation.
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Infinitesimal PRC: A local approximation to the PRC(·) is known as an infinitesimal

PRC(·) which maps the current phase of the system vn to the new phase vn+1 locally.

Here vn and vn+1 denote the current phase and phase after perturbation respectively.

This could be obtained by the Taylor series approximation of the derivative of the

function φ(·) (Ermentrout and Terman, 2010b). That is, for arbitrary perturbation

δ,

vn+1︸︷︷︸
φ(xn+δ)

= vn︸︷︷︸
φ(xn)

+∇(φ(xn))δ +O(‖δ‖2) (3.14)

Hence for small perturbations, one could omit the higher-order terms resulting in

the following equation,

PRC(vn, δ) = vn+1︸︷︷︸
φ(xn+δ)

− vn︸︷︷︸
φ(xn)

= ∇(φ(xn))δ (3.15)

Consequently, for infinitesimal perturbations, the infinitesimal PRC(·) given by the

following equation fully characterises the system (Ermentrout and Terman, 2010a).

PRC(vn) = ∇(φ(xn)) (3.16)

However, one could note that the phase function is challenging to obtain for many

practical cases and one has to resort to numerical means to compute the PRC(·).

One such practical method to determine the infinitesimal PRC(·) is by solving the

adjoint equation on the points of the limit cycle, as discussed in Ermentrout and

Terman, 2010b; Izhikevich, 2007.

Continuous Case: When the perturbation is continuous, the n dimensional nonlinear

dynamical system becomes,

ẋ = F(x) + εG(t), x ∈ Rn (3.17)

and ε is a small positive constant. The term εG(t) represent the stimulus or perturb-

ation. One could make use of the conventional phase reduction concepts to reduce
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the forced system to a single dimensional system of the form v̇ = 1 + εPRC(v)G(t)

where v := φ(x). This equation could be obtained by several means (Izhikevich, 2007)

such as the one given by Winfree or Kuramoto (Winfree, 1967; Izhikevich, 2007).

While Winfree arrives at this equation by approximating continuous perturbations

as a set of impulses (Izhikevich, 2007) Kuramoto uses the chain rule. The approach

by Kuramoto is given below.

Extending Eq. 3.14 to continuous perturbations, one could write the following

for the perturbed system, as described in Izhikevich, 2007 as inspired from Kuramoto’s

approach,

v̇ = ∇φ(x).ẋ (3.18)

= ∇φ(x).(F(x) + εG(t)) (3.19)

However, the phase function is defined for the non-perturbed system of equations

ẋ = F(x). And, using the identities given in Eq. 3.11 - Eq. 3.13, and Eq. 3.16 One

obtains,

v̇ = ∇φ(x).F(x) +∇φ(x).εG(t) (3.20)

= 1 + εPRC(v)G(t) (3.21)

The subscript of v can be avoided in the continuous case. In an alternative formulation,

if the phase is assumed to vary between [0, 2π) and if the limit cycle solution is scaled

as ϕ(2π
T
t) as given in the original paper by Kuramoto (Kuramoto, 1984) one could

obtain the following equation for the rate of change of phase.

v̇ =
2π

T
+ εPRC(v)G(t) (3.22)

Time is not scaled by 2π
T

in this thesis.

General PRC: In this work, a general approach to PRC(·) has been chosen, and the

infinitesimal perturbation or infinitesimal PRC(·) is not assumed. Therefore, the

PRC(·) becomes a function of both phase and amplitude of the perturbation. For a
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given phase, the perturbation to the PRC is a vector. However, once the direction of

perturbation is fixed, only the magnitude needs to be specified. In this work, the

perturbations which can be specified by a single number are only considered.

Remark 1 PRC(·) functions for the purposes of this thesis is defined as a para-

meterized family of functions which maps the current phase to the phase after

perturbation.
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4. Data-Driven Prediction of

Freezing of Gait Events From

Stepping Data

One of the central ideas outlined in the previous chapters is the fact that lack of

permanent cure in PD necessitates management methodologies such as providing

augmented feedback. This chapter addresses the problems associated with developing

tools for the prediction of an FoG episode detailed in Sec. 3.1 which in turn has the

potential to be used with a cueing technique. The methodologies adopted in this

chapter can be directly extended to other signals and can be used in conjunction

with auditory and sensory cueing techniques.

There is a need for the use of kinetic data to address the problem of prediction.

While kinematic aspects of PD-Gait is crucial, the kinetic aspects such as the loading

and unloading aspects of the PD-Gait also need due consideration. The pre-FoG/FoG

based classification methodologies may not be suitable for real-time prediction of

FoG as the real-time signals can contain a combination of these states. There is

also a need for personalizable algorithms where one can control the sensitivity and

specificity associated while in use.

In this chapter, an approach is proposed to predict freezing events from

force data obtained while stepping. This prediction is accomplished using machine

learning techniques—random forest, neural networks and naive Bayes, and the results

are compared. “Kinetic” data, as is used in this work, likely contains subtleties

in the loading and unloading phases of the stance that would directly translate

to clear kinematic outcome measures. Moreover, as stepping data is produced
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throught the same oscillation generators, this data is relevant for walking gait as

well. The methodologies developed here could be translated to walking gait with

minor modifications. Kinetic data is not translated into kinematic data such as

position and velocity in the proposed approach. The work systematically analyses

how the performance changes for different windowing parameters that characterize

the training data. A sliding window approach is used to avoid the problems associated

with Pre-FoG and FoG based classification when used for real-time prediction. An

ensemble-based approach is employed in this work such that the sensitivity and

specificity of the algorithm have the potential to be personalized after training. The

work done in this chapter has been published in the following article.

• M. Parakkal Unni, P. P. Menon, L. Livi, M. R. Wilson, W. R. Young, H. M.

Bronte-Stewart and K. Tsaneva-Atanasova (2020a). ‘Data-Driven Prediction

of Freezing of Gait Events From Stepping Data’. In:Frontiers in Medical

Technology, p. 13.

The chapter is structured as follows. The methodology Sec. (4.1) starts with the

preprocessing and labelling (in Sec. 4.2) of the data. Further, the classification

procedure and the procedure for comparing classifiers are discussed in Sec. 4.3.

Results are discussed in Sec. 4.4. Conclusions and future research directions in Sec.

4.5.

4.1 Methodology

The methodology consists of preprocessing the data, generating models from this

data using machine learning approaches, and testing the obtained models to compute

performance scores. The input-output pairs of training and testing data are generated

by windowing the data as shown in Fig. 4.1a.

In Fig. 4.1a the sample window is split into three sections IL (input length),

GL (gap length), and TL (target length). The force data in the first part of the

window (IL) is used as the input to forecast the freezing state in TL part of the

window (‘1’ for freezing and ‘0’ for not freezing). GL is the temporal distance between
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Figure 4.1: The windowing and data conditioning methodology. (a) The data for
machine learning are obtained by considering a specific instance of input, gap, target
and offset length. By varying these parameters, one obtains different datasets and,
accordingly, different classification problems. Specifically, IL (Input Length) and
label extracted from TL (Target Length) determine the input and output, defining
the classification problem. GL (Gap Length) indicates how early the event can be
detected. OL (Offset Length) determines the distance between two windows. A
larger value of TL is shown for clarity while it is chosen to be 1 in this work to
predict the immediate event. The ordinate is given in pounds (lbs) and abscissa
is given in centiseconds (cs) (b) Summary of data preparation for training/testing
the classifiers. IL and the labels obtained from TL region of the data formed the
input and output data respectively. The labelling procedure is given in Sec. 4.2.
This procedure of data conditioning is repeated for all data obtained by moving the
window at an offset of OL. Centiseconds is adopted in this work as the unit of time
as the sampling frequency is 100Hz. This results in the discrete number of time
points available for analysis in any time interval matching exactly the quantity of
time elapsed from start to end of that interval.38



IL and TL, and it determines how early the predictions can be made, while OL (offset

length) determines the offset interval between windows. When the total window

length (IL+GL+TL) is greater than OL, there will be an overlap between windows.

The details about windowing are given in the preprocessing section.

The data vector contained in the IL is represented as Id and the dimension

of the data vector depends on the value of IL and the sampling frequency. Similarly,

vectors Td and Gd depend on TL and GL respectively. IL, GL, OL and TL are

windowing parameters for data preprocessing and not internal parameters of the

classifier. The label for Id is assigned as ‘one that is representative of a future

freezing’ (labelled ‘1’) or ‘not freezing’ (labelled ‘0’) episode using a binary value

that corresponds to the Td using an automated process described in the labelling

section. This results in Id and Td forming the input and output for training the

classifiers as illustrated in Fig. 4.1b.

The data used for training/testing depends on windowing parameters. There-

fore, the impact of these parameters on classification performance is determined.

The following subsections provide the details of preprocessing and training/testing

of machine learning algorithms using the data.

4.1.1 Experimental Data Used

The current data constitute data from a previous study (Young et al., 2016), collected

using ‘two force plateslates customized to fit a SMART Equitest from Neurocom’.

Nineteen subjects with Parkinson’s disease were recruited from the Stanford Move-

ment Disorder clinic. The exclusion criteria were dementia, significant hearing loss, or

any musculoskeletal or neurological issue (other than Parkinson’s) that significantly

affected their walking. Data from the nine patients who had freezing episodes is used

in this work. All the trials with different attentional focus with freezing episodes have

been used. This provides the algorithm with an opportunity to train against various

plausible stepping characteristics leading to a freeze. Inclusion criteria were that

participants scored at least three or greater to the third item of the FoG questionnaire.

Participants were ON medication (i.e. they were testing 1-2h after taking medication).
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No participants had undergone surgery for deep brain stimulation, although some

were candidates undergoing evaluation for surgery. All participants had idiopathic

Parkinson’s and no other known neurological impairment. Participants were excluded

from the study if they were unable to stand unsupported for the 90s. The testing

session comprised six trials of 90s and lasted approximately 20-30 minutes depending

on the time participants rested between trials. Data without FoG episodes are

removed from this study resulting in at least two trials per subject. The detailed

experimental protocol is given in Young et al., 2016.

This Force plate data were collected at 100 Hz (uniformly sampled) from the

subjects as they stepped in place until they at least had one freezing episode or for

a duration of 90 s. The data included force and moments in all three coordinates

as time series (TS). The participant characteristics are as follows; age was 62.827

(± 8.82), Unified Parkinson Disease Rating Scale (UPDRS) score of 32.6 (± 21.33),

Hoehn and Yahr Scale (H & Y) of 2.4 (± 0.53), years since diagnosis being 10.71 (±

6.01) (Young et al., 2016).

4.1.2 Preprocessing

A PCA (principal component analysis) of the data in a 3D-coordinate system

measuring force and moments in x (frontal), y (lateral) and z (vertical) directions

were performed, and it showed the greatest variance in the vertical direction. Hence,

the vertical (z) coordinate is used here for the analysis. A graphical representation of

the data preprocessing procedure is shown in Fig. 4.1a. The data has been windowed

into IL, GL and TL (See Sec. 4.1). The force data that corresponds to IL (blue in Fig.

4.1a) is used as the input and the label corresponding to TL is used as the output

(as shown in Fig. 4.1b). This way, the forecasting problem becomes a classification

problem. The data contained in IL and the corresponding label form a training data

sample. Here, the TL has been chosen to be 1. This ensures the prediction of the

patients’ status immediately after GL. This procedure is general enough to include

various values of TL and make predictions considering various events in the TL time

window. Window length (WL) is the total length of the data used to generate a
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single sample, that is, the sum of IL, GL and TL. A sliding window of length WL

(independently for training and testing data, as described in the cross-validation

section Sec. 4.3) with an offset (See Fig. 4.1a) of OL is used to prepare multiple

data samples for training and testing. This is done at the individual patient level

so that cross-validation can be carried out on an individual basis. The mean and

standard deviation of the quarter of cycle length of all the patients is 28.4 cs and 7.6

cs, respectively. Hence, the OL is chosen to be 28 cs (approximately a quarter of an

average cycle length) for training and testing for all the patients. But this does not

prevent one from using the tested classifier at a lower OL value to produce a higher

temporal resolution in a real-time prediction scenario. The OL is chosen to be well

below the cycle length to avoid stepping cycles getting missed while window length

WL is slid with an offset OL.

4.2 Labelling

This subsection describes how the data labels are generated, which is considered

as ground truth (ideal expected result) in the machine learning algorithms. The

data is labelled into freezing and non-freezing using a modified version of the criteria

provided in (Nantel, Solages and Bronte-Stewart, 2011). Modifications to the criteria

are given here. For scaling, the average of the peaks is used in this work as it is

closer to the body weight rather than the max of the peaks in contrast to (Nantel,

Solages and Bronte-Stewart, 2011). This is done to account for the fact that the force

exerted can be slightly more or less than the actual bodyweight of the subject due to

the acceleration of the subject’s movement. In Nantel, Solages and Bronte-Stewart,

2011 freezing intervals are defined as abnormally long intervals between peaks, where

abnormally long is defined as 1.2 times the means of the periods of the previous three

intervals or two times the mean period of the trial. In this work, abnormally long

window length for detecting freezing is defined to be 1.5 times the average time-period

of all the cycles across all the patients (mean cycle length). Selecting the abnormally

long window to be larger could relatively aid in predicting freezing episodes that

are comparatively longer and vice-versa. OL is also chosen to be lower than the
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abnormally long window length to avoid missing any freezing regions. The method

which uses the previous three cycles for computing the time-period as given in Nantel,

Solages and Bronte-Stewart, 2011 is not used as it is not applicable in the case

where freezing happens during the initiation (or before three steps are completed)

and uniform criteria are needed to be used throughout. A visual examination has

been conducted as suggested in Nantel, Solages and Bronte-Stewart, 2011 to assure

the validity of the method. Moreover, video recordings were used to qualify FoG

events in Young et al., 2016 and for trials analysed here, there were no discrepancies

between FoG events detected by the algorithm and visual inspection. Furthermore,

video based methodology is increasingly being recognized as the gold standard for

assessing FoG (Gilat, 2019). Therefore, there is justification for assuming that the

detection algorithms used here are, at least in the case of the current data, are valid

for determining FoG events. This way, a binary label for every time point in the data

as freezing (‘1’) or non-freezing (‘0’) is obtained. In this study, a correct prediction

of FoG is considered to be a positive outcome as far as the performance of the ML

algorithm is concerned. This is applicable when one refers to terms such as false

positives and false negatives.

4.3 Cross Validation

The training, testing, and validation is carried out in the following manner. A version

of leave one out cross-validation (LOOCV) is carried out by first leaving all samples

of one patient out. That is {1...N − 1} patient data samples were chosen from N

(number of patients each with a set of data) as ‘model generation set’ and N th one

as the ‘unseen set’. {1...N − 2} patient data samples were chosen from the ‘model

generation set’ for training (‘training set’) and (N − 1)th one as the ‘testing set’

generating a model to be tested on the ‘unseen set’. Then another subset of the

‘model generation set’ of cardinality N − 2 is chosen as ‘training set’ leaving the rest

as ‘testing set’. Then the process is repeated N − 1 times, generating N − 1 models.

These models were then tested on the ‘unseen set’ to generate N − 1 performance

scores. Successively, the process is repeated with another subset of the overall patient
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data set chosen as the ‘model generation set’ and the rest as ‘unseen set’ resulting in

N(N − 1) performance scores, that is, N − 1 scores for each patient. F1 score is the

harmonic mean of precision and recall. Precision is the ratio of true positives to the

sum of true positives and false positives. Recall is the ratio of true positives to the

sum of true positives and false negatives. F1 score (Opitz and Burst, 2019) is used

to measure the performance, and the median of N(N − 1) performance scores (with

N = 9) were used to compare different classifiers. An advantage of using this method

is the generation of an ensemble of models which could be combined in different ways

to inform the design of patient-specific interventions.

4.3.1 Integrating the Classifier Outcomes

As described in the cross-validation section, once an ensemble of N − 1 models

is generated, one needs to combine their outcomes. A ‘minority vote’ is used for

combining the outputs of (N − 1) models to test the ‘unseen’ case. The minority

vote is defined as a case where an ‘or’ gate is used to combine the binary classifier

outputs. An ‘or’ gate produces a ‘0’ for two inputs if and only if both the inputs

are zeros, every other case results in ‘1’. This methodology is used in this work to

reduce the chances of false negatives as the application demands safety.

‘Majority vote’ methodology is another alternative for combining the classifier

outcomes, where an ‘output’ is selected when the majority of the classifiers produce

that ‘output’. This method is also tested for a subset of the parameters for all the

subjects. Successively this is compared with the ‘minority vote’ technique.

4.3.2 Parameter Analysis Procedure

The methodology used for the analysis of the windowing parameters is described in

this section. A set of F1-scores (Haghighi et al., 2018) (Opitz and Burst, 2019) is

generated by different combinations of patients and windowing parameters. That

is, when the impact of IL is investigated, scores are generated by fixing GL (to

0 cs) and classifier type (to one of Neural Network (NN), Naive Bayes (NB) or

Random Forest (RF)), and varying IL and patient identification numbers. The
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specific discrete values of IL chosen are [37, 56, 113, 226, 339, 452] and patient

identification numbers are [0, 1, 2, 3, 4, 5, 6, 7, 8]. The average cycle length of

the signals is approximately 113 cs forming the rationale for choosing the grid for IL.

This produces a 2-dimensional array that corresponds to every patient and every IL.

The median of these scores across the patient dimension is computed to generate a

single performance measure for every IL. This procedure is carried out for all the

classifier types to generate multiple 2-dimensional arrays. Similarly, when the impact

of GL is investigated, scores are generated by fixing IL (to 226 cs) and classifier type

(to one of NN, NB or RF), and, varying GL for all patients, successively computing

the median across the patient dimension. GL part of the data is not given as an

input to the classifier, but it rather forms a parameter to determine how early one

can predict the event. The discrete grid used for GL is [0, 20, 40, 100, 200] for

understanding the prediction accuracies closer to and away from the freezing event.

This is also extended in a similar way to all classifier types. Class weights for the

true-cases were varied from 1 to 100 for the RF classifier, with windowing parameters

set as GL = 0 cs and IL = 113 cs. The models generated by varying class weights

are tested to obtain the F1-scores corresponding to every patient. The median of the

standard deviations of the F1-scores (across different models of varying class weights)

and the corresponding median of the F1-scores (averaged across different models

of varying class weights) are computed to understand the effect of class weights.

Kruskal Wallis H test has been used for comparing the classifiers as normality is

not assumed. The Spearman rank-order correlation coefficient is used for computing

correlations.

4.3.3 Classifiers and Related Parameters

The following sections describe the details of the classifiers and the reason for choosing

NB as the benchmark.
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Naive Bayes (NB) as Benchmark

The NB classifier acts as the benchmark classifier for this study because of the

following reasons. The classifier assumes conditional independence and is very fast

for supervised learning (Zhang, 2004). That is, the predicted label ỹ is computed as

follows,

ỹ = P (y) argmax y
n∏

i=1

P (xi|y) (4.1)

where P (xi|y) (conditional probability of a feature xi given label y) is computed

by assuming a Gaussian distribution, where, the parameters are estimated using

maximum likelihood estimation algorithm (MLE) (Myung, 2003). The proportionality

constant P (y) is the relative frequency of the label y.

Neural Network (NN) and Random Forest (RF) Classifiers

Neural networks are ubiquitous in the world of machine learning. The beginnings of

the neural network architectures are inspired by the way in which human neurons

work. A basic unit of a neural network is a perceptron which takes a vector x as

input and produces an output y after a linear and a nonlinear transformation

y = σ(w.x + b) (4.2)

where w is the vector of weights, b the bias and σ(·) a nonlinear function such as

tanh(·) or max(0, ·). One could then define a layer of a neural network as a column of

perceptrons, each receiving the input x and producing its own outputs. Successively,

a deep neural network is a set of layers stacked one after the other, with each receiving

input from the previous layer. In this architecture, the first layer receives the input

x, and the final layer produces a vector of outputs y depending on the number of

neurons in the output layer. One then creates a loss function that compares the

generated outputs with the labels one has from the data in a classification problem

and generate a loss. This loss is successively used to train the weights and bias

term using back propagation and optimization algorithms. NN classifiers can learn a

45



nonlinear function approximation and generate an appropriate decision boundary for

the problem. Five hidden layers of 100 neurons are used for supervised learning. The

solver used in NN is limited memory Broyden–Fletcher–Goldfarb–Shanno (LBFGS)

for faster convergence (Zhu et al., 1997; Pedregosa et al., 2011; Liu and Nocedal,

1989). A lower number of layers deteriorated the performance, while a higher number

did not improve it.

In decision-tree based classification, a decision tree is generated from labelled

training data containing a set of features and corresponding labels. A threshold of

the feature that partitions the data the best is chosen from the feature values to

create a root node (Su and Zhang, 2006). This process is continued for a predefined

depth until one ends up with a set of leaf nodes which contain data from the same

class. This essentially splits the data into subsets, where every subset belong to a

single class (Su and Zhang, 2006). An RF classifier is an estimator that fits a set

of decision tree classifiers on sub-samples of the dataset and uses its average for

prediction.

In this work, the maximum depth of the tree used is 200, with a class weight

of 100 for the true cases and 1 for false, giving more weight to freezing prediction.

The freezing phenomenon is episodic, and there is a lower number of freezing episodes

when compared to the number of walking cycles in PD (Barthel et al., 2016). A

higher class weight in RF is chosen for the true cases to address this imbalance

and signify the relative importance of freezing prediction compared to predicting

the normal stepping. To understand its impact, weights assigned to the true cases

are varied from 1 to 100 with a spacing of 10 at IL = 113 and GL = 0. The RF

classifier has a lesser chance of over-fitting compared to a single decision tree as it

uses multiple trees (forest) and averaging.

4.3.4 Classifier Comparison

The performance of three well-established classifiers RF, NN and NB (Pedregosa

et al., 2011) is compared. The NB classifier acted as a baseline for comparison.

F1-scores can be calculated in multiple ways (Opitz and Burst, 2019). The averaged
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F1-score version described in Opitz and Burst, 2019 is used as the ‘F1-score’ in

this work. Median F1-Score across different patients is used as the performance

measure for a classifier. The effect of the IL and GL on the performance measure

is determined to understand the trends and optimal IL. The F1-scores claimed are

after the application of ‘minority-vote’, while methodologies such as ‘majority-vote’

and ‘minority-vote’ are equally valid with their pros and cons. A short comparison of

the ‘minority-vote’ technique with the ‘majority-vote’ methodology is also provided

for a subset of parameter values for all the subjects combined. A detailed description

of the parameters used for the comparison of classifiers is provided in Sec. 4.3.2

4.3.5 Procedure for Real-Time Prediction

This section presents the proposed methodology for real-time prediction. This is not

to evaluate the performance of the algorithms. A real-time prediction scenario is

illustrated for a single patient.

Moreover, to show the ability of the algorithm to control sensitivity/specificity

by changing only the way of combining the models, the false positive and negative

ratios are provided here for a particular patient using minority-vote and majority-vote

methodology. To this end, mean false positives (MFP) and mean false negatives

(MFN) of all classifiers (NN, NB, RF) combined is estimated for majority-vote, and

minority-vote cases for the case shown here and their ratios are provided. False-

positive and false-negative rates are also computed for all the patients for comparative

purposes.

In the case demonstrated, an IL = 226 cs is used, and the data is supplied to

the classifier by sliding the window over time. This sliding window with an OL = 10

cs replicates the real-time prediction scenario where prediction is made after every

10 cs. The classifier has to predict the immediate possibility of a freeze giving ‘1’ in

the case of a freeze and ‘0’ otherwise. The output of the classifier is obtained over

time and shown along with ground truth (GT). The label of TL in each sample form

the ground truth for that sample. An ideal classifier matches GT. No prediction

is possible until the first set of data points for the time defined by IL is available.
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Therefore, this doesn’t form part of the ‘union of TL data’. After this point, there is

a prediction that corresponds to every TL data.

Moreover, input data of length 226 cs has been tested for the time it takes

for prediction using the methodology described in this chapter. Specifically, this is

carried out by running the prediction algorithm (minority vote based - RF, NN and

NB) 100 times in a single core on an HP Laptop (16 GB RAM, Intel(R) Core(TM)

i7-9750H CPU) and finding the median. The computational time for prediction has

been found to be less than 1 cs and therefore negligible for the use-case.

4.4 Results

The fraction of freezing episodes is approximately 34% of the overall data, the total

number of freezing episodes in the whole data set consisting of 9 patients is 174, the

average duration of freezing episodes is approximately 12.08 s (SD = 13.5 s), and

the average number of freezing episodes per subject is 3 (SD = 1.6) per trial.

In this section, the following results are presented:

• The analysis of the performance of classifiers, by varying the windowing

parameters IL and GL as discussed in Sec. 4.4.1.

• A demonstration of the online prediction as discussed in Sec. 4.4.2

4.4.1 Classification Performance

The performance of NN and RF is found to be superior compared to NB (Kruskal

Wallis H test, p < 0.05 for both). This could be due to a more complex relationship

between the features learned by NN and RF when compared to the NB classifier.

The performance of NN and RF were not statistically different (Kruskal Wallis H

test, p u 0.276). GL and the classifier performances are inversely correlated with the

Spearman rank-order correlation coefficient of u −0.99 and p < 0.01. The best input

lengths for NB, RF and NN were found to be 113 cs, 113 cs and 226 cs, respectively.

The neural network performs well for a range of IL (113-339 cs) while the other

classifiers deteriorate the performance beyond an input length of 113 cs. Fig. 4.3
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Figure 4.2: The effect of GL and IL on the median F1-scores. The standard deviation
has also been provided as error bars. (a) The median F1-scores of NN, RF and NB
classifiers are compared here. NN classifier outperforms all other classifiers in this
aspect. The performance of the classifier decreases with respect to an increase in
GL. Dots and the lines drawn indicate the computed data points and the linear
interpolation between them, respectively. (b) F1 score (median over all the patients) is
shown as a function of the IL. The accuracy is shown to be optimal at an input length
of 113 cs This is particularly evident in the case of the NB and RF classifiers. Dots
and the lines drawn indicate the computed data points and the linear interpolation
between them, respectively.
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Figure 4.3: The effect of IL, GL on the F1-scores of the classifiers is demonstrated
for every classifier and every patient. IL = 226 cs is chosen when GL is varied and
GL = 0 is chosen when IL is varied. The patient-specific score variation can also be
noted in every case (e.g. The accuracy of the first patient (patient No. ‘0’) is lower
for both RF and NB but NN performs better in that case). The metric used in the
colour-bar for comparison is the F1-score.

shows the effect of IL and GL on the F1-scores of the classifiers for every patient. A

constant value of IL (= 226 cs) is chosen when GL is varied, and GL = 0 cs is chosen

when IL is varied. The scores are found to vary between patients. While Fig. 4.2a

and Fig. 4.2b show an overall trend, there are individual differences between patients

(see Fig. 4.3), which is typical in freezing studies (Mazilu et al., 2015). For example,

patient no.0 revealed very low scores for the NB classifier, while patient no.5 revealed

a higher score. Also, NN performs better for patient no.4 than RF and NB. For

patient no. 6, RF performs better than the other two. There are, therefore, individual

differences in the optimal IL estimates. Moreover, given the black-box nature of the

classifiers, why one classifier performs better/worse for a particular patient is difficult

to ascertain. This points to a need for personalisation and a larger data collection

exercise to determine the individual patient’s optimal parameter sets, categorising

participants according to the emerging freezing ‘sub-types’ (Ehgoetz Martens et al.,

2018).

For the RF classifier, the models corresponding to different class weights are
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Figure 4.4: The comparison of the freezing prediction using NN, RF with the
benchmark NB (using a lighter shade) is demonstrated. Data (Force in lbs ) and the
corresponding label for the time frame where the prediction is carried out is shown in
the top figure. This is the union of the TL part of the data and corresponding label
for a single patient. Label ‘110’ is used instead of ‘1’ to indicate freezing for clarity,
that is, to keep the label well above the centre of the plot. The initial IL data cannot
form target data, as there is not enough information for prediction before that. The
bottom figure indicates the comparison of the classifiers against the ground truth
(GT). The prediction is started only after a time defined by IL. Parameters used are
IL = 226 cs and GL = 0 cs, OL = 10 cs. In this case, NN shows fewer false positives
than RF, while both classifiers have less false positives than NB.
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tested and used to obtain the F1-scores corresponding to every patient. The median

of the standard deviations of the F1-scores (across models of varying class weights)

is found to be 0.03. The corresponding median of the F1-scores (averaged across

models of varying class weights) is found to be 0.82. Low standard deviation indicates

the results presented are robust against the class weights used as the mean/median

F1-scores are more than ten times higher than the standard deviations obtained.

But, one could also argue that there is room for personalization by making use of the

individual differences, which causes the dependence of the F1-scores on the weights.

4.4.2 Real-Time Prediction Demonstration

Minority vote based prediction of a single patient data is shown in Fig. 4.4 as an

example. A machine learning model which has not previously seen this patient’s

data has been used for the purpose. The example is chosen not to indicate the

performance of the classifiers but to show the ability to predict in real-time (once in

every 10 cs). The prediction of different classifiers is indicated in different colours.

A similar result is obtained at OL = 28 cs as well. In the demonstration, OL =

10 cs is chosen to show the ability of the classifier to be used at a higher temporal

resolution than it is trained at. The NN prediction shows a lower number of false

positives (a freeze or ‘1’, even when there is no freeze) than RF. RF classifier shows a

lower number of false positives than NB. Minority-vote method has lesser MFN than

majority-vote method with their ratio being 0.36 : 1 (MFN for minority-vote method

: MFN for majority-vote method). Minority-vote method has a higher MFP than

majority-vote with the ratio being 1 : 0.3 (MFP for minority-vote method : MFP for

majority method). False positive and negative rates for all patients (averaged over

all classifiers in minority-vote case, IL = 113, GL = 0) is found to be 0.26 (SD =

0.25), 0.20 (SD = 0.16) respectively. False-positive and negative rates for all patients

(averaged over all classifiers in majority-vote case, IL = 113, GL = 0) is found to be

0.16 (SD = 0.22), 0.29 (SD = 0.18) respectively.
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4.5 Discussion

Our analysis demonstrated that it is possible to predict freezing events using vertical

force data from stepping. Prediction of freezing events from stepping data is addressed

as a classification problem. In doing so, the data is windowed using IL, GL, TL

and OL as relevant parameters and generated the input data and output labels

accordingly. Moreover, the impact of IL and GL on the F1 scores has also been

studied.

F1-scores (> 0.8) obtained for the classification is found to be decreasing for

an increased GL, and this score is subject dependent. This indicates that the earlier

one tried to predict a freezing event, the less accurate the prediction became. The

average natural time-period of the signals is found to be approximately 113 cs in this

work. The optimal performance of the classifiers in this range indicates that, in the

case of this stepping task, the physiological changes preceding a freeze take effect

approximately one step before the freezing event. Despite including 174 freezing

episodes, the modelling of freezes from relatively few participants is a limitation of the

study, and future work aims to increase the sample size to improve the generalisability.

The windowing paramters are explored by fixing other parameters to constant values.

This way of studying the effect of parameters implicitely assumes that the ‘trend in

the result’ (while varying one parameter e.g. GL) is not altered due the choice of

the fixed parameter (e.g. IL)

Prediction and detection are different questions concerning the freezing of

gait time series data. There are several attempts to detect freezing onset. The recent

study by Aich et al., 2018 used accelerometer data where the authors show a detection

accuracy of 88%. Whereas, this work aimed at prediction rather than detection of

the freezing. The prediction accuracy depends heavily on the degradation of stepping

(and its associated data) prior to freezing which is patient dependent (Mazilu et al.,

2013). This dependence is also very evident in our study from Fig. 4.3 where the

patient ‘0’ has lower F1-scores compared to other patients for RF and NB classifiers.

This highlights the necessity for a flexible, personalisable algorithm to meet patient

needs. (Mazilu et al., 2013), have used accelerometer data and produced an F1 score
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of 0.56 for prediction. (Mazilu et al., 2015) later show an accuracy of 71.3% using

ECG and skin conductance. One can not directly compare these studies to our study

because of the following reasons: 1) There are limitations with the step in place task

as the spatial characteristics such as ‘sequence effect’ (Chee et al., 2009) can not

be expressed in the current task. 2) The kinetic interactions between the feet and

support surface are primarily responsible for the kinematic changes recorded and

analysed in the previous work described above, particularly step length. As such, one

could argue that an evaluation of kinetics (i.e. the dynamic loading and unloading of

each limb) is likely to yield more accurate predictions of resultant kinetics. 3) Also,

as this work aims at real-time prediction, a classification based on FoG/Pre-FoG

states (Mazilu et al., 2013) may not be meaningful as the stream of data (in the

moving window) may contain a mixture of these states. Moreover, in our work,

training and testing the data from different attentional focus produces a model which

can work more reliably in a real-life scenario where the patients are not restricted to

one type of attentional focus.

In this work, the ‘minority-vote’ methodology is used for combining the

output of the classifiers. Improving safety by way of minority-vote would result

in higher false positives resulting in unnecessary cues being produced and hence

diminished effectiveness. But false positives resulting in triggering a cue unnecessarily

is not detrimental to the patient’s life, but a false negative result while crossing

the road can be. The fear of falling for a patient leads to immobilisation of the

patient and further complications such as osteoporosis, constipation, reduced fitness,

social isolation etc. (Bloem et al., 2004). Therefore, one could assume the benefit

of avoiding a freeze far outweighs the risk of fatigue. Also, once trained, one can

combine the model ensembles in different ways to suit the patient’s needs. However,

this trade-off forms one of the critical limitations of this work.

The algorithm’s real-time prediction ability and flexibility in combining

different models to enable further personalisation have been demonstrated. This

flexibility becomes important in practical cases, as one would have to aim to adjust

the sensitivity and specificity according to the patient needs. As the algorithm
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developed here generates multiple models, one could personalise this according to

the patient requirements by changing the way it is combined. The majority-vote

and minority-vote based methodologies demonstrated in this work form two ends

of the spectrum of possible ways of combining the model outcomes. Higher false

positives of minority-vote method are justified by the reduction in false negatives, as

the application necessitates more increased safety.

Spatial characteristics of gait such as “sequence effect” (Chee et al., 2009)

cannot be observed by force data while stepping in place. Therefore, future endeavours

could aim to evaluate predictions using gait data collected during forward-walking.

The methods developed here (e.g. windowing, cross-validation procedure etc.) are

also suitable for accelerometer data obtained from smartphones and other wearable

devices. Furthermore, the training process developed here could directly be used with

forward walking gait with minor modifications. The NN models could be reused in

the walking scenario by transfer learning approaches. The proposed method could be

extended to other signal features and parametrised cost functionals (Parakkal Unni

et al., 2017) to potentially improve the prediction. Time series prediction, multilabel

classification, and personalisation are future work.

In conclusion, the proposed method operating in conjunction with a sens-

ory/visual/auditory cue (in a wearable device) could potentially help a PD patient

walk more efficiently with less occurrence of FoG. It could be challenging to acquire

force plate data in daily life settings. However, the rapid evolution of low-cost

portable devices, such as wireless force-sensing insoles, provides a feasible solution to

acquiring kinetic data (at least sufficient to calculate the proportion of body weight

on each limb, as described here) in real-time. However, the conclusion implicitly

assumes providing a cue 1-2 s before a freeze is sufficient to address freezing, which

one could believe to be adequate for supplying cues such as the one presented in

(Barthel et al., 2018). More studies have to be performed to understand ‘how early’

and ‘what kind’ of cue needs to be provided to reduce the chance of freezing.
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5. Ankle Push-Off Based

Mathematical Model for Freezing

of Gait in Parkinson’s Disease

There is a need for a model to explain the empirical observations in PD-Gait, such

as the high coefficient of variability and freezing near narrow passages (Snijders

et al., 2008). Plantar flexors provide the necessary push-off force to move the stance

ω0

S

Figure 5.1: Anatomical representation of the stance phase for the left leg and swing
phase for the right leg. The heel strike and ankle push-off is also indicated. The
position of the centre of mass (CoM) is shown as a red circle which is assumed
to be rotating with respect to a pivot point S. The location of the plantar flexors,
approximate region generating ankle push-off force and heel strike region are noted.
The initial angle and angular velocity are represented by θ0 and ω0 respectively.

leg forward. Subsequently, the muscles of the hip and knee moves the swing leg

forward. An anatomical representation of the stance leg, under the action of the

ankle, push-off force, is provided in Fig. 5.1. The effect of opposing forces generated

by the plantar flexors observed in PD, as reported in (Nieuwboer et al., 2004), need
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to be included in the gait model. Such a model will help understand the essential

aspects of neural and mechanical systems contributing to PD-Gait, also shedding

light on the future experimentations required. In this chapter, the relationships

between the high variability and freezing will be studied by deriving a set of forces

acting on the stance leg. They are driven by the Electromyogram (EMG) signals

and, therefore, the activity of the CPGs. The kinetics of both swing leg and stance

leg will be studied to understand their roles under the action of these forces.

In summary, the model in this chapter is built with two aims. The first aim

is to explain the empirical observations seen in PD-Gait with a minimum number of

variables. These include (1) a high coefficient of variation in PD subjects (Heremans,

Nieuwboer and Vercruysse, 2013a), (2) a pattern of reduction of step lengths before

freezing (Nutt et al., 2011), (3) the ability of sensory and visual cues to help reduce

freezing (Young, Rodger and Craig, 2014; Rochester et al., 2005; Amini, Banitsas

and Young, 2019), (4) the difficulty of freezing prediction, and (5) the occurrence of

freezing near obstacles and narrow passages (Snijders et al., 2008). Secondly, the

model aims to show the role of the swing leg as a supplier of ankle push of force and

one that determines the time of heel strike. Hence, a bipedal model and a reduced

low dimensional model resembling an inverted pendulum are studied upon the action

of the ankle push-off force. The movement of the CoM under the action of the ankle

push-off force is depicted in Fig. 5.1. Hence, the hypothesis investigated in this

study is that the variability and the motor symptoms associated with PD (Heremans,

Nieuwboer and Vercruysse, 2013a) can be explained by the experimentally observed

premature activation of plantar flexors observed in PD (Nieuwboer et al., 2004). The

work done in this chapter has been published in the following article.

• M. Parakkal Unni, P. P. Menon, M. R. Wilson and K. Tsaneva-Atanasova

(2020c). ‘Ankle Push-Off Based Mathematical Model for Freezing of Gait

in Parkinson’s Disease’. In:Frontiers in Bioengineering and Biotechnology, p.

1197.

The chapter is structured as follows. The methodology in Sec. 5.1 starts with the

physiology of walking and ends with the derivation of the equations of motion and
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rationale for using a reduced model. Further, the analysis procedure for the reduced

system is described in Sec. 5.2. Subsequently, the results of the simulation and

discussion are provided in Sec. 5.3 and 5.4 respectively.

5.1 Materials and Methods - Modeling

5.1.1 Physiology

Walking is a complex process that involves the interaction of the brain, spinal cord

and musculoskeletal systems (Nutt et al., 2011). The typical gait cycle associated

with walking involves ‘stance’ and ‘swing’ phases. The stance phase begins with a

crucial heel strike phase, which is the initial contact that occurs instantaneously. As

soon as the stance phase ends, the swing phase begins. The plantar flexor muscles of

the trailing leg supply energy to ‘push-off’ the contra-lateral leading leg (Zelik and

Adamczyk, 2016). Once the push-off occurs, the trailing leg enters the swing phase.

The soleus and gastrocnemius muscles are the most notable plantar flexors, of which

the significant role of the latter one in PD freezing/walking is established (Nieuwboer

et al., 2004). Even though physiologically, there is a non-linear relationship between

the EMG signals and the torques generated (Genadry, Kearney and Hunter, 1988),

one can assume a linear relationship (Hof and Van Den Berg, 1977) between the

envelope of the EMG (CPG firing) and the torques generated about the joint. Several

other muscles are involved in walking, but the present study investigates only the

effect of the plantar flexors, as these muscles supply most of the energy required for

walking. In this work, the ‘freezing step’ is defined as the step at which the legs

do not have sufficient angular momentum to progress walking forward. When the

physiology is modelled as an inverted pendulum-like system, the freezing results in

backward motion of the stance leg. In a real-life scenario, this implies the patient

either falls or stops movement. The remark 2 provides the definition for freezing and

related terms used in this work.

Remark 2 In this study, ‘freezing’ or ‘freezing event’ is defined as the condition

where there is no forward motion of the stance leg. ‘Freezing episode’ is defined as the
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events happening in the time interval between the heel strike phase and the freezing

event. Hence, the ‘start of the freeze’ is defined to be at the heel strike phase after

which a freezing event occurs.

Here, a systematic stability analysis is carried out, including unstable regimes, of

the model in contrast to the stable limit cycle behaviour studied in robotics (Grizzle,

Abba and Plestan, 2001) and passive walking dynamics literature (McGeer et al.,

1990). Even though one can explain the complex freezing behaviour through several

possible ways (Nutt et al., 2011) (some of them purely based on neural control), an

attempt is made here to explain it in the simplest possible way and to understand the

effect of neuromuscular inputs in producing unstable and chaotic walking behaviour

as observed in PD (Heremans, Nieuwboer and Vercruysse, 2013a).

5.1.2 Dynamics of Walking

The dynamics of walking involves the coordinated action of neural input and muscles

of the limbs. It consists of a continuous movement of the limbs as well as state

reset at heel strike resulting in discrete dynamics (Sinnet et al., 2011). Plantar

flexors of the swing leg supply the necessary torque to push the CoM forward. While

walking, the CoM is supported by the leg in the stance phase for most of the time

(80-90%). The double support phase is approximately 10-20% of the overall gait

cycle (Kharb et al., 2011; Wahde and Pettersson, 2002). The motion of the CoM

with single support under the action of the plantar flexors is modelled in this work.

Though the double support phase is not explicitly modelled, its corresponding forces

and resets are considered. The heel strike is modelled using discrete dynamics.

Traditionally, the dynamics of walking is often modelled as biped model (Taga,

1995). In this section, a simplified biped model is presented. Further, a reduced, low

dimensional, inverted pendulum system is considered as a special case relevant to PD.

It is assumed that CoM is at the tip of the pendulum, and the links and the swing leg

are massless. Therefore, the model generates the motion of the CoM of the human

body. Running and jumping gaits are not considered in this model as the links are

assumed to be rigid. It is also assumed that sufficient friction exists to avoid any slip.
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�2(t)
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Heel Strike Collision

Figure 5.2: The toe-off, mid stance and heel strike instances of the two connected
links of the biped with its CoM while walking in the forward direction. CoM indicated
as a circle represents a point mass at the tip of the pendulum. The swing leg is
indicated in red. The point of collision during a heel strike instance is circled in red.
The terms θ1 and θ2 are the angles that the stance and swing legs subtend w.r.t.
the vertical (in the inertial reference frame) respectively. The quantities ω1, ω2 and
m1, m2 are the corresponding angular velocities and masses of the body and swing
leg respectively. The torques that are acting on the stance leg are indicated as ζ1(t)

(ankle push-off force) and ζ2(t) (torque due to the activation of the plantar flexors of
the stance leg). States immediately before and after heel strike is indicated with ‘-’
and ‘+’ superscripts respectively.
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The angular displacements are assumed to be small enough (< 0.5 rad.) (Polese

et al., 2012; Ranavolo et al., 2011; Usherwood, 2005) to allow for first/second-order

approximations during the stance phase. Kane’s method (Kane and Levinson, 1985)

is used to derive the equations of motion (EoM). Kane’s dynamical equation is of

the form F̄r + F̄ ∗
r = 0, where F̄r and F̄ ∗

r represents generalized active forces and

generalized inertia forces respectively as described in (Kane and Levinson, 1985)

(chapter 6, page 159). The equations in the form necessary for simulation is obtained

using python libraries, the details of which are given in (Gede et al., 2013).

Symbols m1, m2 represent the mass of the body and swing leg respectively

as shown in Fig. 5.2. The length of both the legs is represented by l. The variables

associated with the system are the components of the vector z = [θ1, θ2, ω1, ω2]
T

which are the angles and angular velocities ( w.r.t inertial frame for stance leg and

w.r.t. stance leg frame for swing leg) as indicated in Fig. 5.2. There are two types

of angular velocities. The one which corresponds to the rotation of the rigid body

with respect to its centre of rotation is called spin angular velocity, and one which

corresponds to the revolution of a point with respect to an origin is called orbital

angular velocity. In this work, spin angular velocities with respect to the centre of

rotation of the rigid links are considered as they rotate about the centre of rotation.

Hybrid systems (Lunze and Lamnabhi-Lagarrigue, 2009) are a class of dy-

namical systems, which exhibit both continuous states and discrete mode dynamics

often associated with events such as resets, jumps, and switching. The continuous

behaviour is typically governed by a system of differential equations (similar to Eq.

5.1) and the discrete part is governed by a vector-valued function (similar to Eq. 5.2

) (Lunze and Lamnabhi-Lagarrigue, 2009)(chapter 1). The system’s state determines

the transition between the discrete and continuous governing equations in the overall

phase space.

The dynamics in this work is governed by the general hybrid dynamical

system of the form described in Sec. 3.2.5. The explicit dependence on t and λ given

in the Sec. 3.2.5 is avoided here in the definition of the model (e.g. z is used instead
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of z(t)).

ż = F(z), z− /∈ S (5.1)

z+ = ∆(z−), z− ∈ S (5.2)

where,

S := {z ∈ χ
∣∣ greset (z) = 0} (5.3)

where, F(z), ∆(z−) and greset(z) are continuous vector valued functions of z. In the

absence of external torques acting on the leg, the term F(z) is,

F(z) =



ω1

ω2

1
2l(m1+m2 sin

2 (θ2))
(2gm1 sin (θ1)− gm2 sin (θ1+2 θ2)

+gm2 sin (θ1) + lm2 ω
2
1 sin (2 θ2)− 2lm2 ω

2
2 sin (θ2))

− sin (θ2)

l(m1+m2 sin
2 (θ2))

(gm1 cos (θ1) + gm2 cos (θ1)− l ω2
1(m1 +m2)

+lm2 ω
2
2 cos (θ2))


(5.4)

The function, ∆(·) is the reset map, χ ⊂ R4 the state space, and greset(·) is the

function that defines the heel strike. The set ‘S’ defines a surface where the heel

strikes the ground and the states change abruptly according to the reset map. The z−

and z+ indicate the states immediately before and after the heel strike respectively.

The functions ∆(·) and greset(·) are described in the subsequent sections.

As the body mass is considerably larger than the mass of the leg, the case

where m2 goes to 0 has only been considered. Further, small-angle approximation

(valid for angles in the range 0 − 0.25 rad. which is in the range in which the model

is operating) leads to the following equation for ω̇1 and ω̇2

ω̇1 = g
θ1
l

(5.5)
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ω̇2 = −(g − lω2
1)θ2

l
(5.6)

The ankle push-off forces of the stance leg supply the majority of the energy needed

to propel the leg forward. When this neuromuscular forcing Γ(t) is added to the

stance leg, the Eq. 5.5 becomes,

ω̇1 := g
θ1
l
+ Γ(t) (5.7)

The forcing term Γ(t) is derived in the following section.

5.1.3 Derivation of the Forcing Terms

The torques acting on the stance leg are derived in this section to generate the

neuromuscular forcing term Γ(t) for the stance leg. Torque produced by the plantar

flexors on the trailing leg is defined as Gr(t) and that on the leading leg as Gl(t).

These torques are assumed to be linearly related to the envelope of the EMG signals,

which are positive functions of time (Nieuwboer et al., 2004). The torque Gr(t)

generates the ankle push-off force F (t) and is assumed to be in phase with the heel

strike. In the proposed model, the force F (t) and the torque Gl(t) are assumed to be

Gl(t) := τl(sin(2πfr1t+ φ) + 1) (5.8)

F (t) := τr(sin(2πfr2t) + 1) (5.9)

where τl and τr are constants. The variables, fr1 , fr2 and φ represent frequencies

and the phase difference between torques on the leading and trailing leg respectively.

Both frequencies are assumed to be unity. The ankle push off torque acting on

the leading leg (in stance phase) can be calculated using the free body diagram

shown in Fig. 5.3. The pivot points of the trailing leg and leading leg are ‘O’ and

‘S’ respectively. The effect of plantar flexor of the left and right legs on CoM, are

opposite, while activated simultaneously. Trailing leg and leading leg subtends the

same angle θ1 w.r.t. the normal to the ground, as the trailing leg and leading leg

63



θ1

F

lf

Gr

O

θh

T
ra

il
in

g 
L

eg
 (
l)

 

L
eading L

eg (l)

S

F Sin(� h
)

Gl 

CoM

Inertial Frame of reference

θ1

ntities are +ve

F Cos(    )θ1

Figure 5.3: The diagram visualizes the forces and moments on leading and trailing
leg that enable the movement of the centre of mass (CoM) forward. Symbols S and
O indicate the points on leading and trailing leg about which the torques Gl and
Gr are applied. Gr is the torque generated by the plantar flexors of the trailing leg,
which results in a force F (ankle push-off) acting on the leading leg, about the point
‘S’. The distance between the pivot point to the point of action of the force is lf .
The plantar flexors of the leading leg generate a torque Gl in the leading leg, in the
opposite direction. The angle the leading leg subtends with the vertical axis at S
is θ1. θh represents the hip angle. The moments are balanced about ‘S’ to get the
equations of motion (EoM). An approximate position of the starting stance phase is
shown in the background in grey colour.
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together with the ground is assumed to form an isosceles triangle. One could note

that the double support phase is not explicitly modelled, and only forces acting

parallel to the sagittal plane are considered. By balancing the moments about the

point ‘S’ in Fig. 5.3 yields,

Iω̇1 = Gl(t)− lF (t) sin(θh) +mgl sin(θ1) (5.10)

When angle θ1 is small (sin(θ) ≈ θ) and since I = m1l
2, Eq. 5.10 is rewritten as,

m1l
2ω̇1 = Gl(t)− lF (t) sin(θh) +m1glθ1 (5.11)

Substituting F (t) and Gl(t) from Eq. 5.8 and Eq. 5.9 in Eq. 5.11, one obtains,

m1l
2ω̇1 = τl(sin(2πfr1t+ φ) + 1)− lτr(sin(2πfr2t) + 1) sin(θh) +m1glθ1 (5.12)

Rearranging Eq. 5.12, angular acceleration of the leading/stance leg is,

ω̇1 =

Plantar flexors of the leading leg (= ζ2(t))︷ ︸︸ ︷
τl(sin(2πfr1t+ φ) + 1)

l2m1

−

Ankle push off from trailing leg (= ζ1(t))︷ ︸︸ ︷
τrl sin(θh)(sin(2πfr2t) + 1)

l2m1

+

Gravity︷︸︸︷
gθ1
l

(5.13)

:=
ζ2(t)− ζ1(t)

m1l2
+

gθ1
l

(5.14)

where Γ(t) := (−ζ1(t)+ζ2(t))
m1l2

(as shown in Fig. 5.2) is the time varying neuromuscular

forcing.

The initial velocity of the swing leg is assumed to be constant in every step.

As the mass m2 is assumed to be zero, the corresponding angular momentum is also

equal to zero. Therefore, the angular velocity of the stance leg is reset to conserve

its angular momentum and the initial angular velocity of the swing leg after reset is

assumed to be a positive constant to account for the impulse during the ankle push-off.

This is a valid assumption, as the definition of freezing in this work is independent of
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the swing leg movement. A reset is carried out when θ1 + θ2 = 0 and θ1 < 0. Using

Eq. 5.6 and Eq. 5.14, the equations of motion of a biped can be written as in Eq. 5.1

- 5.2, where the functions F(z), ∆(z), greset(z) and the set S are written as follows,

F(z) :=



ω1

ω2

ζ2(t)−ζ1(t)
m1l2

+ gθ1
l

− (g−lω2
1)θ2

l


(5.15)

S :=

{[
θ1, θ2, ω1, ω2

]T
∈ χ

∣∣ greset([θ1, θ2, ω1, ω2

]T)
= 0 ∧ θ1 < 0

}
,

greset(·) := θ1 + θ2,

∆(·) :=

[
−θ1, −θ2, ω1 cos(θh), ω0

2

]
(5.16)

with initial conditions ω1(0) = ω0
1, θ1(0) = θ01, ω2(0) = ω0

2, θ2(0) = θ02.

Remark 3 It may be noted that the torque generated by the plantar flexors is assumed

to act about the point ‘O’ as the pivot point. Balancing the moments due to the

ankle push off force, F (t) and Gr(t) about the point O, the ankle push-off force can

be determined in terms of Gr(t) as,

F (t) =
Gr(t)

lf cos(θ1)
(5.17)

Here, the distance, lf is taken between the heel to the pivot point on the foot for

calculating the moments, as shown in Fig. 5.3. Therefore, implicitly, the following

assumption has been made while prescribing F (t).

Gr(t)

lf cos(θ1)
:= τr(sin(2πfr2t) + 1) (5.18)
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5.1.4 Rationale for Using a Low dimensional Model for Ana-

lysis

The angular velocity of the stance leg contributes directly to the angular acceleration

of the swing leg. A higher absolute angular velocity of the stance leg leads to lower

acceleration of the swing leg. However, the dynamics of the stance leg in Eq. 5.14 is

uncoupled from the dynamics of the swing leg and hence resembles the dynamics of an

‘inverted pendulum system’. It may be noted that the term ‘lω2
1’ can be approximated

to a constant as in the physiological range of low angular velocities (especially in

PD patients) g >> lω2
1 (typically quantity lω2

1 = 0.448 m.rad2.s−2 = 0.7 × 0.82 is

of order ‘0’ while g = 9.8 m.s−2 is of order 1). This results in a condition where

the swing leg acts independently of the stance leg, effectively determining the step

length. Therefore, an inverted pendulum walking model for PD subjects is adequate

when constant step length is assumed. Fig. 5.1 depicts the physical rationale behind

the use of an inverted pendulum model. The constant step length assumption is

general enough to explain the variability in stepping as this leads to variability in

stepping angular velocities rather than step lengths. In summary, the analysis of the

stance phase walking model in light of the PD walking behaviour at a constant step

length is presented in the following sections. Physiologically, the hip applies torques

on the swing leg and controls its initial angular velocity. The hip torques acting

on the swing is not relevant in propelling the CoM forward, as most of the torque

required for that is provided by the ankle (Zelik and Adamczyk, 2016). Therefore,

an assumption made on the swing leg angular velocity will not affect the model’s

applicability to the freezing problem, as freezing is linked to the inability of the

legs to propel the CoM forward in the case of walking. Hence, swing leg angular

velocity is reset to ω0
2 in every step. Furthermore, as there is no swing leg in the low

dimensional model, one could avoid explicitly specifying the parameter ω0
2 and any

associated assumptions.
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5.2 Analysis of the Reduced System

When considered independently of the swing leg, the dynamics has states corres-

ponding only to the stance leg, i.e. z = [θ1, ω1]
T . The terms defining the Eq. 5.1 -

5.2 for the inverted pendulum case are given below.

q(·) :=

 ω1

ζ2(t)−ζ1(t)
m1l2

+ gθ1
l

 (5.19)

S :=

{[
θ1, ω1

]T
∈ χ

∣∣ greset([θ1, ω1

]T)
= 0

}
(5.20)

greset(·) := θ1 − θreset (5.21)

∆(·) :=

[
−θ1, ω1 cos(θh)

]T
(5.22)

As the inverted pendulum model is analysed independently, θ1, m1, θ01 and ω0
1

will be referred here as θ, m, θ0 and ω0 respectively. These equations are solved to

produce the motion trajectory during the stance phase of the stepping cycle. The

sequence of model evolution is depicted in Fig. 5.4, with the beginning and end of

the stance positions, initial angular position (θ0), initial angular velocity (ω0) and the

angle at reset (θreset). Step length is defined to be equal to |θreset| where |.| denotes

the absolute value. This definition of steplength is valid as the leg length is assumed

constant in the model. As the physical meaning of θreset is the angle subtended by

the stance leg during a heel strike, one could note that its value can vary when one

walks with a different stride length or when the ground is not uniform. Moreover,

θreset determines the initial angle for every step except the first step (as the first step

can start from any arbitrary physiologically meaningful angle). In a biped model,

the θreset is implicitly determined, but in the case of the inverted pendulum, it is

not, as the model does have a swing leg.

5.2.1 Gait Cycle

The proposed model explicitly considers only the single support period of the ‘stance’

phase of the gait cycle. However, the forces and reset happening at double support
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Figure 5.4: Gait cycle for the low dimensional (inverted pendulum system) system is
shown. Terms [θ0, ω0]

T and [θ0, ω0]
T− indicate the initial and final angular position

and velocity of the leading/stance leg respectively at the beginning and end of the
stance phase. θreset is the angular displacement at which the angle is reset. The
CoM (centre of mass) which is assumed to be acting as a point mass at the tip of
the inverted pendulum is shown as a circle. States before and after heel strike is
indicated with ‘-’ and ‘+’ superscripts respectively.

period are accounted for. Therefore, ‘gait cycle’ in this study has been defined as

the process where the model states evolve from an initial condition of a step (end

of ‘double support phase’) until the reset condition (where the heel of the swing

leg is assumed to collide with the ground or ‘heel strike condition’) is met and the

initial condition of the next step is computed. Here, the state of the system moves

through three different states (end of ‘double support phase’ (this is defined as the

beginning of the stance in this model as the double support phase is not explicitly

modelled), end of the ‘stance’ (before the collision of the contra-lateral leg) and heel

strike (after the collision of the contra-lateral leg)) whose notations are given below
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(Eq. 5.23) 1, 2.

[θ0, ω0]
T 7→ [θ−0 , ω−

0 ]
T︸ ︷︷ ︸

Before collision

7→ [θ+0 , ω+
0 ]

T︸ ︷︷ ︸
After collision

= [θ1, ω1]
T (5.23)

Here [θ0, ω0]
T , [θ−0 , ω−

0 ]
T , [θ+0 , ω+

0 ]
T correspond to the states at the initiation of

the step, states at the end of the flow ‘immediately’ before collision, and states

‘immediately’ after collision respectively. The states immediately after collision form

the initial condition for the next step [θ1, ω1]
T . The superscripts (‘-’, ‘+’) need

not indicate the relative sizes of the states but the sequential order in which they

appear that is ‘-’ superscript represents before collision variables, and ‘+’ represents

after the collision. But it should be noted that the transformation from [θ−0 , ω−
0 ]

T

to [θ+0 , ω+
0 ]

T happens instantaneously in the model. Counterclockwise angles are

defined as positive. In a typical walking simulation, this results in θ− < 0 < θ+.

That is, the stance phase ends at a negative value for the angle and resets to a

positive value before beginning the next stance phase.

When step number is not relevant, subscripts indicating the step number

will be dropped, from before and after collision state symbols for the derivation of

the Eq. 5.24. The same superscript will be used while referring to other parameters

which change during collision 3.

The states [θ, ω]T evolve as a function of time except at the collision point,

where the same time point maps to two different state values. 4

[θn, ωn]
T 7→ [θ−, ω−]T︸ ︷︷ ︸

Before collision

7→ [θ+, ω+]T︸ ︷︷ ︸
After collision

= [θn+1, ωn+1]
T (5.24)

5.2.2 Heel Strike Condition

A heel strike is defined as the state at which the swing leg (trailing leg) collides

with the ground. This is modelled using an appropriate reset condition. At heel
1Here a 7→ b indicates state a ‘maps to’ state b after some time t where t ≥ 0
2[z−1 , z−2 ]T and [z1, z2]

T− are used interchangeably, where, z1 and z2 are components of some
vector

3p− and p+ refers to any parameter p before and after collision respectively in a particular step
cycle.

4θ(t) and ω(t) are multi-valued functions at the point of collision.
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strike, both the angle and angular velocity are reset from the ‘before collision’ to

‘after collision’ state as described in Eq. 5.24. The collision of the swing leg (trailing

leg) at heel strike is modelled to be inelastic with angular momentum conserved.

Therefore, the magnitudes of the angular momentum about the point of collision

after and before collision are equated in the following way to create the transition

rule for angular velocity

lm(v+ sin(π/2)) = lm(v− sin(π/2 + θh)) (5.25)

lm(lω+) = lm(lω−) cos(θh) (5.26)

ω+ = ω− cos(θh) (5.27)

at the nth iteration(step)

ωn+1 = ω+
n = ω−

n cos(θh) (5.28)

where θh is the hip angle. The angle, on the other hand, will be reset from θ− to

−θ−. This results in the following transition rules at θ− = θreset

ω+
n = ω−

n cos(θh) (5.29)

θ+n = −θ−n (5.30)

Rearranging one obtains ∆(·) as

∆

([
θ, θ̇

]T−
)

=

[
−θ, θ̇ cos(θh)

]T
(5.31)
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5.2.3 Analytical and Numerical Solution of the Equations

of Motion

The differential equation Eq. 5.1, was solved using the definition of the vector field

given in Eq. 5.19 analytically to obtain the flows given below.

θ(t) = fθ(t, ω0, θ0) := N1/D1

ω(t) = fω(t, ω0, θ0) =
d

dt
(fθ) := N2/D2

(5.32)

where the terms N1, D1, N2 and D2 of the analytical solution are given below.

N1 = l(Ψ2
N + Ω2

1)(lm(Ψ2
N + Ω2

2)(θ0
√
lΨ2

N(e
2tΨN + 1) + ω0

√
lΨ2

N(e
2tΨN − 1))

− τr sin(θh)(Ω2(e
tΨN − 1)(

√
lΩ2(e

tΨN − 1) +
√
lΨ2

N(e
tΨN + 1))+

√
lΨ2

N((e
tΨN − 1)2 − 2etΨN sin(tΩ2)))) + τl(Ψ

2
N + Ω2

2)

(
√
lΨ2

N((e
tΨN − 1)2 − 2etΨN sin(tΩ1 + φ) + sin(φ)(e2tΨN + 1))

+ Ω1(e
tΨN − 1)(

√
lΩ1(e

tΨN − 1) + cos(φ)
√
lΨ2

N(e
tΨN + 1)))

D1 = 2l5/2mΨ2
Ne

tΨN
(
Ψ2

N + Ω2
1

) (
Ψ2

N + Ω2
2

)

(5.33)

N2 = l(Ψ2
N + Ω2

1)(lm(Ψ2
N + Ω2

2)(θ0
√
lΨ2

N(e
2tΨN − 1) + ω0

√
lΨ2

N(e
2tΨN + 1))

− τr sin(θh)(Ω2(
√
lΩ2(e

2tΨN − 1)+√
lΨ2

N(e
2tΨN + 1))− 2

√
lΩ2ΨNe

tΨN cos(tΩ2) +
√
lΨ2

N(e
2tΨN − 1)))

+ τl(Ψ
2
N + Ω2

2)(−2
√
lΩ1ΨNe

tΨN cos(tΩ1 + φ)

+ Ω1(
√
lΩ1(e

2tΨN − 1) + cos(φ)
√

lΨ2
N(e

2tΨN + 1))

+
√
lΨ2

N(sin(φ) + 1)(e2tΨN − 1))

D2 = 2l5/2mΨNe
tΨN

(
Ψ2

N + Ω2
1

) (
Ψ2

N + Ω2
2

)

(5.34)
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where,

Ω1 = 2πfr1

Ω2 = 2πfr2

ΨN =
√

g/l

(5.35)

The analytical solution is intended to be used for the bifurcation analysis as numerical

solutions may not always be able to detect the chaotic behaviour (Lozi, 2013).

Therefore, a discrete map governing the motion will be derived using the analytical

solution in the following sections. A numerical solution of the Eq. 5.1 - 5.2 using

definitions given in Eq. 5.19 - 5.22 with the appropriate reset conditions (in the

physiological range) are solved to show the freezing behaviour and dynamics in the

phase plane. PD subjects are known to freeze intermittently. Therefore, the time

the subject walks until the freeze could be considered an important measure to

quantify transient walking behaviour. A simulation for a 10 s window is carried out

for different values of the parameters τl and τr (for a constant initial condition). The

total time for which transient walking behaviour occurred is computed numerically

as a function of the parameters τl and τr. Numerical methods are also used in solving

boundary value problems to gain further insights into the system, as given in the

remark 4.

Remark 4 The parameters τl and τr determine the amount of energy supplied to the

system apart from gravity. To understand how they influence the kinetic energy of the

system, the difference in speed between the initial and final states are compared for

the boundary value problem with boundary conditions θ0 = 0 rad. and θ0.5 = −0.1 rad.

with definitions given in Eq. 5.19 - 5.22 unchanged. Here, the boundary conditions

are chosen from the physiological range.

The quantities τl, τr, ω, φ, θreset and step length have units N m, N, rad. s−1, rad.,

rad. and rad. respectively, when not specified.
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5.2.4 Derivation of a Map to Describe Successive Stance

Phases

The evolution of the flow (given by Eq. 5.32) is terminated when the swing leg meets

the ground. In other words, when there is sufficient energy in the system for forward

motion, there exists a ‘reset time’ T (θ0, ω0) such that fθ(T (θ0, ω0), ω0, θ0) =

Areset(θ0). Here, Areset(·) is a function of the joint angle and the ground that

determines the angle of the stance leg while the foot strikes the ground. The

arguments associated with the reset time T (θ0, ω0) will be dropped and will be

referred to as T from here on. Accounting the transition rules in Eq. 5.29 for reset

and conservation of angular momentum,

one defines5

θ1 = θ+(T ) := −fθ(T, ω0, θ0) (5.36)

ω1 = ω+(T ) := fω(T, ω0, θ0) cos(θh) (5.37)

Following an induction hypothesis, for an arbitrary initial condition (θn, ωn) the

map is

θn+1 = −fθ(T, ωn, θn) (5.38)

ωn+1 = fω(T, ωn, θn) cos(θh) (5.39)

The following definitions are made to make the notations compact for further analysis

θn+1 = f̃θ(T, ωn, θn) := −fθ(T, ωn, θn) (5.40)

ωn+1 = f̃ω(T, ωn, θn) := fω(T, ωn, θn) cos(θh) (5.41)

where f̃ω(T, ωn, θn, φ) and f̃θ(T, ωn, θn, φ) are T parametrized family of maps for

(ωn, θn) 7→ (ωn+1, θn+1).

5Even though the symbol θ(T ) is used at the point of collision, it may be noted that this is a one
to many mapping and therefore is not a single valued function in the traditional sense of the word.
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To investigate the condition of same step lengths and to generate a 1D map

for further evaluation, Areset(θ, t) is set to be θreset. Here θreset is an arbitrary angle

in the physiological range at which the swing leg meets the ground. Then for an

intermediate step, (when there is sufficient energy to move forward) there exists a

T̃ s.t. f̃θ(T̃ (θn, ωn), ωn, θn) = θn = −θreset. When there is not enough energy and

therefore momentum to move forward, the model behaviour is defined as freezing.

To find the T̃ at which θn maps to itself, the following minimization problem

is solved 6 using Newton’s method (Mathematica, Version 12.0). This detects

implicitly the time at which the swing leg collides with the ground.

T̃ (θn, ωn) := argmin
T

(f̃θ(T, ωn, θn, φ)− θn) (5.42)

Substituting T̃ from Eq. 5.42 in Eq. 5.41 the following map is obtained.

ωn+1 = f̃ω(T̃ (θn, ωn), ωn, θn)

:= H(ωn) when θn = θ0 ∀n ∈ N

When used as a 1D map,

ωn+1 := f̃ω(ωn) (5.43)

The argument T̃ in the function will be dropped from here-on. The function T̃ acts

on the same input ωn and θn = θ0. This map has been analysed to show the freezing

behaviour and variabilities associated with PD walking. The map has been studied

for a particular parameter value to show the presence of horseshoe in the Sec. 5.2.5.

Remark 5 Eq. 5.1 - 5.2 represent a general hybrid system. When the hybrid bipedal

system’s solution is sought these equations are solved using the definitions given in

Eq. 5.15 - 5.16 ; and, Eq. 5.19 - 5.22 are used for hybrid inverted pendulum system.

6The objective function is appropriately constrained to the positive real numbers such that the
solution of the minimization problem forms the root of the equation f̃θ(T, ωn, θn, φ)− θn = 0.
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5.2.5 Graphical Analysis of the Map Between Stance Phases

A horseshoe is a characteristic of a map which indicates chaos under iteration. Here,

the presence of a horseshoe has been shown for a set of parameter values in the

physiological range for the map developed (f̃ω). Using the conditions for horseshoe

and therefore chaos, given in (Glendinning, 1994), the presence of the same could be

shown for f̃n
ω (the function f̃ω composed n times).

ωn+1

ωn

ω
2
n=-0.39ω

1
n=-0.416

ω
(1,4)
n+1  =-0.43

I2=-0.44<ω(1,4)
n+1 

   ω
3
n=-0.383 ω

4
n=-0.377

I1=ω
(2,3)
n+1  =-0.377

K1K2

J

Figure 5.5: There is a horseshoe in the interval between I1 and I2 for the map f̃ω.
The proof is given in Sec. 5.2.5. An unstable equilibrium is formed in the interval
K2 (| ˙̃fω| > 1) and an outward spiralling equilibrium in the interval K1(| ˙̃fω| < −1).
Blue line is the identity, the black curve is the map f̃ω. A set of red lines are drawn
perpendicular to the axis to indicate that the intervals K1 and K2 maps to J .

Proposition 5.2.1 For the map f̃ω a horseshoe exists in the interval I = [I1, I2] =

[−0.377, −0.44]. The parameters used are τl = 5, τr = 35, l = 0.6 m, g = 9.8 m s−1,

m = 70Kg.

Proof Let ω4
n = −0.377, ω3

n = −0.383, ω2
n = −0.39, ω1

n = −0.416, ω
(2, 3)
n+1 =

−0.377, ω
(1, 4)
n+1 = −0.43, −0.44 = I2 < ω

(1, 4)
n+1 . Let the intervals be chosen in the

following manner I = [I1, I2], J = [ω
(2, 3)
n+1 , ω

(1, 4)
n+1 ] and ω4

n = ω
(2, 3)
n+1 . One also has,

K1 = [ω4
n, ω3

n], K2 = [ω2
n, ω1

n]. f̃ω(K2) 7→ f̃ω(K1) 7→ [ω
(2, 3)
n+1 , ω

(1, 4)
n+1 ]= epJ (end
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point preserved J). K1 ⊂ J, K2 ⊂ J , J ⊂ I, K1 ∩K2 = ∅ and f̃ω ∈ C0(I, R).

Therefore, there is a horseshoe in the interval.

5.3 Results

Numerical simulation of the PD-Gait and associated freezing behaviour is described

in this section. The change in the angular velocity from negative to zero is a property

of any solution containing freezing by definition. Typically, in this model, the angular

velocity changes to a positive value under the action of gravity during a freeze. The

effect of variation of the parameters τl, τr, φ, θreset are also investigated. The work

in this chapter shows that the two opposing torques produced from the plantar

flexors could elicit freezing and chaotic behaviour. The ability of these torques to

cause freezing behaviour has been shown first in a simplified biped model described

using Eq. 5.15 - 5.16, and then in the inverted pendulum model generated by Eq.

5.19 - 5.22. As argued previously, the inverted pendulum dynamics sufficiently

captures the PD walking scenario. The results are presented in the sequel to support

this hypothesis. Also, walking is the process of moving the CoM by pushing the

stance leg forward, and the inverted pendulum model helps to study the effect of

the stance leg independent of other variables. A range of values for the parameters

τl, τr, and φ have been analysed to clarify the trend in behaviour. The range in

which the behaviour of the map f̃ω changes the number of periodic orbits from ‘zero’

to ‘more than one’ in the lower absolute value of angular velocity conditions, is given

in Table 5.1. Simulations are carried out to understand the behaviour of the system

over and above this range. But it may be noted that the maximum value of the

torque for l = 0.6 m., θreset = −0.1 rad. is approximately 0.23|τr| N m and 2|τl| N m

in forward and backward directions respectively. Hence, in this case, forward pushing

plantar flexors has to generate 8.7 times the ‘premature activation of plantar flexors’

to cancel the effect if the phase is exactly matched. Physiologically, the minimum

value of these torques is zero, and the maximum is subject-specific.
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5.3.1 Freezing in a Biped Model
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Figure 5.6: Results of numerical simulation of the biped during freezing. Parameters
are chosen to be τl = 2.3 N m, τr = 15.74 N, φ = −π/2 rad. and initial conditions
θ2(0) = −0.1 rad., θ1(0) = 0.1 rad., ω2(0) = 2 rad. s−1, ω1(0) = −0.6 rad. s−1. The
change in the θreset in every step and gradual reduction in θ1 nearer to a freezing
event is evident. (a) Simulated time series of the states θ1 and ω1. Region of slowing
down and freezing is highlighted (b) Shows numerical simulation of biped in the
phase plane.

The hybrid system (Eq. 5.1 - 5.2) defined by the Eq. 5.15 - 5.16 are simulated

numerically, and the results are shown in Fig. 5.6a - 5.6b. The figure indicates

normal walking for the first few steps and then freezing thereafter(highlighted). The

gradual reduction in step length observed experimentally prior to freezing (Nutt

et al., 2011) is also observed in the model.

There are two dissipative forces in this model: the opposing torques due to

the plantar flexors and the dissipation at the heel strike. Long-range walking will be

achieved when the speed gain in every step compensates for these two effects. The

neuromuscular system cannot control the dissipative effect of the heel strike, but

the effect of plantar flexors can. Fig. 5.7a - 5.7b illustrates the effect of the plantar

flexors in this regard.

78



0 5 10 15 20

0

20

40

60

80

100

r 
(N

)

 (N m) l  

Total Time Walked (s)

2

4

6

8

10

(a)

0 5 10 15 20

0

20

40

60

80

100

l (N m)

r 
(N

)

Gain in Speed (rad. s-1)

- 0.3

- 0.2

- 0.1

0

0.1

0.2

(b)

Figure 5.7: (a) A simulation was carried out for a time window of 10 s, and the total
time walked before freezing was computed. This time is plotted as a function of τl and
τr. The initial conditions are set to be θ2(0) = −0.1 rad., θ1(0) = 0.1 rad., ω2(0) =

1 rad. s−1, ω1(0) = −0.6 rad. s−1 and φ = −π/2 rad. The yellow region forms the
optimal region of the parameters τl, τr where walking is achieved. (b) Contour plot
of the difference in speed( |ω(0)| − |ω(0.5)|) as a function of τl and τr determined
by solving a BVP numerically with θ00 = 0 and θ0.51 = −0.1 rad. for the biped model
with the other initial conditions being θ02 = −0.1 rad., ω0

2 = 1 (and φ = −π/2 rad.).
This illustrates a decrease in the speed and therefore kinetic energy when there is an
increase in τl and a decrease in τr.
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A simulation was carried out for a 10 s window and computed the time

difference between the start of the simulation and the time of the last heel strike

before the freezing event (as defined in remark 2). This is shown as a function of the

parameters τl and τr in Fig. 5.7a. The blue shades indicate eventual freezing and

shorter walking time, and the yellow region is the safer non-freezing region. Moreover,

there is an intermediate region of parameter τl and τr in which the walking happens

without freezing in the 10 s window. A higher value of τl necessitates a higher τr for

walking. Nevertheless, a very high τr does not necessarily exhibit balanced walking,

as it can result in a lack of coordination between the swing leg and the stance leg.

Although the initial value problem (IVP) in Fig. 5.7a and boundary value problem

(BVP) in Fig. 5.7b cannot be directly compared, they show analogous qualitative

results. That is, to achieve the same speed gain (or kinetic energy (KE) gain), a

higher τl demands a higher τr. Therefore, a key aspect of PD freezing is the inability

of the two plantar flexors to coordinate to produce the required energy. From an

energy point of view, the role of the swing leg is essentially in the generation of ankle

push of force. In the following sections, the dynamics of the stance leg is studied

independently using an inverted pendulum model, reducing the role of the swing

only as a supplier of the ankle push-off force.

5.3.2 Freezing in an Inverted Pendulum Model

Freezing is a condition where there is no more forward motion of the leg. Numerical

simulation of such a scenario in the inverted pendulum model is shown in Fig. 5.8a

where there is a freezing episode after 18 s. A gradual reduction in step length

observed in the biped model translates to the increased time taken to make the final

few steps before freezing. The simulation in the phase plane for the last three steps

is shown in Fig. 5.8b. The dissipative torques due to the opposing plantar flexors

act in the same way in the inverted pendulum model. Fig. 5.9a - 5.9b illustrate

this similarity, where an increased τr generates higher speed gains and an elevated τl

results in lower speed gains and lower total walk times. This is because increasing

parameter τr strengthens the forward ankle push-off while larger τl amplifies the
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Figure 5.8: Simulation of the inverted pendulum dynamics for the parameter values
φ = −π/2 rad., ω0 = −1 rad. s−1, τl = 2 N m, τr = 11 N. Freezing occurs after
18s (a) States θ and ω as a function of time (10-20 s). Region of slowing down and
freezing is highlighted (b) Numerical simulation of the inverted pendulum states in
the phase plane for 16-20 s
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Figure 5.9: (a) A simulation was carried out for a time window of 10 s, and the total
time of walking before freezing was computed. This time is plotted as a function of
τl and τr. The angle is reset when θ(t) = −0.1 rad. and φ = −π/2 rad. The colours
indicate the duration of the walk (see the legend)(b) Contour plot of difference in
speed ( |ω(0)| − |ω(0.5)|) as a function of τl and τr determined by solving a BVP
with θ0 = 0 rad. and θ0.5 = −0.1 rad. (and φ = −π/2 rad.) in Eq. 5.1 - 5.2 using
definitions in Eq. 5.19 - 5.22. This illustrates a decrease in the speed and therefore
KE when there is an increase in τl and a decrease in τr.

82



dissipative torque. A critical difference between the inverted pendulum model and

the biped model is that a higher τr will not result in an imbalance in the former as

there is no swing leg in that model, while there is a lack of balance in the latter. The

contour plot of the speed differences as a function of τl and τr is shown in Fig. 5.9b.

The figure shows that a higher value of τl and a lower value of τr result in negative

speed gain (reduction in KE). Numerical simulation of the total time of the walk,

defined as the difference between the time in which the first step is taken, and the

last step before freezing in 10 s, is shown in Fig. 5.9a. More than 9 s of walking

indicates that there is no freezing in that parameter range in that time frame. A

higher τr and lower τl results in better walking performance as in the case of a biped.

Therefore, energetically, PD related behaviour that is of interest is analogous in

the inverted pendulum and biped model. Therefore, the analytical solution of the

inverted pendulum model is investigated further to understand the consequence of

the change in parameters τl, τr and φ. These parameters are controlled by the neural

system, while others, such as the mass of the body and length of the legs are not.

The quantity θreset distinguishes the inverted pendulum model from the biped model.

Hence, the effect of this parameter is also studied.

5.3.3 Parameter Exploration of Inverted Pendulum: Study

of the Map f̃ω

The neural control on the muscles modifies the magnitude and the phase of the

control signals. Investigation of the parameters τl, τr and φ, therefore, reveals the

effect of the neural control on walking dynamics. One of the hypotheses investigated

through the model is the generation of variability through the premature activation

of the plantar flexors. The phase difference of the ‘premature’ activation is quantified

using the parameter φ in the model. Fig. 5.10 shows the bifurcation diagram of the

parameter φ in the range 0 to −2π for constant values of τl and τr. A period-doubling

route to chaos can be observed when φ is varied between -5π/8 to −π/4. The map

f̃ω is iterated for 500 walking cycles, and the last 50 walking cycles are used to

compute the equilibrium points. The Feigenbaum bound is found to be at φ = −1.37
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Figure 5.10: Stable ω is shown as a function of the parameter φ for ω0 =

−0.433 rad.s−1, τl = 5 N m, τr = 35 N. The Feigenbaum bound was found to
be at φ = −1.37 rad. where walking becomes fully chaotic. The period-doubling
cascade has been highlighted and enlarged. This chaotic region forms only a small
part of the overall parameter space of φ. This region is sandwiched between the
walking and the freezing regions indicated in red.

rad. at which walking becomes fully chaotic. This indicates that the premature

activation (or lack of coordination between the muscles) can generate highly irregular

behaviour in the system despite deterministic neural signals. The region of chaotic

φ is sandwiched between the periodic orbits and freezing region. This suggests a

higher variability in walking, likely arising from a shift in φ (early activation of

plantar flexors), must be treated cautiously. Fig. 5.10 shows the presence of chaos

in the system for carefully selected parameter values. Its presence and stability are

illustrated for other parameters values and initial conditions using a set of maps in

Fig. 5.11 - 5.13b and bifurcation diagrams in Fig. 5.14a - 5.14d. A summary of the

insights gained from the maps is given in the Table. 5.1. The presence of a period

three orbit in a one-dimensional map is indicative of other periodic orbits and chaos.

The presence of horseshoe in any of the period 1, 2, ...,n maps also indicates chaos.
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An illustration of the presence of a horseshoe for a set of parameter values is given in

Sec. 5.2.5. The intersection of the f̃ 1
ω, f̃ 2

ω, f̃ 3
ω maps with ωn = ωn+1 indicate period

1, 2, 3 orbits respectively. Fig. 5.11 - 5.13b illustrate how the maps change with

respect to the variation of parameters.

Figure 5.11: Maps obtained by varying the parameter τl and fixing τr = 35 N, φ =

−1.57 rad., θreset = −0.1 rad. The black, green and red curves represent f̃ 1
ω, f̃ 2

ω, f̃ 3
ω

respectively and the ωn = ωn+1 is shown in blue. The curves intersect the blue line at
a higher absolute value of angular velocity forming an attractor, this is not shown in
the figure. There are no periodic orbits for the low velocity regimes for τl = 0− 2 N
m but they appear afterwards. Units: τl, τr, ω, φ, θreset and step length has units
N m, N, rad. s−1, rad., rad., and rad. respectively, when not specified.

Variation of the parameter τl or the magnitude of premature activation (as

φ is set to -1.57 rad.) results in a set of rich, dynamic behaviours as shown in Fig.

5.11. The presence of the periodic orbits starts approximately around τl ≈ 3 N

m, where the maps tangentially intersect the ωn = ωn+1 line. The intermittency

thus created could elicit a period of slow walking (as ωn and ωn+1 are less than -0.5

rad. s−1 ) as observed in PD. The period three orbits are exhibited upon a further

increase in τl. As can be seen from the maps in Fig. 5.11 - 5.13b, a higher initial

value of |ωn| (e.g. |ωn| > 0.45 rad. s−1 for τl ≈ 3 N m) results in a further increase

in ωn+1 and gets attracted towards the periodic orbit of the higher absolute value
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Figure 5.12: Varying the parameter φ and fixing τr = 35 N, τl = 5 N m, θreset =

−0.1 rad. The black, green and red curves represent f̃ 1
ω, f̃ 2

ω, f̃ 3
ω respectively and

the ωn = ωn+1 is shown in blue. The curves intersect the blue line at a higher
absolute value of angular velocity forming an attractor, this is not shown in the
figure. Creation of the periodic orbits and its coexistence is observed. Units:
τl, τr, ω, φ, θreset and step length has units N m, N, rad. s−1, rad., rad., and rad.
respectively, when not specified.
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(a) Varying the parameter τr keeping τl = 5 N m, φ = −1.57 rad., θreset = −0.1 rad. fixed.

The black, green and red curves represent f̃1
ω, f̃2

ω, f̃3
ω respectively and the ωn = ωn+1 is

shown in blue. The curves intersect the blue line at a higher absolute value of angular

velocity forming an attractor, this is not shown in the figure. Increasing τr has an analogous

behaviour as decreasing τl.

(b) Varying the parameter θreset keeping τr = 35 N, φ = −1.57 rad., τl = 0.5 N m.

The black, green and red curves (overlapped) represent f̃1
ω, f̃2

ω, f̃3
ω respectively and the

ωn = ωn+1 is shown in blue. The curves intersect at a high absolute value of angular

velocity. The unstable region moving to the higher absolute value of angular velocities

(moving to the left) can be observed while |θreset| is increased. Physiologically, different

values of θreset could correspond to different step lengths.

Figure 5.13: Variations of the parameters τr and θreset are depicted in Fig. 5.13a and
5.13b respectively. Units: τl, τr, ω, φ, θreset and step length has units N m, N, rad.
s−1, rad., rad., and rad. respectively, when not specified.
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of angular velocity; revealing how swaying back and forth helps the PD patients in

getting out of a freeze. Increasing τr results in almost opposite behaviour as that

of τl (Fig. 5.13a). Varying φ can result in chaotic behaviour as shown in Fig. 5.10,

and, Fig. 5.12 indicates the variation in the maps which leads to this behaviour.

The neural control of the activity of plantar flexors is not explicitly modelled here.

However, coming out of freeze could be the result of an increase of τr or decrease τl

or increased initial absolute angular velocity produced by swaying. A low absolute

value of angular velocity (voluntary or involuntary) or decrease of τr or increase

of τl results in freezing (angular velocity moving to the region where ωn = 0 rad.

s−1). This explains the higher chances of freezing episodes even when the subject

reduces the velocity (voluntarily/involuntarily) near narrow passages. An increase

in the step length or |θreset| results in freezing at relatively higher absolute angular

velocities (Fig. 5.13b). However, it may be noted that an increased step length is

typically associated with an increased absolute angular velocity due to inertia and,

consequently, could be beneficial. There is likely an optimum step length for every

subject as there is a trade-off between fatigue and initial angular velocity, which

warrants further study.

5.3.4 Bifurcations of the One Dimensional System for the

Inverted Pendulum Model

Even though for most of the regions, the slope of the map in relation to the ωn = ωn+1

line can be identified visually, the stability of the system is not explicitly studied

in the previous section. The contour of f̃n
ω (x, τl, τr, φ) = x for n=1 and 3 are

plotted for variation in parameters in Fig. 5.14 and 5.15 respectively. The stability

is computed by taking the derivatives (numerically) for the maps described in Fig.

5.11 - 5.13b. These contours show how the points of intersection with the ωn = ωn+1

line for the maps shown in Fig. 5.11 - 5.13b change upon parameter variations.

Period one orbits are the normal walking cycles. The existence of these orbits

in both low and high angular velocity conditions and different parameter variations

are displayed in Fig. 5.14. In Fig. 5.14a two fixed points come closer to each other
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and completely vanish for high values of τl resulting in a complete lack of periodic

solutions. Typically, walking could be ascribed to the stable region for periodic

orbits, but when ω0 is lower, and τl is non-zero, another periodic point emerges

in the low-velocity regimes. This, therefore, results in slow-walking regions, which

under perturbations could lead to freezing. Also, at low-velocity regimes, the region

is discontinuous and unstable for small perturbations of the values of parameters

or initial conditions. The stable periodic orbit moves to the lower absolute value of

angular velocities as τl increases and eventually disappears. The behaviour observed

while decreasing τr is analogous to an increase in τl. Fig. 5.14b shows how changing

τr and ω0 results in creation/destruction of the periodic orbits. It can be discerned

that at a sufficiently low value of τr, the periodic orbit disappears. A higher value of

τr results in the separation of the periodic orbits resulting in higher stable walking

angular speeds. A comparable behaviour could be observed while decreasing τl in

Fig. 5.14a.

Initial angular velocity plays a major role in the behaviour of the system.

The effect of neural control parameters τl and τr in generating periodic behaviour

has been illustrated for lower and higher absolute angular velocity conditions in Fig.

5.14c and 5.14d respectively. In Fig. 5.14c the periodic orbit appears stable only for

a small fraction of the parameters space. This is due to the highly discontinuous

map shown previously. Conversely, at higher initial angular speeds, the period one

orbit is stable, as shown in Fig. 5.14d. One could see that an increase in τl moves

the periodic orbit into an unstable region, resulting in the possibility of a freeze. The

presence of these orbits could only be seen in the low-velocity regions of the maps.

Orbits of minimal period three indicate chaos and the presence of every other

periodic orbits (Glendinning, 1994). The period 3 orbits for the variation of the

parameters τl and τr is shown in the Fig. 5.15. The Period 3 orbit is shown in blue

and the period one in yellow.
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Table 5.1: Summary of qualitative behaviour of the map

No Para-
meter

Range Sim-
ulated

Figure
No

Consequence of increasing
the parameter

1 τl [0, 5] 5.11 Increased τl results in the ap-
pearance of period 1-2-3 and
higher orbits. This results
in freezing at lower absolute
angular velocity conditions

2 φ [-6.28,
-1.28]

5.12 Increase in φ results in the
period doubling bifurcations
as described in the Fig. 5.10.
When everything else re-
mains constant a variation in
φ results in freezing and high
variability in walking.

3 τr [30, 55] 5.13a Increased τr results in disap-
pearance of period 1-2-3 and
higher orbits. This is one
of the ways in which the pa-
tients get out of a freeze

4 θreset [0.05, 0.15] 5.13b Increased step length results
in freezing region change its
location on the map, from
low initial absolute angular
velocity to a higher absolute
angular velocity initial condi-
tions.
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(a) φ = −π/2 rad., τr = 40 N, θreset =

−0.1 rad.

(b) φ = −π/2 rad., τl = 5 N m, θreset =

−0.1 rad.

(c) φ = −π/2 rad., ω0 = −0.4 rad. s−1,

θreset = −0.1 rad.

(d) φ = −π/2 rad., ω0 = −1 rad. s−1,

θreset = −0.1 rad.

Figure 5.14: Period one orbits are shown by varying τl and τr for two different values
of initial angular velocities in Figs. 5.14c and 5.14d. Period one orbits found by
varying τl and ω0 is shown in Fig. 5.14a. Period one orbits found by varying τr and
ω0 is shown in Fig. 5.14b. The parameter values used are given in the respective
figures. The green region shows the stable region where ˙̃fω < 1. The stable periodic
regions are the ones where the green region overlap the curves of the periodic orbits.
Units: τl, τr, ω, φ, θreset and step length has units N m, N, rad. s−1, rad., rad.,
and rad. respectively when not specified.
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Figure 5.15: Constant parameters used are φ = −π/2 rad., ω0 = −0.4 rad. s−1 and
θreset = −0.1 rad. The stable period 3 region is shown in green. The intersection of
the period 3 orbits (in blue) and the stable regions form the region of stable period
three orbits. The presence of period 3 orbits implies orbits of all other periods and
therefore chaos.

5.4 Discussion

Freezing of gait results from an intricate set of interacting physiological systems, which

consist of the brain, spinal cord, musculoskeletal system and external disturbances

(Nutt et al., 2011). The model developed in this chapter explains how a lack of

coordination between central pattern generators of the plantar flexors of the leading

leg and trailing leg (Nieuwboer et al., 2004) could lead to freezing and variability of

walking.

In this chapter, a model of the torques generated by the plantar flexors

acting on the stance leg has been proposed; and its effect on a biped and a reduced

inverted pendulum model is studied. The pattern of freezing observed in the model

matches well with the behaviour observed experimentally 7 in (Nutt et al., 2011) and

Fig. 5.6a. The equilibrium point description (Feldman, 1986; Sainburg, 2015) of the

control of the muscles is avoided here, and instead, an explicit control signal has been
7The Fig. 1 in Nutt et al. (2011) is referred here. Source of the figure :https://pubmed.ncbi.

nlm.nih.gov/21777828/#&gid=article-figures&pid=figure-1-uid-0
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opted. However, variabilities in the ‘torque-length characteristics’ (Feldman, 1986)

for a particular (set of) equilibrium point (points) can generate torques required for

motion. Therefore, a parallel between the equilibrium point hypothesis of postural

balance and our model can be drawn if the torques prescribed in the model are

assumed to be the result of variabilities in the ‘torque-length-characteristics’.

Chaotic regions are observed to be closer to those regions where freezing

occurs. In the inverted pendulum model, these regions show up only at low absolute

angular velocity initial conditions, explaining why freezing is a ‘rarely’ occurring

intermittent condition. Moreover, this also may explain why freezing happens near

obstacles or narrow paths where the subject voluntarily slows down to reduce the

chance of collision. Obstacles could be either perceived or real. Hence, even though

the pattern of freeze remains the same, the causes could be varied. It might even

be possible that the control of τl is driven by perceived obstacles or anxiety about

the consequence of freezing (Ehgoetz Martens, Ellard and Almeida, 2014; Martens

et al., 2016). An increase in τl, therefore, could be thought to be indirectly influenced

by anxiety and perceived obstacles. However, this hypothesis warrants further

experimentation.

Varying the parameter step length that controls the stride length is observed

to affect the maps and the freezing regions. The results indicated that keeping

the steps closer to each other such that |θreset| is minimized is safer for the PD

patient. The stability of the period two and three orbits are highly sensitive to minor

variations of parameters (φ, τr, τl) which are proposed to be the reason for sporadic

variabilities in gait seen in PD subjects. One could also hypothesize that stable low

absolute angular velocity regions of the state space for some parameter values form

a ‘cantor set’ and necessitates further study.

One could speculate that one reason for the observed help of auditory/sensory

cues (Young, Rodger and Craig, 2014; Rochester et al., 2005; Amini, Banitsas and

Young, 2019) in reducing instances of freezing is by indirectly forcing PD patients to

make shorter steps with lesser variability, thus reducing the possibility of moving

into the freezing region of walking. Variability in the walking times observed in
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the inverted pendulum model translates to variability in step lengths in the biped

model. The biped model shows a more complicated dependence on the parameters

to eventual freezing (Fig. 5.7a).

Feedback mechanisms regulate the CPG activity with delays, noise and input

from the brain (which in turn is affected by different factors, including emotional

state). The age, ground and environmental conditions also play a role in walking.

These variabilities are not accounted for in our model, which represents a limitation

of the study. Furthermore, The forces arising due to the motion of swing leg mass

on the stance leg during the swing phase is assumed to be negligible compared to

the ankle push-off forces. This is justified as the primary force governing gait is

ankle push off from the plantar flexors. The lack of explicit modelling of the double

support phase also can result in minor changes in the time to take a step. The

quantitative variations due to the lack of swing leg and an explicit model of the

double support are assumed not to alter the results or conclusions qualitatively. Like

any other studies based on a mathematical model and numerical simulations, our

results and conclusions also might not necessarily represent the entire spectrum of

patients. Further extensive patient-based studies are to be performed prior to using

these ideas to treat PD-Gait. In future chapters, a more detailed model is planned

to include these variabilities. The key aspects explained using the proposed model

can be summarized as follows:

1. The higher variability in PD patients could result from parameters being closer

to the point of chaos. A further change of the parameters can result in freezing.

Therefore, increased variability should be looked at cautiously (clinically) and

should be treated to reduce it. Moreover, the difficulty in the prediction of

freezing also owes to the horseshoe near the freezing regions.

2. The pattern of reducing the step-sizes before freezing is the result of slowing

down (Fig. 5.6a). Voluntary/involuntary decrease in angular velocity (in

absolute terms) near the obstacles makes the subject more susceptible to

freezing and irregular walking.

3. One plausible reason for sensory cues such as auditory or visual cues help
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in freezing is by reducing step lengths. The proposed model shows that the

decrease in step length helps in reducing freezing episodes at the lower absolute

value of angular velocity conditions as it moves the patient away from the

freezing region. A further experimental study is needed to understand the

clinical applicability.

95



6. Central Pattern Generator

Based Extension of the Freezing of

Gait Model

Currently, there is no mathematical model (up to the author’s knowledge) describing

the freezing of gait (FoG) as well as variability in the gait with a focus on limb

mechanics and CPG. Also, freezing like behaviour could be the transient behaviours

of the dynamical system leading into a steady normal walking. Therefore, there is a

need for a study to analyse a finite horizon problem (few steps forward in time) rather

than the long term behaviour. Moreover, biological feedback and its effect on FoG

also needs careful consideration. The augmented feedback is shown to have positive

implications for PD patients, this also needs an explanation from the modelling

perspective.

In this chapter, we combine a CPG model and the model of limb mechanics.

The limb model focuses on the ankle push-off forces given in chapter 5 making it

relevant to PD. Only single support phase of the stance leg is explicitely modelled

in this chapter. A state dependent, event-driven feedback is provided to account

for the impulse signal occurring at the heel strike. The mathematical description of

such a system becomes a nonlinear-hybrid-dynamical system. The orbital stability

of gait in this model is studied using a Poincare based approach, since the Jacobian

associated with the model is singular. The effect of the feedback on gait variability is

studied from the perspective of the neuromechanical system and the synchronisation

properties of the CPG. The intermittent transition of the gait from walking to

freezing and back has also been demonstrated.
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The work done for this chapter has been submitted for peer review as follows:

• M. Parakkal Unni, P. P. Menon. ‘Modeling and Analysis of Parkinsonian Gait’

In:Nonlinear Dynamics (Submitted in Sept 2021, Status: In Review).

The chapter is structured as follows. The Sec. 6.1 provides the physiology

and the assumptions relevant to CPG-based modelling of gait. The mathematical

modelling procedure is described in Sec. 6.2. Further, the numerical simulation

results and stability analysis is provided in Sec. 6.3 and Sec. 6.4 respectively.

Subsequently, the effect of the external feedback in the absence of proprioceptive

feedback (in Sec. 6.5), the effect of feedback on the neuromechanical system (in Sec.

6.6) are presented. Finally, the chapter ends with the discussion in Sec. 6.7.

6.1 Background

One could refer to Sec. 3.2.5 for the definitions used to describe the hybrid system

such as the Poincaré section, time to reset and the switching surface.

One gait cycle constitutes two steps since the left and right leg acts as a

stance leg. Henceforth, a gait cycle is the composition of FR ◦∆L→R ◦ FL ◦∆R→L

where FL and FR denotes the flow corresponding to the left and right leg as the

stance legs respectively, and ‘◦’ represents the composition. Symbols ∆L→R and

∆R→L represents the reset corresponding to the left leg to the right leg and vice-versa.

Consequently, it is convenient to study the composition of the Poincare

map with itself (P (P (.)) := P̃ (.)) for understanding the stability properties of the

gait cycle. The stability of this map is numerically studied. The Jacobian that

corresponds to the vector field and the Poincaré map are denoted by DF , and DP

respectively. A non-singular DF is essential to the contraction analysis of the system

based on variational methods of analysis of the differential dynamics (Lohmiller and

Slotine, 1998; Tang and Manchester, 2014). A lack thereof leaves only the possibility

of Poincaré based analysis of P or its iterates.
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Gait
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Figure 6.1: The physiology and the associated modelling assumptions are depicted
here. The brain (basal ganglia, cortical and subcortical areas) control the spinal
cord which in turn control gait. CPG is modelled as coupled oscillators (representing
neurons). The walking dynamics are represented by a simple pendulum model.

6.1.1 Physiology

The relevant physiology is briefed here. Central pattern generators (CPG) are

neuronal circuits in the spinal cord that can generate oscillatory activity without

being forced rhythmically (Ijspeert, 2008). There is evidence in the literature for

the presence of CPG in quadrupeds, (Grillner et al., 2001; Dietz, 2003) and indirect

evidence (Dietz, 2003; Taub, Uswatte and Elbert, 2002) for its existence in humans.

The brain modulates the CPG dynamics in the spinal-chord, (Dietz, 2003; Snijders

et al., 2016) which in turn coordinates the leg-muscles using feedback inputs from

the brain (Minassian et al., 2017; Berger, Dietz and Quintern, 1984). A simplified

physiology of gait and the corresponding modelling aspects are depicted in Fig. 6.1.

A bursting dynamical state of a neuron/neuronal population is associated

with the excitation of a group/bursts of action potentials in succession. The spinal

CPG neurons are known to elicit bursting behaviour, (Grillner et al., 1995; Izhikevich,

2007) which control the torque generated by the muscles. While there are multiple

spikes in a burst, the torque produced can be assumed to be resulting from the
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‘equivalent membrane potential’ (Izhikevich, 2003; Genadry, Kearney and Hunter,

1988) of the bursting dynamics. The torques are generated during the bursting

region of the dynamics. Almost very-low, or zero, torque is generated during the

non-bursting region (Cresswell, Löscher and Thorstensson, 1995; Hof and Van Den

Berg, 1977; Clancy, Bida and Rancourt, 2006). Consequently the neuromechanical

dynamics is controlled by the equivalent voltage of the motor neuron (neuronal

population) bursts (Grillner et al., 1995; Izhikevich, 2007) rather than individual

spikes.

The role of sensory feedback inputs through afferent nerves in walking rhythm

generation is now well-recognised (Dietz, 2003; Cheung et al., 2005; Tuthill and

Azim, 2018). Transmission of these signals requires a finite amount of time to reach

the destination. Hence, it occurs with a delay. However, this delay is known to be

negligibly small (<50 ms.) (Malcolm, 1951) when compared with the stepping times

(Bachlin et al., 2009). Hence, the feedback is modelled and studied as event-driven

instantaneous inputs to the neuronal system. A defective utilization of these afferent

feedback inputs has been suggested in PD in (Dietz and Colombo, 1998) resulting

in defective electromyogram (EMG) traces (Dietz and Colombo, 1998; Nieuwboer

et al., 2004) making feedback relevant in the study of PD-Gait.

6.2 Mathematical Modelling

The dynamics of the neuromechanical system governing PD physiology is explained in

this section. The section starts with the complete equations of motion, the underlying

assumptions and the description of the subsystems successively follow.

6.2.1 Equations of Motion

A hybrid system formulation of the Equations of Motion (EoM), as in Eq. 3.1 and Eq.

3.2, has three components: (1) continuous dynamics (F(z(t), λ)), (2) a discrete part

(∆(z(t)−, λ)) and (3) a definition for the switching surface (S). In this study, the

continuous part of the dynamics (F(z(t), λ)) comprise of two interacting subsystems,

of which, one is a neuronal CPG part (Σni
), modelled as two coupled oscillators and
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the other corresponds to mechanical dynamics (Σm). Fig. 6.2 shows the interaction

between the neuronal and mechanical systems and the external input received by

the CPG.

Figure 6.2: A block diagram showing the feedback interaction between the neural
and mechanical components of the system. While the signals y1(t) and y2(t) become
the inputs to the limbs, the proprioceptive feedback signal Ξ(t) modulates the CPG.
The term I(t) represents external input signal received by the CPG.

The overall system is described using Eq. 3.1 and Eq. 3.2 with the following

characterisation:

z =

[
y1, x1, y2, x2, θ, ω, Ξ

]T
, (6.1)

F(z, λ) :=
[
ΣT

n1
ΣT

n2
ΣT

m

]T
, (6.2)

gr (z) = θ − θreset , (6.3)

∆
(
z−, λ

)
=

[
y1, x1, y2, x2,−θ, ω cos(θh), −Ξ

]
. (6.4)

The dependency on time in the equations is absent for brevity. The variables xi and

yi represent the states of the CPG, with yi indicating the activity of the ith neuron.

The oscillators in this model phenomenologically represent the collective activity of

a neuronal population. In Eq. 6.2, the dynamics of the neuronal CPG is written as

follows:
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Σni
:=



1
τ

( Intrinsic CPG Dynamics︷ ︸︸ ︷
−αyi (x

2
i + y2i − e)

e
− xi + ΞΦi︸︷︷︸

Feedback

+
2∑

j=1

wi,jyj︸ ︷︷ ︸
Neuronal Coupling

− aIi(t)︸ ︷︷ ︸
Ext. Input

)

yi
τ


,

i = 1, 2. (6.5)

where,

Φ := [−fb, fb]
T , (6.6)

w :=

 0 St

St 0

 . (6.7)

The term wi,j, which controls the mutual inhibition through the synaptic strength

St is an element of the matrix w ∈ R2×2. The neurons modelled are assumed to be

mutually inhibiting (one inhibiting the other) and not directly influencing its own

activity (w1,1 = w2,2 = 0). The element Φi of the vector Φ ∈ R2 represents the positive

or negative feedback strength (fb). The term Ξ corresponds to the proprioceptive

feedback from the limbs modulating the CPG dynamics. The constants e, α and τ

govern the intrinsic CPG oscillator dynamics (Ijspeert, Crespi and Cabelguen, 2005)

and discussed more in the sequel.

In Eq. 6.5, the effect of periodic auditory/sensory cues (Dietz, 2003; Cheung

et al., 2005; Tuthill and Azim, 2018) is represented as a scaled periodic external

input aIi(t) where

I(t) :=
[
− us(t), us(t)

]T
, (6.8)
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and

us(t) =


+1, sin(2πΩf t) ≥ 0 ,

−1, sin(2πΩf t) < 0 .

(6.9)

The variable a scales the amplitude of the external input, when present, and Ωf

represents the frequency of the input.

In Eq. 6.1, the states θ, ω, and Ξ represent the angle subtended w.r.t. the horizontal,

angular velocity, and ‘proprioceptive feedback’ respectively. The ‘proprioceptive

feedback’ state Ξ ∈ {−1, +1} indicates which leg is on the ground at time t to

generate an event-driven-feedback signal. When Ξ changes the state from −1 to 1

the sign of the feedback received by the oscillator changes. In this formulation, the

proprioceptive feedback is sent from the limbs to the neural system. In Eq. 6.2, the

mechanics of the limbs (Σm) are described using the following set of equations,

Σm =


ω

1
θ

(
Ξmax(0, θ)

(p(θ, −Ξ)τl max(0, y1)
l2m

− p(θ, Ξ)τr max(0, y2)
l2m

))
+ gθ

l
− q(θ)

0

 ,

(6.10)

where,

p(θ, Ξ) :=


l sin(2θ) when Ξ = +1 ,

1 when Ξ = −1 ,

(6.11)

q(θ) :=


0 if θ < −θreset + ε ,

Kθ if θ ≥ −θreset + ε ,

(6.12)

and l, m, g, and K are length, mass, acceleration due to gravity and the stiffness

constant of the trailing leg, respectively. The parameters τl and τr scale the neuronal
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activity signals y1 and y2 . The term q(θ) is introduced in this chapter to constrain

the motion of the stance leg. It further helps to capture the transition from freezing

to walking. The stiffness constant of the trailing leg (K) models the angular stiffness

and ε is a small positive scalar. The hip angle (θh) in Eq. 6.4 is considered as twice

the reset angle θreset since the step angle is assumed constant in every step. The step

length is defined to be equal to |θreset| where |.| denotes the absolute value.

6.2.2 Neuronal Dynamics as Locomotion Control

The CPG is assumed to control the movement of the limb dynamics (Dimitrijevic,

Gerasimenko and Pinter, 1998) while simultaneously affected by feedback with a

negligible delay (Malcolm, 1951). The ‘equivalent membrane potential’ (Izhikevich,

2003) of the bursting dynamics is assumed to control the torques generated in the

muscles. Moreover, the activity of those neurons is directly proportional to the

torques generated in the muscles.

In this work, the CPG is modelled as two interconnected oscillators effectively

modelling the ‘equivalent membrane potential’. The intrinsic CPG dynamics part in

Eq. 6.5 is inspired from (Ijspeert, Crespi and Cabelguen, 2005) and in the absence

of the external inputs and the feedback signal, the CPG exhibits limit cycle. Plantar

flexors innervated by the neurons from the CPG supply the necessary torques to

the limbs. The activation by the CPG occurs only for the positive neuronal activity,

i.e., when y1 > 0, or y2 > 0. Hence, this representation effectively models muscle

contraction.

The parameter e in the intrinsic CPG dynamics in Eq. 6.5 increases the

amplitude of the limit cycle. Here, the limit cycle refers to that of a single oscillator.

An increase in the amplitude of the limit cycle models the increased neuronal activity.

The positive constants e and τ > 0 together control the total energy in every stepping

cycle. While the system is on the limit cycle, the term x2
i + y2i is e, and thus there

is no influence for the parameter α. Henceforth, the positive parameter α can be

interpreted as a scaling of the perturbation from the limit cycle. The feedback ΞΦi,

the neuronal coupling
∑2

j=1 wi,jyj and the external input I(t) in Eq. 6.5 can change
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the phase of the oscillator. The perturbations to the phase of the oscillator have

influence on the synchronisation (Izhikevich, 2003).

6.2.3 Mechanical model and Definition of Freezing

It has been shown in (Parakkal Unni et al., 2020a) that an inverted pendulum based

model adequately represents the freezing and irregular walking motion of the centre

of mass of the body having PD. The torque generated due to the plantar flexors’

activity alone provides the ankle push-off forces to propel the leg forward. Inspired

by this, the lower limb mechanics is modelled here as a hybrid inverted pendulum

(inverted pendulum with a reset). The reset map and the differential part of the

dynamics (Eq. 6.4 and Eq. 6.10 - 6.12) are derived by balancing the torques and

the angular-momentum, respectively. The stiffness of the trailing leg is triggered

when the angular displacement θ increases beyond −θreset+ ε in the counter direction

to walking. In this study, ε is fixed at 0.02 (chosen arbitrarily, does not affect the

dynamics qualitatively). The negative sign associated with the term θreset represents

this convention. The stiffness term in Eq. 6.12 takes into account the opposing

force exerted by the trailing leg preventing a fall; at this moment, the subject is

assumed to freeze. This opposing stiffness force is necessary to model the shift from

freezing to walking. The impulsive mechanics at ‘heel strike’ (when the swing leg

hits the ground) is modelled using a reset, effectively making the dynamics belong

to the class of hybrid system. At every instance the flow of the dynamics reaches

the switching surface S in Eq. 3.3, the reset map given in Eq. 6.4 is applied. The

function gr(z) in Eq. 6.3 defined the identity of the switching surface. The state

representing the proprioceptive feedback Ξ is reset at every step accounting for the

change in the stance leg loaded with the weight of body. The angular velocity is also

reset to account for the conservation of angular momentum. Furthermore, the angle

(θ) is reset to account for the alternation between limbs as given in (Parakkal Unni

et al., 2020a).

By convention, a negative angular velocity indicates limbs moving forward.

At every point in the phase space, a finite amount of energy is necessary to keep

the direction of the angular velocity negative (ω < 0). During a freezing episode,
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the limbs receive insufficient net torque to move forward. Consequently, the angular

velocity ω becomes positive, which leads to the following definition.

Definition 6.2.1 Let zt0 ∈ S be the state at time t0 and ts− t0 be the time to impact

(or reset). Freezing trajectory is defined as the set C := {ζ(t, zt0) | zt0 ∈ S, ω(t) >

0 for any t ∈ (t0, ts)} .

The freezing fraction for a discrete simulation is determined by finding the fraction

of time points where ω(t) > 0 and satisfies Def. 6.2.1. The finite time simulation

results are sampled uniformly, and the number of data points with ω(t) > 0 is

divided by the total number of points in the simulation to compute freezing fraction.

From a physiological perspective, whenever the premature activation prevails upon

the normal activation, the stance leg momentarily moves backwards, resulting in

ω > 0. Consequently, freezing fraction gauges the effect of premature activation

of the muscles in the stance leg. According to Nieuwboer et al., 2004 premature

activation of plantar flexors is a charecteristic of PD making freezing fraction very

relevant for PD.

6.3 Numerical Simulation of Freezing and Normal

Gait

The overall model described using Eq.3.1 and Eq. 3.2 with the characterisation given

in Eq. 6.1 - Eq. 6.4 is simulated. Unless specified otherwise, values of the parameters

and initial conditions used in the model have been listed in Table 6.1. The parameters

are chosen to achieve physiologicaly meaningful walking. And, the neuronal system

parameters are varied to understand their effect on FoG. The evolution of the states

for a short duration of time is shown in Fig. 6.3. In simulations, high and low values

of the feedback strength (fb) are considered.

(i) Normal gait: In this simulation, no external input I(t) is considered. Fig. 6.3a

and Fig. 6.3b show the states of the CPG dynamics and the mechanical system

during normal walking. The value of the feedback gain (fb) used in the simulation is

1.
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Table 6.1: The values of different parameters of the model and initial conditions

Mechanical system
Parameters Value (units)

l 0.6 m
g 9.8 ms−2

m 70 Kg
τl 20
τr 20

θreset -0.1 rad.
K 50
ε 0.02

Initial condition Value (units)
θ0 -0.05 rad.
ω0 -0.5 rad. s −1

Neuronal system
Par. Value (units)

e 0.5
τ 0.1
α 0.1
fb 1 (normal gait), 0.1 (freezing gait)
St 1
a 0

Initial condition Value (units)
y10 1
y20 2
x10 1
x20 1
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Figure 6.3: (a) The states of the neural system (y1, y2, x1, x2) at high value of
feedback strength (fb = 1). (b) States of the mechanical system (θ, ω, Ξ) at high
value of feedback strength (fb = 1).(c) The states of the neural system at a low value
of feedback strength (fb = 0.1) (d) States of the mechanical system at a low value of
feedback strength (fb = 0.1). Phases of Walking and Freezing, single step and one
reset point are indicated.

(ii) Freezing of gait: The states of the neural and the mechanical system are indicated

in (Fig. 6.3c) and (Fig. 6.3d) respectively. When compared with the results of

normal gait, the freezing of gait is obtained by decreasing the value of the single

parameter, the feedback gain (fb), to a lower value of 0.1 from 1. The oscillations in

the four neuronal state variables of the CPG can be noticed in Fig. 6.3c. Among

the states, the signals y1 and y2 control the mechanical part of the system. In this

simulation, the chosen low value of feedback strength (fb = 0.1) is insufficient to

synchronise the neural (Σni
) and mechanical (Σm) systems. This aspect is evident

from the resultant intermittent walking and freezing behaviour observed in Fig. 6.3d.

The proprioceptive feedback state Ξ, indicating which leg is on the ground, changes

the sign on reset as indicated in Fig. 6.3d, since Ξ ∈ {1,+1} and Ξ̇ = 0. From Fig.

6.3d, it can also be observed that at the reset point, the state θ is reset to −θ as well.

The trajectory from an initial condition till the reset is defined to be a ‘step’.
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(a) (b)

Figure 6.4: (a) Time series of θ(t) and ω(t) (in the background) for a low value of
feedback gain (fb = 0.1); (b) θ - ω phase plane diagram; the regions in red colour
show part of the data exhibiting freezing behaviour where ω is positive.

A ‘freeze’ as defined in Def. 6.2.1 is indicated in Fig. 6.3d where ω crosses zero

and reaches a positive value generating a longer ‘pause’ in walking. Multiple steps

without an intermediate freeze are indicated as walking. One could note that, from

the hybrid systems point of view, the ‘pause’ in walking owes to the relatively higher

time to reset.

The sharp changes in angular velocity owe to two aspects of the model: (i)

the reset accounting for the conservation of angular momentum, and (ii) the effect

of the piecewise linear characteristics of q(θ) in Eq. 6.12 as the angle θ crosses the

condition −θreset + 0.02 = 0.12 . The latter aspect contributes to the rapid changes

to the angular velocity during the freezing episode shown in Fig. 6.3d.

Fig. 6.4a shows the time series of states θ and ω from 20 seconds of simulation.

In the simulation, the feedback gain is fixed at 0.1. The regions where freezing occurs

are indicated in red colour. The intermittent episodes of walking and freezing can be

observed. A plot of the trajectories in the θ - ω phase plane is shown in Fig. 6.4b. In

the phase plot, the segment of trajectories in the first quadrant shown in red colour

reflects freezing behaviour, since angular velocity is positive. (iii) In the presence of

external input: An external input I(t) as in Eq. 6.8 is applied to the model (fb = 0.1)

which exhibited the intermittent freezing behaviour as shown in Fig. 6.3 c and 6.3 d.
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The frequency of the external input Ωf is 1.2 and the parameter a equals 2.5. Fig. 6.5

shows the effect of the external input, which converts an otherwise freezing gait into

a normal gait. The external input is shown to influence the neuromechanical system

resulting in a gait without freezing. In addition, short-time Fourier transform (STFT)

of the filtered angular acceleration signal (ω̇(t)) is computed. A Gaussian filter of

kernel radius ten is utilised for filtering the (ω̇(t)) signal. A window size of 0.32 sec

and a sampling rate of 100Hz is adopted for the STFT calculation (Mathematica,

Version 12.0). The STFT analysis indicated that the frequency content of the signal

increases in the model during a freeze, which is in line with the experimental evidence

(San-Segundo et al., 2019; Bachlin et al., 2009). The parameters are chosen such that

the resolutions of the time and frequency are adequate to understand the behaviour.
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Figure 6.5: Recovery of normal gait for a low value of feedback gain (fb = 0.1) in the
presence of an external input I(t). The parameters that correspond to the external
input are a = 2.5, Ωf = 1.2.

6.4 Stability

Human locomotion is generally stable in the presence of a certain class of perturbations

Iosa et al., 2014. The stability of the overall model in Eq.3.1 and Eq. 3.2 with the

characterisation as given in Eq. 6.1 - Eq. 6.4 is analysed in this section. The CPG

model considered in this work is phenomenological. Three parameters of the CPG

model - the constant e governing the intrinsic CPG oscillator dynamics, the feedback

gain fb and the synaptic strength St - are of physiological significance (Ijspeert, Crespi

and Cabelguen, 2005). For the purpose of the stability analysis, the perturbation
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Figure 6.6: The value of Ξ as it changes between S and S̃ has been shown. The
dashed lines represent the discrete dynamics governed by ∆(.) and the solid lines
represent the smooth dynamics governed by F(.). The map P̃ (.) formed by iterating
P (.) two times, is also indicated.

to these parameters is assumed to occur within the range e ∈ (0.1, 1), St ∈ (0, 6),

and fb ∈ (0, 2) where relevant walking and freezing behaviours are exhibited.

Demonstration of orbital stability of the hybrid walking model in the presence of the

perturbations is vital.

For the stability analysis, the surface defined by the set S is considered for

constructing the Poincare section. The discrete map ∆(.) maps the points from S to

S̃ which is again mapped back to S by the differential dynamics. The Poincare map

P is defined as a composition of these maps taking a point z[k] ∈ S to z[k + 1] ∈ S.

Since proprioceptive feedback state Ξ switches in every reset (as shown in Fig. 6.6),

the map P̃ is formed by iterating P twice, which is considered for the stability

analysis.

Out of the seven state variables, only five (excluding θ and Ξ as they remain

constant during the evolution due to the differential part of the dynamics) are
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considered for the computation of the Jacobian. This results in the definition of a

new map, denoted by P̃c, where the parameters θ and Ξ remain constant. Hence,

the map P̃c is defined as follows,

z̃[k + 2] = P̃c(z̃[k]) , (6.13)

where z̃[k] := z[k] \ {θ[k], Ξ[k]} ∈ R5 is the state vector of the overall system

excluding θ, Ξ at the kth step. The Jacobian associated with this system is denoted

by DP̃c ∈ R5×5.

A Taylor series based methodology, adapted from Goswami, Thuilot and

Espiau, 1996a, is used for the computation of the Jacobian matrix of the map P̃c.

The eigenvalues of the Jacobian matrix DP̃c determine the stability of the system

(Devaney, 2018). Following the approach in Goswami, Thuilot and Espiau, 1996a, at

the periodic point z̃∗ of the map P̃c, the perturbation vectors δz̃∗i s are applied. The

vector δz̃∗i has only one small non-zero term (= 10−3), such that, the perturbations

are applied to each state independently. Hence, a diagonal matrix γ ∈ R5×5 is

defined constituting the perturbation vectors δz̃∗i associated with each states as its

columns. For the perturbation vector δz̃∗i associated with each individual state, the

corresponding (P̃c(z̃
∗+ δz̃∗i )− z̃∗) ∈ R1×5 is computed, yielding the matrix Ω ∈ R5×5.

Since γ is a diagonal matrix and Ω is determined as described above using the map

P̃c, it is possible to write the Jacobian of P̃c as:

DP̃c = Ωγ−1 (6.14)

The sequence {z̃n} is obtained by iterating the map P̃c in Eq. 6.13 starting from an

initial condition z̃0 := (y10 , y20 , x10 , x20 , θ0, ω0)
T = (0.29,−0.29, 5.53,−5.53,

0.1,−0.7)T . Fifty iterations of the map P̃c are computed. The Jacobian matrix DP̃c

is determined using the last iterate. One could note that this method cannot find

unstable period - 1 orbits. The maximum absolute value of the eigenvalues (MAE) of

the Jacobian matrix DP̃c determines the stability, and the system is stable whenever

this value is less than 1. The condition (MAE < 1) can also include possible, stable,
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intermittent freezing behaviour of the dynamics. Normal gait responses are associated

with the Period-1 orbits. Hence, in addition to the MAE condition, an additional

term based on the return map information is used to identify the Period - 1 orbits.

The additional metric introduced ensures the convergence to Period-1 orbit over a

finite period of simulation time.

The convergence of the orbits to a limit cycle during a finite time simulation

is tested by generating a vector Cp. The vector Cp is generated by computing the

norm of the differences between consecutive iterates of states for the last 20 iterations

in the following way,

Cp := { ‖(z̃[r]− z̃[r − 1])‖2 , ∀r ∈ {N − n, N}} . (6.15)

Here, N (= 50) is the total number of iterations simulated, n (= 20) is the number of

consecutive iterations used for convergence estimation and r is the iteration number.

The l2 norm of the resulting vector Cp is computed as a measure of convergence.

When ‖Cp‖2 < 10−4 the orbit is assumed to converge to a limit cycle. The procedure

described addresses the Period - 1 orbits (stability of normal walking) of the map P̃c.

Period - 1 orbit of the map P̃c which in turn is formed by the iteration of the map P

twice as explained in Fig. 6.6, hence when N = 50 a total of 100 steps are simulated.

A Monte-Carlo stability analysis was performed. For this, the system in Eq. 6.1 - Eq.

6.4 is simulated using 1000 randomly initiated (e, St, fb) parameter vectors. For

each (e, St, fb) parameter vector, the procedure discussed above is followed, and the

MAE and ‖Cp‖2 are computed to classify the stability of the walking regime of the

system. The Fig. 6.7 show the results of the Monte-Carlo simulation. Here the green

points indicate the stable period - 1 orbit, i.e., MAE < 1 and ‖Cp‖2 ≤ 10−4. The

analysis reveals the existence of stable periodic orbits for a subset of the parameter

space considered. As evident in the Fig. 6.7 while a higher value of e and st are

beneficial for walking, the key distinguishing factor is fb. A higher value of fb is

necessary for the system to be in a stable periodic orbit. The median and standard

deviation (given in brackets) of the parameter fb, e and St in the stable periodic

region (green) is found to be 1.34 (± 0.37), 0.64 (±0.23), and 3.5 (±1.57) respectively.
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Figure 6.7: Results of the 1000 point Monte - Carlo simulation showing stable
periodic region and the rest. The region with MAE < 1 and ‖Cp‖2 < 10−4 is shown
in green. The rest of the region indicated in red. In the boundaries of the stability
region the value ‖Cp‖2 crosses 10−4. The purpose of this figure is only to illustrate
the ability of the model to generate stable walking in a subset of the parameter
range.

The distribution of the parameters fb, e and St in the stable region are significantly

different (p < 10−6 Mann-Whitney test) from that in the rest (red region).

Further analysis of the freezing fraction and coefficient of variation are aimed

to study the possibility of a possible freezing episode during the iterations of the

map.
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6.5 Effect of External Input in the Absence of

Proprioceptive Feedback

This section details the effect of periodic sensory signals such as auditory inputs and

STN (subthalamic nucleus) stimulation given to PD patients for alleviating FoG.

The external input I(t) shown in Fig. 6.2 alters the phase and thereby influences

the synchronisation as discussed in Sec. 6.2.2. In this section, the effects of varying

the amplitude and the frequency of the external input I(t) on states defining the

neuronal activity (y1(t), y2(t)) and the angular velocity state of the limbs (Σm) in

the absence of the proprioceptive feedback Ξ(t) in Fig 6.2 are studied. This helps to

understand qualitative differences in the region of synchronous behaviour of CPG

and the non-freezing regime under the action of external periodic input for the

overall system in the absence of proprioceptive feedback. The analysis is done in two

sub-sections as follows:

6.5.1 Effect of external input on neuronal activity

The system in Eq. 6.1 - Eq. 6.4 under the influence of external input, with a 6= 0 and

fb = 0, possibly resulting from sensory or auditory cues (Dietz, 2003; Cheung et al.,

2005; Tuthill and Azim, 2018), is studied. By forcing the feedback term to zero, the

effect of external input on the CPG neural part of the system only is considered

here. The amplitude scaling parameter a and the frequency Ωf of the external input,

in Eqs. 6.5, 6.8 and 6.9 are varied from 0 to 3 in steps of 0.1 and from 0 to 2 in

steps of 0.025, respectively. The range and steps are chosen such that the trend is

revealed in the physiologically acceptable range. The frequency range is chosen to

be a representative range of the walking frequencies (Hausdorff et al., 2003). The

effect of variations on the CPG is quantified in the following manner.

The system in Eq. 6.1 - Eq. 6.4 is simulated for 30 seconds using two sets

of initial conditions - (a) Nominal initial conditions as given in Table 6.1, and (b)

Perturbed initial conditions with y10 = 2 instead of y10 = 1 and the remaining as

listed in Table 6.1. The perturbation to state y1 alone causes desynchronisation.
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Figure 6.8: The l2 norm of the difference trajectories, ‖E‖2, for different values of
frequency Ωf in Eq. 6.9 and for different values of amplitude scaling parameter in
Σni

(with 0.1-0.025 grid). ‖E‖2 calculated for time duration from t1 = 27 to t2 = 30s

with initial conditions (a) y10 = 1 and (b) y10 = 2. The highly synchronised regions
are in blue with low value for the norm.
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The chosen perturbed initial condition corresponds to a point chosen outside the

limit cycle of the oscillator. Let the subscripts ‘a’ and ‘b’ in sequel correspond to

the two cases of initial conditions for the 30 seconds finite time simulation of the

system as described above. Let Y [t1, t2]
a and Y [t1, t2]

b represent the CPG neuronal

activity state vectors (y1(t), y2(t)) during the time period [t1, t2] starting at two

different initial conditions. While synchronisation is achieved, Y [t1, t2]
a and Y [t1, t2]

b

must be close in both phase and amplitude, in a non-trivial manner. Further, let

‖E‖2 := ‖Y [t1, t2]
a − Y [t1, t2]

b ‖2 be the l2 norm of the difference between the neuronal

activity trajectories from t1 = 27 to t2 = 30s. When two trajectories Y [t1, t2]
a and

Y [t1, t2]
b are close in both phase and amplitude the ‖E‖2 reaches a very small value

(‖E‖2 <= 10−4) indicating here synchronisation of neuronal states. The term ‖E‖2

for different values of frequency Ωf in Eq. 6.9 and for different values of scaling of

amplitude a in Σni
is plotted in Fig. 6.8.

External cueing is a highly relevant treatment option for PD (Spaulding

et al., 2013; Ghai et al., 2018; Willems et al., 2006; Nieuwboer, 2008). Moreover,

orbitally stable walking requires synchronised neuronal activity at the level of CPG.

In Fig. 6.8 a region of synchronised behaviour (blue region) can be observed for a

higher amplitude of external input.

Even though one could see synchronised neural activity at a low amplitude

of external input, synchronised neural behaviour is observed for a relatively broad

range of frequencies at a higher amplitude of external input.

6.5.2 Effect of External-Input on the Freezing Fraction

The neuromechanical system described in Eq. 6.1 - Eq. 6.4 under the influence

of external input (with a 6= 0 and fb = 0) is studied in this section for its effect

on freezing fraction defined in Sec. 6.2.3. The parameters a and Ωf of the state

independent exogenous input term aI(t) in Eq. 6.5 are varied. The frequency Ωf

and the amplitude a of the external input are plotted against the freezing fraction

in Fig. 6.9. The simulation is executed for 30 s, and the fraction of freezing events

is computed from the simulated data. The result is plotted in Fig. 6.9 where the
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blue and red region indicates the region of the low and high number of freezing

episodes, respectively. A blue region is observed with a low freezing fraction when the

external input frequency (Ωf ) is between 1 to 1.5 Hz. In this region, the neural and

mechanical systems synchronise to generate a normal gait pattern. Figures 6.5a and

6.5b demonstrate the effect of external input on otherwise freezing neuromechanical

model with a very low feedback (fb = 0.1), as fully evident from the present analysis

in Fig. 6.9.

Figure 6.9: The effect of external input is studied here on a system with no feedback
(fb = 0). The amplitude of the input a and frequency of stimulation Ωf are plotted
against the freezing fraction. The simulation is done for 30 s. and the corresponding
fraction of freezing events are computed. The blue region has a low, and the red
region has a high fraction of freezing events. For the parameter set chosen, the
appropriate frequency to achieve walking is between 1-1.5 Hz.

6.6 Effect of feedback on the overall system

The sensitivity of the parameters fb and e in CPG dynamics has been studied to

understand gait variability. The coefficient of variation (CV) (Ospina and Marmolejo-
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(a) (b) (c)

(d) (e) (f)

Figure 6.10: The parameters e, fb, α, τ, K, St are studied here to understand its
effect on the freezing fraction. The effect e and fb on CV is also provided. While
freezing depends on every parameter in the model, its dependence on St, τ and e are
qualitatively different from α and K when simultaneously varied with fb. The effect
of fb on synchronisation is not altered by the other parameters, and an increase in
τ results in freezing even at high fb. (a) CV of a 30 s. simulation while varying e

and fb has been plotted. A low value of fb and e result in a higher absolute value of
CV and vice-versa. (b) Freezing fraction in 30 s. simulation; while varying e and
fb has been plotted. A low value of fb and e result in higher freezing fraction and
vice-versa. Qualitatively region of high freezing fraction also can have high CV (c)
The effect of St and fb on the freezing fraction is indicated (d) The effect of τ and
fb on the freezing fraction is considered. (e) The effect of K and fb on the freezing
fraction is studied. (f) The effect of α and fb on the freezing fraction is plotted.
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Ramos, 2019) is used as the metric for this study. The coefficient of variation is

calculated as the ratio of the standard deviation to the mean of the angular velocity

ω in simulations. The static parameters fb and e are varied, and the hybrid walking

model is simulated for a duration of 30 s. The CV of the ω is presented as a function

of the parameters e and fb in Fig. 6.10a. Lower fb generates high variability. A very

low value of e results in a lower energy supply to the mechanical system and results

in higher variability. A region of appropriate fb and e (the red region in Fig. 6.10a)

results in low variability and low freezing. The freezing fraction (see Fig. 6.10b)

also has a qualitatively identical pattern as that of Fig. 6.10a. This helps to explain

the higher variability seen in PD patients (Heremans, Nieuwboer and Vercruysse,

2013a).

6.6.1 Parameters α, τ, K, St

A set of figures are provided here which study the effect of parameters α, τ, K, St.

The parameters are explored while varying simultaneously with fb. The parameters

α, τ, K, and St (Fig. 6.10) are also studied to understand its effect on the freezing

fraction while varied simultaneously with the parameter fb. Increasing α and K

from 0 to 1 and 10 to 60 respectively showed qualitative changes in behaviour only at

lower fb (fb < 1). Increasing τ resulted in higher freezing fractions even at higher fb

values. Varying St with fb showed different regions of walking and freezing behaviour

is higher fb resulting in lower freezing fractions.

6.7 Discussion

Freezing of gait (FoG) is a neuro-mechanical phenomenon emerging from the hybrid

interactions between the neural and impulsive mechanical systems. This work sheds

light on the physiological underpinnings from which this phenomenon emerge.

In this chapter, a mathematical model has been developed, taking into

account the CPG based control, state-dependent proprioceptive feedback and limb

mechanics. The proposed model exhibits normal gait with orbital stability, Freezing

of gait (FoG) and transitions between the walking and freezing behaviour. The
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proposed model explains freezing from the perspective of proprioceptive feedback

(Sec. 6.6) and has relatively lower dimensional complexity than existing detailed

biophysical models such as the one by Taga, 1995; Aoi et al., 2019. The analysis of

the multiple parameters of the model together with feedback strength fb revealed

the importance of individual parameters on the freezing fraction.

The effect of sensory feedback on normal gait has been studied previously by

several authors (Taga, 1995; Aoi and Tsuchiya, 2006; Tamura et al., 2020). It is also

hypothesised that subjects with PD show a lack of adequate feedback (Spaulding

et al., 2013; Ghai et al., 2018). The results in Sec. 6.6 articulates the role of feedback

in freezing, primarily how the reduced feedback generates a lack of synchrony and

consequently the FoG. The synchronisation of non-linear systems using external

inputs is well established (Izhikevich, 2007). This study, specifically the results

in Sec. 6.5.2, reveals how the synchronisation gets induced in PD-Gait to avoid

FoG. Moreover, the results indicate that the external input (I(t)) helps to reduce

the freezing incidences in this case for inputs of a range of frequencies (1 - 1.5 Hz)

and amplitudes (greater than 1.2). Hence, there is potential for the use in real-life

scenario with appropriate personalised adaptation of the model. One could validate

the model by varying sensory/auditory cue amplitudes and frequencies provided to

manage freezing. The model predicts that there will be a region of synchronized

walking. One could note that this region could vary for different patients as the

parameters could vary between subjects.

The external input models the auditory/sensory cueing in a phenomenological

way, the frequency of which is vital (Willems et al., 2006). Cueing at low and very

high frequency are not considered appropriate for managing FoG (Willems et al.,

2006; Nieuwboer, 2008). Moreover, an STN stimulation study by Fischer et. al.

(Fischer et al., 2020) also show entrainment in stepping in place for PD patients.

Results in Sec. 6.5.1 and 6.5.2 indicates the plausible physiological mechanism

underlying this frequency-dependent behaviour in PD. The ‘region of synchrony’

of oscillators shown in Fig. 6.8 is larger than the non-freezing areas shown in Fig.

6.9. Therefore, synchrony in CPG does not necessarily imply normal walking, and
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walking in humans is essentially a result of synergistic neuromechanical interaction

of the limbs and CPG.

The physiology of walking is still not well understood. NRGc (nucleus

reticularis gigantocellularis), NRMc (nucleus reticularis magnocellularis), LC/RN

(locus coeruleus / raphe nuclei) and Corticospinal tract (form motor cortex) send

inputs to the CPG. Inhibitory NRGc input is modulated by the inputs from the

pontine reticular formation (PRF) which is in turn regulated by the inputs from

PPN (pedunculopontine nucleus). PPN, an area that controls posture and regulates

muscle tone, receives projections from globus pallidus and substantia nigra pars

reticulata (GPi and SNr), the input to which is defective in PD (Snijders et al.,

2016). There is growing evidence on the role of PPN in PD-Gait (Magrinelli et al.,

2016). In the model, the muscles’ increased overall tonicity can be attributed to

the parameter e for the limited region of parameter space investigated. Lowering

e is beneficial in generating rhythmic walking in the model in some region of the

parameter space with appropriate value for fb. The generation of locomotor pattern

upon stimulation of the region between ventral CNF (Cuniform Nucleus) and PPN

could be explained this way.

Other parameters of the model are also analysed jointly with fb. A high value

of the parameter τ which slows down the CPG oscillators, resulted in freezing. For

the higher value of τ , even a relatively higher value of feedback did not synchronise

the system in the parameter range explored. The period of oscillations are driven

by the neuromodulators and can vary within a range. A more detailed study of the

variations in the oscillator’s time period, its stochastic nature, and the variations in

the phase responses of the neural system is future work. Varying connection strength

(St) along with fb also delineate the importance of higher feedback in the system

with higher fb resulting in lower chances of freezing.

The connection strength relates to the homeostatic plasticity of the CPG

neurons (Northcutt and Schulz, 2020) and further experimental study is needed to

understand its implication in PD. The parameter exploration points to the relatively

complex ways of generating FoG and the possible reasons one treatment method
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does not work for all. Furthermore, finding the exact physiological correlates of the

model-parameters needs further study. An experimental study on human/animals

under the influence of auditory inputs while simultaneously monitoring the CPG

activity and the proprioceptive feedback input to the CPG would better understand

the physiology.

Muscle synergy and the uncontrolled manifold hypotheses by Latash, Scholz

and Schöner, 2002 puts forth a theory of coordinated action of a set of muscles such

that motor redundancies are avoided. The proposed model shows that violation

of this coordinated action hypothesis could lead to pathological behaviour such as

freezing. Hence, this model and the muscle synergy hypothesis stay compatible. In

the language used by Latash et al. (Latash, Scholz and Schöner, 2002), the ‘bad

region of variability’ could very well be the cause of the pathological gait observed in

PD. One could conclude that CPG and limb mechanics’ dynamics are sufficient to

explain many of the gait abnormalities, and a more focused study of the spinal cord

changes and PPN in PD will shed more light on the matter.
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7. Phase Reset Curve Based

Generalization of the Freezing of

Gait Model

This chapter aims to develop a simplified discrete model-based framework for studying

gait using the learnings from the previously described models in chapters 5 and 6.

The role of oscillators is simplified using the ideas of the phase reset curves (PRC),

and the mechanics are further simplified using an energy argument. While this is

a simple framework to study gait, the use of the PRC curves is general enough to

study different types of neuronal oscillators or neuronal ensembles

Abnormal neural inputs counteract inertia and result in the sudden stop-

page of gait, while generating high gait variability between freezing events (Barbe

et al., 2014). Studies show activations of several regions of the brain correlate

with seemingly disparate symptoms related to freezing of gait (Pozzi et al., 2019;

Heremans, Nieuwboer and Vercruysse, 2013b). Therefore, it is unclear if the gait

abnormalities (freezing, highly variable stepping) in PD are the manifestations of

the same underlying cause or the result of several plausible pathologies.

In summary, the variability and freezing observed in PD-Gait necessitate a

mathematical explanation. While there are several attempts to address this question,

there is a need to develop a simple mathematical model which addresses this problem.

Moreover, the model is required to accommodate the effect of PPN stimulation and

the influence of oscillator time-period. There is also a demand for modularisation

of the different systems governing the walking model, such that one could study

different types of perturbations to the CPG system.
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The chapter is structured as follows. The PRC based mathematical modelling

procedure is described in the Sec. 7.1 with the relevant functions and quantification

of freezing fraction in Sec. 7.2. Subsequently, the results and discussion are presented

in Sec. 7.3 and Sec. 7.4 respectively.

7.1 Modelling

The section describes the assumptions and modelling approach used to generate

maps governing PD walking dynamics.

7.1.1 Neural oscillators and phase

CPG are assumed to be controlling walking dynamics (Minassian et al., 2007),

which can in turn be represented as oscillators. Sec. 3.2.6 provides a more detailed

description of PRC and its relationship with oscillator dynamics. The following

definition of phase is repeated for clarity.

Definition 7.1.1 For each point x in the basin of attraction of the periodic orbit

ϕ̃(t) of the oscillator, there exists a unique function φ(x) such that

lim
t→∞

|x(t)− ϕ̃(t+ φ(x))| = 0, (7.1)

where x(t) is a trajectory (solution) of the dynamical system starting with the initial

point x. The value φ(x) is called the asymptotic phase or phase of x (Josic,

Shea-Brown and Moehlis, 2006).

When the oscillator’s trajectory is in the basin of attraction of the limit cycle, a

function φ(·) as defined in Def. 7.1.1 could be used to determine its phase.

PRC in Gait: One could assume the torques supplied to the legs as a

function of the phase. Another key aspect is the effect of the perturbation on

neural oscillators due to input from the limbs or the brain. This is modelled as

perturbations to the phase of these oscillators. Perturbation of the oscillator of

state x with phase v := φ(x) results in shifting the oscillator to a new state x̄ with
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phase v̄. Then v̄ := v + PRC(v, a). After time Tq the phase would be equal to

(v + PRC(v, a) + Tq ) mod T where T is the time period of the oscillator and a is

the amplitude of the feedback. It may also be noted that the continuous inputs for a

longer duration can also be approximated as impulses (Izhikevich, 2007).

7.1.2 Mechanics

A linearised inverted pendulum model of the form ż = Az is used to approximate

the limb dynamics, where the states z = [θ, ω]T and the system matrix A is

A :=

 0 1

g/l 0

 (7.2)

where, g is the acceleration due to gravity and l the length. The time required to

Figure 7.1: Inverted pendulum dynamics relevant to the PRC based discrete EoM.
The angular velocity changes from ωn to ηωn after the heel strike.

reach the state ze starting from the state zs can then be computed for the cases

where it is physically possible by finding the tq s.t. eAtqzs = ze in terms of the

elements of the matrix A and the initial conditions. Let the states zs = [θstep, ωn]
T
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and ze = [−θstep, ωn]
T represent the starting position and the end position of an

inverted pendulum immediately before the heel strike. As indicated in Fig. 7.1, a

constant angular velocity is assumed at the end of the step before reset in accordance

with the conservation of energy argument provided in the Appendix. B.1. For

zs = [θstep, ωn]
T and ze = [−θstep, ωn]

T

eAtqzs − ze = 0 (7.3)

By finding the root of the Eq. 7.3 the time to impact or the time to heel strike is

obtained as follows,

tq(ωn) =

√
l

g
log

ωn

√
l
g
− θstep

ωn

√
l
g
+ θstep

 (7.4)

Here, tq maps the angular velocity to corresponding time to impact or time to heel

strike. The time is measured from the initial condition (which is typically the start

of the toe off phase) to the heel strike. As one can observe, it is a function of the

parameters of the model θstep, l and g (see Table 7.1 for values). In this work the

angle θstep is assumed to be a constant thereby reducing the number of mechanical

states to be modelled to one. Slowing down, and corresponding reduction in step

length will therefore result in increased time to impact.

However, when the angular velocity is sufficiently small, the tq(ωn) as defined

in Eq. 7.4 will not result in a positive real value. To account for this, the following

definition is used,

Tq(ωn) :=


tq(ωn) if tq(ωn) ∈ R+

rt if tq(ωn) /∈ R+

(7.5)

where rt is the reaction time. When there is not enough moment to push forward, this

account for the minimum time for the perception and the corresponding action. As

the reflexes have a less than 50 ms delay (Malcolm, 1951) one could set rt := 0.05 s.

The number of times Tq(·) equals rt is counted as a freezing incident. This definition
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of Tq(·) (Eq. 7.5) is used throughout this work.

As shown in Fig. 7.1 when θstep is modelled as a constant, the only mechanical

state that remains to be accounted for is the change in angular velocity in each

step. By symmetry, the total amount of potential energy at the start of the stance

and just before the heel strike are the same (neglecting the air friction and other

losses). Additionally, this energy argument assumes the ground is uniform and the

step length is constant. However, after the heel strike, one must account for the

losses due to impulses and other losses. This is accomplished in the model using

a constant η < 1. Further, accounting for the forcing received from the CPG, the

equations of motion can be prescribed as follows.

ωn+1 := ηωn + ft(vn+1, ṽn+1); (7.6)

The variability in forcing introduced due to postural control during walking, swaying

of hands, adjustments of the centre of gravity, different levels of muscle activation

are also be absorbed into the function f(·).

7.1.3 The General PRC Based Model for Constant Step Size

The evolution of the angular velocity and phase can be prescribed in general using the

equations given below. The PRC based equations show how given an initial condition

[vn, ṽn, ωn], functions fω(·), fv(·), fṽ(·) propagate the system to [vn+1, ṽn+1, ωn+1].

ft(vn, ṽn) := f1(vn)− f2(ṽn) (7.7)

fv(vn; ωn, a, T ) := vn+1 := (vn + PRC(vn, a) (7.8)

+ Tq(ωn)) mod T

The function ft(·) maps the phases of the oscillators (phenomenologically modelling

the slow dynamics of a bursting oscillator) to the net force generated by the muscles.

In PD the forces can act in opposite directions (Nieuwboer et al., 2004; Parakkal Unni

et al., 2020b) which is modelled as f1(·) and f2(·). Here f1(·) corresponds to the
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PRC

Losses 

and Forcing

Figure 7.2: A trajectory of one of the oscillator’s phase vn and angular velocity ωn

close to a limit cycle is symbolized. The other oscillator’s phase (ṽn) also follows a
similar qualitative pattern. After the heel strike, sensory input is sent to the CPGs
and the phase of the oscillator jumps from vn to vn + PRC(vn, a) depending on the
input received. This jump is therefore controlled by the PRC(·). The next heel strike
happens after a time, Tq(ωn) advancing the phase to vn + PRC(vn) + Tq(ωn) mod T

where T represents the oscillator’s time period. The initial angular velocity ωn

after accounting for the losses ηωn (due to impulse and other physiological causes)
and forcing supplied by the oscillators transitions to ωn+1 := ηωn + ft(vn+1, ṽn+1).
Forcing supplied to the angular velocity at nth iteration needs the phase of the
oscillator at n+ 1th step which is accounted for in Eq. 7.11.
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forcing generated by the plantar flexors of the swing leg, and f2(·) corresponds to

that of the stance leg. The function fv(·) maps the current phase of an oscillator

to the new phase, and this phase in turn controls the amount of forcing in the next

step.

fω(ωn; vn, ṽn) := ωn+1 = ηωn + f1(vn+1)−

f2(ṽn+1) (7.9)

= ηωn + ft(vn+1, ṽn+1) (7.10)

= ηωn + ft(fv(vn; ωn, a1, T ),

fv(ṽn; ωn, a2, T )) (7.11)

The function fω(·) maps angular velocity of one step to the next. As indicated in

Fig. 7.2 the phase at the start of n+ 1th step vn+1 adds energy to the damped

angular velocity ηωn. Parameters a1 and a2 are used to model the differences in the

PRC(·) of the stance and swing leg respectively in each gait cycle. The value of a

parametrizes the PRC(·). Therefore, these parameters control the change in phase

due to the feedback (perturbations) received by these oscillators. This results in the

following composition of the functions for a single gait cycle,

fp2
ω (ωn; vn, ṽn, a1, a2, T ) := fω(fω(ωn; vn, ṽn);

fv(ṽn; ωn, a2, T ),

fv(vn; ωn, a1, T )) (7.12)

fp2
v (vn; ṽn, ωn, a1, a2, T ) := fv(fv(vn; ωn, a1, T );

fω(ωn; vn, ṽn), a2, T ) (7.13)

fp2
ṽ (vn; ṽn, ωn a1, a2, T ) := fv(fv(ṽn; ωn, a2, T );

fω(ωn; vn, ṽn), a1, T ) (7.14)
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The functions fp2
ω , fp2

v and fp2
ṽ maps the states ωn, vn, ṽn to ωn+2, vn+2, ṽn+2

respectively. All the maps required for a gait cycle as a vector valued function is

given below,

fp2(ωn, vn, ṽn; a1, a2, T ) :=
fp2
v (vn; ṽn, ωn, a1, a2, T )

fp2
ṽ (vn; ṽn, ωn, a1, a2, T )

fp2
ω (ωn; vn, ṽn, a1, a2, T )

 (7.15)

7.2 Relevant functions

This section describes two of the functions that characterises the equations described

in Eq. 7.15. Additionally, the method used for the computation of the freezing

fraction is also provided.

7.2.1 Forcing Function

The function ft(vn, ṽn) controls the amount of ‘forcing’ given the phase vn and ṽn. The

function ft(·) combines two other functions f1(·) and f2(·) which phenomenologically

represent the forcing supplied by the CPG on the limbs. A sinusoidal function is

used for this purpose to ensure the starting of activation (of the CPG bursts) is at

vn = 0. The threshold operation using min(·) ensures forcing is active only when the

oscillator is in the active region of phase (positive region by definition),

f1(vn; mf1) := min

(
mf1 sin

(
2πvn
T

)
, 0

)
(7.16)

where mf1 is a muscle force constant that controls the amplitude of the forcing

generated on the limbs due to the muscles. This constant is varied to incorporate the

differences in opposing ankle push-off forces (Nieuwboer et al., 2004). Similarly, the

function f2(·) is assumed to have mf2 as the muscle force constant. This completes the

description of the forcing functions f1 and f2 in Eq. 7.9. Indirectly, the muscle force

constant also incorporates the synchronous forcing generated due to the swaying of
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arms, postural adjustments, adjustments of the centre of gravity that multiplicatively

amplifies the forcing. Furthermore, |mf1 | > |mf2 | implies higher amplification of the

neural forcing either due to the activation of more motor units or by the synchronous

motion of the rest of the body.

7.2.2 PRC Function

PRC of the bursting neurons has been studied by several authors experimentally

(Oprisan, Thirumalai and Canavier, 2003; Pinsker, 1977). The methodology de-

scribed in this chapter forms a general framework for exploring these systems for

understanding PD-Gait. Studying every possible form of PRC is not attempted

and is very difficult. In this work, a set of general inhibitory PRC has been studied

for their effect on walking. The model proposed can be modified to investigate a

different PRC associated with walking by plugging in that function of the PRC

rather than developing a differential-equation based neuromechanical model. Varying

parameter T changes the frequency of oscillation, and varying a changes the PRC’s

shape. The system is simulated numerically using a family of PRC functions, and

the results are plotted. The two oscillators governing the motion are assumed to

have different PRC(·) functions. Hence, the parameter a = a1 and a = a2 are used

to represent each of the oscillators. Neuromodulators, currents and variabilities

in channel conductances affect the shape of the PRC(·), which can be studied by

varying the parameters a and T .

Remark 6 PRC of oscillators: Typically PRC can have regions (of phase) where

an impulsive input will result in phase-advance, phase-delay or both. Typically,

integrator types of neurons show a phase advance for excitatory impulsive input and

resonator types of neurons can have a phase delay and phase advance against an

excitatory impulsive input. The damped oscillations near a bifurcation point (e.g.

subcritical Adronov-Hopf) result in the resonance behaviour (Izhikevich, 2007).
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7.2.3 Form of the PRC Functions Used in the Model

The PRC of the bursting neuron for inhibitory feedback is studied here for its

influence on freezing. While this shows a plausible way of generating freezing and

variability in PD patients, this is not a comprehensive list of all possible modes of

inducing freezing. However, the methodology developed here generates a framework

to test the multiple hypotheses as more experimental evidence emerges.

PRC relevant to the bursting CPG neurons of the form described in (Oprisan,

Thirumalai and Canavier, 2003) is used in this work to represent a plausible class of

bursting neurons. The convention used by mathematicians as described in Canavier,

2006 is used here. A positive value of PRC indicate an advance in phase under

perturbation and vice-versa. However, biologists typically use the opposite convention

(Canavier, 2006; Oprisan, Thirumalai and Canavier, 2003). As analytical expressions

are not available for these PRC functions (PRC(·)), an interpolated form of the

function has been used for its study. Given a finite set of four points the interpolated

PRC(·), between those points is defined as below.

PRC(vn, a) := Ifun(Is, O) (7.17)

where Ifun(·) ∈ C0 is an interpolation function of the order O ∈ N, Is ∈ {Im, Ie}

and O = 1 where,

Im := {(0, −0.5T ), (0.4T, aT ),

(0.8T, aT ), (T, 0.5T )} (7.18)

Ie := {(0, −0.5T ), (0.4T, 0),

(0.7T + 0.25aT, 0), (T, 0.5T )} (7.19)

The interpolation function is linear between the points. A general formulation

of the interpolation function is used here to aid for future extensions. Hence,

using the above definitions, one could generate different PRC(·) that correspond to

different physiological scenarios by varying a. These functions map phase (vn) to
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the corresponding PRC(·) Substituting these PRC(·) in Eq. 7.9 - 7.15 generates

different forcing functions and corresponding gait.
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Figure 7.3: The PRCm(·) parametrized by a with phase advance and delay regions
having a shape similar to Oprisan, Thirumalai and Canavier, 2003 and Soofi and
Prinz, 2015. Variations of a in PRCm(·) further advances or delays the phase reset.
If the slow variable is calcium then this shows how much change happens due to a
perturbation in the accumulated calcium during a burst. Here T is chosen to be 0.5
which determines the length of the abscissa.
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Figure 7.4: The PRCe(·) parametrized by a with phase advance and delay regions
having a shape similar to Oprisan, Thirumalai and Canavier, 2003 and Soofi and
Prinz, 2015. Variations of a in PRCe(·) changes the size of the MPR region. Here T

is chosen to be 0.5 which determines the length of the abscissa.

The set of points Im and Ie has been used to generate PRCm(·) and PRCe(·)

respectively parametrized by a and T . This, in turn, depends on the channel

which controls the slow dynamics (of the slow-fast system) and how it is modulated
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(Oprisan, Thirumalai and Canavier, 2003; Ermentrout and Terman, 2010b). The

effect of change in the frequency of oscillations is studied separately by varying T .

As one could observe from the Fig. 7.3 the PRC(·) functions used in this work are

piecewise-linear; parametrized by a and T . For a particular value of parameter a and

T , the PRC(·) has three segments associated with it. For convenience, these three

consecutive regions are named according to their relative locations. Region closer to

the active region of the phase (v = 0) is defined as the beginning of phase region

(BPR), a constant region in the middle is defined as the mid-phase-region (MPR),

and the region closer to the next active region at the end, is defined as the end phase

region (EPR). In other words, first, second and third piecewise linear segments of

the PRC(·) defined in Eq. 7.17 correspond to BPR, MPR and EPR, respectively.

As shown in In Fig. 7.4, for PRCe(·) varying a changes, the length of

‘constant’ phase-reset regime (MPR). A more negative a reduces the length of the

MPR region. For PRCm(·), as displayed in Fig. 7.3, varying a further advances or

delays the phase reset. While a more negative a advances the phase reset, a positive

value of a delays it. The same symbols a and T are used in both the PRC functions

PRCm(·) and PRCe(·). Hence, one could only understand these symbols’ meaning

in conjunction with the PRC function it is referring to. Also, as two oscillators are

there in the model, parameter a corresponding to the first and second oscillator are

denoted by a1 and a2, respectively.

There is a multitude of plausible shapes that are observed experimentally

even for inhibitory inputs as studied here (Pinsker, 1977; Soofi and Prinz, 2015)

depending on the kind of physiology (e.g. conductances and perturbation levels/type)

being studied. The framework developed here allows for the study of any PRC shape

on FoG.

7.2.4 Freezing fraction

A set of initial phases {vi
0 : i ∈ 1 . . ninit where vi

0 ∈ R2} is chosen from a uniform

distribution defined on the grid [−0.9T, 0.9T ]× [−0.9T, 0.9T ]. The initial angular

velocity was chosen to be a constant. This was iterated for niter steps using the Eq.
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No. Parameters Value
1 a1 0.2
2 a2 -0.2
3 T 0.5 s
4 rt 0.05 s
5 mf1 -0.1
6 mf2 -0.1
7 l 0.7 m
8 η 0.98
9 g 9.8 m s−1

10 PRC(·) PRCm(·)
11 ω0 -0.7 rad. s−1

12 v0 0.05
13 ṽ0 0.3
14 θstep 0.1 rad.

Table 7.1: Typical values of the parameters used in the simulations.

7.15 (with appropriate substitutions for the functions as described previously). The

set formed by Ωs := {ωi
j : i ∈ 1 . . ninit and j ∈ niter − k . . niter} is used for further

analysis. The ninit, niter and k are chosen to be 10, 130 and 50 respectively. The

fraction of freezing incidents in the set Ωs is then computed by counting the number

of points with Tq(ωn) = rt and dividing it with the cardinality of the set Ωs.

7.3 Results

This section provides numerical simulations of the model and the analysis of its

parameter variations. Unless otherwise specified, the parameters used in the model

are given in Table 7.1. The simulations exhibit normal gait, FoG, variability in gait,

change of gait from walking to freezing and vice versa. The model also displays

orbits of different periods and chaos. Furthermore, multiple PRC shapes are studied

to understand the effect of neurobiological perturbations.

7.3.1 Simulation of Normal Gait and Freezing

The Fig. 7.5 presents a numerical simulation of Eq. 7.15 using the PRCm(·) and

forcing function defined in Eq. 7.16. This subsection aims to demonstrate the
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of step number n. The parameters used
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(d) Freezing with high variability: Forcing

as a function of step number n. The para-

meters used in the simulations are a1 =
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Figure 7.5: Numerical simulation of Eq. 7.15 using the PRCm(·) and forcing function
defined in Eq. 7.16

capability of the model to exhibit freezing and normal gait. Subsequently, the role of

parameters in producing freezing and normal gait are studied.

Simulation of Normal Gait: One could observe normal gait of period-1 in Fig. 7.5a

- 7.5b. In Fig. 7.5a, along with the states (ωn, vn, and ṽn) the step time (Tq) as

defined in Eq. 7.5 have also been presented. Forcing generated on both the limbs

are plotted in Fig. 7.5b for the normal walking scenario. Here, the magnitude of

forward forcing is larger than the opposing forcing generating a periodic orbit. One

could note that the unit of forcing term expressed in rad. s−1 and not in Newtons.
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One could interpret this forcing as increased angular velocity in a step resulting from

the neural input.

Simulation of Freezing of Gait: Freezing shown in Fig. 7.5c arises from the ‘untimely’

generation of the forcing in the opposite direction (Fig. 7.5d) such that the forward

forcing becomes incapable of pushing the centre of mass forward. At that point, Tq(·)

gets reset to rt as defined in Eq. 7.5. This reset results in Tq = rt = 0.05 s in the

freezing regions. One could also observe the instances of slowing down with Tq > 1 s.

Physiologically slowing down in the model could correspond to a reduction in step

length in the real walking data. This is due to the constant step length assumption

used in this model.

7.3.2 Effect of Changes in T , mf , and η
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Figure 7.6: The stable Tq is shown as a function of the oscillator time period T . In
the freezing region the value of Stable Tq is very low as the time to impact is defined
to be rt = 0.05 s in that case.

The oscillator’s time period T and parameters mf and η have been varied

and the corresponding time to impact is studied in this section. The time to impact

of the last 10 ( k = 9 ) (after 1000 iterations of Eq. 7.15) iterates are plotted against

the dependent variable T, mf , and η in Fig. 7.6, 7.7, and 7.8 respectively. PRCm(·)

is used in these simulations as the PRC function. Time to take a step increases

(walking slows down) with an increase in oscillation time period T . After a threshold
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Figure 7.7: The stable Tq is shown as a function of the mf . In the freezing region
the value of Stable Tq is very low as the time to impact is defined to be rt = 0.05 s
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Figure 7.8: The stable Tq is shown as a function of the η. In the freezing region the
value of Stable Tq is very low as the time to impact is defined to be rt = 0.05 s in
that case.
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time period of oscillation, the variability in the system increases eventually leading

to freezing after T u 0.6 s (Fig. 7.6).

As depicted in Fig. 7.7 very low |mf | results in freezing; when |mf | is

increased, this results in periodic walking behaviour. However, a further increase in

|mf | does not result in better walking performance but high variability, eventually

leading to a freeze. Moreover, a lower absolute value of the parameter mf could be

attributed to lower muscle-tone. One could hypothesise PPN stimulation (known to

result in lowering the muscle tone (Snijders et al., 2016)) plausibly moves the system

to the region of the optimal muscle-tone, helping to avoid a freeze.

As shown in Fig. 7.8, an increase in η results in an increase in the walking

speeds (decrease in time to impact). However, a further increase close to η u 1

results in high variability. The parameter η phenomenologically controls the losses

which are proportional to the angular velocity such as impulse losses.

7.3.3 Varying the shape of the PRC

Two qualitative variations of the PRC, namely PRCm(·) and PRCe(·), are studied

in this work. Variation of the PRC using PRCm(·) is studied in Figs. 7.9a and 7.9b

showing freezing fraction and coefficient of dispersion (CD) respectively. Freezing

fraction and CD are computed by varying the parameter a of oscillators, that

corresponds to the forward forcing (a1), and backward forcing (a2) in the model,

individually. The freezing region and the normal gait region have low CD, while

those regions’ transition has a higher variability (higher CD). Varying a1 and a2

in PRCm(·) does not show a clear demarcation for walking and freezing regions.

However, one could note that when a1 u a2 the freezing fraction (Fig. 7.9a) and

variability (Fig. 7.9b) is high. Variation of the EPR using PRCe(·) is studied in

Figs. 7.9c and 7.9d; showing freezing fraction and CD respectively. As described

previously, the freezing fraction and CD are computed by individually varying the

parameter corresponding to the forward forcing (a1) and the backward forcing (a2).

The Fig. 7.9c indicates that a1 > 0 and a2 < 0 is better for walking. The region

between walking and freezing exhibit high variability, as shown in Fig. 7.9d.
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Constant Parameters T = 0.5 s, ω0 =

−0.7 rad. s−1. PRC function used is

PRCm(·)
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at high initial angular velocity conditions.

Constant Parameters T = 0.5 s, ω0 =

−0.7 rad. s−1. PRC function used is

PRCe(·)
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T = 0.5 s, ω0 = −0.7 rad. s−1. PRC func-
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Figure 7.9: Result for the PRCs of the type shown in Fig. 7.4. One must note
that parameters a1 and a2 has different meanings in different PRC(·)s and hence in
different figures.
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7.4 Discussion

Freezing of gait is a debilitating phenomenon, the mechanism of which is still

unclear. In this work, PRC of CPG oscillators and walking mechanics have been

used to generate a map to understand how feedback and related perturbations to

the CPG systems affect PD locomotion. The plantar flexors of stance and swing

legs are modelled following the observations given in (Nieuwboer et al., 2004).

Hence, this model is specific to PD. The model shows the effect of PPN stimulation

phenomenologically, and the modular structure of the model makes it compatible

for testing out different PRC functions. Moreover, the modular structure aids in

understanding the plausible neural correlates of PD variability and freezing of gait.

Furthermore, as different models converge to similar PRC shapes, the results obtained

using PRC based methodologies generalises to a larger class of models. The model

has been studied to understand different perturbations on the PRC function and

change in different parameters that potentially correspond to the PPN stimulation

and oscillator time periods. Parameters of the CPG such as T, mf , η have been

investigated in this chapter. The parameter mf controls the total energy supplied

from the muscles, and a higher absolute value of mf could be attributed to higher

muscle tone. Therefore, this parameter is a phenomenological representation of the

PPN, which, when stimulated, decreases the muscle tone (Snijders et al., 2016).

Plausibly, PPN stimulations that reduce muscle tone can be attributed to reducing

the parameter |mf | in the model such that one achieves periodic walking. A related

parameter is η, a lower value of which results in higher energy loss in each step.

Therefore, this parameter is affected by impulsive dynamics and energy loss due

to antagonistic muscles’ activation. The time period (T ) of oscillations is prone

to be altered by different kinds of cellular perturbations, (e.g. neuro-modulators,

temperature). Increasing the time period of oscillations beyond a threshold results

in high variability and freezing. Further, this dependence on time period could be

proposed as a plausible mechanism of freezing, necessitating further experimentation.

The effect of change in time-period is studied independently, even though this change

can affect PRC(·) shape. However, it could be argued that homeostatic mechanisms
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such as intracellular calcium dependent readjustment of conductance make PRC and

time-period independent. One of the novel aspects of this work lies in generating

a PD-Gait model which is modular enough to accommodate different PRC shapes.

These PRC functions abstractly represent the oscillator dynamics and control the

forcing generated at each step, determining the system’s future evolution to FoG

and normal gait. There are disparate parameter sets such as conductances and

currents, which could elicit similar circuit activity (Prinz, Bucher and Marder, 2004).

Also, there are multiple underlying redundancies in the currents, which help bring in

resilience to the neuronal activity against perturbations (e. g. temperature (Alonso

and Marder, 2020)). In other words, in a set of cases, variations in individual

conductances get balanced out by homeostatic mechanisms such that stable network

activity is maintained (Liu et al., 1998). Hence, talking about the effect of individual

conductances without correctly modelling the intracellular feedback mechanisms

of homeostasis (e.g. calcium-sensing) can be meaningless. Hence, a framework

is developed such that the FoG could be studied without focusing on individual

conductances and other cellular dynamics.

The framework developed could be used to analyse several plausible PRCs

and their variations. This is demonstrated using two ‘variations’ in PRC functions

adapted from the works of Oprisan, Thirumalai and Canavier, 2003 and Soofi and

Prinz, 2015. In Fig. 7.3 decreasing the parameter a could be interpreted as an

increased H current (Soofi and Prinz, 2015). One could see from Fig. 7.9a that

a similar (high or low) H current on both the oscillators can result in freezing of

gait. Moreover, shrinking of the constant (MPR) region is studied using the PRC

functions given in Fig. 7.4. This type of change in PRC function can be seen in the

experimental study by Oprisan, Thirumalai and Canavier, 2003, depending on the

perturbation duration. A further study is required on the effects of the relevant PD-

Pathologies on PRC. From the simulations, it is clear that different neuropathologies

may lead to PRC changes, leading to the freezing phenomenon. These simulations

also explain the discrepancy in the different neurophysiological characteristics leading

to a freeze (Pozzi et al., 2019). The high variability regions are closer to the freezing
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regions, which align with the experimental evidence. Also, experimentally, one can

only look at different subregions of the overall parameter space. Hence, this generates

discrepancies in the effectiveness of the treatment methodologies. Model-driven

experimentation would help more personalised treatment methodologies. Moreover,

in future work, one could design experiments to estimate the PRC of the CPG in

PD patients. These estimated PRC functions could then be plugged into the model

and tested if the walking data observed experimentally and generated by the model

match. Additionally, one could stimulate the anatomical structure PPN with different

current intensities, thereby controlling the overall muscle tones. The result should

then match with the variations in gait (step times) introduced by the variations of

the parameter mf .

The PRC(·) developed in this work describes only the slow dynamics of

the slow fast bursting system. The modulation of bursting fast dynamics can be

explained by slow outward (inactivation of inward) voltage-dependent or Ca2+ -

dependent current (Izhikevich, 2003). The PRC(·) can be controlled by controlling

these slow currents’ dynamics either through input from the brain-stem locomotor

areas or motor cortex (Grillner, 1985; Ermentrout and Terman, 2010a). Neurotrans-

mitters or neuromodulators could mediate these inputs (Golowasch, 2019). One

could observe from the study of parameters a1 and a2 that normal walking can

exhibit in large parameter space. Neuromodulation controls the ‘normal’ operating

parameter range of the neurons (Golowasch, 2019); hence, treatments targeting them

could be beneficial in PD. Therefore, a computational and experimental study of

neuromodulatory effects on the PRC of the CPG in PD subjects is highly warran-

ted. Moreover, rehabilitative training in PD could be studied as minimising CD by

varying parameters a1 and a2. Training essentially results in the convergence of the

parameters to the ‘walking regimes’ explaining the recovery processes.

143



8. Summary and Conclusion

The thesis presented an analysis of stepping data for FoG prediction and mathematical

modelling methodologies for understanding PD-Gait, specifically FoG.

Data Analysis: On the data analysis front, a prediction algorithm was developed

to forecast FoG in PD. The prediction algorithm was implemented using a rolling

window-based approach, rather than the FoG/Pre-FoG classification based approach

typically seen in literature (Pardoel et al., 2019). Moreover, the algorithm was

tested with a different offset length than it was trained for, demonstrating a valuable

real-time prediction system. Typically, in pre-FoG/FoG classification literature,

varied lengths of pre-FoG data are used for analysis ranging from 1 s-11 s (Mazilu

et al., 2013; Pardoel et al., 2019). Though not directly comparable to the Pre-FoG

time period chosen, our analysis demonstrated an optimum input length (1.13s)

of data to be used for prediction FoG. Individual variations are very high in the

FoG prediction literature (Pardoel et al., 2019). A personalization methodology is

proposed in this thesis to give control of the trade-off between the sensitivity and

specificity to the user. The methodology developed forms a potential tool to be used

in conjunction with the augmented feedback given to the people affected with PD.

Moreover, the cross-validation technique used in the thesis aims to avoid the reuse

of the data in training and testing. A key limitation of the data analysis work, is the

low number of patients, which needs to be addressed in future extensions.

Modelling: Mathematical modelling of PD-Gait and FoG is accomplished in three

stages using a bottom-up approach. In this thesis, modelling is done from the leg

upwards and is referred to as the bottom-up approach. There are other meanings

for the word bottom-up such as starting from the smallest details of the system

(e.g. cellular level), which are not applicable in this work. This is done first by
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modelling the essential aspects of kinetics of the lower limbs under a physiologically

meaningful forcing. Successively, going upward, modelling the influence of the CPG

and then generalizing the model using a phase reset curve based approach. This

methodology helped constrain the number of variables in the model to a lower value

while explaining a set of possible mechanisms of freezing.

In Chapter 5, the ankle-push-off based model addressed the defective limb

kinetics, taking into account the abnormal EMG patterns shown in Nieuwboer et al.,

2004. In the proposed model, an inverted pendulum abstracts the dynamics of the

stance leg. The novelty in the model comes from the physiologically meaningful

forcing proposed and the model’s ability in exhibiting PD-Gait abnormalities and

normal gait. A salient parameter of the model is the phase; this quantifies the

premature activations of the plantar flexors. Variations of the phase parameter

showed period-doubling, chaos and freezing in the model, delineating the role of

coordination in the model. This finding, the role of phase in freezing and variability,

is central to the future developments of the model. Apart from explaining the effects

of lack of coordination, the ankle-push-off model also studies the effect of forcing

and the step sizes. In this model, even though inputs from the brain is not modelled

explicitly, one could speculate that the parameter τl could be influenced non-motor

aspects such as anxiety. This result in higher premature activation of the plantar

flexors and can lead to a freeze. The focus on mechanics, ability to exhibit FoG and

variability distinguishes the proposed model from the previously proposed models

of PD in the literature (Muralidharan et al., 2018; Sarbaz et al., 2012; Montazeri

Moghadam et al., 2018). Key aspects missing from the ankle push-off model are the

following (1) It does not show how gait transitions from a freeze to walking (2) How

the lack of synchrony in the phase is generated and (3) What is the effect of feedback

in PD-Gait. The subsequent models aim to address these questions.

The inverted pendulum model derived in Chapter 5 is extended with the CPG

oscillator proposed by Ijspeert, Crespi and Cabelguen, 2005 in Chapter 6. Apart from

the FoG and variability, numerical simulations of this model showed gait transitions

from freezing to walking and the effect of feedback. The lack of synchrony arises in
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this model as an emergent characteristic of interactions between the hybrid-walking

mechanics and the non-linear limit-cycle oscillator. The oscillator based model has

implications to both in understanding PD walking and has the potential to be used

to understand augmented feedback (Hwang et al., 2012). Continuing the trend

from Chapter 5 the parameters which govern the phase, such as the time constant

and feedback, play an important role in the extended model as well. Moreover,

the freezing region and the region with high variability are close by. To address

stability, the method used in the model is inspired by the Poincare based methodology

proposed in Goswami, Thuilot and Espiau, 1996b. This is done by constructing a

map numerically for every gait cycle involving two steps and computing its stability,

considering it as a map. While this model solves the limitations of the ankle-push-

off based simple model, there is further scope for generalization. The aim of the

further generalization is the following (1) ability of the model to generalize to several

oscillator types (2) simplify the model to include only the most salient aspects.

The PRC based model is built as a generalization of the models described

in Chapters 5 and 6. The vital aspect of the oscillator described in Chapter 6

relevant to FoG is, synchronization and desynchronization of phase, which in turn

is governed by the PRC of the oscillator. The discrete model in Chapter 7 makes

use of the relevant experimental studies on phase resets in Oprisan, Thirumalai and

Canavier, 2003. The proposed method explored different variations of the PRC

according to the relevant experimental and simulation studies by Soofi and Prinz,

2015 and Oprisan, Thirumalai and Canavier, 2003. The modularization of the

system allows for its further exploration with minor modifications. The generalized

model exhibited PD-Gait characteristics previously shown by other models, such as

freezing and variability. The role of the oscillator’s time period parameter (T ) in

Eq. 7.16 controlling the freezing and variability follows the trend shown in other

models in Chapters 5 and 6, where phase and coordination affect the FoG and

variability. Moreover, the parameter exploration in PRC based model also shows

the freezing and variability regions to be closer to each other. The discrete based

model reduced the computational complexity of the system, helping to explore a
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set of initial conditions for 1000 iterations corresponding to 500 gait cycles. The

generalization aspect of the PRC model is that the PRC is modelling not one

particular differential equation set but rather the family of differential equations

with the same PRC. Moreover, brain activity of several regions are correlated with

seemingly different symptoms related to freezing of gait (Pozzi et al., 2019; Heremans,

Nieuwboer and Vercruysse, 2013b). From the understanding gained from the PRC

based model, one could speculate why gait abnormalities (freezing, highly variable

stepping) in PD could be the manifestations of the same underlying cause as there

are several parameter regimes at which one observes normal walking, variable walking

and FoG. For example, one could move from walking to freezing and then to the

walking regime by continuously increasing the same parameter of the model. These

parameters phenomenologically represent the neuromodulators or other neuronal

inputs controlling the CPG. In an experimental setting, different governing parameters

need to be measured simultaneously to generate conclusive results. The modelling

studies need further experimental validation to make it useful for clinical applications.

Further experimental studies on the CPG and spinal-chord is needed to generate the

right PRC function governing gait in a patient affected with PD.

8.1 Future Work

There are several ways by which one could extend the PRC based work proposed in

this thesis. The neuromodulators and internal cellular feedback control the PRC of

the system. There is a need for exploring the correlations between neuromodulation,

cellular dynamics and PRC, which could be a future work. One could achieve this

either by experimentation as the one by Oprisan, Thirumalai and Canavier, 2003 or

by numerical simulations of the biophysical models, such as one by Soofi and Prinz,

2015. Successively, one could test the effects of these PRCs on gait. Furthermore,

one could immediately explore the effect of positively perturbed (depolarization)

CPG by looking at its PRC and its effect on the gait model. However, the physical

plausibility of a positively perturbed CPG system should be considered simultaneously.

Moreover, the ankle push-off based model developed in chapter 5 extended in chapter
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6 has further scope for extension using detailed biomechanical models of the ankle

(Chatzistefani et al., 2017; Wynarsky and Greenwald, 1983). These extended models

could be used for developing wearable solutions for FoG (Yetisen et al., 2018).

The proposed PRC based model can be further used with the stepping time

data extracted from accelerometer data or step sensor data (e.g. one available

in mobile phones) for model parameter estimation. One could do this with a

right distance measure between the experimental data, and the model generated

data and an optimization methodology. The parameter estimation would generate

personalized models for the patient, which could then be used for (1) prediction, and

(2) understanding their disease progression. Further validation of these parameters

with patients of different UPDRS scores or with patients at different stages of disease

progression would essentially help develop a clinical tool for evaluating the response

of the patient to treatment methodologies.

The postural control during gait and gait initiation need further study. A clear

understanding of this has not yet been established in the experimental literature

(Snijders et al., 2016). Work in this direction would involve phenomenological

modelling of the muscles involved in postural adjustments, helping to readjust the

centre of gravity before the initiation of walking. Successively the effect from the

higher centres also needs to be established, especially CPG, PPN, MLR and MC.

EMG measurements of the gait initiation also would be very beneficial in validating

the model. One could also make a robotics driven approach to understand gait

initiation. In this case, a bipedal robot could be programmed with a neural controller

for walking from a set of initial conditions. A reinforcement-based learning approach

may be used to learn several strategies to bring the bipedal system from various

initial conditions to the stable walking limit cycle. The learned strategies can then be

compared with the biological neuromechanical system to understand pathophysiology.

There are several other possible ways one could extend the Oscillator and

PRC based models. The effect of noise and external environments are not fully

explored in the thesis, which could be future work. One could also use inverse-optimal

control to learn cost functions, which could then be assumed to control the model.
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This would require additional data collection of the normal and PD subjects. The

learned cost function could then be used as a clinical tool.
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A. Appendix: Background

Physiology

A.1 Motor Control Physiology - General struc-

ture and function

At the lowest level, the neural reflexes carry out locomotion in the spinal cord (Kandel

et al., 2000). These are a set of self inhibiting neurons (Kandel et al., 2000) with

interneurons hardwired (Kandel et al., 2000) to generate oscillations. The next level

of organisation and control happens at the brain (Kandel et al., 2000), with several

regions interacting in learning, integrating feedback and other finer controls. Even

though the neural pathways of motor control are deciphered to some extent, the exact

mechanism of motor control of limbs is an active area of research. Excitation of motor

cortex activate muscles in different parts of our body, eliciting a direct or indirect

projection of the motor cortex to the spinal cord and motor neurons(Lemon, 2008).

The primary motor cortex and supplementary motor areas control the planning

and execution of movements. Motor actions are believed to be controlled via two

different routes: the pyramidal tract and the extrapyramidal tract. The pyramidal

tract consists of the cortico-spinal tract and corticobulbar tract. The corticospinal

tract originates from the pyramidal cells of the cerebral cortex, the majority of which,

projecting from the supplementary motor area and primary motor cortex traversing

through the posterior limb of the internal capsule, cerebral peduncle, to brain stem

and medulla oblongata. Part of these neurons travels down the tract and synapse

with the lower motor neurons in the spinal cord majorly via interneurons (Hall, 2015)
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therefore the name ‘corticospinal’. The corticobulbar tracts also originate from the

cerebral cortex traversing through the brain stem to synapse on the lower motor

neurons of the cranial nerves. The corticobulbar tract, being composed of the cranial

nerves’ upper motor neurons, controls the facial and head muscles in contrast with

the corticospinal tracts controlling the upper and lower limbs through lower motor

neurons.

The extrapyramidal system controls movement through a non-pyramidal

route composing of the nigrostriatal pathway modulated by the basal ganglia, the

cerebellum, the vestibular nuclei, and different sensory areas of the cerebral cortex

(Hall and John, 2005). Parkinson’s disease(PD) is a disorder associated with the

extrapyramidal system, mainly the BG, the physiology of which will be described in

detail in the section below.

A.2 Pathophysiology of Parkinson’s Disease

Basal ganglia situated at the base of the forebrain consists of a set of substructures

- striatum (dorsal (caudate nucleus, putamen) and ventral (nucleus accumbens,

olfactory tubercle)), globus pallidus externus (GPe), global pallidus internus (GPi),

ventral pallidum, substantia nigra and subthalamic nuclei (STN) (Kandel et al.,

2000) (Graybiel, 2000). Models of BG conceptualises its function using direct

and indirect pathways as depicted in Fig. A.1. According to this model, the

thalamus with excitatory effects on the cortex is inhibited by globus pallidus internus.

The direct pathway is known to inhibit globus pallidus internus, thereby helping

initiate movement, while the indirect pathway that involves the subthalamic nucleus

suppresses the thalamic excitation. Moreover, BG has connections towards the PPN

(Pedunculopontine nucleus) (Weinberger et al., 2008) which influences the postural

control and limb movements.

The direct and indirect pathways and the SNc modulation of these pathways

are given below in brief.

Direct Pathway: The striatum, a structure consisting predominantly of

inhibitory medium spiny neurons, receives inputs from the cerebral cortex, thalamus,
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Cortex

Figure A.1: A detailed description of the basal ganglia functional dynamics is provided.
The direct and indirect pathways and the connections to the PPN (Pedunculopontine
nucleus) and midbrain are also indicated. The arrows in the diagram indicate
excitatory input and the disk end points show inhibitory input. The dashed lines
from SNc are used to indicate neuromodulation of the D1 and D2 receptors of
striatum.
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and limbic system. Substantia nigra pars reticularis(SNr) and globus pallidus acts

as the output units which projects to the thalamus and the cortex Fig.A.1. The

cortex provides excitatory inputs to the striatum, providing inhibitory output to

the GPi and SNr. These structures then inhibit the thalamus, which then excites

the cortex. The overall effect of the direct pathway is to increase the activity of the

motor cortex.

Indirect Pathway: In the indirect pathway, the striatum receives excitatory

inputs from the cortex and sends inhibitory projections to the GPe. The GPe then

sends inhibitory connections to the STN while STN sends excitatory projections to

the SNr and GPi. These structures then send inhibitory signals to the thalamus,

which in turn sends excitatory signals to the cortex Fig. A.1. The overall effect of

the indirect pathway is to reduce the activity of the motor cortex.

SNc - Modulation of Direct and indirect pathways: Dopaminergic projections

from the SNc modulate the effect of direct and indirect pathways in the BG and

control the cortex’s activity. This modulation happens in the following way. When

SNc projects onto the striatum, the cells of the direct pathway which has D1 dopamine

receptors gets excited (increases the chances of firing) by binding to the dopamine;

in contrast, the D2 dopamine receptors of the indirect pathway reduces its chance

of firing by binding with the dopamine Fig.A.1. A higher amount of dopamine

generates an increased direct pathway activity and a decreased indirect pathway

activity. In PD the neurons associated with SNc dies, affecting the dopaminergic

neuromodulation of striatum.

A.3 PD interventions

Pharmacological interventions of PD typically target the metabolic pathway of dopam-

ine synthesis and clearance. However, there are other pharmacological approaches as

well to treating PD, such as the use of anticholinergics and amantadine (Connolly

and Lang, 2014). Treatment methodologies aim to increase the concentration of

dopamine in the brain in one of the following ways 1) being a dopamine substitute by

acting on the receptors (e.g. Rotigotine, pramipexole) 2) turning into dopamine (e.g.
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Levodopa) 3) inhibiting the breakdown of dopamine (e.g. Monoamine Oxidase B

(MAO-B) inhibitors) (Kopin, 1993; Goetz et al., 2005; Zahoor, Shafi and Haq, 2018).

These treatment methodologies are relatively more efficient against bradykinesia,

rigidity and tremor than gait and posture-related abnormalities.

DBS is a surgical treatment methodology where high-frequency electrical

pulses are delivered to regions of the brain using an implanted device. DBS has

an effect similar to lesioning the brain region and, therefore, reduces that region’s

pathophysiological effect. VIM (ventral intermediate nucleus of the thalamus), STN,

and GPi are the common areas where the stimulation is targeted and can be beneficial

against tremor, bradykinesia, rigidity and gait impairment. DBS can also help reduce

the time a patient spends in the ‘off’ state of the medication and reducing the

untoward effects of the dopa-induced medications such as dyskinesias and involuntary

movements (Perlmutter and Mink, 2006). DBS on STN has been shown to have

a frequency-dependent effect on FoG (Moreau et al., 2008) helping to maintain

stepping (Yokochi, 2006; Fischer et al., 2020), pointing to synchronisation. The effect

of STN-DBS is not shown to change with dorsal or ventral STN stimulation, pointing

to a diffused effect (McNeely et al., 2011). However, GPi stimulation can trigger

hypokinetic gait disorder with FoG (Schrader et al., 2011). PPN - stimulation has

been identified for stimulation and has shown promise in FoG recently (Molina et al.,

2020; Snijders et al., 2016). While there are empirical observation of improvements

in PD-Gait upon the stimulation of PPN, the exact mechanism of action is still

unclear.
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B. Appendix: PRC Model

B.1 Another way to arrive at the equation of mo-

tion

As the total energy is conserved, one could equate the total energy at the beginning

of a step with the end of the step before impulsive loss as follows,

1

2
I(ωn)

2 + PE1 =
1

2
I(ωn+1)

2 + PE2 (B.1)

Here, I is the moment of inertia of the inverted pendulum, PE1 and PE2 are the

potential energies, and ωn and ωn+1 are the angular velocities. However, as one

assumes constant step size (θn = θn+1),

PE1 = PE2 (B.2)

Therefore, before the impulse loss,

ωn+1 = ωn (B.3)

Considering the energy loss after an impulse, and the forcing added from the neural

system the EoM takes the following form.

ωn+1 := ηωn + ft(vn+1, ṽn+1); (B.4)

Here the function ft(.) depends on the phase vn+1 and ṽn+1 of the neural oscillators

at the time of stepping.
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