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Abstract

This thesis has critically examined the validity of optimal fingerprinting methods

for the detection and attribution (D&A) of climate change trends. The validity is

called into question because optimal fingerprinting involves a linear regression of

non-stationary time series. Such non-stationary regressions are in general statisti-

cally inconsistent, meaning they are liable to produce spurious results. This thesis

has investigated, using an idealized linear-response-model framework motivated by

energy-balance considerations, whether the standard assumptions of optimal finger-

printing are sufficient to guarantee consistency, and hence whether detected climate

trends are likely to be genuine or artefacts of spurious correlation.

The principal reasoning tool in the thesis is the linear impulse-response model,

familiar to many climatologists when parameterized as an energy-balance model

(EBM), a simplified representation of global climate. A rigorous and efficient max-

imum likelihood method has been developed for estimating parameters of EBMs

with any k > 0 number of boxes from CO2-quadrupling general circulation model

(GCM) experiments and the method implemented as a free software package. It

has been found that a three-box ocean is optimal for emulating the global mean

surface temperature (GMST) impulse responses of GCMs in the Coupled Model

Intercomparison Project Phase 5 (CMIP5).

A new linear-filtering method has also been developed for estimating histori-

cal effective radiative forcing (ERF) from time series of GMST. It has been shown

that the response of any k-box EBM can be represented as an ARMA(k, k − 1)

autoregressive moving-average filter and that, by inverting the ARMA filter, time
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series of surface temperature may be converted into radiative forcing. A compar-

ison with an established method (“ERF trans”), using historical simulations from

HadGEM3-GC31-LL, found that the new method gives an ERF time series that

closely matches published results (correlation of 0.83). Applying the new method to

historical temperature observations, in combination with HadGEM3, produces evi-

dence of a significant increase in ERF over the historical period with an estimated

forcing in 2018 of 1.45± 0.504 W m−2.

It has been proved, using an idealized linear-response-model framework where

forcing is represented as an integrated process, that if standard assumptions hold

then the optimal fingerprinting estimator is consistent, and hence robust against spu-

rious regression. Hypothesis tests, conducted using historical GMST observations

and simulation output from 13 GCMs of the CMIP6 generation, have produced no

evidence that these assumptions are violated in practice. The historical trends in

GMST which are detected and attributed using these GCMs are therefore very likely

not spurious.

Consistency of the fingerprinting estimator was found to depend on “cointegra-

tion” between historical observations and GCM output. Detection of such a coin-

tegration for the GMST variable indicates that the least-squares estimator is “su-

perconsistent”, with better convergence properties than might previously have been

assumed. Furthermore, a new method has been developed for quantifying D&A un-

certainty, which exploits the connection between cointegration and error-correction

time series models to eliminate the need for pre-industrial control simulations.
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Chapter 1

Introduction

1.1 Detection and attribution of climate change

Statistical methods for detection and attribution (D&A) of climate change trends

have been widely used in climate change studies over the last two decades, and the

resulting inferences have informed assessment reports from the Intergovernmental

Panel on Climate Change (IPCC) (Hegerl et al., 2007; Bindoff et al., 2013; Eyring

et al., 2021). Formal D&A studies commonly employ some variant of the method

known as “optimal fingerprinting”, introduced by Hasselmann (1979, 1997). Opti-

mal fingerprinting frames D&A as the problem of separating the forced component

of historical climate observations (i.e. the signal) from internal climate variabil-

ity (the noise) (Hegerl and Zwiers, 2011). In practice, this separation of signal and

noise is performed by projecting climate observations onto corresponding simulation

output from general circulation models (GCMs), in a procedure analogous to a mul-

tivariate linear regression (Allen and Tett, 1999). Optimal fingerprinting assumes a

regression model of the form

y = Xβ + e, (1.1)

where y denotes historical climate observations; X is a matrix of predicted climate-

change signals, typically consisting of simulation output from a GCM; and e is a

composite error term containing internal climate variability noise as well as other

15
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sources of uncertainty. Regression coefficients β are known in D&A as “scaling

factors”. Detection and attribution inferences depend on obtaining reliable estimates

of these scaling factors and establishing their statistical significance. Over the years,

fingerprinting methods have become increasingly sophisticated due to a succession of

proposed refinements (see Chapter 2 for a review of methodological developments).

While originally conceived as a multivariate method for use with gridded spatio-

temporal datasets, typically requiring application of dimension-reduction techniques,

simplified variants of optimal fingerprinting have more recently been applied to

time series data, specifically to observations of global mean surface temperature

(GMST) (Otto et al., 2015; Rypdal, 2015; Haustein et al., 2017). Global mean

surface temperature is an important climate variable, both as a predictor of changes

in local climate (Sutton et al., 2015), and as the metric of global warming used in

communication with policymakers, e.g. the 1.5 and 2.0 degrees Celsius targets of the

2015 Paris Agreement. In their sixth assessment report, the IPCC make extensive

use of observationally constrained GMST estimates for their global and regional

climate change projections (IPCC, 2021). There is also evidence that the additivity

assumption (see Chapters 2 and 5) implicit in optimal fingerprinting is more likely

to hold for GMST than for other variables such as precipitation (Good et al., 2011).

For these reasons, GMST is the climate variable of primary interest in this thesis.

1.2 Climate models in detection and attribution

The field of D&A is above all motivated by the need to understand how the Earth’s

climate responds to external “forcing factors”. Detection and attribution method-

ologies like optimal fingerprinting rely on scientists’ ability to simulate the climate

system’s response under different forcing scenarios, with the most powerful tool

for this purpose being the GCM (Hegerl and Zwiers, 2011). Within the hierarchy

of GCMs, the GCM variants used in D&A of climate change trends are often the

most complicated and hence computationally demanding, featuring fully coupled

oceans (AOGCMs), and cryo- and biosphere components (so-called Earth system

16 Chapter 1 Donald P. Cummins
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models or ESMs). An interesting property of the climate models from the various

modelling centres around the world (see Table 3.2) is the fact that, despite sharing

ancestors and model components, and despite having a common basis in the laws

of physics, there exists great heterogeneity in how the models respond to external

perturbations. This is particularly true in the case of the GMST climate variable:

equilibrium climate sensitivity (ECS), the predicted increase in GMST associated

with a doubling of atmospheric carbon dioxide concentration, varies from 2.1 K to

4.6 K across the Coupled Model Intercomparison Project Phase 5 (CMIP5) gener-

ation of GCMs (Flato et al., 2013). Representing or “capturing” the diversity of

GCM behaviours with respect to GMST, through the calibration of simple climate

models, is a key research theme of this thesis, and forms the basis of the material

presented in Chapters 3 and 4 (discussed briefly below). The principal motivation

for emulating GCMs in this way is to obtain idealized response functions, which tell

us how surface temperature in a GCM would respond under a particular forcing sce-

nario, without having to incur the computational costs of running a full simulation.

Ideally, this approach would provide the best of both worlds: all of our physical

knowledge goes into deriving the GCMs and hence the response functions, which

can then be used extensively at modest computational expense. Whether and how

far this idea holds in practice is tested in Chapter 4.

1.3 Thesis aims and questions

1.3.1 Aims

This thesis is motivated by an apparent failure in the canonical D&A literature

(reviewed in Chapter 2) to explicitly recognize the time-indexed nature of climate

datasets, an omission with potentially catastrophic implications. It has long been

known in the field of time series analysis that the practice of regressing variables

containing time trends comes with its own set of pitfalls, the most serious of which

being the “spurious regression” phenomenon, whereby statistical significance is erro-
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neously assigned to chance correlations between unrelated trending variables (Yule,

1926). The primary aim of this thesis is to establish a foundational basis for the va-

lidity of D&A, using a combination of theoretical argument and empirical evidence,

and hence assess the threat to D&A inferences posed by spurious regression.

Addressing this primary aim has also led to the formulation of secondary research

aims in the thesis. Early in the research process it was realized that an idealized,

analytically tractable representation of climate would be a valuable tool for reason-

ing about D&A. What was needed was a “simple” climate model: simple enough

for its macroscopic behaviour to permit description via manipulable analytical for-

mulas; but sufficiently flexible to faithfully capture the dynamics of GCMs’ GMST

responses. The class of simple climate model chosen for this purpose was the k-box

energy-balance model (EBM). Thus two secondary research aims emerged. The first

was to determine if and how this class of model could be fitted to GCMs in a sta-

tistically rigorous way. The second was to identify the degree of model complexity

(indexed by number of boxes k) required to optimally emulate the GMST responses

of modern GCMs.

Further secondary research aims arose from the work on statistical estimation

of EBMs. It was realized that the linear time-invariance property, which underlies

its analytical tractability, allows the k-box model to be related to the wider class of

linear time series models known as ARMA or autoregressive moving-average models.

Finding the ARMA representation of an EBM would have the advantage of allowing

dependence of GMST on unobserved deep-ocean temperatures to be substituted

for dependence on past values of GMST. Thus, for the purpose of computation,

GMST could be considered as a separate stochastic process in its own right. Of

particular relevance to this thesis is the fact the ARMA representation of an EBM

permits a straightforward inversion, allowing (a noisy estimate of) radiative forcing

to computed recursively from only a time series of GMST. Three research aims were

formulated: to show that a k-box EBM’s ARMA representation exists and determine

its order; to investigate the ARMA filter’s performance as an estimator of historical
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radiative forcing in GCM simulations; and to construct estimates of radiative forcing

in the real world from time series of historical GMST observations.

1.3.2 Questions

This thesis addresses the following questions:

1. Is the optimal fingerprinting estimator statistically consistent under standard

D&A assumptions and hence robust against spurious regression?

2. How likely is it that these assumptions hold in practice for the current gener-

ation of climate models?

3. Is it possible to formulate a new method for attributing observed changes

in global temperatures to anthropogenic greenhouse gas emissions including

uncertainties?

Secondary research questions include:

1. How might maximum likelihood estimates of physical parameters of k-box

stochastic energy-balance models (EBMs) be obtained from surface tempera-

tures and top-of-atmosphere net radiative fluxes in GCM experiments?

2. What number of boxes k > 0 represents the optimal EBM complexity for

emulating temperature responses of modern GCMs?

3. Does a k-box EBM have a unique representation as an autoregressive moving-

average (ARMA) filter and, if so, what are the respective degrees of its AR

and MA polynomials?

4. How effective is the inverted ARMA representation of a GCM-calibrated EBM,

applied to time series of surface temperature, as an estimator of effective ra-

diative forcing?
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1.4 Thesis structure

The next chapter will present a review of the methodological D&A literature, with

a focus on the development of optimal fingerprinting methods. Chapter 3 will then

address secondary research questions 1 and 2. Chapter 4 will address secondary

research questions 3 and 4. The primary research questions of this thesis will be

addressed in Chapter 5, whose line of argument exploits results developed in the

previous two chapters.
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Chapter 2

Review of detection and

attribution literature

2.1 Aim

This chapter reviews the development of statistical methods for detection and attri-

bution (D&A) of climate change. Most of the chapter focuses on the model-based,

regression approach known as “optimal fingerprinting”, which is the most common

method in applied D&A studies.

2.2 Introduction

Detection and attribution of climate change requires a decomposition of observed

climate data into externally forced and residual components, where the residual

component represents unforced or “natural” variability. Various methods have been

developed for performing this decomposition using purely observational data (Hegerl

and Zwiers, 2011). Observation-based methods include empirical spatial pattern

decompositions (e.g. Kawamura, 1994; Wallace et al., 1996; Portmann et al., 2009;

Thompson et al., 2009) and empirical time series decompositions (e.g. Thompson

and Wallace, 1998; Venzke et al., 1999; Schneider and Held, 2001; Solomon et al.,

2011). Use of climate models in D&A is however well established, due to important
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advantages over purely observational approaches. The main problem with relying on

observations alone is that the observational record is, in effect, a single realization of

the noisy climate system. From this single realization we hope to infer the qualitative

properties (spatial and/or temporal patterns) of the forced signal and natural vari-

ability, as well as their respective contributions to the observational record. Climate

models offer a form of regularization to this otherwise ill-posed problem, by con-

straining estimated climate change signals so that they are consistent with physical

knowledge.

This chapter will review the development of the model-based methodology “op-

timal fingerprinting”, an approach combining historical observations with climate

model simulations, which has been widely used in D&A studies and incrementally

refined over the last four decades. Optimal fingerprinting has also become the basis

of the more recent field of extreme event attribution (Stott et al., 2016), however

in the following review attention is restricted to the original application to climate

“trend” attribution.

2.3 The optimal fingerprinting methodology

Optimal fingerprinting, also known as optimal detection, is a model-based approach

to D&A of climate change, first proposed by Hasselmann (1979) and extended in

Hasselmann (1997). The central assumption of optimal fingerprinting is that a vector

(spatial and/or temporal) of observed climate data y can be represented as the sum

of a forced climate change signal ψ and an internal climate variability (residual)

component e,

y = ψ + e. (2.1)

By estimating the forced climate change signal ψ and internal climate variability

covariance Σ = cov(e), typically using a climate model, linear regression may be

used to test the null hypothesis, H0 : ψ = 0, that an apparent climate change is

consistent with internal variability alone. Rejection of the null hypothesis indicates
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that a climate change is detected.

The second assumption of optimal fingerprinting is that the forced climate change

signal ψ is simply the sum of forced signals ψ1, . . . ,ψp corresponding to each of p

candidate forcing factors, as if each forcing had been applied individually. A multiple

regression of the observed climate data y on model-predicted climate change signals

ψ̂1, . . . , ψ̂p can then be used to perform attribution hypothesis tests. The multiple

regression model is

y = β1ψ̂1 + · · ·+ βpψ̂p + e. (2.2)

If, for a given forcing factor i, the scaling factor βi is found not to be significantly

different from one, then we say that model-predicted signal ψ̂i is consistent with

observation. The optimal fingerprinting method thus yields formal D&A results at

a specified level of statistical significance.

In an early application of optimal fingerprinting, Hegerl et al. (1996) attempted

to detect greenhouse-gas-induced climate change. They found that applying the

method to available data raised practical problems which needed to be addressed.

Predicted climate change signals and internal climate variability estimates were ob-

tained using simulations from general circulation models (GCMs). The estimated

natural variability covariance matrix Σ̂ was calculated from GCM pre-industrial

control simulations. Due to computational constraints, the control simulations were

not of adequate length to estimate the full internal variability covariance matrix. In

order to obtain a full-rank sample covariance matrix, the dimension of the data space

was reduced using principal component analysis (PCA). After normalizing all data

by the estimated inverse natural variability covariance matrix Σ̂−1, the regression

model was fitted using ordinary least squares (OLS). Statistically significant climate

change in the 30-year period prior to 1996 was detected, however attribution was not

possible due to the omission of some potentially influential external forcing factors.

In a follow-up paper, Hegerl et al. (1997) conducted a full D&A study, in which

multiple candidate forcing factors were considered. The dimension reduction was a

source of concern in both studies, as the number of retained principal components or
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empirical orthogonal functions (EOFs) was found to affect the resulting inference.

An ad-hoc method, based on visual inspection of diagnostic graphs, was used in

practice to determine the number of retained EOFs.

Allen and Tett (1999) more rigorously established optimal fingerprinting as a

form of generalised linear regression. They highlighted a number of issues with

the optimal fingerprinting algorithm and proposed an objective method for decid-

ing how many EOFs to retain. Firstly, they pointed out that a single covariance

matrix could not be used both for the fitting of the regression model and for the sub-

sequent hypothesis testing, otherwise bias would be introduced due to overfitting.

Secondly, the GCMs used in 1999 were known to underestimate internal climate

variability on small spatial scales. An example was presented using temperature

data from HadCM2. The influence of such underestimation on study results was

magnified by the use of PCA for dimension reduction and subsequent inversion of

the estimated covariance matrix. Allen and Tett (1999) proposed a chi-squared test

to establish an appropriate dimension for the reduced space. Thirdly, a problem

was identified with the way in which confidence regions for regression parameters

were calculated. Specifically it was difficult to estimate degrees of freedom for an

F-statistic using short GCM control simulations. Allen and Tett (1999) advocated

using non-parametric confidence regions based on return times, sidestepping para-

metric assumptions such as multivariate normality. A further innovation was their

use of conventional matrix notation to describe statistical models, as opposed to

the notation from quantum mechanics and general relativity used in Hasselmann’s

earlier optimal fingerprinting papers.

A major improvement to the optimal fingerprinting algorithm was made by Allen

and Stott (2003), who found that an important source of uncertainty in the regres-

sion step had been overlooked. Predicted climate change signals in optimal fin-

gerprinting are typically estimated by running ensembles of GCM simulations and

taking the ensemble mean of the output data. In earlier studies, the ensemble mean

was assumed to be deterministic, i.e. without noise, and OLS was used to fit the
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regression model. However, due to the small sizes of GCM ensembles in practice,

ensemble means are still subject to considerable sampling uncertainty. Regression

coefficients estimated using OLS are biased low as a result. Allen and Stott (2003)

proposed the use of total least squares (TLS) instead of OLS regression. Under

the assumption that internal climate variability in the observations is equal to the

sampling uncertainty across ensemble members, TLS delivers unbiased estimates of

regression coefficients. The authors drew attention to the potential value of D&A

studies as a tool for diagnosing GCM performance. The multiple regression step in

an attribution study can indicate whether a GCM is underestimating or overesti-

mating the influence of one or more external forcing factors on climate.

These and other earlier optimal fingerprinting studies relied on the frequen-

tist principles of hypothesis testing. Lee et al. (2005) experimented with a hybrid

frequentist-Bayesian implementation of optimal fingerprinting. They fitted the stan-

dard multiple regression model to climate observations and GCM simulations using

OLS but then passed the estimated regression coefficients into a pseudo-Bayesian

inference. Prior distributions on the regression coefficients were chosen using output

from energy-balance models (EBMs). A likelihood function for the regression coeffi-

cients was approximated by the probability density function (pdf) of the asymptotic

sampling distribution of the OLS maximum likelihood estimators (MLEs). Feeding

the EBM-derived priors and approximate likelihood into Bayes’ theorem produced

posterior distributions on the regression coefficients. A range of priors were consid-

ered in a prior sensitivity analysis. Truncated priors, excluding regression coefficients

less than minus one or greater than two, were used in the final analysis. Results

were presented in terms of Bayes factors providing inference roughly analogous to

frequentist hypothesis tests. Lee et al. (2005) was an early attempt to incorporate

prior insight into an attribution analysis.

Huntingford et al. (2006) further developed the TLS implementation of optimal

fingerprinting. Allen and Stott (2003) had implicitly assumed that sampling varia-

tion across simulations from the same GCM had the same covariance structure as
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variation across simulations from different GCMs. Huntingford et al. (2006) consid-

ered a generalisation of the regression model where this assumption was relaxed and

inter-GCM variance was explicitly included. Accounting for inter-GCM variance

explicitly allowed data from multiple GCMs to be used in the same analysis. The

greater volume of data employed led to a reduction in uncertainty and smaller con-

fidence intervals about estimated regression coefficients. Huntingford et al. (2006)

raised the question of how to weight simulations from different GCMs. They rea-

soned that, since GCMs from different modelling centres provide alternative but

equally plausible representations of reality, the ensembles should all carry equal

weighting. Therefore the number of ensemble members from each GCM was not

allowed to influence model weighting in their optimal fingerprinting analysis.

The chi-squared test for choosing a suitable dimension reduction was widely used

in D&A studies over the following decade. Ribes et al. (2009) showed that the dimen-

sion reduction step, formerly necessary for estimating internal climate variability,

could be avoided entirely using a new method called regularized optimal fingerprint-

ing (ROF). Regularized optimal fingerprinting uses the Ledoit-Wolf well-conditioned

estimator for high-dimensional covariance matrices to estimate the internal climate

variability. Ledoit-Wolf is a shrinkage estimator which uses the identity matrix as

a target. A simulation study by Ribes et al. (2009) showed that ROF estimators of

regression coefficients were subject to a lower mean square error (MSE) than pre-

vious methods. Ribes et al. (2009) were interested in D&A of climate change on

regional and sub-regional scales. On small spatial scales, GCM-derived estimates

of internal climate variability were known to be poor and such GCM deficiences

are magnified by the use of PCA followed by inversion of the covariance matrix.

The ROF method allows estimation of internal climate variability using early-20th-

century observations due to its reduced requirement for many control data. Less

computation is necessary and the problem of how many EOFs to retain is avoided.

Ribes et al. (2013) conducted a more thorough evaluation of the ROF method.

They explained that the identity matrix used as a target for the shrinkage estimator
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may be interpreted as a Bayesian prior on the internal climate variability. Ribes

et al. (2013) discussed the possibility of using physical knowledge about internal

climate variability to choose a more suitable matrix than simply the identity. It

was also pointed out that some dimension reduction might still be necessary since

Ledoit-Wolf still requires the sample covariance matrix to have full rank. A small

dimension reduction was shown to have little impact on D&A results.

The extension of the optimal fingerprinting regression model, proposed by Hunt-

ingford et al. (2006), was revived by Hannart et al. (2014). They advocated a further

extension of the model whereby each source of uncertainty considered would have

its own covariance structure, including observational error which was previously un-

accounted for. The extended model belongs to the class of models known as errors

in variables (EIV), however the TLS procedure of Allen and Stott (2003) is unable

to fit the extended model. Hannart et al. (2014) developed a so-called partial it-

erative maximisation approach where partial likelihoods for each model parameter

are maximised in turn until an overall maximum is reached. The new approach was

shown to perform better than TLS and OLS in a simulation study. The simulation

study revealed a vulnerability common to all regression methods tested: asymptotic

results used to generate confidence regions were shown to fail for small sample sizes,

with the severity of the failure aggravated by a lower signal-to-noise ratio.

Hannart (2016) introduced a new method called integrated optimal fingerprint-

ing, a generalisation of ROF. Integrated optimal fingerprinting replaces the three

steps of the traditional fingerprinting algorithm with a single estimation step. The

internal climate variability covariance matrix is treated as a nuisance parameter

and removed by integration. Point estimates and confidence intervals are obtained

from the integrated likelihood. Hannart (2016) explained that integrated optimal

fingerprinting is equivalent to an empirical Bayesian analysis. No preliminary di-

mension reduction is necessary. Furthermore, the authors showed in a simulation

study that performing a dimension reduction led to reduced precision of regression

coefficient estimates. Performance of integrated optimal fingerprinting was shown
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to exceed that of both traditional optimal fingerprinting and ROF. However, con-

fidence region coverage probabilities were still vulnerable to small sample sizes and

low signal-to-noise ratio.

Jones et al. (2016) carried out a multi-model D&A study using GCM simulations

from the Coupled Model Intercomparison Project Phase 5 (CMIP5). Their results

facilitated a detailed discussion of the performance of D&A methodology. The au-

thors concluded that optimal fingerprinting is robust to gross errors in the magni-

tude of GCM-predicted climate change signals. They concluded that examining net

anthropogenic influence gives consistent results across different GCMs. However,

partitioning of anthropogenic influence into individual forcing factors was found to

produce inconsistent results across different GCMs. The (still widely used) TLS

fingerprinting methodology was found to be unable to reconcile differences in the

spatial/spatio-temporal structure of climate response patterns. Jones et al. (2016)

recommended that explicit modelling of inter-GCM variation, previously treated in

Huntingford et al. (2006) and Hannart et al. (2014), should be examined further.

The first fully Bayesian implementation of optimal fingerprinting was published

by Katzfuss et al. (2017), who formulated a hierarchical Bayesian model based on

the model introduced by Allen and Stott (2003). Uninformative prior distributions

were used to account for uncertainty in observations, GCM simulations and the in-

ternal climate variability covariance matrix, including the number of retained EOFs.

Bayesian model averaging applies probabilistic weights to different dimension reduc-

tions. The authors produced a custom software package for the practical application

of their method. Unlike the more recent frequentist implementations of optimal fin-

gerprinting, the method proposed by Katzfuss et al. (2017) still relies on a dimension

reduction and suffers from the associated loss in precision of regression coefficient

estimates.

Ribes et al. (2017) proposed a more symmetric treatment of uncertainty in ampli-

tudes and patterns of forced climate signals. The authors noted that the widely used

TLS optimal fingerprinting regression model is appropriate only when forced signal
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amplitude is the dominant source of uncertainty, i.e. the signal patterns themselves

are largely known and do not vary between climate models. More sophisticated EIV

approaches, e.g. Hannart (2016), which account for pattern uncertainty do not in

general yield closed-form solutions and require the use of iterative procedures. It

was also noted that the regression formulation of optimal fingerprinting considers

signal amplitudes as free parameters, when in reality signal amplitudes are con-

strained by physical knowledge. Ribes et al. (2017) developed a new model, fitted

using closed-form maximum likelihood estimation, whereby the scaling factors are

removed from the EIV fingerprinting model. Removal of the scaling factors anchors

signal amplitudes close to their model-predicted values. Closed-form expressions

were also provided for D&A hypothesis testing.

Hannart (2019) considered the problem of dimension reduction which has existed

since the early D&A studies. Optimal fingerprinting regression is typically performed

in the reduced space spanned by a few leading eigenvectors (EOFs) of the natural

variability covariance matrix Σ. This is in part since only the leading eigenvectors

of Σ can be reliably estimated from limited GCM control runs. The authors noted

that this reduced subspace maximizes the noise amplitude leading to an increase in

uncertainty. They therefore proposed a new estimator of scaling factors β whereby

the data are projected onto a new subspace which is orthogonal to the retained

EOFs. This projection gives a better signal-to-noise ratio and reduced uncertainty

in parameter estimates. The authors noted that, when a very small number of EOFs

are used, their estimator has a MSE orders of magnitude lower than the conventional

procedure.

2.4 Summary

Statistical methods for D&A of climate change can be divided into two categories:

purely observational and model-based. The model-based methodology known as

optimal fingerprinting has become the basis of many D&A studies. Optimal fin-

gerprinting uses generalized linear regression and hypothesis testing to make formal
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statements about the significance of, and causal factors behind, observed changes in

climate. Physical knowledge encoded in general circulation models is used to con-

strain predicted climate change signals and estimate properties of natural climate

variability. Inferences are drawn from a regression of observations on the predicted

climate change signals.

Due to its reliance on small numbers of expensive climate model simulations

and the short (and often sparse) historical record, optimal fingerprinting presents

a number of technical challenges. For example, dimension reduction techniques are

often used to make linear regression feasible. Such dimension reductions are known

to influence results in ways which are not always predictable. Secondly, predicted

climate change signals are typically subject to sampling uncertainty, stemming from

perturbation of ensemble initial conditions and also inter-climate model variation.

Sophisticated total least squares and errors in variables models have been devel-

oped to take into account uncertainty in predicted signals. More recently, methods

based on regularized shrinkage estimators, integrated likelihood models and hier-

archical Bayesian inference have been introduced to synthesize multiple sources of

uncertainty.

A particular concern noted in recent studies is the apparent difficulty with which

optimal fingerprinting, as a regression procedure, accounts for qualitative differences

in predicted climate change signals from different climate models. Specifically, op-

timal fingerprinting can easily reconcile disagreements between climate models in

the expected magnitude of responses to forcing factors, but not disagreements in

the shape of the (spatial and/or temporal) response patterns. This is a natural

consequence of the fact that observations and model simulation output are treated

as static signals in the regression, rather than outputs of an input-output system

evolving over time. Given that reponse patterns differ in shape between pairs of

climate models, as well as between models and observations, this raises questions

about what the scaling factors are supposed to measure in practice, and what exactly

optimal fingerprinting is attempting to estimate.
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Finally, it has been noted that the methodological studies reviewed in this section

have not acknowledged certain properties which are specific to time-series data, or

assessed the potential threat to D&A studies posed by the statistical phenomenon

known as “spurious regression” (see Chapter 5). For example, in optimal finger-

printing the spatial and temporal correlations between variables are treated similarly

through the use of combined space-time covariance matrices. A weakness of this ap-

proach is that notions pertaining to time, such as ordinality and causality, are not

given adequate consideration. Furthermore, it is a long-accepted principle of time

series analysis that regressing variables containing time trends is inherently more

dangerous than static or “cross-sectional” regression, mainly due to the additional

threat of spurious regression (Yule, 1926).
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Chapter 3

Stochastic energy-balance models

and parameter estimation

3.1 Aim

This chapter is based on material from Cummins et al. (2020b) and introduces the

k-box stochastic energy-balance model as a tool for parameterizing global mean

surface temperature in general circulation model simulations. A rigorous maximum

likelihood fitting procedure for this class of model is developed, with an accompa-

nying software implementation.

3.2 Introduction

The previous chapter reviewed the development of statistical methods for D&A of

historical climate trends, focusing on the commonly used family of methods derived

from Klaus Hasselmann’s “optimal fingerprinting” algorithm (Hasselmann, 1979).

Fingerprinting methods are based on a linear regression model

y = Xβ + e (3.1)
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relating historical climate observations y to climate model output X (Hegerl and

Zwiers, 2011). In the case of time series data, vector y is a sequence of historical

observations at consecutive time steps, while each column of X is a corresponding

sequence of simulation output from a forced climate model run (or the mean of an

ensemble of such runs). The number of rows in X is the number of observations, and

the number of columns in X is the number of candidate forcing factors considered. In

the case of spatio-temporal data, where a spatial field is observed at each timestep,

eqn (3.1) is obtained by applying the vec operator to observed and simulated datasets

at each timestep. Optimal fingerprinting methods vary in how they estimate the so-

called “scaling factors” β as well as how they parameterize the covariance of the error

term e, but the assumption of a linear relationship between y and X is a defining

feature of the methodology common to all its implementations. The principal aim

of this thesis (see Chapter 1) is to assess the reliability of optimal fingerprinting

methods for detection and attribution (D&A): to determine necessary conditions for

inferences to be valid; as well as to assess what evidence there is for such conditions

holding in practice. Unfortunately, the terms in equation (3.1) are not amenable

to analytic manipulation in their raw form. The exact underlying equations which

give rise to true climate response y are unknown. While the general circulation

models (GCMs), intended to approximate reality and typically used to produce

the predicted signals X, are based on well-defined systems of partial differential

equations (PDEs), these equations lack explicit solutions and are solved numerically

on supercomputers. In order to reason mathematically about the regression model

in equation (3.1), some form of simplification or parameterization is required. In

this chapter, an example of a simplifying parameterization is introduced: the k-box

stochastic energy-balance model.

3.2.1 Energy-balance models

An energy-balance model (EBM) is a simplified representation of climate where

changes in global temperature are explained by imbalances in the Earth’s energy
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budget. Energy-balance models are simpler than atmosphere-ocean general circu-

lation models (AOGCMs), which explicitly describe the fluid dynamics of Earth’s

atmosphere and oceans. Their simplicity means that EBMs are both analytically

tractable and inexpensive to simulate. Compared with purely empirical statistical

models, EBMs have two distinct advantages: (i) the choice of model structure is mo-

tivated by physical reasoning; (ii) certain model parameters and functions thereof

have physical interpretability. Energy-balance models are therefore useful not only

for climate forecasting but for physical inference about the climate system. As will

be seen in Chapter 4, EBMs can be used as standalone tools for analysing time

series of historical climate observations.

Energy-balance models in the literature vary in complexity. The class of EBM

considered in this chapter is the k-box model (sometimes called k-layer), which

represents the atmosphere and ocean as a set of vertically stacked boxes. The sim-

plest k-box model is the so-called one-box model, obtained by a linearization of the

zero-dimensional variant of the Budyko-Sellers model (Budyko, 1969; Sellers, 1969).

The standard Budyko-Sellers EBM is based on the Stefan-Boltzmann Law, which

relates outgoing radiation to the fourth power of surface temperature. Linearization

of this model about pre-industrial surface temperature is a suitable approximation

for small surface temperature perturbations. The one-box model continues to be

used in climate change studies (e.g. Cox et al., 2018), but is known to insufficiently

capture thermal inertia in the climate response on timescales of decades or more,

and has been superseded in longer-timescale studies by the two-box model (Gre-

gory, 2000; Held et al., 2010; Geoffroy et al., 2013a). The two-box model includes

a representation of the deep ocean, which acts as a heat reservoir and provides the

thermal inertia. Some recent studies have employed three-box models (Caldeira

and Myhrvold, 2013; Proistosescu and Huybers, 2017; Fredriksen and Rypdal, 2017;

Tsutsui, 2020). By taking the limit as k →∞ it is possible to approximate contin-

uous vertical heat diffusion.
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3.2.2 The stochastic k-box energy-balance model

The k-box energy-balance model used in this chapter is defined by the system of k

linear differential equations

C1
dT1
dt

= F (t)− κ1T1 − κ2(T1 − T2) + ξ(t) (3.2)

C2
dT2
dt

= κ2(T1 − T2)− κ3(T2 − T3) (3.3)

...

Ck−1
dTk−1

dt
= κk−1(Tk−2 − Tk−1)− εκk(Tk−1 − Tk) (3.4)

Ck
dTk
dt

= κk(Tk−1 − Tk). (3.5)

The first box represents the atmosphere, land surface and uppermost layer of the

ocean, while boxes two to k together represent the deep ocean. Each box i has

a temperature Ti and heat capacity Ci and is coupled to adjacent boxes above

and below. T1 is defined to be global mean surface temperature (GMST) anomaly

relative to pre-industrial conditions. Heat transfer coefficients κi > 0 determine the

strength of thermal coupling between boxes i and i− 1. In the literature κ1 is often

written as λ and is referred to as the climate feedback parameter (e.g. Geoffroy

et al., 2013a). We follow the convention of Fredriksen and Rypdal (2017) and use

the letter κ for both climate feedback and heat uptake by the deep ocean. The heat

transfer coefficient κk in the equation for box k−1 is multiplied by a so-called efficacy

factor ε > 0, introduced by Held et al. (2010), to simulate variation in the effective

strength of κ1 during periods of transient (non-equilibrium) warming. The term

F (t) denotes radiative forcing measured at the top of the atmosphere and ξ(t) is a

stochastic temperature disturbance (see below). Table 3.1 contains physical units

and a brief description of each parameter. Figure 3.1 gives a graphical representation

of the k-box model.
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Figure 3.1: Vertical layout of the boxes in the k-box energy-balance model. The
thickness of each box indicates its heat capacity and the arrows represent the flow
of heat between adjacent boxes. The top of the atmosphere has no heat capacity
and so is represented by a horizontal line. The dashed line in the middle is an
abbreviation of the intervening boxes.
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3.2.3 Stochastic forcing scheme

Natural variability in GMST can be partially explained within the EBM framework

using a stochastic process in the radiative forcing term (Hasselmann, 1976). To

enforce continuity of F in time we model F (t) as a first-order red noise:

dF

dt
= −γ(F − Fdet(t)) + η(t), (3.6)

where Fdet(t) and η(t) are the respective deterministic and stochastic forcing com-

ponents. Formally, eqn (3.6) is the Langevin equation of an Ornstein-Uhlenbeck

process, the continuous-time analogue of an autoregressive process in discrete time

(Uhlenbeck and Ornstein, 1930). Here we assume η(t) to be a Gaussian white-noise

(WN) process with mean zero and standard deviation ση, in which case eqn (3.6)

may be referred to as the Hasselmann (1976) model. In the limit as γ → ∞ the

stochastic forcing becomes white noise, whereas if γ = 0 we have a Wiener pro-

cess. Inter-annual variation in radiative forcing is insufficient to explain all of the

natural variability in surface temperature. Residual surface temperature variability

is explained here by a Gaussian WN temperature disturbance ξ(t) with mean zero

and standard deviation σξ. The term ξ(t) functions like an external forcing but is

not measurable at the top of the atmosphere since it represents dynamic variability

which is generated internally.

Although the underlying mechanistic structure of the k-box EBM is derived from

physical considerations, many of its parameters do not correspond to well-defined

physical quantities in the real world. It is thus not generally possible to calculate

realistic parameter values directly from first principles. Parameter values must in-

stead be estimated empirically from data. In this chapter a maximum likelihood

method is developed for estimating parameters of k-box models, the motivation for

which having been set out in Chapter 1. The structure of the chapter is as follows:

Section 3.3 provides a summary and critique of some methods previously employed

to fit box models; Section 3.4 describes data requirements for successful parameter
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estimation and the specific CMIP5 data used in this chapter; Section 3.5 outlines

the maximum likelihood estimation framework; Section 3.6 describes a software tool

created for applying the method described in this chapter; Section 3.7 evaluates the

robustness of maximum likelihood estimation in a simulation study; Section 3.8 ex-

plains how the method was applied to climate model data from CMIP5 and presents

an analysis of the results; the content of this chapter is summarized in Section 3.9.

3.3 Review of methods for fitting k-box energy-

balance models

Maximum likelihood estimation is simple for one-box model parameters: given uni-

formly sampled data, estimation reduces to an ordinary least squares problem with a

closed-form solution (Rypdal and Rypdal, 2014). When multiple boxes are included,

latent variables are introduced and the estimation problem becomes non-linear and

hence more difficult. Several methods have been proposed in the literature for es-

timating parameters of box-model EBMs with k ≥ 2, including least-squares curve

fitting (Geoffroy et al., 2013a; Caldeira and Myhrvold, 2013), frequency-domain re-

gression (Fredriksen and Rypdal, 2017) and Bayesian estimation (Proistosescu and

Huybers, 2017; Jonko et al., 2018). Box models have previously been fitted to the

historical record, paleoclimate reconstructions and to data from general circulation

model experiments. Three examples of existing methods are described below. The

first method described, proposed by Geoffroy et al. (2013a), is compared in Section

3.8.3 with the maximum likelihood estimator proposed in this chapter.

Geoffroy et al. (2013a) derived explicit time-dependent solutions for the two-

box model under idealized deterministic forcing scenarios. They proposed a pro-

cedure for estimating model parameters using measurements of GMST and top-

of-the-atmosphere (TOA) net downward radiative flux (see Section 3.4) from the

step responses of AOGCMs in CMIP5. Their method uses prior information about

characteristic timescales to estimate the model parameters in sequence, with the
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sum of squared residuals as the criterion to be minimized. The time-dependent

solution of the two-box model is a sum of saturating exponentials and so estimat-

ing parameters in parallel by non-linear least squares can be a notoriously difficult

problem (De Groen and De Moor, 1987; Kaufmann, 2003), which is avoided by es-

timating parameters sequentially. In a companion paper, Geoffroy et al. (2013b)

added a deep ocean heat uptake efficacy factor ε to their model, requiring the use

of iteration in their fitting procedure. Geoffroy et al. (2013a) did not specify an

error model, however their least-squares fitting criterion would correspond to max-

imum likelihood estimation under an assumption of errors which are independent

and identically distributed (i.i.d.) and Gaussian. We have found this assumption to

be inconsistent with time series of residuals obtained by subtracting fitted two-box

model trajectories from AOGCM step responses: such residual time series exhibit

strong autocorrelation. Without specifying an error model it is also impossible to

construct confidence intervals for parameter estimates.

Fredriksen and Rypdal (2017) estimated parameters of a three-box model with

natural variability driven by a Gaussian WN process in the forcing term. They

proposed an iterative least squares-based fitting algorithm to estimate the model

parameters. Their method alternates between fitting the signal (expected tempera-

ture series for the first box) in the time domain and fitting the noise (time series of

residuals) in the frequency domain. Fredriksen and Rypdal (2017) estimated model

parameters using estimates of GMST from HadCRUT4 (Morice et al., 2012) and the

Moberg et al. (2005) paleoclimate reconstructions, and forcing estimates from Crow-

ley (2000) and Hansen et al. (2011). Unlike the other studies cited in this section,

Fredriksen and Rypdal (2017) estimated parameters of box models (k ≥ 2) without

access to measurements of TOA net downward radiative flux, as they were fitting to

historical datasets. Only a subset of the model parameters was estimated from data

since, without radiative flux measurements, a wide range of possible values for the

three characteristic timescales τ1, τ2, τ3 were found to be equally compatible with

the observations (see Section 3.4.2 for discussion). In their analysis three candidate
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timescale configurations were chosen and the remaining parameters estimated. An

important result of Fredriksen and Rypdal (2017) is that the stochastically forced

three-box model produces a similar noise spectrum to so-called scale-invariant mod-

els, a related class of simple climate model. Parameters of scale-invariant models

have been estimated by maximum likelihood (Rypdal and Rypdal, 2014) and more

recently using Bayesian inference (Rypdal et al., 2018). The method of Rypdal

et al. (2018) is generally applicable to linear response models, including box models,

although the authors only present results for the scale-invariant model.

Jonko et al. (2018) estimated parameters of the two-box model using Bayesian

hierarchical methods. In their model likelihood the variability in observed temper-

atures T1(t) and TOA net downward radiative flux N(t) are jointly modelled as a

vector autoregressive process of order one (VAR(1)). All VAR(1) correlations are

considered free parameters, not constrained by the physical parameters of the EBM.

Given prior distributions for parameters to be estimated, Markov Chain Monte Carlo

(MCMC) is used to form an approximation to the posterior distribution. Jonko et al.

(2018) used their method to pool information from 24 AOGCM step responses and

produce a joint posterior for equilibrium climate sensitivity (ECS). They also in-

cluded time series of historical temperature observations in their model likelihood

to further constrain estimates of future warming. By opting not to include a stochas-

tic forcing term Jonko et al. (2018) increase the number of parameters to estimate

and lose physical motivation for the natural temperature variability in their model.

Of the approaches discussed above, none can be considered optimal in the sense of

maximum likelihood or sampling from the posterior distribution of the full, stochas-

tic k-box energy-balance model. In this chapter, a maximum likelihood method

is therefore introduced for estimating stochastic k-box models with k ≥ 2. Max-

imum likelihood estimators are widely used and have known asymptotic sampling

properties allowing for simple quantification of parameter uncertainty. Furthermore,

optimal complexity of maximum likelihood models can be identified using informa-

tion criteria.
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3.4 Step responses and radiative flux in CMIP5

experiments

3.4.1 The step reponse

From its definition as a set of linear differential equations, it may be seen that

the k-box model is a linear time-invariant (LTI) system. It is therefore completely

characterized by its impulse response or alternatively its step response, of which the

impulse response is the time derivative (Ljung, 1987). The step response contains

information about model behaviour on all relevant timescales. The Coupled Model

Intercomparison Project Phase 5 (CMIP5) archive includes experiments (Taylor

et al., 2012) designed to elicit the step response of AOGCMs by subjecting them to

a step forcing of the form

F (t) =


F4×CO2 if t ≥ 0,

0 otherwise.

(3.7)

The forcing is achieved by an instant quadrupling of atmospheric carbon dioxide

(CO2) concentration. The reasoning behind this choice of forcing is that the ampli-

tude should be large enough that the signal-to-noise ratio is high, but small enough

not to induce strongly non-linear behaviour such as tipping points. Ideally the

step-forcing experiment would be long enough for the system to stabilize at a new

equilibrium temperature and multiple ensemble runs would be available for each

AOGCM. However, since Earth system models (ESMs) are expensive to run, the

step-forcing experiments in CMIP5 are typically 150 years in length and consist

of a single ensemble member. These experiments nevertheless constitute the most

information-rich datasets from which to infer the parameters of k-box models and

simple climate models in general. The output of an AOGCM step-forcing experi-

ment can even be used on its own to make climate predictions by convolving it with

a forcing signal of interest (Good et al., 2011; Lucarini et al., 2017).
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3.4.2 Radiative flux constraints

Models in CMIP5 can have equilibration times in the thousands of years (Rugen-

stein et al., 2020). It is therefore unreasonable to expect that 150-year time series of

surface temperature would contain sufficient information to identify all EBM param-

eters. Firstly, if only surface temperatures are observed, then the forcing magnitude

and heat capacity parameters are jointly unidentifiable unless one of them is set to

an arbitrary value. Even then, attempting to fit multi-exponential response curves

to such datasets in practice, e.g. using least-squares methods, results in highly cor-

related parameter estimates with correspondingly large uncertainty. This difficulty

can be overcome by using measurements of net downward radiative flux at the top of

the atmosphere (TOA) to constrain F (t) and κ1, thereby constraining the net heat

uptake of the system at any point in time. Since the EBM parameters describe a

heat storage mechanism, their estimation requires knowledge of the amount of heat

being stored. Using equations (3.2) and (3.4) we extract the relation

N(t) = F (t)− κ1T1(t) + (1− ε)κk(Tk−1(t)− Tk(t)) (3.8)

where N(t) denotes the TOA net downward radiative flux. If the system is in equi-

librium at time t, i.e. Tk−1(t) = Tk(t), and/or if ε = 1, equation (3.8) reduces to the

traditional Gregory relation N(t) = F (t)−κ1T1(t) (Gregory et al., 2004). Note that,

since fitting to 4× CO2 experiments is essentially infeasible without measurements

of N(t), fitting to historical temperature observations with all parameters free is

unlikely to produce meaningfully constrained estimates.

3.5 Maximum likelihood framework for parame-

ter estimation

Computing the likelihood function for the k-box model is non-trivial. We typically

observe the temperature of only the first box and hence for k ≥ 2 at least half
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of the model state variables are unobserved (latent). In this section we start by

formulating the k-box EBM as a state-space model. We then show how the likelihood

of this state-space representation can be evaluated recursively using the Kalman

filter. Numerical maximization of the likelihood is briefly described and a method

for constructing confidence intervals given. Finally, we explain how optimal model

complexity can be identified using information criteria.

3.5.1 Matrix-vector equations

The purely deterministic, homogeneous (externally and internally unforced) k-box

model with ε = 1 can be written in matrix-vector form

ẋh(t) = Axh(t), (3.9)

where

xh(t) = (T1(t), . . . , Tk(t))
′, (3.10)

and

Ai,j =



−(κi + κi+1)/Ci if i = j 6= k,

κj/Ci if j = i+ 1,

κi/Ci if j = i− 1,

−κi/Ci if i = j = k,

0 otherwise.

(3.11)

For ε 6= 1 two entries in the penultimate row of A must be changed to match

equation (3.4). The matrix A is tridiagonal because each box is coupled only to its

immediate neighbours above and below. The ith eigenvalue of A is −1/τi where τi

is the ith characteristic timescale of the linear system. An analytical expression for

τi is given in Geoffroy et al. (2013a) for the case k = 2. See Appendix A.1 for a

proof that A has real and non-positive eigenvalues for any k when ε = 1.

Analysis of the full inhomogeneous, stochastic k-box model is simplified by the
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inclusion of radiative forcing F as a state variable. Defining the state vector

x(t) = (F (t), T1(t), . . . , Tk(t))
′, (3.12)

we can write the full model

ẋ(t) = A+x(t) + bu(t) +w(t), (3.13)

where A+ is simply matrix A augmented with one additional row-column pair (above

and to the left) to account for equation (3.6):

A+
1,1 = −γ, (3.14)

A+
2,1 = 1/C1; (3.15)

and where

b = (γ, 0, . . . , 0)′, (3.16)

u(t) = Fdet(t), (3.17)

and

w(t) ∼ N(0, Q) (3.18)

with

Qi,j =


σ2
η if i = j = 1,

(σξ/C1)
2 if i = j = 2,

0 otherwise.

(3.19)

3.5.2 Discretization scheme

The continuous-time model is a system of stochastic differential equations and may

be analysed using the tools of stochastic calculus. However if observations consist of

uniformly spaced discrete samples then it makes sense to discretize the model (see

Section 3.8.1 for details of sampled data used in this chapter). Assuming constancy
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of the deterministic forcing input u(t) = Fdet(t) between samples, the model can be

discretized exactly (see Appendix A.2 for details)

x(t) = Adx(t− 1) + bdu(t− 1) +wd(t) (3.20)

where

Ad = eA
+

, (3.21)

bd = (A+)−1(Ad − I)b, (3.22)

wd(t) ∼ N(0, Qd), (3.23)

Qd =

∫ 1

s=0

eA
+sQeA

+′
s ds, (3.24)

with subscript d denoting discretization. The integral in Equation (3.24) can be

evaluated via the matrix exponential method described in Section 1 of Van Loan

(1978). The above scheme is commonly used in control engineering, where it is

known as a “zero-order hold” discretization (Ljung, 1987).

3.5.3 State-space representation

As an LTI system the k-box model is amenable to powerful numerical techniques

from control engineering, in particular the Kalman filter (Kalman, 1960). By choos-

ing a model for observations y(t), the k-box model can be written in state-space

form

x(t) = Adx(t− 1) + bdu(t− 1) +wd(t) (3.25)

y(t) = Cdx(t) + vd(t), (3.26)

where matrix Cd is our observation operator and vd(t) is an (optional) additive

observation error. If we observe TOA net downward radiative flux N(t) and surface
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temperature T1(t) at each time t, both without error, then

y(t) = (T1(t), N(t))′ = Cdx(t) (3.27)

where entries of Cd are determined by equation (3.8). In the general case (e.g. the

historical record), observations might be contaminated by errors vd(t) such that

vd(t) ∼ N(0,Σt), (3.28)

but for climate model experiments we assume vd(t) = 0 for all t.

3.5.4 Kalman filter

The Kalman filter was originally developed as a minimum mean-square-error (MMSE)

estimator of state variables in a noisy linear dynamic system (Kalman, 1960). It

may also be used to recursively calculate the likelihood of a time series of obser-

vations from this class of model (Tusell, 2011). The Kalman filter estimates the

system state at time t, using the information contained in all previous observations

up to and including time t, through a recursive procedure iterating over two steps:

a prediction step and an update step. For the k-box model in state-space form we

can write the Kalman recursions as follows, using the hat/subscript notation of Reid

(2001).

Prediction step

Given x̂t−1|t−1, our best estimate of the system state at time t − 1 given data, the

predicted state x̂t|t−1 at time t is

x̂t|t−1 = Adx̂t−1|t−1 + bdut−1. (3.29)
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The predicted error covariance of this a priori estimate is

Pt|t−1 = AdPt−1|t−1A
′
d +Qd, (3.30)

where Pt−1|t−1 is the covariance of the estimated state at time t− 1.

Update step

Having then observed yt we update our a priori estimate of xt with this new infor-

mation to obtain an a posteriori state estimate x̂t|t with corresponding covariance

Pt|t. Our measurement pre-fit residual is

ỹt = yt − Cdx̂t|t−1 (3.31)

which has covariance

St = Σt + CdPt|t−1C
′
d. (3.32)

Our a posteriori state estimate is simply our a priori estimate x̂t|t−1 shrunk towards

the observation yt

x̂t|t = x̂t|t−1 +Ktỹt (3.33)

where the shrinkage amplitude is the optimal Kalman gain

Kt = Pt|t−1C
′
dS
−1
t . (3.34)

The covariance of the a posteriori estimate is

Pt|t = (I −KtCd)Pt|t−1(I −KtCd)
′ +KtΣtK

′
t. (3.35)

The measurement post-fit residual is

ỹt|t = yt − Cdx̂t|t. (3.36)
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In the complete absence of observational noise the recursions may still be computed

by setting Σt equal to a diagonal matrix with each diagonal element a very small

number.

3.5.5 Model likelihood

Since the k-box model is a causal linear filter, i.e. system states depend on past

states and past inputs but not on future states and future inputs, we can factorize

the likelihood function of the temperature observations

L(y1, . . . ,yn;θ) =
n∏
t=1

L(yt|yt−1, . . . ,y1;θ) (3.37)

where θ denotes the vector of model parameters. For numerical stability it is prefer-

able to compute the log-likelihood

`(y1, . . . ,yn;θ) =
n∑
t=1

`(yt|yt−1, . . . ,y1;θ) (3.38)

which can be calculated recursively using the pre-fit residuals and their correspond-

ing covariances from the Kalman filter

`(y1, . . . ,yt;θ) = `(y1, . . . ,yt−1;θ)− 1

2

(
2 log(2π) + log(|St|) + ỹt

′S−1t ỹt
)
. (3.39)

Evaluation of (3.39) requires the distribution of x0|θ, upon which y1 depends, to be

known. If we assume that at the beginning of a dataset the system is in a state of pre-

industrial equilibrium then E(x0) = 0 with some covariance matrix to be derived

from the model parameters (see Appendix A.3). For an abrupt 4 × CO2 climate

model experiment, the first element of x0 (corresponding to radiative forcing) has

an expected value, given the model parameters, of F4×CO2 .

The Kalman filter log-likelihood is essentially a weighted least-squares objective

function which penalizes squared one-step-ahead prediction errors (pre-fit residuals).

The weighting applied to each prediction error is determined by its corresponding
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uncertainty (covariance).

3.5.6 Maximum likelihood estimation

The maximum likelihood estimator (MLE) of the model parameters θ is

θ̂ = arg min
θ

[−`(y;θ)] (3.40)

where `(y;θ) denotes the k-box model log-likelihood function. We minimize the

negative log-likelihood numerically: a modern derivative-free algorithm such as

BOBYQA (Powell, 2009) is well suited to this task. Standard errors and confi-

dence intervals can be obtained using asymptotic properties of the MLE (for proofs

see Schervish (1995)). In the limit as sample size tends to infinity the MLE θ̂ is

normally distributed with mean vector θ and covariance matrix I−1 where I denotes

the Fisher information matrix

Ijk = −E

[
∂2`(y;θ)

∂θj∂θk

]
. (3.41)

Although the Fisher information I depends on the values of the true parameters

θ, we can obtain a consistent estimator Î by plugging the MLE θ̂ into equation

(3.41). We calculate Î using a numerical estimate of the Hessian of the negative

log-likelihood at the MLE θ̂. The estimated asymptotic sampling distribution of

the MLE is then used to calculate standard errors and confidence intervals.

3.5.7 Optimal model complexity

The number of boxes, k, offers a natural parameterization of model complexity.

When emulating an AOGCM with an EBM it is desirable to fit the most parsimo-

nious model which does not significantly underperform compared to more complex

models. Models with different numbers of boxes k can be compared (e.g. Caldeira

and Myhrvold, 2013) using Akaike’s Information Criterion (AIC). The AIC score
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for a fitted model m is defined

AIC(m) = −2`(m) + 2p(m) (3.42)

where ` is the log-likelihood and p is the number of parameters (Akaike, 1974). The

k-box model mk has p(mk) = 2k + 5 since we have k heat capacities Ci, k heat

transfer coefficients κi, a radiative forcing F4×CO2 , two standard deviations ση and

σξ, and two dimensionless parameters γ and ε. We have

AIC(mk) = −2`(mk) + 4k + 10. (3.43)

Competing models can be compared using the decision rule whereby for a given

AOGCM we choose the number of boxes, k, which minimizes AIC(mk).

3.6 Software implementation

I have developed a package for the R software environment (R Core Team, 2021)

for simulation, fitting, filtering and predicting with k-box EBMs. The package

estimates parameters of k-box models from time series of GMST and TOA net

downward radiative flux by numerically maximizing the likelihood function. The

model likelihood is evaluated using modern implementations of the matrix exponen-

tial (Goulet et al., 2021) and the Kalman filter (Luethi et al., 2020). The likelihood

is maximized using an implementation (Johnson, 2020; Ypma et al., 2020) of the

BOBYQA optimization algorithm (Powell, 2009). Confidence intervals for param-

eter estimates are obtained using the Fisher information, as described in Section

3.5.6, where the Hessian of the likelihood function is evaluated numerically using an

implementation of Richardson’s extrapolation (Gilbert and Varadhan, 2019). The R

package, which includes the datasets used in this chapter, is available for download

at https://github.com/donaldcummins/EBM.
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3.7 Simulation study

3.7.1 Methods

A simulation study was performed to investigate the feasibility of fitting k-box mod-

els to AOGCM step response data via the proposed maximum likelihood method.

The step response of HadGEM2-ES from CMIP5 was used to fit a two-box model

and a three-box model (optimal under AIC). HadGEM2-ES was chosen as this model

has been used extensively for climate change studies. Data from HadGEM2-ES con-

sisted of annually averaged values (see Section 3.8.1 for details of CMIP5 data used).

Estimated two-box model parameters were: γ = 1.58; C1, C2 = 7.73, 89.3 W yr m-2

K-1; κ1, κ2 = 0.632, 0.522 W m-2 K-1; ε = 1.52; ση, σξ, F4×CO2 = 0.428, 0.643, 6.86

W m-2. Estimated parameters for the three-box model were: γ = 1.73; C1, C2, C3

= 3.62, 9.47, 98.7 W yr m-2 K-1; κ1, κ2, κ3 = 0.536, 2.39, 0.634 W m-2 K-1; ε =

1.59; ση, σξ, F4×CO2 = 0.434, 0.323, 6.35 W m-2. Each of the two fitted models

was used to generate 1000 simulated step responses (see Figure 3.2). Parameters

were then estimated for each of the simulated datasets using the same maximum

likelihood methodology. The resulting sets of parameter estimates form a Monte

Carlo approximation to the estimator sampling distributions (see Figures 3.3 and

3.4).

3.7.2 Results

Estimator sampling distributions for the two-box and three-box models were exam-

ined for excessive bias, variance and pairwise correlations. Results for the two-box

model simulations are discussed below. Analysis of results for the three-box model

leads to analogous conclusions.

Pairwise parameter correlations are visible in the estimated sampling distribu-

tion of the two-box model estimator (see Figure 3.3). The strongest correlation

(positive) is between the parameters controlling the stochastic forcing, γ and ση,

i.e. the whiter the noise the greater the disturbance needed at each time step to
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Figure 3.2: Example simulated dataset from a two-box model with parameters: γ
= 1.58; C1, C2 = 7.73, 89.3 W yr m-2 K-1; κ1, κ2 = 0.632, 0.522 W m-2 K-1; ε
= 1.52; ση, σξ, F4×CO2 = 0.428, 0.643, 6.86 W m-2. (a) shows increasing surface
temperatures during the first 150 years after CO2 quadrupling. (b) shows the values
of TOA net downward radiative flux in each year plotted against the corresponding
surface temperature.
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obtain the same overall level of variability. The second strongest correlation (neg-

ative) is between the climate feedback parameter κ1 and deep ocean heat capacity

C2. The third strongest correlation (positive) is between C1 and σξ. A natural

explanation for this is that when the heat capacity of the first box C1 is increased

the corresponding temperature T1 has more inertia and hence requires a stronger

stochastic disturbance amplitude σξ to maintain the same level of variability. The

fourth strongest correlation (negative) is between κ2 and C2. This correlation is

related to the time taken for relaxation of the system on the longer timescale τ2. A

longer relaxation time can be achieved either by increasing the heat capacity of the

second box C2 or by reducing the heat transfer coefficient κ2 between boxes one and

two.

Model parameters can be divided, by correlation, into two disjoint sets: set (i),

stochastic forcing parameters γ and ση; and set (ii), all remaining parameters. Nei-

ther γ nor ση is correlated with any parameter in set (ii), nor does either parameter

appear well constrained by the simulated datasets, the consequence being a mutual

inflation of uncertainty. The correlations between parameters in set (ii) appear to

act favourably: individual parameter uncertainty in set (ii) is uniformly low with

coefficients of variation mostly less than 10 percent. If at least one parameter in set

(ii) is well constrained by observations, as appears to be the case, then uncertainty

in the other parameters decreases as a result.

Estimated marginal distributions of the two-box model parameters resemble uni-

modal bell curves (see Figure 3.4), with the notable exception of γ and ση. The pa-

rameter γ appears poorly bounded from above (hard to rule out very white stochastic

forcing) and this uncertainty propagates into ση. The maximum likelihood estima-

tor is asymptotically unbiased but in general has a finite sample bias. Estimates of

all two-box model parameters display some bias. Parameters γ and ση have positive

relative biases of 21 and six percent respectively, which is unsurprising given the

skewness of their marginal distributions. For parameters in set (ii) the bias is in all

cases less than two percent of the parameter’s true value.
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3.7.3 Conclusions

The simulation study demonstrates that the proposed maximum likelihood method

reliably estimates parameters of two-box and three-box box models from the step

response of a typical AOGCM from CMIP5. Pairwise correlation and estimator bias

were found to influence estimates of stochastic forcing parameters γ and ση, however

other model parameters were not adversely affected.

3.8 Fitting to CMIP5 climate model simulations

The R package was used to fit two-box and three-box models to the step responses

of 16 ESMs from CMIP5 (see Table 3.2), using the same data as Geoffroy et al.

(2013b).

3.8.1 Data and fitting procedure

The step response data consist of values of GMST T1 and TOA net downward

radiative flux N averaged over each of 150 years in the experiment. While it is

possible, in practice, to fit four-box models using the methodology described in this

chapter, it was decided that the upper limit for these data should be k = 3. It was

found, through numerical experimentation, that fitting a fourth box typically yields

an estimated characteristic timescale substantially shorter than one year. While

the inclusion of a fourth box sometimes led to an improvement in AIC score (due

to better fitting to the first year of the step response), the physical parameters of

four-box models were typically degenerate, e.g. there would be a very small heat

capacity in one of the boxes, causing matrix A in eqn (3.11) to have a large condition

number.

For each ESM the fitted box model with lower AIC (see Section 3.5.7) was chosen

as the optimal k-box emulator. The same procedure was applied to the multi-model

mean (MMM) of the 16 step-response datasets. Maximum likelihood parameter

estimates are reported for these optimal fits (see Table 3.3), with corresponding es-
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timates (see Table 3.4) of characteristic timescales τi, surface temperature response

coefficients ai, equilibrium climate sensitivity (ECS) and transient climate response

(TCR). It should be noted that, as the shortest timescale of the three-box model

is of the order of one year, estimated parameters of the first box will be affected

by changes in radiative forcing due to stratospheric and tropospheric “rapid adjust-

ments” (Chung and Soden, 2015). We refer to the fits chosen using AIC as optimal

k-box emulators for the remainder of this chapter.

3.8.2 Results

From Table 3.4 it can be seen that, for all 16 fitted ESMs, three boxes are required

for optimal emulation under AIC. According to AIC the multi-model mean requires

three boxes. Figure 3.5 shows three examples of fitted step responses for optimal

k-box emulators. In all fitted models the heat capacities of the boxes increase

with depth while, with the exception of GISS-E2-R, the heat transfer coefficients

decrease with depth (excluding the feedback parameter κ1). The approximate signal-

to-noise ratio, calculated F4×CO2/
√
σ2
η + σ2

ξ for the step-forcing experiment, ranges

from 7.1 to 19 with a median of 9.9. This high ratio allows us to fit models with

many parameters and without excessive parameter uncertainty (see Table 3.5). The

improved fit to the step response moving from a two-box to a three-box model is

often clearly visible (e.g. Figure 3.6).

The number of boxes, k, influences the impulse responses of the fitted box models,

sometimes strongly (see Figure 3.7). The mathematical definition of the impulse

response is given in Appendix A.4. For all 16 ESMs from CMIP5 the impulse

response of the optimal k-box emulator runs hotter in the first few years than that

of the corresponding two-box model. Moving from two to three boxes increases

the instantaneous sensitivity by between 17 and 174 percent (see Table 3.6). This

suggests that when modelling the GMST response to impulse-like forcing events

such as volcanic eruptions the greater flexibility of a three-box model might prove

valuable.
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Table 3.4: Characteristic timescales τi, surface temperature response coefficients ai,
equilibrium climate sensitivity (ECS) and transient climate response (TCR) of op-
timal k-box emulators fitted to ESMs in CMIP5. Column ∆AIC shows the decrease
in AIC moving from two to three boxes. For physical units and descriptions of pa-
rameters see Table 3.1. MMM refers to the k-box model fitted to the average of the
datasets from all 16 ESMs.

Model τ1 τ2 τ3 a1 a2 ECS TCR ∆AIC
BCC-CSM1-1 1.54 7.8 162 0.28 0.33 2.9 1.9 21.0
BNU-ESM 1.32 8.8 272 0.25 0.38 3.9 2.5 17.1
CanESM2 1.34 7.6 220 0.23 0.34 3.9 2.3 21.0
CCSM4 1.05 6.1 201 0.25 0.30 3.1 1.9 29.0
CNRM-CM5.1 0.91 8.6 259 0.21 0.49 3.2 2.1 40.2
CSIRO-Mk3.6.0 1.03 6.8 315 0.14 0.18 5.2 1.9 32.0
FGOALS-s2 1.03 5.5 393 0.14 0.36 4.6 2.3 8.9
GFDL-ESM2M 0.96 5.6 262 0.20 0.38 2.6 1.5 11.2
GISS-E2-R 1.34 3.7 235 0.46 0.10 2.3 1.4 21.3
HadGEM2-ES 0.95 8.2 532 0.10 0.31 5.9 2.4 43.1
INM-CM4 0.78 5.9 551 0.23 0.52 1.9 1.4 33.0
IPSL-CM5A-LR 0.78 13.2 394 0.19 0.33 4.4 2.2 75.7
MIROC5 1.31 7.8 321 0.39 0.24 2.8 1.8 5.5
MPI-ESM-LR 1.23 7.4 231 0.26 0.29 4.0 2.3 16.4
MRI-CGCM3 1.12 9.4 190 0.27 0.36 2.7 1.7 38.5
NorESM1-M 1.12 5.9 302 0.17 0.29 3.2 1.6 13.9
MMM 1.35 6.9 273 0.2 0.34 3.5 2.0 68.8

Table 3.5: Example approximate 95% confidence intervals for parameters of k-box
models fitted to HadGEM2-ES. For physical units and descriptions of parameters
see Table 3.1.

k = 2 k = 3
Parameter MLE 2.5% 97.5% MLE 2.5% 97.5%
γ 1.58 1.04 2.41 1.73 1.15 2.60
C1 7.73 6.64 9.01 3.62 2.98 4.39
C2 89.29 73.02 109.18 9.47 7.61 11.80
C3 98.66 84.10 115.74
κ1 0.63 0.56 0.71 0.54 0.46 0.63
κ2 0.52 0.46 0.59 2.39 1.82 3.12
κ3 0.63 0.57 0.71
ε 1.52 1.30 1.77 1.59 1.38 1.83
ση 0.43 0.35 0.52 0.43 0.35 0.53
σξ 0.64 0.53 0.77 0.32 0.27 0.39
F4×CO2 6.86 6.46 7.28 6.35 6.03 6.70
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Figure 3.5: Observed and fitted three-box step responses of three ESMs from CMIP5.
On the left are temperature trajectories for each box. On the right are TOA net
downward radiative fluxes against surface temperature. Grey dots are observations
while the black curves are expected box-model responses. Models are (a) GISS-E2-
R, (b) MIROC5, (c) HadGEM2-ES.
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Figure 3.6: Two-box (a) and three-box (b) fits to the step response of IPSL-CM5A-
LR. On the left are temperature trajectories for each box. On the right are TOA net
downward radiative fluxes against surface temperature. Grey dots are observations
while the black curves are expected box-model responses.
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Figure 3.7: Impulse responses of fitted k-box models. The curves are the expected
temperature trajectories of the first box of the fitted models in response to a unit-
impulse forcing. The solid and dashed curves correspond to three-box and two-box
fits respectively, fitted using maximum likelihood. Models are (a) MIROC5, (b)
IPSL-CM5A-LR.
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Table 3.6: Instantaneous increase in surface temperature (K) under a unit-impulse
forcing scenario. Results are given for two-box and three-box maximum likelihood
fits. Also given is the percentage increase moving from two to three boxes. MMM
refers to the k-box model fitted to the average of the datasets from all 16 ESMs.

Model MLE Two-Box MLE Three-Box % Increase
BCC-CSM1-1 0.13 0.19 42
BNU-ESM 0.17 0.25 45
CanESM2 0.15 0.22 48
CCSM4 0.14 0.23 58
CNRM-CM5.1 0.12 0.25 106
CSIRO-Mk3.6.0 0.19 0.28 50
FGOALS-s2 0.16 0.23 42
GFDL-ESM2M 0.14 0.21 46
GISS-E2-R 0.17 0.2 17
HadGEM2-ES 0.13 0.28 114
INM-CM4 0.14 0.23 72
IPSL-CM5A-LR 0.14 0.37 174
MIROC5 0.18 0.21 22
MPI-ESM-LR 0.16 0.23 46
MRI-CGCM3 0.13 0.22 74
NorESM1-M 0.12 0.19 54
MMM 0.12 0.19 62
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3.8.3 Comparison with a least-squares estimator

Figure 3.8 compares two-box model parameter estimates obtained using maximum

likelihood with those obtained by Geoffroy et al. (2013b). Maximum likelihood typ-

ically yields lower estimates of the heat capacities C1 and C2 but higher estimates

of the heat transfer coefficient κ2. This results in shorter estimated characteristic

timescales τ1, τ2 when using maximum likelihood. Estimates of the radiative pa-

rameters κ1, ε and F4×CO2 appear insensitive to the choice of fitting methodology

in the case k = 2.

3.8.4 Hidden state estimation

Under the proposed observation model (see Section 3.5.3), a fitted k-box model

can be combined with temperature and forcing data to filter the (possibly noisy)

observations and estimate the temperatures of the unobserved boxes (see Figure 3.9).

In this way we can see the attenuation of natural variability in temperature with

increasing depth. The thermal inertia of the deep ocean boxes with their large heat

capacity means that in the CO2 quadrupling experiment the noise in these boxes is

dwarfed by the signal. Given measurements of TOA net downward radiative flux,

a posteriori state-variable uncertainty is negligible (invisible when plotted), so the

reconstructed series in Figure 3.9 may be taken as known. Filtering and hidden

state estimation with k-box models is not restricted to step responses or AOGCM

experiments, but rather is applicable to any combination of global temperature and

radiative forcing data, including the observational record.

3.9 Summary

The k-box energy-balance model described in this chapter offers a simple but flex-

ible representation of the response of global mean surface temperature to radiative

forcing, both deterministic and stochastic, over a range of timescales. Parameter

estimation for this class of model is non-trivial: since we can typically observe the
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Figure 3.8: Maximum likelihood parameter estimates for two-box models compared
with corresponding estimates from Geoffroy et al. (2013b). Each point is one of 16
ESMs from CMIP5. The solid lines have equation y = x and show where estimates
are the same for both fitting methodologies.
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Figure 3.9: Reconstructed three-box model state variables in the MRI-CGCM3 step-
forcing experiment. The dots are observed surface temperatures T1(t) while the solid
curves are reconstructed time series of the latent variables in their respective units.
Latent variables are, from top to bottom, radiative forcing F (t) in W m-2, deep
ocean box temperatures T2(t) and T3(t) in K.
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temperature of only the first box we have a situation where for k ≥ 2 at least half of

the model state variables are latent. We have shown how, by finding a state-space

representation of the linear dynamic system and evaluating the likelihood recursively

via the Kalman filter, maximum likelihood estimates of all model parameters may

be obtained.

The k-box model is a linear time-invariant system and thus characterized by its

response to a step forcing, a forcing scenario which has been simulated in AOGCM

experiments. A simulation study has been carried out to investigate feasibility,

reliability and performance of the proposed method when applied to step-response

data. The proposed method has been found to reliably estimate the k-box model

parameters.

An important advantage of maximum likelihood estimation is that optimal model

complexity can be chosen using information criteria. To demonstrate this, two-box

and three-box models were fitted to each of a set of 16 Earth system models from

CMIP5 with the optimal number of boxes chosen by Akaike’s information criterion.

It was found that for all 16 AOGCMs three boxes are required for optimal k-box

emulation. Results obtained via maximum likelihood estimation were compared

with equivalent results from the method of Geoffroy et al. (2013b). It was found

that estimates of some model parameters differ systematically depending on the

choice of fitting method. The number of boxes, k, was found to influence the impulse

responses of the fitted models, sometimes strongly. These results suggest that, under

impulse-like forcing scenarios, AOGCM responses might be better emulated using

three-box models.

Finally, an example has been presented showing how a fitted k-box model can

be combined with temperature and forcing data to reconstruct the temperatures

of unobserved boxes corresponding to the deep ocean. Noise filtering and hidden

state estimation using k-box AOGCM emulators are possible wherever we have a

combination of global temperature and radiative forcing data, including the obser-

vational record. In the next chapter, the concept of energy-balance models as linear
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filters will be explored in more detail and a link will be made to a widely used class

of time series models. The performance of such filters as estimators of radiative

forcing will be investigated and their practical applicability to the historical record

demonstrated. In Chapter 5, results from these two chapters will be used as part of

an argument addressing the main research questions of this thesis.
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Chapter 4

Estimation of historical radiative

forcing using energy-balance

model ARMA representations

4.1 Aim

This chapter is based on material from Cummins et al. (2020a) and introduces an

alternative representation of k-box energy-balance models as autoregressive moving-

average filters. Performance of the digital filter representation as a tool for com-

puting radiative forcing from surface temperature is investigated, and the method

applied to the historical temperature record.

4.2 Introduction

In the previous chapter, the k-box stochastic energy-balance model (EBM) was

introduced as a simplified representation of global climate, and as a potential tool

for analysing the regression model implicit in optimal fingerprinting methods for

detection and attribution (D&A) of climate change trends. Many of the results

employed in the previous chapter followed from the fact that the k-box model is a

linear time-invariant (LTI) system, and this property will be exploited further in

71



Foundational basis for optimal climate change detection

the present chapter. Detection and attribution is by its nature an example of an

“inverse problem”: given historical climate observations (i.e. system outputs), what

can be said about the relative contributions of the various forcing factors (system

inputs)? In this chapter, we investigate the potential of the k-box model as a means

of addressing this inverse problem directly, by estimating historical radiative forcing

from time series of global surface temperature.

4.2.1 Estimation of historical radiative forcing

The estimation of historical radiative forcing, a measure of the net change in the

energy balance of the climate system in response to an external perturbation, is a

matter of strong scientific interest, as evidenced by the dedication of a whole chapter

to this topic in the fifth assessment report from the Intergovernmental Panel on

Climate Change (IPCC) (Myhre et al., 2013). Historical radiative forcing, alongside

equilibrium climate sensitivity (ECS), the long-term increase in global mean surface

temperature (GMST) caused by a doubling of atmospheric CO2 concentration, and

transient climate response (TCR), the increase in GMST after 70 years of one-

percent-per-year increasing CO2, are the three main quantities that inform long-

range forecasts of global warming. Estimation of historical forcing is therefore of

particular relevance to climate policy decision makers.

The term radiative forcing refers to a change in the Earth’s energy balance rel-

ative to some pre-defined baseline value, usually chosen to represent pre-industrial

conditions. In this chapter we use the effective radiative forcing (ERF), whose def-

inition is given in Myhre et al. (2013): “the change in net [top-of-the-atmosphere]

downward radiative flux after allowing for atmospheric temperatures, water vapour

and clouds to adjust, but with surface temperature or a portion of surface conditions

unchanged.” The adjustments of atmospheric temperatures and other variables, in-

cluded in the definition of ERF, are commonly referred to as “rapid adjustments”

and take place over much shorter timescales than resultant changes in surface tem-

perature. (Vial et al., 2013; Chung and Soden, 2015; Smith et al., 2018).
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It is infeasible to calculate historical radiative forcing from observational data

using the raw definition of ERF, as relevant climate variables, in particular top-of-

the-atmosphere (TOA) net downward radiative flux, were unobserved for most of the

historical period. Techniques have therefore been developed for diagnosing radiative

forcing from general circulation model (GCM) experiments. Forster et al. (2016)

describe methods, such as ERF trans, which use GCMs to simulate the historical

period with and without emissions of various forcing agents, and hence calculate

associated changes in Earth’s energy balance. Resulting series of estimated forcings

are strictly conditional on the climate model used. This approach is computationally

expensive and there is also some unavoidable noise contamination of results due to

internal variability in model output. More recently, Andrews and Forster (2020) have

combined GCM simulations with instrumental observations of historical GMST and

global heat uptake to constrain historical ERF.

Alternative approaches, based on simple climate models, have been used to es-

timate historical radiative forcing from the observational record (e.g. Tanaka et al.,

2009; Urban and Keller, 2010; Padilla et al., 2011; Aldrin et al., 2012; Urban et al.,

2014; Johansson et al., 2015; Ljungqvist, 2015). These studies used Bayesian infer-

ence (or non-linear Kalman filtering in the case of Padilla et al. (2011)) to jointly

estimate some or all of the parameters of a simple climate model together with cor-

responding series of historical forcing. A common aim of these studies is to constrain

ECS, uncertainty in ECS being found dependent on corresponding uncertainty in

historical forcing (Tanaka et al., 2009). As well as being computationally cheaper,

methods based on simple climate models have the appeal of directly incorporating

observational data, as opposed to GCMs whose dependence on the historical record

(through parameter tuning) can be more subtle.
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4.2.2 Application to detection and attribution of climate

change trends

The line of investigation pursued in this chapter is motivated by the potential ap-

plication of simple climate models and forcing estimation techniques to the D&A

problem. Simple climate models have previously been used for D&A of changes in

GMST, e.g. Otto et al. (2015); Rypdal (2015); Haustein et al. (2017). These studies

regressed time series of historical temperature observations on predicted temperature

series from linear impulse-response models, thus applying a simplified version of the

widely used optimal fingerprinting methodology (Hasselmann, 1997; Allen and Tett,

1999; Allen and Stott, 2003), which is more typically applied to high-dimensional

gridded datasets of observations and GCM output.

In the context of D&A, surface temperature is an observable proxy for radia-

tive forcing, which is itself not directly observable. The suitability of this proxy for

regression analysis is reduced by two artifacts of the climate system’s thermal iner-

tia: (i) a delayed temperature response to changes in radiative forcing; (ii) strong

temporal autocorrelation in natural temperature variability. Within the framework

of linear impulse-response models, instantaneous surface temperature is simply a

convolution of previous changes in radiative forcing (Good et al., 2011). One might

therefore propose that D&A of changes in GMST using simple climate models could

be improved by first deconvolving temperature observations to obtain series of esti-

mated radiative forcing, and then by performing the traditional regression step on

radiative forcing time series. In this way one might reasonably expect to eliminate

(or at least reduce) both the time delay in the regressed series and also the temporal

autocorrelation in the regression residuals.

The remainder of this chapter is a proof-of-concept study in which a method

is developed for performing the proposed deconvolution of temperature time series

using k-box energy balance models (EBMs). To do this, we exploit a known corre-

spondence between linear ordinary differential equations (ODEs) and discrete-time

autoregressive moving-average (ARMA) time series models. Specifically, we use the
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fact that a system of k first-order linear ODEs has a discrete-time representation

as an ARMA(k, k − 1) filter (Spolia and Chander, 1974; Chang et al., 1982). This

correspondence has been used before in the context of three-box EBMs: by Grieser

and Schönwiese (2001) as a convenient means of integrating the continuous-time

model over a time series of discrete forcing inputs; and by Stern (2005) as a way to

enforce energy balance constraints on estimated parameters of an ARMA model.

This chapter introduces a novel application of the three-box EBM filter in its

inverted form. Li and Jarvis (2009) showed that the three-box model is simply a

physically motivated parameterization of a causal, linear input-output system which

maps a time series of radiative forcings onto a corresponding time series of surface

temperatures. Here it is shown how the k-box model’s equivalent ARMA filter

representation may be derived, and we describe how, by inverting the ARMA filter,

radiative forcing may be obtained from a temperature time series.

4.3 Energy-balance models as ARMA filters

For an LTI system (such as the k-box model), the surface temperature response to

a general forcing F (t) can be written as

T1(t) =
∞∑
v=0

R(v)F (t− v). (4.1)

where R(v) is the discrete-time impulse response function. Since an impulse is the

derivative of a step change, the discrete-time impulse response function is equal to

the once-differenced response to a step change in forcing (e.g. a CO2-quadrupling

experiment). Defining the “backshift” operator B such that Bi x(t) = x(t − i), we

can write
∞∑
v=0

R(v)F (t− v) =
∞∑
v=0

R(v)Bv F (t). (4.2)

Let

Φ(B) =
∞∑
v=0

R(v)Bv. (4.3)

Chapter 4 Donald P. Cummins 75



Foundational basis for optimal climate change detection

It can be shown (see Appendix B) that for the k-box model

Φ(B) =
θ(B)

φ(B)
, (4.4)

with φ and θ polynomials in B of degree k and k − 1 respectively. Thus we have

φ(B)T1(t) = θ(B)F (t), (4.5)

i.e. the linear map from F (t) onto T1(t) is an ARMA(k, k − 1) filter. The rep-

resentation in (4.4) as a ratio of two polynomials gives the corresponding inverse

filter

Φ−1(B) =
φ(B)

θ(B)
, (4.6)

which is ARMA(k − 1, k). The AR and MA coefficients can be efficiently calcu-

lated from the discrete-time impulse response using software for computing Padé

approximants such as the Pade package in R (Adler, 2020).

Note that the above result for k-box EBMs is a special case of a long-standing and

more general result: that a system of k first-order linear ODEs has a discrete-time

representation as an ARMA(k, k − 1) filter (Spolia and Chander, 1974). EBM-

derived ARMA filters have previously been used in the climate literature in the

“forward” direction, i.e. to convert time series of annually averaged forcings into

temperatures (Grieser and Schönwiese, 2001), and for the purpose of EBM param-

eter estimation (Stern, 2005). Here the ARMA filter is applied in the reverse direc-

tion, to find the forcing input required by an EBM to yield a given time series of

temperatures.

If polynomials φ(B) and θ(B) are taken to be

φ(B) = 1−
k∑
i=1

φiB
i (4.7)
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and

θ(B) =
k−1∑
i=0

θiB
i, (4.8)

then, in the case k = 3, eqn (4.5) may be written explicitly as

T1(t)−φ1T1(t−1)−φ2T1(t−2)−φ3T1(t−3) = θ0F (t)+θ1F (t−1)+θ2F (t−2). (4.9)

4.4 Three-box climate model fits

In the previous chapter, a maximum likelihood method was developed for estimat-

ing parameters of k-box EBMs from abrupt CO2-quadrupling GCM experiments.

Using the maximum likelihood estimator, three-box models have been fitted to the

two most recent Earth system models (ESMs) from the UK Met Office: HadGEM2-

ES from CMIP5 and HadGEM3-GC3.1-LL from CMIP6 (see Figure 4.1). Table 4.1

contains maximum likelihood estimates of model parameters, as well as estimates

of equilibrium climate sensitivity (ECS), transient climate response (TCR), char-

acteristic timescales τ1, τ2, τ3 and the coefficients of the ARMA polynomials φ(B)

and θ(B). The ARMA coefficients were calculated from the discrete-time impulse

responses of the fitted models. Note that ARMA models can alternatively be esti-

mated using Bayesian inference (e.g. Monahan, 1983).

4.5 ARMA filter validation using HadGEM3-GC3.1-

LL

4.5.1 Methods

Numerical estimates of the ARMA coefficients enable, in theory, conversion of time

series of surface temperatures into corresponding series of radiative forcings. The

properties of this proposed temperature-forcing conversion were investigated using

CMIP6 historical runs from the HadGEM3-GC3.1-LL climate model.
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Figure 4.1: Three-box model fitted values. Panel (a) shows the abrupt 4×CO2 sur-
face temperature responses of the HadGEM2-ES (cooler) and HadGEM3-GC3.1-LL
(hotter) climate models. Anomalies are relative to the time average of surface tem-
perature in the corresponding pre-industrial control (piControl) simulations. Panels
(b) and (c) show the TOA net downward radiative flux change in the respective
models as a function of surface temperature.
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Table 4.1: Maximum likelihood parameter estimates. For descriptions of all model
parameters see Table 3.1. The values of ECS and TCR in this table are derived
directly from the box models’ physical parameters.

Model
Parameter (Unit) HadGEM2-ES HadGEM3-GC3.1-LL
γ (dimensionless) 1.73 3.15
C1 (W yr m-2 K-1) 3.62 3.97
C2 (W yr m-2 K-1) 9.47 9.06
C3 (W yr m-2 K-1) 98.7 65.9
Ctot (W yr m-2 K-1) 112 79
κ1 (W m-2 K-1) 0.536 0.607
κ2 (W m-2 K-1) 2.39 2.99
κ3 (W m-2 K-1) 0.634 0.65
ε (dimensionless) 1.59 1.18
ση (W m-2) 0.434 0.458
σξ (W m-2) 0.323 0.632
F4×CO2 (W m-2) 6.35 7.19
τ1 (yr) 0.953 0.822
τ2 (yr) 8.21 9.04
τ3 (yr) 532 270
ECS = F4×CO2/2κ1 (K) 5.92 5.92
TCR (K) 2.44 2.82
φ1 (dimensionless) 2.23 2.19
φ2 (dimensionless) -1.54 -1.45
φ3 (dimensionless) 0.31 0.264
θ0 (K m2 W-1) 0.194 0.172
θ1 (K m2 W-1) -0.33 -0.284
θ2 (K m2 W-1) 0.136 0.113
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Model surface temperatures from 1850-2014 were averaged annually (Jan-Dec),

globally and over four ensemble members. Anomalies were calculated by subtracting

from the whole series the mean absolute temperature in the first 50 years (1850-

1899). The final temperature series was fed into the fitted HadGEM3-GC3.1-LL

ARMA filter using the digital filter implementation in the signal package in R (signal

developers, 2021).

The resulting filtered forcing series was compared (see Figure 4.2) with a time

series of effective radiative forcing (ERF) diagnosed by Andrews et al. (2019) from a

HadGEM3-GC3.1-LL RFMIP run using the ERF trans method described in Forster

et al. (2016). Note that Andrews et al. (2019) applied a time-mean historical volcanic

forcing to the HadGEM3-GC3.1-LL piControl, meaning that they report an ERF

of around 0.2 W m−2 in 1850. To avoid an offset due to the choice of temperature

baseline, a constant 0.2 W m−2 was added to the forcing series computed using the

ARMA filter.

Note that, in Section 4.3, no specific model for internal climate variability was

assumed, in contrast with the stochastic EBM of the previous chapter, which has

a parametric noise model. While the maximum likelihood estimator developed in

Chapter 3 requires an explicit parameterization of internal climate variability, the

present application of the ARMA filter as a recursive estimator of ERF does not.

Nevertheless, the output of this procedure, when applied to GCM simulations, may

be interpreted using the Chapter 3 parameterization as the sum of terms F (t) and

ξ(t) in eqn (3.2). Thus there is some noise contamination of resulting estimates (see

Section 4.6.3 for detailed discussion).

4.5.2 Results

Results from the two methods agree strongly and the filtered forcing series explains

a majority of the variance in the ERF trans series: the coefficient of determination

is R2 = 0.69 (correlation of 0.83). Reassuringly the ARMA filter correctly infers the

rate of forcing increase in recent decades. However, there appears to be a systematic
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Figure 4.2: Comparison of forcing series estimated from HadGEM3-GC3.1-LL simu-
lations of the historical period. In panel (a) grey triangles denote forcings estimated
by Andrews et al. (2019) while black dots denote forcings obtained using the three-
box ARMA filter. Panel (b) shows how estimates from the two methods vary over
the range of forcing values using a non-parametric curve fit. The diagonal line has
equation y = x.
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disagreement in years with strong negative forcing. Negative forcing spikes associ-

ated with volanic eruptions are smaller when calculated using the ARMA filter. This

is especially evident in the case of the Krakatoa explosion of 1883.

The observed discrepancy in inferred volcanic forcing is not entirely unexpected.

The ARMA filter is derived from a three-box EBM which is known to be unable

to resolve temperature responses on timescales significantly shorter than one year.

Because the data used here are annual averages, there is also scope for error due

to discretization, as a volcanic eruption might occur earlier or later in a given year.

Finally, it may also be the case that the GCM’s temperature response to volcanic

forcing deviates from the linearity assumption of the ARMA filter.

4.6 Application to historical surface temperatures

4.6.1 Methods

The box-model ARMA filters can be applied to time series of historical surface tem-

peratures to obtain series of estimated historical forcings. The Cowtan and Way 2.0

(CW2.0) historical temperature series is an updated version of the dataset described

in Cowtan and Way (2014), which is a modification of the HadCRUT4 series (Morice

et al., 2012), corrected for coverage bias. Because CW2.0 is a blend of surface air

temperatures (SATs) and sea surface temperatures (SSTs), it is not directly compa-

rable with the pure-SAT 4×CO2 datasets used to calibrate the EBMs. The CW2.0

temperatures series have therefore been scaled by 1.09 according to Richardson

et al. (2016) for the present application. The HadGEM2-ES and HadGEM3-GC3.1-

LL ARMA filters have been applied to the scaled CW2.0 temperatures yielding

estimated historical forcing series for the period 1850-2018 (see Figure 4.3).

4.6.2 Results

It can be seen from panel (d) of Figure 4.3 that the forcing series generated by the

two ARMA filters are very similar. The HadGEM3-GC3.1-LL ARMA filter reports
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Figure 4.3: HadGEM3-GC3.1-LL three-box ARMA filter reconstruction of historical
radiative forcing. Panel (a) is the Cowtan and Way 2.0 temperature series; (b) is
the corresponding filtered forcing series, with estimated trend and 95 % confidence
intervals from a generalized additive model (GAM) fit; (c) is the sample autocorre-
lation function of the GAM residuals; (d) shows how estimates from the two models
vary over the range of forcing values.

Chapter 4 Donald P. Cummins 83



Foundational basis for optimal climate change detection

slightly higher forcing in the latter years of the historical period and slightly more

extreme negative forcing in years surrounding major volcanic eruptions.

The reconstructed forcing series are very noisy since the natural variability which

contaminates historical surface temperatures is amplified by the ARMA filter. How-

ever, unlike noise in the temperature series, the filtered noise is essentially uncor-

related in time. This follows from the fact that the three-box EBM successfully

accounts for the thermal inertia (memory) of the system. The white noise-like prop-

erties of natural variability in the filtered forcing series mean that the long-term

trend can be extracted using regression techniques. A generalized additive model

(GAM) was fitted to the estimated forcing series using the mgcv package in R (Wood,

2011, 2021). Approximate 95 % confidence intervals (±1.96 standard errors) for the

estimated trend indicate a dramatic acceleration in radiative forcing in the second

half of the twentieth century, with an estimated forcing increase of 1.45 ± 0.504

W m−2 between 1850 and 2018.

4.6.3 Quantification of uncertainty

The filtered forcing series and its subsequent decomposition into signal and noise

are subject to multiple sources of uncertainty which must be taken into considera-

tion. As well as the (substantial) internal climate variability, there is observational

uncertainty in the historical temperature series and parameter uncertainty in the

fitted impulse responses. Given a standard assumption of zero-mean errors, the

aggregate noise from observational error and internal climate variability should be

well accounted for by GAM regression smoothing. Uncertainty in the fitted im-

pulse responses is also of limited concern: since the EBMs were fitted to abrupt

CO2-quadrupling experiments, which have a good signal-to-noise ratio, uncertainty

in the fitted impulse responses is in fact quite small (see Figure 4.1). It should

however be noted that, under forcing scenarios less drastic than 4 × CO2, fitting

of exponential response functions can suffer from ill-conditioning (De Groen and

De Moor, 1987; Kaufmann, 2003). Of arguably greater concern is uncertainty due
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to inter-model variation between GCMs, which can be seen as a measure of con-

fidence in a particular GCM’s ability to represent the true climate. Inter-model

variation in GCM output can arise through the use of different parameter values

and/or model structures in GCMs (Flato et al., 2013). A full multi-model ensemble,

perhaps across all the GCMs in CMIP6, would be required to quantify this satis-

factorily, as HadGEM2-ES and HadGEM3-GC3.1-LL are clearly not independent

samples. Numerical results in this chapter should therefore be seen as conditional

on those two climate models.

While one might argue that the use of a post-hoc GAM regression is reasonable

for the reasons given above, a more integrated approach to uncertainty quantification

in future analyses could be achieved using Bayesian methods. A Bayesian alterna-

tive to GAM smoothing of the filtered forcing series is the “latent force model”

approach (Alvarez et al., 2009; Särkkä et al., 2019). In a latent force model, uncer-

tainty in the unobserved historical forcing input to a system of ODEs is represented

in continuous time using a Gaussian process. Another alternative is the use of se-

quential methods based on the Kalman filter (Kalman, 1960). ARMA models have

natural representations as linear Kalman filters (de Jong and Penzer, 2004), and

sequential filtering methods can account for uncertainty in both model parameters

and unknown inputs simultaneously, by augmenting the system state vector with

estimates of the uncertain parameters (Lourens et al., 2012; Yu and Chakravorty,

2015). Similar techniques have previously been used in the climate literature: for

example, by Annan et al. (2005) and Padilla et al. (2011), who used Kalman filter-

ing to sequentially tune parameters of an Earth model of intermediate complexity

(EMIC) and a two-box EBM respectively; and by Cohen and Wang (2014), who

estimated historical time series of global black carbon emissions.

4.7 Summary

A method has been developed for estimating radiative forcing from time series of

surface temperatures using GCM-calibrated, k-box EBMs. There is a known cor-
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respondence between k-box EBMs and ARMA models. In this chapter it has been

shown how, by inverting a k-box EBM’s equivalent ARMA filter representation, a

convenient mapping from temperatures onto forcings may be obtained. The method

has been validated using historical simulations from the HadGEM3-GC3.1-LL cli-

mate model and found to generally perform well, the notable exception being nega-

tive forcing due to volcanic eruptions, which was underestimated. Three-box EBMs

fitted to the HadGEM2-ES and HadGEM3-GC3.1-LL climate models have been

combined with the Cowtan and Way 2.0 temperature dataset to produce estimates

of radiative forcing for the historical period (1850-2018). Forcing estimates calcu-

lated using the two models’ ARMA filters are very similar. A significant increase

in radiative forcing over the historical period has been detected at the 5% level of

significance.

The method developed in this chapter is a direct application of energy-balance

model theory to the D&A of past temperature changes, by examining patterns of

forcings rather than temperatures. Future work will examine how performance of

the method generalizes to the other GCMs in CMIP6, and will address in more detail

the question of uncertainty quantification. By combining ARMA filter estimates of

historical radiative forcing with known observational constraints it may be possible

to further constrain climate sensitivity metrics, such as ECS and TCR, and hence

constrain projections of future warming.

In the next chapter, the principal research questions of this thesis will be ad-

dressed. It will be determined whether, and if so under what circumstances, optimal

fingerprinting methods for D&A of climate change trends are valid. The k-box-model

ARMA representation, explored in this chapter, will be found to have considerable

value as an algebraic reasoning device, not just as a numerical tool as has been

shown here. The material developed in this and the previous chapter will provide

physical interpretability to the next chapter’s results and their respective proofs.
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Could detection and attribution of

climate change trends be spurious

regression?

5.1 Aim

This chapter investigates, by modelling radiative forcing as an integrated process

within an idealized linear-response-model framework, whether the optimal finger-

printing estimator is consistent under standard assumptions, and hence robust

against spurious regression. Hypothesis tests are conducted using observations of

historical GMST and simulation output from 13 CMIP6 general circulation models

(GCMs) to determine whether these assumptions hold in practice.

5.2 Introduction

The previous chapter established a link between energy-balance models (EBMs),

simple models of global climate parameterized in terms of real-world physical quan-

tities, and general autoregressive moving-average (ARMA) linear time series models.

In this chapter, it will be shown how representing the forced responses of climate

models as general ARMA filters (a much wider class of causal time-series mod-
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els than just EBMs) provides a useful framework for analyzing how fingerprinting

methods work when applied to trending variables. Recall that optimal fingerprinting

assumes a regression model of the form

y = Xβ + e, (5.1)

where y denotes historical climate observations; X is a matrix of predicted climate-

change signals, typically consisting of simulation output from a GCM; coefficients β

are the “scaling factors”; and e is a composite error term containing internal climate

variability noise as well as other sources of uncertainty. Detection and attribution

(D&A) involves obtaining reliable estimates of these scaling factors and establishing

their statistical significance, typically through the use of least-squares estimators

(see Chapter 2).

A key feature of the optimal fingerprinting studies reviewed in Chapter 2 is the

way in which datasets of climate observations and model simulation output are

treated as static signals in the regression, rather than outputs of an input-output

system evolving over time. For example, in spatio-temporal D&A studies the spa-

tial and temporal correlations are treated similarly through the use of combined

space-time covariance matrices. One problem with this approach is that properties

unique to time-indexed data, such as notions of ordinality and causality, are not

given adequate consideration. It has long been known in the field of time series

analysis that the practice of regressing variables containing time trends comes with

a unique set of pitfalls, the most serious of which being the “spurious regression”

phenomenon (discussed in detail in the next section). In this chapter, the threat

to D&A inferences posed by spurious regression will be assessed, using a combi-

nation of theoretical argument (Section 5.4) and empirical evidence (Section 5.5).

The statistical consistency of least-squares estimators used in optimal fingerprint-

ing studies will be found to depend on a property known as “cointegration”, which

may be described informally as a stricter form of correlation arising between time

series. Section 5.5 will also introduce and demonstrate a new method for estimating
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uncertainty in D&A results, which exploits the notion of cointegration to obviate

dependence on pre-industrial control (piControl) simulations (and the strong as-

sumptions therewith).

5.3 Regression of non-stationary variables

When discussing optimal fingerprinting as applied to time-indexed climate variables,

it is necessary to introduce some definitions from time series analysis, the most

important of which being the notion of “stationarity”. In this chapter, a time series

variable u(t) is said to be stationary if and only if its mean and variance are finite and

do not depend on time t. Such a time series exhibits a mean-reverting behaviour.

An example of a stationary time series is the first-order autoregressive or AR(1)

model

u(t) = ρu(t− 1) + ε(t), (5.2)

where −1 < ρ < 1 is a correlation and ε(t) a white-noise process, commonly called a

“shock” or “innovation”. The AR(1) model in eqn (5.2) has mean zero and constant

variance σ2/(1 − ρ2), where σ2 = Var(ε). Stationary autoregressive processes have

been proposed as simple models of internal climate variability (Hasselmann, 1976).

If a trend in a time series can be described as a change in the mean (deterministic

trend) or variance (stochastic trend) over time then, by their definition, stationary

time series do not exhibit trends.

Detection and attribution is concerned with “trending” (non-stationary) climate

variables. While the above definition of stationarity is quite prescriptive, the cor-

responding class of non-stationary time series, i.e. those violating the conditions,

is too broad to be practically useful for the present purposes. Instead, attention

will be restricted to the class of non-stationary time series known as “integrated”

or “difference-stationary”. For a time series v(t) to be difference-stationary, the

differenced series ∆v(t) = v(t) − v(t − 1) must be stationary. The equivalent term

“integrated” comes from the fact that v(t) can be constructed by integrating (taking
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partial sums of) the stationary time series ∆v(t). In this chapter, integrated will

be abbreviated to I(1), where 1, the “order of integration”, denotes the number of

times a series must be differenced to achieve stationarity. An example of an I(1) time

series, the simple random walk, can be obtained from eqn (5.2) by setting ρ = 1:

v(t) = v(t− 1) + ε(t). (5.3)

The variance of v(t) grows linearly in time, so the series is non-stationary. It may

be said that v(t) contains a “unit root” stochastic trend (see Section 5.4).

The climate variables in D&A studies are hypothesized to be non-stationary,

due to the presence of externally forced trends, both natural and anthropogenic.

Radiative forcing due to greenhouse gas (GHG) emissions has a natural represen-

tation as an integrated process, where the integration is the accumulation of gases

in the atmosphere over time. The idea of unit-root stochastic trends has a long

history in climate change studies, e.g. Kaufmann and Stern (1997); Stern and Kauf-

mann (2000); Kaufmann and Stern (2002); Kaufmann et al. (2006); Mills (2008);

Kaufmann et al. (2011, 2013), although it has been disputed (Gay-Garcia et al.,

2009). It might further be argued that the processes driving anthropogenic GHG

emissions are themselves integrated, where the integration represents accumulation

of industrial capacity, however there is no numerical evidence for significant higher-

order integration in annual records of historical GMST (see Section 5.4). In optimal

fingerprinting, observed and simulated realizations of non-stationary variables are

commonly regressed on one another using classical estimators such as ordinary least

squares (OLS) (Allen and Tett, 1999) or total least squares (TLS) (Allen and Stott,

2003), depending on the size of the GCM ensemble. However, it has long been known

that regressions involving non-stationary variables are susceptible to a phenomenon

called “spurious regression”, whereby statistically significant linear relationships are

found between completely unrelated time series (e.g. Yule, 1926). Granger and New-

bold (1974) showed that regressing two independent random walks produces inflated

t-statistics and often leads to the detection of a statistically significant relationship
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when in reality none exists. In general, OLS regressions of I(1) time series are sta-

tistically inconsistent, i.e. the coefficient estimates do not converge in the limit of

infinite data, except in the special case where the series are “cointegrated” (Engle

and Granger, 1987). Two or more I(1) time series are said to cointegrate when

there exists a linear combination of the series which is itself stationary. Regressing

cointegrated time series using OLS yields coefficient estimates which are not only

consistent but “superconsistent”, meaning they converge in probability to the co-

efficients’ true values at a rate proportional to the length of the series (Engle and

Granger, 1987). Thus the question of whether the regressors in optimal fingerprint-

ing are cointegrated is critical for evaluating the reliability of D&A of climate change

trends.

The risk of spurious regression in D&A pertains specifically to the attribution

problem. This is because, in the case of detection, p-values are calculated “under

the null”, i.e. under an assumption of no climate change. In the absence of climate

change, the left-hand side of eqn (5.1) would be stationary by definition, and there

would be no risk of spurious regression. In the case of attribution, where climate

change is taken as given, spurious regression refers to the misattribution of climate

trends to one or more candidate factors, meaning that the resulting allocation of

blame is inaccurate. Such misattribution does not require the presence of an “exoge-

nous” trend (e.g. caused by a hidden forcing mechanism), but may instead be caused

by flawed representation of forced trends included in the climate model. In partic-

ular, any discrepancy between true and modelled forcing which accumulates over

time (e.g. due to inaccurate data / incomplete understanding of physical processes)

has the potential to induce non-stationarity in the error term of the regression equa-

tion, leading to inconsistent scaling factor estimates and invalid confidence intervals.

Given that climate models are known to differ in their representation of radiative

forcings, there is a prima facie case for investigating this possibility (Myhre et al.,

2013).

Methods based on the notion of cointegration have been used previously in anal-
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yses of climatic time series (Bindoff et al., 2013). Much effort has gone into studying

cointegrations between groups of real-world variables, such as temperatures and forc-

ings (Stern, 2006; Turasie, 2012; Beenstock et al., 2012; Stern and Kaufmann, 2014;

Pretis et al., 2015; Storelvmo et al., 2016; Estrada and Perron, 2017; Bruns et al.,

2020) or temperatures and sea level (Schmith et al., 2012). However, little effort

has gone into discussing the presence or lack of cointegration between observed and

model-simulated realizations of the same climate variable.

This chapter addresses the two primary aims of the thesis: firstly, to deter-

mine mathematically whether the experimental design and model assumptions of

optimal fingerprinting together imply cointegration of the regression and therefore

consistency of the least squares estimator; secondly, to investigate whether there is

empirical evidence of such a cointegration arising in practice for the GMST variable.

The first aim will be addressed in Section 5.4 and key results proved within an ideal-

ized linear-response-model framework. It will be shown how, by parameterizing the

impulse response as an EBM, the formulas in the proof can assume physical inter-

pretability in terms of real-world quantities. Section 5.5 deals with the second aim

by means of hypothesis testing, applied to historical observations and output from

the latest generation of GCMs. A new method for calculating confidence regions

without recourse to piControl simulations will also be introduced. The content of

the chapter is summarized in Section 5.6.

5.4 Theoretical arguments for cointegration

This section will assess the consistency of optimal fingerprinting regression in the

presence of I(1) non-stationary forcings. To begin with, some definitions are re-

quired.
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5.4.1 Impulse-response model definition

Let y denote a climate variable of interest for which historical observations are avail-

able. Assuming that a change in y in response to an externally imposed effective ra-

diative forcing (ERF) F may be adequately described by a linear and time-invariant

(LTI) impulse-response function, the time series of observations y(t) may be written

as an autoregressive moving-average (ARMA) model of arbitrary order p, q ≥ 0,

y(t)−
p∑
i=1

φiy(t− i) = c+

q∑
i=0

θiF (t− i) + ξ(t), (5.4)

where µ = c/(1−
∑

i φi) is variable y’s pre-industrial baseline, i.e. its mean value in

the absence of any forcing F ; coefficients φi and θi are sequences of weights determin-

ing the autoregressive (AR) and moving-average (MA) parts of the impulse-response

function; and ξ(t) is a stationary zero-mean stochastic process representing internal

climate variability, plus other sources of noise/uncertainty reasonably considered

stationary, such as observational error. The definition of ERF is given in Myhre

et al. (2013) and is such that the climate system’s response to ERF should be indif-

ferent to the particular forcing agent responsible. The ARMA model in eqn (5.4) is

very general, incorporating all finite-impulse-response (FIR) models, as well as all

infinite-impulse-response (IIR) models of exponential type. Defining the “backshift

operator” B such that Bix(t) = x(t− i), eqn (5.4) may be written

y(t) = µ+ Φ(B)F (t) + ε(t), (5.5)

where the rational function

Φ(B) =
θ(B)

φ(B)
=

∑q
i=0 θiB

i

1−
∑p

i=1 φiB
i
, (5.6)

Chapter 5 Donald P. Cummins 93



Foundational basis for optimal climate change detection

is known as the “transfer function”. The time series of radiative forcings F (t) is

assumed to be non-stationary with non-stationarity modelled as I(1),

F (t) = F (t− 1) + ∆F (t), (5.7)

where the series of forcing increments ∆F (t) is a stationary stochastic process. The

rationale for modelling ∆F (t) as stochastic is the fact that it cannot be predicted

from past values of F (t) only, as evidenced by the impact on carbon dioxide (CO2)

emissions of the recent SARS-CoV-2 pandemic (Tollefson, 2021). Equation (5.7) is

quite general since, beyond the assumption of stationarity, no specific parametric

model is assumed for ∆F (t). Note that ∆F (t) need not have zero mean: for example,

in the case of forcing due to exponentially increasing atmospheric CO2 concentration,

∆F (t) would on average (and indeed almost always) take a positive value. Using

the backshift operator,

F (t) =
1

1− B
∆F (t), (5.8)

whence the term “unit-root” non-stationarity originates, as the polynomial in the

transfer function’s denominator contains a unit root. To guarantee the existence of

a finite climate sensitivity, it is assumed that all roots of the AR polynomial φ(B)

lie strictly outside the unit circle in the complex plane. Noting that the backshift

operator B reduces to the identity when the system is in equilibrium, the familiar

equilibrium climate sensitivity (ECS) for variable y is then

yECS = Φ(1)F2×CO2 , (5.9)

where F2×CO2 denotes the increase in radiative forcing associated with a doubling

of atmospheric CO2 concentration.
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5.4.2 Optimal fingerprinting experimental design

Consider an optimal fingerprinting study where observed changes in y are to be

attributed to a set of p candidate forcings F1, . . . , Fp. Using the ARMA model in

eqn (5.4) and the backshift operator notation, the study’s experimental design may

be written

y(t) = µ+ Φ(B)F (t) + ε(t), (5.10)

x1(t) = µ′ + Φ′(B)π1F1(t) + ε′1(t), (5.11)

...

xp(t) = µ′ + Φ′(B)πpFp(t) + ε′p(t). (5.12)

The equation for observations y(t) is unchanged. New variables xi denote output

from climate model runs (or ensembles thereof) where forcings Fi have been applied

individually. If no important forcing factors are missing from the candidate set, and

if there are no interactions between forcing factors, it may be assumed that the total

forcing F driving the observed trend in y has the decomposition F = F1 + · · ·+Fp.

This is the “additivity assumption” of optimal fingerprinting. Another fundamental

assumption of optimal fingerprinting is that radiative forcings driving model runs xi

have the correct temporal structure, i.e. are identical to their real-world counterparts

up to multiplicative constants πi. In practice this assumption may be relaxed using

errors-in-variables (EIV) methods, but at the cost of introducing further assumptions

such as model exchangeability (Huntingford et al., 2006). Note that, in eqns (5.11)

to (5.12), the climate model is not assumed to perfectly reproduce the properties of

the true climate. In general, the climate model may have a different mean µ′ 6= µ,

a different noise process ε′ 6= ε, and an impulse response differing from the truth in

shape and scale Φ′ 6= Φ.
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5.4.3 Consistency of the least-squares estimator

If at least one of the candidate forcings is I(1) non-stationary then a multiple re-

gression of y on x1, . . . , xp is integrated on both sides of eqn (5.1). An integrated

regression of this type is known to be consistent if and only if the I(1) variables are

cointegrated (Engle and Granger, 1987). To establish consistency of optimal finger-

printing, as described by eqns (5.10) to (5.12), it is therefore necessary and sufficient

to prove that y and x1, . . . , xp cointegrate. From the definition of cointegration, this

may be achieved by proving the existence of a linear combination of the xi which,

when subtracted from y, yields a stationary process.

Lemma. The rational transfer function Φ(B) = θ(B)/φ(B) permits the following

decomposition:

Φ(B) = Φ(1)− (1− B)
ψ(B)

ω(B)
, (5.13)

where ψ(B) and ω(B) are polynomial operators, with ω(B) containing no unit root.

Proof. Define the abstract rational function

Ω(z) = Φ(1)−Φ(z), (5.14)

where Φ(z) = θ(z)/φ(z) as before. Since φ(z) has no unit root, Φ(1) is a finite

constant, and it follows that Ω(z) has no pole at z = 1. From eqn (5.14) it may be

seen that Ω(1) = 0. Thus Ω(z) may be factorized

Ω(z) = (1− z)
ψ(z)

ω(z)
, (5.15)

where ω(z) contains no unit root.

Theorem. There exists a p-vector of coefficients (β1, . . . , βp)
′ such that the linear

combination

r(t) = y(t)− β1x1(t)− · · · − βpxp(t) (5.16)
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is a stationary time series. Specifically, r(t) is stationary when

βi =
1

πi

Φ(1)

Φ′(1)
(5.17)

for all i in 1, . . . , p.

Proof. Applying the lemma to eqn (5.10) yields

y(t) = µ+ Φ(1)F (t)− (1− B)
ψ(B)

ω(B)
F (t) + ε(t). (5.18)

Substituting eqn (5.8) into (5.18) gives

y(t) = µ+ Φ(1)F (t)− (1− B)
ψ(B)

ω(B)

1

1− B
∆F (t) + ε(t) (5.19)

= µ+ Φ(1)F (t)− ψ(B)

ω(B)
∆F (t) + ε(t). (5.20)

Observe that all terms on the right-hand side (RHS) are stationary except for

Φ(1)F (t), so the non-stationary component of the forced response is simply a scaled

version of the forcing series. This holds similarly for series of model output xi and

their respective forcings. It therefore follows that the non-stationarity in y due

to forcing Fi may be eliminated by subtracting an appropriately scaled version of

the corresponding model output series xi. Expressions for the scaling factors βi

in eqn (5.17) are readily obtained by considering the relative magnitudes of the

non-stationary components of the forced responses.

Thus it has been established that the optimal fingerprinting regression described

in this section is cointegrated, given standard model assumptions, and may be con-

sistently estimated using OLS. The presence of cointegration also renders the OLS

estimator superconsistent (Engle and Granger, 1987). In practice, the experimental

design of a D&A study can be more complicated: GCM simulations are often run

with linearly independent combinations of forcing factors, rather than each forc-

ing being applied separately, in order to reduce collinearity of the forced responses

(Jones et al., 2016; Jones and Kennedy, 2017). Due to the additivity assumption of
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optimal fingerprinting, the reasoning applied in this section holds similarly in the

case of linear combinations of forcings.

5.4.4 Energy-balance model parameterization

The result presented above holds for a general LTI impulse-response model of the

form given in eqn (5.4). By choosing a suitable parameterization for the impulse

response, this result can be given some physical interpretability. For example, when

variable y denotes GMST, the impulse response may be parameterized as a k-box

EBM, which is known to have a discrete-time representation as an ARMA(k, k− 1)

filter (Cummins et al., 2020a). In the simplest case, when k = 1, the EBM reduces

to a single ordinary differential equation,

CṪ (t) = F (t)− λ(T (t)− T0), (5.21)

where T (K) denotes GMST, T0 (K) is the pre-industrial baseline temperature,

C (W yr m-2 K-1) is a heat capacity, and λ (W m-2 K-1) is the climate feedback

parameter. When k > 1 the GMST “box” is coupled to a system of additional boxes

representing the heat capacity of the deep ocean. Recent studies have identified

k = 3 as the optimal EBM complexity for reproducing the thermal characteristics of

recent-generation GCMs (Caldeira and Myhrvold, 2013; Tsutsui, 2017; Fredriksen

and Rypdal, 2017; Cummins et al., 2020b). Unfortunately, analytical solutions to

k-box models quickly become quite complicated, even for k = 2 (Geoffroy et al.,

2013a), so in this illustrative example equations are shown for the one-box model

only.

If radiative forcing is assumed constant between timesteps, i.e. F (t) = F (s) for

s ∈ (t− 1, t], eqn (5.21) can be discretized and written in the form of eqn (5.10):

T (t) = T0 +
λ−1(1− e−λ/C)

1− e−λ/CB
F (t), (5.22)
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which may be decomposed into

T (t) = T0 +

[
1

λ
− (1− B)

λ−1e−λ/C

1− e−λ/CB

]
F (t) (5.23)

= T0 +
F (t)

λ
− λ−1e−λ/C

1− e−λ/CB
∆F (t). (5.24)

The non-stationary component of T (t) is simply the input forcing F (t) scaled by the

climate sensitivity λ−1, while the stationary component is an AR(1)-filtered version

of the forcing increment series ∆F (t). The AR(1) filter is stationary because λ and

C are both strictly positive. For EBMs with k > 1 the ARMA filter applied to ∆F (t)

in eqn (5.24) will have higher-order polynomials in the numerator and denominator,

however the non-stationary component will be unchanged as this term depends only

on the climate feedback parameter λ.

Returning to the question of D&A, let y(t) and x(t) denote time series of ob-

served and GCM-simulated historical GMST, driven by forcing series F (t) and πF (t)

respectively. If temperature series y(t) and x(t) are adequately described by k-box

EBMs (not necessarily of the same order) with respective climate feedback param-

eters λ and λ′, then it follows from the theorem that

r(t) = y(t)− λ′

πλ
x(t) (5.25)

is a stationary time series. It also follows that the estimator β̂OLS obtained by an

OLS regression of y(t) on x(t) is a superconsistent estimator of β = λ′/(πλ) (Engle

and Granger, 1987).

5.5 Empirical evidence

The previous section established that, under certain conditions, the variables in op-

timal fingerprinting regression are provably cointegrated, implying consistency of

least-squares parameter estimation. Although cointegration is predicted by the the-

ory, whether it arises in reality will depend on the validity of the model assumptions.

Chapter 5 Donald P. Cummins 99



Foundational basis for optimal climate change detection

Two of the main assumptions used to obtain results in Section 5.4 are standard in

optimal fingerprinting:

1. additivity, that the combined effect of multiple forcing factors is the sum of

their effects had they been applied separately;

2. correct forcing specification, that radiative forcings in GCMs have correct tem-

poral structure up to a multiplicative constant.

Identifying these assumptions as necessary prerequisites for cointegration of GCM

output and historical observations allows them to be assessed using numerical coin-

tegration tests. If there is strong numerical evidence of cointegration, then this gives

no reason to doubt the validity of assumptions 1 and 2, and by extension the consis-

tency of optimal fingerprinting. On the other hand, should significant cointegration

fail to be detected, then the possibility of violated assumptions, spurious regression

and meaningless results cannot be discounted without further investigation.

Two further assumptions were made in Section 5.4 which are non-standard in

optimal fingerprinting. Firstly, it was assumed that non-stationary forcings are I(1),

for reasons set out in Section 5.2. Since the true underlying forcing series are not

directly observable, it is infeasible to assess this assumption directly. However, as

with the standard optimal fingerprinting assumptions above, the idealized concept

of I(1) forcings may be shown “not inconsistent” with observation in the event that

significant cointegration is detected. The second non-standard assumption is that of

LTI impulse responses, which may be seen as a strengthening of the standard addi-

tivity assumption. To limit the influence of this strengthening, numerical results in

this section have been calculated using the GMST climate variable, whose response

to a radiative forcing perturbation is known to be well-modelled using LTI impulse

responses (Li and Jarvis, 2009; Good et al., 2011; Geoffroy et al., 2013a).
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5.5.1 Data

The numerical analyses in this section were performed using observed and GCM-

simulated time series of GMST, averaged annually (Jan-Dec) for the period 1880-

2014.

Observational datasets were, in alphabetical order: Berkeley Earth (Rohde and

Hausfather, 2020), Cowtan and Way 2.0 (Cowtan and Way, 2014), GISTEMP v4

(Lenssen et al., 2019; GISTEMP Team, 2021), HadCRUT5 (Morice et al., 2021) and

NOAAGlobalTemp V5 (Smith et al., 2008; Huai-Min Zhang et al., 2019). The choice

of observational dataset was found not to affect hypothesis test results. The results

presented here were calculated using HadCRUT5, however the whole analysis may

be re-run for the other observational datasets by changing a single line of code (see

Appendix C for details).

Predicted climate change signals were calculated using simulation output from

13 GCMs of the CMIP6 generation (Eyring et al., 2016). Chosen models are from

modelling centres who have contributed runs as part of the DAMIP project (Gillett

et al., 2016). For each GCM, ensemble-mean annual-GMST time series were cal-

culated for the historical and hist-GHG experiments. These two forcing scenarios

were chosen because GHG-attributable warming is of primary interest. Jones et al.

(2016) recommend a two-way attribution of this form on the grounds of robustness.

Table 5.1 gives the respective sizes of the historical and hist-GHG ensembles for

each GCM, as well as the corresponding model citations.

5.5.2 Cointegration tests

Let y denote observed historical GMST and let x1, x2 denote GCM-predicted signals

corresponding to the historical and hist-GHG experiments respectively. The theory

in Section 5.4 predicts that the time series y(t), x1(t), x2(t) are cointegrated. A

simple test for cointegration consists of fitting the linear regression model

y(t) = β0 + β1x1(t) + β2x2(t) + ε(t) (5.26)
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Model # historical # hist-GHG Citation
ACCESS-ESM1-5 20 3 Ziehn et al. (2020)
BCC-CSM2-MR 3 3 Wu et al. (2019)
CanESM5 65 50 Swart et al. (2019)
CESM2 11 3 Danabasoglu et al. (2020)
CNRM-CM6-1 30 10 Voldoire et al. (2019)
FGOALS-g3 6 3 Li et al. (2020)
GFDL-ESM4 3 1 Dunne et al. (2020)
GISS-E2-1-G 46 10 Kelley et al. (2020)
HadGEM3-GC31-LL 4 4 Williams et al. (2018)
IPSL-CM6A-LR 32 10 Boucher et al. (2020)
MIROC6 50 3 Tatebe et al. (2019)
MRI-ESM2-0 7 5 Yukimoto et al. (2019)
NorESM2-LM 3 3 Seland et al. (2020)

Table 5.1: CMIP6 climate model ensemble sizes and citations.

using OLS and then testing the series of residuals ε̂(t) for stationarity (Engle and

Granger, 1987). Residual stationarity may be tested using the procedure of Dickey

and Fuller (1979), whereby the autoregression

∆ε̂(t) = δ0 + δ1ε̂(t− 1) + u(t) (5.27)

is estimated using OLS and the t-statistic corresponding to δ̂1, denoted τ̂c, compared

with a relevant quantile of the reference “Dickey-Fuller” distribution. The null

hypothesis H0 is that no cointegrating relationship exists between y(t), x1(t), x2(t)

and the residuals exhibit unit-root non-stationarity. A significant negative estimate

δ̂1 provides evidence of mean-reverting residuals and leads to a rejection of H0 in

favour of the alternative hypothesis: that the residuals are stationary and series

y(t), x1(t), x2(t) cointegrate. The appropriate reference distribution depends on the

number N = 3 and length n = 135 of potentially I(1) time series being regressed in

eqn (5.26). Using the third-order approximation formula in MacKinnon (2010), the

critical value for a cointegration test at the one-percent level is τc = −4.40. It should

be noted that the I(1) assumption refers to the degree of differencing required to

achieve stationarity and is best regarded as an upper bound on the level of trendiness

anywhere in the time series. The above cointegration test is therefore also valid for
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I(0) data: the results would just be more conservative.

Tests of this form were performed for combinations of the HadCRUT5 historical

observations with output from each of the 13 CMIP6 GCMs considered in this

chapter. Figure 5.1 shows time series of residuals ε̂(t) from the fitted regression in

eqn (5.26), with test statistics τ̂c and associated p-values. It can be seen from the

residual plots that all 13 time series exhibit strong mean-reverting behaviour. This

is confirmed by the results of the cointegration tests: the null hypothesis of “no

cointegration” was rejected at the one-percent level for all 13 GCMs.

The residual time series in Figure 5.1 share common features, such as an appar-

ent bump around the year 1940. This is as expected. From the theorem in Section

5.4 it follows that the regression residuals in eqn (5.26) include contributions from

the stationary components of the forced trends in y(t), x1(t), x2(t) (i.e. those terms

involving ∆F (t)), as well as from internal climate variability in those series. Since

the GCMs have similar impulse responses, and since the realization of internal vari-

ability in HadCRUT5 is common to all 13 regressions, the only truly independent

contribution to each residual series comes from that GCM’s realizations of internal

variability.

5.5.3 Attribution of surface temperature warming

Having detected significant cointegration of y(t), x1(t), x2(t), it follows that the co-

efficients β = (β1, β2)
′ in eqn (5.26) may be consistently estimated using OLS. How-

ever, the regression residuals (see Figure 5.1) are serially correlated, meaning that

the usual formulas for calculating standard errors and confidence regions are invalid.

Optimal fingerprinting studies commonly address this problem by estimating the co-

variance structure of internal climate variability from a GCM’s piControl simulation

(Allen and Tett, 1999). This approach ignores the stationary forced component of

the residuals, which arises due to differences between the impulse responses of GCMs

and the true climate. Using piControl also relies on GCMs accurately simulating

the pre-industrial climate, which cannot be verified through observation. The use of
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Figure 5.1: Cointegration test results. Time series are residuals from two-way OLS
regressions of HadCRUT5 GMST observations on GCM output from historical and
hist-GHG experiments. Test statistics < −4.40 are significant at the one-percent
level, indicating residual stationarity and cointegration.
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piControl for hypothesis testing in optimal fingerprinting has recently been criticized

(McKitrick, 2021).

An alternative way to avoid the problem of serially correlated residuals, without

introducing dependence on piControl simulations, is to fit a dynamic regression

model which includes lagged versions of time series y(t), x1(t), x2(t) (Hendry and

Juselius, 2000). Fitting dynamic regressions of the form

y(t) = β′0 + β′1x1(t) + β′2x2(t) + β′3y(t− 1) + β′4x1(t− 1) + β′5x2(t− 1) + ε′(t) (5.28)

using OLS yields serially uncorrelated residual series for each of the 13 GCMs. The

usual normal distribution theory may then be assumed to hold asymptotically for

estimates of the coefficients β′ = (β′1, . . . , β
′
5)
′ in eqn (5.28).

Dynamic regression coefficients β′ in eqn (5.28) can be related back to coeffi-

cients β in eqn (5.26) via the Granger representation theorem, which requires that

systems of cointegrated series have equivalent representations as error-correction

models (ECMs) (Engle and Granger, 1987). Observe that eqn (5.28) may be writ-

ten

∆y(t) = β′1∆x1(t) + β′2∆x2(t)−α [y(t− 1)− β0 − β1x1(t− 1)− β2x2(t− 1)] + ε′(t),

(5.29)

where α = 1−β′3, β0 = β′0/α, β1 = (β′1+β′4)/α, and β2 = (β′2+β′5)/α. The expression

inside the square brackets, called the error-correction term, is a stationary linear

combination of y(t), x1(t), x2(t). By estimating the dynamic regression model in eqn

(5.28) using OLS, and then reparameterizing to obtain the ECM in eqn (5.29), it is

possible to recover estimates of coefficients β in eqn (5.26).

Because the historical CMIP6 experiment includes GHG forcing, parameters

β1 and β2 must be transformed to obtain the scaling factors of primary interest.

Following the notation of Jones et al. (2016), let βG = β1 + β2 and βOAN = β1

denote the scaling factors to be applied to GCM-predicted signals forced by GHG

emissions and “other anthropogenic and natural” factors respectively. Although
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β∗ = (βG, βOAN)′ is linearly related to coefficients β, the function relating β to β′

is non-linear. The partially linear function f : β′ 7→ β∗ may be written

f(β′) = g(β′)h(β′), (5.30)

where g(β′) = (1− β′3)−1 is the non-linear part of f , and h(β′) = Mβ′ is the linear

part where

M =

1 1 0 1 1

1 0 0 1 0

 . (5.31)

Let

J(β′) = h(β′)∇g(β′)′ +
∂h(β′)

∂β′
g(β′) (5.32)

denote the Jacobian of f . If coefficient estimates β̂′, obtained by fitting eqn (5.28)

using OLS, have estimated covariance Σ̂′, then a linearized estimate of the covariance

of β̂∗ = f(β̂′) is given by Σ̂∗ = J(β̂′)Σ̂′J(β̂′)′. An approximate 90 % confidence

ellipse for β∗ satisfies

(β̂∗ − β∗)′
(

Σ̂∗
)−1

(β̂∗ − β∗) < 2F2,128(0.90), (5.33)

where F2,128(0.90) denotes the 90th quantile of the F distribution with degrees of

freedom two and 128. Residual degrees of freedom are 135 (years of observations

from 1880-2014), minus one (due to differencing), minus six (parameters estimated

to fit eqn (5.28)), giving 128.

Point estimates and confidence ellipses have been calculated for scaling factors

βG and βOAN using the methodology described above (see Figure 5.2 and Table

5.2). Collinearity between time series y(t), x1(t), x2(t) and their lagged counter-

parts means that, taken individually, coefficient estimates β̂′ are subject to greater

uncertainty than the classical OLS estimates β̂. However, the estimates β̂G and

β̂OAN obtained by back-transforming β̂′ are well-constrained and closely resemble

the classical estimates (proportional change has mean 0.008 and standard devia-
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Figure 5.2: Scaling factor confidence ellipses. Black dots are point estimates of
scaling factors β̂G, β̂OAN for each GCM, obtained using dynamic OLS regression.
Smaller and larger shaded ellipses are approximate 90 % and 99 % confidence regions
respectively.
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Model β̂G (s.e.) β̂OAN (s.e.) ∆Ttotal (K) ∆TGHG (K)
ACCESS-ESM1-5 0.95 (0.083) 0.44 (0.14) 1.02 1.22
BCC-CSM2-MR 0.99 (0.069) 0.64 (0.20) 0.99 1.04
CanESM5 0.59 (0.049) 0.36 (0.12) 1.01 1.18
CESM2 0.94 (0.071) 0.44 (0.17) 1.05 1.14
CNRM-CM6-1 1.12 (0.114) 0.85 (0.23) 1.08 1.47
FGOALS-g3 0.92 (0.038) 0.88 (0.11) 1.02 0.93
GFDL-ESM4 0.93 (0.104) 0.36 (0.17) 1.05 1.20
GISS-E2-1-G 1.00 (0.088) 0.55 (0.18) 1.04 1.28
HadGEM3-GC31-LL 0.68 (0.076) 0.20 (0.12) 1.05 1.22
IPSL-CM6A-LR 0.86 (0.050) 0.73 (0.21) 1.07 1.18
MIROC6 1.32 (0.085) 0.95 (0.16) 1.05 1.29
MRI-ESM2-0 0.92 (0.073) 0.41 (0.14) 1.04 1.25
NorESM2-LM 1.29 (0.119) 0.43 (0.15) 1.02 1.20

Table 5.2: Estimated scaling factors and attributable warming. Point estimates of
β̂G and β̂OAN are obtained from OLS fits of the dynamic regression model in eqn
(5.28) to HadCRUT5 GMST observations. Reported standard errors are calculated
by linearizing f : β′ 7→ β∗ about β′ = β̂′. Columns ∆Ttotal and ∆TGHG are corre-
sponding estimates of the total and GHG-attributable increases in GMST between
the reference periods 1880-1899 and 2005-2014, obtained by appropriate scaling of
GCM-predicted signals.

tion 0.07). The inflation of parameter uncertainty which results from including

lagged variables is a necessary consequence of accounting for residual autocorrela-

tion. Scaling factor standard errors vary across different GCMs. This is partly a

consequence of variation in the size of available ensembles, with increased ensem-

ble size leading to smaller standard errors. Standard errors are also affected by

the GCMs’ ability to reproduce the forced patterns in the observations. Table 5.2

also includes estimates of attributable warming between the reference periods 1880-

1899 and 2005-2014. Attributable warming was calculated by first computing the

mean difference in GMST between the reference periods for each of the historical

and hist-GHG GCM experiments, and then taking appropriate linear combinations

of the temperature differences with coefficients determined by the relevant scaling

factors. These results are visualized in Figure 5.3, where total historical and GHG-

attributable warming are plotted side-by-side. From Figure 5.3 it may be seen that

for 12 out of 13 CMIP6 GCMs GHG-attributable warming exceeds total historical

warming.
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5.6 Summary

Optimal fingerprinting, the statistical methodology commonly used for D&A of cli-

mate change trends, is typically performed by linearly regressing non-stationary

climate variables. Non-stationary time series regressions are, in general, statisti-

cally inconsistent and liable to produce spurious results. This chapter has shown,

by modelling radiative forcing as an integrated stochastic process within an ideal-

ized linear-response-model framework, that the optimal fingerprinting estimator is

consistent under standard D&A assumptions. Hypothesis tests, combining observa-

tions of historical GMST with simulation output from 13 CMIP6-generation GCMs,

produce no evidence that standard assumptions have been violated. It is therefore

concluded that, at least in the case of GMST, detection and attribution of climate

change trends is very likely not spurious regression. Furthermore, detection of signif-

icant cointegration between observations and GCM output indicates that the OLS

estimator is superconsistent, with better convergence properties than might previ-

ously have been assumed. Finally, a new method has been developed for quantifying

D&A uncertainty, which exploits the notion of cointegration to eliminate the need

to rely on piControl GCM simulations and the corresponding strong assumptions.
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Chapter 6

Conclusions and future directions

6.1 Thesis summary

The primary contribution of this thesis has been to establish a foundational basis for

the validity of “optimal fingerprinting”, a statistical methodology whose variants are

commonly used in the detection and attribution (D&A) of climate change trends.

This has been achieved through the use of idealized linear-impulse-response models

as tractable analytical reasoning tools. The use of linear impulse responses was

originally motivated by energy-balance considerations and has led to the formulation

and fulfillment of multiple secondary research aims.

In Chapter 3, a procedure was developed for estimating parameters of a k-

box stochastic energy-balance model (EBM), a simple but flexible representation

of global climate in terms of surface temperature and top-of-atmosphere (TOA) net

radiative flux. The method is based on the principle of maximum likelihood and esti-

mates parameters of EBMs with any k > 0 number of boxes from CO2-quadrupling

general circulation model (GCM) experiments. A software implementation of the

method as an R package has been released as free software for public use1. It has

been determined that a three-box model is optimal for emulating the global mean

surface temperature (GMST) impulse responses of GCMs in the Coupled Model In-

tercomparison Project Phase 5 (CMIP5). The research presented in Chapter 3 led

1https://github.com/donaldcummins/EBM
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naturally onto the research of Chapter 4.

In Chapter 4, a link was established between EBMs and the general class of linear

time series models known as autoregressive moving-average (ARMA). It has been

shown that the response of any k-box EBM can be represented as an ARMA(k, k−1)

filter. Such “energy-balance” ARMA filters have direct applicability to the D&A

problem. For example, it has been shown how, by inverting the ARMA filter, time

series of surface temperature may be converted into radiative forcing, thus providing

a means of estimating historical effective radiative forcing (ERF) from time series of

GMST. This ARMA filter estimator has been compared with an established method

(“ERF trans”), using historical simulations from HadGEM3-GC31-LL, and it has

been found that the ARMA method gives an ERF time series that closely matches

published results (correlation of 0.83). Unlike ERF trans, the ARMA method does

not require historical observations of TOA net radiative flux. An application of

the ARMA method to historical temperature observations, in combination with

HadGEM3, produced evidence of a significant increase in ERF over the historical

period with an estimated forcing in 2018 of 1.45± 0.504 W m−2.

The primary research aims of the thesis were addressed in Chapter 5. It was

decided that the energy-balance constraints used in Chapters 3 and 4 should be re-

laxed to allow modelling of climate model responses as general causal ARMA filters

(a superset of EBMs). The results of Chapter 5 thus have considerable general-

ity, while still permitting the EBM parameterization as a motivating and physically

interpretable example. To investigate susceptibility of fingerprinting methods to

spurious regression in the case of trending climate variables, radiative forcing was

represented as an integrated stochastic process which accumulates over time in a

manner analogous to atmospheric carbon dioxide concentration. It has been proved

that if standard assumptions hold then the optimal fingerprinting estimator is con-

sistent, and hence robust against spurious regression. Hypothesis tests, conducted

using historical GMST observations and simulation output from 13 GCMs of the

CMIP6 generation, were used to check for evidence of these assumptions being
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violated in practice. No such evidence has been found. Therefore, it has been pro-

visionally concluded that the historical trends in GMST which are detected and

attributed using these GCMs are very likely not spurious.

It was noted in Chapter 5 that, under the assumption of integrated forcing,

consistency of the fingerprinting estimator depends on “cointegration” between his-

torical observations and GCM output. That such a cointegration was detected in

Chapter 5 for the GMST variable indicates that the least-squares estimator is “su-

perconsistent”, with better convergence properties than might previously have been

assumed. Finally, a new method has been developed for quantifying D&A uncer-

tainty, which exploits the connection between cointegration and error-correction time

series models to eliminate the need for pre-industrial control simulations. This new

method works by using the Granger representation theorem (Engle and Granger,

1987) to represent an optimal fingerprinting study as an “error-correction” time

series model, whose residuals are serially uncorrelated.

6.2 Future directions

The research presented in Chapters 3 to 5 of this thesis may be readily extended in

future studies. Follow-up topics of possible interest include:

• EBMs with non-integral number of boxes k: The number of parameters

in the k-box EBMs estimated in Chapter 3 increases by two for each ocean

box added, which then feeds into the AIC score for choosing the number of

boxes (see subsection 3.5.7). Of the GCMs in Table 3.4, some models (e.g.

MIROC5) reported only a modest improvement in AIC score moving from

two to three boxes. Rather than using a full three-box model, which may

be overparameterized for such GCMs, an alternative compromise would be

to use a 2.5-box model of the form used in Grieser and Schönwiese (2001).

The “half box” is obtained by setting C1 = 0 so that the top-layer box has

zero heat capacity. The temperature T1 of this half box is then a weighted
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average of the forcing F and the temperature T2. A 2.5-box model shares

an important advantage of the three-box model, which is that it can emulate

a GCM’s impulse response on one-year and 15-year timescales (roughly) at

the same time, while retaining the simpler two-dimensional temperature state

vector of the two-box model. A disadvantage is that the zero-heat-capacity

assumption is unrealistic, implying an instantaneous adjustment of surface

temperature to an imposed forcing. A counterargument would then be that

an EBM is not typically intended for use on such short timescales, although

including the one-year timescale as an instant adjustment during estimation

prevents biasing estimates of the intermediate 15-year timescale.

• Rigorous uncertainty quantification for ARMA-filter estimates of

historical ERF: Possible approaches were discussed in subsection 4.6.3. The

natural next step will be to apply the ARMA filter validation procedure in

Section 4.5 to the full multi-model ensemble of GCMs in CMIP6. In this way,

it will be seen whether the overall good performance of the ARMA filter, in

the case of the two GCMs from the UK Met Office Hadley Centre, general-

izes to GCMs from other modelling centres. It will also be informative to see

whether observed deficiencies of the method, e.g. the underestimation of vol-

canic aerosol forcing, are intrinsic to the ARMA / EBM approach, or specific

to the Hadley Centre GCMs.

• Generalization of theoretical results to the full spatio-temporal D&A

problem: The theoretical results in Chapter 5 have been proved in a simpli-

fied setting where observed and simulated climate variables y(t), x(t), F (t) are

indexed by time only. In practice, optimal fingerprinting studies are commonly

performed in the spatio-temporal domain (see Chapter 2), which brings its own

set of problems (e.g. dimension reduction, ill-conditioning, curse of dimension-

ality etc.). However, the structure of the problem remains fundamentally un-

changed. Variables y(t), x(t), F (t), treated as time series in this thesis, could

be replaced by vector equivalents y(t),x(t),F (t) describing relevant spatial
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fields at each timestep. The ARMA impulse-response model in Chapter 5

could then be replaced by its vector equivalent: the vector-ARMA or VARMA

model (Lütkepohl, 1991). There would no doubt exist possible physical param-

eterizations for such a model, e.g. as a spatially resolved EBM. The scientific

value of generalizing Chapter 5 in this way would of course depend on whether

GCMs’ spatio-temporal dynamics (as opposed to just their globally averaged

temporal dynamics) could be realistically captured by a linear-multivariate

model. Low-dimensional linear approximation of fluid dynamical systems is

an established practice in applied mathematics so this requirement may not

be prohibitive (Wynn et al., 2013).

Chapter Donald P. Cummins 115



Appendix A

Stochastic energy-balance model

results

A.1 Proof that eigenvalues of matrix A are real

and non-positive when ε = 1

Consider the k × k matrices A† and D where

A†i,j =



−(κi + κi+1)/Ci if i = j,

κj/
√
CiCj if j = i+ 1,

κi/
√
CjCi if j = i− 1,

0 otherwise,

(A.1)

and D is a diagonal matrix with leading diagonal (1,
√
C2/C1,

√
C2C3/C1C2, . . . )

′.

If ε = 1 the matrix A is related to A† by the similarity transform A = D−1A†D.

Since matrix A† is real and symmetric it must have all real eigenvalues. By simi-

larity, all eigenvalues of A are therefore real. Applying the Geršgorin circle theorem

(Gershgorin, 1931) to A it follows that the eigenvalues of A are also non-positive.
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A.2 Discretization of the full k-box model

Equation (3.13) can be rearranged:

ẋ(t)− A+x(t) = bu(t) +w(t). (A.2)

Multiplying by the integrating factor e−A
+t we have

d

dt

(
e−A

+tx(t)
)

= e−A
+tbu(t) + e−A

+tw(t). (A.3)

Integrating with respect to time,

e−A
+tx(t) =

∫ t

s=−∞
e−A

+sbu(s) + e−A
+sw(s) ds, (A.4)

so that, multiplying by eA
+t, we obtain

x(t) =

∫ t

s=−∞
eA

+(t−s)bu(s) + eA
+(t−s)w(s) ds. (A.5)

As a linear function of Gaussian random variables x(t) is itself Gaussian and hence

fully characterized by its mean and covariance. Since E(w(t)) = 0 for all t,

E (x(t)|x(t− 1)) = eA
+

x(t− 1) +

∫ t

s=t−1
eA

+(t−s)bu(s) ds, (A.6)

where, assuming u(s) = u(t− 1) for s ∈ [t− 1, t),

∫ t

s=t−1
eA

+(t−s)bu(s) ds =

∫ t

s=t−1
eA

+(t−s)bu(t− 1) ds (A.7)

=
[
−(A+)−1eA

+(t−s)bu(t− 1)
]t
s=t−1

(A.8)

= −(A+)−1
(
I − eA

+
)
bu(t− 1) (A.9)

= (A+)−1
(

eA
+ − I

)
bu(t− 1). (A.10)
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For the covariance we have

cov (x(t)|x(t− 1)) = cov

(∫ t

s=t−1
eA

+(t−s)w(s) ds

)
(A.11)

= cov

(∫ 1

s=0

eA
+(1−s)w(s) ds

)
(A.12)

= cov

(∫ 1

s=0

eA
+sw(s) ds

)
, (A.13)

where, since w(t) is white noise and hence uncorrelated in time,

cov

(∫ 1

s=0

eA
+sw(s) ds

)
=

∫ 1

s=0

cov
(

eA
+sw(s)

)
ds (A.14)

=

∫ 1

s=0

eA
+scov (w(s)) eA

+′
s ds (A.15)

=

∫ 1

s=0

eA
+sQeA

+′
s ds. (A.16)

For additional information on this type of discretization scheme see Section 4.3 of

Ljung (1987).

A.3 Marginal covariance of the stochastic response

The k-box model is a linear dynamic system. Therefore the response to a linear

combination of inputs is equal to the sum of the responses to individual inputs.

In this way we can separate the model responses to deterministic and stochastic

forcing components. The stochastic component of the response is driven by a purely

stochastic input and may be written

x(t) = Adx(t− 1) +wd(t) (A.17)

which is a vector autoregressive process of order one (VAR(1)). The matrix-valued

auto-cross covariance function Γ(h) is defined

Γ(h) = Γ(−h) = E(x(t)x(t+ h)′) (A.18)
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where the lag h is an integer. We seek the marginal auto-cross covariance matrix

Γ(0) which is the a priori covariance of x0 in the Kalman filter. Define the backshift

operator B such that

Bix(t) = x(t− i). (A.19)

We can write

(I − AdB)x(t) = wd(t) (A.20)

and

x(t) = (I − AdB)−1wd(t) (A.21)

= (I + AdB + A2
dB

2 + . . . )wd(t). (A.22)

The geometric series converges when the VAR(1) process is stationary, i.e. all eigen-

values of Ad lie within the unit circle in the complex plane.

Γ(0) = E(x(t)x(t)′) (A.23)

= E [(I + AdB + . . . )wd(t)wd(t)
′(I + A′dB + . . . )] . (A.24)

Since

E(Biwd(t)wd(t)
′Bj) = Qdδij, (A.25)

where δij denotes the Kronecker delta, we have

Γ(0) = Qd + AdQdA
′
d + A2

dQdA
2
d
′
+ . . . (A.26)
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The infinite series can be computed as follows using the vec operator and the Kro-

necker product (Lütkepohl, 1991).

vec(Γ(0)) = vec(Qd) + vec(AdQdA
′
d) + vec(A2

dQdA
2
d
′
) + . . . (A.27)

= vec(Qd) + (Ad ⊗ Ad)vec(Qd) + (A2
d ⊗ A2

d)vec(Qd) + . . . (A.28)

= (I − Ad ⊗ Ad)−1vec(Qd). (A.29)

Note (I−Ad⊗Ad) is invertible because eigenvalues of Ad⊗Ad are products of eigen-

values of Ad and hence have modulus < 1 when the VAR(1) process is stationary.

A.4 Analytical responses under idealized forcing

scenarios

A.4.1 Unit step forcing

The k-box model response under a unit step-forcing scenario

Fstep(t) =


1 if t ≥ 0,

0 otherwise;

(A.30)

can be written

xstep(t) =
1

κ1

(
1− eAt1

)
, (A.31)

where 1 denotes the k-vector of ones (1, . . . , 1)′. The unit-forced equilibrium temper-

ature is 1/κ1, which is obtained by setting equation (3.8) equal to zero and solving

for T1 = · · · = Tk. As the k-box model is linear, transient relaxation to the new

equilibrium temperature is exponential.
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A.4.2 Unit impulse forcing

Differentiating xstep(t) with respect to time we obtain the response to a unit-impulse

forcing

Fimp(t) = δ(t), (A.32)

where δ(t) denotes the Dirac delta function:

ximp(t) = − 1

κ1
AeAt1. (A.33)

This follows from the fact that an impulse is the time derivative of a step forcing.

A.4.3 Transient climate response

Integrating xstep(t) with respect to time and scaling appropriately we obtain the

transient climate response (TCR)

xTCR(t) =
log 1.01

log 4

∫ t

s=0

F4×CO2

κ1

(
1− eAs1

)
ds (A.34)

=
log 1.01

log 4

F4×CO2

κ1

[
t1− A−1

(
eAt − I

)
1
]
, (A.35)

which is the response to atmospheric CO2 concentration increasing at a rate of 1%

per year starting at time t = 0. This follows from the fact that an exponentially

increasing CO2 input is equivalent to a sequence of superimposed 1.01× CO2 step-

forcing inputs. By linearity, the k-box model response to this superposition of forcing

inputs is a superposition of the corresponding temperature outputs.
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Appendix B

ARMA filter derivation

The step response of the k-box EBM is a linear combination of saturating exponen-

tials (Geoffroy et al., 2013a; Tsutsui, 2020; Cummins et al., 2020b). The discrete-

time impulse response R(v) is a linear function of the step response and is a sum of

decaying exponentials:

R(v) =
k∑
i=1

aie
−v/τi (B.1)

=
k∑
i=1

ai(ri)
v, (B.2)

where ai, τi > 0 and ri = e−1/τi . Then

Φ(B) =
∞∑
v=0

R(v)Bv (B.3)

=
∞∑
v=0

k∑
i=1

ai(ri)
vBv (B.4)

=
k∑
i=1

∞∑
v=0

ai(ri)
vBv (B.5)

=
k∑
i=1

ai
1− riB

(B.6)

=

∑k
i=1

(
ai
∏

j 6=i(1− rjB)
)

∏k
i=1(1− riB)

. (B.7)
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Provided the ri are distinct, it follows that the operator Φ(B) is a ratio of polyno-

mials θ(B) and φ(B) of degree k− 1 and k respectively. Cases k = 1, 2, 3 are shown

below.

Case k = 1:

Φ(B) =
a

1− rB
(B.8)

so φ(B) and θ(B) have respective degrees one and zero, i.e. the system is an

ARMA(1, 0) or simply AR(1) filter.

Case k = 2:

Φ(B) =
a1

1− r1B
+

a2
1− r2B

(B.9)

=
a1(1− r2B) + a2(1− r1B)

(1− r1B)(1− r2B)
(B.10)

so φ(B) and θ(B) have respective degrees two and one, i.e. the system is an

ARMA(2, 1) filter.

Case k = 3:

Φ(B) =
a1

1− r1B
+

a2
1− r2B

+
a3

1− r3B
(B.11)

=
a1(1− r2B)(1− r3B) + a2(1− r1B)(1− r3B) + a3(1− r1B)(1− r2B)

(1− r1B)(1− r2B)(1− r3B)

(B.12)

so φ(B) and θ(B) have respective degrees three and two, i.e. the system is an

ARMA(3, 2) filter.

Note that, in the statistics literature, the term “ARMA process” generally refers

to a an ARMA filter driven by a Gaussian white noise input. For more information

about ARMA models and the backshift operator, see Brockwell and Davis (2002).
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Appendix C

Code and data availability

C.1 Estimation of energy-balance models

I have developed a package for the R software environment (R Core Team, 2021)

for simulation, fitting, filtering and predicting with k-box EBMs. The package

estimates parameters of k-box models from time series of GMST and TOA net

downward radiative flux by numerically maximizing the likelihood function. The R

package, which includes the datasets used in Chapter 3, is available for download at

https://github.com/donaldcummins/EBM.

C.2 Surface temperature and radiative forcing data

The HadGEM2-ES and HadGEM3-GC3.1-LL surface temperature and TOA radia-

tive flux datasets used in Chapter 4 are available for download from Earth System

Grid Federation (ESGF) portals, e.g. https://esgf-data.dkrz.de/. The time se-

ries of historical ERF for HadGEM3-GC3.1-LL estimated by Andrews et al. (2019)

is available at https://github.com/timothyandrews/HadGEM3-ERF-Timeseries.

The Cowtan and Way 2.0 historical surface temperature series is available at https:

//www-users.york.ac.uk/~kdc3/papers/coverage2013/had4_krig_annual_v2_0_

0.txt.

124



Foundational basis for optimal climate change detection

C.3 Cointegration tests and attribution of GHG

warming

The datasets and code used to perform the analyses in Chapter 5 are available online

at https://doi.org/10.5281/zenodo.5008827. Code is written in the statistical

programming language R (R Core Team, 2021). The ellipses in Figure 5.2 were

plotted using the “ellipse” function from the car package by Fox et al. (2011).
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Appendix D

Glossary of acronyms

ACF AutoCorrelation Function

AIC Akaike Information Criterion

AOGCM Atmosphere-Ocean General Circulation Model

AR AutoRegressive

ARMA AutoRegressive Moving-Average

BOBYQA Bound Optimization BY Quadratic Approximation

CMIP5 Coupled Model Intercomparison Project Phase 5

CMIP6 Coupled Model Intercomparison Project Phase 6

CW2.0 Cowtan and Way 2.0

D&A Detection and Attribution

EBM Energy-Balance Model

ECM Error-Correction Model

ECS Equilibrium Climate Sensitivity

EIV Errors In Variables

126



Foundational basis for optimal climate change detection

EMIC Earth-Sytem Model of Intermediate Complexity

EOF Empirical Orthogonal Function

ERF Effective Radiative Forcing

ESM Earth System Model

FIR Finite Impulse Response

GAM Generalized Additive Model

GCM General Circulation Model

GMST Global Mean Surface Temperature

IIR Infinite Impulse Response

IPCC Intergovernmental Panel on Climate Change

LTI Linear-Time-Invariant

MA Moving-Average

MCMC Markov Chain Monte Carlo

MLE Maximum Likelihood Estimate

MMSE Minimum Mean-Square-Error

MSE Mean Square Error

ODE Ordinary Differential Equation

OLS Ordinary Least Squares

PCA Principal Component Analysis

PDE Partial Differential Equation

PDF Probability Density Function
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ROF Regularized Optimal Fingerprinting

SAT Surface Air Temperature

SST Sea Surface Temperature

TCR Transient Climate Response

TLS Total Least Squares

TOA Top-Of-Atmosphere

TOANDRF Top-Of-Atmosphere Net Downward Radiative Flux

VAR Vector AutoRegressive

VARMA Vector AutoRegressive Moving-Average
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Gershgorin, S. (1931). Über die Abgrenzung der Eigenwerte einer Matrix. Bulletin

de l’Académie des Sciences de l’URSS. VII. Série, 1931(6):749–754.

Gilbert, P. and Varadhan, R. (2019). numDeriv: Accurate Numerical Derivatives.

https://CRAN.R-project.org/package=numDeriv.

Gillett, N. P., Shiogama, H., Funke, B., Hegerl, G., Knutti, R., Matthes, K., San-

ter, B. D., Stone, D., and Tebaldi, C. (2016). The Detection and Attribution

Model Intercomparison Project (DAMIP v1.0) contribution to CMIP6. Geo-

scientific Model Development, 9(10):3685–3697. https://gmd.copernicus.org/

articles/9/3685/2016/.

GISTEMP Team (2021). GISS Surface Temperature Analysis (GISTEMP), version

4. https://data.giss.nasa.gov/gistemp/.

Good, P., Gregory, J. M., and Lowe, J. A. (2011). A step-response simple cli-

mate model to reconstruct and interpret AOGCM projections. Geophysical Re-

search Letters, 38(1). https://agupubs.onlinelibrary.wiley.com/doi/abs/

10.1029/2010GL045208.

Goulet, V., Dutang, C., Maechler, M., Firth, D., Shapira, M., and Stadelmann, M.

(2021). Expm: Matrix Exponential, Log, ’etc’. https://CRAN.R-project.org/

package=expm.

136 Chapter D Donald P. Cummins



Foundational basis for optimal climate change detection

Granger, C. W. J. and Newbold, P. (1974). Spurious regressions in economet-

rics. Journal of Econometrics, 2(2):111–120. https://www.sciencedirect.com/

science/article/pii/0304407674900347.

Gregory, J. M. (2000). Vertical heat transports in the ocean and their effect on

time-dependent climate change. Climate Dynamics, 16(7):501–515. https://

doi.org/10.1007/s003820000059.

Gregory, J. M., Ingram, W. J., Palmer, M. A., Jones, G. S., Stott, P. A., Thorpe,

R. B., Lowe, J. A., Johns, T. C., and Williams, K. D. (2004). A new method

for diagnosing radiative forcing and climate sensitivity. Geophysical Research Let-

ters, 31(3). https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/

2003GL018747.

Grieser, J. and Schönwiese, C.-D. (2001). Process, Forcing, and Signal Analysis

of Global Mean TemperatureVariations by Means of a Three-Box Energy Bal-

ance Model. Climatic Change, 48(4):617–646. https://doi.org/10.1023/A:

1005629309829.

Hannart, A. (2016). Integrated Optimal Fingerprinting: Method Description and

Illustration. Journal of Climate, 29(6):1977–1998. https://journals.ametsoc.

org/view/journals/clim/29/6/jcli-d-14-00124.1.xml.

Hannart, A. (2019). An improved projection of climate observations for detection

and attribution. Advances in Statistical Climatology, Meteorology and Oceanog-

raphy, 5(2):161–171. https://ascmo.copernicus.org/articles/5/161/2019/.

Hannart, A., Ribes, A., and Naveau, P. (2014). Optimal fingerprinting under multi-

ple sources of uncertainty. Geophysical Research Letters, 41(4):1261–1268. https:

//agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/2013GL058653.

Hansen, J., Sato, M., Kharecha, P., and von Schuckmann, K. (2011).

Earth’s energy imbalance and implications. Atmospheric Chemistry and

Chapter D Donald P. Cummins 137



Foundational basis for optimal climate change detection

Physics, 11(24):13421–13449. https://acp.copernicus.org/articles/11/

13421/2011/acp-11-13421-2011.html.

Hasselmann, K. (1976). Stochastic climate models Part I. Theory. Tel-

lus, 28(6):473–485. https://onlinelibrary.wiley.com/doi/abs/10.1111/j.

2153-3490.1976.tb00696.x.

Hasselmann, K. (1997). Multi-pattern fingerprint method for detection and attri-

bution of climate change. Climate Dynamics, 13(9):601–611. https://doi.org/

10.1007/s003820050185.

Hasselmann, K. F. (1979). On the signal-to-noise problem in atmospheric response

studies. In Joint Conference of Royal Meteorological Society, American Mete-

orological Society, Deutsche Meteorologische Gesellschaft and the Royal Society,

pages 251–259. Royal Meteorological Society. https://pure.mpg.de/pubman/

faces/ViewItemOverviewPage.jsp?itemId=item_3030122.

Haustein, K., Allen, M. R., Forster, P. M., Otto, F. E. L., Mitchell, D. M., Matthews,

H. D., and Frame, D. J. (2017). A real-time Global Warming Index. Scientific Re-

ports, 7(1):15417. https://www.nature.com/articles/s41598-017-14828-5.

Hegerl, G. and Zwiers, F. (2011). Use of models in detection and attribution of cli-

mate change. WIREs Climate Change, 2(4):570–591. https://onlinelibrary.

wiley.com/doi/abs/10.1002/wcc.121.

Hegerl, G. C., Hasselmann, K., Cubasch, U., Mitchell, J. F. B., Roeckner, E., Voss,

R., and Waszkewitz, J. (1997). Multi-fingerprint detection and attribution analysis

of greenhouse gas, greenhouse gas-plus-aerosol and solar forced climate change.

Climate Dynamics, 13(9):613–634. https://doi.org/10.1007/s003820050186.

Hegerl, G. C., von Storch, H., Hasselmann, K., Santer, B. D., Cubasch,

U., and Jones, P. D. (1996). Detecting Greenhouse-Gas-Induced Cli-

mate Change with an Optimal Fingerprint Method. Journal of Climate,

138 Chapter D Donald P. Cummins



Foundational basis for optimal climate change detection

9(10):2281–2306. https://journals.ametsoc.org/view/journals/clim/9/

10/1520-0442_1996_009_2281_dggicc_2_0_co_2.xml.

Hegerl, G. C., Zwiers, F. W., Braconnot, P., Gillett, N., Luo, Y. M., Marengo Orsini,

J., Nicholls, N., Penner, J., and Stott, P. (2007). Chapter 9 - Understand-

ing and Attributing Climate Change. In Solomon, S., Qin, D., Manning, M.,

Chen, Z., Marquis, M., Averyt, K. B., Tignor, M., and Miller, H. L., editors, Cli-

mate Change 2007: The Physical Science Basis. Contribution of Working Group

I to the Fourth Assessment Report of the Intergovernmental Panel on Climate

Change. Cambridge University Press, Cambridge, UK. https://www.ipcc.ch/

site/assets/uploads/2018/02/ar4-wg1-chapter9-1.pdf.

Held, I. M., Winton, M., Takahashi, K., Delworth, T., Zeng, F., and Vallis, G. K.

(2010). Probing the Fast and Slow Components of Global Warming by Returning

Abruptly to Preindustrial Forcing. Journal of Climate, 23(9):2418–2427. https:

//journals.ametsoc.org/view/journals/clim/23/9/2009jcli3466.1.xml.

Hendry, D. F. and Juselius, K. (2000). Explaining Cointegration Analysis: Part 1.

The Energy Journal, 21(1):1–42. https://www.jstor.org/stable/41322853.

Huai-Min Zhang, Jay H. Lawrimore, Boyin Huang, Matthew J. Menne, Xungang

Yin, Ahira Sánchez-Lugo, Byron E. Gleason, Russell Vose, Derek Arndt, J. Jared

Rennie, and Claude N. Williams (2019). Updated Temperature Data Give a

Sharper View of Climate Trends. https://doi.org/10.1029/2019EO128229.

Huntingford, C., Stott, P. A., Allen, M. R., and Lambert, F. H. (2006). Incorpo-

rating model uncertainty into attribution of observed temperature change. Geo-

physical Research Letters, 33(5). https://agupubs.onlinelibrary.wiley.com/

doi/abs/10.1029/2005GL024831.

IPCC (2021). Climate Change 2021: The Physical Science Basis. Contribu-

tion of Working Group I to the Sixth Assessment Report of the Intergovern-

mental Panel on Climate Change. Cambridge University Press, Cambridge,

Chapter D Donald P. Cummins 139



Foundational basis for optimal climate change detection

UK. https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_

WGI_Full_Report.pdf.

Johansson, D. J. A., O’Neill, B. C., Tebaldi, C., and Häggström, O. (2015). Equi-
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