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We identify that flexural guided elastic waves in elastic pipes carry a well-defined orbital angular
momentum associated with the compressional dilatational potential. This enables the transfer of elastic
orbital angular momentum, that we numerically demonstrate, through the coupling of the compressional
potential in a pipe to the acoustic pressure field in a surrounding fluid in contact with the pipe.
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Introduction.—Some thirty years ago, the seminal work
of Allen et al. [1] demonstrated that Laguerre-Gaussian
(LG) laser modes carry a well-defined orbital angular
momentum (OAM), per quanta of light, about the beam
axis. Crucially they outlined how such OAM, related to the
spatial distribution of the laser field [2], can be extracted
and converted into a mechanical torque [3] and that its
existence arises physically due to the helical wave-front
structure associated with a central phase singularity [4].
This differed from previous measurements of the torque
exerted by the transfer of spin angular momentum asso-
ciated with polarization [5,6]. These significant findings
drove unabated interest in this previously neglected
mechanical property of light [7–9], and have led to a
renaissance in optical tweezers [10–16].
Perhaps the most distinct classical wave system from

electromagnetism is elasticity; elastic materials are gov-
erned by constitutive relations that invoke a rank 4 stiffness
tensor, and even in their simplest isotropic form they
support two elastic waves (compression and polarized
shear) that travel within the bulk at distinct wave speeds;
these become inherently coupled upon reflection from a
surface. Mirroring the timeline of research in optical OAM,
only recently has the intrinsic spin of elastic waves been
studied [17], with elastic OAM being largely neglected—it
has only been considered in association with the phase of
coupled waveguides [18], or presented canonically in
conjunction with the energy-momentum tensor for elastic-
ity, the Eshelby tensor [19–22].
In this Letter this disparity is addressed. We focus

entirely on the OAM of elastic waves with inclined phase
fronts, demonstrating that it is the scalar dilatational
potential that carries a well-defined elastic OAM. The
natural setting for such guided waves is along hollow
elastic pipes. We consider flexural modes along pipes,

leveraging the fact they can be excited using an elastic
analog to the spiral phase plate (Fig. 1), and show that the
transfer of elastic OAM is possible in fluid-solid coupled
systems, providing motivation towards applications for
acoustic tweezers, microfluidic devices, and nondestructive
evaluation.
To unequivocally show that elastic OAM is carried by

mechanical waves in pipes, we first outline the form of the
canonical angular momentum density by its relation to
mechanical energy flux. We derive here, from first prin-
ciples, this relation from the Eshelby tensor [20].
OAM in elasticity.—Waves in an isotropic, homogeneous

linear elastic material obey the dynamic Navier-Cauchy
equation [23]

μ∂j∂jξi þ ðλþ μÞ∂j∂iξi ¼ ρξ̈i; ð1Þ

with ξi the displacement and ξ̈i its double time derivative.
Lamé’s first and second parameters are denoted λ, μ,

FIG. 1. Schematic of an elastic spiral phase pipe (copper
region) in a hollow elastic pipe (transparent region). Purely
longitudinal waves, e.g., Lð0; 2Þ modes (circular phase fronts),
are mode converted into flexural Fð3; nÞ waves (helical phase
fronts).
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respectively. In this coordinate-free index notation we
adopt the Einstein summation convention throughout.
The linear constitutive law governing such a material is

σij ¼ Cijklεkl ¼ λδijεkk þ 2μεij; ð2Þ

where σij is the stress tensor, Cijkl is the stiffness tensor,
and εij ≡ 1

2
ðξi;j þ ξj;iÞ is the strain tensor (comma notation

denotes partial differentiation). The elastodynamic equa-
tions (1) are, of course, recovered by the Euler-Lagrange
equations that dictate the vanishing of the variational
derivative

δL
δξj

≡ ∂L
∂ξj −

∂
∂t

�∂L
∂ _ξj

�
¼ 0; ð3Þ

withL being the Lagrangian density for elastic waves given
by

L ¼ 1

2
ρ _ξi _ξi −

1

2
Cijklξi;jξk;l; ð4Þ

where semicolon notation denotes covariant differentiation
and L ¼ Lðξi; ξi;j; x; tÞ with x the position vector. The
Eshelby tensor results from the canonical procedure for
constructing stress-energy tensors, following Noether’s
theorem, and is given as [24]

Tlj ¼ Lδlj −
∂L
∂ξi;j ξi;l: ð5Þ

From this the energy density, U ¼ T00, and flux,
Fj ¼ T0j, of the elastic waves can be constructed:

U ¼ ∂L
∂ _ξi

_ξi − L ¼ 1

2
ρ _ξi _ξiþ

1

2
Cijklξi;jξk;l;

Fj ¼
∂L
∂ξi;j

_ξi ¼ −Cijkl
_ξiξk;l: ð6Þ

Thus we have arrived at the mechanical analog of the
Poynting vector through the mechanical energy flux, Fj.

Herein we assume time harmonicity such that _ξk ¼ −iωξk
with ω being the radian frequency. Therefore, the time-
averaged complex mechanical energy flux density, which
can be considered the Poynting vector density of elastic
waves [17], is written as

Fj ¼ −
1

2
Reðσji _ξi�Þ ¼ −

ω

2
Imðσjiξ�i Þ; ð7Þ

where � denotes complex conjugation. The integral of this
quantity, as in electromagnetism, is thus interpreted as the
linear momentum density.

The flux of the corresponding angular momentum
density is defined by the rank 3 tensor Mijk ¼ xiTjk −
xjTik [7]. The antisymmetric pseudotensor of rank 2,
Mij0 ¼ ϵilmxlTmj has spatial components, i.e., the pseudo-
vector Mi ¼ 1=2ϵijkMjk0 [2] that are then the familiar
angular momentum density of the form, in vector notation,
M ¼ r × hpi with hpi the time-averaged linear momentum
density. For convenience we now switch from index
notation to coordinate dependent vector notation and
explicitly consider cylindrical polar coordinates.
Analogous to the treatment of electromagnetic waves in

Ref. [1] we now consider the elastic angular momentum
density as

M ¼ −
ω

2
Im½r × ðσ·ξ�Þ�; ð8Þ

highlighting the tensorial nature of the stress tensor with a
double underline, σ, such that the total angular momentum
is then

J ¼ −
ω

2
Im

Z
r × ðσ·ξ�Þdr: ð9Þ

The complex displacement field ξ is separated into longi-
tudinal and transverse components via Helmholtz decom-
position. These are written, respectively, in terms of the
curl-less dilatational scalar potential, Φ (analogous to the
scalar potential of the LG beams in optics, see
Supplemental Material [25]), and the divergenceless equi-
voluminal vector shear potential, Ψ, such that

ξ ¼ ξL þ ξT ¼ ∇Φþ∇ ×Ψ; ð10Þ

where ξL and ξT denote the longitudinal and transverse
parts, respectively. Using this, the elastodynamic equa-
tions (1) reduce to two wave equations for compressional
and shear waves:

∇2Φ ¼ c−2p Φ̈; cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
λþ 2μ

ρ

s
;

∇2Ψ ¼ c−2s Ψ̈; cs ¼
ffiffiffi
μ

ρ

r
; ð11Þ

with cp and cs being the compressional and shear bulk
wave speeds, respectively.
The angular momentum density can therefore be rewrit-

ten in terms of its spin, orbit, and “additional” components
[22], each with individual contributions from the shear and
compressional potentials. Long et al. [17] identify this
additional component as hybrid orbital and spin Poynting
densities.
The energy flux density (7) can then be split into orbital

components which take the form
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poL ¼ ωρ

2
c2pIm½ðξ�L·∇ÞξL�;

poT ¼ ωρ

2
c2sIm½ðξ�T ·∇ÞξT �;

poH ¼ ωρ

2
c2pIm½ðξ�T ·∇ÞξL� þ

ωρ

2
c2sIm½ðξ�L·∇ÞξT �; ð12Þ

with the subscripts L, T, H corresponding to the longi-
tudinal, transverse (shear), and hybrid parts, respectively.
We now prove that, for displacement fields with inclined
phase fronts, the longitudinal part of the wave field ξL,
associated with compressional motion, carries a well-
defined OAM.
Flexural waves in pipes serve as exemplar mode shapes

capable of carrying elastic OAM. We consider elastic
waves propagating along an infinitely long, hollow elastic
cylinder with axis oriented in the z direction of inner radius
ra and outer radius rb. The first general solution for these
guided harmonic waves was derived by Gazis [26,27], who
showed there are three families of modes: longitudinal,
torsional, and flexural. The naming convention for such
modes classifies these as Lðm; nÞ, Tðm; nÞ, and Fðm; nÞ,
respectively [28]. Herem denotes the circumferential order,
or azimuthal index, with n the group order. The mode
shapes for which m ¼ 0 are axisymmetric, i.e., their
angular profile is constant. We consider nonaxisymmetric
flexural modes Fðm > 0; nÞ whose mode shapes vary
sinusoidally in the circumferential direction. Following
the ansatz of Gazis, we leverage the cylindrical symmetry
of the pipe and writing the coordinate system as ðr̂; θ̂; ẑÞ
pose the form of the scalar dilatational potential as

Φ ¼ ϕðrÞ exp ½iðmθ þ kzz − ωtÞ�: ð13Þ

The compressional displacement field then has the form

ξL ¼
�
ϕ0;

imϕ

r
; ikϕ

�
exp ½iðmθ þ kzz − ωtÞ�; ð14Þ

with the prime notation denoting partial differentiation with
respect to r. After substitution into (11) the radial profile
ϕðrÞ is solved by a linear combination of Bessel’s func-
tions, each with a complex amplitude. These coefficients
are solved for by employing the infinitely long cylinder
gauge, ∇·Ψ ¼ 0, and traction free boundary conditions on
the inner and outer radii σrr ¼ σrθ ¼ σrz ¼ 0jra;rb (see
Supplemental Material [25]). As such the guided modes
in elastic pipes can be thought of as Bessel “beams” in the
sense that the radial distributions satisfy Bessel’s equation.
The contribution of poL to the OAM density along the

pipe axisM·ẑ is defined asMo
L·ẑ ¼ rpoL·θ̂, where p

o
L·θ̂ is the

azimuthal component of the orbital, longitudinal part of the
linear momentum density. To evaluate this quantity we are
required to evaluate the advective terms that arise in (12)
due to the variation of the Lagrangian basis vectors as the

body deforms, highlighting its extrinsic nature; for an
elastic deformation ξ, α is the Lagrangian position vector
α ¼ β − ξ with β the Eulerian position vector after the
deformation.
Calculation of the elastic OAM density along the pipe

axis yields

Mo
L·ẑ ¼ m

�
ωρc2p
2

�
jϕ0j2 þ

�
1

r
ðrϕ00 þ ϕ0Þ

�
ϕ�

þ ω2

c2p
jϕj2 − 2

r
Reðϕϕ�0Þ

��
: ð15Þ

In general, ϕðrÞ may be arbitrary and as such this result
holds for all compressional wave fields with an azimuthally
dependent profile, i.e., with inclined phase fronts, as is the
case in electromagnetism [4]. Therefore, our assertion that
the compressional component of the displacement field
carries a well-defined elastic OAM is justified. The
remaining contributions to the elastic OAM (from the
transverse and hybrid components) also contain terms
proportional to the azimuthal index m, but with additional
factors (see Supplemental Material [25]) that leave them
not fully quantized in the sense that they are only propor-
tional to the azimuthal index. The physical significance of
this for the exemplar case of guided waves in pipes is then
that (i) trivially, Mo

L·ẑ ¼ 0 for both Lð0; nÞ, Tð0; nÞ modes
which is to be expected for axisymmetric modes; (ii) pure
flexural modes with a constant angular profile are required
to carry OAM. Conventional means of exciting these
modes in pipes rely on either complex arrangements of
transducers (e.g., non-axisymmetric partial loading) or
phased arrays [29–33]. Often many degenerate groups of
flexural modes are excited simultaneously, including
modes with both expð�imϕÞ components; the angular
profile then changes with propagation distance due to
modal superposition. As such there is zero average elastic
OAM. Fortuitously, the recent advent of the elastic spiral
phase pipe (eSPP), analogous to optical spiral phase plates
[34,35], enables arbitrary Fðm; nÞ modes to be efficiently
excited, via mode conversion, which boast a constant
angular profile along the pipe axis.
We demonstrate in Fig. 2, via numerical calculation, that

the elastic OAM associated with the dilatational potential
for guided waves along a pipe carries a well-defined OAM.
The associated orbital angular momentum flux density, at a
constant plane in z, is given as J L·ẑ ¼ −ðω=2ÞImR
Mo

L·ẑdrdθ. For brevity we define J Lz ¼ J L·ẑ.
Figure 2(a) shows the dispersion curves for guided waves
in an aluminium pipe, evaluated using a spectral collocation
method [36–38] (corroborated with finite element compu-
tations [39], using the commercial software COMSOL
Multiphysics [40] ®), described in the Supplemental
Material [25]; the eigensolutions give frequency as the
eigenvalue, with the corresponding eigenvector containing
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the potential components ðΦ;Ψr;Ψθ;ΨzÞ. These are used
to numerically evaluate the ratio of the compressional
OAM flux density to the energy flux density of a compres-
sional bulk wave, log jð2J Lz=ωρc2pÞj, shown in Fig. 2(b)
for the lowest branches of the first five flexural
modes Fðm ¼ 1…5; 1Þ.
We now utilize an elastic spiral phase pipe (Fig. 1) to

show that elastic OAM can be transferred to a fluid in
contact with the elastic material; shear waves are not
supported in fluids and as such only the compressional
motion of the elastic material couples strongly to the
acoustic pressure field in the fluid. The OAM transfer is
observed by the introduction of rotational motion within
the fluid, exciting spiraling acoustic wave fields.

OAM transfer.—The ability to transfer elastic OAM to a
fluid is demonstrated numerically, via finite element
simulations of an aluminium pipe partially submerged in
water (Fig. 3). We excite a flexural Fð3; 2Þ mode via mode
conversion of a longitudinal Lð0; 2Þ wave by passage
through a suitably designed elastic spiral phase pipe (see
Supplemental Material [25]). For a single frequency and
wave vector, the compressional motion of the flexural mode
within the pipe can be represented by a superposition of
plane waves uniformly distributed over the circular aperture
of the pipe. The plane wave components have mutual
phases proportional to the azimuthal index m, endowed by
the introduction of the eSPP. This compressional motion
couples to the pressure field within the fluid at the
submerged end of the pipe, producing rotating acoustic
pressure fields. This is demonstrated in Figs. 3(b)–3(c) that
show a snapshot in time of the dilatational field, through the
trace of the strain tensor trðεÞ, at the submerged pipe
end and the pressure field within the fluid. The dilata-
tion is related to the compressional potential through
Φ ¼ −ð∇·uÞ=k2z ¼ −trðεÞ=k2z . We only consider a partially
submerged pipe in order to neglect Franz-type waves [41],
and note that the OAM transfer is viewed via the mechani-
cal torque the compressional motion enacts on the fluid, not
by the generation of acoustic Bessel beams known to carry
OAM [42–46].
Conclusions.—We have shown that elastic waves with

inclined phase fronts can carry an extrinsic orbital angular
momentum; it has been proved that the compressional
dilatational potential carries a well-defined contribution,
proportional to the azimuthal index m. This result is
reminiscent of the case of LG beams in optics where the
electromagnetic wave equation, under the paraxial approxi-
mation, is satisfied by a complex scalar function describing

(a) (b)

FIG. 2. (a) Dispersion curves of guided waves in an aluminium
pipe of inner diameter 40 mm and thickness 10 mm. Solid lines
obtained by spectral collocation with points resulting from finite
element computations. (b) Numerical evaluation (details reported
in the Supplemental Material [25]) of the well-defined elastic
OAM along the pipe axis, J Lz, associated with the dilatational
potential for the lowest curves of the flexural modes Fðm; 1Þ.

FIG. 3. Finite element time domain simulation of OAM transfer: (a) Schematic of the simulation domain, with pipe partially
submerged 1 cm in water, surrounded by air. Arrows show axisymmetric longitudinal excitation position, with absorbing boundaries on
exterior fluid walls. (b) Normalized compressional field in pipe [trace of the strain tensor, trðεÞ] and pressure field (P) in the fluid at the
end of the pipe (z ¼ 0). (c) Isosurfaces of fluid pressure in the region below the pipe showing spiraling acoustic waves, at the same time
instance as in (b). Full details are shown in the Supplemental Material, along with frequency domain corroborations [25].
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the field distribution, proportional to the azimuthal mode
index. It is this phase profile that gives rise, in both cases, to
the well-defined OAM.
The coupling of guided flexural waves in elastic pipes to

acoustic pressure waves in fluids has been shown numeri-
cally through the compressional motion of the pipe. The
implications are that the elastic OAM carried by the flexural
modes can be transferred to acoustic pressure fields within
a fluid. Inspired by the fact that optical LG laser modes
have well-defined OAM, and that these modes are capable
of being produced by spiral phase plates [47], we leverage
recent developments in elastic spiral phase pipes to gen-
erate the desired flexural pipe modes. These eSPP enables
efficient mode conversion of longitudinal modes to arbi-
trary flexural modes, crucially of a single handedness, i.e.,
that possess only one sign of expð�imθÞ. In this way the
compressional motion in the pipe acts as a continuous
phased acoustic pressure source in the fluid, opposed to
conventional discrete acoustic sources [48]. Harnessing the
mechanical torques associated with the elastic OAM then
promises to unlock applications across acoustic tweezers,
nondestructive testing, ultrasonic motor design, and acous-
tofluidic devices.
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