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Abstract

As a rotary-percussion system, the vibro-impact drilling (VID) system utilises resonantly induced high

frequency periodic impacts alongside existing drill-string rotation to cut through the rock layers. Due to

the inhomogeneous nature of underlying rock layers, the system often experiences multi-stability which

generates different categories of impact motions as drilling continues dowhnhole. Some impact motions

yield better drilling performance in terms of rate of penetration (ROP) and bit life-span when compared

to others. As an optimisation strategy, the present study adopts feature-based neural networks including

multi-layer perceptron, support vector machine and long short-term memory as intelligent models in

categorising impact motions from a one-degree-of-freedom impact oscillator representing the percussive

bit-rock impacts of the VID system. This way, high-performance impacts can be easily detected and

maintained while undesirable low-performance impacts are well avoided to increase ROP, improve bit

lifespan and save cost. In this study, scarce and limited classes of experimental impact data are merged

with inexhaustibly simulated impact data to train different network models. By means of cross-validation,

the trained networks were tested on separate sets of only simulation and only experimental data. Results

show that extracting appropriate features from raw impact data is essential for optimising the performance

of each network model. About 42% of the feature-based networks yield accuracies greater than 91% while

about 67% yield accuracies greater than 77% on both simulation and experimental impact motion data.

Keywords: Vibro-impact drilling; Rotary-percussion; Bit-rock interaction; Impact motions;

Multistability; Machine learning.

1. Introduction

Rock drilling involves boring holes into rocks using custom arrangement of pipes and bits driven

by a load force. It is extensively used in mining, construction, groundwater development and the oil

and gas industry. Drilling techniques can be summed-up into two major types including rotary and

percussive techniques. The rotary drilling relies on the continuous circular movement of the drill bit and

the drilling mud to cut through the rock while the percussive drilling relies on intermittent heavy blows

delivered by a hammer head to crush underlying rock. If compared, the impact load accumulated by

the falling bit during percussive drilling is much higher and fractures rocks better than the axial loading

achieved by its rotation during rotary drilling [1]. Also, the intermittent impact actions of the drill-bit

during percussive drilling reduces its total rock-contact time to about 2% of the entire drilling time [2].

However, compared to rotary drilling, material removal in percussive drilling is slower, thus resulting
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in re-compaction of previously fractured rock materials by subsequent percussions. In an attempt to

combine the aforementioned advantages of both rotary and percussive drilling, rotary-percussive drilling

technologies were invented [3]. A more recent invention is the high frequency vibro-impact drilling (VID)

[4] also referred to as the resonance enhanced drilling [5]. The system, alongside the existing rotation of

the drill-string during rotary drilling generates high frequency periodic impacts very close to the drill-bit

via the effect of resonance between the drill-bit and the drilled rock. The percussive impacts ensure that

the rock area underlying the bit is intensely weakened while the bit’s rotation ensures that the weakened

zone is timely removed and that fresh rock surface is continuously exposed for fracturing. This thus

prevents the re-compaction of the already fractured rock materials and increases ROP. The intermittent

impact actions instead of the continuous grinding action of conventional rotary drilling reduces the contact

time between the bit and the rock thus reducing its tearing and wearing [2, 6, 7]. Fig. 1(a) shows the

rock fragmentation mechanism of the VID system as a typical rotary-percussive drilling system. Being

a periodically impacting system, the categories impact motions obtainable from the VID system are

annotated as P-i-j, where “i” is the number of period(s) expended before the typical impact motion

repeats itself and “j” is the number of impacts made within the expended period(s).
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Figure 1: (Colour online) (a) Rock fragmentation mechanism of a typical rotary-percussive drilling system and (b) physical
model of the impact system representing bit-rock interaction during percussion.

For conventional drilling systems, weight on bit and rotary speed are two key parameters that are

usually adjusted to improve ROP [8, 9], however, this is not the case for the VID system. While studying

the VID system and its optimal performance conditions, it was observed that ROP increases significantly

with increasing forcing amplitude of the system provided the impact motion is of P-1-1 category [4, 10, 11].

Also, it can be observed from [4, 12, 13] that impact motions with the same number of impact(s) as their

period(s) of excitation gave higher ROP compared to those with non-identical number of impacts and

excitation periods. These observations imply that, despite fulfilling the conditions for resonance in the

VID system, the categories of resulting impact motions is crucial to its performance, and that only

high performing impacts should be maintained during drilling operations. However, changing downhole

conditions which is synonymous to changing system parameters, influenced by the inhomogeneous rock

layers often throws the system into different categories of impact motions. This has been numerically

established via bifurcation analysis [4, 13] which also showed cases of multistability, i.e., two or more

impact motion categories co-existing for the same set of system parameters. This thus implies that

system parameters need to be constantly tuned to maintain desirable impact motions while avoiding

undesirable ones as soon as possible, especially when the system is exhibiting multistability.

With the VID system obscurely hidden down the borehole and the need to constantly monitor its
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exhibited impact motions, it has become necessary to develop a real-time impact motion characterisation

system. Previous experimental [14, 15] and theoretical [4, 13, 16] studies of the VID system have revealed

that complex nonlinear relationship exist between its operational parameters, its measurable variables

and its exhibited impact motion categories. For this reason, the use of artificial neural networks capable

of learning complex nonlinear relationship from data [17–19] is investigated in this present paper to dis-

tinguish between downhole impact motions of the VID system. The impact motions data were obtained

as long time series data of measurable vibration variables. As a suggestion for improving the use of long

time series data in machine learning, feature extractions was carried out [18, 20]. Self-defined features

including morphological waveform features and statistical features were crafted from the data. Automatic

feature extractions using autoencoders, histogram of oriented gradients (HOG) and pre-trained convolu-

tional network were also carried out. The use of direct image classification models, such as convolutional

neural networks (CNN), long short-term memory network (LSTM) and stacked autoencoders (SAE) was

also explored. The outcome of these approaches were compared to that of using original raw data. In

order to meet the large data requirement for training supervised machine learning algorithms and to also

reduce the disparity associated with validating simulation models with experimental data, the practice of

merging both simulation and experimental data for network training was adopted [21–23]. The training

data were thus composed of both simulation data which were inexhaustible and experimental data which

were limited and scarce. The fully trained networks were tested on two sets of out-of-training sample data.

The first set consisted of a five-categories impact data from simulation while the second set consisted of

a three-categories impact data from experiment.

As a new drilling technology, the present study forms an integral part of the VID optimisation strate-

gies and has demonstrated the practicality of a machine learning-based real-time impact motion cate-

gorisation system using readily measurable impact dynamics, and we believe that this is the first time it

is being attempted. The remaining sections of this paper are organised as follows. The impact system

as a representation of bit-rock interaction during percussive drilling alongside its mathematical and ex-

perimental models are presented in Section 2, while a brief description of the feature extraction and the

network classifiers is presented in Section 3. Section 4 contains the results and discussions from the raw

data and feature-based learning. Finally, conclusions are drawn in Section 5.

2. Mathematical description and experimental apparatus

2.1. Mathematical model of the impact system

Fig. 1(b) shows the physical model of the impact oscillator system representing the bit-rock impact

actions of the VID. In this model, it is assumed that the discontinuity boundary for impact is fixed at

x = e, with e > 0 being the nondimensional gap. The equations of motion of the impact system can be

written in a nondimensional form as:x′ = v,

v′ = aω2 sin(ωτ)− 2ζv − x− β(x− e)H(x− e),
(1)

where x′ and v′ are the derivatives of displacement and velocity with respect to the dimensionless time

τ , respectively, and H(·) stands for the Heaviside step function. The variables and parameters in Eq. (1)
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are nondimensionalised as:

x =
y

y0
, β =

k2
k1

, ζ =
c

2mωn
, ωn =

√
k1
m

,

ω =
Ω

ωn
, a =

A

y0
, e =

g

y0
, τ = ωnt,

(2)

where y0 > 0 is an arbitrary reference distance, β is the stiffness ratio, ζ is the damping ratio, ωn is the

natural frequency, ω is the frequency ratio, and a is the nondimensional amplitude of external excitation.

2.2. Experimental apparatus and set-up

The experimental apparatus of the impact system is presented in Fig. 2(a), where a wheeled aluminium

holding frame is excited harmonically by a linear DC servomotor on a fixed basement. A mass (m) which

is restricted to only horizontal displacement is attached to the frame via two parallel leaf springs with

stiffness k1 and damping coefficient c. k1 and c were identified through free vibration tests, and both

of them can be adjusted by varying the length of the leaf springs. Impacts occur when the mass hits

the bolt on the elastic beam attached to the opposite arm of the frame with stiffness k2 at a distance

y > g. The stiffness of the beam can be changed by varying its length to reflect different rock layers

during VID. Mass displacement (y) and acceleration (ÿ) are measured by an eddy current probe and

an accelerometer, respectively. As can be seen from the schematics of the rig in Fig. 2(b), the position

of the motor’s rod is controlled by a PID motion controller and is displayed together with the mass

displacement and acceleration through a graphic user interface in Labview. So, the rod connected to

the holding frame can be harmonically excited at the desired frequency (Ω) and amplitude (A). The

identified physical parameters of the experimental rig are given in Table 1. Samples of obtained periodic

time histories including mass displacement and acceleration smoothened with Savitzky-Golay algorithm

are presented in the internal panel of Fig. 2(a), where impact regimes are characterised with sharp spikes

of acceleration.

Table 1: Identified physical parameters of the experimental rig.

Parameters Symbols Values Units

Mass m 0.503 kg
Stiffness of the leaf spring k1 0.42 kN/m

Damping coefficient of the leaf spring c 0.032 Ns/m
Stiffness of the elastic beam k2 3.36 kN/m

Gap g 4.65 mm
Excitation frequency Ω [3.8, 5.5] Hz
Excitation amplitude A [0.5, 1.1] N

2.3. Simulated and experimental periodic motions

Typical categories of impact motions used in this present study were obtained from both the mathe-

matical and experimental model of the impact oscillator. As earlier stated, the long existing practice of

augmenting scarce experimental dataset with inexhaustible simulation data to improve machine learning

was adopted [21–23]. A mixture of all categories of impact motions from the simulation and experiment

were used to train the networks. However, to evaluate them, the networks were separately tested on

simulation and experimental data that were never part of the training data. By adopting the system
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Figure 2: (Colour online) (a) Photograph and schematics of the experimental apparatus. A wheeled holding frame is driven
freely by a linear DC servomotor on a fixed basement under sinusoidal excitation. A mass is connected with the holding
frame via two parallel leaf springs that prevent it from rotation ensuring horizontal displacement only. Impact will occur
when the mass hits the bolt that is attached to the elastic beam mounted on a separate column of the holding frame. Mass
displacement and acceleration are measured by an eddy current probe and an accelerometer, respectively, and then collected
by the data acquisition system. A sample of the raw data is shown in the internal panel of (a), where impact regimes are
easily recognisable in the form of sharp spikes in acceleration. The motor has a movable rod which is harmonically excited
using desired frequency and amplitude. Position of the rod is monitored by a PID motion controller and is displayed
together with the mass displacement and acceleration through a graphic user interface (GUI) in Labview at a sampling rate
of 1 kHz.

parameters stated in Table 2, Eq. (2) was solved for displacement (x), velocity (v) and acceleration (v′)

of the mass m at different initial conditions by using the Runge-Kutta fourth-order method in MATLAB.

Fig. 3 shows the basins of attraction of the system which contain all the initial conditions that lead to

the resulting categories of impact motions.

Table 2: System parameters for originating co-existing impact motions in simulation.

Parameters MBSN1 MBSN2 MBSN3

ω 0.75 0.935 0.8063
a 5.6 0.7 0.7
β 18.27 29 29
ζ 0.01 0.01 0.01
g 2.1 1.26 1.26

In all five categories of impact motions, P-1-1, P-1-2, P-2-1, P-3-2 and P-3-3 were simulated. For

the experimental investigation, only P-1-1, P-3-2 and P-3-3 impact categories were obtainable. The

acceleration histories of the vibrating mass were used to categorise the resulting impact motions due

to their high sensitivity to impacts. At impact, the mass acceleration starts to decrease rapidly due to

the resistance imposed on it by the constraining elastic force of the impacted beam. Depending on the

present stiffness of the beam, the displacement of the parallel leaf springs reaches maximum and so also

its deceleration, and it returns back to its initial position. This effect results in the occurrence of high

amplitude spikes along the acceleration signal. Typical acceleration time series resulting from simulation

and experiment are respectively shown in Fig. 4 and Fig. 5 alongside their phase portraits.
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Figure 3: (Colour online) Basins of attraction for (a) MBSN1 (b) MBSN2 and (c) MBSN3 showing P-1-1 (black), P-1-2
(red), P-3-2 (green), P-3-3 (magenta), P-5-4 (orange), P-2-1 (blue) and P-5-3 (cyan). The solid red lines in the phase
portraits denote the impact boundary. In the present study, P-1-1, P-1-2, P-2-1, P-3-2 and P-3-3 were used.

3. Feature extraction and classifier networks

3.1. Feature extraction

In order to develop a robust and less erroneous classification networks, feature extraction is often

encouraged, however, with little or no domain expertise, defining such features can be challenging. The

advent of image processing tools has provided a comprehensive and a less interactive way of extracting

features without using domain expertise. In this study, self-defined feature representations including

waveform morphological and statistical features, and automatic feature representations using stacked-

autoencoders, HOG descriptors and pre-trained convolutional network have been carried out. To minimise

the effect of embedded noise without significantly distorting the signal, the experimental signals were

smoothened using the Savitzky-Golay algorithm to fit a second order polynomial over a group of 25 data

points.

3.1.1. Waveform morphological time-interval features

These are numerically coded morphological and time-tied features manually extracted from the signal

waveform in its time-domain format. Common morphologies of time series signals include peaks and

troughs, and studies, [24–26], have shown that their intrinsic properties and distribution along the signal

can be explored to gather information about the signals. For this study peak amplitudes (Apk), peak

locations (Lpk) and peak gaps (Gpk) were coded from the peaks of the signals while periodic locations

(Lprd) and period gaps (Gprd) were coded from the period information of the signal. Before extracting

these features, the negatively projected forward impact peaks were converted to positive peak. Also,

the numerical variation between the different categories of signals and also between the mathematically

simulated and experimental variants (as seen in Fig. 4 and Fig. 5) was nullified by scaling the values to
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Figure 4: Representative acceleration time histories and phase portraits for typical simulated impact motions with the red
line representing impact boundary.

an interval of [0, 1]. This procedure allows data on different scales to be compared by converting them

to a common unified scale. To extract the morphological time-interval features, the period of oscillation

of the signal is first calculated, and from this, Lprd along the signal are deduced and Gprd is calculated.

Secondly, the signal is twice differentiated to reveal the start (Spk) and end (Epk) of each peak which

also marks the loading and unloading of individual impact action. The actual peak location (Lpk) is

calculated as the mid-point between Spk and Epk while the peak amplitude Apk is taken as the value

of the signal at the peak location (i.e. Lpk
th positions). Peak gaps Gpk are calculated as the difference

between consecutive Lpk data. Fig. 6 shows the analysed morphological features for (a) simulated and

(b) experimental acceleration signal.

In all, three sequences of features annotated as MorFeat1, MorFeat2, and MorFeat3 were extracted.

MorFeat1 are row features derived by placing ‘2’ at every peak location (Lpk) on the signal while every

location marking the end of a period of oscillation is marked with ‘1’, and every other point on the
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Figure 5: Representative acceleration time histories and phase portraits for typical experimental impact motions with the
black line representing impact boundary.

signal is represented with ‘0’ [18]. Like MorFeat1, the MorFeat2 and MorFeat3 are also row features, but

only that the peak locations (Lpk) along the signal are represented with the peak amplitudes (Apk) for

MorFeat2, and with peak gaps (Gpk) for MorFeat3. To further remove redundancy, the ‘0’ within these

row features were removed thus leaving MorFeat1 as row vectors of ‘1’ and ‘2’, MorFeat2 as row vectors

of ‘1’ and peak amplitudes (Apk), and MorFeat3 as row vectors of ‘1’ and peak gaps (Gpk). Gpk values

of the MorFeat3 features were converted to durations by multiplying with the nondimensional sampling

time interval textcolorredts given as:

ts =
2π

ω × npt
, (3)

where ts is the nondimensional sampling time interval and npt is the number of sampled points per

period. The resulting peak-gap durations of the MorFeat3 features were then normalised and annotated

as MorFeat3N by expressing them as a ratio to the duration of a period of oscillation,

MorFeat3N =
Gpk × ts
Gprd × ts

. (4)
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Figure 6: Waveform morphological time-interval features for processed (a) Simulated and (b) Experimental signal.

Figs. 7–12 are typical graphical representation of extracted morphological features from same periods of

data for both simulation and experimental signals. It can be observed that despite using same periods

of data, the resulting waveform morphological features varied in sizes depending on the impact motion

category. The feature sizes varied between 40 and 60, hence all waveform morphological features were

pre-padded with zeros to a uniform size of 80. It is also noticed that the MorFeat3N features for 1-impact

motion categories tend to vary along a straight line for both simulation and experimental data. They

vary at a value equal to their period(s) of oscillation, hence P-1-1 is seen to vary along a value of 1 while

P-2-1 varies along a value of 2 for both simulation and experimental data.

3.1.2. Statistical features

A compact representation of the raw data is created from a set of carefully selected descriptive

statistical measures and they are used as input into the classifiers. This approach has been used for

audio signal classification [27], critical drilling conditions recognition from drilling data [28] and drilling

episodes classification [29]. In this study, the final set of statistical measures eventually used, Table 3,

were arrived at after downsizing measures with same values from the original set of measures. Some of

the measures showed larger values compared to others, hence they were normalised using Eq. (5). Fig. 13

shows the statistical features resulting from a single signal before and after normalisation.

Xnorm =
X −min (X)

max (X)−min (X)
. (5)

3.1.3. Continuous wavelet transform for image generation

Time-frequency analysis of time series data has in recent times proved very useful for extracting

local and temporal features from data. Over the years, many literatures have tried to explain in details

the basics and methods of converting time series data into their time-frequency domain. One of such
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Figure 7: MorFeat1 features: Simulation data.
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Figure 8: MorFeat1 features: Experimental data.

common method is the continuous wavelet transform (CWT). The method uses finer discretisation to

decompose the time series data into a two-dimensional time-frequency space from which the frequency

component of the signal is easily observed as a function of time. This is deemed useful for creating

discriminating features between signals that show very little discrepancies in their original format as seen

in this study and this is readily observed when the resulting coefficients are represented in 2D image

formats. The acquisition and utilisation of 2D images for solving classification problems has been in

practise for a while [19, 30, 31]. Fig. 14 shows the typical scalogram plots representing 2D plots of

the different impact motion signals obtained from simulation and experiment. These 2D images show
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Figure 9: MorFeat2 features: Simulation data
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Figure 10: MorFeat2 features: Experimental data.

that the total signal energy for a particular type of impact motion tends to vary in the same manner for

both its simulation and experimental counterpart. To analyse these images, analytical tools and networks

capable of learning different levels of features from images were utilised. HOG descriptors and pre-trained

Resnet18 convolutional network were used to automatically extract high level features from the images

which were fed into other network classifiers. Aside extracting features from the vibro-impact images,

their direct classification using image compatible networks such as SAE, CAE, CNN and LSTM was also

explored at different image sizes.

3.1.4. Autoencoder features

Autoencoders are neural networks capable of unsupervisedly learning to efficiently encode data into

a reduced dimensional space [32]. They consist of an encoding and a decoding part and the output is
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Figure 11: MorFeat3N features: Simulation data
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Figure 12: MorFeat3N features: Experimental data.

usually of the same size as the input. The encoder part, f(X), maps the original D dimensional data X

to a lower dimension Y given as

Y = f(X) = sf(WX + bX). (6)

On the other hand, the decoder part, g(Y ), reconstructs the original data X from the reduced data Y

with minimal mean square error such that

X ′ = g(Y ) = sg(W
′Y + bY), (7)
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Table 3: Estimated statistical features.

Index Statistical Feature Index Statistical Feature

1 Mean 13 Root-mean-square level
2 Minimum 14 Absolute maximum value to rms ratio
3 Maximum 15 Root-sum-of-squares level
4 Standard deviation 16 Crest factor
5 Range 17 Absolute mean
6 Kurtosis 18 Form factor
7 Variance 19 Impulse factor
8 Skewness 20 Mean square root of absolute data
9 Sum 21 Kurtosis factor
10 Mean frequency of signal power-spectrum 22 Margin factor
11 Cumulative maximum element 23 Skewness factor
12 Average cumulative minimum element
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Figure 13: Representative (a) unnormalised (b) normalised statistical features of a signal.

where sf and sg are the activation functions for the encoder and the decoder, and W and b represent the

weight matrices and bias vectors, respectively. Here, mean square error is used to measure the difference

between X and X ′. The possibility of adapting autoencoders with nonlinear activation functions [33],

makes it possible to use them for automatic feature extraction in complex nonlinear problems as used

in this study. Fig. 15 shows auto-encoded raw acceleration data from the last layer of the stacked

autoencoders shown in Fig. 16. Before being fed into the autoencoders, all the raw data were resized

to equal lengths of 3340 data points. These were later resized to 1000 and then 500 using a two-layers

stacked-autoencoders.

3.1.5. Histogram of oriented gradient features

Aside requiring a domain knowledge of analysed signal, constructing self-defined features like the

waveform morphological features can be cumbersome and time-sapping. Formatting data for use with

networks like the autoencoders can as well be very tasky especially for high dimensional and non-identical

size datasets. These challenges has attracted the use of descriptors like the HOG, which requires minimal

human interaction, to extract high level textural features from image representation of data [19, 34].
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Figure 14: (Colour online) Scalogram plots from CWT analysis for simulated (a) P-1-1 (b) P-1-2 (c) P-2-1 (d) P-3-2 (e)
P-3-3 and experimental (f) P-1-1 (g) P-3-2 (h) P-3-3. The images show that the total signal energy tend to vary similarly
for same impact categories whether it being simulation or experimental.

The features are extracted as estimates of local intensity gradients and before estimation, a gray scale

normalisation and a binarisation procedure is performed on the images to unify their intensity and scale

them to [0, 1]. During the HOG feature estimation, the image is divided into multiple m-by-m pixel cells

and using Gx = I(x+ 1, y)− I(x− 1, y)t,

Gy = I(x, y + 1)− I(x, y − 1),
(8)

Gx and Gy respectively representing the horizontal and the vertical gradient information for a pixel of

intensity I at location (x, y) are estimated for each pixel in each cell. The size of the multiple cells is

usually selected to ensure that sufficient but not redundant features are encoded by the descriptors. Then
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Figure 15: Representative auto-encoded features for different impact motions.

Figure 16: Two layers stacked-autoencoders for raw acceleration data encoding.

the magnitude M and orientation θ are further calculated as

M =
√
G2

x +G2
y (9)

and

θ = arctan

(
Gy

Gx

)
. (10)

Thereafter, calculated θ belonging to the same cell are vote-weighted using M and accumulated into bins

of histogram. The bins of histograms resulting from all the cells are concatenated to construct the final

L1-normalized feature vectors. Fig. 17 illustrates the HOG feature extraction process. For this study a

cell size of [60 × 60] was used with a bin of 9. As earlier stated the analysed images were generated as

2D scalogram plots of the coefficients resulting from the CWT of raw acceleration data. Fig. 18 shows

the scalogram of a simulated and an experimental P-1-1 and P-3-2 impact motions alongside their HOG

information.
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Figure 17: Process of HOG feature extraction: (a) Image generation, (b,c) gray scale normalisation, binarisation and
division to m-by-m cells, (d,e) gradient magnitude and orientation computation, (f) spatial/orientation binning and (g)
concatenation of binned orientation.
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Figure 18: (Colour online) Simulated and experimental acceleration times histories with the encoded HOG information for
(a) P-1-1 and (b) P-3-2.

3.1.6. Pre-trained convolutional neural network features

Automatic feature extraction via the use of pre-trained CNN to effortlessly extract discriminative

features from images has been around for a while [35, 36]. Architecturally, CNNs consist of an image

input layer, an intermediate section of several hidden layers and a final section consisting of a fully

connected layer, a softmax or regression layer for classification and regression problems respectively and

an output layer. The hidden layers are able to hierarchically extract deep level features that are specific

to the input images. During the automatic feature extraction, images are passed into the pre-trained

network from the input layer, and by using activation functions, learnt features are intercepted at desired

layers using activation functions. The resulting layer activations are saved as feature vectors which can be
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used as input data into other classifiers. Several pre-trained CNN networks exist, but based on reported

performance and memory requirement [37], the Resnet18 network with 18 layers and trained on ImageNet

database [38] was selected for this study. Resnet18 accepts images of size 224-by-224 while the spatial

size of the output volume from a given convolutional layer is given as

Vout =
Vin −K + 2P

S
+ 1, (11)

where Vout is the output volume, Vin is the input volume size, K is the filter size, P is the padding

size and S is the stride size. In the present study, 512 feature vectors were extracted for each of the

vibro-impact images from the global pooling layer (pool5) located in the 17th convolutional layer of the

Resnet18 network.

3.2. Network classifiers

For the purpose of developing fully trained networks that can easily be adapted into online monitoring

system at minimal cost, classifiers with simple architectures and low memory requirement were explored

in this study. These include multi-layer perceptrons (MLPs), multi-class support vector machines (SVMs)

and LSTMs.

3.2.1. Multi-layer perceptron

MLP networks have been used as universal approximators to model nonlinear classification [39] and

regression [40] problems. For an input data xi, where i = 1, 2, . . . . . . , N̄ , the network output yout is [41]

yout = foutput

 M̄∑
j=1

Wjfhidden

 N̄∑
i=1

Wjixi

+Wo

 , (12)

where N̄ is the number of input data, M̄ is the number of hidden neurons, xi is the ith input data,

Wij is the weight parameter between the ith input data and jth hidden neuron and Wj is the weight

parameter between the jth hidden neuron and the output neuron. The activation function foutput is

given as a sigmoid function for classification problems and as a linear activation function for regression,

while fhidden is a hyperbolic tangent function. The network weights and biases are iteratively adjusted

during training to maximise the prediction ability of the network on the input data using backpropagation

algorithms. The difference between the network’s prediction ypout and the actual target (ttp) is defined as

a cross-entropy error,

Exr = −
P∑

p=1

{ttp ln(ypout) + (1− ttp) ln(1− ypout)}. (13)

3.2.2. Support vector machines

SVMs were initially developed for binary classification problems, the network takes each row of input

data and label it as either belonging to a given class (positive) or not (negative). During training, the

input data are analysed alongside their corresponding output labels to establish an optimal separating

hyperplane between the positive and the negative samples. For this study, the SVMs have been adapted

for multi-class classification by creating multiple binary-class SVM classifiers for different pair-wise com-

binations of classes. The decisions from the multiple binary SVM classifiers are then fused together to

create the final multi-class classifier using an error-correcting output code combination technique [42]
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as available in MATLAB [43]. The technique involves a coding and decoding process using a matrix of

codewords (usually 1, 0, 1) of size k× l [44], where k is the number of classes and l is the number of SVM

binary classifiers given as

l =
k(k − 1)

2
. (14)

As obtained in this study, Table 4 is a code matrix C for a five-class classification task using ten

learners. Data entries belonging to a class, ki, is positive for the binary classifier lj if Cij = 1, negative

if Cij = −1 and zero if the class is not included in the classes used in training the binary classifier. The

table shows the current multi-class SVM network, and it trains its first four binary learners (l1 − l4) on

class k1 data as it assigned a positive value to the class compared to k2, k3, k4 and k5 which it assigned

negative values and zeros.

Table 4: Code matrix for a five class problem using ten learners.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10
k1 1 1 1 1 0 0 0 0 0 0
k2 -1 0 0 0 1 1 1 0 0 0
k3 0 -1 0 0 -1 0 0 1 1 0
k4 0 0 -1 0 0 -1 0 -1 0 1
k5 0 0 0 -1 0 0 -1 0 -1 -1

3.2.3. Long short-term memory networks

LSTM networks are forms of recurrent neural networks that are adapted to learning from sequential

data. They have memory cells and gates in place of the usual inter-connecting hidden neurons which

makes them immune to the problem of vanishing gradient [45]. Aside from being able to learn from long

time series data, LSTM networks are also able to accept data of different lengths as input. At every time

step t of a time series, the network uses its initial state values including, ct−1 and ht−1, alongside its

sequence value xt to calculate a new learnt information ht and an updated cell state ct. At any time step

t, the calculations are

ît = σg(Wix̂t +Riht−1 + bi), (15)

f̂t = σg(Wf x̂t +Rfht−1 + bf), (16)

ĝt = σg(Wgx̂t +Rght−1 + bg), (17)

ôt = σg(Wox̂t +Roht−1 + bo), (18)

ct = f̂t ⊙ ct−1 + ît ⊙ ĝt, (19)

ht = ôt ⊙ tanh(ct), (20)

where ît, f̂t, ĝt and ôt are state vectors of [0, 1], σg and ⊙ represent a sigmoid and an element-wise

multiplication function, respectively. In this study, the bi-directional LSTM (BiLSTM) layer which is

able to learn both forward and backward two-way relationship between sequential data was used.

4. Classification of the vibro-impact motions

4.1. Feature-based classification

The schematic layout of the designed classification models starting with the simulation and experi-

mental generation of data is shown in Fig. 19. It involves the collection of raw acceleration data, and then
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the training and cross-validation of different network models using raw acceleration data and extracted

features. As stated earlier, five categories of impact motions were obtained from the simulation while only

three were obtained from the experiment, however, the developed networks were trained to distinguish

between five categories of impact motions using a combination of the simulation and experimental data.

Due to the scarceness of some impact motion categories in experiments, the experimental data was first

divided into a training and testing set, after which the scarce categories in the training set were augmented

by replication as shown in Table 5. The statistics of the simulated data and the augmented experimental

data by impact motion categories is presented in Table 6. The simulation and experimental training data

were merged together to train the networks while the testing data from simulation and experiment were

used separately to cross-validate the networks. Our expectation is for the trained network models to be

able to distinguish between impact motion categories correctly even when limited classes are presented.

Figure 19: Schematic layout of the classification model.

Table 5: Division of experimental data.

Motion Total Training Test
P-1-1 597 200 397
P-1-2 0 0 0
P-2-1 0 0 0
P-3-2 125 50 (×4) 75
P-3-3 274 100 (×2) 174

Table 6: Summary of data categories: both the simulated and experimental training data were merged into one data set
for training the networks.

Motions
Simulation Experiment

Training Testing Training Testing
P-1-1 200 200 200 397
P-1-2 400 200 0 0
P-2-1 400 200 0 0
P-3-2 200 200 200 75
P-3-3 200 200 200 174
Total 1400 1000 600 646

Following the conventional approach of using out-of-sample data for the networks cross-validation,

the results of the training and testing of the networks are shown in Tables 7-9. The final number of
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hidden units used after few trials and errors are also presented in the tables. For Table 7, ‘Tr’, ‘Val’ and

‘Ts’ represent subsets of train, validation and test data selected randomly by the network from the main

training data in the ratio of 70%, 15% and 15%, respectively. For all the tables, ‘Sim.’ and ‘Exp.’ denote

the simulated and experimental out-of-sample cross-validation data, respectively. The MLP networks

were mostly trained using the Levenberg-Marquardt training function except for the raw data case when

the Scaled conjugate gradient was used due to the large data size and the large memory requirement of

Levenberg-Marquardt. To minimise scaling issue and to also enhance generalisation on new raw data,

the raw data were scaled to [0, 1] interval before being fed into the networks. The performance of each

network was measured using a cross-entropy function.

Table 7: MLP network results, where ‘Tr’, ‘Val’ and ‘Ts’ represent subsets of train, validation and test data selected
randomly by the network from the main training data in the ratio of 70%, 15% and 15%, respectively. ‘Sim.’ and ‘Exp.’
denote the simulated and experimental out-of-sample cross-validation data, respectively.

Feature
Training (%) Testing (%)

Units
Tr Val Ts Sim. Exp.

Raw Data 100 100 100 80.0 52.0 30
MorFeat1 89.9 90.7 89.7 98.1 98.0 50
MorFeat2 100 100 100 98.1 97.7 50
MorFeat3N 100 100 100 79.0 98.3 50

MorFeat1-2-3N 100 100 100 98.1 92.4 50
Statistical 100 100 100 98.1 95.5 20

Autoencoder 100 100 100 60.0 50.9 20
HOG 100 100 100 91.6 97.1 50

Resnet18 79.0 79.0 73.0 37.1 49.5 30

Table 8: SVM network results, where ‘Sim.’ and ‘Exp.’ denote the simulated and experimental out-of-sample cross-
validation data, respectively.

Features Training (%)
Testing (%)
Sim. Exp.

Raw Data 100 80.0 52.6
MorFeat1 90.0 98.1 98.1
MorFeat2 100 98.1 97.7
MorFeat3N 100 79.0 98.3

MorFeat1-2-3N 100 80.0 98.1
Statistical 100 100.0 91.5

Autoencoder 100 61.9 46.3
HOG 100 98.1 78.9

Resnet18 78.1 58.9 30.3

The results show that most of the waveform morphology based networks performed well attaining

an accuracy as high as 98.1% except for MorFeat3N. MorFeat3N showed an accuracy of 79.0%, 79.0%

and 80.0% respectively on the mathematically simulated test data using MLP, SVM and BiLSTM (see

Tables 7-9) and this was due to their absolute inability to distinguish between P-1-1 and P-3-3 impacts

(see Fig. 20). A combination of the three morphological features MorFeat1-2-3N showed accuracies of

98.1%, 80.0% and 100% for MLP, SVM and BiLSTM for the simulated test data, respectively. For the

experimental test data, MorFeat1-2-3N showed accuracies of 92.4%, 98.1% and 97.7% for MLP, SVM and

BiLSTM, respectively. The statistical features showed accuracies greater than 91.0% for both the simu-

lated and experimental test data using MLP and SVM, while the BiLSTM network showed an accuracy of

100% on the simulated test data and 77.9% on the experimental test data due to their confusion of P-3-3
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Table 9: BiLSTM network results, where ‘Sim.’ and ‘Exp.’ denote the simulated and experimental out-of-sample cross-
validation data, respectively.

Features Training (%)
Testing (%)

Units
Sim. Exp.

Raw Data 95.4 62.9 77.2 100
MorFeat1 90.0 80.0 98.1 60
MorFeat2 100 100 97.7 60
MorFeat3N 100 80.0 98.5 60

MorFeat1-2-3N 100 100.0 97.7 60
Statistical 100 100.0 77.9 60

Autoencoder 100 60.0 45.5 60
HOG 20 20.0 61.5 60

Resnet18 75.8 58.9 66.9 60

impact motions for P-3-2 impact motions in the experimental data. Stacked-autoencoder features showed

deficiency in their ability to sufficient code information that distinguishes between the impact motions

accurately. Confusion matrices resulting from the use of stacked-autoencoder features showed P-3-2 and

P-3-3 to be confused for P-1-1 in the simulated test data and P-1-1 for P-3-3 in the experimental data

(see Fig. 21). This could be due to the loss of vital information during the process of encoding. For

the HOG features, MLP achieved accuracies of 91.6% and 97.1%, while the SVM obtained accuracies of

98.1% and 78.9% for the simulated and experimental data, respectively. BiLSTM showed accuracies of

20.0% and 61.5% for the simulated and experimental HOG features as the network could only distinguish

P-1-1 impact motions both during training and testing. This poor performance may be a result of the

spatial disorientation of the HOG feature vectors.
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Figure 20: Confusion matrices from using (a) MLP (b) SVM and (c) LSTM on MorFeat3N features from simulated test
data.

Similar to the stacked-autoencoders, the Resnet18 network could not capture features that adequately

distinguish between the impact motions using the scalogram images. Due to data size, using the raw

data as input data was computationally intensive requiring higher memory usage and longer processing

time. However, comparing the raw data networks with the feature based networks, the MLP and SVM

networks performed better on the simulated raw data with an accuracy of 80% compared to BiLSTM

which showed an average accuracy of 62.9%. On the other hand, the BiLSTM network showed better

performance on experimental raw data compared to both MLP and SVM. This could be as a result of

21



P11 P12 P21 P32 P33

Target Class

P11

P12

P21

P32

P33

O
u

tp
u

t 
C

la
s
s

200

20.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

200

20.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

200

20.0%

0

0.0%

0

0.0%

100%

0.0%

200

20.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0.0%

100%

200

20.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0.0%

100%

33.3%

66.7%

100%

0.0%

100%

0.0%

NaN%

NaN%

NaN%

NaN%

60.0%

40.0%

P11 P12 P21 P32 P33

Target Class

200

20.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

200

20.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

200

20.0%

0

0.0%

0

0.0%

100%

0.0%

200

20.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0.0%

100%

181

18.1%

0

0.0%

0

0.0%

0

0.0%

19

1.9%

9.5%

90.5%

34.4%

65.6%

100%

0.0%

100%

0.0%

NaN%

NaN%

100%

0.0%

61.9%

38.1%

P11 P12 P21 P32 P33

Target Class

200

20.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

200

20.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

200

20.0%

0

0.0%

0

0.0%

100%

0.0%

190

19.0%

10

1.0%

0

0.0%

0

0.0%

0

0.0%

0.0%

100%

19

1.9%

181

18.1%

0

0.0%

0

0.0%

0

0.0%

0.0%

100%

48.9%

51.1%

51.2%

48.8%

100%

0.0%

NaN%

NaN%

NaN%

NaN%

60.0%

40.0%

P11 P12 P21 P32 P33

Target Class

P11

P12

P21

P32

P33

O
u

tp
u

t 
C

la
s
s

94

14.6%

0

0.0%

0

0.0%

0

0.0%

303

46.9%

23.7%

76.3%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

0

0.0%

0

0.0%

0

0.0%

75

11.6%

0

0.0%

100%

0.0%

8

1.2%

0

0.0%

0

0.0%

6

0.9%

160

24.8%

92.0%

8.0%

92.2%

7.8%

NaN%

NaN%

NaN%

NaN%

92.6%

7.4%

34.6%

65.4%

50.9%

49.1%

P11 P32 P33 P12 P21

Target Class

94

14.6%

68

10.5%

235

36.4%

0

0.0%

0

0.0%

23.7%

76.3%

0

0.0%

75

11.6%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

1

0.2%

43

6.7%

130

20.1%

0

0.0%

0

0.0%

74.7%

25.3%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

98.9%

1.1%

40.3%

59.7%

35.6%

64.4%

NaN%

NaN%

NaN%

NaN%

46.3%

53.7%

P11 P32 P33 P12 P21

Target Class

94

14.6%

0

0.0%

179

27.7%

0

0.0%

124

19.2%

23.7%

76.3%

0

0.0%

75

11.6%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

3

0.5%

9

1.4%

125

19.3%

37

5.7%

0

0.0%

71.8%

28.2%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

96.9%

3.1%

89.3%

10.7%

41.1%

58.9%

0.0%

100%

0.0%

100%

45.5%

54.5%

(i) (iii)

(a)

(b)

(ii)

Figure 21: Confusion matrices for autoencoder features based (i) MLP (ii) SVM and (iii) LSTM networks on (a) simulation
and (b) experimental test data. The networks are seen to append ‘NAN’ to the classes unavailable in the experimental
data.

ability of the BiLSTM to self-learn distinguishing features that are consistent to both the simulated and

experimental data.

On overall, 42% of all the developed feature-based network models showed accuracies greater than

91.0% while 67% of them showed accuracies greater than 77.0%. The MorFeat2 feature-based networks

showed the overall best performance with a least accuracy of 97.7% both during training and testing

with simulated and experimental data as presented in Fig. 22. As expected, the confusion matrix plots

showed the networks appending ‘NAN’ to the result rows and columns of classes not available in the

experimental test data (see Figs. 21-22). A graphical summary of the performances of all the developed

networks based on their input data is further presented in Fig. 23.

4.2. Direct image classification

In order to adapt autoencoders for direct image classification, the images are first reshaped into a

matrix by stacking up the columns of each image as a single column in a new data vectors to form a

matrix which is fed into the autoencoders. Developed autoencoders are stacked up alongside a softmax

layer to form the SAE image classifier. Fig. 24 shows two-layer SAE networks developed for analysing

images of sizes at [128 × 128 × 1] and [50 × 50 × 1]. In the case of LSTM networks, the input layer

was replaced with an image input layer, while sequence folding and sequence unfolding layers were used

respectively to convert the incoming sequence of images to image arrays and vice versa, and a flatten

layer was used to convert the images into vector features.

22



P11

P12

P21

P32

P33

O
u

tp
u

t 
C

la
s
s

400

20.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

400

20.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

400

20.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

400

20.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

400

20.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

400

20.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

400

20.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

400

20.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

400

20.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

400

20.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

400

20.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

400

20.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

400

20.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

400

20.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

400

20.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

P11

P12

P21

P32

P33

O
u

tp
u

t 
C

la
s
s

200

20.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

200

20.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

200

20.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

200

20.0%

0

0.0%

100%

0.0%

19

1.9%

0

0.0%

0

0.0%

0

0.0%

181

18.1%

90.5%

9.5%

91.3%

8.7%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

98.1%

1.9%

P11 P12 P21 P32 P33

Target Class

P11

P12

P21

P32

P33

O
u

tp
u

t 
C

la
s
s

397

61.5%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

0

0.0%

0

0.0%

0

0.0%

75

11.6%

0

0.0%

100%

0.0%

15

2.3%

0

0.0%

0

0.0%

0

0.0%

159

24.6%

91.4%

8.6%

96.4%

3.6%

NaN%

NaN%

NaN%

NaN%

100%

0.0%

100%

0.0%

97.7%

2.3%

200

20.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

200

20.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

200

20.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

200

20.0%

0

0.0%

100%

0.0%

19

1.9%

0

0.0%

0

0.0%

0

0.0%

181

18.1%

90.5%

9.5%

91.3%

8.7%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

98.1%

1.9%

P11 P32 P33 P12 P21

Target Class

397

61.5%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

75

11.6%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

15

2.3%

0

0.0%

159

24.6%

0

0.0%

0

0.0%

91.4%

8.6%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

96.4%

3.6%

100%

0.0%

100%

0.0%

NaN%

NaN%

NaN%

NaN%

97.7%

2.3%

200

20.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

200

20.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

200

20.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

200

20.0%

0

0.0%

100%

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

200

20.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

100%

0.0%

P11 P32 P33 P12 P21

Target Class

397

61.5%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

0

0.0%

75

11.6%

0

0.0%

0

0.0%

0

0.0%

100%

0.0%

15

2.3%

0

0.0%

159

24.6%

0

0.0%

0

0.0%

91.4%

8.6%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

0

0.0%

NaN%

NaN%

96.4%

3.6%

100%

0.0%

100%

0.0%

NaN%

NaN%

NaN%

NaN%

97.7%

2.3%

(ii) (iii)(i)

(b)

(a)

(c)

Figure 22: Confusion matrices for MorFeat2 features based (i) MLP (ii) SVM and (iii) LSTM networks on (a) merged
training data (b) simulation test data and (c) experimental test data. The networks are seen to append ‘NAN’ to the
classes unavailable in the experimental data.

The results of the direct image-based classification models are presented in Tables 10 and 11 for the

vibro-impact images at [128 × 128 × 1] and [50 × 50 × 1], respectively. Resulting confusion matrices

showed that most of the networks deficiency came from the misclassification between P-3-3 images, P-3-2

images and sometimes P-1-1 images. It is observed that using images of smaller sizes did improved the

performance of CNN and tuned SAE networks on both simulation and experimental data. The smaller

sized images also showed improved performance for simulation data using the LSTM network but not

for the experimental data. The improved performance of the smaller sized images may be due to the

reduced network computations and reduced memory usage. For the CAE, the network performance was

better for the larger size images from both simulation and experiment. A summary of the reported

performances is presented in Fig. 25. Based on the performances of the networks with respect to input
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Figure 23: (Colour online) Graphical summary of all the developed network performances on (a) simulated and (b) experi-
mental test data.

(a)

(b)

Figure 24: Stacked-autoencoders layers for (a) [128× 128× 1] and (b) [50× 50× 1] image data classification.

image sizes, it could be suggested that deducing the smallest image size wherein the discriminating image
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features are still preserved is essential for building image based classification networks. This way network

computations are kept to the minimal and enough memory is available for hyper-parameter tuning in

order to optimise their performances.

Table 10: Results of image based classification models for [128 × 128 × 1] size images: five-class data, where ‘Sim.’ and
‘Exp.’ denote the simulated and experimental out-of-sample cross-validation data, respectively.

Features Training (%)
Testing (%)
Sim. Exp.

SAE (without fine tuning) 100 80.0 53.1
SAE (with fine tuning) 100.0 80.0 55.9

CAE 100 97.1 100
CNN 100 99.0 85.4
LSTM 100 78.1 92.0

Table 11: Results of image based classification models for [50× 50× 1] size images: five-class data, where ‘Sim.’ and ‘Exp.’
denote the simulated and experimental out-of-sample cross-validation data, respectively.

Features Training (%)
Testing (%)
Sim. Exp.

SAE (without fine tuning) 79.2 70.0 72.9
SAE (with fine tuning) 100.0 97.1 59.3

CAE 100 80.0 95.8
CNN 100 100 100
LSTM 100 97.1 87.8

5. Conclusions

Having concluded on the urgent need for real-time characterisation of downhole impact motions for the

VID system, the potential of neural networks to learn complex nonlinear relationships has been explored

to characterise impact motions from drill-bit acceleration data. Considering the large data requirement

of neural networks and the need to validate their application with real life data, scarce experimental data

have been augmented with mathematically simulated data to develop vibro-impact motion classification

models.

With the aid of feature extraction, some of the trained networks were found to have significantly

performed well in distinguishing between the different categories of impact motions. Aside their low

memory usage, the MLP, SVM and BiLSTM networks showed consistent high performances using the

waveform morphological features, MorFeat1, MorFeat2 and MorFeat1-2-3N. The networks also showed

high performances using the statistical features except for LSTM on experimental statistical features

where the accuracy was 77.9%. The MLP networks also showed good performance using the HOG

features. Irrespective of the input image size, CAE, CNN and LSTM image-based networks showed

accuracies ranging between 78%-100% for both simulation and experiment data.

The consistent performance of these aforementioned feature-based networks on both simulation and

experimental testing data compared to the raw data-based networks shows that designing rich discrimi-

nating features is important and preferable, when augmenting experimental data with simulation data.

This is because such features tend to be quite consistent for both the simulation and experimental data,

thus making them the first point of consideration for an on-line impact motion categorisation system for

optimising the VID system. Such a development will not only increase the ROP and the life-span of the
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Figure 25: (Colour online) Graphical summary of the performances of the image based networks on (a) [128 x 128 x 1] and
(b) [50 x 50 x 1] sized images.

drill-bit, but will also minimise energy wastage and drill-site emissions as every energy input is used to

achieve greater work done when the system is consistently kept under optimal impact modes.
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