
VORONOÏ SUMMATION FOR HALF-INTEGRAL WEIGHT
AUTOMORPHIC FORMS
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Abstract. A general Voronöı summation formula for the (metaplectic) dou-
ble cover of GL2 is derived via the representation theoretic framework à la
Ichino–Templier. The identity is also formulated classically and used to estab-
lish Voronöı summation formulae for half-integral weight modular forms and
Maaß forms.

1. Introduction

The Voronöı summation formula for classical modular forms has a long history.
This formula and its generalisations are crucial technical tools in the proofs of many
deep results of analytic number theory. One such example is Jutila’s treatment of
exponential sums involving Hecke eigenvalues [17], which implies a sixth moment
bound for the L-function of a Hecke eigenform of level 1 on the critical line. Other
applications include shifted convolution problems, spectral reciprocity formulae,
estimates of the L4-norm of Maaß forms and many more. A rolling history and
other applications of Voronöı summation are collected in [20].

Such classical Voronöı formulae are very well understood. Their manifestation
is closely related to the functional equation of the underlying L-function and as-
sociated Atkin–Lehner theory [19]. However, they can also be formulated more
abstractly in the language of automorphic representations for GL2; see [1, 29].
Adopting a representation theoretic stance permits greater generality in describ-
ing local aspects, such as non-trivial levels, old forms and local p-adic test function.
For example, for all n ≥ 2, the benchmark classical formula for GLn [21] has been
completed to the greatest generality permitted by the representation theoretic
approach [6, 14].

Our goal here is to overhaul the theory for half-integral weight automorphic
forms. From a classical angle, recall the construction of half-integral weight holo-
morphic modular forms and half-integral Maaß forms. These correspond to smooth
functions of moderate growth on the upper half-plane H = {z ∈ C : Im(z) > 0}
which, up to a character χ, transform under the action of the congruence lat-
tice Γ0(4N) ⊂ SL2(R) with respect to the ϑ multiplier. If f is such a form of
weight k + 1

2
, level 4N , and character χ, then f has a Fourier expansion at the

Date: 16th April 2021.
1
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cusp ∞, given by f(x + iy) =
∑

n∈Z af (n)κf (ny)e(nx). Here, κf is used to ho-
mogenise notation between Maaß and holomorphic forms. One might refer to κf
as the “archimedean part” of the Fourier coefficient of f : if f is holomorphic then

κf (y) = (2πy)
2k+1

4 e−2πy; if f is a Maaß form then κf (y) = Wsgn(y) 2k+1
4

, s
2
(4π|y|)

where Wk,m(z) is the classical Whittaker function introduced in [33] and s is the
spectral parameter of f . The Fourier coefficients af (n) have strikingly different
properties in contrast to their integral weight contemporaries. One being that,
even for Hecke eigenforms, the associated Dirichlet series

∑
n>0 af (n)n−s is not

Eulerian.
Using the modularity properties of a holomorphic half-integral weight modular

form f , Duke–Iwaniec [9, Theorem 4] derive a preliminary case of such a formula
which they then use to determine cancellation in the sum

∑
p≤X χ(p)af (p) for a

(principal or primitive) Dirichlet character χ. A different Voronöı formula has been
given for Hecke–Maaß forms by Bykowskĭı [5]. This formula has recently found
an application to the mass distribution of Saito–Kurakawa lifts amongst Siegel
modular forms; see [4]. These are two specific examples of Voronöı-type summation
formulae for half-integral weight. In general, such formulae are sparsely available
and, to the best of our knowledge, there is no unified approach to be found in the
literature.

In this work we give a general Voronöı formula which applies to any automorphic

form arising from the representation theory of G̃L2(A); see Theorem 4.2. We also
give an explicit classical formulation of the result, applying to both the modular
and Maaß cases, alongside various related formulae in §5.8. We intend the “oven
ready” classical formulae to carry sufficient generality whilst remaining explicit
enough for applications.

To preview the main classical result (Theorem 5.9), let k be a non-negative
integer, N a positive multiple of 4 and χ a Dirichlet character modulo N . Let
f denote a cuspidal weight k + 1

2
autormorphic form of level N and character χ

as described in Definition 5.1, which includes (normalised) holomorphic modular
forms and Maaß forms. Let F : R→ R be a smooth (test) function with compact
support in R>0. Further take b ∈ N and a ∈ Z with gcd(a, bN) = 1. Then we have
the half-integral Voronöı summation formula∑

n∈Z 6=0

e

(
an

b

)
af (n)F (n) =

∑
n∈Z 6=0

e

(
−n a

bδ(b)

)
af (n; b)[Hsgn(n),+

f F ]

(
n

δ(b)b2

)
where af (n; b) is the Fourier coefficient of f at the cusp b = a

b
(see (25)) and the

Bessel transform H±,+f F of F , determined by the archimedean type of f alone, is
given in §5.7.

1.1. From automorphic forms to metaplectic representations. Automor-
phic forms of half-integral weight correspond to automorphic representations of



VORONOÏ SUMMATION FOR HALF-INTEGRAL WEIGHT AUTOMORPHIC FORMS 3

the metaplectic cover G̃L2 of GL2. The characterising feature of the metaplectic
group is that the 2-group of rotations C2

∼= {±1} ⊂ GL2 is projected onto by the

cyclic 4-group C4 ⊂ G̃L2. A physicist might understand the 2-group of rotations
by revolving a particle by π degrees and then again back to 2π degrees, complet-
ing a full turn. Whereas if the particle were to carry a genuine action of C4 then
it must complete two full turns, a 4π revolution, before returning to the origin.
The particle is said to have the property of ‘half-integral spin’. In the theory of
automorphic forms, the genuine action of C4-representations is realised though the
structure of the related cocycles, originally defined via the ϑ-multiplier system.

Such a theory of representations of G̃L2 plays a crucial role in identifying the
local-global framework of automorphic forms of ‘half-integral weight’. The beau-
tiful line of work of S. Gelbart and I. Piatetski-Shapiro [11–13] establishes all the
basics needed to build a foundational theory on which one may construct Voronöı-
type formulae. We give a concise review of this theory in §2 and §3. It is on
these bases that we are able to prove Theorem 4.2, our main theorem. This result,
derived in §4, provides a flexible adelic identity which may be specialised to give
various Voronöı-type formula. Finally, in §5 we move to the classical setting and
derive two more specific, but still quite general, Voronöı formulae. To produce our
classical formulae we require the necessary adelisation procedure for half-integral
weight forms. Whilst standard in the GL2 case and certainly well-known to ex-

perts for G̃L2, the literature seems only to contain incoherent parts of the story.
We give a complete, modern account of the process in §5.

To conclude this introduction, we sketch the basic Voronöı mechanism in the
familiar world of ‘integral spin’; that is, for automorphic representations of GL2

giving action only to the two-group of rotations C2, resulting in whole integral
weight at infinity. This will serve as a guide by which to navigate the metaplectic
situation C2  C4 and motivate the constructions we recall in §2-3.

1.2. Strong Gelfand pairs as a source of Voronöı summation. To give
insight into the big picture, recall the interpretation of Voronöı summation in the
setting of strong Gelfand formations for GL2. This will serve as a guide, since we

shall rely on similar ideas in our treatment of the G̃L2 case.
A ‘strong Gelfand pair’ consists of a topological group G and a subgroup H ⊂ G

such that

dimC HomH(π|H , σ) ≤ 1
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for all irreducible representations π of G and σ of H. We call the diagram

G

H1 H2

E

a ‘strong Gelfand formation’ if each contained edge corresponds to a strong Gelfand
pair. It is well known that such formations can be used to study periods; that
is, elements of HomE(π|E, δ) where π and δ are irreducible representations of G
and E, respectively. This is achieved by taking spectral expansions along both
intermediate sides of the formation.

It was pointed out in [25], and elaborated on in [29], that the strong Gelfand
formation

G = GL2

N =

{(
1 ?
0 1

)}
N =

{(
1 0
? 1

)}

{
e =

(
1 0
0 1

)}
can be seen as the source of Voronöı summation. If, in the case of the metaplectic

cover G̃L2, we naively replace N by a realisation, N∗, of N inside G̃L2 (see (7)), the

fact that N∗ ⊂ G̃L2 is not a strong Gelfand pair becomes apparent. The formulae
presented in this work are instead motivated by the strong Gelfand formation

G̃L2

Z̃N∗ Z̃N
∗

{e}∗

where Z̃ ⊂ G̃L2 is the pre-image of the centre of GL2 under G̃L2 → GL2. The

groups Z̃N∗ ⊂ G̃L2 form a strong Gelfand pair by the uniqueness of an analogue
of the Whittaker model in the metaplectic setting; see §3.
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The technique enabling the GL2 formation to give rise to Voronöı summation is

sketched below in §1.3. We pick up the story for G̃L2 again in §4.

1.3. The integral weight case for GL2 revisited. Now let G = GL2, F be a
number field, AF its adele ring and ω a Hecke character of A×F . Given a suitable el-
ement φ ∈ L2(G(F )\G(AF ), ω) which transforms with respect to some irreducible
automorphic representation πφ we expand the period φ 7→ φ(e) through the right
side of the formation to get

φ(e) =
∑

ψ∈N̂(F )

Wψ(φ) · ψ(e)

where

φ 7→ Wψ(φ) =

∫
N(F )\N(AF )

φ(n)ψ(n)dn

is the Whittaker period, the adelic realisation of a Fourier coefficient. Of course,
so far we have done nothing more than write down the Whittaker expansion in a
strange way. In particular, since e is the identity we have ψ(e) = 1 and this term
is only included for completeness. Performing the same procedure on the right
hand side of the formation results in the identity

(1)
∑

ψ∈ ̂N(F )\N(A)

Wψ(φ) · ψ(e) =
∑

ψ′∈N̂(F )

W̃ψ′(φ) · ψ′(e).

Here we encounter the complementary periods

φ 7→ W̃ψ′(φ) =

∫
N(F )\N(AF )

φ(n)ψ′(n)dn.

Up to this point the formula is essentially a triviality and there are two key steps
remaining before deriving a useful Voronöı summation formula.

Step 1 is to set up the left-hand side. We introduce the notation a(y) = ( y 1 ),
as used for matrices throughout. First of all let us observe that we can identify

F with ̂N(F )\N(A) by fixing some N(F )-invariant character ψ explicitly realised
via

ξ 7→
[
n 7→ ψξ(n) = ψ(a(ξ)na(ξ)−1)

]
.

For ξ ∈ F× we can now write

Wψξ(φ) · ψ(e) = Wφ(a(ξ)) =

∫
N(F )\N(AF )

[π(a(ξ))φ](n)ψ(n)dn.

Thus the ψξ-Whittaker period of φ is nothing but the evaluation of the ψ-Whittaker
function associated to φ at a(ξ). In general the ψ-Whittaker function of φ is a
function on G(AF ) defined by Wφ(g) = Wψ(π(g)φ). For pure tensors φ, we get

Wφ(a(ξ)) =
∏
v

Wφ,v(a(ξv)).
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This is a consequence of muliplicity one results for local and global Whittaker
models. For a fixed place v we can define a smooth function fv ∈ C∞(F×v ) by

(2) Wφ,v(a(ξv)) = |ξ|
1
2
v fv(ξv).

Now the function fv determines the full Whittaker function Wφ,v : G(Fv) → C
uniquely and the image of the map Wφ,v → fv in C∞(F×v ) contains the Schwartz
space S(F×v ). Note that, if v is non-archimedean, then S(F×v ) is also referred to
as Bruhat-Schwartz space and consists of smooth (i.e. locally constant) functions
from F×v to C whose support is compact in F×v .

This phenomena allows us to make the following choice. Let S be a finite set of
places, including each place at which π ramifies and all archimedean places. We fix
Wφ,v by choosing fv ∈ S(F×v ) for v ∈ S. For v 6∈ S we assume that Wφ,v(·) is the
unique spherical element in the local Whittaker model normalised by Wφ,v(1) = 1.
Note that φ is completely determined by these data. The left hand side of (1)
reads ∑

ξ∈F×
λπ

(
(ξ)

((ξ),
∏

v∈S<∞ p∞v )

)∏
v∈S

fv(ξ)

where (ξ) is the embedding of ξ ∈ F× ↪→ A×F and the argument of λπ is the
maximal factor of ξ which is a unit at each place v ∈ S <∞.

Step 2 is to explicate the right hand side. Using N =

(
0 1
1 0

)
N

(
0 1
1 0

)
and

making the correct identifications we can rewrite the period on the right-hand side
as

W̃ψ′ξ
(φ) · ψ′ξ(e) = Wφ

((
0 1
1 0

)
a(ξ)

)
=
∏
v

Wφ,v

((
0 1
1 0

)
a(ξ)

)
.

For v 6∈ S this enables us to evaluate the local Whittaker function simply by using
right-GL2(ov) invariance, where ov is the ring of integers of Fv. If v ∈ S, one can
either use the known transformation behaviour of Wφ,v, for example local Atkin-
Lehner/new-vector theory, or derive an integral representation for Wφ,v (( 0 1

1 0 ) a(ξ))
featuring a Bessel kernel and the original function fv. Note that the Bessel-
transform can be constructed solely by using Fourier analysis and the unique-
ness of (N,ψ) and (N,ψ′) Whittaker models. Nevertheless, it has a well known
connection to the local functional equation.

Indeed, it seems that all Voronöı type formulae concerning Maaß forms and
classical holomorphic modular forms can be deduced from this general strategy
using adelisation and de-adelisation.

The reason we discuss this strategy in quite some detail is because we now follow
the same ideas in the metaplectic/half-integral weight world. The main issue that
arises is that multiplicity one fails for the Whittaker model of representations of

G̃L2(A) and we constantly have to account for this.
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Remark 1.1. In the context of covering groups, the difference between S̃L2 and

G̃L2 is more nuanced than for in the base setting. There are detailed theories of
automorphic representations for both: Waldspurger, in his seminal work on the

Shimura correspondence, described the representations for S̃L2 in terms of their
Whittaker and Kirillov models; see [30, 31]; whilst Gelbart and Piatetski-Shapiro
in their series of papers [10–12] give a comprehensive theory of representations for

G̃L2. For the interested reader, the passage between these two coherent theories
is described in detail in [13].

In this work we elected to use the theory of G̃L2 wherever possible. This is for
several reasons: foremost, it allows a straight forward adelisation of classical half-
integral weight modular forms of arbitrary nebentypus, which does not deviate
far from the well known procedure for GL2. Secondly, and more technically, a

complete Bessel-inversion in the Whittaker model of a local S̃L2 representation σ
requires data from all the twisted representations ξ · σ, where ξ essentially ranges

over all quadratic characters. This is of course seen in the G̃L2-world through
the appearance of the different µ-Bessel functions. We see it as an advantage of

G̃L2 representation that they package all relevant twists of the underlying S̃L2-
representation together.

Acknowledgments: We would like to thank the anonymous referees for many
useful suggestions, which led to a significant improvement of this work.

2. Notation and Metaplectic Constructions

For two integers a and b, we write a|b to denote that a divides b and moreover
a|b∞ shall denote that a|bn for some positive integer n. We start counting N at
inf N = 1. We shall use the standard exponential notation e(z) = e2πiz for z ∈ C.
For each z = reiθ ∈ C we define a branch cut of the square root by letting z1/2

denote the complex number
√
|z|eiθ′ where −π/2 < θ′ ≤ π/2. If k ∈ Z then

let zk+ 1
2 := zkz

1
2 . If f : X → C is a function on a monoid X then denote the

right-translates of f by R(y)f(x) = f(xy) for each y ∈ X.
Let F be a ring with unit 1 ∈ F . We introduce the following matrices in GL2(F ).

For λ ∈ F×, x ∈ F, and y ∈ F× let

z(λ) =

(
λ

λ

)
; n(x) =

(
1 x

1

)
; n(x) =

(
1
x 1

)
; w =

(
1

−1

)
;

a(y) =

(
y

1

)
; a(y) =

(
1

y

)
; a′(y) =

(
y

y−1

)
.

These matrices determine the subgroups Z(F ) = {z(λ) : λ ∈ F×}, N(F ) = {n(x) :
x ∈ F}, A(F ) = {a(y) : y ∈ F×}, A0(F ) = {a′(y) : y ∈ F×}, and B = ZNA,
omitting the parenthetic F when convenient. We denote the square-roots of unity
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in F by Z2(F ) = {ε ∈ F : ε2 = 1} ∼= C2. We also encounter the cyclic group of
order four, which we denote by C4.

Over the real numbers R we define the rotation matrix

k(θ) =

(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
and the corresponding group SO(2) = {k(θ) : θ ∈ [−π, π)}. We further define
A+

0 = {a′(y) : y ∈ R+} ⊂ A0(R). We write GL+
2 (R) for the subgroup of matrices

with positive determinant in GL2(R).
As usual, let Γ0(N) denote the group of matrices ( a bc d ) ∈ SL2(Z) such that

c ≡ 0 (mod N). The subgroup Γ1(N) consists of those matrices in Γ0(N) with
the additional property that a ≡ d ≡ 1 (mod N).

2.1. The metaplectic group over local fields. We specify the local field F
of characteristic 0 that we consider. If F is archimedean, it is either R or C. If
non-archimedean we assume F to be a finite extension of Qp in which p is the
residual characteristic of F .

We will construct the double cover G̃L2(F ) following [10, Section 2.1]. Our
explicit co-cycle appearing in (5) is as in [10, Definition 2.10]. Note that at (odd)
finite places our choice is made such that the maximal compact splits trivially.

2.1.1. Definitions. If F 6= C then the group SL2(F ) admits a unique, non-trivial

two-fold cover S̃L2(F ), see [22,32]. This group is known as the ‘metaplectic group’
and is defined by the exact sequence

1 −→ Z2(F ) −→ S̃L2(F ) −→ SL2(F ) −→ 1.

If F = C we set S̃L2(F ) = SL2(C)× Z2(C), whence the above sequence splits.

Any automorphism of SL2(F ) lifts uniquely to an automorphism of S̃L2(F ).
In particular, A(F ) = {a(y) : y ∈ F×} acts on SL2(F ) by conjugation, lifting

uniquely to an action of A(F ) on S̃L2(F ). We thus define the metaplectic cover

of GL2(F ) to be the semi-direct product G̃L2(F ) = S̃L2(F ) o A(F ), once again
obtaining an exact sequence of locally compact groups

(3) 1 −→ Z2(F ) −→ G̃L2(F ) −→ GL2(F ) −→ 1.

As before, (3) splits if and only if F = C. If H ≤ GL2(F ) then let H̃ ≤ G̃L2(F )

denote the pre-image of H under G̃L2(F )→ GL2(F ). We say (3) splits over H if

H̃ ∼= H ×Z2(F ); for example, (3) splits over the subgroups N and A defined as in
§2.

2.1.2. Explicit form of the metaplectic group. More concretely, arbitrary elements

of G̃L2(F ) may be denoted as pairs (g, ε) for g ∈ GL2(F ) and ε ∈ Z2(F ). Multi-

plication in G̃L2(F ) is then given by

(4) (g1, ε1) · (g2, ε2) = (g1g2, β(g1, g2)ε1ε2)
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where β : GL2(F )×GL2(F )→ Z2(F ) is the co-cycle defined by

(5) β(g1, g2) =

[
`(g1g2)

`(g1)
,
`(g1g2)

`(g2)
det(g1)

]
s(g1)s(g2)s(g1g2)

where [·, ·] = [·, ·]F is the quadratic Hilbert symbol,

(6) [a, b] =

{
1 if z2 = ax2 + by2 for some non-trivial (x, y, z) ∈ F 3

−1 otherwise

for a, b ∈ F×, and `, s : GL2(F )→ F× are the functions

`

((
a b
c d

))
=

{
c if c 6= 0
d if c = 0

and, denoting the valuation of c at v by v(c),

s

((
a b
c d

))
=

{
[c, d(ad− bc)] if cd 6= 0, F 6= R,C and v(c) is odd,

1 else.

Note that the main part, β(g1, g2)s(g1)−1s(g2)−1s(g1g2)−1, is presented as in [2,
Section 7]. However, a simple computation shows this main part agrees with the
expression given in [10, (2.8)].

For each g ∈ GL2(F ), we introduce the notation

(7) g∗ := (g, 1) ∈ G̃L2(F ).

We shall apply this notation to subgroups H ≤ GL2(F ) so that H∗ = {h∗ : h ∈ H}.
Note that H∗ is not necessarily a subgroup of G̃L2(F ). An important example is

N∗, which with our choice of co-cycle is a subgroup of G̃L2(F ). Thus, n 7→ n∗

is a splitting of N . We also abuse terminology and let ε denote the element

(1, ε) ∈ G̃L2(F ) for ε ∈ Z2(F ). For reference, we explicitly list some commutation
relations between commonly used metaplectic matrices:

(8)
a(y)∗n(x)∗ = n(yx)∗a(y)∗; (w∗)−1 = (−w)∗ = (−1)∗w∗;
a(y)∗a(y−1)∗ = (a′(y), [y,−1]); z(y−1)∗a(y)∗ = a(y−1)∗

a(y−1)∗a(y)∗ = a′(y)∗; w∗a(y)∗(w−1)∗ = a(y)∗.

2.1.3. Genuine functions and representations. We say a function Φ on G̃L2(F ),
valued in any module containing Z2(F ), is genuine if Φ(g(1, ε)) = εΦ(g) for all

g ∈ G̃L2(F ) and ε ∈ Z2(F ). Otherwise, we say that Φ factors through GL2(F ). In

what follows we shall only consider genuine representations of G̃L2(F ).
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2.1.4. The centre. The sequence (3) does not split over the centre Z of GL2(F ).

Whilst Z̃ itself is abelian, it commutes with the rest of g ∈ GL2 via the identity
g∗z(λ)∗ = z(λ)∗(g, [λ, det g]) for all λ ∈ F×. It is then evident that (3) does split

over Z2(F ) = {z(λ2) : λ ∈ F×} ≤ Z and in fact the centre of G̃L2 is given by the
pre-image of Z2(F ):

Z̃2(F ) = Z2(F )× Z2(F ).

For the quotient, we identify a set of representatives given by Z̃(F )/Z̃2(F ) =
{z(λ)∗ : λ ∈ F×/(F×)2}. Given a character ω of Z2(F ) we define the set Ω(ω) =

{µ : Z̃(F )→ C : µ|Z2(F ) = ω}.
Note that any genuine function f : Z̃(F )→ C is of the form εf((z(λ), ε)) = f(λ)

for λ ∈ F× and ε ∈ Z2(F ). We make the convention of taking the normalised

counting measure dz̃ on Z̃(F )/Z̃2(F ). Explicitly, for f : Z̃(F )/Z̃2(F )→ C define∫
Z̃(F )/Z̃2(F )

f(z̃) dz̃ =
1

#(F×/(F×)2)

∑
λ∈F×/(F×)2

f(z(λ)∗).

2.2. Non-archimedean local fields: notations and conventions. In this sec-
tion we suppose that F is a local field subject to the ultrametric property. Denote
by o the ring of integers of F and by p the maximal ideal of o. We fix a ‘uni-
formiser’, that is an o-generator of p, and denote it by $; we let q = #(o/p). Let
| · | = | · |F be the absolute value on F , normalised so that |$| = q−1, and v = vF
the valuation on F defined via |x| = q−v(x).

For a multiplicative character χ of F× we define its ‘(exponent) conductor’ to
be the integer

a(χ) = min{k ≥ 0 : χ(u) = 1 for all u ∈ o× ∩ (1 + pk)}.
Once and for all fix an additive character ψ of F which we assume to be unramified;
that is, min{r ≥ 0 : ψ|pr = 1} = 0. The additive group F is self-dual. After making
our choice of ψ, we identify the dual group of F by defining ψλ(x) = ψ(λx) for
each λ ∈ F .

2.2.1. Congruence subgroups. The group GL2(F ) contains the maximal compact
subgroup K := GL2(o) and, for each integer n ≥ 0, the congruence subgroups

K0(n) =

{(
a b
c d

)
∈ K : c ∈ pn

}
≤ K

and

K1(n) =

{(
a b
c d

)
∈ K : c ∈ pn, d ∈ (1 + pn) ∩ o×

}
≤ K0(n),

components of the filtrations Ki(n) ⊂ Ki(n − 1) ⊂ · · · ⊂ Ki(0) = K for i = 0, 1.
Similarly we define K1(n) by assuming a ∈ (1 + pn) ∩ o× rather than d. Over
the metaplectic group, (3) splits trivially over K1(n) (see [10, Prop. 2.8]) as long
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as vp(4) ≤ n. In other words K0(n)∗ (see (7) for notation) defines a subgroup of

G̃L2(F ) as long as F has odd residual characteristic.

2.2.2. Measure considerations. Let dx be the Haar measure on F , normalised
so that Vol(o, dx) = 1, and d×y the Haar measure on F×, normalised so that
Vol(o×, d×y) = 1. Let ζ(s) = (1 − q−s)−1 denote the (local) zeta-function of F .
Note that d×y = ζ(1)|y|−1dy.

Let us normalise a right-Haar measure dRb on B = ZNA via the formula

dRb = d×u dx d×y

for b = z(u)n(x)a(y) with u, y ∈ F× and x ∈ F . Then dLb := |y|−1dRb determines
a left-Haar measure on B. We denote the unique Haar probability measure on K
by dk. The group GL2 is unimodular, thus it posesses a bi-invariant Haar measure
dg. Using the Iwasawa decomposition we can make the identification

dg = dkdRb = dLbdk.

Note that this identification determines a canonical normalisation of dg.

2.3. Global aspects of the metaplectic group. To introduce G̃L2(A) we follow

the discussion in [10, §2.2]. We define the adele group G̃L2(A) = GL2(A)×Z2(F )
and equip it with the product

(g, ε1) · (h, ε2) = (g · h, ε1ε2
∏
v

βv(gv, hv)).

Note that if gv, hv ∈ Kv and v has odd residual characteristic, then βv(gv, hv) = 1.
Thus, by construction of the adeles as a restricted direct product we are always
encountering only finite products of co-cycles. This makes our group well-defined.

Another more conceptual construction is given by quotient

G̃L2(A) = Z̃eve\
∏
v

′
G̃L2(Fv),

where

Z̃eve = {(εv)v ∈
∏

vZ2(F ) : εv = 1 for all but a finite, even number of places v} .
In order to discretely embed GL2(F ) we have to construct another lifting other

than g∗ = (g, 1) ∈ G̃L2(A) for g ∈ GL2(A) as given in (7). We define a function
on γ ∈ GL2(F ) by setting s(γ) =

∏
v sv(γ); note that this product is indeed

finite since the valuation v(c) = 0 for almost all v. Now define an embedding

ς : GL2(F ) ↪→ G̃L2(A) by mapping γ ∈ GL2(F ) to

(9) γς := (γ, s(γ)) ∈ G̃L2(A)

such that γ is embedded diagonally into GL2(A) in the first variable. Then ς is in
fact an injective group homomorphism.
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3. Whittaker Models, Kirillov Models and Bessel Transforms

We now recap some necessary prerequisites concerning local and global Whit-
taker models and their corresponding Bessel transforms.

3.1. Local Whittaker and Kirillov models. We let F be a local field and
recall some background from [12, §3]. Let (π, Vπ) be an irreducible admissible

genuine representation of G̃L2(F ). If F is archimedean, this includes a slight
abuse of notation. Indeed in this case Vπ actually stands for the G̊arding space of
the representation, which is topologised in the usual way. The space W(π, ψ) of

smooth functions on G̃L2(F ), invariant under right translation by G̃L2(F ), such
that

W (n(x)∗g) = ψ(x)W (g)

for all x ∈ F , g ∈ G̃L2(F ), and W ∈ W(π, ψ) is called a ψ-Whittaker model for π if

the representation of G̃L2(F ) given by right translation R onW(π, ψ) is equivalent
to π. Such models always exist. However, in contrast to the GL2 setting they are
not necessarily unique. Therefore we call π ‘distinguished’ if W(π, ψ) is unique.

To fix this lack of uniqueness we make the following definitions. Let µ be a

character of Z̃(F ). A (ψ, µ)-Whittaker functional on π is a linear map lµ : Vπ → C
such that

lµ(π(z̃n(x)∗)ξ) = µ(z̃)ψ(x)lµ(ξ)

for all x ∈ F , z̃ ∈ Z̃(F ), and ξ ∈ Vπ. Such functionals are unique and for each
representation π there exists at least one µ ∈ Ω(ωπ) such that lµ 6= 0; recall the
definition of Ω given in §2.1.4. Thus, we define the non empty set Ω(π) = {µ ∈
Ω(ωπ)|lµ 6= 0}. Given such a lµ we can construct the unique (ψ, µ)-Whittaker
model by defining

W(π, ψ, µ) = {W µ
ξ : g 7→ lµ(π(g)ξ) : ξ ∈ Vπ}.

In particular the elements W ∈ W(π, ψ, µ) are smooth and satisfy

W (z̃n(x)∗g) = µ(z̃)ψ(x)W (g)

for all x ∈ F , z̃ ∈ Z̃(F ), and g ∈ G̃L2(F ). The representation of G̃L2(F ) on
W(π, ψ, µ) is equivalent to π.

If F is non-archimedean we have the following useful result.

Lemma 3.1. Assume that F is non-archimedean. On the set A∗(F ), the Whittaker
functions W ∈ W(π, ψ, µ), which are right-invariant by N(o)∗ satisfy W (a(y)∗) =
0 for all y ∈ F× with |y| > 1.

Proof. Let y ∈ F×. Then for all x ∈ o we have

W (a(y)∗) = W (a(y)∗n(x)∗) = W (n(xy)∗a(y)∗) = ψ(xy)W (a(y)∗).

If |y| < 1, we can always find x ∈ o such that ψ(xy) 6= 1. �
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We now define the ‘Kirillov map’ by

(10) ξ 7→ (W µ
ξ (a(·)∗))µ∈Ω(π) ∈ C∞(F×)]Ω(π).

for ξ ∈ Vπ. As explained in [11, §3] this map is injective. Therefore, its image
is equivalent to Vπ and is called the ‘ψ-Kirillov model’ of π. We write K(π, ψ)
for this space. Moreover, one can show that it contains the subspace K0(π, ψ) =
⊕µ∈Ω(π)S(F×).

For each µ ∈ Ω(π) we can project onto the µ-fibre of the (π, ψ)-Kirillov model.
This leads to the function space {y 7→ W (a(y)∗) : W ∈ W(π, ψ, µ)}, which
contains the Schwartz–Bruhat functions S(F×). We refer to the latter space as
‘(ψ, µ)-Kirillov space of π’. Note that the (ψ, µ)-Kirillov space is not a proper
model for π.

3.2. Archimedean Bessel transforms. In this section we introduce the Bessel
transform for genuine representations of G̃L2(F ). The goal is to describe the
action of w in the Kirillov model as an integral transform. We outline this theory
following [2, 3].

3.2.1. The real Bessel transform. First consider F = R. We start by quickly
recalling the classification of representations in this case.

Proposition 3.2 (Classification of representations of G̃L2(R)). Every irreducible,

admissible, genuine, unitary representation π of G̃L2(R) is equivalent to

π(µ, σ) := ind
G̃L2(R)

Z̃(R)S̃L2(R)
(µ× σ)

for some genuine character µ of Z̃(R) and some genuine irreducible admissible

representation σ of S̃L2(R) satisfying σ|C4 = µ|C4. We distinguish several cases:

(1) The Principal (or Continuous) Series representations. Let σ = σα,s be the
representation induced from

C4N
∗(A+

0 )∗ 3 mjn(x)∗a′(y)∗ 7→ ys+1e(
αj

4
) ∈ C,

for α = 1, 3 and s ∈ iR+. We write π(µ, s) for the equivalence class of
representations represented by

π(µ, σ1,s) ∼= π(sgn ·µ, σ3,s).

Here we abuse notation and view sgn as a genuine character of Z̃(R). Note
that

π(µ, s)|Z̃S̃L2(R) = µ× σ1,s ⊕ (sgn ·µ)× σ3,s.

The action of a(−1)∗ is easily determined by permuting the two components.
Further we must have µ(z(−1)∗) = i.



VORONOÏ SUMMATION FOR HALF-INTEGRAL WEIGHT AUTOMORPHIC FORMS 14

(2) The Complementary Series representations. These are given by σ = σα,s
for s ∈ R with 0 < s < 1/2 and α ∈ {1, 3}. As in the Principal series
case we write π(µ, s) for the equivalence class of representations generated
by π(µ, σ1,s) ∼= π(sgn ·µ, σ3,s).

(3) The Discrete Series representations. If k is a positive integer, the represen-
tation σ1,k− 1

2
contains a unitary irreducible subspace σ̃1,k− 1

2
. If k is even this

is a holomorphic discrete series and if k is odd it is a anti-holomorphic dis-
crete series. A similar statement with holomorphic and anti-holomorphic
reversed holds for σ3,k− 1

2
. We write σ(µ, k) for the equivalence class of repre-

sentations given by π(µ, σ̃1,k− 1
2
) ∼= π(sgn ·µ, σ̃3,k− 1

2
). We can always arrange

that

σ(µ, k)|S̃L2(R)
∼=

{
σ̃1,k− 1

2
⊕ σ̃3,k− 1

2
if k is even,

σ̃3,k− 1
2
⊕ σ̃1,k− 1

2
if k is odd.

The point is that the first component is always the holomorphic discrete
series of lowest weight k+ 1

2
. In practice we can realise this discrete series

representation as a subspace in a suitable model of π(µ, s) for s = k − 1
2
.

(4) The Weil representation. If σ is the irreducible subspace of σα,− 1
2
, then

π(µ, σ) is determined by a character χ of R× and known as the r+
χ -Weil

representation.

Over R we have to consider the Whittaker models associated to the data (ψ, µ±),

where µ± = sgn
1±1
2 µ. At least one of them will be non-zero. In particular we have

the Whittaker models W(π(µ, s), ψ, µ±). In order to fix two standard Whittaker
functionals we model π(µ, s) on

Fπ =

{
F ∈ C∞(G̃L

+

2 (R)×G̃L2(R),C) : [h 7→ F (h, g)] ∈ µ×σ for all g ∈ G̃L2(R)

and F (h1h2, g) = F (h1, h2g) for all h1, h2 ∈ G̃L
+

2 (R), g ∈ G̃L2(R)

}
.

Set ψλ(x) = e(λx). The standard (ψλ, µ
±)-Whittaker functionals (agreeing with

those defined in [3, §13]) are given by

(11) L±λ (F ) =

∫
R
F (w∗n(x)∗, a(±1)∗)e(∓λpx)|λ|

1
2dx.

We now turn towards the action of the element w∗ = (w, 1) on the Kirillov
model. This action is given by several Bessel transforms.

Proposition 3.3. Let π = π(µ, σ) be a genuine, irreducible representation of

G̃L2(R) as in Proposition 3.2. For ε ∈ {±1} there exist functions jµ
ε,µ±

π : R× → C
such that

W µε

v (a(x)∗w∗) =
∑
±

∫
R×

[−x, y]µε(y−1)jµ
ε,µ±

π (xy)W µ±

v (a(y)∗)d×y
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whenever W µ±
v (a(·)∗) ∈ S(R×). Here d×y = dy/|y| = ζv(1) dy|y| , where dy is the

usual Lebesgue measure on R.

To ease notation we will sometimes write jε,±π = jµ
ε,µ±

π . Note that Ω(µ) = {µ±}.

Proof. This follows from [3, Theorem 13.2] and the identification

[−x, y]µε(y−1)jµ
ε,µ′

π (xy) = [−x, y]µε(y−1)jµ
ε,µ′

π (a(xy)∗w∗) = jµ
ε,µ′

π (a(y)∗w∗a(x−1)∗),

where µ′ ∈ {µ+, µ−}. �

Note that in contrast to the GL2 situation we obtain a linear combination of
two Bessel transforms. This is a reflection of the non-uniqueness of the Whittaker
model and can be directly seen from the more complicated structure of the Kir-
illov model. Moreover, if µ 6= µ′, then the Bessel function jµ,µ

′
π depends on the

normalisation of the two Whittaker functionals L±. Otherwise the Bessel function
depends only on the measure normalisations.

We finish this section by listing explicit formulae for these functions in some
cases. We will consider the additive character ψ(x) = ψλ(x) = e(λx) and write
jε,±π,λ(x) to highlight the additional dependence. The following expressions are ex-
tracted from [3, p.53].

For discrete series representations, s ∈ −1
2

+ N, we have j±,∓π,λ (x) = 0 and

j−,−π,λ (x) = j+,+
π,−λ(x). Therefore, it is enough to describe the ++-case. We have

(12) j+,+
π,λ (x) =

{
2πe

−3πis/2

sin(πs)
µ(
√
|x|)|xλ| 12Js(4π|λ|

√
|x|) if x, λ > 0,

0 else.

For principal series representations, s ∈ iR, and complementary series, 0 < s <
1
2
, we have

j+,+
π,λ (x) = δx>02µ(|x|

1
2 )|λx|

1
2 [Ks(λ · 4πi|x|

1
2 )− iKs(−λ · 4πi|x|

1
2 )],

j+,−
π,λ (x) = δx>02µ(|x|

1
2 )|λx|

1
2 [(sgn(λ)i)−s−1 − i(− sgn(λ)i)−s−1]Ks(4π|λ2x|

1
2 )

where we consider the situation π = π(µ, σ1,s). In particular we have µ(−1) = i.
The other Bessel transforms are obtained by the relations j−,−π,λ (x) = j+,+

π,−λ(x) and

j−,+π,λ (x) = j+,−
π,−λ(x).

Remark 3.4. We skip the case of the even Weil representation, as this can be easily
excluded in most global applications.

3.2.2. The complex Bessel transform. If F = C, we are in the split situation where

G̃L2(C) = GL2(C)× Z2(C). Thus, every genuine, irreducible, unitary representa-
tion is given by

π̃((g, ε))v = επ(g)v,
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where π is an irreducible, unitary representation of GL2(C) and v ∈ π. The latter
representations have been classified in [16, Theorem 6.2]. Also the complex Bessel
transform reduces to the GL2(C) case, which has been studied in [24].

In contrast to the real situation we have Ω(ωπ) = {ωπ} and there is just one
Bessel function associated to each representation π̃. In order to have a consistent
notation for all local fields we call this Bessel function jωπ ,ωππ : C× → C. The
defining property is

W ωπ
v (a(x)∗w∗) =

∫
C×
ωπ(y−1)jπ(xy)W ωπ

v (a(y)∗)d×y

for W ωπ
v (a(·)) ∈ S(C×). Here we normalise d×y = dy

π|y|2 = ζv(1) dy
|y|2 , where dy is

the Lebesgue measure on C ∼= R2. This can be compared to [24, (3.2.4)] and the
corresponding Bessel functions are given in [24, Proposition 3.2.5].

3.3. Bessel transforms over non-archimedean fields. Let F denote a non-
archimedean local field and fix an irreducible, admissible representation (π, Vπ) of

G̃L2(F ). For µ ∈ Ω(ωπ), fix a (ψ, µ)-Whittaker functional for π and call it lµ.
By [2, Lemma 7.1], the (ψ, µ)-Whittaker space may be decomposed as

W(π, ψ, µ) =
⊕

µ′∈Ω(ωπ)

Wµ′(π, ψ, µ),

where we define the space Wµ′(π, ψ, µ) to be the set of functions W ∈ W(π, ψ, µ)

satisfying W (gz̃) = µ′(z̃)W (g) for all g ∈ G̃L2(F ) and z̃ ∈ Z̃(F ).
For W ∈ W(π, ψ, µ) and µ′ ∈ Ω(ωπ) we define the function

Jn(W,µ′; g) :=

∫
p−n

∫
Z̃(F )/Z̃2(F )

W (gn(x)∗z̃)ψ(x)−1 µ′(z̃)−1 dz̃ dx.

By [2, Theorem 8.2] the sequence stabilises as n→∞. Thus,

(13) J(W,µ′; g) = lim
n→∞

Jn(W,µ′; g)

converges for each g ∈ B̃w∗N∗, is locally constant on this set, and defines a locally

integrable function on G̃L2(F ).
Note that by construction J(W µ

ξ , µ
′; g) gives rise to a (ψ, µ′)-Whittaker func-

tional on G̃L2(F ). By the uniqueness property for such functionals we conclude
that there exists a value jµ,µ

′
π (g) ∈ C such that

(14) J(W µ
ξ , µ

′; g) = jµ,µ
′

π (g)W µ′

ξ (1)

for each g ∈ B̃w∗N∗. The consequent function jµ,µ
′

π,λ (g) also depends on the fixed

choice of character ψ; Whittaker functional lµ
′
; and Haar measure dx present in

(13), though is independent of the vector ξ. If lµ
′

= 0 simply define jµ,µ
′

π (g) = 0
identically.
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We call the function jµ,µ
′

π the ‘(µ, µ′)-Bessel function’ associated to π. We are
interested in these functions because they can be used to evaluate the Whittaker
functions W µ

ξ away from the diagonal. By [2, Proposition 8.3] the Bessel transform

is given as follows (noting that a factor of ζF (1)−1 appears because our measure is
normalised differently).

Proposition 3.5. Let ξ ∈ Vπ such that for all µ′ ∈ Ω(ωπ) the function y 7→
W µ′

ξ (a(y)∗) has compact support in F×. Then for each g ∈ B̃w∗N∗ we have

W µ
ξ (g) = ζF (1)−1

∑
µ′∈Ω(ωπ)

∫
F×

jµ,µ
′

π (ga(y−1)∗)W µ′

ξ (a(y)∗) d×y.

The left- and right-translates by Z̃(F )N∗ of the (µ, µ′)-Bessel function are easily
described. Thus, by the Bruhat decomposition for GL2(F ), it suffices to under-

stand the Bessel functions on elements (a(y), ε)w∗ ∈ G̃ for y ∈ F× and ε ∈ Z2(F ).
Abusing notation, we define

jµ,µ
′

π (y, ε) := jµ,µ
′

π ((a(y), ε)w∗); jµ,µ
′

π (y) := jµ,µ
′

π (y, 1).

These functions immediately satisfy the following support condition.

Lemma 3.6. If y ∈ F× then jµ,µ
′

π (y) = 0 unless µ′(u) = [u, y]µ(u) for all u ∈ F×.

Proof. By (14) it suffices to consider the function of J(W,µ′;w∗a(y)∗) for some
W ∈ W(π, ψ, µ). By reordering integration in (13), for each u ∈ F× we obtain

jµ,µ
′

π (w∗a(y)∗)µ′(u) = [u, y]µ(u) jµ,µ
′

π (w∗a(y)∗),

whence the claim follows. �

Remark 3.7. If π is distinguished, then there is a unique (genuine) character µπ
satisfying lµπ 6= 0. Therefore, the only non-trivial Bessel function is jµπ ,µππ . This
function does not depend on the choice of lµχ but only upon the choice of Haar
measures in (13). An explicit formula for this Bessel function is given in [11, Propo-
sition 4.4.2]. Even more interesting is that for such distinguished representations
there is a local functional equation, which closely mimics the GL2(F ) analogue.
Indeed, there exist constants γ(s, π, ψ) ∈ C×, for s ∈ C, known explicitly in terms
of local L- and ε-factors, which are shown to equal

(15) γ(s, π, ψ) =

∫
F×

jµπ ,µππ (y)µπ(y)−1|y|
1
2
−sd×y.

(See [11, p. 170].)
For non-distinguished representations π such a compact formula relating the

Bessel functions jµ,µ
′

π to some γ-factors is not available. However, adapting the
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proof of [27, Lemma 4.5] one can show that

γ(s, π, π′, ψ, µ) = ζF (1)−2

∫
F×

ψ(u)µµπ′(u)−1|u|2(1−s)

·
∫
u−2p−n

jµ,µπ (y)j
µπ′ ,µπ′
π′ (y)µµπ′(y)−1|y|−sd×yd×u,

for n � 1 and a distinguished representation π′. Here the γ-factor appearing
on the left hand side is defined in [12, 5.5]. Such γ-factors arise from the local
functional equation of Shimura-type, see [12, Theorem 5.3], and play a key role in
the representation theoretic description of the Shimura correspondence.

3.4. Global aspects. Let π be a genuine cuspidal automorphic representation

of G̃L2(A). These are irreducible constituents of the space of genuine cuspidal

automorphic formsA◦(G̃L2(A)) on which G̃L2(A) acts by right translation; see [12,
§9.3]. We write ωπ for its central character. It can be shown that each genuine

irreducible admissible representation π of G̃L2(A) has a factorisation

π =
⊗
v

πv,

where πv are genuine irreducible admissible representations of G̃L2(Fv), which are
spherical for almost all v. Note that the tensor product is actually a representation

of
∏

v
′G̃L2(Fv) but, since all the local representations are genuine, the action of

Z̃eve is trivial so that the product descends to a representation of G̃L2(A) viewed
as a quotient.

Let ψ = ⊗vψv be an additive character of A which is invariant under F . Using
Fourier analysis on the compact quotient F\A, one finds that any genuine cuspidal
automorphic form φ has a Fourier, or Whittaker, expansion

(16) φ(g) =
∑
ξ∈F×

Wφ(a(ξ)∗g)

for

Wφ(g) =

∫
F\A

φ(n(x)∗g)ψ(x)dx.

Here we equip A =
∏′

v Fv with the product measure and write dx for integra-
tion with respect to natural quotient measure on F\A. Note that we introduced
the normalised Haar measures for Fv non-archimedean in Section 2.2. If Fv is
archimedean we equip it simply with the Lebesgue measure.

The definition of Wφ(g) resembles the GL2 situation and for obvious reasons we
call Wφ the ψ-Whittaker function of φ. Guided by the local situation we define

the set Ω(ωπ) as the set of genuine characters µ : Z̃(A) → C× such that µ2 = ωπ.
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Furthermore we define the (ψ, µ)-Whittaker function of φ by

W µ
φ (g) =

∫
Z̃(A)2\Z̃(A)

∫
F\A

φ(zn(x)∗g)ψ(x)µ(z)−1dxdz.

Of course we have

Wφ(g) =
∑

µ∈Ω(ωπ)

W µ
φ (g).

We obtain the refined Whittaker expansion

(17) φ(g) =
∑

µ∈Ω(ωπ)

∑
ξ∈F×

W µ
φ (a(ξ)∗g).

As we did in the local case, we can associate the global (ψ, µ)-Whittaker model
W(π, ψ, µ) to π. We define Ω(π) ⊂ Ω(ωπ) to consist of those µ for whichW(π, ψ, µ)
exists and is non-trivial. We call π distinguished if ]Ω(π) = 1.

Remark 3.8. Let π = ⊗vπv be a genuine cuspidal automorphic representation of

G̃L2(A). Then the following are equivalent:

• π is distinguished.
• π is a theta representation. In other words, it is constructed from a global

Weil representation.
• πv is distinguished for every v.

This is the content of [12, Theorem A]. Furthermore if φ transforms with respect
to a distinguished cuspidal automorphic representation π with Ω(π) = {µ}, then
(17) reads

φ(g) =
∑
ξ∈F×

W µ
φ (a(ξ)∗g)

and we have Wφ(g) = W µ
φ (g) for all g.

We have now gathered all the necessary representation theoretic background
and turn towards the derivation of our main Voronöı formula.

4. The main adelic theorem

As suggested in the introduction, we follow the strategy for GL2 as outlined
in §1.3. For distinguished (cuspidal) automorphic representations π this can be
executed verbatim. However, such a result is not so interesting as it is essentially
just a reformulation of Poisson summation. Therefore our focus will be mainly on
non-distinguished representations. For such representations, the fact that N∗ ⊂
G̃L2 is not a strong Gelfand pair becomes apparent. We instead consider the
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following Gelfand formation:

G̃L2

Z̃N∗ Z̃N
∗

{1}∗

Note that Z̃N∗ ⊂ G̃L2 is a strong Gelfand pair by uniqueness of (ψ, µ)-Whittaker

functionals. Furthermore we have w∗Z̃N∗(w∗)−1 = Z̃N
∗
. This follows from the

elementary computation

w∗zn(x)∗(w∗)−1 = zn(−x)∗, for z ∈ Z̃ and x ∈ A.

Note that

wς = (w, 1) ∈ GL2(F )ς ⊂ G̃L2(A).

We now give the fundamental identity by expanding the period φ 7→ φ(e) through
both sides of the formation. Equivalently, the fundamental identity may be viewed
as the Fourier expansion of both sides of the equality φ(1) = φ(wι), which holds
for example for automorphic forms φ. This is the point of view we adopt in the
following proof.

Proposition 4.1. Let φ be a cuspidal automorphic form transforming with respect

to some cuspidal automorphic representation π = ⊗vπv of G̃L2(A). Further assume
that φ is right-N(ô)∗-invariant. Let ζ = (ζv) ∈ A and let S denote the set of places
containing the archimedean places v for which ζv 6= 0 and the non-archimedean
places v for which |ζv|v > 1. Let ψ = ⊗vψv be an additive character of A/F . Then
we have∑

µ∈Ω(ωπ)

∑
ξ∈F×

W µ
φ (a(ξ)∗)ψ(ξζ) =

∑
µ∈Ω(ωπ)

∑
ξ∈F×

W µ
φ (a(ξ)∗wςh(ζ))

∏
v∈S

ψv(−ξζ−1
v )

where h(ζ) = (hv) ∈ G̃L2(A) is given by

hv =

(
1 ζv
−ζ−1

v 0

)∗
for v ∈ S and hv = 1 for v 6∈ S.
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Proof. Define φζ := R(n(ζ)∗)φ, where R denotes right-translation, and consider
its Whittaker expansion. On the one hand,

ϕζ(1) =
∑

µ∈Ω(ωπ)

∑
ξ∈F×

W µ
φ (a(ξ)∗n(ζ)∗)

=
∑

µ∈Ω(ωπ)

∑
ξ∈F×

ψ(ξζ) W µ
φ (a(ξ)∗)

since a(ξ)∗n(ζ)∗ = n(ξζ)∗a(ξ)∗. On the other hand, by the automorphy of φζ , we
have

φζ(1) = φζ(wς) =
∑

µ∈Ω(ωπ)

∑
ξ∈F×

W µ
φ (a(ξ)∗wςn(ζ)∗).

The lemma is now proved by inspecting the argument place-by-place. For instance,
if v 6∈ S then πv(n(ζv)

∗) stabilises φ. Otherwise note that

(18) n(ξζ−1
v )∗a(ξ)∗wςn(ζv)

∗ = a(ξ)∗n(ζ−1
v )∗wςn(ζv)

∗

= a(ξ)∗wςn(−ζ−1
v )∗n(ζv)

∗ = a(ξ)∗wς
(

1 ζv
−ζ−1

v 0

)∗
.

�

We now come to our main adelic theorem. Up to choosing φ and thus W µ
φ (in

other words Step 1 of our model strategy) this is a very general summation formula
to accommodate various application settings.

Theorem 4.2. Let φ be a cuspidal automorphic form with respect to some cuspidal

automorphic representation π = ⊗vπv of G̃L2(A). Further assume that φ is right-
N(ov)

∗-invariant, where ov is the ring of integers of Fv for all finite places v of F ,
and that it corresponds to a pure tensor. Let ζ = (ζv) ∈ A and fix the following
sets of places: let Sζ be the set of non-archimedean places v for which |ζv|v > 1 and
at which φv is spherical; let Sφ be the set of places v for which φv is not spherical
together with all the archimedean places. Let ψ = ⊗vψv be an additive character
of A/F . Then we have∑

µ∈Ω(ωπ)

∑
ξ∈F×

W µ
φ (a(ξ)∗)ψ(ξζ) =∑

µ∈Ω(ωπ)

∑
ξ∈F×

[Hµ
Sφ
W µ
φ ](a(ξ)∗ιSζ(a(ζ−2))∗)

∏
v∈Sζ

[ζv,−ξ]µv(ζv)ψv(−ξζ−1
v )

where ιSζ denotes the map from
∏

v∈Sζ G(Fv)→ GL2(AF ), and

[Hµ
Sφ
W µ
φ ](g) =

∏
v/∈Sφ

W µv
φ,v(gv) ·

∏
v∈Sφ

∑
µ′v∈Ω(ωπ,v)

[Hµv ,µ′v
v W µv

φ,v](gv),
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for local transforms given by

[Hµv ,µ′v
v W µv

φ,v]((a(ξ)∗) =

ζv(1)−1

∫
F×v

ψv(yζ
′
v)W

µ′v
φ,v(a(y)∗)jµv ,µ

′
v

πv (ξy)[y,−1]µv(y)−1d×y,

where ζ ′v = ζv if v is archimedean or |ζv|v > 1 and ζ ′v = 0 otherwise.

Proof. This is a combination of Proposition 4.1 alongside evaluating Wφ place-by-
place according to the local Bessel transform results (Propositions 3.3 & 3.5 and
§ 3.2.2) which we now detail.

Let h(ζ) be as in Proposition 4.1. Starting from Proposition 4.1, in which the
fundamental identity for W µ

φ is established, it remains to evaluate

W µ
φ (a(ξ)ςwςh(ζ)) =

∏
v

W µv
φ,v(a(ξ)ςwςhv).

We do so by considering several cases.
First, we treat v /∈ Sφ ∪ Sζ . In this case we simply observe that

W µv
φ,v(a(ξ)ςwςhv) = W µv

ϕ,v(a(ξ)∗),

since hv = 1 and wς ∈ K∗v .
Second, we consider v ∈ Sζ . We have the decomposition

hv = (z(ζv), [ζv,−1])a(ζ−2
v )∗

(
ζ−1
v 1
−1 0

)∗
.

Together with w∗a(x)∗(w∗)−1 = (a(x), [x,−1]) and noting how z ∈ Z̃ commutes
with other elements we find

a(ξ)ςwςhv = (z(ζv), [ζv,−ξ])a(ξζ−2
v )∗w∗

(
ζ−1
v 1
−1 0

)∗
.

Using the transformation properties of (ψv, µ
ξ
v)-Whittaker functions and right-K∗v -

invariance we get

W µv
φ,v(a(ξ)∗w∗hv) = [ζv,−ξ]µv(ζv)W µv

φ,v(a(ξζ−2
v )∗).

Finally, if v ∈ Sφ and |ζv|v > 1, we have

W µv
φ,v(a(ξ)∗w∗hv) =

ψv(ξζ
−1
v )ζv(1)−δv-∞

∑
µ′∈Ω(ωπv )

∫
F×v

ψv(yζv)W
µ′v
φ,v(a(y)∗)jµv ,µ

′
v

πv (ξy)µv(y)−1[−1, y]d×y.

This follows from the original construction

a(ξ)∗w∗hv = n(ξζ−1
v )∗a(ξ)∗w∗n(ζv)

∗,

see (18). In the remaining case, |ζv|v ≤ 1, we have hv = 1, so that the computation
is even easier. The result then follows after re-assembling all the pieces. �
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5. The classical formulation

We now recall the adelisation and de-adelsiation procedure and give some in-
terpretations of our Voronöı formula in the classical language. We assume some
familiarity with the theory of half-integral weight modular forms. Nonetheless we
start by recalling some basics, mostly following [26].

5.1. Automorphic forms of half-integral weight. It is convenient here to give
an alternative definition of the metaplectic cover of GL+

2 (R). Let GL+
2 (R) denote

the set of pairs (g, φ(·, g)) such that g = ( a bc d ) ∈ GL+
2 (R) and φ(·, g) : H → C is

a holomorphic function satisfying φ(z, g)2 = tg
cz+d√
det(g)

for tg ∈ {±1}. Define the

multiplication law

(19) (g1, φ1(z, g)) · (g2, φ2(z, g)) = (g1g2, φ1(g2z, g1g2)φ2(z, g1g2)),

and write SL2(R) for the subgroup of those tuples (g, φ(·, g)) with det(g) = 1.
Explicitly, recalling our choice of the branch cut of the complex square root, one
obtains an embedding

S̃L2(R) 3 (g, ε) 7−→ (g, ε(cz + d)
1
2 ) ∈ SL2(R).

By [10, Lemma 3.3] this is well defined. Thus we can view S̃L2(R) as a subset of
GL+

2 (R).
For each integer k ≥ 0, we let the group GL+

2 (R) act on the set of meromorphic
functions f : H→ C by defining the ‘half-integral weight slash operator’

(20) (f | k
2
g̃)(z) :=

(
|φ(z, g)|
φ(z, g)

)k
f(gz)

for g̃ = (g, φ(·, g)) ∈ GL+
2 (R). This action is genuine if and only if k is odd, which

we exclusively assume in our construction.
The prototypical example of a modular form of half-integral weight is the theta

function
ϑ(z) =

∑
n∈Z

e(n2z)

for z ∈ H. See [15, Theorem 10.10] for example. Its square is a modular form of
weight 1, level 4, and character χ4, the primitive Dirichlet character of conductor
4 such that χ4(x) = e(x−1

4
) if x ∈ Z is odd. To pick out a lattice in SL2(R), define

the co-cycle

jϑ(γ, z) :=
ϑ(γz)

ϑ(z)
= ε−1

d

( c
d

)
(cz + d)

1
2

for εd = χ4(d)
1
2 , γ ∈ Γ0(4) and z ∈ H. Here

(
c
d

)
is the (modified) quadratic residue

symbol as defined in [26, Notation 3]. For odd d and even c this agrees with
(
c
d

)
S

as defined in [10, Proposition 2.16]. The functional equation for θ2 implies that

jϑ(( a bc d ), z)2 = χ4(d)(cz + d).
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The projection SL2(R) → SL2(R) splits over Γ1(N) whenever N is a positive
multiple of 4. We observe this splitting by virtue of

∆1(N) := {γ̃ = (γ, jϑ(γ, z)) : γ ∈ Γ1(N)} ⊂ SL2(R).

Since jϑ(γ1γ2, z) = jϑ(γ1, γ2z)jϑ(γ2, z), as required by (19), ∆1(N) defines a sub-
group of SL2(R). For notational convenience we also define

∆0(N) := {γ̃ = (γ, jϑ(γ, z)) : γ ∈ Γ0(N)} ⊂ SL2(R).

We define a modular form of half-integral weight to be a meromorphic function
which is stabilised by ∆1(N) under (20). For each integer k ≥ 0, and f : H → C
we introduce the straightforward extension of the usual slash operation, as in [8]
(this might be unfamiliar for those used to classical holomorphic modular forms,
but is very natural from a spectral point of view):

(21) (f | k
2
γ̃)(z) :=

(
|jϑ(γ, z)|
jϑ(γ, z)

)k
f(γz)

for γ ∈ Γ0(4).

Definition 5.1. Let k ≥ 0 be an integer and let N be a positive multiple of 4.
Let χ be a Dirichlet character modulo N . We call a smooth function f : H → C
an automorphic form of weight k+ 1

2
, level N , and character χ if the following are

satisfied:

• One has f |k+ 1
2
γ̃ = χ(d)f for all γ = ( a bc d ) ∈ Γ0(N).

• The function f is a function of moderate growth on Γ0(N)\H.

• As a function of S̃L2(R) it is an eigenfunction of the weight k + 1
2

Laplace
operator

(22) ∆k+ 1
2

:= −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ i(k +

1

2
)y
∂

∂x

with eigenvalue λ = s(1− s). (i.e ∆k+ 1
2
f = λf .)

We consider the eigenvalue λ as fixed and denote the set of such functions f
by Ãk+ 1

2
(N,χ). Let Ã◦

k+ 1
2

(N,χ) denote the set of f ∈ Ãk+ 1
2
(N,χ) such that

limz→a f(z) = 0 for each cusp a of Γ0(N)\H. Note that Ã◦
k+ 1

2

(N,χ) is empty

unless χ(−1) = 1.

In some situations it is convenient to relax the first condition in Definition 5.1
to

f |k+ 1
2
γ̃ = f for all γ ∈ Γ1(N),
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whilst keeping the remaining conditions with the necessary modifications. The
resulting spaces of such functions are denoted by Ãk+ 1

2
(N) and Ã◦

k+ 1
2

(N) respec-

tively. One can show that

Ã◦
k+ 1

2
(N) =

⊕
χ mod N

Ã◦
k+ 1

2
(N,χ).

We are thus naturally led to modular forms that transform with respect to char-
acters under ∆0(N).

5.2. Relation to the literature. Since our notion of a half-integral weight mod-
ular form slightly deviate from the standard ones, let us give some examples of
how it relates to the usual classical constructions.

Remark 5.1. We start by recalling the classical definition of weight 1
2

Maaß forms
as given by S. Katok and P. Sarnak in [18]. The theta function used by loc. cit. is

ϑ̃(z) := Im(z)
1
4ϑ(z). The resulting co-cycle is

(23) J(γ, z) =
ϑ̃(γz)

ϑ̃(z)
=

jϑ(γz)

|cz + d| 12
=

jϑ(γ, z)

|jϑ(γ, z)|

The space considered in [18] now translates into

L2
cusp(Γ0(N)\H, J) = Ã◦1

2
(4, Id)

=
{
f : H→ C : square-integrable and cuspidal with f | 1

2
γ = f, ∀γ ∈ Γ0(4)

}
.

In particular they are interested in eigenfunctions of −∆ 1
2
.

Remark 5.2. Even though our notion of an automorphic form includes holomorphic
modular forms of half integral weight, it differs slightly from the classical definition.
Indeed, a classical modular form F of weight k + 1

2
is usually defined by requiring

• F (γz) = χ(d)jθ(γ, z)2k+1F (z) for all γ ∈ Γ0(N),
• F is holomorphic in H and at the cusps.

Given such a form F we claim that f(z) = Im(z)
2k+1

4 F (z) satisfies the definition
of a weight k+ 1

2
, level N automorphic form of character χ. To see that f exhibits

the correct transformation behaviour is straightforward. Using the fact that holo-
morphic functions are harmonic in that they are annihilated by ∆R2 = ∂2

∂x2
+ ∂2

∂y2
,

we compute that

(24) ∆k+ 1
2
f =

2k + 1

4

(
1− 2k + 1

4

)
f.

Additionally the Cauchy–Riemann equations for F imply that

Λk+ 1
2
f =

[
iy
∂

∂x
− y ∂

∂y
+

2k + 1

4

]
f = 0.
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Thus, f lives in the kernel of the Maaß weight lowering operator. Moreover, the
two conditions (24) and Λk+ 1

2
f = 0 characterise the holomorphy of F . This is a

nice exercise involving the Cauchy–Riemann equations.

5.3. Fourier expansions. For a cusp a of Γ0(N)\H let σ ∈ SL2(Z) such that
σa =∞. Suppose that γ ∈ Γ0(N) satisfies γa = a. Then σγσ−1 fixes the cusp ∞
implying it is a matrix of the form ±n(x) for some x ∈ Z. Since γ−1a = a, we can
make the definition

w(a) := min
{
x ≥ 1 : σγσ−1 = n(x) for some γ ∈ Γ0(N)

}
.

The positive integer w(a) is called the ‘width’ of the cusp a. It is defined inde-
pendently of the choice of σ. If the cusp a has denominator q and numerator a,
so that a = a

q
∈ P1(Q) with q | N and gcd(a,N) = 1, it is well known [23, §3.4.1]

that w(a) = N/ gcd(q2, N).
Let M | N denote the conductor of χ. For any x ∈ Z we have (f |k+ 1

2
σ−1)(z +

xw(a)) = χ(1 + axw(a)q)(f |k+ 1
2
σ−1)(z). Note that χ(1 + ax1x2w(a)q) = 1 for all

(x1,M) = 1 if and only if M | qw(a)x2, or equivalently, M
gcd(qw(a),M)

| x2. Define

δ(a) := w(a)
M

gcd(qw(a),M)
=

lcm(q2, N, qM)

q2
.

Then δ(a) is the least integer d ≥ 1 such that (f |k+ 1
2
σ−1)(z + ld) = (f |k+ 1

2
σ−1)(z)

for all l ∈ Z. Consequently any f ∈ Ãk+ 1
2
(N,χ) admits a Fourier expansion at the

cusp a as given by

(25) (f |k+ 1
2
σ̃−1)(z) = af (0; a, y) +

∑
0 6=n∈Z

af (n; a)κf (ny/δ(a))e(nx/δ(a))

where κf (·)is a function depending on the Laplace eigenvalue of f as well as the
weight. By separation of variables we show

κf (y) = Wsgn(y) 2k+1
4

, s
2
(4π|y|)

for y 6= 0. Here Wk,m(z) is the classical Whittaker function as introduced in [33].

A function f ∈ Ãk+ 1
2
(N,χ) is cuspidal if and only if af (0; a, ·) ≡ 0 for all cusps

a. Since we are mostly interested in cuspidal functions we can ignore the constant
term function ϕf for now. We write af (n) = af (n;∞). It is important to remember
that the coefficients depend on the choice of the scaling matrix σ. Even though this
is a weak dependence it also depends on how we lift σ ∈ SL2(Z) to σ̃ ∈ SL2(R).

Remark 5.3. Suppose f has eigenvalue λ = 2k−1
4

(
1− 2k−1

4

)
. Then

κf (y) = W 2k+1
4

, 2k−1
4

(4πy) = (4πy)
2k+1

4 e−2πy
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for y > 0. Furthermore, the condition Λk+ 1
2
f = 0 implies that af (n; a) = 0 for

n < 0. Therefore one recovers the classical Laurent expansion at the cusps, which
is well known for classical holomorphic modular forms of weight k + 1

2
.

5.4. Connection to the adelic theory. We now determine an embedding of
Ã◦
k+ 1

2

(N,χ) into the subset of adelic automorphic forms. We need the subgroups

(26) K1(N) =
∏
p<∞

K1,p(vp(N)); K1(N) =
∏
p<∞

K1
p(vp(N))

and
K0(N) =

∏
p<∞

K0,p(vp(N))

of the adele group GL2(A). (Note that K1(N) corresponds to KN
0 in the notation

of [10].) Our local co-cycles are set-up such that K1(N)∗ defines a subgroup of

G̃L2(A). The following lemma connects the splitting of GL2(Q) with the (modified)
Legendre-symbol.

Lemma 5.4 (Proposition 2.16, [10]). For all γ =

(
a b
c d

)
∈ Γ1(4) one has( c

d

)
= s(γ).

Next we need a version of strong approximation that applies to G̃L2(A).

Lemma 5.5 (Lemma 3.2, [10]). We have

(27) G̃L2(A) = GL2(Q)ς · (G̃L
+

2 (R)×K1(N)∗).

Furthermore, if we write (g, ζ) = γς(g∞, ζ∞)k∗ accordingly, then (g∞, ζ∞) is unique
up to left multiplication by (γ0, s(γ0)) for γ0 ∈ Γ1(N). Note that the image of

(γ0, s(γ0)) under the natural embedding S̃L2(R)→ SL2(R) lies in ∆1(N).

Finally, it will be important to understand how the decomposition of strong
approximation is affected by right multiplication by K0(N).

Lemma 5.6. Let g = γς(g∞, ζ∞)k∗1 ∈ G̃L2(A) and k ∈ K0(N) ∩K1(4). Then we
have

gk = (γ′)ς [(δ, s(δ)) · (g∞, ζ∞)]k∗2
for δ ∈ Γ0(N) with ιfin(δ) = k2k

−1k−1
1 ∈ K0(N).

Let f ∈ Ãk+ 1
2
(N,χ). We will adelise a Dirichlet character χ to a Hecke character

ωχ : Q×A× → S1 so that the completion of the Dirichlet L-function agrees with
the L-function of ωχ as defined by Tate, see [28]. We extend this character to
K0(N) by defining

ωχ(k) =
∏
v|M

ωχ,v(dv)
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for k ∈ K0(N). Define the function ϕf : G̃L2(A)→ C by

(28) ϕf (g) := ωχ(k)(f |k+ 1
2
g∞)(i)

where g = γςz(λ)∗g∞k
∗ for γ ∈ GL2(Q), λ ∈ R×, g∞ ∈ S̃L2(R), and k = ( a bc d ) ∈

K1(N). Let us check several issues.

• ϕf is well defined. Indeed, if g = γ1z(λ1)g∞,1k1 = γ2z(λ2)g∞,2k2, then
g∞,1 = (γ, s(γ))g∞,2 for γ ∈ Γ1(N). With this to hand we check that

ϕf (γ1z(λ1))g∞,1k1) = ωχ(k1)
[
f |k+ 1

2
g∞,1

]
(i)

= ωχ(k1)
[
f |k+ 1

2
γ̃g∞,1

]
(i)

= ωχ(k1)
[
f |k+ 1

2
g∞,2

]
(i)

= ωχ(k1k
−1
2 )ϕf (γ2z(λ2))g∞,2k2).

But ωχ(k1k
−1
2 ) = 1. Thus we have shown that the definition of ϕf is inde-

pendent of choices made whilst using strong approximation.

• For k ∈ K0(N) ∩K1(4) and g ∈ G̃L2(A) we have

ϕf (gk
∗) = ωχ(k)ϕf (g).

Indeed by Lemma 5.6 and the definition we have

ϕf (gk
∗) = ωχ(k−1

1 k2)χ(δ)ϕf (g).

However χ(δ) = ωχ(k−1
2 kk1) and the claimed equality follows.

• Writing r = qr∞rfin ∈ QR+Ẑ× = A× we find that (z(r2), ε)g = (z(q2)γ)ς ·
z(λr2

∞)∗ · ((1, ε)g∞) · (z(r2
fin)k)∗. According to our adelisation procedure we

find

ϕf ((z(r2), ε)g) = εωχ(z(r2
fin))ϕf (g) = εωχ(r2)ϕf (g).

In other words, ϕf is genuine and transforms with respect to the central
character ωχ.
• Furthermore, we check that by definition we have

ϕf (gk(θ)) = ei(k+ 1
2

)θϕf (g),

for all g ∈ G̃L2(A) and k(θ) ∈ S̃O2 with θ ∈ [−2π, 2π); such elements are
explicitly defined by we identify

k(θ) =

[(
cos(θ) sin(θ)
− sin(θ) cos(θ)

)
, (−1)δθ 6∈[−π,π)

]
∈ S̃O2.

In particular, using Iwasawa coordinates we write

g̃∞ =

(
y

1
2 xy−

1
2

0 y−
1
2

)∗
k(θ) ∈ S̃L2(R)
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for y ∈ R>0, x ∈ R, and θ ∈ [0, 4π). One thus computes that

(29) ϕf (g̃∞) = ei(k+ 1
2

)θf(x+ iy).

• In Iwasawa coordinates the Casimir operator of S̃L2(R) is given by

Ω = −y2

(
∂2

∂x2
+

∂2

∂y2

)
+ y

∂2

∂x∂θ
.

In particular, according to (29), we have Ωϕf |S̃L2(R) = ∆k+ 1
2
f = λf .

Moreover, it turns out that ϕf has moderate growth and, additionally, if f is
cuspidal then so is ϕf . In particular we have an injection

Ã◦
k+ 1

2
(N,χ) 3 f 7→ ϕf ∈ A◦(G̃L2(A)),

which respects the cuspidal subspaces. Taking all weights k + 1
2
, levels N , and

characters χ into account, this exhausts the space A◦(G̃L2(A)).

5.5. Connection to automorphic representations. From now on we assume
that f ∈ Ã◦

k+ 1
2

(N,χ) is an eigenfunction of the Hecke operators Tp2 for all primes

p - N . If this is the case, ϕf generates an (irreducible) genuine cuspidal automor-

phic representation of G̃L2(A) in the sense of [10, Def. 3, p. 58]; we denote this
representation by πf . This follows directly from strong multiplicity one. In par-

ticular, there exist irreducible, unitary, genuine representations πv of G̃L2(Qv), for
each place v of Q, such that πv is class one for all finite v - N ; and πf decomposes
as a restricted tensor product πf = ⊗vπv. The central character of πf is given by
ωχ.

At the archimedean place v =∞ we can give a more detailed description of π∞
depending on the type of f . To this end, observe that if f is a Maaß form–which
is distinguished by the fact that it is not annihilated by any iterate of the Maaß
raising and lowering operators–of weight k+ 1

2
with Laplace eigenvalue λ = s(1−s),

then

π∞ ∼= π(sgnk, s− 1

2
).

This can be an irreducible principal series if s− 1
2
∈ iR or a complementary series

if s− 1
2
∈ (0, 1

2
).

Furthermore, let f(z) = Im(z)
2k+1

4 F (z) for a classical holomorphic modular form
F of weight k + 1

2
; in which case f is annihilated by Λk+ 1

2
. Then we have that

π∞ = σ(sgnk, k)

is a discrete series representation.
In all these cases the archimedean component vf,∞ ∈ π∞ of ϕf is of the form

vf,∞ = (Cfφk, 0) ∈ σ ⊕ σ̃
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where π∞|S̃L2(R)
∼= σ ⊕ σ̃. Here Cf ∈ C× is a constant (depending on f) and φk is

defined in the induced picture by

φk(k(θ)) = ei(k+ 1
2

)θ.

Note that according to the discussion in Proposition 3.2 we arrange that

(30) σ =


sgnk×σ1,s− 1

2
if f is a Maaß form,

σ̃1,k− 1
2

if f is holomorphic of even weight k,

σ̃3,k− 1
2

4 if f is holomorphic of odd weight k.

5.6. Fourier vs. Whittaker expansion. Consider the adelic Whittaker func-
tions Wϕ. If ϕ comes from a classical object, these relate to the standard Fourier
coefficients as follows. Fix the additive character ψ = ⊗vψv on A/Q = (R/Z) ×∏

p<∞ Zp by ψ∞(x) = e(x) for x ∈ R and ψp|Zp = 1 but ψp(p
−1) 6= 1 for p <∞.

Proposition 5.7. Let f ∈ Ãk+ 1
2
(N,χ) and let a be a cusp of Γ0(N)\H with

scaling matrix σa =∞. Then for δ ∈ Q× we have Wϕf (a(δ)∗g∗zιf (σ)∗) = 0 unless
δ = n/δ(a) for some n ∈ Z, n 6= 0, in which case

Wϕf (a(δ)∗g∗zιf (σ)∗) = s(σ)af (n; a)κf (ny/δ(a)) e(nx/δ(a))

where

gz := n(x)a′(y1/2) =

(
y1/2 xy−1/2

y−1/2

)
∈ SL2(R) with z = x+ iy

and we consider the (lifted) scaling matrix σ̃ = (σ, (cz + d)
1
2 ) ∈ SL2(R).

Proof. This is proved in [7, Lemma 3.1] in the GL2 case. This proof, taking the
correct definition and co-cycle computations into account, may be applied mutatis

mutandis to the case at hand for G̃L2. �

Note that when a =∞ we simply recover [31, Lem. 3, p. 388] which states that

Wϕf (a(n)) = κf (n)af (n).

Suppose that f is a classical cusp form which is an eigenfunction of all Hecke opera-
tors. Therefore, as discussed in the previous section, the corresponding adelisation
ϕf generates a genuine cuspidal automorphic representation πf , which factors into
local parts. Since we assume that the nebentypus of f satisfies χ(−1) = 1, we
must have ωπf ,∞ = 1. This follows from the standard adelisation procedure for
Dirichlet characters. In particular we have Ω(ωπf ,∞) = {1, sgn}.

We have ϕf,∞ ∼= (Cf · φk, 0) and we normalise the Whittaker functionals such
that

(31) W 1
ϕf ,∞(a(y)∗) = δy>0κf (y) and W sgn

ϕf ,∞(a(y)∗) = δy<0κf (y).
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In particular, according to Proposition 5.7 we find

(32) s(σ)af (n; a) =
∑

µ∈Ω(ωπf ),

µ∞(−1)=sgn(n)

∏
v<∞

W µv
ϕf ,v

(
a

(
n

δ(a)

)∗
ιf (σ)∗

)
.

5.7. Bessel functions revisited from a classical perspective. With the map-
ping from classical to adelic automorphic forms given in §5.4, here we revise the
definition of the adelic Bessel functions to fit the classical context. In particular
we need to be careful with the normalisation of the Whittaker functional. In the
classical setting we implicitly use Whittaker functionals normalised by (31).

We now give an explicit, directly applicable formula for the Bessel transform in
the cases needed for the present applications. The missing cases are straightforward
to establish using the same recipe.

Lemma 5.8. Suppose the Whittaker functionals are normalised as in (31) and let
φ ∈ πf with Wφ,∞(a(y)∗) = F (y) for F ∈ C∞(R) with compact support in R>0.
Then

W sgn
1−ε
2

φ,∞ (a(α)∗w∗) = [Hε,+
f F ](α) =

∫ ∞
0

J ε,+
f (αy)F (y)dy,

for α ∈ R×.

• If f = Im
2k+1

4 F for a classical holomorphic modular form F of weight k+ 1
2
,

then we have J −,+f (x) = 0 and

J +,+
f (x) = δx>0

√
2(1− i)πe

−3πik/2

cos(πk)
x−

1
2Jk− 1

2
(4π
√
x).

• If f is a classical Hecke–Maaß form of weight k + 1
2
, then we have

J +,+
f (x) = δx>02x−

1
2 [Ks((−1)k · 4πix

1
2 )− iKs(−(−1)k · 4πix

1
2 )] and

J −,+f (x) =

δx<02|x|− 1
2 [(−i)−s−1 − i−s]Γ( 1+s

2
− k

2
− k

4
)

Γ( 1+s
2

+ k
2

+ k
4

)
Ks(4π|x|

1
2 ), if k is even,

δx<02|x|− 1
2 [i−s−1 + (−i)−s]Γ( 1+s

2
+ k

2
+ k

4
)

Γ( 1+s
2
− k

2
− k

4
)
Ks(4π|x|

1
2 ), if k is odd.

Proof. The existence of the Bessel transform follows directly from Proposition 3.3
and the support of F . We need only to look up the correct formulae for j±,+πf,∞

and
take care of the correct normalisation. We do so case by case.

If f is a holomorphic modular form of weight k, then πf,∞ ∼= σ(sgnk, k). In this
case only j+,+

πf,∞
is non-zero. Moreover, the Bessel functions of the same sign are

independent of the normalisation of the Whittaker functionals. Thus the desired
formula can be read off directly from (12) with s = k − 1

2
.

If f is Hecke–Maaß form of even weight k, we again read off the Bessel function
with equal signs directly. For the remaining situations we recall the definition of
the model Whittaker functionals L± from (11) (with λ = 1) and make the following
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observation. If the normalised Whittaker functionals are given by L±pr = K±f L
±

for some constants K±f , then

J −,+f (x) =
K−f
K+
f

· j−,+πf
(x) · |x|−1.

In practical terms we have L±1
pr (vv,∞) = κf (±1). On the other hand, we compute

L±(π(a(±1)∗)vf,∞) = Cf

∫
R
φk(w

∗n(x)∗)ψ(∓x)dx =
Cfπ

s+
2

Γ(
1±k± 1

2
+s

2
)
κf (±1).

The last equality is a standard computation. The upshot is that

K±f =
Γ(

1±k± 1
2

+s

2
)

Cfπ
s+1
2

.

The desired Bessel function is now easily determined using the results from §3.2.1.
Finally, if f is a Hecke–Maaß form of odd weight k, then vf,∞ = Cf (φk, 0) in

the restriction of π(sgn, s) to S̃L2(R). However, in §3.2.1 we computed the Bessel
transforms with respect to the opposite character. This is accounted for by setting

J +,+
f (x) = j−,−πf,∞

(x)|x|−1 and J −,+f (x) = Kf · j+,−
πf,∞

(x)|x|−1.

Evaluating the constant Kf is similar to the case for even k. �

5.8. Classical Voronöı formulae. Here we state and prove our main classical
result and a related corollary.

Theorem 5.9. Let f ∈ Ã◦(N,χ) (see Definition 5.1). For a smooth function
F : R→ R with compact support in R+, b ∈ N and a ∈ Z with gcd(a, bN) = 1 we
have∑

n∈Z6=0

e

(
an

b

)
af (n)F (n) =

∑
n∈Z 6=0

e

(
−n a

bδ(b)

)
af (n; b)[Hsgn(n),+

f F ]

(
n

δ(b)b2

)
for the cusp b = a

b
, as per (25), a is the inverse of a modulo bδ(b), and the Bessel

transform H±,+f F of F are determined by the archimedean type of f ; see §5.7.

Proof. Fix an isomorphism π = π∞ ⊗ πf under which ϕf = (vϕf ,∞, vϕf ,f). Via the
same isomorphism we construct a cusp form φ = (v∞, vf) determined by vf = vϕf ,f ,
W 1
v∞(a(·)) = F (·) and W sgn

v∞ (a(·)) = 0. The latter determines v∞ in the Kirillov
model. This selection is made via recounting the construction of the Kirilov model
in (10) which contains the space of local Schwartz-Bruhat functions. We now
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compute

[π(n(−a
b

)∗f )φ](1) =
∑
α∈Q×

e(α
a

b
)Wφ(a(α)∗)

=
∑
α∈Q×

e(α
a

b
)
∑

µ∈Ω(ωπ)

W µ
φ (a(α)∗)

=
∑
α∈Q+

e(α
a

b
)F (α)

∑
µ∈Ω(ωπ),
µ∞(−1)=1

W µ
φ,f(a(α)∗)

=
∑
α∈Q+

e(α
a

b
)F (α)

∑
µ∈Ω(ωπ),
µ∞(−1)=1

W µ
ϕf ,f

(a(α)∗)

=
∑
n∈N

e(n
a

b
)af (n)F (n).

This is the left-hand side of the equation we want to prove. Due to automorphy
of φ we have the central equality

[π(n(−a
b

)∗f )φ](1) = [π(n(−a
b

)∗f )φ](w∗) =∑
α∈Q×

∑
µ∈Ω(ωπ)

W µ
φ,f(a(α)∗w∗n(−a

b
)∗)W µ∞

φ,∞(a(α)∗w∗).

This already played a key role in the proof of Proposition 4.1. The desired equality
now follows after rewriting the Whittaker expansion of the latter. We start by
transforming the archimedean place. Here, according to Lemma 5.8, we have

W sgn
1−ε
2

φ,∞ (a(α)∗w∗) = [Hε,+
f F ](α).

Here we use that F has support in R>0. Since jε,+π∞ is supported on εR>0 we have

[π(n(−a
b

)∗f )φ](w∗) =
∑
α∈Q×

∑
ε∈{±}

[Hε,+
f F ](α)

∑
µ∈Ω(ωπ),

µ∞=sgn
1−ε
2

W µ
φ,f(a(α)∗w∗n(−a

b
)∗)

=
∑
α∈Q×

[Hsgn(α),+
f F ](α)

∑
µ∈Ω(ωπ),

µ∞(−1)=sgn(α)

W µ
ϕf ,f

(a(α)∗w∗n(−a
b

)∗).

It remains to investigate the finite part of the µ-Whittaker functions. We compute

a(α)∗w∗n(−a
b

)∗ =

((
0 α
−1 a

b

)
, sgn(α)

)
= (γ1, sgn(α)).

On the other hand we have

z(b−1)∗a
(
αb2
)∗
n

(
a

b

)∗
=

(
αb αa
0 1

b

)∗
= γ∗2 .
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Note that (γ∗2)−1 = (
(

1
αb
−a

0 b

)
, [b,−α]∞). We can assume without loss of generality

that b > 0 such that [b,−α]∞ = 1. Artificially we define

σb =

(
a 1−aa

b
−b a

)
,

so that

σ∗b = (γ2,
∏
v

sv(σb))
−1(γ1, sgn(α)).

We recognise σb as the scaling matrix of the cusp a
b
. We have set things up so that

W µ
ϕf ,f

(a(α)∗w∗n(−a
b

)∗) = s(σb)ψf(αba)W µ
ϕf ,f

(a(αb2)∗σ∗b).

We conclude by using (32). �

Remark 5.10. Note that in the theorem one can always replace a by a′ = a + b ·
N

gcd(N,a∞b∞)
without changing the left hand side. The upshot is that a′ satisfies

the condition gcd(a′, bδ(b)) = 1. Of course this modification changes the scaling
matrix and the exponential on the resulting right hand side.

We have essentially used only the adelic language to separate the archimedean
part from the Fourier coefficients. This enables us to use the Kirillov model to
insert test functions of choice. This theorem has some obvious generalisations.
First, one can start from an arbitrary cusp a. In this case the proof remains
the roughly same, only the matrix computations become more involved. Second,
one can use test functions F with supp(f) ∩ R− 6= ∅. In this situation one will
encounter all archimedean Bessel transforms.

To demonstrate the scope of Theorem 5.9, we here derive a Voronöı formula
which is standard in the GL2 setting.

Corollary 5.11. Suppose N | b and b > 0. For a with (a, b) = 1 we have∑
n∈N

e

(
n
a

b

)
af (n)F (n) =

ε−1
a

(
b

a

)
χ4(a)kχ(a)−1

∑
n∈Z6=0

e

(
−na

b

)
af (n)[Hsgn(n),+

f F ]
( n
b2

)
,

where a is the inverse of a modulo b.

Proof. We simply apply our main theorem. Recall the cusp data

b =
a

b
with σb =

(
a 1−aa

b
−b a

)
.

Since N | b we have b = ∞ and in particular δ(b) = 1. On the level of scaling
matrices this reduces to σb ∈ Γ0(N). Thus the transformation behaviour of f
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under σ̃−1
b implies

af (n, b) = ε−1
a

(
b

a

)
χ4(a)kχ(a)−1af (n).

�
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