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Abstract
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Doctor of Philosophy

Enhancing Nonlinear Optics in Thin Materials

by Justus BOHN

This thesis examines various nonlinear optical processes to either control the
frequency or switch the amplitude of light all-optically. This is achieved in sub-
wavelength thin samples designed to overcome issues such as phase-matching. In
order to achieve a significant nonlinear optical response, we utilise plasmonic reso-
nances and nano-antennas.

First, we enhance the high-harmonic generation in graphene. A heterostructure
of gold nano-ribbons on graphene with a thin insulator in-between enhances the
incoming electric field and enormously enhances the high-harmonic generation. A
thousandfold enhancement of the fifth-harmonic generations is measured.

Next, we study the all-optical switching of an epsilon-near-zero plasmon in
indium tin oxide (ITO). The resonance provides near-perfect absorption and occurs
for layers of just 60 nm thickness. Utilising the Kretschmann-geometry in a pump-
probe scheme enables phase-matching to the resonance and studying the nonlinear
changes of the reflection. Significant absolute changes of 45 % are measured, with
an initial reflection of ~1 % thanks to the near-perfect absorption resonance. A novel
two-beam coupling contribution is identified and will be essential to take into account
in other studies.

The addition of cross-shaped nano-antennas allows for improvement on vari-
ous critical issues. Optical switching is now possible for lower intensities, normal-
incidence and better control of polarisation. The symmetric cross-shape enables
a nonlinear dichroic response by which only the probe polarisation parallel to the
pumped cross-bar is undergoing a significant nonlinear shift. We analyse the complete
polarisation ellipses and identify two wavelength regimes in which the amplitude or
phase can be modulated independently.

Finally, we study the angle and frequency-dependent phase-modulation in ITO
films of various thicknesses. We present good agreement with the temporal refraction
for low angle of incidence. However, we find an additional dependence for higher
angles. Close to the epsilon-near-zero case, we even report an opposing frequency
shifting contribution. We show that the additional phase contribution origins from
the temporal changes to the spatial refractive index boundary. Hence, we refer to the
process as spatiotemporal refraction. This contribution can tailor the frequency shift
and allow for better designability of simultaneous ultrafast changes in amplitude and
phase.

In summary, both graphene and ITO have proven themselves as useful nonlinear
active media. The enhanced response makes them promising materials for controlling
frequency and amplitude in applications such as optical communication. Beyond
that, the work on ITO even unveils novel effects such as spatiotemporal refraction.
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Chapter 1

Introduction

Abstract

This thesis details experimental investigations on enhancing the nonlinear optical
(NLO) response of thin materials. The fundamental strategy is to utilise the plasmonic
resonances such as surface plasmon polaritons (SPP) or epsilon-near-zero (ENZ)
resonances to enhance the nonlinear response of the active layer.
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1.1 History and Motivation

The studies of optics range back 1000s of years, possibly even longer, with examples
such as the development of lenses by the ancient Egyptians and Mesopotamians.
The laser, however, is an invention of the 20th century and was first built in 1960 by
Theodore H. Maiman[1], based on theoretical work by Charles Hard Townes and
Arthur Leonard Schawlow[2]. With its invention, multifold optical research areas
were born, one of them being nonlinear optics (NLO). Peter Franken and coworkers
were the first to observe second-harmonic generation in a quartz crystal[3]. Since
then, NLO has become a mature field of science and engineering. The scope of
this discipline includes all phenomena in which optical parameters of materials are
changed by irradiation with light. In optical labs and industry, it has become a
standard tool to create new wavelengths.

With the advances of nano-fabrication, an ever-growing demand for the miniatur-
ising of optical setups has developed. Micrometre sized waveguides have enabled
to guide, control and manipulate light on photonic chips. With the discovery of one
atom thick layer of graphene in 2004 by Andre Geim and Kostya Novoselov[4], a
new opportunity has risen: Nonlinear optics in 2D materials. While the one atom
thick layer offers the advantage of ultimate miniaturisation, it also presents the sig-
nificant challenge of producing nonlinear effects within this one layer. Especially
considering graphene only absorbs about 2.3 % of the incident light, so it barely inter-
acts with electromagnetic waves. Despite this, its zero band-gap nature, unusually
large chemical and electrical tunability, and effects such as Pauli blocking provide
unique functionalities for photonic nanodevices. Euan Hendry and collaborators
presented first that graphene offers a strong coherent nonlinear optical response by
investigating four-wave mixing of graphene flakes [5]. Properties such as ultrafast
photoexcitation dynamics, high chemical and mechanical stability, and large thermal
and optical threshold damage of graphene make it an ideal test-bed for studying
nonlinear optics phenomena in 2D physical systems. A multifold of transition metal
dichalcogenides (TMDCs) have also been identified and studied as promising can-
didates such as MoS2, WSe2 and hexagonal boron nitride (h-BN)[6]. However, to
establish 2D materials as viable nonlinear materials, further optimisation is required.

So-called surface polaritons may present one solution. Surface polaritons are
modes of light that are confined to the surface of a material. In the case of a graphene
plasmon polariton (GPP), the light is bound to the surface by constantly interacting
with quantised carrier oscillations, plasmons. Due to this interaction, the electro-
magnetic mode has a much smaller effective wavelength than vacuum propagating
photons with the same energy would have. Electric field confinement down to 1/100
of the wavelength and less have been documented for graphene surface plasmons [7].
The electric fields also decay exponentially away from the surface, leading to strong
fields directly on the surface.

While monolayer materials present the ultimate confinement goal, a thickness
smaller than the wavelength of light is often more than enough to combat issues
such as phase-matching. Only very recently, the field of epsilon-near-zero (ENZ)
nonlinear optics arose, utilising a vanishing real part of the permittivity for huge
nonlinear effects. For the example of indium-tin-oxide (ITO), the nonlinear change in
refractive index was measured to be of unity order (∆n ∼ 1), which not only is large by
itself but also larger than the low initial refractive index (n0 ∼ 0) [8]. This can at least
be partially explained by the electric field enhancement of the ENZ region near the
plasma frequency. With ENZ resonances being particularly interesting for ultra-thin
cases of less than 100 nm, they present a promising candidate for sub-wavelength
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nonlinear optics and will form the main part of this thesis. The huge nonlinear
refractive index combined with sub-ps cooling dynamics make ENZ materials an
ideal platform for ultrafast all-optical switching.

1.2 Outline

This thesis will form an experimental investigation into combining plasmonic or ENZ
materials and nonlinear optics in thin layered materials.

In chapter 4, studies of enhanced high harmonic generation in graphene-based
devices are presented. Combining graphene with nanostructures allows for field
enhancement of the pump to increase the high harmonic generation. The investigation
includes various structuring parameters such as antenna width and distance to
the graphene layer. We find more than three orders of magnitude fifth-harmonic
generation enhancement.

In chapter 5, all-optical switching of an epsilon-near-zero plasmon resonance in
indium tin oxide will be studied. The near-perfect absorption of the ENZ plasmon
is combined with the red-shifting of the bulk plasma frequency in the ITO layer to
produce almost two orders of magnitude sub-ps reflection switching.

In chapter 6, a cross-shaped antenna is added on top of an ITO layer to create a
transient polarization-dependent response. The sample was designed only to induce
a nonlinear response along the bar that has been pumped. We find a more than seven
times stronger nonlinear response of a probe beam parallel polarised to the pump
compared to the perpendicular case.

In chapter 7, we investigate “spatiotemporal refraction” inside thin ITO layers.
Just below the ENZ wavelength, we find strong blue shifting for thin samples, only
explainable via temporal changes to the spatial boundaries of the ITO film.

Finally, we summarize our findings in chapter 8 and discuss possible future
directions.
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Chapter 2

Fundamentals

Abstract

Here, fundamental theories and previous research activities are shown. First, the path
from Maxwell equations to nonlinear optical (NLO) concepts are presented. Then, the
materials used in this thesis, ITO and Graphene, are introduced. Different types of
plasmon polaritons and their potential to enhance NLO are outlined. Finally, reports
on state-of-the-art research will signify the importance of the projects within this
thesis.
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2.1 Electromagnetics

This section will provide the theoretical basis for describing and understanding the
optical properties studied in this thesis. We will start defining a dielectric medium,
adding free carriers, and finally, considering the case of high intensities, crucial for
nonlinear optical processes.

2.1.1 Maxwell’s Equations in a Dielectric Medium

To understand electromagnetic processes, the Maxwell equations form the basis of
almost every problem and describe the relation between electric (E) and magnetic
(H) fields:

∇⃗ ⋅ D⃗ = 0(2.1)

∇⃗ ⋅ B⃗ = 0(2.2)

∇⃗ × E⃗ = −∂B⃗
∂t

,(2.3)

∇⃗ × H⃗ = ∂D⃗
∂t

.(2.4)

This representation assumes the absence of free charges or currents. The electric (D)
and magnetic (B) flux densities describe the material response, taking into account
the materials polarisation (P) and magnetisation densities (M). For this thesis we will
work with non-magnetic materials, resulting in H⃗ = 1

µ0
B⃗. However, the displacement

field D⃗ is different from the electric field E⃗. The very basis of an optical material
response resides in the polarisation field P⃗, which appears mathematically as:

(2.5) D⃗ = ε0E⃗ + P⃗.

For standard dielectric optics such as lenses, the polarisation field P⃗ follows as (linear,
homogeneous, isotropic)

(2.6) P⃗ = ε0χE⃗,

where the scalar χ is called the electric susceptibility. For this example we see, D⃗ ∝ E⃗
with the proportionality factor given as the electric permittivity ε of the material:

(2.7) ε = ε0(1+ χ).

2.1.2 Conductive Medium

Materials with free electric charges pose an additional contribution to the permittivity
that can be described by the so-called Drude model. It describes the conduction
electrons as independent particles in an ideal gas that freely move between scattering
events inside the medium. To determine the permittivity of this electron gas εDrude,
we investigate the equation of electron motion upon applying an external field E⃗:

(2.8) m ¨⃗x +mγ ˙⃗x = −eE⃗.
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Here, m corresponds to the optical mass and γ to the scattering rate of the electrons.
For the case of a monochromatic electric field E⃗(t) = E⃗0 exp−iωt it follows:

(2.9) x⃗ = e
m(ω2 + iγω)

eE⃗(t).

With the macroscopic polarisation given as P⃗ = −nex⃗ and n being the electron density
we get

(2.10) P⃗ = − ne2

m(ω2 + iγω)
eE⃗(t).

This finally leads to the complex permittivity of the free electron gas as

(2.11) εDrude(ω) = 1−
ω2

p

ω2 + iωγ
,

where ω2
p = ne2

ε0m is the plasma frequency of the free electron gas.

2.1.3 Nonlinear Medium

For high field intensities ⟨E⃗ × H⃗⟩T ∝ ∣E⃗∣2 the frequency-dependent polarisation field
of a material is often approximated by introducing higher-order electric field depen-
dencies:

(2.12) P⃗(r⃗, ω) = ε0

⎛
⎜⎜⎜
⎝

linear
³¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹µ
χ(1) ⋅ E⃗+

nonlinear
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
χ(2) ∶ E⃗E⃗
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

2nd order

+χ(3)⋮E⃗E⃗E⃗
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

3rd order

+⋯
⎞
⎟⎟⎟
⎠

.

For the general case of an anisotropic medium, χ(1) forms a matrix. The nonlin-
ear susceptibility χ(n) corresponds in general to a tensor of rank n + 1. The wave-
length dependence of the susceptibilities can be explicitly written in the form of
χ(n)(ωout∣ω1, ω2, . . . ). The incoming frequencies ωi can be positive or negative and
their sum results in the outgoing frequency ωout = ∑n

i=1 ωi. Depending on the material,
these χ(n) values can change dependent on every single frequency choice. However,
often the complexity of these tensors drastically reduces due to various symmetries
and loss-less characteristics.

One of the most important symmetry aspects is that centrosymmetric systems
can only have χ(odd) components that are non-zero. This can quickly be understood
by considering the spacial inversion r⃗ → −r⃗, which implies P⃗ → −P⃗ and E⃗ → −E⃗. If
spatial inversion is symmetric, meaning the relation between P⃗ and E⃗ is unchanged
after inversion, this implies the even terms must be 0: χ(even) = 0. For insights into
further symmetries of nonlinear optics, we refer to e.g. [9].

To see the impact of this polarisation field, we take the rotation of Equation 2.3
and replace ∇⃗ × B⃗ with Equation 2.4, leading to:

(2.13) ∇⃗ × ∇⃗ × E⃗ + 1
c2

∂2E⃗
∂t2 = −µ0

∂2P⃗(1)

∂t2 − µ0
∂2P⃗(NL)

∂t2 .
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Transitioning to the frequency domain to include our frequency dependent non-
linear polarisation leads to:

(2.14) ∇⃗ × ∇⃗ × E⃗(r⃗, ω)− ω2

c2 εr(r⃗, ω)E⃗(r⃗, ω) = ω2µ0P⃗(NL)(r⃗, ω),

with εr being the relative permittivity of the material.
Most importantly, one can see now that the nonlinear polarisation field P(NL)

can act as a driving field of this wave equation. Different nonlinear susceptibilities
can be utilised in various processes to mix frequencies or control light propagation
depending on its intensity, as described in the next section.

2.1.4 Nonlinear Processes

Here, the most relevant examples of nonlinear processes for our research activities are
presented. To establish relevance, we will use the laser system used for the research
projects as a reference. Specifically, we use a "Legend Coherent" Ti-sapphire laser
system with an 800 nm centre wavelength. This feeds into "TOPAS" optical parametric
amplifiers to generate new wavelengths ranging from 200 nm to 10 µm through 2nd

order nonlinear processes.

2nd Order Processes (χ(2))

In the 2nd order case the wave mixing process consists of two incoming frequencies
ω1,ω2 and one outgoing frequencies ω3 as depicted in Figure 2.1.

FIGURE 2.1: Schematic of the 2nd order processes. The incoming fre-
quencies ω1, ω2 can generate ω3 to be the sum- or difference-frequency,

depending on the materials frequency dependent χ(2).

The difference-frequency process forms the basis of optical parametric amplifiers.
For our case, the pump wavelength is λpump = λ1 = 800 nm and signal wavelength
is λsignal = λ2 > 800 nm leading to the generation of the idler wavelength λidler = λ3
and, more importantly in the case of an optical parametric amplifier, to the stimulated
emission of a signal photon. This process is being used in our TOPAS setup to
generate near-infrared (NIR) wavelength ranging ∼ 1...3 µm. To further generate
wavelength up to 10 µm efficiently, one can use an additional nonlinear crystal, in
our case AgGaS2, to generate the difference frequency of the signal and idler.
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To reach higher frequencies, the sum-frequency generation is utilised. In the case of
our TOPAS setup, two BBO crystals are used to reach wavelengths as low as 200 nm
by double second harmonic generation, meaning λ1 = λ2. The non-degenerate sum-
frequency processes can then be used to tune between 200 and 800 nm.

3rd Order Processes (χ(3))

In principle, all materials could posses a non-frequency degenerate four-wave-mixing
nonlinearity. Considering the vast permutation capabilities of three incoming frequen-
cies ω1, ω2 and ω3 we will only shortly introduce the most common case: ω1 = ω2 = ω3
as depicted in Figure 2.2.

1

Third Harmonic Generation

1

2

(3)

21

1

Optical Kerr-effect

1 1 1 2

1 2

1 1

FIGURE 2.2: Schematic of the 3rd order processes. Based on a single
incoming frequency ω1 there are two well known effects: The optical
Kerr effect, which leads to the same outgoing frequency ω2 = ω1 and

the third harmonic generation case, where ω2 = 3ω1.

The optical Kerr-effect is a special case where the incoming frequency and outgoing
frequency are equivalent. This offers the interesting effect of generating a frequency-
dependent refractive index, often presented in the form of n(I) = n0 + n2 I. This effect
can, for example, be utilised to focus beams with high intensity, which is commonly
used in femtosecond lasers to mode-lock by placing an aperture in the beam path to
favour a pulsed, high-intensity mode in the cavity. We will discuss further details on
the intensity-dependent refractive index in subsection 2.1.5.

Finally, third harmonic generation is similar to second-harmonic generation since it
is essentially just the following order. The real challenge lies within phase matching.
To generate new frequencies in a bulk medium, the incoming beams and newly
generated wavelength beams must not walk off from each other, or the newly gener-
ated frequencies would eventually destructively interfere. To reach this condition,
birefringent phase matching is typically used in 2nd order processes. With increasing
differences in frequency for 3rd or higher-order processes, it becomes harder to resolve
this issue. Hence, high harmonic generation applications in solid-state materials are
even more problematic. We will be investigating the option to avoid bulk propagation
altogether and use 2D materials instead.
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High Harmonic Generation (HHG)

High harmonic generation generally describes the process of producing photons with
the energy h̄ωn = nh̄ω1, where h̄ω1 resembles the energy of the incoming photon.
While second and third-order generation has been discussed before, this effect usually
refers to n ≫ 1. This field of research has become crucial mainly due to the following
two aspects.

First, and most obviously, high harmonics have been utilised to drive the gener-
ation of high-frequency coherent radiation sources. This enabled the generation of
extreme ultraviolet (EUV) radiation and beyond.

Second, a broad range of frequencies can be covered due to the potentially high
number of harmonic orders. All these orders have a fixed-phase relation and have
enabled the generation of attosecond pulses.

2.1.5 Intensity-Dependent Refractive Index

When light with high intensity propagates through a medium, a change in the
refractive index effects occurs via a so-called optical Kerr-effect:

(2.15) ∆n = n2 I,

where n2 is the nonlinear (refractive) index. This nonlinear index originates from
changes to the fields as seen in the nonlinear effective permittivity [10]

(2.16) ε = ε(1) + 3χ(3)∣E∣2,

assuming 3rd order contributions only. It relates to the refractive index as exactly

(2.17) n =
√

ε =
√

ε(1) + 3χ(3)∣E∣2.

However, within the standard definition one would Taylor expand the root term
to the first order:

(2.18) n =
√

n2
0 + 2n0 n2 I ≈ n0 + n2 I.

Considering the optical field intensity of

(2.19) I = 2Re(n0)ε c ∣E∣2,

one can now extract the standard definition of the nonlinear index as

(2.20) n2 =
3χ(3)

4n0 Re(n0)ε0 c
.

Values of n2 for typical glasses substrates such as fused silica and CaFl2 are
of the order 10−16 cm2 GW−1 [11], and satisfy the Taylor expansion requirement of
∣2n2 I/n0∣ ≪ 1[9]. Recent findings in nonlinear optics have shown that this approxi-
mation does not hold for materials such as indium tin oxide[10] as seen in Figure 2.3.
Hence, we will model our experiments in chapter 5 and chapter 7 via changes to
the permittivity and utilise the root dependence n =

√
ε to directly extract nonlinear

effects rather than approximating via Taylor expansion.
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FIGURE 2.3: Intensity-dependent index of the refraction of ITO. For
the case of λ = 1240 nm and ε ≈ 0, Equation 2.18 performs poorly
at describing the refractive index at most intensities (dashed blue
line). Using Equation 2.17, a much-improved agreement with the
measurement without additional fit parameters is obtained (red line).

(Reproduced from [10])

Frequency shifting

In a bulk medium, the propagation phase of light is given as

(2.21) Φ = n k0 z −ω t.

The previously discussed temporal changes to the refractive index ∆n across a non-
linear medium of the length L lead to temporal phase modulations equal to

(2.22) ∆Φ = ∆n k0 L.

Considering the frequency of light corresponds to the temporal phase change of the
optical beam given as [12]

(2.23) ω = −∂Φ
∂t

,

the nonlinear refractive index leads to a frequency shift given as

(2.24) ∆ω = −∂n
∂t

L
c

ω.

The temporal dependence of the refractive index changes, given by the pulse and
material parameters, determines the frequency shift. This effect has been long known
as self-phase modulation (SPM), e.g. highly intense laser beams travelling through
a glass fibre, or cross-phase modulation (XPM), e.g. for an intense beam (pump)
modulating the refractive index of a material passed by a weaker beam (probe). This
could, in principle, also be achieved by non-optical pumping. However, conventional
heating or similar methods do not achieve the ultrafast time requirements to induce a
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noticeable effect.
Recently, ENZ nonlinear materials were reported to provide extreme frequency

shifting effects, e.g. ~6 % for intensities of ~500 GW cm−2 and 620 nm of ITO[13]. The
significant ultrafast changes to the refractive index were interpreted as a temporal
refractive index boundary ∆n(t). This time translation symmetry breaking has to be
compensated by a change of the optical property of light. While spatial refraction
leads to a change of the oscillation of light occupied in space (wavelength), temporal
refraction leads to a change of the oscillation of light in time (frequency).

So far, the research community has discussed frequency shifting effects mainly
in the context of these propagation phase changes inside a bulk medium, as seen
in Equation 2.22. In chapter 7, we show that phase changes occurring at spatial
boundaries can also lead to frequency shifting effects upon temporal modulation of
the involved optical parameters. We will refer to this effect as spatiotemporal refraction.

2.1.6 Nonlinear Optical Mechanisms

The nonlinear optical properties can appear in different ways. Table 2.1 gives an
overview of nonlinear refractive indices and the corresponding time scales for various
mechanisms of origin taken from [9] and [14].

The electronic polarisation component is given by electron-cloud distortions that
are fast (10−15s), but also relatively low in effect (10−16 cm2 W−1).

The molecular orientation denotes the additional electric polarisation contribution
from an optical field-induced reorientation of anisotropic molecules in a liquid. The
response time of this process is dependent on the rotational viscosity of molecules in
the liquid and is approximately 10−12 s.

There is an induced acoustic motion inside the medium for the electrostriction
case, and the process is no longer localised. The induced refractive index change
behaviour depends on the acoustic velocity and the interaction size between the light
and induced acoustic waves.

In Opto-thermal processes, the absorbed optical energy will partially transfer
to the thermal energy through radiation-less transitions, resulting in a temperature
change. For most optical media, the refractive index is sensitive to temperature
change. The corresponding changes in refractive index can be large (10−6 cm2 W−1),
but are slow (10−3 s).

TABLE 2.1: Typical values of the nonlinear refractive index for different
mechanisms. (Reproduced from [9])

Mechanism n2 (cm2 W−1) Response time (s)
Electronic polarisation 10−16 10−15

Molecular orientation 10−14 10−12

Electrostriction 10−14 10−9

Opto-thermal effect 10−6 10−3

This thesis will concern mainly two cases. In graphene, the measured phase
modulation effects arise from a more complex phenomenon referred to as saturable
photoexcited-carrier refraction [15]. Large and ultrafast optical nonlinearities are
measured, surpassing that of typical glasses by eight orders of magnitude with fs-time
dynamics [5].

Second, TCOs, which exhibits electron population changes causing a nonlinear
optical response. The intraband processes in TCOs can provide strong nonlinear
effects, as seen for the case of ITO (10−10 cm2 W−1) with a sub-ps time-scale [8].
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2.2 Materials

This section introduces the materials used in the research project, transparent conduc-
tive oxides (TCOs such as ITO) and graphene.

2.2.1 Transparent Conductive Oxides

In this thesis, thin layers of transparent conductive oxides (TCO) will be used to
study nonlinear optical effects. They can be designed to have their epsilon-near-zero
(ENZ) regime in the telecommunication wavelength range. This corresponds to the
wavelength range where the real part of the permittivity (and refractive index) is close
to zero. Considering the nonlinear refractive index dependence of n2 ∝ 1/n2 from
Equation 2.20, this promises a highly nonlinear response and has been shown by M.
Alam et al. in "Large optical nonlinearity of indium tin oxide in its epsilon-near-zero
region" [8].

Oxide semiconductors such as zinc oxide, cadmium oxide and indium oxide can
be highly doped to conduct electricity [16]. Since these semiconductors have a large
bandgap, they are transparent in the visible range. Hence, these materials are known
as transparent conducting oxides. Such TCOs are famous for display panels where
they form the electrical contacts to the pixel circuitry. One of the most popular TCOs
is indium tin oxide (ITO) [17].

The free carrier concentration can be easily manipulated between 1019 cm−3 and
1021 cm−3 through doping or electronic gating, which offers excellent controllability
and electrical tunability of the optical properties in the telecom wavelength range.
The optical properties of TCOs can be tuned from behaving similar to a dielectric
or metallic material. During the transition, the real permittivity crosses zero, and
the absolute permittivity reaches a minimum. TCOs then become epsilon-near-zero
(ENZ) materials. The electric field will concentrate in the ENZ TCO due to the
electric displacement continuity at the interface leading to EENZ,⊥ = Eair,⊥/εENZ, which
increases the light-matter interaction in the TCOs. Such properties make TCOs
promising materials for building active electro-optical devices [18].

Indium Tin Oxide (ITO)

Here, we present the optical properties of ITO as one example of many similar TCOs.
Depending on doping levels and layer thickness, different optical parameters can
be reached. Due to the large doping concentration, the optical properties of ITO at
near-infrared wavelengths resemble those of a free electron gas. Considering also
that the bandgaps of the TCOs are big compared to the wavelength range of interest,
their response can be appropriately estimated by the Drude-response give by [8]

(2.25) εDrude(ω) = ε∞ −
ω2

p

ω2 + iωγ
,

with ε∞ as the high-frequency permitivitty of the tin-doped indium oxide, ωp as the
bulk plasmon frequency and γ as the damping rate.

To give an example, for the nonlinear studies of M. Alam et al. [8] that will be
discussed in subsection 2.4.2, a 310 nm ITO film was used leading to ε∞ = 3.8055,
ωp/2π = 473 THz and a damping rate of γ = 0.0468ωp. The epsilon-zero wavelength
results in λ0 = 1240 nm as seen in Figure 2.4.

There are many exciting applications for ENZ materials, such as nonlinear optics,
flexible photonics, quantum information processing and heat management, to name
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FIGURE 2.4: Drude response of an ITO film. Linear relative permit-
tivity of a 310 nm ITO film measured via spectroscopic ellipsometry
(symbols) and fitted using the Drude model (lines). The shaded region
highlights the ENZ region around λ0 = 1240 nm, where R(ε) = 0. (Re-

produced from [8])

the most promising [19]. This thesis will focus on the prospects for nonlinear optics,
which will be further discussed in the nonlinear part presented in subsection 2.4.2.

2.2.2 Graphene

Graphene, a 2D honeycomb lattice of carbon atoms, has been a theoretical concept for
various decades [20] and has been isolated as a single layer in 2004 [21]. The interest
in studying graphene is driven by its linear, massless band structure and the many
unusual electrical, thermal, mechanical, and optical properties [22, 23] . The linear
electronic dispersion around the Dirac points also leads to strongly nonlinear optical
behaviour since resonant interband optical transitions occur at all photon energies
[5].

The honeycomb lattice of graphene leads to so-called Dirac-points in the corners
(K and K’ points) of its Brillouin zone (as shown in Figure 2.5). The Dirac cones are
probably graphenes most intriguing feature considering the linear, gap-less Energy
dispersion that comes with it:

(2.26) E(k⃗) ≈ ±h̄vF∣k⃗∣,

with k⃗ as the momentum measured relatively to the Dirac points and vF ≈ 106 m/s as
the constant Fermi velocity.

The linear dispersion charge carriers in graphene are called massless Dirac
fermions, where Equation 2.26 describes a 2D analogue of the Dirac equation, with
the Fermi velocity playing the role of the speed of light. This allows the investigation
of relativistic quantum phenomena in a benchtop experiment [23].

The carbon atoms of graphene have 6 electrons, 2 in the inner shell and 4 in the
outer shell. The four outer shell electrons in an individual carbon atom are available
for chemical bonding. However, in graphene, each atom is sp2 hybridised and
connected to 3 other carbon atoms on the two-dimensional plane, leaving 1 electron
freely available in the third dimension for electronic conduction. These highly mobile
electrons are called pi (π) electrons and are located above and below the graphene
sheet. These π orbitals overlap and help to enhance the carbon to carbon bonds in
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(a)

(b)

FIGURE 2.5: Graphene electrical properties. a, The honeycomb lat-
tice structure of graphene (left) and the corresponding Brillouin zone
(right). The Dirac cones, as seen in the electrical dispersion presented

in b, are located at the K and K’ points. (Reproduced from [22])

graphene. Fundamentally, the electronic properties of graphene are dictated by the
bonding and anti-bonding (the valance and conduction bands) of these pi orbitals.
[24]

While graphene offers outstanding capabilities for applications such as a thin
transparent conductor, we want to concentrate on the optical properties and the
potential for nonlinear optical applications. The optical properties of graphene
are described by an effective susceptibility, calculated based on graphene’s surface
conductivity σ(ω) [25]:

(2.27) χ(eff)(r⃗, ω) = i
σ(ω)
ωε0d

,

with d as the thickness of the effective layer.
The surface conductivity can be derived by the Kubo model as [25]

(2.28) σ(ω) = e2(ω + iγc)
iπ h̄2 [∫

∞

−∞

∣ε∣
(ω + iγc)2

d f0(ε)
dε

dε −∫
∞

0

f0(−ε)− f0(ε)
(ω + iγc)2 − 4(ε/h̄)2 dε] ,

where −e is the electron charge, h̄ is the reduced Planck constant, γc is a phe-
nomenological carrier scattering rate that is assumed to be independent of the energy
ε, f0(ε) = {exp[(ε − µc)/kBT]+ 1}−1 is the Fermi function, µc is the chemical potential
(controlled with the help of a gate voltage), kB is Boltzmann’s constant and T is
the ambient temperature. The first term corresponds to intraband electron-photon
scattering processes, whereas the second term corresponds to the direct interband
electron transitions.
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For the often-made assumption that temperatures are relatively low (µc ≫ kBT),
the intraband conductivity term results in [25]

(2.29) σintra(ω) =
i2e2∣µc∣

π h̄2(ω + iγc)
,

and the interband conductivity term can be written as [25]

(2.30) σinter(ω) = e2

4h̄
[Θ(h̄ω − 2∣µc∣)+

i
π

ln ∣
h̄(ω + iγc)− 2∣µc∣
h̄(ω + iγc)+ 2∣µc∣

∣] .

Considering the high-frequency limit, h̄ω ≫ (kBT, µc), the total conductivity takes
the universal value of σ0 = e2/4h̄ leading to the well known ∼ 2.3% absorption over
the optical wavelength range.

2.3 Plasmons

In this section, an introduction to diverse plasmon resonances is given. It focuses
on understanding the origin and properties of surface plasmon polaritons (SPP)
and further describes the newly developed field of 2D van der Waals polaritons.
The primary resources used for the SPP basics are the review "Surface plasmon
subwavelength optics" by W. Barnes et al. [26] and the book "Plasmons: Fundamentals
and Applications" by S. Maier [27]. To learn about polaritons in 2D layered van der
Waals materials, the reviews from D. Basov et al. [28] and T. Low et al. [29] can be
recommended. The paper of S. Campione et al. [30] gives a good introduction into
epsilon-near-zero modes in ultrathin films.

2.3.1 Surface Plasmon Polaritons

SPPs are waves that propagate along the interface of a conductor and a dielectric.
They still form an electromagnetic mode, but they are now bound to the surface as
depicted in Figure 2.6a. These electromagnetic surface waves arise via the coupling
of the electromagnetic fields to oscillations of the conductor’s electron plasma. This
interaction leads to strong confinement of the electric field on the surface, as seen in
Figure 2.6b by the exponential decay of field strength away from the interface. Fur-
thermore, the effective wavelength of the SPP-mode decreases the more pronounced
the coupling is and the less "light like" the mode behaves. This can be seen in Fig-
ure 2.6c, for increasing ω the SPP wavevector kSPP increases stronger compared to
the light line.

To calculate kSPP we investigate the flat interface between a dielectric, non-
absorbing half-space (z > 0) with positive real dielectric constant ε2 and an adjacent
conducting half-space (z < 0) described via a dielectric function ε1(ω). The require-
ment of metallic character implies that R(ε1) < 0. For conductors, this condition is
fulfilled at frequencies below the bulk plasma frequency ωp, as seen in the Drude
response given by Equation 2.25. We want to look for propagating wave solutions
confined to the interface, i.e., evanescent decay in the perpendicular z-direction.
Choosing the TM-mode approach, which provides a finite Ez-component reveals the
propagation constant plotted in Figure 2.6c [31]:

(2.31) kSPP = k0

¿
ÁÁÀ ε1(ω)ε2

ε1(ω)+ ε2
.
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FIGURE 2.6: Surface plasmon polaritons on a conductor-dielectric
interface: a, Schematic representation of the energy exchange between
the electromagnetic wave and the surface charge oscillations while
propagating along with the interface. b, The electric fields of the
surface mode decay exponentially away from the medium. c, The
dispersion relation of the surface plasmon in comparison to freely

propagating light. (Reproduced from [26])

Structuring of the surface allows for further tuning of the plasmonic properties.
Metal nano-resonators have become a standard tool to generate plasmonic antennas
with structure-dependent resonances. Most established for working in the visible
wavelength range are metals such as Gold or Silver. They have their ENZ charac-
teristics at the short-wavelength end of the visible wavelength spectrum. However,
going to the NIR range, the imaginary part of metals get too high, and an alternative
material is desired. For the telecommunications range, the material of choice is less
clear. Transparent conductors seem to have become the material of choice since they
can be tuned by doping to shift their ENZ area over the whole range of the telecom
wavelength [32].

Confining light to a surface and decreasing the materials structure size offers es-
sential opportunities for the ever-growing demand for miniaturisation in the telecom-
munications industry. Plasmonics could offer a link between photonic and electrical
communication [33]. Furthermore, enhancing local fields using plasmonic tips or
surfaces has become a standard tool in biosensing applications [34]. Even high har-
monic generation in gases have been reported to be enhanced by the use of gold
nano-antennas [35].

2.3.2 Thin Layer Resonances

A more common scenario than the half-space case discussed earlier in the case of a
thin layer. To understand the possible modes, we first consider the case of a plasmonic
layer surrounded by air (see Figure 2.7). For very thick films (d → ∞), the mode
dispersion approximates a half-space surface plasmon dispersion (red solid line). As
the film’s thickness is decreased past the skin depth, the surface plasmons at each
interface begin to interact and form two branches, the long-range and short-range
surface plasmon polaritons, whose dispersion varies with the thickness (dashed
orange curves for 150 nm films). For ultrathin films, such as the d = 2 nm film
corresponding to the green curve, the long-range mode becomes nearly flat and
asymptotically approaches the dispersion of the plasma frequency within a range of
wave numbers. This mode occurs at precisely the frequency at which the permittivity
is approximately zero and is referred to as the ENZ mode [36]. The field profiles in
Figure 2.7b show the emergence of two surface plasmons into one flat ENZ mode
as the film becomes thinner. This ultra-thin layer ENZ mode provides substantial
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field enhancement, which grows inversely proportional to the ITO thickness [30]. The
bulk plasmon branch also exhibits a flat dispersion above the plasma frequency and
is denoted as either the Berreman or the Brewster mode. It can lead to directional
dependent perfect absorption (PA) at frequencies corresponding to I(ω) = 0 but
requires a gold substrate.

a b

FIGURE 2.7: Thin layer resonances: a, The plasmon dispersion
branches of thin plasmonic layers of various thicknesses. (Repro-
duced from [36]) b, Dispersion (top) and corresponding profile of the
intensity of the normal component of the electric field vs the spatial
variable z normalised by the three given thicknesses (bottom). The
shaded grey area describes the ENZ mode validity range. (Repro-

duced from [30])

2.3.3 Directional Perfect Absorption

Ting S. Luk et al. showed that "[d]irectional perfect absorption [can be achieved]
using deep subwavelength low-permittivity films" [37]. They demonstrated perfect
absorption for deep subwavelength films of indium tin oxide (ITO) on metal sub-
strates at frequencies just above the ENZ frequency, where both the real and the
imaginary parts of the ITO permittivity are less than 1. This can be understood within
a simple theoretical framework based on the three-medium layer Fresnel reflection:

(2.32) R = r12 + r23e2iΦ

1+ r12r23e2iΦ ,

where rij is the reflection coefficient at the i-j-interface, Φ = kz2d the single pass phase
shift and d the thickness of the layer (medium 2). For the assumption of a perfect
electric conductor as the third medium (r23 = 1), we get r12 = e2iΦ as the required
condition for zero reflection. This ultimately leads to the condition of:

(2.33)
2πdPA

λPA
=
⎛
⎝

ε′22 + ε′′22

ε
3/2
1 ε′′2

⎞
⎠

1
tan θPA sin θPA

Furthermore, the perfect absorption (PA) regime corresponds to a vanishing
imaginary part in the excited mode. At these points, the field in medium 1 is neither
growing nor decaying. Instead, it is the field of an incoming plane wave. Thus, at
these points, the field structure of this mode, which is an exact solution to Maxwell’s
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equations, is indistinguishable from the field structure of an incoming and absorbed
plane wave. Hence, a plane wave can phase match the mode at these points (and in
their close vicinity).

Epsilon-Near-Zero Plasmon

Introducing a glass substrate instead of a reflective metal can lead to similar features
in the case of total internal reflection, as demonstrated by S. Campione et al. [38]. The
so-called ENZ plasmon feature appears just past the critical angle, as can be seen in
Figure 2.8. The abrupt absorption change to ∼ 100 % right above the critical angle is
due to the constructive interference of the incident and reflected waves around the
excitation conditions of the mode. The near-perfect absorption and field enhancement
make this mode a promising pathway to enhance nonlinear optical processes and
open up directions for ultrafast, tunable thermal emission.

a b c

FIGURE 2.8: Experimental verification of the epsilon-near-zero plas-
mon. a, Schematic of an incident wave from the glass medium to
excite the high wavevector ENZ plasmon (Kretschmann geometry).
b, Simulation of a 53 nm ITO film with the ENZ plasmon as the high
absorption feature just past the light line. c, Experiment that confirms

the strong absorption feature. (Reproduced from [38])

2.3.4 Graphene Plasmon Polaritons

Polaritons are hybrids of light-matter oscillations that can originate in different phys-
ical phenomena. In the case of 2D materials, one could have conduction electrons
in graphene and topological insulators (surface plasmon polaritons), infrared-active
phonons in boron nitride (phonon polaritons), excitons in dichalcogenide materials
(exciton-polaritons), superfluidity in FeSe- and Cu-based superconductors with high
critical temperature Tc (Cooper-pair polaritons), and magnetic resonances (magnon
polaritons). The family of van der Waals (vdW) materials supports all of these polari-
tons, as shown in Figure 2.9. The matter oscillation component (e.g. electron plasma
oscillation) results in negative permittivity of the polaritonic material (previously
given by the conductor half space), giving rise to optical-field confinement at the in-
terface with a positive-permittivity environment. The vdW polaritons exhibit strong
confinement, as defined by the ratio of incident light wavelength λ0 to polariton
wavelength λp. [28]

Graphene plasmonics has led to demonstrating proof-of-principle device concepts
such as mid-infrared optoelectronics [39], bio-sensing [40] and fingerprinting [41]. It
is anticipated that these applications should continue to develop over the following
years and could also enable free-space beam shaping and steering with graphene
metasurfaces [42]. Going forward, these high-quality GPPs can also provide an
excellent platform for realising tunable 2D mid-infrared nano-photonics circuits with
novel functionalities not previously attainable.
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FIGURE 2.9: Polaritons in van der Waals materials. Various examples
of polaritons in van der Waals materials. (Reproduced from [28])

Graphene plasmons themself provide excellent confinement, but recent research
pushed the vertical field confinement even further to the limits. In the work of D.
Alcaraz et al. on "Probing the ultimate plasmon confinement limits with a van der
Waals heterostructure" [43], they present a graphene-insulator-metal hybrid device
that enables vertical plasmon confinement down to the ultimate limit of the length
scale of one atom (∼ λ/26, 000). They use far-field light to couple to these strongly
confined plasmons and find a vertical mode length down to 0.3 nm, whereas higher-
order Fabry-Pérot resonances reveal that the propagating character of the plasmons is
preserved. Furthermore, the metal rods facilitate efficient coupling between far-field
light and the strongly confined plasmons, where the width of the rods defines the
resonant conditions for the plasmon modes.

2.3.5 Excitation of Polaritons

The confinement factors of these 2D layer polaritonic modes reach values up to
λ0/λp ∼ 1000. While offering excellent field confinement, this also creates an even
more substantial wavevector mismatch with freely propagating radiation. Various
approaches to overcome this issue have been presented (see Figure 2.10). Polaritons
can, for example, be excited at periodic structures [44], using nonlinear wave mixing
[45] or antenna-like nanotips [46]. These options maintain phase coherence with
respect to the external illumination, in contrast to the inelastic processes of using
electron beams [47], localized emitters [48] or electron tunneling [49]. The coherence
is lost through intermediate processes such as phonon scattering. Localised polaritons
confined to nanoislands can also be resonantly excited by incident light interaction
[28].

While these examples provide a suite of good choices for 2D materials, we turn
now to more conventional methods, well known from metallic thin film studies over
the last decades. Exciting, e.g. a surface plasmon polariton on an air/gold interface
is less challenging as the wavevector only slightly surpasses the light line as can be
seen in Figure 2.6) for relatively low frequencies. The presented techniques are taken
primarily from the book "Plasmonics: Fundamentals and Applications" by Stefan A
Maier [27] and a lecture on plasmonics by Shalaev [50].

Prism coupling

To slightly increase the incoming light wavevector for a constant frequency, one can
utilise an optically dense medium with n > 1. For the same angle of incidence, the
in-plane wavevector component is now increased by k∥ = n k∥,air. One common way
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FIGURE 2.10: Excitation of polaritons in van der Waals materials.
Techniques to excite plasmons as displayed: (A) Periodic structuring,
(B) nonlinear wave mixing, (C) antenna-like nanotips, (D) electron
beams, (E) quantum dots and localised emitters, and (F) electron tun-

nelling. (Reproduced from [28])

of implementing this trick is utilising a glass prism, as seen in Figure 2.11. The light
beam incident from the prism side now surpasses the maximum air light-line impulse
and can match the surface plasmon. All frequency wavevector combinations within
the new prism light-line range are now able to be phase-matched. For that, the metal
film has to be thin enough to allow for the evanescent fields inside the thin layer to
be non-zero at the air/metal interface, on which the SP will be excited.

FIGURE 2.11: Excitation of surface plasmon polaritons via prism
coupling. The refractive index of the prism increases the parallel
wavevector component k∥ and can match that of the surface plasmon
ksp. The surface plasmon dispersion is now partly inside the prism

light cone (blue) and can be excited. (Reproduced from [50])

Note that the surface plasmon at the prism/metal interface can not be excited as
the dispersion relation is shifted and slightly surpasses the prism light line, similar
to the in-air case. Further, the excited SPPs using the prism phase-matching method
inherently leaky waves, i.e. they lose energy due to the inherent absorption inside
the metal and leakage of radiation into the prism: the excited propagation constants
lie within the prism light cone (see Figure 2.11). The minimum intensity of the
reflected beam is due to destructive interference between this leakage radiation and
the reflected part of the excitation beam. For an optimum metal film thickness,
the destructive interference can be perfect, providing a zero in the reflected beam
intensity, so that leakage radiation cannot be detected. [27]



22 Chapter 2. Fundamentals

Grating coupling

Another method to overcome the phase difference is to structure the surface. Here,
we investigate a grating pattern with the periodicity of P. According to Bloch,
the periodic dielectric constant couples waves for which the k-vectors differ by
a reciprocal lattice vector ∣G⃗∣ = 2π/P. Hence, phase matching takes place if the
wavevectors fulfil the condition of

(2.34) ksp = k∥ ±mG,

with m being an integer. The corresponding coupling mechanism is sketched in
Figure 2.12.

FIGURE 2.12: Excitation of surface plasmon polaritons via grating
coupling. The grating of periodicity P provides a strong Fourier
component at G = 2π/P. Freely propagating light can now excite
the surface plasmon via multiple scattering events on the grating
if the shifted surface plasmon branch overlaps with the light cone.

(Reproduced from [50])

The reverse process can also occur: SPPs propagating along a surface modulated
with a grating can couple to light and thus radiate. The gratings need not be milled
directly into the metal surface but can also consist of dielectric material.

For one-dimensional gratings, significant changes to the SPP dispersion relation
occur if the gratings are sufficiently deep so that the modulation can no longer be
treated as a small perturbation of the flat interface. Appreciable band gaps appear
already for a groove depth on the order of 20 nm for metallic gratings. For even larger
depths, localised modes inside the grooves lead to distortions of the first higher-order
band folded back at the Brillouin zone boundary, enabling coupling even for short
pitches P < λ/2 upon normal incidence due to a lowering in the frequency of the
modified SPP dispersion curve.

Antenna coupling

More generally, SPPs can also be excited on films in areas with random surface
roughness or manufactured localised scatterers. Momentum components ∆kx are
provided via scattering so that the phase-matching condition

(2.35) ksp = k∥ ±∆kx

can be fulfilled. For local scatterers, the spatial Fourier components can reach values
up to

(2.36) ∆kx ∼ 2π/d,
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where d corresponds to the scattering body dimension along the electric field direction.
In Figure 2.13, the fluorescence images of a singular bar and a dot are shown. The dot,
in particular, shows a dipole like radiation pattern. It can excite a surface plasmon as
indicated with an arrow in Figure 2.13b.

d = 200nm

h = 60nm

Dipolar radiation pattern

E

Radiation

E-fields

a b c

FIGURE 2.13: Excitation of surface plasmon polaritons via antenna
coupling. Fluorescence images of the field intensity of SPs excited via
a silver wire (width 200 nm, height 60 nm, length 20 mm) (a) and a
silver particle (diameter 200 nm, height 60 nm) (b). c, The schematic
dipolar radiation pattern of the silver particle in side and top view.

(Reproduced from [51, 50])

2.3.6 Localised Plasmons in Nano-Antennas

So far, discussions have revolved around the excitation of propagating, dispersive
plasmon modes that require phase matching to be excited. Here, we discuss the
non-propagating, localised surface plasmons on nanostructures. The interaction of a
sphere with radius R with an electromagnetic field can be analysed using the simple
quasi-static approximation provided that R ≪ λ, i.e. the particle is much smaller
than the wavelength of light. In this case, the phase of the harmonically oscillating
electromagnetic field is practically constant over the particle volume so that one
can calculate the spatial field distribution by assuming the simplified problem of a
particle in an electrostatic field. The harmonic time dependence can then be added to
the solution once the field distributions are known. The absorption cross-section for a
sphere is given as [52]

(2.37) Cabs = kIm(α) = 4πkR3Im( ε − εm

ε + 2εm
) ,

with surrounding medium permittivity ε and the metal permittivity εm.
L. Novotny [53] showed that these nano-antennas basically act like scaled down

versions of their radio-frequency counterparts as sketched in Figure 2.14. However, an
effective wavelength scaling must be applied. For example, for a half-wave antenna
made of a gold rod (length L = 110 nm, radius R = 5 nm) one calculates λeff = λ/5.3
(L = λ/10.6). More generally, the effective wavelength may be estimated as

(2.38) λeff = a + b
λ

λp
,

where λp is the plasma wavelength and a, b are coefficients with dimensions
of length that depend on antenna geometry and static dielectric properties. The
assumptions are that the antenna is made of linear segments with radius R ≪ λ and
that the metal can be described by a free electron gas according to the Drude model.
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Nano-antennas have become a standard tool to enhance (nonlinear) optical pro-
cesses. They provide a unique capability to enhance electric fields and direct optical
energy to defined local hot spots.

FIGURE 2.14: Schematic of a nano-antenna. A single antenna element
is represented by a metal rod. Incident light polarises the rod ends and
gives rise to a standing surface charge wave. (Reproduced from [53])

2.4 Nonlinear Optics in Plasmonic Thin Layers

Nonlinear plasmonics has become a fertile ground for developing and testing new
ideas on light-matter interaction under extreme field conditions. These ideas have
found many applications in surface science, active photonic nanodevices, near-field
optical microscopy, and nonlinear integrated photonics [54]. For catching up with
the field of ENZ nonlinear optics, I recommend the reviews of Reshef et al. [55] and
Kinsey et al. [36]. Here, we explore the latest developments of nonlinear optics in
graphene nanostructures and thin layer ENZ materials. We focus on research directly
related to the projects presented in this thesis.

2.4.1 Graphene Nonlinear Optics

Graphene has a hexagonal lattice structure, which makes it centrosymmetric. Hence,
no second-order nonlinearity such as SHG is expected under normal incidence. THG
and other odd-order interactions are allowed and particularly strong in graphene, as
will become apparent in this section.

The potential of graphene for nonlinear optics was first shown by E. Hendry et al.
in the "Coherent Nonlinear Optical Response of Graphene" [5]. They performed the
first measurements of the coherent nonlinear optical response of single- and few-layer
graphene using four-wave mixing. Graphene exhibits an extreme nonlinear optical
response in the near-infrared spectral region. The sizeable optical nonlinearity origi-
nates from the interband electron transitions and is eight orders of magnitude larger
than the nonlinearities observed for dielectric materials without such transitions.

For our research projects, we are interested in two perspectives of combining
GPPs and nonlinear optics, similar to the case of metal before. First, the tool of
nonlinear optics is utilised to excite GPPs, as seen in the wave-mixing example (B)
in Figure 2.9b. Second, the direct excitation of GPPs in patterned graphene samples
is utilised to confine incoming electric fields to the nonlinear medium and, by that,
further increasing the nonlinear signal.

Nonlinear Optical excitation of Graphene Surface Plasmons

Exciting the ultra confined graphene plasmon polaritons requires phase matching. An
interesting approach was chosen by T. Constant el al. by investigating "All-Optical
Generation of Surface Plasmons in Graphene" [45]. They take advantage of the
intrinsic second-order nonlinear optical response of graphene for angled incidence.
Free-space, visible light pulses are used to generate surface plasmons in a planar
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graphene sheet using difference frequency wave mixing to match the wavevector
and energy of the surface wave. By controlling the phase-matching conditions, they
showed that one could excite surface plasmons with a defined wavevector and
direction across an extensive frequency range, as sketched in Figure 2.15.

FIGURE 2.15: All-optical generation of surface plasmons in graphene.
The difference frequency generation of the pump (green arrow) and
probe (orange arrow) allows access to wavevectors outside of the light
line (red line). This permits phase matching to the surface plasmon

modes in graphene (blue line). (Reproduced from [45])

This concept has been used by B. Yao et al. [56] to generate "Broadband gate-
tunable terahertz plasmons in graphene heterostructure". They demonstrated tera-
hertz plasmon generation and control in chip-scale integrated graphene. The coherent
difference frequency excitation is gate-tunable for both graphene layers via electrical
doping and manipulation of the chemical potential. Together with the symmet-
ric–antisymmetric frequency crossing between the two layers a frequency range of
4.7 to 9.4 THz can be tuned across. The incoming wavelength was chosen to be in
the range of 1530 to 1610 nm, making this device an excellent example for future
telecommunications applications.

However, both of these studies presented χ(2) values that are roughly three orders
of magnitude higher than perturbation theory currently suggests. In comparison,
other theoretical studies presented in B. Yao et al. [56], but originally proposed by
X. Yao et al. [57], coincide roughly with the experimental data, their model shows
wrong qualitative behaviour with an experimentally not verifiable divergence for
difference frequencies approaching zero. This issue was highlighted and discussed in
"Origins of All-Optical Generation of Plasmons in Graphene" by C. Tollerton, J. Bohn,
et al. [58], which can be found in Appendix A. This work has also been extensively
featured in chapter 5 of C. Tollertons doctoral thesis [59].

Enhanced high-harmonic generation

Graphene and its versatile properties have been utilised to generate new frequency
components, including the modulation and enhancement of said process. The
"Gate-tunable third-order nonlinear optical response of massless Dirac fermions
in graphene" was studied by T. Jiang et al. [60]. They demonstrated that the third-
order nonlinearity of graphene can be varied by orders of magnitude with the help
of gate-controlled doping or shift of the chemical potential. In general, the optical
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nonlinearity of linear-band materials with the chemical potential close to the Dirac or
Weyl point tends to diverge when the input frequency combination approaches zero.
The resulting giant nonlinearity of such materials, particularly graphene, can be of
great use in future optoelectronic devices.

H. Hafez et al. reported an "Extremely efficient terahertz high-harmonic genera-
tion in graphene by hot Dirac fermions" [61]. They report the generation of terahertz
harmonics up to the seventh order in single-layer graphene at room temperature
and under ambient conditions, driven by terahertz fields of only tens of kilovolts per
centimetre, and with field conversion efficiencies over 10−3, 10−4 and 10−5 for the third,
fifth and seventh terahertz harmonics, respectively. These conversion efficiencies
are remarkably high, given that the electromagnetic interaction occurs in a single
atomic layer. The effective nonlinear optical coefficients of graphene for the third,
fifth and seventh harmonics exceed the respective nonlinear coefficients of typical
solids by 7-18 orders of magnitude. This provides a direct pathway to highly efficient
terahertz frequency synthesis using the present generation of graphene electronics,
which operate at much lower fundamental frequencies of only a few hundreds of
gigahertz. However, for the NIR/VIS wavelength range, orders of magnitude less
efficient high harmonic generation has been presented with efficiencies of 10−10, 10−13

for third and fifth harmonics for 5-monolayer graphene [62].
"Plasmon-Enhanced Nonlinear Wave Mixing in Nanostructured Graphene" has

been theoretically studied by J. Cox et al. [63]. They investigated patterned graphene
to realise nonlinear wave mixing on the nanoscale with extraordinarily high efficien-
cies, surpassing metal nanoparticles of similar lateral sizes. The large magnitudes of
the predicted nonlinear polarizabilities are attributed to plasmonic enhancement in
these nanostructures. These plasmons can be tuned by changing the number of dop-
ing charge carriers, adding another advantage for the conventional plasmonic metal
response. These effects can lead to tunable plasmonic response and plasmon-induced
enhanced nonlinearities within the visible and near-infrared spectral ranges. These
results configure a platform for developing nanoscale nonlinear optical devices based
upon graphene nanostructures with lateral dimensions of only a few nanometers.

As described in subsection 2.3.4, D. Alcaraz et al. [43] even further decreased the
lateral confinement down to the dimensions of an atom, suggesting an even more
substantial effect on the nonlinear efficiency. While not yet being able to couple to
graphene plasmons, I. Alonso et al. showed giant enhancement of third-harmonic
generation in these graphene–metal heterostructures, as seen in Figure 2.16 [64]. In
chapter 4, we jointly investigated enhanced fifth harmonic generation in similar
devices.

2.4.2 Epsilon-Near-Zero Nonlinear Optics

Recently, an unprecedented nonlinear refractive index change of unity order has been
observed in ITO [8]. To get an intuition of why epsilon-near-zero (ENZ) materials
have a strong optical Kerr effect, one can recall the standard relation between n2 and
χ(3) as [9]:

(2.39) n2 =
3χ(3)

4ε0cn2
0

,

with ε0 as the permittivity of free space. Considering n =
√

(ε), it becomes clear
that n2 gets large for a vanishing denominator given via Re(ε) ≈ 0. Alam et al. [8]
report values of n2 ≈ 10−10 cm2/W and ∆n ≈ 0.72, which is even more impressive
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a b

FIGURE 2.16: Giant enhancement of third-harmonic generation in
graphene–metal heterostructures . a, graphene is encapsulated by a
few-nm-thick Al2O3 or a monolayer h-BN film, which sets the space s
between the graphene and gold nanoribbons. The gold nanoribbon
arrays are characterised by the ribbon width W and the inter-ribbon
gap g. b, Third harmonic generation measurements on four different
regions of the sample depending on the sample displacement relative
to the optical focus along the optical axis (symbols). Gaussian fits to the
data (curves) provide visual guides of the THG signal. (Reproduced

from [64])

considering the initial refractive index of n0 ≈ 0.4 is smaller then the nonlinear change
itself (see Figure 2.17). This corresponds to a permittivity change from ε = 0+ i 0.352
to ε = 1.22+ i 0.61. Hence, ITO exhibits a reversible transition from metallic to a lossy
dielectric state with a subpicosecond time response at wavelengths slightly longer
than the bulk plasmon wavelength.

FIGURE 2.17: Nonlinear optical properties of an ITO thin film. a,
Intensity-dependent transmittance (T), reflectance (R), and absorp-
tance (A) of an 310 nm ITO-glass structure (see Figure 2.4) for θ = 30○.
b, Complex effective refractive index of ITO extracted from the mea-
sured values in (A) using a transfer-matrix method. (Reproduced from

[8])

These results challenge the notion that the nonlinear optical response is only a
perturbation to the linear response and has also been found in other ENZ materials
such as AZO [65, 66] or CdO[67]. Materials with a sizeable nonlinear response are
expected to enable exotic nonlinear dynamics and allow all-optical control of meta-
surface and active plasmonic devices. This allows for a completely new paradigm
in nonlinear optics and opens new avenues for developing optical nanostructures
with large nonlinearity for applications in nano-photonics, plasmonics, and nonlinear
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nano-optics.

Physical origin of nonlinear refractive index changes

The significant refractive index modulation originates from ultrafast changes to the
electron distribution of the TCO. Upon pumping the material, one of two typical
reflection changes can be expected depending on the pump energy, as depicted in
Figure 2.18. These can best be understood by considering changes to the bulk plasmon
frequency given as

(2.40) ω2
p = e2n

ε0meff
,

with e as the elementary charge of an electron, n as the density of electrons, ε0 as the
permittivity of free space and meff as the effective mass.

FIGURE 2.18: Nonlinear dynamics in transparent conductive oxides.
a, For a pump pulse with an energy larger than the bandgap, addi-
tional electrons are promoted to the conduction band. The increase of
the plasmon frequency leads to a more metallic behaviour, typically
resulting in an increased ∆R/R0 . b, For a pump pulse with energy
smaller than the bandgap, the electrons inside the conduction band
are heated up. The redistribution of carriers in the non-parabolic band
leads to an increased effective mass. Hence, the reflection is expected
to decrease due to the reduction of the plasma frequency. (Reproduced

from [36])

First, for optical pulse energies larger than the bandgap, the dominant contribution
to ultrafast transients comes from interband transitions. Electrons that reside in the
valence band are promoted into the conduction band and increase the total free-carrier
density (n), blueshifting the plasma frequency. Second, and most relevant for the
studies in this thesis, when an ultrafast optical pulse with energy smaller than the
bandgap excites a metal oxide, the conduction-band electrons undergo intraband
transitions via free-carrier absorption. Before the pulse arrives, the conduction-band
electrons are in equilibrium and described by a room temperature Fermi distribution,
in which the Fermi energy resides inside the conduction band. Immediately following
excitation, the electrons are energised, and their distribution is highly non-thermal;
however, within a few femtoseconds, the excited plasma relaxes via electron-electron
scattering to a smeared-electron distribution described by a quasi-Fermi distribution
and an elevated electron temperature Te. The result is an increase in the average
effective mass of the electron sea due to an overall shift to higher energy, higher-mass
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(meff) states within a non-parabolic conduction band, thereby producing a redshift of
the Drude plasma frequency. [36]

F. Zhang et al. studied the origin of the fast temporal dynamics in ITO [68]. The
relaxation dynamics are more than an order of magnitude faster compared to more
common plasmonic material like gold, as seen in Figure 2.19. The recovery process
is found to be determined mainly by the electron-phonon scattering process. They
propose that the two-order magnitude higher electron-phonon scattering rate in ITO,
as well as in AZO, results in a sharper free electron temperature drop and hence the
faster optical response compared with Au. The sub-ps switching capabilities make
TCOs an auspicious material choice for ultrafast all-optical switching applications.

a bGold ITO

FIGURE 2.19: Relaxation time: Gold vs ITO. Time dependence of
the normalised optical response (denoted by the square dot) and the
convolution of the time evolution of the electron temperature and
the temporal envelope of the probe pulse for (a) gold and (b) ITO,

respectively. (Reproduced from [68])

All-optical switching

The shifting of the plasma frequency and corresponding resonances opened an
existing pathway for all-optical switching. Already Alam et al. [8] showed significant
absolute reflection and transmission changes for simply utilizing a 310 nm ITO film
as seen in Figure 2.17.

To maximise this effect, Yang et al. [67] used CdO, which offers higher carrier
mobility, in combination with a gold substrate. They measured massive absolute
reflection changes of 86.3 % (see Figure 2.20). However, this was measured for 2.08 µm
and required an additional gold film, acting as a cavity.

In chapter 5, we utilise a 60 nm ITO film in a prism geometry to excite the ENZ
plasmon, leading to near-total absorption at wavelength compatible with the tele-
com sector. Significant absolute reflection changes of 45 % have been measured,
corresponding to switching across almost two orders of magnitude.

Antenna coupling

To further enhance the nonlinear response, nanostructures have been added on top of
the ITO layer. Z. Alam et al. [69] investigated the "Large optical nonlinearity of nano-
antennas coupled to an epsilon-near-zero material". They measured a broadband
(∼ 400 nm bandwidth) and intensity-dependent refractive index n2 as large as −3.73±
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FIGURE 2.20: Optical switching using a cadmium oxide-based per-
fect absorber. a, Schematic of the pump-probe measurement setup. b,
The ∆OD map as a function of wavelength and delay time. (Repro-

duced from [67])

0.56 cm2 GW−1. This leads to a maximum optically induced refractive index change
of ±2.5 over a spectral range of ∼ 200 nm.

FIGURE 2.21: Large optical nonlinearity of nano-antennas coupled
to an epsilon-near-zero material., Effective nonlinear refractive index
n2, measured by displacing the sample along the optical axis relative
to a tight optical focus. The metasurface structure comprises a gold
dipole antenna array of 27 nm thickness on a 23-nm-thick indium
tin oxide (ITO) layer. The intensity-dependent refractive index of the
metasurface is almost six orders of magnitude larger than that of SiO2,
even for a highly red-detuned wavelength (λ = 1540 nm). (Reproduced

from [69])

Bruno et al. [70] studied "Negative Refraction in Time-Varying Strongly Coupled
Plasmonic-Antenna–Epsilon-Near-Zero Systems". They utilise the plasmonic reso-
nance of the metal resonators to strongly interact with the optical ENZ modes of
the AZO film. The optical pumping induced a nonlinear polarisation oscillating at
double the frequency, responsible for an efficient generation of a phase conjugate and
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a negative refracted beam with a conversion efficiency of more than four orders of
magnitude greater than the bare ENZ film.

However, these designs only work for one polarisation. In chapter 6, we ma-
nipulate both polarisations independently using a cross-shaped nano-antenna and
measure a more than seven times stronger response for the probe being parallel to
the pump polarisation compared to the perpendicular case.

Frequency control

The nonlinear response of ENZ TCO materials can additionally be utilised for fre-
quency manipulation. T. S. Luk et al. studied "Enhanced third-harmonic generation
from the epsilon-near-zero modes of ultrathin films." The conversion efficiency of
more than 10−6 is achieved by exploiting the field enhancement properties of the
epsilon-near-zero mode with an enhancement factor of 200 [71]. Utilising the high
mobility CdO on gold, similar to the previously discussed polarisation switch, Y.
Yang et al. [72] measured significant high harmonic generation up to the 9th order.
Additionally, they find that ENZ-assisted harmonics exhibit a pronounced spectral
redshift and linewidth broadening, resulting from the photoinduced electron heating
and the consequent time-dependent ENZ wavelength of the material.

Beyond harmonic generation, ENZ materials have only recently become promi-
nent for efficient frequency shifting via temporal refraction. The refraction at a
temporal boundary was found to cause a frequency shift of up to 6 % in a 620 nm ITO
sample for a broad frequency range around the ENZ case [13]. Similar effects have
been reported for AZO [73, 74]. Nano-antennas have been employed to reduce the
intensity requirements by more than two orders of magnitude [75].

However, in this temporal refraction case, the frequency shifts are always directly
related to the temporal changes to the effective refractive index of the active medium.
In chapter 7, we study the effect of spatiotemporal refraction. In addition to the bulk’s
temporal response, the boundary conditions change as the pulse propagates through
the thin layer. These spatiotemporal effects can create a counteracting frequency shift
and tailor the desired frequency shift without adjusting the nonlinear refractive index
or thickness.
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a

b

c

FIGURE 2.22: Frequency translation through time refraction in an
epsilon-near-zero material. a, A comparison of light refraction at a
spatial (left) or a temporal (right) refractive index boundary. Note
that the horizontal (left) and vertical axis (right) represent a temporal
and not a second spatial coordinate as commonly used in similar
representations of spatial refraction.b, In experiments, the frequency
of the probe redshifts (blueshifts) if the pump beam lags (leads) the
probe, considering the rise of the refractive index upon pumping. At
near-zero delay, both redshift and blueshift can occur. c, Experimental
probe spectrum as a function of the pump-probe delay time for 1235
nm. The spectral magnitude for each pump-probe delay is normalised

individually. (Reproduced from [13])
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Chapter 3

Methodology

Abstract

The methods required to carry out and model the experiments are presented. For this
thesis, we utilised two different approaches to characterise the nonlinear response of
the active material. A z-scan setup was used to measure high harmonic generation
exclusively in the intense focus position. For ITO, the pump-probe setup allowed for a
time-resolved study of ultrafast changes to the transmission and reflection, including
shifts in their respective spectra. Regarding modelling, we will start with the response
of a singular interface and end with the multi-layer transfer matrix method (TMM)
applied to measurement examples.
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3.1 High Harmonic Generation in Graphene: z-Scan Setup

In this section, we first describe the basic idea of the z-scan setup for high-harmonic
generation. The experimental setup described here is part of the laboratories at the
University of Vienna and used to do the final measurements presented in chapter 4.

3.1.1 The Concept of a z-Scan Measurement

z

FIGURE 3.1: z-Scan schematic. Nonlinear optical effects require large
intensities. The sample is moved along the propagation direction (z)
through a tight focus. Only when the sample is centred in the intense

focus high harmonic signals are generated.

Nonlinear optics describes the optical properties of materials for high intensities.
For the example of high harmonic generation, the efficiency of the n-th order is ex-
pected to scale with an intensity dependence of In/2 (see subsection 2.1.3). Hence,
isolation of HHG signals may be achieved by comparing a high-intensity measure-
ment to a low-intensity reference. In the case of a z-scan setup, this is done by moving
the sample of interest through a tightly focussed beam as depicted in Figure 3.1. The
strongest HHG signal will be achieved when the active material is precisely in focus.
The Rayleigh length is proportional to the spatial resolution of the setup, which can
be estimated via gaussian optics. For graphene, it will prove helpful to compare the
response of the front and back of the sample to isolate the nonlinear contribution of
the monolayer material.

3.1.2 The Measurement Setup

To measure the nonlinear signals of our samples, we used a modified z-scan setup,
where the nonlinear signal (either third-harmonic generation or fifth-harmonic gener-
ation) is measured while the sample is moved along the z-axis through the focus of
the laser beam (see Figure 3.2).

Our pump beam is a linearly-polarized pulsed laser with a ∼ 260 fs pulse width,
a central wavelength of 3900 nm (0.225 eV), and an a 76.2 MHz repetition rate. This
beam is generated by an Optical Parametric Oscillator (OPO), fed by a mode-locked
femtosecond Ti:sapphire laser. We use a Half-Wave Plate (HWP) to rotate the polari-
sation of the incoming beam to that set by the polariser (pol). A lens with a 5.95 mm
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FIGURE 3.2: z-Scan setup for high-harmonic generation. Experi-
mental setup of the modified z-scan measurement. The difference-
frequency generator (DFG) provides linearly-polarised femtosecond
laser pulses at an 76.2 MHz repetition rate. The half-wave plate (HWP),
together with the polariser (pol), rotate the polarisation of the light that
is then focused down with a short-focal lens (L1). A second collimation
lens (L2) collimates both the initial light and the TH signal excited in
the sample that is moved in the z-direction through the beam’s focal
point. Finally, a spectral filter (SF) isolates the nonlinear signal sent
to a superconducting nanowire single-photon detector (SNSP) and a

spectrometer when measuring THG and FHG, respectively.

focal length focuses the pump down to a waist of ≈ 13.5 µm. When the sample is
moved parallel to the pump beam (along the z axis), the nonlinear emission occurs
most efficiently where the fluence is maximum, i.e. at the focal point. Afterwards, a
lens with an 11 mm focal length collimates the beam, which is then sent through a
set of spectral filters that separate the nonlinear signals from the pump beam. The
resulting nonlinear signal is coupled into a multimode fibre, which can be sent to
two detectors. The third-harmonic signal, at ≈ 1300 nm, is measured with a large-
area Superconducting Nanowire Single-Photon (SNSP) detector from PhotonSpot
with a ≈ 60 % detection efficiency at this wavelength. We can combine this detector
with a Gemini interferometer from NIREOS to measure the spectrum of the third-
harmonic. The fifth-harmonic signal, which is centred around 780 nm, is sent to a
single-photon sensitive silicon Andor spectrometer with a resolution of 1 nm, and
detection efficiency of ≈ 10 %.

3.1.3 Extracting the Third-Order and Fifth-Order Susceptibility

Experimentally χ(3) and χ(5) are estimated following the procedure reported in [60].
The measured average power is proportional to the modulus square of the electric
field through the following relation:

(3.1) P(ω) = 1
8
( π

ln 2
)

3/2
f τW2nε0c

∣E(ω)∣2

2

where f is the repetition rate of the laser, τ is the temporal pulse width, W is the
Gaussian beam diameter, n is the refractive index, and ε0 and c are the permittivity
and speed of light in vacuum. In the experiment here reported f = 76.2 MHz,
τ = 260 fs (FWHM), W = 27 µm and the refractive index is considered to be constant,
n = 2.4.

The generated THG and FHG electric fields in a graphene monolayer of thickness
dgr = 0.33 nm are related to the electric field at the fundamental pump frequency
E(ω0) through the following relations [9, 76]:



36 Chapter 3. Methodology

E(3ω0) = i
ω0

8nc
χ(3)dgrE(ω0)3(3.2)

E(5ω0) = i
ω0

8nc
χ(5)dgrE(ω0)5(3.3)

From Eq. 3.2-3.3 it is thus possible to calculate the effective χ(3) and χ(5). Note that
all the quantities in Eq. 3.1-3.2-3.3 are considered in standard unit (SI) system, while
the χ(3) and χ(5) values we report later, e.g. in Fig. 4.6c-d, are in electrostatic unit of
charge (esu). The relative conversion factors are given by:

χ(3)(SI) = 4π

(3 ∗ 104)2 χ(3)(esu)(3.4)

χ(5)(SI) = 4π

(3 ∗ 104)4 χ(5)(esu)(3.5)

3.2 Time-Resolved Nonlinear Optics in ITO: Pump-Probe
Setup

This section will first introduce the basic concepts of time-resolved measurement
using a pump and a probe beam. Then we show and explain the experimental
implementation in our lab.

3.2.1 The Concept of a Pump-Probe Measurement

To do time-resolved measurements of nonlinear processes, it is typically required
to use two beams. One highly intense beam (pump) interacts with the sample. In
the case of ITO, electrons would absorb the energy and be redistributed inside the
conduction band. The resulting changes to the optical properties can then be tested
with a much weaker beam (probe) to prevent optical induced changes by the probe
itself. The two beams are delayed relative to each other to resolve the material changes
temporally, allowing for a time resolution limited by the pulse length (∼ 100 fs in this
study). The process is sketched in Figure 3.3 and shows the example of an ultrafast
increase of transmission upon pumping.

3.2.2 The Measurement Setup

For the pump-probe measurements (see Figure 3.5), we used an amplified Ti:sapphire
laser (Legend Elite, Coherent), with a central wavelength of 800 nm and a repetition
rate of 1050 Hz, feeding two identical OPAs (TOPAS, Light Conversion). The final
pulse duration was measured via autocorrelation of our pulses at 1200 nm using
an APE pulseCheck autocorrelator (see Figure 3.4). The measured pulse length is
107± 5 fs, with no significant change in pulse length over the range in wavelengths
employed in this work. The measurement does not indicate any chirp like behaviour.

The signal output of one OPA was used as the pump, and the signal output of
the other OPA was used as the probe, allowing us independent control of pump
and probe frequencies. The combination of a variable λ/2 wave plate followed by a
polariser is used to maximise the initial power of the light sources for an arbitrary
incoming frequency. The time delay between the two beams is implemented with
a delay line in the pump path, consisting of a linear translation stage with a retro-
reflecting pair of mirrors.
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Pump

Probe

100 fs Sample

FIGURE 3.3: Pump-probe schematic. A pump pulse excites the
sample. The much weaker probe pulse arrives with a time delay τ
relative to the pump. This way, the ultrafast pump induced changes to
the optical transmission of the probe can be resolved down to ∼ 100 fs

(pulse length).

FIGURE 3.4: Autocorrelation for pulse length and quality check. The
autocorrelation was measured for a wavelength of 1200 nm. The pulse
has been measured multiple times, leading to a pulse time estimate of

107± 5 fs.

We measure the power of a glass reflection (pump) and ND filter reflection (probe)
to track the stability of both optical parametric amplifiers. We used the pump power
reference combined with a computer-controlled variable density filter wheel to set a
frequency-independent pump intensity on the sample. To make sure the intensity of
the probe is significantly smaller than the pump, we used several additional OD filters
to decrease the probe power and tested that the nonlinear signal was independent of
adding/removing filters. Hence, problems such as a saturated nonlinear electronic
response in the detector are avoided. The pump was focused using either a 30 or
40 cm BK7 lens, leading to a 480 µm or 800 µm Gaussian beam diameter (1/e) at the
sample. The probe is focussed with a 25 cm CaFl2 lens to a 250 µm diameter.

The probe beam was chopped and measured with a fibre-connected detector. We
used a PbS Amplified Detector (PDA30G-EC) combined with an electronic lock-in
setup for precise measurements of ultrafast changes to the transmission or reflection.
Ideally, one would chop the pump, but chopping the probe is helpful to study the
absolute changes if you have a well known and accessible to measure reference, such
as total internal reflection. Also, by adding a rotatable quarter wave-plate in front
of the analyser, one can extract all four Stokes parameters and analyse the complete
polarisation ellipses [77]. We employ the method of Schaefer et al. [78] to extract the
Stokes parameters via an 8 point rotation of the quarter-wave plate.
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FIGURE 3.5: Pump-probe setup for ultrafast ITO studies. The setup
as found in the lab can be seen on the left. Experimental devices and
the beam paths are marked. On the right, one can see a schematic
diagram. The labelling focuses on the electrical control and data

collection of the setup.

For spectral measurements, we used an Andor Shamrock 163 spectrograph with a
DU490A-1.7 camera. The spectra can be integrated over wavelength to get a good
estimate of the transmission and reflection.

The angle of incidence of the pump is 5○ smaller than that of the probe. However,
for the Kretschmann geometry used to excite the ENZ plasmon, as seen in chapter 5 ,
we slightly adjusted the setup. The ITO thin layer was positioned on top of a 180 µm
coverslip and attached to the front of a right-angle prism (EKSMA, UV-FS 5x5 mm)
by applying an index matching fluid (Olympus IMMOIL-F30CC). We used the total
internal reflection of a blank coverslip as a reference to obtain absolute reflection
measurement. For this case, the pump angle of incidence is ∼ 3.4○ smaller than the
probe.

3.2.3 Spectroscopic Ellipsometry: Thin-Film Properties (Linear)

This section concerns the linear characterisation of the ENZ thin films using a spec-
troscopic ellipsometer. The corresponding measurements were taken by our group
member Thomas Phillips. His PhD thesis regarding measurements with the corre-
sponding ellipsometer is taken as the primary reference for this section [79].
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Ellipsometry measures the complex reflectance ratio ρ of p- and s-polarized light
in terms of the parameters ψ and ∆:

(3.6) ρ =
rp

rs
= tan(ψ)ei∆,

where rp and rs are the Fresnel reflection coefficients fo p- and s- polarized light.
tan(ψ) is the amplitude of ρ (amplitude ratio of rp and rs) and ∆ is the phase of ρ
(phase difference of rp and rs). Measuring the ratio eliminates a lot of noise, e.g. from
the light source, thereby making it a very sensitive and powerful tool for optical
characterizations.

Ellipsometry is most commonly used to determine the optical (n, k and ε) and
physical (thickness, roughness) properties of thin layered films. This is achieved
by taking a series of spectra at different angles of incidence and fitting the spectra
to an appropriate model (e.g. Fresnel coefficients, effective medium theories or
Mueller-Jones matrices).

The typical setup consists of a light source with either spectral selection initially, as
sketched in the form of a monochromator in Figure 3.6, or with a spectrally resolved
detector, as is the case for the modern Woollam M-2000XI used in our studies. The
light is prepared using a polariser and a compensator to modify the polarisation as
needed before reflecting off the sample. Finally, the beam is analysed before being
detected.

FIGURE 3.6: Ellipsometer set-up schematic. A generic ellipsometer
design that includes a spectroscopic measurement capability. (Ref.:

[80])

The spectroscopic ellipsometry of the ITO thin films was carried out using a J. A.
Woollam Co. M-2000XI with which we can measure the ellipsometric parameters ψ
and ∆ in the wavelength range 210-1690 nm, with a wavelength step of 1.5 nm for
210-1000 nm and 3.5 nm for 1000-1690 nm. The unfocussed spot was approximately
3–5 mm in diameter depending on the angle of incidence. When studying smaller
regions, it is possible to use focussing optics with numerical aperture 0.1, reducing
the spot diameter to approximately 50 µm.

3.3 Multi-Layer Modelling

To understand the electromagnetic response of a thin layer composite, we investigate
the changes to electric fields travelling through the sample, starting with a singular



40 Chapter 3. Methodology

refractive index interface and finishing with an arbitrarily large multilayer system.
Born and Wolfs "Principle of Optics" book [81] is recommended for further insight
beyond the introduction given here.

3.3.1 Interface (Fresnel Coefficients)

Propagation of electromagnetic waves across a spatial boundary presents one of the
most well known problems in optics. The basis is given by the boundary conditions
of the electric and magnetic fields:

Field ⊥ Interface
D2 −D1 = 0,
B2 − B1 = 0,

Field ∥ Interface
E2 − E1 = 0,
H2 − H1 = 0.

(3.7)

n1 n2
E0

θ1

r E0
t E0

θ2

FIGURE 3.7: Refraction of light at a spatial refractive index boundary.
At the interface the beam splits into a reflected and a transmitted beam
with amplitudes modulated by the factor r and t respectively. The

change in angle follows Snell’s law n1 sin θ1 = n2 sin θ2.

Solving these for the two polarization cases of the transverse magnetic field (TM)
and the transverse electric field (TE) for the case of a refractive index boundary (as
seen in Figure 3.7) results in the following reflection and transmission coefficients,
also known as Fresnel coefficients:

TM−polarisation

t12 =
2n1 cos θ1

n2 cos θ1 + n1 cos θ2
,

r12 =
n2 cos θ1 − n1 cos θ2

n2 cos θ1 + n1 cos θ2
,

TE−polarisation

t12 =
2n1 cos θ1

n1 cos θ1 + n2 cos θ2
,

r12 =
n1 cos θ1 − n2 cos θ2

n1 cos θ1 + n2 cos θ2
.

(3.8)

Here, the refractive index (n) and angle of light relative to the surface normal (θ)
are indexed corresponding to the case of the incident medium (1) and the transmitted
medium (2) at the given boundary. These relate to the reflection and transmission as
follows:

R = ∣r∣2, T1,f =
n f cos θf

n1 cos θ1
∣t1,f∣2.(3.9)
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The latter assumes a dielectric initial and final medium ( f = 2 for the interface case).
Additionally, phase changes to the reflected and transmitted beams can be studied
by extracting the complex phase of the Fresnel coefficients. Hence, the reflection and
transmission coefficients provide a powerful tool to study the response of optical
interface systems.

3.3.2 Single-layer (Airy Formula)

To extend from the singular interface to a thin layer, we add a second interface, as
seen in Figure 3.8.

n2 dn1 n3

FIGURE 3.8: Refraction of light at a refractive index layer. An addi-
tional refractive event is added due to the second interface. Multiple
internal reflections can occur until the light eventually follows the

reflected or transmitted path.

To extract the reflection and transmission coefficients of this thin layer case one
has to trace and sum up all possible contributions. For the transmission case the beam
is always transmitted at the initial interface (t12) and then propagates through the
thin layer medium (eik2d). Finally, the beam is transmitted through the back interface
(t23), however, it can be internally reflected and propagate through the layer several
times, adding up to various contributions given as:

(3.10) t = t12t23eik2d (1+ r23eik2dr21eik2d + . . . + (r21r23e2ik2d)n) .

Identifying this infinite sum as the geometric series and utilising the fact that r12 = −r21
we get the total transmission coefficient of the thin layer, also known as the Airy
formula:

(3.11) t = t12t23eik2d

1+ r12r23e2ik2d .

The total transmission coefficient (t) of the layer can be calculated using the sample
thickness (d), the in-plane wavevector component inside the layer (k2 = n2k0 cos θ2)
and the Fresnel coefficients of the front (r12, t12) and back interface (r23, t23).
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The reflection coefficient can be extracted in a similar fashion. Using the relation
t12 = t∗21 we get:

(3.12) r = r12 + r23e2ik2d

1+ r12r23e2ik2d .

The expressions for t and r can be easily implemented in scripts and vectorised to
quickly analyse large parameter spaces of amplitude and phase changes inside the
material of interest.

3.3.3 Multi-Layer (Transfer Matrix Method)

To extend this idea to an arbitrary number of interfaces, as indicated in Figure 3.9, a
more elaborate approach will be utilised.

n2 d2n1 n3 nN-1d3

dst

dN-1 nN

FIGURE 3.9: Refraction of light at a multi-layer. A stack of multiple
refractive index layers lead to several internal reflection events along
the plotted primary transmission path. The transfer matrix method
can be employed to calculate the total reflection and transmission

coefficient.

The transfer matrix method (TMM) describes the propagation of fields in a strati-
fied medium. This section follows the concise introduction given in [82]. For a much
more in-depth guide, see, e.g. Born and Wolfs “Principle of Optics” [81]. The electric
field is considered to be harmonic in time (e−iωt) and in space. The superposition of a
forward- and backwards-moving electric field is defined as:

(3.13) Ex(z) = Efe
ikz + Ebe−ikz,

with k = nk0 cos θ and Ef,b as the constant initial forward and backward electric field
amplitude. The core idea of the TMM is that the parallel field components Ex and Hy
at the front and back of a slab are relatable via a matrix:

(3.14) (Ex(d)
Hy(d)) = M(kd, d)(Ex(0)

Hy(0)) ,

where d is the slab thickness and M(kd, d) is referred to as the transfer matrix method.
Utilising the interdependence of the fields, it follows that:

(3.15) M(kd, d) = ( cos(kdd) 1
k sin(kdd)

−k sin(kdd) cos(kdd) ) ,
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with kd being the wavevector component of the slab. Extending to a stack of N slabs
simply follows by matrix multiplication

( Ex (dst)
Hy (dst)

) = Mst (
Ex(0)
Hy(0) )

= MN ⋅ MN−1 . . . M2 ⋅ M1 (
Ex(0)
Hy(0) ) ,

(3.16)

with dst being the thickness of the entire stack. Once the final matrix (Mst) is calculated,
the reflection and transmission coefficients (r and t) can be extracted by implementing
the Ansatz:

EL(z) = E0 (eikz + re−ikz) z < 0

ER(z) = E0 (teik(z−dst)) z > dst

.(3.17)

Finally, r and t can be extracted by solving the equation system given as

(3.18) ( t
ikt ) = Mst (

1+ r
ik(1− r) ) .

For numerical simulations in Python, the TMM-package by Steven J. Byrnes [83]
provides an exemplary implementation of this method and will be used as the basis
for multi-layer calculations in this thesis.

3.3.4 ENZ-layers With a Time-Varying Bulk Plasma Frequency

In this section, we examine time-dependent changes to the optical properties by
applying the TMM model. As described in section 2.4, the excitation of ITO with
a NIR pump leads to a red-shift of the bulk plasma frequency. For the temporal
dynamics of ITO plotted in Figure 2.19 one can see that the shape of the signal closely
matches that of the pump pulse with an additional sub-ps decay.

Hence, we model the bulk plasma frequency ωp with the temporal shape Ansatz
of the Gaussian pump convolved with an exponential decay as seen in Figure 3.10.

FIGURE 3.10: Temporal shape Ansatz for the bulk plasma frequency.
The temporal shape Ansatz for the bulk plasma frequency ωp. It takes
the form of the gaussian pump (107 fs) convolved with an exponential
decay (300 fs). The maximum change in ωp is used to fit the nonlinear

signals. For this example, a typical reduction of 10% is chosen.
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This ωp-change results in variations of the permittivity and refractive index.
To demonstrate, we use the Drude parameters of ε∞ = 4 as the high-frequency
permittivity, ωp = 3× 1015 rad/s as the bulk plasma frequency and γ = 1.5× 1014 rad/s
as the scattering rate. Considering the frequency dependence, we only show the
example of f ≈ fENZ in Figure 3.11. The large refractive index changes even exceed
the initial refractive index and will form the basis of large nonlinear optical effects, as
discussed.

FIGURE 3.11: Expected temporal changes to the permittivity and
refractive index. The frequency was chosen to be 237 THz to closely
match the ENZ case. The resulting refractive index changes are larger
than the initial refractive index itself as has been experimentally veri-

fied in [8].

The temporal refractive index is now applied to a 600 nm layer via the TMM
model. The calculated changes in transmission and phase are shown in Figure 3.12
for the case of normal incidence. Note that the transmission phase has been defined
as Φ(t → −∞) = 0. Additionally, any phase jumps potentially arising due to the limits
of the trigonometric function definitions are removed.

FIGURE 3.12: Expected temporal changes to the transmission and
phase. Already for normal incidence, the absolute transmission change
through the 600 nm ENZ is large (∼ 25 %). Additionally, a phase
increase by 1 rad is predicted, corresponding to the temporal changes

of the bulk propagation phase through the layer.

These techniques form the basis of modelling the reflection changes in chapter 5
and frequency changes in chapter 7. The latter directly follows as the temporal
derivative of the phase as seen in Equation 2.23.
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Chapter 4

Enhanced High Harmonic
Generation in Graphene

Abstract

Light weakly interacts with its environment. This feature makes it extraordinarily
suitable for many optical applications, but, at the same time, this peculiarity makes
light challenging to handle and manipulate. Nonlinear photonic platforms combine
the strong field confinement provided by nanostructures, together with strong op-
tical nonlinear materials, to spectrally and spatially control light. Among the most
successful and accurate architectures, metallic plasmons have been shown to be a
promising candidate. However, the short lifetime of metallic plasmons hinders any
scalability. Here, we try to merge the strong field confinement of metallic nanos-
tructures together with the long-lived, electrically tunable and extremely nonlinear
graphene plasmons. Despite not being able to utilise the graphene surface plamons
dut to experimental limitation we report third-order and fifth-order nonlinear signals
three orders of magnitude larger than that of planar graphene. Our findings show
that graphene–insulator–metal is a promising heterostructure for optical frequency
conversion as a nano-optoelectronic component.

Author Contribution Statement

For this chapter, I designed and built a z-Scan setup. However, due to a strong
background in the nonlinear signals for the high peak intensity laser system in Exeter,
we took the final measurements presented here collaboratively at the University of
Vienna. Additionally, I studied the thermal background in the fifth harmonic spectra.
The work is in preparation to be submitted as I. Alonso et al. “High-harmonic
generation enhancement with graphene heterostructures”.
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4.1 Introduction

High harmonic generation (HHG) has been intensely investigated as a route for
the generation of coherent attosecond radiation in the extreme ultraviolet and x-ray
spectral regions. However, thus far, the most successful demonstrated systems for
HHG have been atomic gasses [84, 85, 86, 87], which require high vacuum, making
them impractical for many applications. As a result, there has been a concerted drive
to develop solid-state systems, and HHG has been reported in various crystalline
materials [88, 89, 90, 91, 92, 93]. However, the mechanism of HHG in solid-state
appears to be fundamentally different from that in atomic gases and is highly sensitive,
e.g. to crystal and polarisation orientations [94, 95].

Graphene is interesting in that it can demonstrate both intraband and interband
conductivity in the infrared [22, 96, 97, 98]. More importantly, as a 2D material, it
doesn’t suffer the same phase matching restrictions, which generally diminishes
HHG in thick crystals. The potential of graphene as a frequency conversion device
was already presented for the third-harmonic generation (THG) case [99, 100] with
additional features such as electrical tunability [101, 60]. High harmonic generation
in graphene has been measured for VIS/IR frequencies [102, 62] and THz radiation
[61, 103, 104, 105]. Plasmonic resonances have been suggested for enhancing HHG
in graphene [106, 107, 108]. Graphene-heterostructures can even reach atom scale
confinement levels of plasmons [7, 43] and have been utilised to enhance THG [64].

In this chapter, we show that the fifth-harmonic generation (FHG) in graphene
can be enhanced by more than three orders of magnitude. We accomplish this by
using a heterostructure made of graphene and gold nanoribbons separated by a
nanometric insulating layer. The nanoribbons serve to enhance the incident pump
field in the graphene layer, exhibiting no THG or FHG signal without the graphene
layer. This allows us to fully utilize graphene’s unique nonlinear optical properties,
achieving HHG with very modest pump fluencies from a single atomic layer. We
study the dependence of the THG and FHG efficiency on insulator material and
ribbon widths, finding that the optimal ribbon width for THG generation is different
from the optimal width for FHG. This is surprising, since the enhancement of the
incoming electric field was meant to be optimized as the dominant contribution.
Enhancement factors surpassing three orders of magnitude are measured for THG
and FHG.

4.2 Experimental Setup

The samples were fabricated on top of lightly p-doped (1 - 10Ωcm) Si with a 285 nm
thermally grown layer of SiO2. The Si and SiO2 are mid-IR transparent. CVD
graphene was wet transferred. For the samples with Al2O3, a thin layer of Al2O3 (5
nm) was grown on top of the graphene by atomic layer deposition (ALD), and for
the samples with h-BN, the CVD h-BN monolayer was wet transferred. The masks
were defined by electron beam lithography. Metallic rod arrays with a length of 9 µm
covering approximately areas of 100 µm by 100 µm were made by EBL and lift-off
(see Figure 4.1d). We investigate regions with and without graphene for reference
purposes. Figure 4.1b shows a typical Scanning Electron Microscopy (SEM) image
of the resulting high-quality metal edges of a one sample. The samples studied here
are similar to [43]. An in-depth description of the manufacturing process and further
details can be found in the corresponding Supplementary information of [43].
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FIGURE 4.1: Studied graphene heterostructure sample and setup.
a, Graphene is encapsulated by a nm-thick dielectric material (h-BN
or Al2O3), that sets the space s between the graphene and the gold
nanoribbons are grown on top. These arrays of nanoribbons are charac-
terized by their width W and the gap g in between them. The incident
light is shined perpendicular to the sample and the THG is collected in
transmission. The sample that allows us to study the individual contri-
bution of each component of the sample shows b, no nonlinear signal
when there are only substrate or gold nanoribbons and c, shows a sig-
nificant signal with bare graphene and an enormously enhanced signal
when gold nanoribbons are added on top of the graphene. d, Scanning
electron microscopy (SEM) image of an array. e, Experimental setup
of the modified z-scan measurement, introduced in subsection 3.1.1.

To measure our the nonlinear signal of our sample, we use a modified z-scan setup.
The nonlinear signal (either THG or FHG) is measured while the sample is moved
along the z axis through the focus of the laser beam (see Figure 4.1e). Our pump beam
is a linearly-polarized pulsed laser with a ∼ 260 fs pulse width, a central wavelength
of 3900 nm (0.225 eV), and a 76.2 MHz repetition rate. This beam is generated by an
Optical Parametric Oscillator (OPO), fed by a mode-locked femtosecond Ti:saphhire
laser. We use a Half-Wave Plate (HWP) to rotate the polarization of the incoming
beam to that set by the polarizer (pol). A lens with a 5.95 mm focal length focuses
the pump down to a waist of ∼ 13.5 µm. When the sample is moved parallel to the
pump beam (along the z axis), the nonlinear emission occurs most efficiently where
the fluence is maximum, i.e. at the focal point. Afterwards, a lens with a 11 mm focal
length collimates the beam, which is then sent through a set of spectral filters that
separate the nonlinear signals from the pump beam. The resulting nonlinear signal
is coupled into a multimode fibre, which can be sent to one of two detectors. The
THG signal, at ∼ 1300 nm, is measured with a large-area Superconducting Nanowire
Single-Photon (SNSP) detector from PhotonSpot with a ∼ 60 % detection efficiency
at this wavelength. We can combine this detector with a Gemini interferometer
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from NIREOS to measure the spectrum of the THG signal. The FHG signal, which is
centred around 780 nm, is sent to a single-photon sensitive silicon Andor spectrometer
with a resolution of 1 nm, and detection efficiency of ∼ 10 %.

To verify the origin of our nonlinear signals, we perform z-scans on various
regions of our samples. As shown in Figure 4.1b, neither the substrate (green dia-
monds) nor the gold nanoribbons without the graphene layer (green circles) display
any measurable nonlinear response. However, both graphene (red triangles) and
graphene with nanoribbons (red squares) show significant nonlinear signals at the
focal point of the pump beam (see Figure 4.1c). These control measurements show
that the graphene layer contributes to any nonlinearity measured in our setup. More-
over, they already show the huge nonlinear enhancement provided by the gold
nanoribbons.

4.3 High-Harmonic Spectrum

We further verify the nature of our nonlinear signals by measuring their spectra. As
displayed in Figure 4.2, we find a THG signal ∼ 1300 nm and a FHG signal ∼ 780 nm.
Both signals fall at the expected wavelengths for 3900 nm pump beam. Furthermore,
the full width at half maximum (FWHM) of the two nonlinear processes scale as
expected, taking into account the λ2 factor. The FWHM of the THG signal is about
50 nm, while the FWHM of the FHG signal is about 20 nm. In addition to these two
signals, we observe broadband white light generation, which we attribute thermal
photoluminescence from the graphene layer. This has been previously observed in
[109], and will be discussed further in the next section.

FIGURE 4.2: Characterization of the nonlinear spectrum. Spectrum
of the THG signal measured with a Fourier transform spectrometer
(15 nm resolution), together with the spectrum of the FHG signal

mesured with a single-photon spectrometer (1 nm resolution).

Thermal Radiation Background

In this section, the physical origin of the background signal seen in the FHG spectrum
of Figure 4.2 will be identified as ultrafast photoluminescence from graphene. The
significant broadband light emission from graphene under excitation by femtosecond
laser pulses has been studied by C. Lui et al. [109] with great detail and is employed
here to model our measurements. The ultrafast heating of the electron gas is modelled
with a two-temperature model, consisting of the electronic temperature Tel and the
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temperature of strongly coupled optical phonons Top:

(4.1)

dTel(t)
dt

=
I(t)− Γ (Tel, Top)

ce (Tel)
dTop(t)

dt
=

Γ (Tel, Top)
cop (Top)

−
Top(t)− T0

τop
,

with the phonon decay time τop = 1 ps and the specific heat capacity of the phonons
cop (Top) and electrons cel (Tel).

In our case, we define the electron-phonon energy exchange rate Γ similar to C.
Lui et al. [109] as

Γ (Tel, Top) = α ⋅ (nop(Top)+ 1)∫ E ⋅ (E − Eop) ⋅ fel(E, Tel) ⋅ [1− fel((E − Eop), Tel)]dE

− α ⋅ (nop(Top))∫ E ⋅ (E − Eop) ⋅ fel(E − Eop, Tel) ⋅ [1− fel((E), Tel)]dE,

(4.2)

where Eop = 0.18 eV is the phonon energy, n (Top) = [exp (Eop/kTop)− 1]−1
represents

the phonon population at temperature Top and f (E, Tel) = [exp (E/kTel)+ 1]−1 is
the Fermi-Dirac distribution for electrons at Tel. The phonon coupling constant α
corresponds to:

(4.3) α = 3
9 ( ∂t

∂b)
2

πρEop h̄3v4
F

,

with vF = 106 ms−1 ∂t
∂b = 45 eV/nm and ρ = 7.6× 10−7 kg/m2 as the density of graphene

[110].
The calculated electron temperature in graphene for 260 fs pulses with an incom-

ing peak intensity of 100 MW/cm2 can be seen in the inset of Figure 4.3. To get the
corresponding spectral radiant fluency, we use Plancks’s law:

(4.4) F (λ, Tel) = ε(λ)2hc2

λ5 ∫ [exp( hc/λ

kTel(t)
)− 1]

−1

dt.

The emissivity ε(λ) of graphene was calculated via the absorption of light coming
from air, taking into account the wavelength-dependent modulation via the cavity
formed by the 285 nm layer of glass between the graphene and Si. Assuming that the
illuminated graphene area acts roughly like a thermal Lambert emitter, we estimate
our lens to collect up to the angle of

(4.5) θ = arctan(Deff/2
f

)

, where the focus length is f = 11 mm and the effective diameter is scaled to match the
experimental signal via Deff = 30%× 5.5 mm. This is the only scaling parameter that
has been tweaked to match the amplitude of the thermal estimate (not the wavelength
dependence) with the background we see in the experiment, as shown in Figure 4.3.
It compensates for alignment issues, as the apparatus is not designed to measure
white light generation but HHG. It also compensates filter reflection losses, coupling
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FIGURE 4.3: Ultrafast thermal emission from planar graphene. Spec-
tral emission of monolayer graphene on Si-wafer, pumped by 260 fs
pulses with a peak intensity of 100 MW/cm2. The experimental data
(orange) shows the FH signal around 780 nm, and a broadband back-
ground. This background is modelled as ultrafast thermal emission by
hot carriers in graphene (blue). The corresponding time-dependent

electron temperature can be seen in the inset.

into the spectrometer and the like. It does not compensate wavelength-dependent
behaviour, which we assume to be most influenced by the rough estimate of our
absorbed mid-infrared fluency (∼ 1.5%), but also by the collection lens having a
chromatic alignment and efficiency dependence. Considering all of these aspects, our
estimate matches sufficiently well to identify the ultrafast thermal emission of hot
electrons as the dominant source of the background seen in the FH measurements.

4.4 Polarization Dependence

We also study the polarization dependence of the measured nonlinear signals. Owing
to the geometry of the gold nanoribbons, the field absorption, and thus metallic
plasmon excitation, is strongly dependent on the polarization of the input light. As
shown in Figure 4.4, the enhancement is maximum when the light polarization is
perpendicular to the direction of the nanoribbons. However, when the polarization
is shifted from the perpendicular case, the nonlinear signal decreases as cos6 θ and
cos10 θ, for THG and FHG signals, respectively, reaching a minimum when the polar-
ization is parallel to the direction of the nanoribbons. At this point the signal strength
is even lower than that of planar graphene without gold nanoribbons because of the
screening of the nanoribbons.

The Substrate Transmission

While the polarization dependence induced by the ribbons clearly matches our ex-
pectation, there are some subtle details to be found for the planar graphene case. The
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FIGURE 4.4: Characterization of the nonlinear polarization. Study of
the THG and FHG signal as a function of the input polarization. As
expected the gold nanoribbons impose a cos6 θ and cos10 θ dependence
for THG and FHG signals, respectively, maximizing the signal when
the incident light is perpendicular to the direction of the nanoribbons.

upper panel of Figure 4.5 shows the measured pump power normalized transmission
through the sample as a function of the orientation of the linear polarization. With
reference to Figure 4.1a, far-field incident light with carrier wavelength of 3900 nm
is shined perpendicular to the sample on the side of the substrate, composed by a
stack of two layers of silica and one layer of silicon. Silica layers have a thickness
of 285 nm, while the silicon layer has a thickness of 500 µm (details of sample fab-
rication are reported in [43]). Here, the investigated sample area does not present
the array of gold nanoribbons on top of the encapsulated graphene (see the violet
triangle in Figure 4.1a). Red points in Figure 4.5 show a periodic pump transmission
through the sample as a function of the incoming linear polarization angle, tuned
with a calibrated half-wave plate. The measured relative difference in transmission
is about 5%. In the lower panel, the green points show the polarization-dependent
normalized third-harmonic power and the normalized cube of the transmitted power
(blue points). The quantitative matching between the two explains the polarization
dependent third-harmonic generated signal, which depends cubically on the input
power.

The physical origin of the polarization effect can be related to the slight silicon
birefringence reported in [111], to which a different absorption as a function of the
polarization is likely to be associated. Another possible explanation can be due to the
Fresnel polarization dependent reflection in the case of non-normal incidence [112].
Indeed, in the case of an interface between air and silica, an angle of ∼ 7 ○ compare to
the normal of the interface, is enough to induce a relative reflectance difference of
about 5 % between s and p polarization and likely to have a noticeable effect due to
imperfect alignment.

4.5 Dielectric Spacer Dependence

To better understand the nature of the enhanced high harmonic generation, we first
study the material and thickness of the dielectric spacer between the graphene and
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FIGURE 4.5: Polarization dependent transmission through the sub-
strate. Red points show the normalized polarization-dependent trans-
mission through the substrate. Green points are the normalized third-
harmonic generated power as a function of the input polarization. Blue
points are the cube of the transmitted pump power (red points). All
the measurements are performed with carrier wavelength of 3900 nm.

gold nanoribbons. We later proceed to characterize the dependence of the THG and
FHG signals on the nanoribbon width. To quantify the effect of the spacer material
and thickness, in Figure 4.6a we show the enhancement of the TH signals for a
5 nm Al2O3 spacer (dark green squares) and a monolayer h-BN spacer (bright green
triangles) with respect to the signal from bare graphene (red squares). We measure
the nonlinear signal as a function of the input power and fit a linear curve, where
the slope is fixed to three and the interception point is the only fitting parameter.
The quotient of the interception points then gives the enhancement. In this case,
we find a factor of 26 enhancement with the 5 nm Al2O3 spacer and a factor 1600
enhancement with the h-BN spacer. The effective thickness of the monolayer h-BN is
∼0.3 nm. In Figure 4.6b, we show the same power scaling for the FH signal, where
the slope of the fitting curve is set to 5, and find an enhancement factor of 300 for the
5 nm Al2O3 spacer (dark blue squares) and a factor 4400 enhancement with the h-BN
spacer (bright blue squares). While the scaling of the FHG relative to the THG makes
sense for the Al2O3 spacer, the h-BN spacer leads to significantly lower enhancement
then expected: 16005/3 ∼ 220, 000. The origin of this discrepancy will be studied and
discussed in more detail at the end of this chapter.

Note: Problems with the high peak power system in Exeter

The initial idea to carry out the nonlinear measurements in Exeter was limited by
saturation effects. The plus of our laser system was higher and more stable fluencies,
which limited the search for high harmonics beyond the fifth-order. However, the
laser system in Exeter is a high pulse energy system with a repetition frequency of
just 1 kHz compared to the 76.2 MHz system in Vienna. Hence, the peak intensity for
the same fluency is increased by a factor of ~80,000. Considering the third harmonic
signal saturates already for the maximum fluency of the Vienna system, as seen, e.g.
in Figure 4.6a or Figure 4.7a, the graphene high harmonic signal turned out to be
low compared to the surface nonlinearity. A strategic change towards sizeable focal
length and thereby reduced peak intensities allowed for discriminating the nonlinear
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x26

x1600

x300

x4400

FIGURE 4.6: Spacer dependence of nonlinear enhancement. a, and
b, show the TH/FH signal enhancement with gold nanoribbons over
bare graphene (red squares) for a 5 nm Al2O3 spacer (dark green/blue
squares) and a monolayer h-BN spacer (bright green/blue triangles).
In the device with Al2O3 spacer, the TH and FH signals are enhanced
by a factor 26 and 300, respectively. In the case of the h-BN spacer, the

TH and FH signals are enhanced by a factor 1600 and 4400.

origins by x-y-mapping rather than z-scanning for the THG case; however, it proved
difficult for higher harmonics. At that point, we decided to move back to the high
repetition system in Vienna. We further optimized the Vienna setup with, e.g. the
VIS sensitive spectrometer, brought from Exeter to Vienna during my research visit,
to measure fifth and potentially seventh harmonics.

4.6 Nanoribbon Width Dependence

To quantify the effect of the nanoribbon width on the TH and FH signal enhancement
we compile a series of measurements performed with the device with the h-BN spacer,
where we study this dependence (see Figure 4.7). In panels a and b, we show the third-
and fifth harmonic signals as a function of the input power for nanoribbon widths
from 20 to 500 nm (yellow to blue) and bare graphene (red squares). The scatter points
are experimental data points, and the lines are fits, where only the interception points
are free parameters, and the slopes are set to three and five, respectively. In both
cases, some saturation effect can be observed. Non-destructive saturation originates
from blocking both intra and interband transitions due to an increased temperature,
also referred to as bleaching. Note that, due to the lower damage threshold of the
gold nanoribbons, the power scaling of the 20, 50 and 500 nm nanoribbon widths
are missing in panel b. Using these interception points, we calculate a maximum
enhancement of 1600 for the THG signal when gold nanoribbons are placed on top
of the bare graphene and 4400 for the FHG signal. In panels Figure 4.7c and d, we
calculate the effective third-order and fifth-order susceptibilities of the graphene
heterostructures and find the maxima to be χ(3) = 5.6 ⋅ 10−6 and χ(5) = 1.8 ⋅ 10−14 esu.
The derivation of the effective nonlinearities is reported in subsection 3.1.1. Note that
the resonant nanoribbon width is different for TH and FH.



54 Chapter 4. Enhanced High Harmonic Generation in Graphene

FIGURE 4.7: Nanoribbon width dependence of nonlinear enhance-
ment. a, and b, are the power dependence of the THG and FHG signals
for bare graphene (red) and graphene with gold nanoribbons of differ-
ent widths (yellow through blue). The interception points found with
the fits, whose slopes are set to 3 and 5, respectively, enable calculating
the enhancement of the signals due to the field confinement. In the
case of THG, the maximum enhancement it 1580 for W = 200 nm and
for FHG it is 4400 for W = 70 nm. c, and d, summarize χ(3) and χ(5)

for different nanoribbon widths and given powers P = 0.4 mW and
P = 10.6 mW, respectively.

4.7 Simulations

As currently being verified by simulations, the most efficient nanoribbon width for
THG is around 200 to 500 nm, whereas for FHG, it is around 70 to 100 nm. The
theoretical group of Prof Javier García de Abajo from ICFO, Barcelona, combined
with students from the University of Vienna, most notably Philipp Jenke, have tried
modelling the observed behaviour in various ways. While the THG generation can
be simulated reasonably well, as already shown in Irati’s publication on THG [64],
the FHG process is much harder to model.

In a first attempt, FDTD simulations were carried out using Lumerical. A fun-
damental problem here is the absence and inability of implementing a non-local
conductivity model for graphene. Furthermore, χ(5) simulations via the Green func-
tion approach[113] did not converge.

Currently, FEM simulations are carried out using COMSOL. The Green function
approach has not been precise enough due to singularity issues. Next, the derivation
of an analytical form for σ(5) (and therewith χ(5)) was done, following the derivation
in [114]. This model also enabled the inclusion of cascaded processes, as plotted in
Figure 4.8. Further tests included the impact of round nanoribbon edges, different
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thicknesses of the adhesion layer and the like. So far, none of the predictions point to
a peak around ~100 nm, as suggested by measurements.

FIGURE 4.8: Preliminary wavelength-dependent predictions of χ(5).
The χ(5) corresponding to the analytically derived σ(5) suggests a peak
around 500 nm. Additionally, we show that the cascaded processes
lead to no noticeable, similar to many other approaches tested such as
round nanoribbon edges, different thicknesses of the adhesion layer

and the like.

Given the apparent absence of non-local effects, our best working explanation for
the differing dependence of THG vs FHG is quenching of the fifth-order emission by
the metallic plasmon. Due to the higher frequency of the fifth-order emission, it will
sit near the plasmon resonances of the gold in the visible spectral region. Quenching
of emission would also explain the lower than expected enhancement of FHG: if
considering only incident field enhancement, and one can achieve a factor of 1600
enhancement of THG, then one might expect an enhancement factor for FHG of
16005/3 ∼ 220, 000, i.e. significantly higher than the 4400 observed in experiment.

Initial modelling of the nanostructures carried out by our colleagues in Vienna
suggests that the FHG emission band should lie just outside the plasmon resonance
region, hence predicting a minor quenching effect. However, one would require a
relatively small shift in the expected plasmon resonance wavelengths predicted by
modelling to explain the experimental data, something that often occurs due to a
slightly different physical geometry or Drude metal parameters achieved during
fabrication. At the time of submission of this thesis, plans were being drawn up to
measure the optical spectra of the samples to try and confirm this hypothesis.

4.8 Conclusion

Merging the highly accurate control and manipulation of the electromagnetic fields
in nanoplasmonics, together with the long-lived and electrically tunable plasmons
in graphene, offers a new promising approach to perform a wide range of nonlinear
optical processes, with the potential to achieve single-photon-level nonlinearities.
Our observation of up to ~1600 fold enhancement of the THG signal and ~4400 fold
enhancement of the FHG signal demonstrates the suitability of this novel architecture
for frequency conversion nonlinear optical applications. Reaching higher harmonics
was hindered by experimental difficulties of going to longer wavelength, required
for exploiting graphene plasmon polariton and their extreme field confinement.
Future research directions might investigate even more substantial enhancements via
graphene plasmon generation. Such graphene-based heterostructures would thus be
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of great importance for many nonlinear processes at the single-photon level, such as
quantum technology.
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Chapter 5

All-Optical Switching of an
Epsilon-Near-Zero Plasmon
Resonance in Indium Tin Oxide

Abstract

Nonlinear optical devices and their implementation into modern nanophotonic ar-
chitectures are constrained by their usually moderate nonlinear response. Recently,
epsilon-near-zero (ENZ) materials have been found to have a strong optical non-
linearity, which can be enhanced through the use of cavities or nano-structuring.
Here, we study the pump dependent properties of the plasmon resonance in the
ENZ region in a thin layer of indium tin oxide (ITO). Exciting this mode using the
Kretschmann-Raether configuration, we study reflection switching properties of a
60 nm layer close to the resonant plasmon frequency. We demonstrate a thermal
switching mechanism, which results in a shift in the plasmon resonance frequency of
20 THz for a TM pump intensity of 70 GW/cm2. We highlight an additional two-beam
coupling contribution not previously isolated in ENZ nonlinear optics studies for
degenerate pump and probe frequencies, which leads to an overall pump-induced
change in reflection from 1 % to 45 %.
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measurements and numerical analysis. The work has been published as J. Bohn et
al. “All-optical switching of an epsilon-near-zero plasmon resonance in indium tin
oxide,” NATURE COMMUNICATIONS, 12, 1017 (2021)[115].
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5.1 Introduction

Nonlinear optics is utilised for a wide range of photonic applications such as quan-
tum all-optical data processing [116, 117], information technology [118, 119] and
telecommunication applications. With the rise of new computational demands such
as artificial intelligence, all-optical signal processing is often seen as a breakthrough
technology for the next generation of computation and communication devices [120].
However, such applications are limited by the interaction of light signals, with ex-
tremely weak optical nonlinearity exhibited by most materials. This leads to high
power consumption and large physical size of optical circuitry, making integration
into existing nanophotonic platforms challenging [121, 122]. Moreover, most optical
switching materials and geometries are not compatible with existing complementary
metal–oxide–semiconductor (CMOS) fabrication technologies, which is preferential
for implementation into existing platforms [123].

Epsilon-near-zero (ENZ) materials have recently attracted much attention, not
only for their intriguing linear properties [19], but also because they exhibit large
optical nonlinearities [10, 36]. Moreover, a subset of ENZ materials, transparent
conductive oxides, exhibit resonance frequencies in the near-infrared, thereby al-
lowing for integrated telecom applications [124, 125, 126, 127, 128, 129]. Indium tin
oxide (ITO) has been shown to undergo a refractive index change of order unity
upon optical pumping of a thin film [8]. This effect is thought to arise from electron
heating, which leads to a change in effective mass due to the non-parabolic electron
dispersion [130, 131]. Similar optical nonlinearities have been measured for doped
zinc oxides [65, 66] and CdO [67]. These materials are also tunable, with variability
in their doping level, giving control over the ENZ resonance wavelength spanning
the infrared range [132, 133]. To further increase the optical switching properties
of transparent conducting oxides different strategies have been utilized, including
additional structuring [134, 69, 128] or the design of cavity modes [135, 136, 67, 137].

It is also well known that near the ENZ frequency of a thin transparent conducting
oxide, one can also excite a plasmon resonance, enhancing the incoming field and
near-perfect absorption[38]. We will refer to this resonance as the ENZ plasmon. One
can excite plasmons using a high index incident prism in the Kretschmann-Raether
configuration, circumventing the need for nano-structuring or the additional support
of a cavity. This approach has been employed to study plasmon based nonlinear
optical dynamics in gold films[138, 139, 140]. However, while ENZ plasmon excitation
has been employed to enhance third harmonic radiation[71], there has been no study
of all-optical switching in transparent conducting oxides in this desirable geometry.

Here, we investigate optically induced shifting of the ENZ plasmon frequency via
pump-probe experiments in the Kretschmann-Raether configuration. This geometry
provides a potential switching platform from near-total absorption to total internal
reflection upon tuning the plasmon resonance into and out of the spectral range. We
identify two contributions to the nonlinear signal: A dominant thermal switching
process results in a shift in the plasmon resonance frequency of 20 THz for a TM
pump intensity of 70 GW cm-2 when pumping resonantly, resulting in a change in
reflection of the probe from 1 % to 30 %. Exclusively for the TM pump polarisation, we
isolate an additional two-beam coupling (TBC) contribution. These two mechanisms
combine to enable reflection switching of a 60 nm layer by more than an order of
magnitude, with a measured change in reflection of the probe from 1 % to 45 % for a
pump intensity of 70 GW cm-2.
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5.2 Optical Properties of the ITO Sample

For our study ITO was sputtered onto a cover glass at room temperature using 90/10
In2O3/SnO2 Kurt Lesker target and sputtering tool. The base pressure before the
deposition was in low 10−6 torr, but raised to 3 mTor of Ar only during deposition
with a RF power of 145 W. In order to achieve high carrier density, both deposition
and annealing were performed in the lowest possible residual oxygen environment.
The samples are post-annealed in forming gas for 3 min at temperatures between
425-525○C in a rapid thermal annealer. Considering the thickness is much thicker than
~10 nm the layer is assumed to be a fully connected layer and we did not carry out
structural studies. However, the varying results of the polycrystalline structure will
have an effect on the scattering rate[141]. To obtain the optical properties, relevant for
the studies in this thesis, the near-infrared permittivity of the ITO film was measured
with an ellipsometer and described using the Drude model:

(5.1) εITO(ω) = ε∞ −
ω2

p

ω2 + iωγ

with ε∞ = 3.43 as the high-frequency permittivity, ωp = 2.86× 1015 rad/s as the bulk
plasmon frequency and γ = 2.24× 1014 rad/s as the damping rate (see Figure 5.1a).
These parameters were determined experimentally by ellipsometry and subsequent
fitting.

c

ITO layer: 60nm

Pump

Probe
(TM)

100fs

Detector

a b

FIGURE 5.1: Basic material properties and schematic setup. a, Op-
tical permittivity of the ITO film used in this study, measured using
ellipsometry, with an epsilon-near-zero frequency of 243 THz (red
dashed). b, Plasmon dispersion branch of the 60 nm ITO thin film
closest to the air light line (blue), calculated using Equation 5.2. c,
Schematic pump-probe setup with the ITO sample index matched to
a prism in order to probe the ENZ plasmon beyond the critical angle
(here, θ = θpr = 45○). In this geometry the relative beam angles are
fixed such that the pump angle is always given as θpm = θpr − 3.4○,
enabling a quasi co-linear geometry while reducing pump collection

in the detector.

The resulting dispersion of the ENZ plasmon modes can be found using the
dispersion relation taken from ref. [142]:

(5.2) F(k, ω) = tanh (α2d)+ ε2α2 (ε1α3 + ε3α1)
α2

2ε1ε3 + α1α3ε2
2

= 0,

with α2
j = k2 − k2

0ε j. The permittivities are given by n1 = 1 (air), ε2 = εITO(ω) and
n3 = 1.43 (substrate). We solve for a complex wavevector k = kr + iki and real frequency
ω. The solution closest to the air light line is plotted in Figure 5.1b.
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Wavevector matching is required to excite a plasmon. In our design, we follow
the Kretschmann-Raether configuration as seen in Figure 5.1c. The prism enables the
pump and probe beams to be incident upon the ITO layer beyond the critical angle,
resulting in a wavevector beyond the air light-line and enabling plasmon excitation
in the near-perfect absorption regime. Of interest here is the area around epsilon
being zero, which coincides with the backbend segment of the plasmon dispersion,
shown in Figure 5.1c for a 60 nm thick film. We refer to this plasmon segment in the
remainder of this chapter as the ENZ plasmon region. We are specifically interested
in the non-radiative ENZ plasmon, which lies beyond the air light line – in this region,
one expects to observe a near-perfect absorption and enhanced fields[38].

5.3 Nonlinear Model: Intensity Dependent Reflection

We introduce two models that we use to interpret our experimental pump-probe data
presented and discussed in section 5.4. The first “static” model treats our sample as a
homogeneous layer, solving for excited state permittivity parameters. The second
“dynamic” model predicts the complete dynamic behaviour of samples assuming a
time-dependent plasmon resonance frequency and allows us to predict the temporal
dynamics observed in our pump-probe measurements.

Angle and frequency-dependent reflection (Static model):

We use a transfer matrix approach to calculate the reflection and absorption from our
sample, assuming a given permittivity. The initial absorption is calculated for the TE
polarized pump beam Apm (θpm, fpm), which can be seen in Figure 5.2. The incoming
medium is assumed to be substrate/prism (index n = 1.43), while the medium on the
far side is air (n=1). The calculated Apm (θpm, fpm) is used to determine the angle and

a b

FIGURE 5.2: Pump absorption. a, The calculated TE pump absorption
based on ellipsometric data. Due to θ = θpr = θpm + 3.4○ we find the
largest absorption close to 48○, the critical angle of the pump beam.
b, The calculated TM pump absorption, which provides a strong

absorption through the resonant ENZ plasmon.

frequency dependent absorbed pump intensity

(5.3) Iabs = cos (θpm) Apm (θpm, fpm) Iexternal.

The intensity-dependent ITO is modelled as an effective medium layer. We assume
a linear intensity dependence of the Drude permittivity parameters, such that the
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redshifted bulk plasma frequency can be approximated as:

(5.4) ωp(I) = (1+ωp,2 Iabs)ωp,0.

We use this to calculate the pump induced reflection of the probe Rpumped(θpr, fpr, I).
By least square fitting of the proportionality factor, ωp,2, to the experimental data in
Figure 5.6c, we find ωp,2 = −0.38 % cm2 GW−1. The decrease in ωp with increasing
pump intensity can be understood as an increase of effective mass upon exciting
the electrons in the non-parabolic conduction band of ITO, as discussed in various
references [8, 67, 143, 131].

Several references in the literature have also reported simultaneous intensity-
dependent changes to the scattering rate γ [8, 67]. However, using our full dy-
namic model (introduced below), the most convincing reproduction of our mea-
sured pump-probe dynamics is found when γ is independent or weakly dependent
(γ2 <= 0.5 % cm2 GW−1) on intensity. We see this by comparing the experimental
measurements (Figure 5.6b and Figure 5.3a) with the simulation cases of γ2 = 0
(Figure 5.3b), γ2 = 5 % cm2 GW−1 (Figure 5.3c), γ2 = 0.5 % cm2 GW−1 (Figure 5.3d)
and γ2 = −0.5 % cm2 GW−1 (Figure 5.3e). Moreover, fitting our angle and frequency-
dependent results assuming both ωp,2 and a similarly defined γ2 leads to an unphysi-
cal effect: a predicted small decrease in γ with increasing intensity, which arises due
to a narrowing of the resonance feature observed in the Rpumped data in Figure 5.7
for increasing intensity. This is an artefact of our data analysis due to the oscillatory
features for case II (where the ENZ resonance shifts spectrally through the probe),
which become more prominent for increasing intensity. In any case, our results
suggest that the nonlinear switching we observe in our samples is primarily due to
intensity-dependent changes to ωp, while intensity-dependent changes to γ are not
identifiable in our experimental data.

Finally, we can contrast the magnitude of the observed optical nonlinearity
with the most comparable data previously reported in the literature. Our fit re-
sult ωp,2 = −0.38 % cm2 GW−1 is surprisingly similar to that report by Alam et al.
[8], corresponding to ωp,2 = −0.33 % cm2 GW−1, found from the absorbed intensity
dependence plotted in Figure 5.4a. However, this is unexpected, as the nonlinear
response should be dictated by absorbed energy density, and the sample thickness
is different by a factor of ∼ 5 (310 nm, while here 60 nm). In Figure 5.4b we plot the
calculated absorption per length using transfer matrix modelling[83] as an indicator
of absorbed energy density, which eventually causes the electron heating [131]. For
our Kretschmann-Raether geometry with a film thickness of 60 nm, the absorbed
energy density is reasonably constant across the layer (see blue line in Figure 5.4b).
However, for direct transmission from air with a 310 nm thick film, the geometry used
in reference [8], a significant exponential decay of energy density is expected across
the film, with the decay length of 168 nm combined with the increased thickness lead
to significant variation across the sample. This means that the Drude parameters,
in this case, are not expected to be homogeneous, but will be strongly dependent
on spatial position in the sample. Nevertheless, as a guide one would expect ωp,2 to
be lower, by around a factor of 3, for the geometry used in reference [8] compared
to the Kretschman-Raether geometry used here. We do not fully understand this
discrepancy, but it may arise due to complications in the homogeneous analysis used
in reference [8], or due to variations between ITO samples.
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FIGURE 5.3: Impact of γ2 on model. a, Experimental time delay
scans presented in Figure 5.6b (pr: TM, 48.3○, fpr = 261 . . . 207 THz;
pm: TE, 44.9○, fpm = fpr). b, Dynamic model results for ωp,2 =
−0.38 % cm2 GW−1, estimated by fitting Figure 5.6c with an intensity
dependent ωp only. c, Adding a γ2 = 5 % cm2 GW−1, increases the esti-
mated pumped resonance width. This leads to a reduced absorption
depth of the switched plasmon (reflection doesn’t go to zero), which
is in line with experiments, but also leads to a decreased nonlinear
reflection for the high frequencies, which is in this size incompati-
ble with our findings. d, A more moderate effect given by up to
γ2 ∼ 0.5 % cm2 GW−1 could still be in-line with our measurements. e,
γ2 = −0.5 % cm2 GW−1, has the opposite effect by even further increas-
ing the nonlinear reflection for the high frequency case. Moreover, a
scattering rate which decreases with increasing electron temperature

seems unphysical.

Refractive index

To enable comparison to other studies using the refractive index and n2 as the nonlin-
ear optical parameters we provide the nonlinear refractive index depending on the
absorbed intensity:

(5.5) n(Iabs) = n0 + n2 Iabs +O(I2
abs)

with

n0 =

¿
ÁÁÀ

ε∞ −
ω2

p,0

ω2 + iωγ0
(5.6)

n2 =
ω2

p,0

2n0

2ω2ωp,2 − iωγ0(γ2 − 2ωp,2)
(ω2 − iωγ0)2(5.7)

To give an example, n2 takes the value of (0.01 − i ∗ 0.016) cm2 GW−1 for our ITO
sample case and 1250 nm wavelength. This equation may result in an approximate
conversion for other ITO sample designs, but ωp,2 = 0.38 % cm2 GW−1 is expected to
be different for materials with different band-structures such as AZO. Furthermore,
to compare between different layer thicknesses and/or pulse lengths, one should also
consider that the absorbed energy density is the expected scaling parameter of the
thermal nonlinearity, not the absorbed intensity.
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a b

FIGURE 5.4: Comparison of different sample thickness. We compare
to the previous studies of Alam et al. [8] which features a 310 nm ITO
layer with similar optical properties to ours (TM polarized). a, We
convert the given intensity-dependent complex refractive index given
in [8] to ωp and γ by assuming a Drude model. Linear contributions
for the low intensity fit region give ωp,2 = −0.33 % cm2 GW−1 and
γ2 = 4.6 % cm2 GW−1. b, The 310 nm film (in air, θ = 30○, λ = 1240 nm)
produces an absorbed energy density which varies significantly with
distance and is described by an exponential decay length of τ = 168 nm.
However, the 60 nm thin film (prism, θ = 45○, λ = 1200 nm) shows a
relatively constant absorption throughout the layer as the decay length

is noticeably longer than the thickness (τ ≫ 60 nm).

Time varying medium (Dynamic model)

In this model we concentrate on the full temporal dynamics of a probe pulse experi-
encing a time-dependent modulation of the medium’s dielectric function, induced
by the pump pulse. Without any time modulation of the permittivity, Maxwell’s
equations for an incident TM polarised wave are

(5.8) ∇× E = −µ0
∂H
∂t

ẑ

and

(5.9) ∇H × ẑ = ∂D
∂t

= ε0
∂

∂t
[E(t)+∫

∞

0
χ( t′

∆
)E (t − t′) dt′]

where χ ( t′
∆)is the time domain susceptibility, H = Hz, and ∆ is the characteristic

timescale of the material response. In our case the susceptibility function χ itself
varies in time due to the heating induced changes of the plasmon frequency ωp
(see Figure 5.5). The latter are modelled as a convolution of the pump pulse and
an exponential decay with τ = 300 fs, normed such that ωp given in Equation 5.4
corresponds to the extremum. We thus modify (5.9) so that the susceptibility has an
additional dependence on t − t′,

(5.10) ∇H × ẑ = ε0
∂

∂t
[E(t)+∫

∞

0
χ( t − t′

∆1
,

t′

∆2
)E (t − t′) dt′]
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We now have two timescales ∆1 (the modulation of the permittivity, such as electron

b ca

FIGURE 5.5: Time dependent bulk plasmon frequency. The convo-
lution of the pump pulse and an exponential decay with τ = 300 fs
is normed such that ωp(I), given in Equation 5.4, corresponds to the
extremum. a, The ωp(t, I) is used to calculate the time dependent mate-
rial parameters such as χ during interaction with the pump beam. For
the plotted case we assume θ = 48.3○, Iexternal = 70 GW cm−2 and a TE
polarized pump (as seen in Figure 5.6b). For the case of fpr = 240 THz
we plot the corresponding permittivity (b) and refractive index (c).

heating and cooling effects), and ∆2 (the timescale over which the material responds).
These timescales are assumed to be such that the modulation is much slower than
the material response ∆1 ≫ ∆2 and the material response tends to zero at large delay
times χ(τ1, τ2 Ð→ ∞) = 0. Taking the curl of (5.10) and applying (5.8) we find the
equation for the out of plane magnetic field in a homogeneous region of space

(5.11) ∇2H − 1
c2

∂2H
∂t2 − 1

c2
∂

∂t ∫
∞

0
χ( t − t′

∆1
,

t′

∆2
) ∂H (t − t′)

∂t
dt′ = 0

In general, this is an integro-differential equation that is difficult to solve. To make
progress we use multiple scales perturbation theory[144], and define two time vari-
ables τ1 = t/∆1 and τ2 = t/∆2. The out of plane magnetic field is approximated as a
function of these two time variables

(5.12) H(t) = H ( t
∆1

,
t

∆2
) = H (τ1, τ2)

and the time derivatives can be written as

(5.13)
∂

∂t
= 1

∆1

∂

∂τ1
+ 1

∆2

∂

∂τ2

Given that χ(τ1 − τ′1, τ′2) decays with increasing τ′2 over which time τ′1 has not in-
creased appreciably from zero we can expand the integral kernel around τ′1 = 0 with
the leading order approximation being χ(τ1 − τ′1, τ′2) ∼ χ(τ1, τ′2). Further terms are
proportional to increasing powers of ∆2/∆1. Equation (5.11) is thus to leading order
in the small quantity ∆2/∆1

(5.14) ∇2H (τ1, τ2)−
1

∆2
2c2

∂2H (τ1, τ2)
∂τ2

2
− 1

∆2
2c2 ∫

∞

0
χ (τ1, τ′2)

∂2H (τ1, τ2 − τ′2)
∂τ2

2
dτ′2 = 0

Equation (5.14) is different from (5.11) in an important way. Having dropped the
terms involving the timescale τ1 = t/∆1 from the integral and the derivatives, the
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modulation of the dielectric function neither appears in the derivatives nor the
integration. The time variable τ1 is now merely a label, and we may solve (5.14)
as we would in the time-independent situation, with the dispersive permittivity
ε(τ1, ω). Note that to improve upon this approximation, one can add back in the
terms proportional to the ratio of timescales ∆2/∆1, expanding perturbatively.

We now apply this result to the experiment. We have a total internal reflection
geometry with fixed permittivities, ε1 = 2.1 in the region x < 0, and ε3 = 1 in the region
x > d. In the remaining region 0 < x < d we have a layer of material with a permittivity
that is modulated over time ε2(τ1, ω) with the same separation of timescales assumed
above. A pulse is incident at a fixed angle θ from the region x < 0. The reflection
coefficient (which, as with the permittivity is now a function of modulation time τ1,
and incidence frequency ω) is given by

(5.15) r (τ1, ω) =
cos (k2d) ( k2

k3ε2
− k2ε1

k1ε2
)− i sin (k2d) (1− k2

2ε1

k1k3ε2
2
)

cos (k2d) ( k2ε1
k1ε2

+ k2
k3ε2

)− i sin (k2d) (1+ k2
2ε1

k1k3ε2
2
)

,

where k0 = ω/c, k1 = k0
√

ε1 cos(θ), k2 = k0

√
ε2(τ1, ω)− ε1 sin2(θ), and k3 = k0

√
1− ε1 sin2(θ).

If the spectrum of the incident pulse is a(ω) then the total pulse in the first region
x < 0 is the sum of the incident spectrum plus the incident spectrum weighted by the
modulated reflection coefficient r(τ1, ω):

(5.16)

H (τ1, τ2) = Hinc (τ1, τ2)+ Hr (τ1, τ2)

= ∫
∞

−∞
a(ω) [eik0(cos(θ)x−c∆2τ2) + r (τ1, ω) e−ik0(cos(θ)x+c∆2τ2)] dω

2π

= ∫
∞

−∞
a(ω) [eik0(cos(θ)x−ct) + r ( t

∆1
, ω) e−ik0(cos(θ)x+ct)] dω

2π
.

Here, the +ik0 correspond to the forward propagating terms, while −ik0 correspond
to the backward propagating terms. The spectrum of the reflected pulse is found
by simply taking the Fourier transform of the second term in the square brackets of
(5.16), at x = 0:

(5.17) Hr(ω) = ∫
∞

−∞
Hr(t)eiωtdt = ∫

∞

−∞

dω′

2π
a (ω′) r (ω −ω′, ω′) ,

where

(5.18) r (ω1, ω2) = ∫
∞

−∞
r ( t

∆1
, ω2) eiω1tdt.

Equation (5.17) indicates that the spectrum of the reflected pulse is the convolution of
the incident spectrum with the two frequency reflection coefficient r(ω1, ω2).

Finally, to compare to the experiment, we calculate the relative reflected power
given in the main text. To do this we then take the ratio of the integrated incident and
reflected Poynting vectors. For instance, the time-integrated incident power is

(5.19) Pinc = ∫
∞

−∞
x̂ ⋅ S(t)dt = ∫

∞

−∞
Ey,inc(t)Hinc(t)dt = cos(θ)

cε0
√

ε1
∫

∞

−∞

dω

2π
∣a(ω)∣2,
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and therefore the relative reflected power is

(5.20) R = ∫
∞

−∞
dω
2π ∣Hr(ω)∣2

∫
∞

−∞
dω
2π ∣a(ω)∣2

,

where Hr(ω) is calculated using Equation 5.17, and the time-frequency reflection
coefficient in Eq. (5.15). Equation (5.20) is used to calculate the reflected power for
the different pump pulse arrival times in Figure 5.6b and was already applied for the
discussion surrounding the γ2-dependence in Figure 5.3.

5.4 Nonlinearity Near the ENZ Plasmon Resonance

Recent measurements have shown that pumping below the band-gap of a transparent
conducting oxide leads to carrier heating which subsequently results in an increased
effective mass and decreased plasma frequency[134]. Such an intensity-dependent
plasma frequency should materialise as a shifting resonance frequency of an ENZ
plasmon. We study this effect in the ENZ plasmon dispersion of a 60 nm ITO thin
film using a pump-probe scheme. To begin, we pump with TE polarisation and probe
with TM polarisation – this removes coherent interference of pump and probe pulses
at the cost of less efficient absorption. Figure 5.6a shows three typical pump-probe
measurements where we pump and probe different regions of the plasmon resonance.
For a probe frequency of 240 THz (red, case I) the ENZ resonance redshifts away from
the probe, the absorption decreases and we see an increase in reflectivity. For 214 THz
(green, case III) the ENZ resonance shifts spectrally towards the probe, the absorption
increases and we see a decrease in reflectivity. Both cases display expected temporal
dynamics: a fast, ∼100 fs (pulse limited) initial change, followed by a slower , ∼1 ps
thermal relaxation, similar to previous studies [145, 65, 8].

For 227 THz (orange, case II) the ENZ resonance shifts spectrally through the
probe, and we observe some rather unusual dynamics in the pump-probe signal that,
to the best of our knowledge, have not previously been observed and discussed. For
this case, one initially observes a decrease in reflection, followed by an increase in
reflection, as heating causes the resonance to shift through the probe frequency. Sub-
sequent cooling then returns the resonance to its starting frequency. These combined
effects cause multiple oscillations in the pump-probe dynamics. To better describe
these effects, we introduced a dynamic model, which captures effects arising due to
rapid time-dependent changes to the reflection coefficient (details in section 5.3). With
this model, we can reproduce the features seen in our pump-probe signals: the three
broad types of behaviour are shown for various frequencies in Figure 5.6b and mod-
elled using the time-varying reflection coefficient implied directly from experimental
observations. For the first two cases, it is straightforward to define maxima/minima
in reflection (Rpumped) relative to the initial reflection (R0), as labelled in Figure 5.6a.
Defining a maximal response in the oscillatory case is problematic - for simplicity,
we define Rpumped = R0 +∆Rmax +∆Rmin for all measured time delay scans. While
not being able to resolve the transient features seen in Figure 5.6b, this reduces the
complex dynamical information contained in one complete time delay scan into two
quantities of interest: the reflection before the arrival of the pump (R0) and a quantity
describing the maximally changing reflection on photoexcitation (Rpumped). This
allows us to condense information from many measurements into one colour plot.

By varying both the incident angle and the degenerate pump/probe frequency,
one can observe the plasmon dispersion shift (Figure 5.6c). We illuminate the sample
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FIGURE 5.6: Time dependence of the nonlinear reflection for de-
generate pump and probe frequencies. a, Three typical pump-probe
measurements, where: I) the probe frequency (240 THz, red) is larger
than the plasmon resonance frequency, II) the resonance shifts spec-
trally through the probe during pumping (227 THz, orange), and
III) the probe frequency is smaller than the pumped resonance (214
THz, green). The probe is TM polarized to study the plasmon re-
sponse, while the 70 GW/cm2 pump is TE polarized to avoid coherent
contributions. (pr: TM, 48.3○, fpr = 240, 227, 214 THz; pm: TE, 44.9○,
fpm = fpr). b, Various pump-probe measurements divided into the
previously discussed three case types. The dynamic model shows the
reflection coefficient for a time varying effective medium. (pr: TM,
48.3○, fpr = 261 . . . 207 THz; pm: TE, 44.9○, fpm = fpr). c, Scans of the
probe reflection over incoming angle and degenerate frequency, show-
ing the initial R0 (top) and the pumped case Rpumped (bottom). The
vertical jet coloured lines at 48.3○ indicate the measurements presented
in b. The transfer matrix model on the right shows the expected initial
reflection at the top with the ENZ plasmon dispersion from Figure 5.1c
(red dashed) with Rpumped based on the carrier heating nonlinearity
at the bottom. (pr: TM, 42.5 . . . 50.5○, fpr = 261 . . . 210 THz; pm: TE,

39.1 . . . 47.1○, fpm = fpr).

with a TE pump of 70 GW/cm2 intensity. Note that we avoided high intensities only
because of the index-matching fluid, which could be avoided by depositing ITO
directly on a prism. We measure a red-shift of the ENZ plasmon resonance, as seen
for the pumped reflection (Rpumped) relative to the initial reflection (R0). We interpret
these changes using a simplified "static" model, which calculates the reflection using
a transfer matrix model assuming an effective medium with an intensity-dependent
permittivity for the ITO layer (details in section 5.3, static model). We assume a
linear intensity-dependent shift of the plasma frequency, ωp(I) = (1 + ωp,2 I)ωp,0,
where I is the calculated absorbed intensity and ωp,2 is the nonlinear fit parameter.
This approach gives good agreement for the red-shifting behaviour of the resonance,
while also confirming some more subtle features, such as the critical angle feature
for the probe pulse just below 45○, as well as a second critical angle feature near
48○, which arises due to the 3.4○ difference in angle between pump and probe. We
find best agreement with the data for an intensity-dependent red-shifting of the
plasma frequency, described by ωp,2 = −0.38 %/GW

cm2 . This is the general behaviour
expected for heating of the electron plasma in ITO, an effect that arises due to the
non-parabolicity of the conduction band in this material [8, 67, 143]. However, as
discussed in section 5.3, comparison between experiment and modelling suggests
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that the electron heating is weaker in our ITO compared to that previously reported
in [8], as our extracted value for ωp,2 is similar despite an increased local intensity
arising due to the Kretschman geometry. We do not fully understand this discrepancy,
but it may arise due to complications in the homogeneous layer assumption of the
z-scan analysis used in ref [8] (highlighted here surrounding Figure 5.4), or due to
variations between ITO samples. ITO is well known for its structure and resulting
optical properties being sensitive to slight changes in manufacturing[141]. As further
discussed in section 5.3, we can not identify changes to the scattering rate as readily
as the changes to the plasma frequency, as the scattering rate affects mainly the
width of the plasmon resonance, which is impacted by an artefact of our analysis
using our static model (discussed below). However, it is expected that heating
should have minimal effect on scattering rate in transparent conducting oxides due
to the dominance of impurity scattering [131]. As shown explicitly in Figure 5.3, the
comparison between our dynamic model and experimental data suggests that pump
induced changes to scattering rate are negligible.

5.5 Intensity Dependent Resonance Shift

In Figure 5.7, we vary pump intensity while fixing the pump frequency to 240 THz
and incident angle to just beyond the critical angle of the pump (48.3○). The pump
polarisation is TE, i.e. non-resonant with the ENZ plasmon. On increasing pump
intensity, we observe a clear redshift of the ENZ plasmon, with approximately linear
intensity dependence. We also observe a more subtle effect: an apparent slight
narrowing of the resonance. This is an artefact of our analysis, arising from the
oscillatory features for case II, which become more prominent for increasing intensity.
Since we are unable to remove completely these effects in our static analysis, they
give rise to a slight distortion of the resonance lineshape for high intensities.
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FIGURE 5.7: Intensity dependence of the ENZ-resonance position.
Intensity dependent Rpumped for a constant incident probe angle of Θ =
48.3○ and a pump with a constant frequency of 240 THz (TE polarized,
i.e. non-resonant with the ENZ plasmon). The ENZ plasmon red shifts
with increasing pump intensity. The red dashed line indicates the 70
GW/cm2 used for the measurements in Figure 5.6. (pr: TM, 48.3○,

fpr = 260 . . . 190 THz; pm: TE, 44.9○, fpm = 240 THz)
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5.6 Coherent vs Incoherent Response

Finally, we aim to maximise switching: by exciting with a TM pump, a more efficient
energy deposition via the ENZ plasmon resonance is expected. We investigate the
non-degenerate frequency dependence of the nonlinear material response by fixing
the external pump intensity to 70 GW/cm2 and incident pump angle to 48.3○, and
compare TE and TM excitation. Firstly, the pump absorption for TE excitation is
only weakly frequency-dependent. For this reason, we observe a pump frequency-
independent shift of the ENZ resonance of 14 THz in Figure 5.8a. For TM excitation,
seen in Figure 5.8b, we see two additional interesting aspects. For on-diagonal (degen-
erate) measurements, we can identify a noticeably larger reflection due to two-beam
coupling (TBC). We note that the TBC contribution may be concealed, and not readily
separated, within other degenerate pump-probe measurements in the literature. In
Figure 5.8c we compare the coherent and incoherent contributions to our signal. For
the non-degenerate case, we observe thermal switching behaviour resulting in a large
change in reflection from R0 ∼ 1 % to Rpumped ∼ 30 %. This corresponds to a shift
of the plasmon resonance frequency of 20 THz, which is more than four times the
spectral width of a 100 fs pulse. In the degenerate case, we see a further increase of
the differential reflection to ∆R ∼ 45 % due to the interference between the pump and
probe beams (details in subsection 5.7.1). Only by systematically varying both pump
and probe frequencies independently have we been able to identify this coherent
contribution to switching.
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FIGURE 5.8: Non-degenerate frequency dependence and coherent
contribution. We examine the pump-probe frequency dependence of
Rpumped for 70 GW/cm2. a, Using a TE pump, the frequency shift of
the resonance is 14 THz, and independent of pump frequency. The
dashed lines indicate the initial (black) and pumped (white) ENZ
plasmon resonance frequency. (pr: TM, 48.3○, fpr = 250 . . . 210 THz;
pm: TE, 44.9○, fpm = 250 . . . 210 THz). b, A TM pump highlights the
two-beam coupling (TBC) for equivalent polarization and frequency.
The higher pump absorption through the plasmon resonance leads
to a larger, 20 THz shift of the resonance frequency. (pr: TM, 48.3○,
fpr = 250 . . . 210 THz; pm: TM, 44.9○, fpm = 250 . . . 210 THz). Markers
indicate the time delay scans compared in c, where the probe frequency
is 237 THz, while the pump frequency is either 237 THz (red, with TBC)
or 217 THz (black, without TBC). (pr: TM, 48.3○, fpr = 237 THz; pm:

TM, 44.9○, fpm = 237, 217 THz)
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5.7 Additional Checks

5.7.1 Two-Beam Coupling Contribution

When two coherent, co-polarised, near-degenerate beams impinge upon a plane, they
generate an interference pattern. This gives rise to a spatially dependent change
to the index of the material, which can cause diffraction generated signals in the
experiment. The description we give below refers specifically to our pump-probe
geometry, though it is important to realise that similar coherent signals (i.e. resulting
from interference and diffraction) can result in many types of nonlinear optical
measurement, even those employing a single focused beam [146].

For the geometry used in Figure 5.8c, we model beams in glass (prism) with
wavelength 1250 nm wavelength, θpr = 44.9○ and θpm = 48.3○. These beams will result
in the interference pattern inside the ITO, as shown in Figure 5.9. For the beams
used in our experiment (Ipm = 70 GW cm−2 and Ipr = 0.13 GW cm−2) we expect the
interference pattern shown in Figure 5.9b, with a spatially dependent oscillation in
intensity of ±4 GW cm−2. Due to the intensity-dependent index of refraction in ITO,
one also expects a spatial dependence to the local index of refraction. Assuming the
linear intensity dependence present in Equation 5.4, one can expect the refractive
index of the ITO layer to roughly resemble that shown in Figure 5.9c.

A spatial profile in the index of refraction will act as a diffraction grating, scattering
pump light into the direction of the probe beam, and subsequently into our detector.
While the spatial modulation in the index is relatively small, leading to a relatively
weak scattering effect, we only require a small intensity of the much stronger pump
beam scattered in the direction of the probe to give a large switching signal. To obtain
an estimate of this contribution, we use COMSOL to calculate the diffraction pattern
expected from the spatially varying index shown in Figure 5.9c, assuming a 60 nm
ITO layer with a uniform refractive index in the z-direction. This predicts a 1st order
diffraction of ∼ 0.1 % of the pump beam that will be scattered in the direction of the
probe beam. Hence, the signals we measure in our detector are not only based on the
zero-order reflection of the probe, but also a contribution of the first-order diffraction
of the pump. Considering the spatial overlap required for the pump to be scattered,
we can directly estimate the contribution of the scattered pump to the "differential
reflection" signal: this corresponds to

(5.21) ∆RCC ∼ 0.1 % ∗ 70 GW cm−2

0.13 GW cm−2 ∼ 54 %

of the probe intensity. This is even larger than the difference in peak TM and TE
experimental signals, which is 15 % (see Figure 5.6c). However, due to their different
temporal dynamics, the thermal and coherent contributions to the signal are expected
to add sub-linearly. Moreover, we note that the refractive index relation used to
calculate the scattering of the pump assumes full thermalisation, whereas the ITO
will heat up during the evolution of the pump pulse. Thus the 54 % predicted above
is an overestimate, and we believe it to be consistent with the measured value of 15 %.

For a non-degenerate pump and probe, one expects a non-stationary interference
pattern, i.e. one that changes quickly with time. For our geometry, one can easily
show that the effects of the grating will be washed out within the ∼ 100 fs of our
pulses when the pump and probe differ by only a few nm. Again, this is in agreement
with our experiments presented in Figure 5.6b, which show coherent signals only for
near-degenerate measurements.
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FIGURE 5.9: Diffraction through interference induced refractive
index grating. a, Interference pattern of two equally intense beams
(44.9○, 1250 nm) and (48.3○, 1250 nm) in glass. b, Interference pattern
of 70 GW/cm2 pump (44.9○, 1250 nm) and 0.13 GW cm−2 probe (48.3○,
1250 nm) at the glass/ITO interface. c, Corresponding refractive index

distribution resulting from B, based on Equation 5.4.

5.7.2 Probe Polarisation Dependence of the Nonlinear Effect

In Figure 5.10, we compare the dynamical model of Figure 5.6b with the correspond-
ing TE probe case. The nonlinear optical effects on a TE polarised probe are small,
as the shifting resonance feature is only accessible for TM polarised light (see e.g. in
Figure 5.2). However, these small nonlinear changes to the TE reflection/absorption
are beneficial as changes to the TE pump absorption are negligible, enabling easier
modelling of time-dependent effects.

5.7.3 TE-TE Measurement

Due to the weak nonlinear response of the TE probe, we expect only small thermal
contributions to nonlinear measurements as discussed in subsection 5.7.2. However, if
the pump is also TE polarised one expects a notable two-beam coupling contribution
as the refractive index modulation inside the ITO layer remains similar to the case
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a b

FIGURE 5.10: Polarization dependent nonlinear reflection. a, The
TM probe case as seen in Figure 5.6b or Figure 5.3 (pr: TM, 48.3○,
fpr = 261 . . . 207 THz; pm: TE, fpm = fpr). b, The same case except for
the probe being TE polarized, leading to only small reflection changes

of ∆R < 1 %. (pr: TE, 48.3○, fpr = 261 . . . 207 THz; pm: TE, fpm = fpr)

discussed in subsection 5.7.1. This is indeed what we observe in the TE-TE experiment
as seen in Figure 5.11. The resulting TBC can be seen as a 10 % relative reflection
increase when near degeneracy of pump and probe, and is significantly larger than
the thermal effect in the same measurement.

5.7.4 Coverslip Measurement

We have performed measurements at 45○, with both beams TM polarised and both
wavelengths set to 1200 nm (see Figure 5.12). We first insert the ITO sample, align and
measure the time delay scan (1). After that, we exchange the sample for a coverslip
and only adjust the tilt of the sample holder and the angle of the sample holder to
maximise reflection and compensate changes due to slight changes in index matching
fluid binding to the prism. Then we measure time delay scan (2). Finally, we change
back to ITO, again, only adjusting tilt and angle to retrieve the maximum reflection
(for 1500 nm, due to higher reflection). With the then measured scan (3) we show that
the nonlinear response was perfectly reproduced. Importantly, the response of the
coverslip alone (2) is considerably smaller.

We have checked the absence of signal for case (2) for other angles, and sig-
nals are always considerably smaller than when the ITO is present, hence we can
unequivocally attribute the bulk of the signal to the ITO film.

5.8 Conclusions

In conclusion, we present an investigation into the all-optical switching of ENZ
plasmons. We identify two contributions to our nonlinear signal: a thermally driven
switching process results in a shift in the plasmon resonance frequency of 20 THz for a



5.8. Conclusions 73

260 THz

240 THz

FIGURE 5.11: TE-TE measurement. The absence of the thermal
response for a TE probe leads to an isolated clear TBC feature when
pumping with a TE polarized beam. (pr: TE, 45○, fpr = 240 THz; pm:

TE, fpm = 240, 260 THz)

pump intensity of 70 GW/cm2, while the additional two-beam coupling is observed
for degenerate pump and probe frequencies. In total we observe switching of more
than one order of magnitude, from R0 ∼ 1 % to Rpumped ∼ 45 % , resulting entirely
from resonant conditions allowed by the geometry. For comparison, switching of
ITO in air with 70 GW/cm2 has been shown to result in a change in transmission
from 12 % to 34 % [8], for samples with five times the material thickness than those
studied here. Considering the 16.5 dB extinction ratio achieved in this proof of
principle study, switching from near-perfect absorption to high reflection is useful
from a signal processing point of view , and could pave the way towards optical
plasmon switching at telecom frequencies. Currently, achievable switching rates are
limited by further experimental requirements such as the need for high-pulse-energy
femtosecond laser amplifiers. While the switching performance of the layer and the
requirement for high intensities could be further improved by more elaborate layer
designs and/or further material improvements such as in carrier mobility, achievable
switching rates will be ultimately restricted by limitations in the repetition rate of
pulsed optical sources. Finally, the compatibility with CMOS fabrication technique
makes thin TCO layers and their ENZ plasmon feature a compelling new route for
nonlinear integrated photonics applications without the need for nanostructure or
building additional cavities, while better matching the spatial modes used in photonic
circuit systems.
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FIGURE 5.12: Coverslip measurement. To show the negligible nonlin-
ear response of the prism, index matching fluid and prism we present
a delay scan without ITO layer (2). To ensure the alignment is not
being influenced we take ITO measurements before and after with the
same alignment procedure (1,3). We also show the electronic offset
without a probe, corresponding to R = 0 %. (pr: TM, 45○, fpr = 250 THz;

pm: TM, fpm = 250 THz)
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Chapter 6

Transient Dichroic Response of a
Symmetric Plasmonic Nanoparticle
Array

Abstract

Ultrafast polarisation control of the light is crucial for various optical applications.
However, designs are often limited to specific incoming polarisations, angled inci-
dence, or high intensities. We employ cross-shaped gold nano-antennas on top of
a thin indium tin oxide layer to improve these issues. Large amplitude changes of
∆T/T0 = −50 % are measured for an intensity of 5 GW cm−2. The transient dichroic
design enables a more than seven times stronger response for the probe being parallel
to the pump relative to a perpendicular orientation. Additionally, a phase-shifting
regime of up to 8.7○ was measured. Combined phase and amplitude modulation
present a promising elliptical polarisation switching in the telecommunications wave-
length range.

Author Contribution Statement

For this chapter, I performed the nonlinear optical measurements and analysis. The
corresponding paper is prepared for submission as “Time-varying dichroic response
of a symmetric plasmonic nanoparticle array”.
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6.1 Introduction

Linear optical responses of plasmonic nanoparticles depend on three properties:
refractive index of the nanoparticles, shape and size of the nanoparticles, and the
refractive index of the surrounding material. Thus a plasmonic nanoparticle that
exhibits four-fold rotational symmetry in the transverse plane and is embedded in
a homogeneous medium exhibits polarisation-independent optical response. An
induced nonlinear optical response that may sufficiently change the refractive index
of the nanoparticle or the surrounding medium in an inhomogeneous manner can be
used to weaken the relationship between geometric and optical symmetries. However,
the maximum possible magnitude of refractive index change of a typical noble metal
or a dielectric is only perturbative to its linear refractive index [147]. Consequently,
a strong, transient breaking of optical symmetry through only a weak, nonlinear
modification of the refractive index of metal is impossible to achieve.

Recently, ENZ layers have become a prominent choice as a nonlinear optic envi-
ronment as already introduced and investigated in the context of an ENZ plasmon
in chapter 5. Planar ENZ films already present great promise in terms of switching
depth (∆I/I0, with I as the measured signal intensities) and nano-scale size. However,
several issues remain to be addressed, including high-intensity requirements, oblique
incidence, and polarisation dependence. The potential of utilising nano-antennas
with thin ITO layers for reduced-intensity requirements and normal incidence has
already been demonstrated[69]. Strongly coupled nano-antennas with ENZ modes
have been used for effects such as negative refraction [70]. High contrast elliptical
polarisation manipulation in ITO coupled to a plasmonic nano-antenna array have
been presented with an asymmetric array and a 310 nm thick film [148].

Here, we show that by incorporating an epsilon-near-zero (ENZ) material made
of a 23-nm-thick indium tin oxide (ITO) film as a substrate, we can strongly and
reversibly break the optical symmetry of a Greek-cross-shaped plasmonic particle
when the structure is excited by a pulsed laser. Specifically, we demonstrate large,
ultrafast dichroic responses from a symmetric plasmonic nanoparticle array.

We present the concept of our polarisation switching device in Figure 6.1. The
resonance wavelength of a plasmonic dipole antennas array with constant length and
width depends on the refractive index of the surrounding medium. Unlike a simple
dipole antenna, a Greek-cross-shaped plasmonic antenna has two principal axes. Such
an antenna embedded in an isotropic host medium exhibits polarisation-invariant
resonances in the linear regime. Under a sufficiently strong optical excitation, the
nearfield of the antenna induces a nonlinear optical response to the surrounding
medium only in the vicinity of the antenna arm that is parallel to the polarisation
vector of the incident light beam. Consequently, a structural birefringence is induced
in the surrounding medium. In response to the induced birefringence, the resonance
wavelengths of the antenna become spectrally non-degenerate. That amplifies the in-
duced structural birefringence and introduces frequency- and polarisation-dependent
absorption. In our implementation, the induced response is governed by the nonlin-
ear response of the surrounding dielectric medium, i.e. the thin ENZ substrate layer.
Thus the overall nonequilibrium dynamics are rooted in the ultrafast (sub-ps) and
large nonlinear optical response of the ITO layer.
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FIGURE 6.1: Schematic of the optical excitation. The schematic
shows the pump polarisation parallel to the horizontal bar of the cross-
shaped nano-antenna. The plasmonic dipole excites the ITO locally
around the edges of that axis. Hence, only the parallel polarised probe
(red, dashed) sees a red-shifted resonance, while the perpendicularly
polarised probe (blue, solid) remains unchanged. The pump-induced
modulation of the horizontal probe amplitude and phase leads to the

probe transitioning from a diagonal to elliptical polarisation.

6.2 Experimental Setup

For the experimental realisation, the nano-antennas sample was produced as follows:
The polarisation-insensitive plasmonic antenna array is fabricated using e-beam
lithography on top of the ITO film. We choose the dimensions of the plasmonic
antenna array (inset of Figure 6.2a) such that the resonance wavelength, in the
absence of the ITO layer, is ∼1150 nm. Figure 6.2b shows the experimentally obtained
linear responses of the metasurface. The antenna array geometry is chosen to be cross-
shaped such that there is no polarisation dependence in the linear response. We note
that the measurements shown in Figure 6.2b are insensitive to the input light linear
polarisation. In the presence of the ITO layer, the localised plasmonic mode of the
antenna array interacts with the ENZ mode of the ITO layer. This nearfield mediated
interaction leads to a strong coupling-induced resonance splitting of ∼400 nm. This
splitting is larger than the line widths of both the plasmonic resonance and the ENZ
mode. The strong coupling-induced resonance splitting results in two distinct dips
in the linear transmittance response of the metasurface. We observe a dominant
resonance at ∼1150 nm and a weaker resonance at ∼1475 nm. The main dip is clearly
visible in the measured linear transmission of the metasurface.

The ITO sample itself was purchased from Präzisions Glas & Optik GmbH. It
has a thickness of 23 nm with Drude parameters of ε∞ = 3.9 as the high-frequency
permittivity, ωp = 2.67× 1015 rad/s as the bulk plasmon frequency and γ = 0.0873ωp
as the damping rate (see Figure 5.1a). 1415 nm is the corresponding ENZ wavelength.

The nonlinear characterisation was performed in a transmission geometry as seen
in Figure 6.2c. For the pump-probe measurements, we used an amplified Ti:sapphire
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FIGURE 6.2: Sample and setup details. a, SEM image of a cross-shape
antenna array. In this study the cross has a bar-length of l = 361 nm
, a bar-width of w = 108 nm and a height of h = 32 nm. The crosses
are periodically aligned with a lattice constant of p = 609 nm. b,
The polarisation independent linear transmittance of the array (H:
Horizontal, V: Vertical polarisation). c, To investigate the polarisation
response of the antennas on a 23 nm ITO thin film, we pump at a 5○

angle of incidence with the polarisation aligned along the horizontal
axis. The probe comes in at a normal incidence with a 45○ polarisation.
The analyser allows for studying both the horizontal and vertical
polarisation components. Finally, the quarter-wave plate is used to

extract the Stokes parameters and plot the polarisation ellipses.

laser (Legend Elite, Coherent), with a central wavelength of 800 nm, pulse duration
of 107 fs and repetition rate of 1 kHz, feeding two identical OPAs (TOPAS, Light
Conversion). The signal output of one OPA was used as the pump, and the signal
output of the other OPA was used as the probe, allowing us independent control of
pump and probe frequencies. The pump was focused using a 30 cm BK7 lens, the
probe with a 25 cm CaFl2 lens. The pump beam diameter (1/e) was measured to be
800 µm, while the probe was 250 µm. We used a PbS Amplified Detector (PDA30G-EC)
for detecting the probe.

The pump polarisation is aligned along the horizontal bar of the cross-shaped
nano-antennas. Plasmon excitation in the nano-antennas leads to a dipole-like field
profile and the resulting localised intensity pattern (see Figure 6.3). Electrons inside
the ITO layer close to the edges of that bar are excited and facilitate a nonlinear
refractive index change via a redshifting of the materials plasma frequency [8]. The
normal incidence probe has a diagonal polarisation to investigate the pumped and
unpumped nano-antenna-axis transmittance changes by choosing the analyser orien-
tation. A rotatable quarter wave-plate in front of the analyser allows us to extract all
four Stokes parameters and analyse the complete polarisation ellipses later on [77].

6.3 Transient Dichroic Response

First, we analyse the transient dichroic response by studying the nonlinear trans-
mittance changes. We compare changes to the parallel and perpendicular probe
polarisation relative to the horizontal pump. In Figure 6.4a we present transmittance
changes dependent on the probe delay for several probe wavelengths. The pump
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FIGURE 6.3: Electric fields of the cross-shaped nano-antenna. The
y-x-crossection shows the nano-antenna shape highlighted in green
and the electric fields surrounding the edges of the horizontal bar for
a horizontally polarised pump. The z-x-crosssection highlights the
penetration of the fields into the nonlinear ITO layer (between blue
and red line). It further reveals that the E-fields below the central part,

shared between both cross axis, are negligible.

is set to a wavelength of 1220 nm and an intensity of 5 GW cm−2 to avoid damaging
the sample. Upon pumping, the ITO layer increases its electron temperature where
the electric field strength is large (see Fig. S1). The bulk plasma frequency redshifts
upon heating, leading to a shift of the coupled resonance seen in Figure 6.2b. For
the parallel pump and probe polarisation, we measure large transmittance decreases
by up to ∼18 % for probe wavelength around 1150-1240 nm. This coincides with the
plasmonic resonance at ∼1150 nm red shifting upon pumping. For larger wavelengths,
the sign flips, leading to small increases in transmission. This behaviour corresponds
to the resonance associated with the epsilon-near-zero thin layer around 1450 nm (see
Figure 6.2b), which also red-shifts, increasing the transmittance just below 1450 nm.
These two scenarios can happen subsequently, as seen in the case of ∼1270 nm. The
sub-ps switching dynamics occur similarly for the perpendicularly polarised probe,
as seen in the lower plot. However, the maximum reduction of transmission does not
exceed -2.5 % compared to the -18 % of the parallel case.

To test the pump dependence, we study the frequency-resolved response of the
sample. The transmittance changes plotted Figure 6.4b are measured for a pump
intensity of 5 GW cm−2. The pump shows a quasi wavelength-independent behaviour,
which can be explained by weak wavelength dependence of the absorption. The
probe transmission, however, shows a strong wavelength dependence, as already
seen in Figure 6.4a. The maximum ∆T is marked just below 1200 nm, corresponding
to the maximum slope position of the ∼1150 nm resonances longer wavelength tail.

To test the sample’s dichroic response, we compare the nonlinear transmission
changes depending on the intensity for both probe polarisation cases. In Figure 6.4c,
we plot the intensity-dependent ∆T/T0 for the case of 1195 nm (for further detail we
also plot the spectrally resolved intensity dependencies in Figure 6.5). The intensities
range up to 5 GW cm−2 to avoid sample damage and enable a good linear fit. The
∆T/T0 for the parallel component reaches -50 %. Comparing the two slopes (a), the
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FIGURE 6.4: Polarization dependent resonance shift. a, The mea-
sured differential transmission (∆T) is plotted depending on the time
delay between pump and probe. The pump is fixed to a wavelength
of 1220 nm and intensity of 5 GW cm−2. The probe is analysed parallel
(∥, top) and perpendicular (�, bottom) to the horizontal pump. b, The
frequency-resolved transmittance changes highlight the process to be
quasi-independent of the pump wavelength. The maximum differen-
tial transmission occurs for a probe wavelength marked at 1195 nm. c,
For the case of 1195 nm we plot the intensity-dependent differential
transmission and find a large maximum ∆T/T0, while suppressing the
perpendicular nonlinear transmittance changes by a factor of 7.2 as

indicated by the slope-ratio of the linear fits.

polarisation-dependent performance becomes very clear: The parallel contribution is
modulated 7.2 times more efficiently than the perpendicular is. The local ITO excita-
tion caused by the pump orientation translates to great differences in the nonlinear
response depending on the probe polarisation. The corresponding transient dichroic
ratio is calculated via (∆T∥ −∆T⊥)/∣∆T∥ +∆T⊥∣ = 76 %, which is more than three times
bigger than that of recent similar studies [147]. The absolute dichroic transmission
difference of ∆T∥ −∆T⊥ ∼ 16 % compares to be over an order of magnitude larger.

6.4 Transient Elliptical Polarisation

In addition to amplitude modulation, we also observe significant phase modulation.
We investigate the complete polarisation by measuring the Stokes parameters (Sn).
For that, we turn back to our analyser design shown in Figure 6.2c. The polariser is
now fixed horizontally, and we add a quarter-wave plate. We employ the method
of Schaefer et al. [78] to extract the Stokes parameters, S0 = IH + IV, S1 = IH − IV,
S2 = I45○ − I135○ and S3 = I⟳ − I⟲, via an eight-point rotation of the quarter-wave

plate. We reference S1 and S3 to the total average power Sref =
√

S2
1 + S2

2 + S2
3 before

the pump arrival. The resulting S1 plot seen in the upper case of Figure 6.6a highlights
once more the previously discussed amplitude switching regime for λ ∼ 1200 nm. The
decrease in S1 corresponds to a decrease in the horizontal transmission. The switch
from diagonal towards vertical polarisation can best be seen by plotting the ellipses
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FIGURE 6.5: Intensity dependent spectral changes of ∆T and ∆T/T.
The intensity-dependent ∆T (left) and ∆T/T0 (right) for the case of
a 1195 nm horizontal pump. The probe analyser is also horizontally
aligned, while the probe wavelength sweeps from 1150 nm to 1300 nm.
The maximum ∆T/T0 is closer to the resonance than ∆T, due to T0

being small.

for the initial versus the pumped case plotted in the upper case of Figure 6.6b. We
utilise the “py-pol” python package to plot the polarized light.

a b

FIGURE 6.6: Amplitude and phase control. a, The time and
wavelength-dependent Stokes parameters S1 = IH − IV and S3 =
I
⟳

− I
⟲

are plotted. The reference power Sref corresponds to the
total transmitted power S0 in the absence of the pump. The pump
is fixed to a wavelength of 1220 nm and intensity of 5 GW cm−2. The
markers correspond to the polarisation ellipses plotted in b. The initial
case is representative of no pump excitation and hence a diagonal
polarisation. The pumped case represents the maximum nonlinear
effect, corresponding to a horizontal amplitude reduction (upper) or a

horizontal phase shift (lower).

Next we investigate the time-dependent changes of the circular polarization
component S3 = I⟳ − I⟲ (Figure 6.6a, bottom). We find a change of up to 15 % around
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1270 nm, corresponding to a horizontal phase change of 8.7○. Interestingly, pump-
induced horizontal amplitude changes are small (S1 constant) in this region, and
instead, only the circular component is changing (S3 increasing). This is emphasised
in the bottom plot of Figure 6.6b by comparing the initial and pumped cases: the
diagonal polarisation is turning elliptical without significant amplitude modulation.
Finally, one can choose a probe wavelength between these two extremes to tune
across a wide range of elliptical polarisation options.

6.5 Qualitative Modelling

To gain a qualitative expectation for the transient elliptical polarisation changes we
investigate a simple model with the commercial software COMSOL (FEM). We define
an effectively pumped ITO region around the pumped cross bar region as indicated
in Figure 6.7. The region is not optimised nor calculated, but simply ensures two
criteria are meet: The edges of one cross bar are covered, while the other bar is not
in direct contact with the heated region. The ITO layer is modelled with exemplary
optical parameters of ε∞ = 3.8055, ωp,0 = 2π ⋅ 473 ⋅ 1012 rad/s and γ0 = ωp,0 ⋅ 0.0468 [8],
not perfectly matching the experimental case.

Substrate (n=1.45)

Au

ITO

ITO

FIGURE 6.7: Cross-shaped nano-antenna array geometry for effec-
tive bulk plasma frequency reduction simulation. In this study the
cross has a bar-length of l = 361 nm , a bar-width of w = 108 nm and
a height of h = 32 nm. The crosses are periodically aligned with a
lattice constant of p = 609 nm. The ITO layer is 23 nm thick and is
placed on top of a coverslip (n = 1.45). We create indicative cylindrical
“heated” ENZ patch around the pumped bar edges. The reduction
of the plasma frequency in these volumes gives an impression of the

expected nonlinear optical behaviour.

The effectively heated area is modelled with a 15 % reduction in bulk plasma
frequency (ωp,0). Probing with a polarisation aligned along that bar one can see a
significant redshifting of the resonant feature around 1150 nm, as seen for the red
line Figure 6.8 compared to the blue line representing the initial homogeneous layer
case. For a specific wavelength of interest, we add the transmitted polarization of
a diagonally polarised probe input. These elliptical polarization plots highlight the
horizontal phase shift induced for the off-resonant cases, leading to a shift towards
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circular polarization. At the same time amplitude switching dominates roughly at
the position of maximum transmission slope of the initial resonance position. This
precisely matches our expectation and the qualitative behaviour of the two switching
cases presented in the previous section.

FIGURE 6.8: Elliptical polarisation shifting in symmetric nano-
antenna arrays. The lines correspond to the probe polarization aligned
along the pumped bar. The unpumped case (blue line) and “pumped”
case (red line) are plotted. The insets correspond to the transmitted
polarisation of a diagonally polarised input for the marked wavelength.
The unpumped case remains diagonal independent of wavelength.

The simulations highlight the most promising circular polarization switching
regime at the crossing point of the initial and the pumped transmission resonance.
Minor modulation to the absolute transmission will be expected. However, large
modulation of the phase will lead to the strong shift towards circular polarization
indicated for ~1150 nm in Figure 6.8.

Unfortunately, our quarter wave-plate is only suitable for wavelength beyond
1200 nm. Also, the shifts measured in experiment are not as extreme: the crossing
point occurs for only slight shift in wavelength and transmission relative to the
original transmission minimum. This indicates a less pronounced nonlinear phase
shift is to be expected in our measurements.

At the time of submission of this thesis, plans were being drawn up to measure
the precise geometrical and (linear) optical parameters of the sample. Subsequent
more elaborate simulations are expected to grant a better fit.

6.6 Conclusions

In summary, we present a compelling strategy of using cross-shaped nano-antennas
on top of a highly nonlinear epsilon-near-zero layer to gain ultrafast control of the
polarisation. We have shown that pumping along one nano-antenna axis allows for
modulation of the amplitude or phase of the probe along that specific axis. This proof
of principle study already finds a 7.2 times stronger nonlinear amplitude change
for the parallel probe polarisation. This corresponds to a dichroic performance that
surpasses similar studies by up to an order of magnitude. Additional changes to the
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circular components of the probe have been identified and highlight the ability to
control the phase as well. This is achieved for normal incidence and can be done
for horizontal and vertical alignment equally and quasi-independently due to the
sample symmetry. Polarisation control within the given sub-ps time scales is crucial
for future ultrafast optical switching devices. Combined with the given wavelength
range, we pave the way towards complete, ultrafast, and all-optical polarisation
control for telecommunications applications and beyond.



85

Chapter 7

Spatiotemporal Refraction of Light
in an Epsilon-Near-Zero ITO Layer

Abstract

When light travels through a medium in which the refractive index is rapidly chang-
ing with time, the light will undergo a shift in its frequency. Significant frequency
shifting effects have recently been reported for transparent conductive oxides. These
observations have been interpreted as emerging from temporal changes to the propa-
gation phase in a bulk medium resulting from temporal variations in the refractive
index, an effect referred to as temporal refraction. Here, we show that the frequency
shift in an epsilon-near-zero (ENZ) layer made of indium tin oxide (ITO) originates
not only from this bulk response but includes a significant effect resulting from tem-
poral changes to the spatial boundary conditions. This boundary effect can lead to
a dominant, opposing shift to the bulk effect for certain angles. Hence, this process
gives rise to a frequency shift that can be tailored through the angle, decoupling the
amplitude and phase modulation.

Author Contribution Statement

For this chapter, I designed the sample and experiment. I carried out the nonlinear
measurements and numerical analysis. The work has been published as J. Bohn et al.
“Spatiotemporal refraction of light in an epsilon-near-zero ITO layer: frequency
shifting effects arising from interfaces,” OPTICA, 8, 1532-1537 (2021) .

https://www.osapublishing.org/optica/fulltext.cfm?uri=optica-8-12-1532&id=465658
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7.1 Introduction

All-optical signal processing requires controlling various parameters of light waves
such as amplitude, phase and frequency. Recent work has painted a promising picture
for all-optical switching, showing sub-ps and large amplitude modulation for various
platforms based on amorphous silicon [149], gallium phosphide [150], plasmonic
waveguides [151], and epsilon near zero (ENZ) layers[65, 66, 67], including indium
tin oxide (ITO) [8, 115]. Even cavity-based optical transistors have been demonstrated
[152, 153]. However, while the amplitude of light can be straightforwardly controlled
using these different modulator materials, controlling the frequency of light is more
challenging. Control over the frequency is required for applications such as laser
tuning, temporal [154] and spectral [155] pulse compression and optical switching
of channels in telecoms [156]. Meanwhile, the ability to control both amplitude and
frequency of a wave independently is thought to be important for generating the
spatiotemporal modulation required for non-reciprocal devices [157] and time crystals
[158]. To modulate the frequency of an optical signal, one can change its phase on
ultrafast time scales, effectively creating a temporal refractive index boundary [159,
160, 161]. However, in many circumstances, changes to frequency are necessarily and
directly coupled to changes in amplitude, making independent modulation difficult.

Recently, thin films of epsilon-near-zero (ENZ) materials have offered a promising
route to frequency modulation [73, 13, 74, 75]. In such materials, significant (> unity)
changes to the refractive index can be induced on sub-100 fs timescales due to ultrafast
heating of the electron gas[8, 66], an effect which can result in frequency shifts by up
to a few per cent of the carrier frequency[13]. However, while observed frequency
shifts are large when temporal refraction occurs in these systems, they are also directly
linked to refractive index changes, which lead to simultaneous amplitude modulation,
preventing independent optimisation.

Here, we investigate spatiotemporal refraction for tailored frequency shifting
in thin indium tin oxide layers. We show that the frequency shift arises not only
from a bulk response but includes a significant contribution from temporal changes
to the spatial boundary conditions. The frequency shift arising from boundary
effects can oppose the bulk effect and can even be the dominant contribution for
sub-µm layer thicknesses. We further show that for high incident angles, it gives
rise to a dominant, opposing shift, i.e. shifting to higher rather than the usual
lower frequencies, while maintaining an increase in differential transmission. This
competition between surface and bulk responses could have applications where
tuning the amplitude and direction of frequency shift is useful, or decoupling of
amplitude and phase modulation is required.

7.2 ITO Sample

In this study, we utilise ITO samples of different thicknesses. For the 107 nm sample,
the ITO was sputtered onto a coverslip at room temperature using 90/10 In2O3/SnO2
Kurt Lesker target and sputtering tool. The base pressure before the deposition was
in low 10−6 torr but raised to 3 mT of Ar only during deposition with an RF power of
145 W. In order to achieve high carrier density, both deposition and annealing were
performed in the lowest possible residual oxygen environment. The samples are
post-annealed in forming gas for 3 min at temperatures between 425-525○C in a rapid
thermal annealer. The 407 nm sample was obtained from UQG Ltd.
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The optical properties and thicknesses of the indium tin oxide (ITO) samples are
characterised using an ellipsometer. The ellipsometry data was fitted using Tauc-
Lorentz and Drude models. The extracted optical parameters are listed in Table 7.1,
where the epsilon-near-zero (ENZ) frequency is calculated as fENZ = 1

2π

√
ω2

p/ε∞ − γ2.
The corresponding wavelength-dependent permittivity and refractive index are plot-
ted in Figure 7.1.

TABLE 7.1: Drude parameters for the different ITO film thicknesses.

tITO (nm) ε∞ ωp(1015 rad/s) ωp/γ fENZ (THz)
407 3.45 2.5 11.5 212
115 3.81 3.03 16.9 246

FIGURE 7.1: Optical properties of indium thin films. Optical per-
mittivity (top) and refractive index (bottom) are plotted for the two
different samples. The ENZ frequency is marked at 212 THz for the

407 nm sample (left), 246 THz for 115 nm (right).

7.3 ITO Layer Model

For temporal refraction, a bulk medium of homogeneous refractive index n undergoes
a temporal change in the index [162]. The temporal shape of the phase change is
determined by the nonlinear refractive index change ∆n = n2 I, which depends
on the nonlinear material characteristics n2 and the pump pulse intensity I. Time
translation symmetry breaking leads to a change in frequency ∆ f , determined by
n f = (n + ∆n)( f + ∆ f ), predicting that the fractional frequency shift ∆ f / f should
depend only on the material indices through ∆n/(n +∆n).

However, nonlinear media can be considerably thinner than the spatial extent
of a laser pulse so that only part of a pulse is present in the medium at any one
moment in time. Under such conditions, the time translation symmetry argument
outlined above breaks down. This is particularly true for films of ITO, which are
highly absorptive close to the ENZ frequency, so transmission is very low for film
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thicknesses > 1 µm. When films of several hundred nm thicknesses are excited by
femtosecond pulses, the frequency shifts measured in experiment are considerably
smaller than those predicted by time translation symmetry breaking [13]. Under
these circumstances, one should instead turn to the more generally applicable phase
modulation picture, familiar from effects such as self-phase modulation. Here, we
calculate time-dependent changes to the transmitted phase of the laser pulse. Con-
sider the change in phase for normal incidence arising from propagation through the
bulk of the film. For a time-dependent change to index ∆n(t) one predicts a change
in phase given by ∆Φ(t) = ∆n(t)k0d (see Figure 7.2), where k0 is the wavenumber of
the incident radiation in free space. We see from this that the thickness of the film d
is expected to limit the phase change, and therefore the observable frequency shift,
which is determined by

(7.1) ∆ω = −dΦ/dt.

FIGURE 7.2: Temporal changes in an optical medium. The schematic
of the bulk propagation case highlights that the nonlinear refractive
index facilitates a temporally changing phase for intense laser pulses.
The Fresnel coefficients can be used to extract phase changes at a
spatial boundary. Temporal changes to the interface induced phase-
jumps also shift the frequency. Finally, the thin layer case studied here,

which combines these phenomena.

However, in thin films, interfaces also play an essential role in determining the
transmission phase. Effects arising from a temporal change of the Fresnel coefficients
describing interfaces have been suggested to contribute to frequency shifting [74]
and are expected to be independent of the film thickness. When the complex ITO
refractive index, or equivalently permittivity ε, varies with time, as in Figure 7.3a,
the Fresnel coefficients for the interface of the ITO will also vary with time. This
will result in time-dependent spatial refraction at the interface, referred to here as
spatiotemporal refraction. The temporal change to this boundary induced phase
can be associated with a frequency shift, as per Equation 7.1 above, alongside the
temporal refraction induced by the bulk.

We can predict temporal changes to the ITO thin layer transmission coefficient
(t13) using the Airy formula, given as

(7.2) t13 =

internal reflections
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

1
1+ r12r23e2ik2d t12t23

²
interface transmission

bulk propagation
¬
eik2d .

with the Fresnel coefficients of the front (r12, t12) and back interface (r23, t23). Here, we
treat the time-dependent changes to permittivity as being homogeneous throughout
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the ITO layer. We will later revisit this assumption and show that spatial inhomo-
geneity due to the exponential decay of the pump throughout the sample leads to
relatively minor quantitative differences. For non-normal incidence at angle θ, we
label the angle of the wavevector inside the ITO layer as θ2. Then, the bulk phase
change (Φb) is determined by the multiplication of the ITO thickness (d) and the
normal wavevector component inside the ITO layer (k2 = nk0 cos θ2). Further phase
contributions appear from the Fresnel transmission coefficients (Φ12, Φ23) and the
internal reflections term Φir = arg(1/(1+ r12r23e2ik2d)).

We consider a beam incident from air on an ITO layer followed by a coverslip.
Exciting such a system near the ENZ frequency heats the electron gas, introduc-
ing strong optical nonlinearity thought to arise predominately from changes to the
plasma frequency [8, 66]. To gain qualitative insights into the expected behaviour, we
define temporal changes to the bulk plasma frequency as a convolution of our Gaus-
sian pump pulse, with a pulse length of 107 fs, and an exponential decay of 300 fs,
determined from optical pump-probe measurements using the analysis presented in
[115]. For a sample with an epsilon-near-zero frequency at 211.5 THz, undergoing an
estimated 10 % redshift of the plasma frequency ωp, a probe frequency fpr = 200 THz
will experience the temporal changes to permittivity and refractive index plotted in
Figure 7.3a. For such a redshifting ωp, the real part of the refractive index n initially
increases on pumping, while the imaginary part initially decreases. For the plotted
example, the real part of the permittivity crosses zero shortly after pumping: this
corresponds to the ENZ condition.

FIGURE 7.3: Spatiotemporal refraction simulation. We study the
impact of a typical ωp reduction by 10 % for the 407 nm ITO sample
parameters at 200 THz. a, The upper panel shows the real part of
the refractive index n initially increases until the electron gas reaches
the minimum ωp, while the imaginary part κ decreases. They cross
roughly at the maximum gradient, corresponding to the ENZ point
as seen below for the real part of the permittivity being zero (εr). The
thermal decay is modelled with a time constant of 300 fs. The lower
panel presents the same changes in terms of permittivity. b, For the
case of normal incidence, the simulated thin layer transmission phase
(Φ13) agrees very well with the bulk phase (Φb = k2d). However, for
an incoming angle of 70○ a total thin layer phase shift of opposite sign

is expected.
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Using Equation 7.2, and for a sample with d = 407 nm, we can extract the trans-
mission coefficient of our thin layer based on the time-dependent refractive index
and plot the corresponding phase in Figure 7.3b. For normal incidence (upper panel),
we see that the phase change due to the interfaces, Φ12 and Φ23, are opposite in sign
and approximately cancel. The resulting total time-dependent phase for this normal
case, Φ13, is then similar to that predicted from Φb, the change in phase expected due
to propagation through the bulk.

However, increasing the angle of incidence leads to a very different phase re-
sponse. For larger angles, the temporal gradient of the transmission phase can even
change sign, as seen for the example of 70○ incidence presented in the lower panel of
Figure 7.3b. This behaviour arises due to the interface contributions, which no longer
cancel each other. Moreover, these interface contributions also lead to a change in
phase that is opposite in sign to the normal incidence case, i.e. a decrease in phase
for the permittivity transitioning from negative to positive real values. This effect is
fundamentally different from the bulk response, demonstrating the importance of
the interfaces in determining changes in phase and frequency. Interestingly, such a
contrasting behaviour of the phase results in an apparent experimental signature: a
blueshift of the frequency instead of the redshift expected from a bulk.

7.3.1 In-Depth Details

Considering the multiplication of complex numbers for Equation 7.2, one can extract
phase estimates of the transmitted light via the addition of phases as follows:

(7.3) ∆Φ13 =
interface effects

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∆Φir +∆Φ12 +∆Φ23 +

bulk propagation
¬
∆Φb .

The interface contributions appear from the Fresnel transmission coefficients (Φ12,
Φ23) and the internal reflections term Φir = arg(1/(1 + r12r23e2ik2d)). Moreover, the
expected frequency shifts are:

(7.4) ∆ f13 =

spatiotemporal refraction
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
∆ fir +∆ f12 +∆ f23 +

temporal refraction
«
∆ fb .

Equation 7.4 shows that temporal refraction can be considered a special case
of (cross or self) phase modulation, where phase phase modulation effects from
interfaces can be neglected. This chapter investigates the case where the temporal
refraction is no longer large compared to the frequency shift contributions induced
by the spatial boundary. To simulate the temporal changes to the transmission
amplitude and phase, we introduce a time-varying bulk plasmon frequency of up to
10 % reduction. The temporal shape is given by a convolution of a Gaussian with a
full-width-half-maximum pulse length of 107 fs and a 300 fs exponential decay (see
Figure 7.4a) and corresponds to the example plotted in Figure 7.3 of the manuscript.
Additionally, we plot the time-dependent permittivity, highlighting the ENZ crossing.
The temporal changes of the phase plotted in Figure 7.3b result in frequency shifts
that are shown in Figure 7.4b.



7.3. ITO Layer Model 91

θ=0°

θ=70°

a b

FIGURE 7.4: Spatiotemporal refraction: frequency shifts. We study
the impact of a typical ωp reduction by 10 %, as plotted a. The re-
sulting permittivity is plotted for the case of the 407 nm ITO sample
parameters at 200 THz. The ENZ case is passed at roughly the maxi-
mum slope. b, The expected frequency shifts for the transmitted probe
are calculated using ∆ f13 and plotted for the normal and high angle

incidence case.

Frequency dependence

To study the frequency shifting behaviour over large frequency and angle ranges,
we exclusively investigate the maximum frequency shift (see Figure 7.5). For both
the 407 nm and 115 nm sample, the blueshifted feature appears only for a large
angle of incidence, as established earlier. Additionally, this blueshift occurs only for
frequencies just below the (initial) ENZ case. The region of maximum blueshift sits
right between the initial and pumped ENZ frequency case. This can be understood
by considering the Fresnel coefficient of the front interface, which dominantly affects
this feature plotted in Figure 7.4b. For the ENZ case Taylor expansion slightly below
90○ the coefficient is given as (θ ⪅ π/2, θ2 ≪ θ Ð→ nITO ≪ 1, TM-polarization):

(7.5) t12(τ)∝

¿
ÁÁÀ εITO(τ)

εITO(τ)− 1
∣εITO∣≪1
≈ i

√
εITO(τ),

with τ being the time delay between pump and probe pulse. One can see, t12 reduces
in phase upon crossing the ENZ frequency (starting from negative εr values as seen
in Figure 7.4a). For the TE case in the same limit, one simply calculates t12,TE ∝
1/

√
εITO(τ)− 1. Hence, the blueshift feature around the ENZ wavelength is specific

to the TM polarization.
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a b

407nm 115nm

FIGURE 7.5: Angle and frequency-dependent spatiotemporal refrac-
tion behaviour. We plot the frequency shifts as seen in Figure 7.4b
for the maximum case of τ = 0 fs and study the probe frequency and
angle dependence for the case of the 407 nm (a) and the 115 nm (b)
parameters. The black dashed line indicates the initial fENZ, while the

red dashed line indicates the pumped case.

7.4 Experimental Measurements

For the nonlinear optical characterisation via pump-probe measurements, we used
an amplified Ti:sapphire laser (Legend Elite, Coherent), with a central wavelength of
800 nm, pulse duration of 107 fs and repetition rate of 1 kHz, feeding two identical
OPAs (TOPAS, Light Conversion). The signal output of one OPA was used as the
pump, and the signal output of the other OPA was used as the probe, allowing us
independent control of pump and probe frequencies. The pump was focused using
a 30 cm BK7 lens, the probe with a 25 cm CaFl2 lens. The pump beam diameter
(1/e) was measured to be 480 µm in air, while the probe was 250 µm. To make sure
the incident intensity of the probe is significantly smaller than the pump, we used
several additional OD filters to decrease the probe power and tested that the nonlinear
reflection was independent of adding/removing filters. The angle of incidence of
the pump is 5○ smaller than that of the probe. For the spectral analysis, we used an
Andor Shamrock 163 spectrograph with a DU490A-1.7 camera.

The experimental schematic is depicted in Figure 7.6a, defined by the parameters
I0 (the peak intensity of the pump pulse in the incident air), fpm (the central frequency
of the pump pulse) and fpr (the central frequency of the probe pulse). Unless oth-
erwise stated, we use I0 = 400 GW cm−2, resulting in frequency redshifts of ~1 THz.
This intensity corresponds to the maximum intensity for the given geometry and
focus size of our setup. We note that our observed frequency shifts reported below
are lower than those reported in [13]. This is due to a higher Drude scattering rate
and a reduced thickness for our ITO samples.

A TE pump polarisation is chosen as it provides only a slight angle and frequency
dependence in absorption. We use a probe polarised at 45○ to check the frequency
shifting behaviour of either polarisation by rotating an analyser in front of a spectrom-
eter. Spectra are recorded for different pump delay times. The spectra form the data
basis, which we translate into changes in frequency and transmission of the central
frequency of the pulse, both presented relative to the initial probe spectrum without
pumping. The experimental data plotted in Figure 7.6b show typical behaviour for a
probe frequency slightly below the initial ENZ frequency: a strong initial increase of
the transmission as a function of time for all three angles (5○, 50○, 70○), up to 300 % of
the initial transmission. Simultaneously, very different frequency shifting effects are
measured: For the low angle case (5○), the typical redshifting behaviour is observed,
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FIGURE 7.6: Experimental setup and measurement. a, The setup con-
sists of a TE polarised pump and a 45○ probe that enables quick spectral
measurement of either polarisation by choice of the analyser. The sam-
ples of interest are ITO films of 407 nm or 115 nm thickness on top of a
coverslip. The lower plots show schematically how the measured spec-
tra (left) at different time delays (blue, orange) can be used to extract
changes in both transmission (middle) and central frequency (left).
b, Measurements taken for three different angles. They correspond
to an incident pump intensity of I0 = 400 GW cm−2, fpm = 250 THz,
fpr = 200 THz and TM polarisation. The transmission increases up to
200 to 300 % for all angles, while the frequency shift is either negative

(5○), negligible (50○) or positive (70○).

while the high angle case (70○) presents a blueshift - as described above, this is a
signature dominated by the change in phase at the interface. This interface effect
can act as an opposing shift and may be utilised to tailor the frequency shift or even
suppressing it entirely, as seen for 50○.

7.4.1 Thickness Dependence

Intuitively, one would expect the effect of interfaces to be more important for thinner
samples. To investigate this, we repeat the initial predictions shown in Figure 7.3
for a varying thickness of ITO. In Figure 7.7a, we plot the maximal frequency shift
for the redshift feature (θ = 0○) and blueshift feature (θ = 70○) as a function of ITO
thickness, predicted using the quasi-time harmonic model introduced below. The
redshift feature is predicted to scale linearly with the thickness of the sample, which
is in line with expectations that the signal is predominantly determined by the bulk
phase. However, the high angle blueshift feature is dominated by surface effects
and is relatively thickness independent for d > 200 nm. For d < 200 nm, internal
reflections counteract the blueshift, leading to a gradual decrease of the shift as d → 0
(see Figure 7.8). For very thick films with d > 1000 nm, the blueshift again decreases
through the counteracting bulk contribution, which is comparatively small for large
angles, since Φb ∝ cos(θ2).

To demonstrate this effect experimentally, we compare the measured frequency
shifts for the d = 407 nm sample (Figure 7.7b) to a considerably thinner one with
d = 115 nm (Figure 7.7c). Figure 7.7c clearly shows a strongly reduced redshift feature,
agreeing with the expectation of a reduced bulk effect. Additionally, with the decline
of the redshift, the blueshift feature has become more prominent. In the experiment,
we observe that the frequency shift in this region is even larger than that measured
for the 407 nm thick film, an effect explained primarily by a lower scattering rate for
this particular sample.



94Chapter 7. Spatiotemporal Refraction of Light in an Epsilon-Near-Zero ITO Layer

FIGURE 7.7: Thickness dependence. a, To further investigate the
thickness dependence we model the ITO for the two angle extremes
depending on the layer size. The quickly saturating blueshift (high
angle) and a linearly increasing redshift (low angle) are plotted (ωp
reduction by 10 %, 417 nm sample parameters, fpr = 200 THz). b, The
experimentally measured frequency shifts of the 407 nm layer, similar
to the measurements in Figure 7.6b with angles marked by dashed
lines of the corresponding colours (I0 = 400 GW cm−2, fpm = 250 THz,
fpr = 200 THz, TM polarisation). c , The experimentally measured
frequency shift of a 115 nm layer (I0 = 400 GW cm−2, fpm = 214 THz,

fpr = 240 THz, TM polarisation).

a b

θ=70°

10nmθ=70°

FIGURE 7.8: Thickness dependent phase components. a, We plot the
absolute value of the internal reflection transmission coefficient term,
showing that it only becomes comparable to 1, and therefore relevant,
for d ≲ 200 nm. b, For the very thin case of 10 nm (e2ik2d ∼ 1) the
internal reflection based phase shifts becomes large and compensates

transmission-based effects.

Blueshifted spectrum

We present the example of the strongest measured blueshift feature, given by the
115 nm film as seen in the spectrum of Figure 7.9 and corresponding to the maximum
case plotted in Figure 7.7c.
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FIGURE 7.9: Blueshifted spectrum. a, For the 115 nm sample, the
time-dependent spectrum was measured. The incident pump intensity
is 400 GW cm−2. The dashed line indicates the traced central frequency
position. b, The pump free initial spectrum (blue) is plotted along with

the maximum shifted case (orange).

7.5 Comparison Between Experiment and Models

One can calculate the expected frequency shift by relating measured transmission
changes to expected temporal changes in phase, which can then be used to predict
expected frequency shifts. The simplest possible way to achieve this is using a quasi-
time harmonic model. We first calculate expected temporal changes to the permittivity
of the material, relate this to expected temporal changes to the transmission phase,
and directly predict from these expected changes to the frequencies contained in
a probe pulse using Equation 7.1. This is possible via the following steps: firstly,
we use a standard pump-probe measurement to determine the temporal dynamics
of transmission amplitude vs time and fit it with the convolution of a Gaussian
and exponential decay. We then calculate t13 for a given incident frequency f and
angle θ via Equation 7.2 for different bulk plasma frequencies. The results from
this calculation are used as a spline function to convert the measured change in the
amplitude of transmission into corresponding changes of the bulk plasma frequency.
We then convert from plasma frequency vs time to transmission phase vs time, again
using Equation 7.2. Finally, we calculate the temporal derivative of the extracted
phase and use this to estimate the expected frequency shift as per Equation 7.1. Note
that this model assumes all frequencies in the pulse respond identically. Hence we
refer to it as quasi-time harmonic - we come back to this approximation later.

The frequency shifts predicted by this quasi-time harmonic model are shown in
Figure 7.10a for the case of the 407 nm sample. The qualitative behaviour predicted in
Figure 7.10a, defined by the relative amplitudes of red- and blue- frequency shifts and
the angle at which the frequency shift changes sign, is in good agreement with our
direct measurement in Figure 7.7b. This is striking, especially considering there are no
fitting parameters used in our approach. For this simple quasi-time harmonic model,
we expect the most significant frequency shifts to occur at times corresponding to
the maximal change in the optical properties of the material. As shown in figure
Figure 7.10c (blue line), we see the maximum in predicted frequency shift corresponds
to the maximum temporal gradient in the index (blue arrow in Figure 7.10c). This can
also be seen in Figure 7.6b, where the most significant frequency shifts are measured
for the largest slope of the transmission change. Similarly, we expect zero frequency
change for the times corresponding to zero gradients in the index, as is seen for the
time corresponding to the extremum in plasma frequency (red arrow). These two
behaviours explain the narrow temporal widths of the frequency shift features seen
in both model (Figure 7.10a) and experiment (Figure 7.7b).
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FIGURE 7.10: Modelling of experimental data. Predicted frequency
shifts under the quasi-time harmonic approximation assuming ho-
mogeneous (a) and in-homogeneous (b) layer approximations, cal-
culated assuming parameters: (I0 = 400 GW cm−2, fpm = 250 THz,
fpr = 200 THz, TM polarisation). c, A comparison between the quasi-
time harmonic (blue solid) and the full temporal (orange solid) model.
The temporal response of the optical material assumes a reduction in
plasma frequency of 10 % (dashed black). The full temporal model
considers the spectral width of 5.3 THz full width half maximum. The
time-dependent absorption changes cause an effective redshift of the
frequency distribution, removing the blueshift feature seen for the
quasi-harmonic case. The times marked by arrows correspond to:
before interaction (green), the maximum gradient in the index (blue)
and zero gradients in the index (red). d, The frequency distributions
corresponding to the three marked times in c, as predicted by the
full temporal model. Modelled frequency shifts are lower than those
reported in [13] due to a higher Drude scattering rate and a reduced

thickness in our samples.

In the next section we will look a bit closer into the thickness dependent refractive
index model before turning to the time-dependent model and an in-depth discussion
of Figure 7.6c and d.

Thickness dependent refractive index

We note that there are some approximations used in our quasi-time harmonic mod-
elling approach. Firstly, the finite penetration depths of the laser pulses results in an
inhomogeneous refractive index of the ITO throughout the thickness of the film. We
can take this effect into account by treating the ITO as a multi-layer structure, with
the index change in each layer determined by the predicted pump intensity in that
layer.

To test the model, we put the implicit assumption under test that the transmission
changes and phase changes have the same origin, a redshift in ωp. The transmission
changes are linked to the redshifting of ωp. These can be used to calculate all-optical
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parameter changes of interest. In Figure 7.10a and Figure 7.11a, we show the case
of using a uniform ITO layer excitation and find that the blueshift seems to be a bit
overestimated. For a first improvement, we assume a spatial dependence of the ωp
in ITO. This results in a graded refractive index (GRIN) profile. We use the transfer
matrix method to calculate the depth-dependent absorption of the pump inside the
ITO layer as seen in Figure 7.11b and scale the distribution. The front will be most
affected by pumping, and t12 driven effects may saturate sooner, while the overall
blueshift may be smaller as the angle independent t23 contribution (see Figure 7.8a)
becomes smaller. This can be seen in Figure 7.10a or Figure 7.11c of our thickness-
dependent model application, which behaves qualitatively very similar to the uniform
layer plotted in a, but has a significantly smaller blueshift. This also corresponds
better to what is measured in experiment. While this depth-dependent plasma
frequency should still be seen as a rough assumption, it appears to be noticeably
more accurate than simply taking a uniform layer.

We also present the extracted ωp values averaged over the layer thickness in
Figure 7.11d. The modulation of up to ~10 % are in good agreement with similar
studies [115]. Also, the increased angle leads to a reduced incident intensity due to a
stretched out elliptical beam-sample cross-section area. Hence, a minor bulk plasma
modulation is seen for higher angles.

a b

c GRIN layer

Uniform layer

d

FIGURE 7.11: Uniform vs GRIN layer. a, The plotted frequency
shift estimates are based on the time-dependent transmission phase,
calculated via the uniform layer assumption (I0 = 400 GW cm−2, fpm =
250 THz, fpr = 200 THz, TM analyser). b, The normalised depth-
dependent absorption of the TE polarised pump for the low and high
angle case plotted in Figure 7.6b. c, The GRIN based frequency shift
estimates, utilising the depth-dependent plasma frequency. d, The
plasma frequencies plotted correspond to the transmission changes

measured in the experiment Figure 7.7b.

The resulting prediction (see Figure 7.10b), while qualitatively very similar, pre-
dicts a smaller blueshift and larger redshift than the single-layer model presented in
Figure 7.10a, in better agreement with the measurement in Figure 7.7b.
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Calculation of transmitted pulse spectrum

For changes in refractive index that occur on the timescale of the oscillating field, one
should also convolve the probe field with the time-dependent response of the medium.
This approach describes the full temporal dynamics of the interaction, including the
broadband nature of the probe pulse. However, it is challenging to solve Maxwell’s
equations in a time-dependent dispersive medium, even a homogeneous one. To
obtain an approximate form of the transmitted pulse in our system, we reinterpret
our incident pulse Hi(t) as a sum of delta function pulses each of amplitude Hi(τ),
arriving at time τ, i.e. (similar to the dynamic model in section 5.3)

(7.6) Hi(t) = ∫
∞

−∞
dτδ(t − τ)Hi(τ).

the spectral decomposition of which is

(7.7) H̃i(ω) = ∫
∞

−∞
dτeiωτ Hi(τ)

While the delta pulse of amplitude Hi(τ) propagates through the structure, the
frequency-dependent transmission coefficient is taken to have the approximately
constant value t(τ, ω). This assumes that the permittivity remains approximately
constant during the ring-down time of the structure. Using (7.7), the spectrum of the
transmitted pulse can then be written as

(7.8) H̃t(ω) = ∫
∞

−∞
dτ t(τ, ω) eiωτ Hi(τ).

Using the inverse Fourier transform (7.7) we can then rewrite the transmitted spec-
trum (7.7) in terms of the incident one, rather than the incident amplitude H(τ)

(7.9) H̃t(ω) = ∫
∞

−∞

dω′

2π
t(ω −ω′, ω) H̃i(ω′),

where

(7.10) t(ω −ω′, ω) = ∫
∞

−∞
t(τ, ω)ei(ω−ω′)τ

We numerically implemented (7.9) to calculate the transmitted spectra of our pulses,
using a Fast Fourier transform to calculate t(ω −ω′, ω), then treating the convolution
(7.8) discretely as a matrix multiplication, for a fixed frequency resolution ∆ω.

As shown in Figure 7.10c, this full temporal model (orange line) shows only a
slight difference in terms of the maximum predicted frequency shift. However, the
response is slightly broadened in time than that predicted by the quasi-time harmonic
response, curtailing the negative frequency shift seen previously for times beyond
200 fs, again more similar to the observation in experiment in Figure 7.7b. This can
be understood to arise from two effects: Firstly, the temporal width of the probe
pulse spreads the frequency shifting event in time. Second, the Gaussian frequency
distribution of the probe pulse is reshaped not only by spatiotemporal refraction but
also by the temporally shifted spectral absorption peak of the ITO layer. This last
point is often ignored but very important for absorbing materials, where it can be
difficult to separate changes in the absorption of the material from effects arising
from the temporal gradient in the index. Further, the reshaping explains why we only
measure a blueshift in experiment, but not a red-shift. Additionally, in Figure 7.10d
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we see that the spectrum corresponding to the maximal frequency shift (blue line)
does not correspond to the maximum change in transmission intensity (red line). In
such circumstances where the frequency shifts are small, the two main signatures
discussed above (i.e. the observation of the maximum shift corresponding to the
maximum gradient in the index and the change in sign of frequency shift with angle)
are clear indications that can help distinguish spatiotemporal refraction.

Finally, we point out that a complete model that simultaneously takes into account
both the convolution between the temporal dynamics and the field, as well as the
complete spatial dependence of the refractive index, is a complex computational task
and lies beyond the scope of this project.
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7.6 Additional Checks

Here, we present further experimental data to support the previously discussed
scenarios.

7.6.1 Wavelength Dependence

The ENZ wavelength of the 407 nm sample is 1417 nm. We show in Figure 7.12 that
the blueshift does not appear above the ENZ case. Additionally, we show that it is
reserved for TM polarisation as predicted in the discussion surrounding Equation 7.5.

FIGURE 7.12: Wavelength and polarisation dependence. The mea-
sured frequency shifts show the wavelength dependence. Addi-
tionally, the TE case is measured by rotating the analyser. (I0 =

400 GW cm−2, fpm = 250 THz).
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7.6.2 Intensity Dependence

The intensity-dependent measurements are done for 100 to 400 GW cm−2 for both
samples and plotted in Figure 7.13. The redshift feature appears to saturate slightly
faster for the 115 nm sample than for the 407 nm. The blueshift feature appears to
start saturating for both samples roughly at 200 GW cm−2 incident intensity.

FIGURE 7.13: Intensity dependence. The measured frequency shifts
show the incident intensity dependence of the TM contribution. This
was done for both samples: 407 nm ( fpm = 250 THz, fpr = 200 THz)

and 115 nm ( fpm = 214 THz, fpr = 240 THz).
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7.6.3 Polarisation Dependence

We repeat the measurements of Figure 7.7b,c for the TE polarisation and confirm the
absence of the blueshift feature as seen in Figure 7.14.

FIGURE 7.14: Polarization dependence for both thicknesses. The
experimentally measured frequency shifts of the 407 nm layer, equiv-
alent to the measurements in Figure 7.7b in the TM case (I0 =
400 GW cm−2, fpm = 250 THz, fpr = 200 THz, TM polarisation). The
experimentally measured frequency shift of a 115 nm layer, equivalent
to the measurements in Figure 7.7c in the TM case (I0 = 400 GW cm−2,

fpm = 214 THz, fpr = 240 THz, TM polarisation).

7.7 Conclusions

In conclusion, we show that spatiotemporal refraction provides a frequency shift
that is relatively strong compared to the temporal refraction for sub-µm samples.
This contribution remains roughly constant down to film thicknesses of ~100 nm.
Compared to similar ITO studies [13] with 15 THz shifts, the 1 THz shift may appear
small, but is based on surface effects and enables the use of much thinner samples.
Most importantly, we demonstrate that the frequency shift can now be controlled not
only by the temporal refractive index changes but also by the angle. This enables
tailoring the nonlinear frequency shift in thin layers independent of other nonlin-
ear modulations such as the transmission. In future, more versatile layer choices
or combining multiple layers could provide a plethora of ultrafast amplitude and
frequency switching devices by tuning interface effects to obtain the desired results.
These effects are expected similarly for various other TCOs. For example, slightly
weaker for AZO [73, 74] or at different wavelength and possibly stronger for CdO
[67, 72].
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Summary

This PhD thesis involved various strategies for enhancing different nonlinear optical
processes in thin materials. For that, we utilised two material platforms, graphene
and ITO.

In chapter 4, we investigated the potential of generating new frequencies with
graphene as a one-atom-thick active medium. We utilised the electric field confine-
ment effects of gold nano-ribbons acting as an antenna close to a graphene film for
enhancing the incoming electric field. The generated fifth harmonic signal is more
than three orders of magnitude stronger than bare graphene’s response.

We also studied the dimensional dependencies of our graphene-insulator-metal
heterostructure. The thickness of the insulator spacer was varied by either utilising
a 5 nm Al2O3 layer or a monolayer h-BN. We found that the thinner, monolayer
h-BN sample provides a THG and FHG response that is both more than an order of
magnitude stronger than their 5 nm Al2O3 counterpart.

The antenna geometry dependence was investigated by varying the ribbon width.
The optimum enhancement reached for THG corresponds to an enhancement of
1600 relative to bare graphene for the antenna width of 200 nm. The FHG reached
enhancement factors of 4400. However, these occurred for 100 nm antenna width,
highlighting that the optimum antenna design changes for different high-harmonic
orders.

While graphene-based devices make for incredibly thin frequency mixing devices,
we studied epsilon-near-zero materials next. We investigated the ultrafast nonlinear
modulation of light parameters such as absorption, reflection, transmission and the
corresponding phase and frequency shifts.

In chapter 5, we utilised the near-perfect absorption of an epsilon-near-zero
plasmon in a 60 nm ITO film to induce almost two orders of magnitude reflection
changes in the telecom wavelength range. This switching performance stands in
stark contrast to the original layered ITO studies. The latter may also show notable
absolute changes, but the resonant character of the ENZ plasmon presented here
enabled a much deeper initial reflection of just ~1 %.

Additionally, a thorough experimental study of the frequency dependence for
both polarisations has highlighted a novel contribution to the nonlinear signal. An
increased reflection is measured for the coherent case of the pump and probe sharing
the same polarisation and frequency. The interference of both beams leads to a static
intensity pattern along the thin film. The resulting spatially dependent refractive
index pattern resulted in efficient scattering of the pump beam into the probe reflected
beam direction, leading to the experimentally measured increase in signal. This
effect is known as two-beam coupling and has been identified for epsilon-near-zero
materials simultaneously and independently by J. Paul et al. [163].

A typical issue of (surface) plasmon based devices is the reliance on TM-polarised
light. In chapter 6, we investigated the possibility of achieving a more holistic control
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of the polarisation. A dichroic response is designed via a cross-shaped antenna on
top of a thin ITO film. Aligning the pump polarisation along one nano-antenna bar
led to nonlinear changes predominantly for a probe polarisation aligned parallel to
the same bar. The electric field confinement effects to the antenna edge induced a
more than seven times stronger nonlinear response for a parallel probe compared to
the perpendicular case.

We added a Stokes analyser in the setup to measure the full, elliptical polarisation
of light. It enabled the extraction of all four Stokes parameters depending on the
pump-probe delay. While confirming the amplitude switching, we also identify a
second regime of phase switching. This occurs for a slightly longer wavelength,
further away from the resonance. In the previously discussed amplitude switching
case, the original diagonal polarisation becomes more vertical due to the suppression
of the horizontal transmission. In this phase switching regime, the pump does not
affect the probe amplitude but modulates the horizontal phase exclusively, leading to
a switch towards elliptical polarisation.

While significant changes in amplitude are very desirable, additional optical
parameters need to be considered. The previously mentioned ultrafast changes in
phase, for example, also lead to shifts in instantaneous frequency. In chapter 7, we
studied the ultrafast phase and frequency shifting dynamics of light in ITO layers of
varying thickness and angle of incidence.

For the case of a 407 nm ITO layer, we found a redshift of ~1 THz for low angle
of incidence. This feature aligns with the standard description of frequency shifting
through ultrafast fast changes to the propagation phase inside a nonlinear medium.
However, for a high angle of incidence, a blueshift is measured upon pumping
through the ENZ case, counteracting the propagation phase.

This surface-based blueshift also referred to as spatiotemporal refraction, is dom-
inant for sub-1 µm layers and quasi thickness independent down to ~100 nm. In
thinner cases, multiple internal reflections occur, and the frequency shift vanishes.

Discussion

For nonlinear optics in graphene, the ultimate goal would be combining the graphene
plasmon resonance and electric field confinements to a single atom thin vertical resolu-
tion as suggested in [43]. This limit has been challenging to utilise for high-harmonic
generation, as presented in chapter 4, due to experimental difficulties. These GPP
resonances typically lie in the MIR around 6 µm or longer. Both light sources and
detectors are less efficient and more expensive for this region of interest. Experimen-
tally, we could not trace high harmonic signals for fundamental wavelength beyond
5 µm, yet. Most significantly due to reduced laser fluencies for higher wavelength.

Another exciting aspect of graphene is the difference in origin of the nonlinear
signals. For short-wavelength, the graphene response follows the photo-excited
carrier refraction [15]. For long-wavelength, high-harmonics are generated by thermal
currents [61]. The local dependence of the electron temperature and the resulting
dynamics have shown huge high-harmonic generation efficiencies beyond classical
expectations. We believe this thermal nonlinearity plays a significant role in nonlinear
processes even beyond HHG, e.g. in the all-optical excitation of graphene surface
plasmons [45, 58] (see also Appendix A). Even though the incoming light beams are
in the visible wavelength range, their interference pattern moves slowly relative to
the thermal decay of the electron distribution and enables difference frequency and
phase matching with the graphene surface plasmons.
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For ITO and TCOs in general, we have presented an extensive toolkit for ultrafast
control of optical properties and advancing the status quo in ultrafast amplitude,
phase and frequency switching devices.

Via switching an ENZ plasmon resonance as studied in chapter 5 we decreased
the thin-layer size and increased the amplitude switching response. To reach similar
performances, typical studies in the ENZ nonlinear optics community either use
relatively thick few hundred nm thin films [65, 8] or sub-30 nm films that rely on
nano-antennas to couple with the ENZ mode.

In chapter 6, we used such cross-shaped nano-antenna on top of a 23 nm ITO
film to generate a transient dichroic response. This enables two well-separated
polarisation channels for optical switching. Even more, we measure both amplitude
and phase switching, enabling the conversion of diagonally polarised light towards
an elliptical or vertical polarisation. This design could pave the way towards ultrafast
complex polarisation modulation.

Finally, we identified a new frequency shifting effect that origins from ultrafast
phase changes at a spatial refractive index boundary. This spatiotemporal refraction
provides a thickness independent phase modulation and frequency shifting contri-
bution. The well-known bulk propagation contribution, also known as temporal
refraction, is directly proportional to the refractive index. This new interface compo-
nent offers a tailoring option via the angle without changing the nonlinear refractive
index. This is crucial for independent optimisation of the nonlinear amplitude and
phase changes. Additionally, the thickness independence enables the use of thinner
layers, thereby avoiding large absorption close to the ENZ region.

While all these effects paint a promising picture for ENZ nonlinear optical devices,
the progress in the field is still hindered by some obstacles that need to be addressed.
Most notably, the ENZ case should not only provide Re(ε) = 0, but ∣ε∣ = 0. Hence, the
losses of ITO and similar materials severely hinder nonlinear enhancement, as already
seen, e.g. in chapter 7 the increased frequency shift for a reduced scattering rate. More
technical problems also include easy implementation with established CMOS devices
and precise reproducibility in sample manufacturing. With the constant advances
in fabrication capabilities, future ENZ materials will present an exciting platform
to demonstrate novel nonlinear effects and show promise for implementation into
industrial applications such as lasers or novel ultrafast optical switching devices.

Outlook

To directly follow up on my work we will investigate more carefully the linear
optical and structural characteristics of both nanostructured samples. With that, we
will be able to make more qualified statements regarding the suggested quenching
process of fifth harmonic generation in our graphene device studied in chapter 4.
For the plasmonic nano-antennas on ENZ thin films (see chapter 6), want to use
those characteristics to model our samples better. Not only to describe the current
measurements but also to optimize future devices.

In general, more complex modelling methods than the TMM method often used
here will need to be utilized in the future. Methods such as finite element modelling
(FEM), as seen for very rough estimates in subsection 5.7.1 or section 6.5, should be
used to model the propagation of pulses in space- and time-varying media. Such
methods would allow for an easy extension to structured or antenna enhanced
models, not able to be simulated with the layer-based TMM method.

Beyond that, various ideas come to mind following the research direction pre-
sented here. From an experimental point of view, my setup’s further advancement
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to fully automatically measure all polarisation combinations desired would be a
thrilling addition. The first step towards this goal was done by implementing an
automated Stokes analyser to analyse the whole polarisation ellipses, rather than just
a conventional linear analyser.

While we already achieved optical switching by almost two orders of magnitude
using an ENZ plasmon resonance as studied in chapter 5, we believe this performance
could be even better by optimising the material choice and thickness. A higher
reflection for the “on”-state and a lower reflection for the “off”-state would be feasible
similar to CdO studies [67] and more.

The polarisation switching with the cross-shaped antenna could be optimised
with more complex geometries. Adding a cavity enhancement via replacing the
dielectric substrate with a mirror could be an obvious extension. Clearly, structuring
the ENZ material itself would hold great promise for diverse new research routes to
follow. However, fabrication has proven to be difficult.

Similar difficulties persist for multilayer designs. We focused on studying basic
phenomena with one active nonlinear medium layer. Combining our two material
categories may present a promising route to follow once feasible from a manufac-
turing and characterisation point of view. With the strong nonlinear response of
long-wavelength ENZ materials such as CdO, a combination with graphene surface
plasmons or similar 2D effects could provide promising pathways for even more
pronounced effects. These may even be tunable via the electrical doping of graphene.
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Paper: Origins of All-Optical
Generation of Plasmons in
Graphene

Author Contribution statement

In the context of this paper I measured four wave mixing and pump-probe signals of
graphene. Calculations and discussions around the measurements adjusted the focus
of the paper, which was later published in Scientific Reports [58].
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origins of All-optical Generation of 
plasmons in Graphene
C. J. tollerton  1, J. Bohn  1, t. J. Constant1, s. A. R. Horsley1, D. e. Chang2,3, e. Hendry1 & 
D. Z. Li2

Graphene, despite its centrosymmetric structure, is predicted to have a substantial second order 
nonlinearity, arising from non-local effects. However, there is disagreement between several published 
theories and experimental data. Here we derive an expression for the second order conductivity 
of graphene in the non-local regime using perturbation theory, concentrating on the difference 
frequency mixing process, and compare our results with those already published. We find a second-
order conductivity (σ(2) ≈ 10−17 AmV−2) that is approximately three orders of magnitude less than that 
estimated from recent experimental results. this indicates that nonlinear optical coupling to plasmons 
in graphene cannot be described perturbatively through the electronic nonlinearity, as previously 
thought. We also show that this discrepancy cannot be attributed to the bulk optical nonlinearity of the 
substrate. As a possible alternative, we present a simple theoretical model of how a non-linearity can 
arise from photothermal effects, which generates a field at least two orders of magnitude larger than 
that found from perturbation theory.

Graphene, with its linear dispersion and a linear density of states for electrons1, exhibits remarkable optical prop-
erties such as universal, linear optical conductivity2. Moreover, while a single layer of graphene is relatively trans-
parent (due to its mono-layer thickness), the nonlinear optical conductivity has been shown to be surprisingly 
large3,4. This is particularly true for the second order nonlinearity, which is unexpected within the dipole approx-
imation for a centrosymmetric material5, but can be substantial in graphene due to non-locality6–11.

The 2D nature of graphene also gives rise to plasmons with wavelengths that are substantially smaller than 
free-space electromagnetic radiation of the same frequency by approximately two orders of magnitude12, gen-
erating large non-local effects. Of particular interest here are the nonlinearities in the infrared spectral region, 
which may be enhanced due to the presence of plasmons12,13. Recently, B. Yao7 and Constant14 have independently 
reported experimental measurements of a frequency mixing process, with a difference frequency generation 
(DFG) in the mid-infrared, that implied enhancement due to the presence of plasmons. Such an all-optical cou-
pling scheme for plasmon generation in graphene holds great promise, for example, in the design of plasmon 
sensors or new THz sources.

Given the large nonlinearities observed in graphene and its potential for optical devices, it would be highly 
beneficial to develop a quantitative, microscopic understanding of its origin. There already exist a number of 
calculations in literature of the second-order conductivity in graphene for DFG conditions, in a regime where 
the incident fields are assumed to only weakly perturb the equilibrium Fermi carrier distribution. However, the 
conclusions are not all consistent with one another, and differing models or assumptions have been used to point 
to consistency with experimental results. Here, our primary objectives are to show definitively that the correct 
perturbative model of graphene nonlinearities does not describe well existing experiments, and to propose an 
alternative non-perturbative mechanism based upon photothermal effects, whose predicted strength is closer to 
experimental values. First, we obtain a second-order conductivity of graphene for DFG that is different from the 
first theoretical calculation specifically for DFG6, but provides confirmation to a set of other published theoretical 
results8,9,11. While the final result in itself is not new, we derive it in a different fashion based upon the Peierls 
substitution15, which avoids issues that arise in the calculation of the linear conductivity using a vector potential 
with the Dirac Hamiltonian11. We then present a set of original results, beginning with an application of this 
theoretical result to the experimental conditions of Constant14 and a quantitative comparison between theory 
and experiment highlighting a large discrepancy. We explicitly show that the experimental effects observed by 
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Constant14 and B. Yao7 cannot be attributed to the non-linearity of the substrate. Finally, we discuss other possible 
contributions to the wave mixing signals observed. In particular, we derive a model showing how such a signal 
could arise from photothermal effects, and estimate a difference frequency field that is two orders of magnitude 
larger than that from perturbation theory.

Results and Discussion
perturbation theory. Formally, the interaction of an electron with a vector potential 

→
A  can be incorporated 

into a Hamiltonian via the substitution ˆ ˆ→ → → +
→

p p eA , where →̂p  is the canonical momentum and e is the elemen-
tal charge. Absent the vector potential, an electron in a periodic crystal potential V r( )→ , with Hamiltonian 
ˆ ˆH p m V r/2 ( )

2
= → + → , where m is the bare mass of an electron, can be formally diagonalized to produce a band 

structure. In the case of graphene, the Hamiltonian is typically taken to be of a tight-binding form. The Peierls 
substitution15 formally enables one to incorporate the vector potential into such a postulated model, avoiding the 
need to actually solve for the eigenstates of the Hamiltonian with the replacement → → → +

→
p p eAˆ ˆ . The tight-bind-

ing Hamiltonian of graphene with 
→
A  thus reads:
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Here   and  ′ are the diagonal and nearest-neighbor off-diagonal matrix elements of the Hamiltonian respec-
tively in the basis of atomic orbitals in absence of 

→
A ; ˆ ˆ †→ →( )a a,R Ri i

 and ˆ ˆ †
τ τ

→
+→ →

+→( )b b,R Ri l i l
 are annihilation and creation 

operators for the two sublattices in graphene, with 
→
Ri, i = 1, …, N denoting the sublattice sites, and τl, l = 1, 2, 3 

denoting the vectors from a lattice site to its three nearest neighbors. The current density operator can then be 
obtained by ˆ ˆj R H A( ) /i

→ →
= ∂ ∂

→16.
In weak electromagnetic (EM) fields, both Ĥ and ĵ→ can be expanded in terms of A

→
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Crucially, the Peierls substitution yields terms in Eqs (4), (6) and (7), which cannot be obtained by replacing 
→p̂  with →̂ +

→
p eA  in the Dirac Hamiltonian (as done in previous works8,9,11). In fact, it is the term in Eq. (6) that 

cancels out a term in Eq. (5) that could otherwise cause a divergence in the linear conductivity11 (see details in the 
Methods).

At the Dirac points, following standard procedures, one can derive equivalent spinor forms of the above oper-
ators. The expectation value of the current density in the presence of the fields can be calculated as ˆ ˆ ˆ

ρ〈
→

〉 =
→j jTr( ), 

where ρ̂ is the (self-consistent) single-particle density matrix. The matrix elements can be calculated by using the 
time evolution equation ρ ρ= +ˆ ˆ ˆ ˆdt i H Hd / ( / )[ , ]I0  and solving the density matrix n

n( )ρ ρ= ∑ˆ ˆ  perturbatively in 
powers of ĤI. We leave the detailed derivations of the spinor formalism and the currents to the Methods, and only 
quote the result for the nonlinear current here. We consider the response to EM fields described by a potential 
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ˆ→ → = ∑ + . .ω
=

−A r t A x e( , ) (1/2) [ c c ]m m
i q x t

1,2
( )m m , where the electric field components parallel to the graphene 

layer are related to the potentials by E A t/mx m= −∂ ∂ ; qm and ωm are the wavevectors and angular frequencies, 
and x̂ is a unit vector along the x-direction. Following relevant experiment14 the fields for m = 1, 2 are called 
“pump” and “probe” respectively, and we illustrate their configurations in Fig. (1). Here we are interested in the 
case of DFG and look for the nonlinear current at difference frequency ω3 = ω2 − ω1 and wavevector q3 = q2 − q1, 
which can be formally written as σ=j E Ex x x

(2) (2)
1 2 , where σ(2) defines the second-order conductivity. Under the 

relevant experimental conditions7,14 ω1 ≈ ω2 ≫ ω3,
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where in ωF and vF are the Fermi angular frequency and velocity.

Comparison of perturbation theory with experiment. X. Yao6 were the first to derive the nonlinear 
conductivity in graphene relevant to DFG. In Fig. 2, we plot this derived second order nonlinear response (Eq. (5) 
of X. Yao6 converted to σ(2)) along with experimental results from Constant14, recent perturbative calculations11 
and our own Eq. (8). It is important to note first that the results of Wang11 and Cheng9 strongly agree with our 

Figure 1. Illustration of electromagnetic fields (E
→

) (applicable to pump, probe, and DFG) propagating in the 
x-z plane. All the fields are p-polarized and the directions of propagation and polarizations are indicated by the 
red and black arrows respectively. The angles of incidence and transmission are defined in the figure as θ and φ.

Figure 2. Comparison of the nonlinear conductivity σ ω q( , )(2)
3 3  derived here from Eq. (8) with other results 

derived using perturbation theory: Eq. (5) from X. Yao6. All theoretical curves are plotted for a Fermi energy of 
500 meV and difference frequency of 15.3 THz. [Experimental estimates from Constant14, for the different 
experimental geometries (a), (b), (c) (Table 1) are indicated by black crosses].

Geometry θpump θprobe λpump (nm) ω
π
3

2
 (THz) R

R
Δ

Φ
 (mJ−1 cm2) σ(2) (fAmV−2)

(a) 45° 55° 607 7.0 −0.0097 24

(b) 50° 70° 597 15.3 −0.025 75

(c) 125° 15° 587 23.8 0.062 180

Table 1. Differential reflectivity, normalized to pump fluence Φ, and experimentally determined σ(2) extracted 
using the model of14 for three geometries (a), (b) and (c). For all geometries λprobe = 617.53 nm.
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own suggesting this is the correct prediction from pertubation theory (in addition Tokman8 and Rostami17 
achieve the same result except a factor of 2 which may be due to definitions we could not clearly identify). 
However there is a rather large discrepancy between Eq. (8) and the model derived by X. Yao6, which were derived 
for identical conditions using perturbation theory. Moreover the conductivity derived by X. Yao6 has a 
non-physical divergence for →q 03 . While it is not clear from where this unphysical behavior arises, in a cen-
trosymmetric material such as graphene this behavior is paradoxical. Meanwhile, the conductivity from Eq. (8) 
tends to zero as q 03 → , as it must in graphene. We note that, depending on the value of q3 in Fig. 2, the magnitude 
of σ(2) predicted by Eq. (8) is at least 4 orders lower than that found by X. Yao6.

The first experimental signatures attributed to DFG of plasmons were found by Constant14. In this experiment, 
by illuminating the graphene with two tunable, femtosecond laser pulses (“pump” and “probe”) with well-defined 
angles of incidence but different frequencies, Constant14 was able to phase-match to the plasmon. The geometry 
of the experiment is the same as that chosen for our theoretical calculation defined in Fig. 1. The graphene sup-
ports tightly guided plasmons with a dispersion relation ωpl(k). The differential reflectance of the probe pulse ΔR 
was seen to change significantly whenever the difference frequency and wavevector were aligned to the plasmon 
dispersion relation, k k( )pl 1 2 1 2ω ω ω

→
−

→
= − , suggesting efficient plasmon excitation via DFG. In practice, a 

range of difference frequencies and wavevectors were scanned by continuously varying the pump wavelength, and 
by choosing different discrete incident beam angles.

Constant investigated three experimental geometries (noted in Table 1) with different angles of incidence, θ.  
We examine one of the resonant conditions for each of the three experimental geometries, as defined in 
Table 1. Assuming the differential reflection signals arise from DFG, one can use the model introduced in the 
Supplementary Information of Constant14 (briefly reviewed in the Methods section) to estimate a value for σ(2) 
for each measurement. The results of this analysis, i.e. values of σ(2) which describe the experimental signals, are 
also shown in Table 1.

Figure 2 compares the experimental values of σ(2) from Constant14 and theoretical predictions from Eq. (8), 
Wang11 and X. Yao6. Firstly, the q3 dependence of Yao6 clearly differs greatly from that of both the experiment 
and the near-linear predictions of other theoretical derivations. The experimental magnitudes of σ(2) are also 
significantly lower than the prediction of X. Yao6, and several orders higher than those from recent perturbative 
works8,9,11. As found by17, it is only possible to find agreement between the experiments14 and perturbative second 
order calculations if one invokes an unphysically low decay rate for the plasmon (resulting in extraordinarily 
narrow resonances). More recently, a similar experiment has been carried out by B. Yao7 in a waveguiding geom-
etry, and the theory from X. Yao6 was used to model the experimental signals. While the geometries of B. Yao7 
and Constant14 are significantly different, similar signals were observed in each experiment. Therefore, ignoring 
the unphysical results in X. Yao6, the large discrepancy between both experiments and the theoretical consensus 
points to a second order response that is not purely perturbative, as originally interpreted. In the remainder of 
this paper, we therefore discuss other possible contributions which might account for the discrepancy between 
perturbation theory and the experiments of B. Yao7 and Constant14.

substrate Response. In this section we consider contribution of the second order nonlinearity of the quartz 
substrate used in experiment14. The analysis significantly simplifies if the nonlinear polarization is generated 
far from a phase-matching condition of the bulk, and depletion can be ignored, as should be the situation for 
Constant14. In this case, the pump and probe fields generate a polarization in quartz are given by

P r t e t t E E( , ) , (9)i k k r t
I I3 0

(2) ( ) ( )
1 2 1 2

T T1 2 1 2 ⁎ ⁎ε χ→ = ω ω


→
−

→
⋅→− − 



where χ(2) is the second order susceptibility of the substrate, kTi
→

, ti, and EIi denote the wavevector on the transmit-
ted (substrate) side, transmission coefficient, and the incident field amplitude of the pump (i = 1) and the probe 
(i = 2) fields respectively. The transmission coefficients ti are given in the Methods. The subscript i = 3 indicates 
quantities corresponding to the difference frequency signal at ω3 = ω1 − ω2. As charge density waves in graphene 
are driven by an electric field, we must relate the nonlinear polarization to the field generated in the quartz, which 
satisfies the wave equation

ε
µ−∇ +
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= −
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s2
3

3
2

2
3

2 0
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Here, the subscript “s” denotes that this is an effective source field that will later drive a response in the 
graphene (distinct from the resulting plasmon field). Also, n( )3 3

2ε ω=  indicates the permittivity of quartz evalu-
ated at the difference frequency, with the model of the frequency dependent n(ω) given in the Appendix. Due to 
the plane-wave nature of P3, E3s takes on the same spatial and frequency dependence. In our regime of interest, the 
spatial derivative of the field, E k k Es T T s

2
3 1 2

2
3|∇ | = |

→
−

→
| , is significantly larger than the time derivative. This is 

because the pump and probe fields are chosen to phase-match with surface plasmons in graphene (thus the asso-
ciated wavevectors are much larger than free-space fields at the difference frequency). Thus the field amplitude 
created by the nonlinear polarization is well approximated by

E
c k k

t t E E( )

(11)
s

T T
I I3

1 2
2

2
1 2

2
(2)

1 2 1 2
⁎ ⁎ω ω
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−

|
→

−
→

|
.

In particular, it should be noted that a large wavevector mismatch results in strong suppression of the field. To 
simplify the discussion, we will assume the scenario which produces the highest field, i.e. in which E3s is 
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completely polarized along x̂ (parallel to the graphene sheet) so that it maximally drives a charge density wave in 
graphene. As we see below, even in this best case scenario, the generated field is rather small.

Since the nonlinear response is considered here to be completely within the substrate, which provides an 
effective source field E3s, the remaining part of the calculation is completely linear in its nature. Using the conven-
tions in Fig. 1, we take “reflected” and “transmitted” field components of unknown amplitude, which correspond 
to the plasmon field on the vacuum and substrate sides. The wavevector along x̂ for these fields is equal to 
q3 = qT1 − qT2, where qT1 and qT2 are the in-plane components of 

→
kT1 and 

→
kT2, while the perpendicular compo-

nents must satisfy the respective dispersion relations for each side of the interface, e.g., ε ω= −k c q( / )T z3
2

3 3
2

3
2. 

Similar to the procedures to solve the pump (probe) field laid out in the methods, the two unknown field ampli-
tudes can be readily solved by taking E3s to be the incident field on the substrate side, and enforcing electromag-
netic boundary conditions at the vacuum-graphene-quartz interface, which yields the following parallel-field 
component on the substrate side, evaluated at the graphene layer (z = 0),

E E c
c c n

( ( ) sin ) sin
sin sin ( ( ) sin ) (12)

pl s3
0

(1)
3 3 3

0 3 3 0 3
(1)

3 3

ε σ ω θ φ

ε φ θ ε σ ω φ
= −

+

+ +
.

Here, σ(1)(ω3) is the linear conductivity of graphene evaluated at frequency ω3.
Specifically we can numerically evaluate Epl for geometry (b) in14. Taking a value of 0 3 pmV(2) 1χ = . −  for 

quartz18, we find that ≈ −E 15 Vmpl
1. The modeling in14 predicts a considerably larger value for the inferred plas-

mon field in experiment of 8 10 Vm4 1≈ × − . We therefore do not believe that the substrate nonlinearity contrib-
utes significantly to the signals observed in14. However, we note that our substrate model does not consider any 
surface enhanced nonlinearity. Its theoretical modeling would require experimental measurements of surface 
nonlinear coefficients relevant to our system, which we were unable to find in literature.

Photothermal Effect. Here, we present an alternative mechanism by which a plasmon field at the difference 
frequency and wavevector can be generated. Fundamentally, the effect discussed below arises from the linear 
Seebeck effect, so that the total current is described by

j q q E E E SdT
dx

( , ) ( , ) (13)x x x x3 3
(1)

3 3 3
(2)

1 2
(1)ω σ ω σ σ= + + .

The first term on the right hand side describes the normal linear relationship between the current and field, 
while the second describes the conventional second order electronic nonlinearity. The third term, and most 
important here, arises due to photothermal effects, and accounts for the Seebeck current emerging due to a tem-
perature gradient ( )dT

dx
 in a material described by Seebeck coefficient S. As we discuss below, this term can give 

rise difference frequency currents even in the absence of a nonlinear conductivity (i.e. even when σ(2) = 0).
It is known that excitation of graphene carriers by intense femtosecond pulses (Φ ≈ . −0 1 mJcm 2 with pulse 

width ~100 fs in14) is not perturbative in nature. The electron temperature is raised by several thousand kelvin 
under such excitation19 and is not in equilibrium with the phonon temperature. Furthermore, under geometries 
similar to those used in B. Yao7 and Constant14, heating due to optical illumination is not homogeneous. When 
two or more light sources of similar frequency are incident on an interface at oblique angles, the result will be a 
near stationary interference pattern such as that shown in Fig. 3. When the frequencies are slightly different, the 
pattern will propagate in the plane with a velocity equal to ω3/q3. The spatially dependent interference pattern will 
give rise to a temperature modulation that propagates along the graphene sheet, which, via the Seebeck effect, can 
also generate a current and thereby drive a plasmon excitation when phase-matching conditions are satisfied. 

Figure 3. Intensity pattern generated from the interference of two beams in geometry (b) (θpump = 70°, 
θprobe = 50° λpump = 587 nm, λprobe = 617.53 nm). The temperature gradient in the sample follows this pattern and 
generates photothermal currents when thermalising. The pattern propagates, phase-matched to the difference 
frequency field, with wavevector q3 = q1 − q2.
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Below, we present a theoretical model of this effect, and show that it can generate a difference frequency field that 
is orders of magnitude larger than that calculated from the perturbation theory.

The intensity pattern imprinted on the graphene sheet can be expressed as

ε

ε
ω

= +

≈








+ −








+ .

ω ω− −I x t c E e E e

c E E
E

q x t E

( , )
2

2
1 2 cos( ) ( )

(14)

x
i q x t

x
i q x t

x x

x
x

0
1

( )
2

( ) 2

0 1
2

2

1
3 3 2

2

1 1 2 2



Here E1x and E2x are the in-plane components of the pump and probe fields respectively, and we have assumed 
the probe field is much weaker than the pump field. The ratio of the in-plane components can be calculated as 

φ φ=E E t t I I/ ( sin )/( sin ) /x x
L L

2 1 2
( )

2 1
( )

1 2 1, with I1 and I2 being the incident intensities of the pump and probe 
beams respectively, and the linear transmission coefficient =t i( 1, 2)i

L( )  is given by Eq. (38) considering only the 
linear optical conductivity of graphene Eq. (40). Using the parameters in the experiment of Constant14, we obtain 

≈ .E E/ 0 1x x2 1 .
The intensity pattern acts as a heat source for the temperature distribution which, in linear response theory, 

satisfies a diffusion equation:

T
t

T
x

I x t y T T( , ) ( ),
(15)

2

2 0α β∂
∂

−
∂
∂

= − −

where α is the diffusivity, β is the heating rate due to the intensity pattern, and y is the relaxation rate back to the 
equilibrium temperature T0. Due to the linearity of the equation, it can be readily solved in the Fourier domain, 
in which when taking into account Eq. (14) the solution takes the form

T x t T T T q x t( , ) cos( ) (16)dc ac0 3 3ω= + + − − Ψ .

Here, Tdc is the (large) position- and time-independent temperature increase arising from the incident lasers, 
while Tac represents a position- and time-varying temperature oscillation that must necessarily be generated in 
the presence of moving intensity interference pattern. Ψ denotes a phase offset between the intensity and tem-
perature modulations, whose specific form is not relevant here. Substituting T(x, t) into Eq. (15), in the regime 
of interest y ≪ ω3, one obtains |Tac|/Tdc ≈ 0.2y/ω3. As expected, the temperature modulation Tac is reduced sig-
nificantly as the oscillation frequency ω3 increases with respect to the damping rate. It is known that intense, 
femtosecond pulses similar to those in14 lead to Tdc of approximately 2000 K19. The relaxation rate y is due to 
electron-phonon scattering, and we take a value of y ≈ 1/(100 fs)19. At ω3 = 2π × 10 THz these parameters give a 
temperature modulation Tac = 60 K.

The Seebeck effect enables the generation of a source current in the presence of a temperature gradient, and 
this can be described by j q q S T( , ) ( )s ac3 3

(1)
3 3ω σ ω= , where S is called the Seebeck coefficient. In principle, the 

Seebeck coefficient could be frequency and wavevector dependent. However, this dependence has not been meas-
ured carefully in literature, nor is it straightforward to calculate from first principles. There have been several 
measurements of the Seebeck effect in graphene, both in DC experiments (S ≈ 5 × 10−5 V/K20, S ≈ 8 × 10−5 V/K21) 
and under illumination from 100 fs pulses (S ≈ 10−4 V/K22). Whilst it is hard to predict how the Seebeck effect 
behaves on 10 fs timescales relevant here (corresponding to peak to peak propagation time of the intensity pattern 
in Fig. 3), it is likely that photothermal effects will be higher on ballistic timescales, as with other materials23. Here 
we use a conservative value of S ≈ 10−4 V/K reported in22.

Now using the standard EM boundary conditions at the graphene layer (see Fig. 1), with the aid of the charge 
continuity equation, one can find the relation between the electric fields and the surface current density at the dif-
ference frequency ω3. Note now the Seebeck effect contribution needs to be added to the surface current density:

j q E j q( , ) ( ) ( , ) (17)x x s3 3
(1)

3 3 3 3ω σ ω ω= + .

Then solving the equations of the boundary conditions (see Methods for more details), we obtain for the elec-
tric field at the difference frequency:

E t
c

q S T
2

( ) sin ,
(18)x

L

ac3
3
( )

0

(1)
3 3 3ε

σ ω φ= −

where t L
3
( ) is the linear transmission coefficient at frequency and wavevector ω3, q3. For geometry (b) of Constant14 

we find a magnitude of E3x, when on plasmon resonances, of E 2 3 10pl
3≈ . ×  V/m.

Just as the pump and probe fields can generate a plasmon field through the Seebeck effect, a back-action effect 
(involving Seebeck mixing of the plasmon and pump fields) results in a change of the probe differential reflec-
tance. In principle, this could be rigorously calculated in a manner similar to above, but this would require knowl-
edge of the Seebeck coefficient at optical frequencies, which has never been measured or calculated. However, we 
can nonetheless obtain an approximate value for the differential reflection, by exploiting conservation of energy. 
In particular, in steady state, the number of plasmons dissipated per unit time must equal the rate of photons 
removed from (added to) the pump (probe) beam. There are two contributions to the energy dissipation at the 
difference frequency: both the graphene layer and the substrate will exhibit absorption. For graphene, the power 
loss per unit area from absorption can be found by P E(1/2)Re ( )g x

(1)
3 3

2σ ω= [ 24. In the experiment, the substrate 
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itself (quartz) can provide a non-negligible loss, through coupling with phonons. The corresponding power loss 
per unit area can be calculated as ∫ε ω ω=

−∞
P dz n E( /2) Im [ ( )]s 0

0
3

2
3 3

2, where our model for the 
frequency-dependent refractive index n(ω) is provided in the Methods. Then, the number of photons, at the dif-
ference frequency, absorbed per unit time and area is ωΓ = +P P( )/d g s 3 . At the individual photon level of a DFG 
process, an incoming pump photon breaks down to an outgoing probe photon and a plasmon, and therefore the 
number of plasmons created is also equal to the number of newly generated probe photons that enter either the 
reflected or transmitted beam. The number of photons per unit time and area in the incident probe beam is sim-
ply θ ωΓ = I sin /in 2 2 2 . Thus the order of magnitude of the differential reflectance of the probe beam can be esti-
mated as Δ ∼ Γ ΓR Rn/ /d in. For configuration (b) in Table 1, we estimate the peak differential reflectance after 
normalized by the fluence (0.1 mJ cm−2) to be ~7 × 10−7 mJ−1 cm2. Although we emphasize that the Seebeck 
effect and the electronic nonlinearity σ(2) are completely independent effects, nonetheless to facilitate a better 
comparison, one can ask what hypothetical value of nonlinear conductivity S

(2)σ  would be required, in order to 
produce the same current as predicted from the Seebeck effect, i.e. σ=j E Es S x x

(2)
1 2

⁎ . We extract a value of 
3 1 10 AmVS

(2) 15 2σ ≈ . × − − .
While this model predicts a value slightly smaller than experiment ( 7 5 10 AmV(2) 14 2σ ≈ . × − − [ 14), the 

Seebeck coefficient could be larger on ballistic timescales relevant here (≈10 fs peak to peak propagation time) as 
is expected for other materials23. Nevertheless such an effect is fundamental to the experiments and is signifi-
cantly larger than the predictions of perturbation theory.

We note that photothermal effects will be prominent in the waveguiding geometry of B. Yao7 (in such a geom-
etry, even though the absolute field intensities are lower, the considerably larger propagation length can compen-
sate). Interestingly, the power dependence of such a photothermal signal would not necessarily follow that of 
conventional difference frequency generation ( j E E(2)

1 2
⁎σ= ), and could explain those observed by Constant25. 

Investigating the intensity dependences of these nonlinear signals could provide great insight into the origins of 
these effects. We also note that the photo-Dember effect can similarly induce local intensity dependent currents 
and is surprisingly large in graphene on ultrafast timescales26. However, since the photo-Dember effect depends 
on mobility asymmetry between electrons and holes, it will be sample and substrate specific, making it difficult to 
estimate.

Conclusions
We have derived a second order conductivity of planar graphene (σ ≈ − −10 AmV(2) 17 2) with non-local perturba-
tion theory, addressing the long wavelength divergence in6,7 and divergent linear current in11. However, while our 
result is in agreement with recent calculations8,9,11,17, it is insufficient to explain observations from experiment7,14. 
We also show that this discrepancy cannot be attributed to the bulk nonlinearity of the substrate.

We also discuss the possibility of photothermal effects in experiments, wherein a spatial intensity pattern 
resulting from interference of incident beams leads to local inhomogeneous heating of the sample and show that 
these effects will give rise to frequency mixing currents. We derive a rigorous model for DFG arising from pho-
tothermal effects (with the only uncertainties arising from knowledge of material properties such as the Seebeck 
coefficient), and conservatively estimate a DFG current which is at least two orders of magnitude larger than that 
found from perturbation theory, significantly closer to experimental estimates from14. Microscopic modeling of 
such local photothermal effects (and other non-equilibrium processes) presents a considerable challenge, and it 
would be interesting to develop theoretical techniques to do so. We believe that such efforts would shed further 
light on discrepancies between recent experiments7,14 and theory6–11 for all-optical plasmon generation processes 
in graphene, and enable the strengths of these nonlinear processes to be optimized for future nonlinear optical 
applications.

Methods
spinor formalism. We can perform a Fourier expansion on the operators ˆ ˆ †→ →a a( , )R Ri i

 and ˆ ˆ †
τ τ

→
+→ →

+→b b( , )R Ri l i l
 in 

the tight-binding Hamiltonian in terms of the operators in the reciprocal lattice space:

a
N

a e b
N

b e1 , and 1 ,
(19)

R
k

k
i k R

R
k

k
k Ri ( )

i

B

i
i l

B

i l∑ ∑= =τ
τ→

→
∈Ω

→
→

⋅
→

→
+→

→
∈Ω

→
→

⋅
→

+→
ˆ ˆ ˆ ˆ

in which ΩB denotes the first Brillouin zone, k
→

 is the electron momentum and N is the number of sites in one 
sublattice. One can then substitute these expansions into the expressions of the Hamiltonian Eqs (2–4) and cur-
rent density operators Eqs (5–7). As usual, near the two Dirac points K

→
 and K−

→27, the operators can be expanded 
in orders of 

→
k  referenced from 

→
K  or K−

→
: 
→ →

→
→

k K k . One can then derive equivalent spinor forms for Eqs 
(2–7) in the first quantization picture. If only the terms to lowest order of 

→
k  are kept, then

H v p K v p Kat , and at , (20)F F0
ˆ ˆ ˆ ˆ ˆ⁎

σ σ→ → ⋅ → →
− → ⋅ → −

→

in which the Fermi velocity v a3 /2F = ′T �, with a being the lattice constant of the underlying sublattices, and 
σ σ σ→ ≡ +x yx y
ˆ ˆ ˆ ˆ ˆ with x y,σ̂  representing the Pauli spin matrices. Meanwhile, for ĤI:

σ→ ± →ˆ ˆH ev A r t( , ) , (21)I F x
(1)
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with “+” at 
→
K  and “−” at K−

→
, and we have for simplicity assumed 

→
A  is along the x-axis. The second order com-

ponent is meanwhile given by

T
�

ˆ ˆ
⁎

σ→ −
′ ω−H e a A A e

8 4
,

(22)I
qx t

x
(2) 2 2

2
1 2 i( )

at both 
→
K  and −

→
K , where we have taken 

→
A  to be in the form A r t A x e( , ) (1/2) [ c c ]m m

q x t
1,2

i( )m mˆ→ → = ∑ + . .ω
=

− , 
where qm is the in-plane component of the momentum and only kept the terms that give rise to a perturbation at 
ω = ω1 − ω2 and q = q1 − q2 (DFG). For H0

ˆ  we find that the single-particle eigenenergies E �sv ks F=  and eigen-
states are

e
se

K se K1
2

, with 1 at , and
1

at
(23)k s

k r
s s i s

ii
k

kψ
ξ

χ χ χ= =








→
=




− 


 −

→
.θ

θ
→

→
⋅→

→

→

Here s = ±1 is the band index, ξ is the area of the graphene sheet, and θ→
k  is the polar angle of k

→
.

Similarly, the spinor forms of the current densities can be found as

ˆ ˆ ˆ ⁎
j r ev K ev K( ) at , and at , (24)F F0 σ σ

→ → → − → → → −
→

T
�

�

ˆ ˆ ˆ

ˆ⁎

σ

σ

→
′ → ±

→

→ ± +
→

− −
→

.ω−

j e a A r t K j

e a v A A e K K

4
( , ) at , and

32
“ ”at and “ ”at (25)

x x x

F qx t
x

(1) 2 2

2
(2)

3 2

1 2
i( )

It should be noted that in addition to the “typical” contribution to the current density, Eq. (24), which is asso-
ciated with the Bloch momentum, there is also the “diamagnetic” term of ĵx

(1) in Eq. (25). We will see in the fol-
lowing that this term, and in fact a higher correction to this term of order k

→
, cancels the term that could otherwise 

cause a divergence in the linear conductivity.

Density matrix method. The time evolution of the density matrix under the interaction with EM fields 
described by HI

ˆ  is given by ˆ ˆ ˆ ˆρ ρ= +dt i H Hd / ( / )[ , ]I0 . From perturbation theory, the matrix elements 
n mnmρ ρ≡ ˆ  of the i th order perturbation of ρ̂ satisfy


ρ ω ρ ρ γ ρ= − − − ≥−

t
H id

d
i i [ , ] , ( 1) (26)nm

i
nm nm

i
I

i
nm nm

i( ) ( ) ( 1) ( )ˆ ˆ

in which n, m are dummy indices denoting both the band index s and wavevector 
→
k , ω = −( )/nm n mE E �, and γ 

is a phenomenological dissipation term introduced universally for all matrix elements. We take the density matrix 
in absence of fields to be the Fermi distribution fn with Fermi energy ωF  at zero temperature, 

� Eρ ω δ= Θ −( )nm F n mn
(0) , where Θ is the Heaviside step function. A solution to Eq. (26) can be written as

∫ρ ρ= − ′ ′ ′ .ω γ

−∞

− − + − ′t t H t t e( ) i d [ ( ), ( )] (27)nm
i t

I
i

nm
t t( ) ( 1) (i )( )nm


ˆ ˆ

Linear conductivity. In previous works calculating graphene conductivities using the vector potential8,9,11, 
the authors typically replace p̂→ by p eA→ +

→ˆ  in the Dirac Hamiltonian. However, the linear current thus calculated 
has a term that diverges when the integration limit of the electronic momenta is taken to be infinity. This issue was 
fixed in11 by adding an artificial quadratic term to the Dirac Hamiltonian. In this section we show that this prob-
lematic term is actually canceled by a term in Eq. (7) in the Results section, thus no artificial term needs to be 
introduced to regularize the calculation.

To begin with we consider the current response to an in-plane electric field described by a vector potential 
ˆ→ → = + . .ω→⋅→−A r t Axe( , ) (1/2) c c ,q r ti( )  where q qx→ = ˆ. The current generated at →q  and ω is calculated through 

the expectation value of ˆ ˆj q e j r( ) 2/ ( ),x
iqx

xξ→ = →−  applied to the density matrix

ˆ ˆ ˆ ∑ρ ρ ρ〈 → 〉 = → ≈ → + →j q j q j q j q( ) Tr( ( )) ( ) ( ) ,
(28)x x

n m
nm x mn nm x mn

,

(1) (0) (0) (1)

where the superscripts (0), (1),… denote the order of 
→
A  included in the terms. According to Eq. (27), the 

first-order density matrix is given by

t eAv f f
i

n e m e( )
2 (29)nm

F m n

nm
x

iqx i t(1)


ρ

ω ω γ
σ=

−

− +
.ω−ˆ

The matrix elements of the current density operators can be obtained by using Eqs (23–25). Now we can sub-
stitute these results into Eq. (28). We then replace the summation on states by an integral over Bloch momenta k

→
, 
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introducing an upper bound on the range of integration <k kc (which approximately captures the edge of the 
Brillouin zone). The first term of Eq. (28) becomes

j q e Av e k k
v

( )
8

2( )
2

ln 2
2

i ( 2 ) ,
(30)n m

nm x mn
F t

c F
F

F

F
F

,

(1) (0)
2

i

∑ ρ
π

ω ω ω
ω ω

π ω ω→ =





− +







+
−

+ Θ −












ω−

where kF is the Fermi wavevector, and the second term gives zero. If kc is extended to infinity like in a free-electron 
gas, Eq. (30) will yield a divergent linear current, as discussed by Wang11. We show next how this strong depend-
ence on kc is cancelled by the lowest order non-zero contribution to the second term in Eq. (28).

We expand the linear current density operator Eq. (6) to first order of k
→

, and obtain an additional term to ĵx
(1) 

in Eq. (25) which we label as ˆ ′
jx

(1) :


σ σ= → 


± +





′
j e a v A r t p p

4
( , ) 1

3
,

(31)x F x x y y
(1) 2 2

2
ˆ ˆ ˆ ˆ ˆ

where “+” or “−” sign corresponds to the Dirac point K
→

 or −
→
K . Now the second term in Eq. (28) has an addi-

tional term which gives a finite contribution:

∑ ρ
π

→ = −
−

.ω′ −j q e Av e a k k( )
8

( )
9 (32)n m

nm x mn
F t c F

,

(0) (1)
2

i
2 3 3



We note k kF c and k a kF F
2 3, thus Eq. (32) cancels with the kc term in Eq. (30) at k a K3 2 /c = ≈

→ , the 
edge of the Brillouin zone27. An exact calculation beyond the Dirac cone approximation would also result in the 
same qualitative cancellation and a small correction depending on the details of the entire band structure.

Eliminating A by E A t/
→

= −∂
→

∂  in the expression of 〈 → 〉j q( )x̂ , using the definition σ
→

=
→

j E(1)  where n( )σ  
denotes the n th order conductivity, and multiplying the valley and spin degeneracy factor of 4, we finally reach

σ ω ω ω
π

ω
ω

ω ω
ω ω

=








Θ − +





+
−
+














e( ) 1
4

( 2 ) i 1
4

ln
2
2

,
(33)

F
F F

F

(1)
2

which is in agreement with the result derived by various other theoretical approaches, e.g. using a scalar potential. 

We have seen both →̂j0  and →̂j
(1)

 (Eqs (5) and (6) in Results) play an important role in obtaining the correct linear 
conductivity; they are actually analogous to the paramagnetic and diamagnetic parts of current respectively in the 
case of free electrons coupled to a vector potential. However the replacement → → → +

→ˆ ˆp p eA  in the Dirac 
Hamiltonian would only yield the “paramagnetic” part and therefore give incorrect result for the linear current. 
Thus the Dirac Hamiltonian is insufficient when using a vector potential and one has to start with the original 
tight-binding Hamiltonian. We note that the issue with using a vector potential with the Dirac Hamiltonian has 
been known before, as was pointed out in the works studying optical sum rules27,28.

Nonlinear conductivity. We consider the nonlinear current in response to the EM fields described by 
A r t A x e( , ) (1/2) [ c c ]m m

i q x t
1,2

( )m m
→ → = ∑ + . .ω

=
−ˆ , at difference frequency ω3 = ω1 − ω2 and wavevector 

q3 = q1 − q2. Similar to Eq. (28) the nonlinear current can be calculated using the density matrix as

∑ρ ρ ρ ρ〈 → 〉 = → ≈ → + → + →j q j q j q j q j q( ) Tr( ( )) ( ) ( ) ( ) ,
(34)x x

n m
nm x mn nm x mn nm x mn3 3

,

(0) (2)
3

(1) (1)
3

(2) (0)
3

ˆ ˆ ˆ

Using Eqs (23) and (25), we find the first term in Eq. (34) vanishes due to the angular integral. For the second 
term in the summation, one notes using Eqs (23), (25) and (29), →j q( )x mn

(1)
3  flips sign at 

→
K  and −

→
K  whilst nm

(1)ρ  stays 
the same, thus the two contributions at K

→
 and −

→
K  cancel. There are two distinctive contributions to the matrix 

element ρnm
(2) in the third term: there is one contribution coming from the nonlinear vector potential interaction 

Eq. (22), which when acting upon the equilibrium density matrix ρ(0)ˆ  (see Eq. (27)) produces density matrix ˆ(2)ρ  
oscillating at the difference frequency:


ˆ⁎ρ

ω ω γ
σ= −

−

− +
.ω−t e A t A A

f f
n e m e( )

32 i (35)nm
m n

nm
x

qx t(2)
2 2

2 1 2
i i 3

This term flips sign at 
→
K  and −

→
K , while →j q( )x mn

(0)
3  does not. Thus the two contributions at 

→
K  and −

→
K  cancel. 

There is a further contribution coming from the frequency 1(2) component in the linear interaction Eq. (21)) 
acting upon (0)ρ̂  through Eq. (27) to generate a first order perturbation (1)ρ̂ , and then the frequency 2(1) compo-
nent in ĤI

(1)
 acting upon ρ̂(1), and generating a nonlinear perturbation ˆ(2)ρ  at the difference frequency. Using Eqs 

(21), (27), and (29) one gets
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∑ρ
ω ω γ ω ω γ ω ω γ

σ σ ω ω

=
− +

×





−

− − +
−

−

− +






× + ↔ − ↔ − .

ω−

−ˆ ˆ

⁎
t e v A A e

f f f f

n e l l e m q q

( )
4

1
i i i

( , ) (36)

nm
F t

nm l

m l

lm

l n

nl

x
q x

x
q x

(2)
2 2

1 2
2

i

3 2 1
i i

1 2 1 2

3

1 2



One can then carry out the summation in Eq. (34). All band combinations need to be considered 
= ±s s s( , , 1)n m l . The summation can be transformed to an integral, which in general needs to be evaluated 

numerically. However we can also expand the kernel in terms of q3, and extract the leading order contributions. 
Under the experimental conditions of both7 and14: (i.e. ω ω ω ω< ≈F3 1 2 ), we obtain

π ω
ω

ω ω ω
〈 → 〉 = −









 −

j q e v A A q
( )

2 ( 4 )
;

(37)x
F F

F

(2) 3 2
1 2
2

3

3

4

3
2 2

2
2

ˆ
⁎



the current contribution at −
→
K  is the same. Thus, changing the potentials to electric fields, using the definition 

ˆ ⁎σ〈 → 〉 =j q E E( )x
(2)

3
(2)

1 2 , and introducing the spin and valley degeneracy factor of 4, we finally reach Eq. (8) in the 
Results.

Transmission and reflection coefficients. To make this contribution self-contained, in this subsection 
we briefly review the theoretical model developed in the Supplementary Information of Constant14 to describe 
the input and nonlinear electric fields in the experiment. This model assumes a linear frequency dependence 
of the second order nonlinear graphene conductivity. However, we have tested that this assumption does not 
significantly modify the result, since the differential reflection signal in the model is predominantly determined 
by absorption of the difference frequency field, and hence by the magnitude of the conductivity at the difference 
frequency. Throughout this paper we follow Constant14 and take a plasmon linewidth of order ~10 THz.

The convention to define the field polarizations and beam angles is illustrated in Fig. 1. In general, the trans-
mission coefficients can be found by imposing boundary conditions at the graphene interface (continuity of the 
normal electric displacement and tangential electric field). For the transmission coefficient of field i (i = 1, 2),

t
n E n n

2 sin
sin sin

sin
cos ( sin sin )

,
(38)

i
i

i i i

is

Ii

i

i i i i i0

θ
θ φ

ρ

ε
θ

φ θ φ
=

+
−









 +

where EIi are the incident field amplitudes, ω=n n( )i i  denotes the index of refraction of the substrate at the field 
frequency, and ρ ρ ω= q( , )is i i  is the graphene surface charge density at frequency iω  and in-plane wavevector 
q c( / ) cosi i iω θ= . The reflection coefficients ri can be obtained via the relation r t(sin / sin ) 1i i i iφ θ+ = . As in 
Constant14, we take the substrate model given by Luxmoore29:

n
f

i
( )

(39)j

j TO j

TO j TO j

2

1

3 ,
2

,
2 2

,
∑ω ε

ω

ω ω ωγ
= +

− −
.∞

=

The high-frequency dielectric constant ε = .∞ 2 4, and 2 (13 44, 23 75, 33 84)TOω π= × . . .  THz, 
2 (0 80, 1 27, 1 27)TOγ π= × . . .  THz, and = . . .f (0 7514, 0 1503, 0 6011) are the frequencies, damping rates, and 

oscillator weights of the three transverse optical phonon modes respectively. In practice, Eq. (39) is only relevant 
at low difference frequency of ω3 = ω1 − ω2, whereas for the high pump and probe frequencies ω1,2 the index of 
refraction is nearly a constant: ε≈ ∞n . isρ  can be related to the current density j in the graphene layer via the 
continuity equation, in the Fourier space yielding: q q j q( , ) ( / ) ( , )is i i i i x i iρ ω ω ω= . When depletion can be ignored, 
as is the case in Constant14, the current densities at these frequencies can be approximated by their linear response 
results:

ω σ ω ω= .j q E q( , ) ( ) ( , ) (40)x i i i x i i
(1)

Here, ω φ=E q t E( , ) sinx i i i Ii i are the total parallel fields in the graphene layer.
The field generated at the difference frequency ω3 = ω1 − ω2 can be found similarly by using the boundary 

conditions at the graphene interface. We note in Fig. 1 now there is no incident field, but only reflected and trans-
mitted fields 

→
E R3  and E T3

→
 respectively. Using the boundary conditions for the electric fields and displacements at 

the graphene layer, we have:

θ φ+ =E Esin sin 0, (41)R T3 3 3 3

θ ω φ ρ ε− = .E n Ecos ( ) cos / (42)R T s3 3
2

3 3 3 3 0

The surface charge density ρ s3  can be expressed in terms of the current density ωj q( , )x 3 3 . We note now a 
source term js is included in jx depending on the origin of DFG; this term describes the generated field independ-
ent from the graphene’s linear response to the field at the frequency: ω σ ω ω= +j q E j q( , ) ( ) ( , )x x s3 3

(1)
3 3 3 3 . js can 

arise from different nonlinear processes, e.g. in Constant14 this is taken as a result of graphene nonlinearity, while 
in this contribution this originates from the Seebeck effect, and can then induce a plasmon field. Using Eqs (41) 
and (42) and the expression of jx, one can then solve for E3x.
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