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Cavity optomechanics explores the coupling between optical and mechanical modes medi-

ated by the radiation pressure force. Unlike the passive scheme, the active optomechanics

with optical gain directly imposes the mechanical motion upon the lasing dynamics, unveiling

the intrinsic properties determined by the system itself. Here we numerically explore the

general characteristics of the active optomechanics. The effects of the mechanical oscillation

on the macroscopic laser include introducing multiple unstable regimes in the lasing phase,

shifting the laser central frequency, broadening the laser spectrum, and degrading the laser

frequency stability. Reducing the optical gain down to one active atom highlights the quantum

nature of atom–cavity and photon–phonon interactions. The one-atom optomechanical

microlaser does not only emit nonclassical photons but also generate nonclassical

photon–phonon pairs. Our work extends the cavity optomechanics to the active fashion,

paving the way towards optomechanical light sources for photonic integrated circuits, on-

chip quantum communication, and biosensing.
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The parametric coupling between optical and mechanical
degrees of freedom originates from the light momentum
transfer to the mechanical objects that are located inside

the optical cavities1 and is usually modelled as the spring–mass
oscillators. Various motivations are driving the vastly growing
interest in cavity optomechanics2,3 and a great variety of opto-
mechanical devices have been developed, including suspended
macroscopic/microscopic mirrors4–6, micropillars7, membranes8,
whispering-gallery-mode microcavities9–12, and nanorods13. The
retarded nature of the radiation pressure force allows for
suppressing11/pumping14 the mechanical vibration through
controlling the incident light. In particular, the optomechanical
coupling in the resolved-sideband limit (i.e. the mechanical
oscillation frequency greatly exceeds the cavity loss rate) enables
cooling of mechanical vibration to the quantum-mechanical
ground state10,15, leading to the ultrasensitive mass/displacement/
force transduction16–18. In single-molecule detection, employing
the optomechanical effect boosts the sensing resolution by the
quality factor of the mechanical mode compared to the conven-
tional methods19. In nonequilibrium thermodynamics, an opto-
mechanical array mediated by cavity field allows for monitoring
the heat transport in real time20. Additionally, hybridizing
optomechanical systems with lattice-confined ultracold atoms
enables the spatial modulation of atomic density21 and the
manipulation of the motion of atoms22. Quantum states can be
also transferred between optical and mechanical modes in a
coherent fashion (i.e. the optomechanical-coupling strength well
exceeds both optical and mechanical decoherence rates9) by using
modern quantum optical techniques9. Furthermore, the opto-
mechanical coupling may lead to a stationary entanglement
between an optical cavity mode and a macroscopic vibrating
mirror23.

Numerous studies have been focused on the cavity opto-
mechanical systems that are operated in a passive manner3. In
such setups, an optical cavity is pumped by an external laser beam
whose central frequency is detuned from the resonance frequency
of the cavity mode. The optomechanical coupling is simply tuned
by changing the intensity and frequency of the input laser. The
mechanical vibration is mapped onto the optical phase of the
intracavity field and the transmission spectrum of the cavity is
monitored. The noise spectrum of the mechanical displacement
can be attained by using conventional methods, such as
balanced homodyne detection24, Hänsch–Coulliaud polarization
spectroscopy25, and Pound–Drever–Hall technique26. Never-
theless, the optical phase measurement suffers from unavoidable
technical noise sources that are associated with intensity and
phase fluctuations in probe laser and local oscillator. Addressing
these issues requires extra frequency and polarization stabiliza-
tion steps and associated optical and electrical components27,
complicating the design of optomechanical systems. In addition,
the limited tuning speed and range of the probe laser frequency
impede the detection of high-frequency mechanical vibration.

Recently, the active cavity optomechanics28, also known as
optomechanical lasing, has drawn much attention. In this new
configuration, a spring–mass oscillator is mounted onto one
end mirror of a laser cavity. The gain particle–photon and
photon–phonon interactions interfere with each other, tran-
scribing the mechanical oscillation directly onto the lasing
dynamics29. Up to now, the active optomechanical scheme has
been implemented only on the vertical-external-cavity surface-
emitting laser with an ultralight-weight mirror29–32. The results
manifest a substantially enhanced photon–phonon interaction32

and a high-speed wide-range wavelength sweep31. In comparison
to the passive operation fashion, the active optomechanics holds
the advantages of simple system structures (i.e. no need for extra
frequency and intensity stabilization procedures or associated

optical and electrical components), revealing the intrinsic optical
properties (i.e. frequency shift, spectral broadening, temporal
coherence, and photon statistics) that are entirely determined by
an optomechanical system itself, and the potential role of
wavelength-tunable light sources in nanophotonic integrated
circuits30. Nevertheless, the previous demonstrations29–32 have
been less focused on the effects of the mechanical oscillation on
the optical properties of the lasing dynamics.

In addition, thus far, research has been carried out mainly on
the optomechanical coupling between a classical optical mode
and a mechanical oscillation mode that may be modelled as either
a classical spring–mass or a quantum harmonic oscillator
with particle-like excitations, known as phonons. By contrast,
less attention has been given to the cavity optomechanical
systems with small amounts of light quanta (photons) and pho-
nons. In this limit, the quantum nature of light plays a key role in
its interaction with the mechanical oscillator and the full quan-
tum treatment should be applied to analyze the cavity
optomechanics33. The resultant optomechanical microlasers
potentially act as nonclassical light sources that are of particular
importance to quantum communication and computing.

In this paper, we numerically investigate the active opto-
mechanics where a macroscopic/microscopic lasing dynamics is
coupled to a mechanical oscillator. For the macroscopic system
composed of an optical cavity interacting with an ensemble of
active atoms, the mechanical oscillation induces multiple unstable
steady-state regimes in the lasing phase, broadening the power
spectral density compared to the corresponding conventional
laser system, and degrading the laser frequency stability. In the
microscopic limit, the one-atom optomechanical microlaser
emits nonclassical photons, the dependence of which on the
atom–cavity detuning exhibits multiple submaxima because of
the strong photon–phonon interface. The spectrum and photon
statistics of the optomechanical microlaser also differ much from
that of the common one-atom microlaser. Interestingly, the cross-
correlation function between photons and phonons shows a
nonclassical behaviour of the photon–phonon pair generation. To
our best knowledge, such a one-atom optomechanical microlaser
has not been studied yet and may operate as a nonclassical light
source, whose optical properties can be tuned by controlling the
mechanical oscillator, for quantum networking. The recent
microcavity and nanophotonic technologies allow for testing the
predictions obtained in this study.

Results
Physical model. We restrict our attention to the simplest cavity
optomechanics, where one optical mode interacts with one
mechanical mode. Figure 1a illustrates a generic scheme of the
active optomechanical system. An ensemble of atoms is located
inside an optical cavity that is composed of a fixed and movable
mirror. The movable mirror undergoes a one-dimensional har-
monic oscillation x tð Þ at a radio frequency Ω. The damping rate
of the mechanical vibration is Γ with the corresponding quality
factor Qm ¼ Ω=Γ. The optical cavity has a resonance frequency
ωC when x ¼ 0. The cavity loss rate is κ with the corresponding
quality factor Q ¼ ωC=κ. To the linear approximation, the non-
zero mechanical displacement x ≠ 0 introduces a frequency shift
δ tð Þ ¼ ξx tð Þ to the optical cavity mode. The frequency pull
parameter ξ takes the form ξ ¼ �ωC=L for a Fabry–Pérot-type
cavity with a length L and ξ ¼ �ωC=RWGM for the fundamental
mode in a whispering-gallery-mode microcavity with a radius
RWGM. The zero-point fluctuation of the mechanical oscillator is
defined as xZPF ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_=2meffΩ

p
, where the effective mass meff

depends on the specific mode under consideration and the choice
of the normalized displacement34. The atoms play the role of the
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source of the intracavity field EðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_ωC=2ε0Veff

p
aðtÞ with the

reduced Planck’s constant _, the vacuum electric permittivity ε0,
the effective volume Veff of the cavity mode, and the dimen-
sionless amplitude aðtÞ. Each atom is modelled as a two-level
system, i.e. upper |e〉 and lower |g〉 states, with a transition fre-
quency ωA. The cavity mode frequency ωC is close to ωA with a
detuning Δ ¼ ωC � ωA. The total decay rate of |e〉 is γ0e, wherein
the amount corresponding to the |g〉-|e〉 branch is γe. The decay
rate γg of |g〉 should be larger than γe for achieving the population
inversion. The decay rate of the atomic polarization is then given
by γeg ¼ ðγe þ γgÞ=2. The coupling strength between the optical

cavity and the atomic |g〉-|e〉 transition is μ ¼ d
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ωC=2ε0_Veff

p
with the associated electric dipole moment d of the atom. The

atoms are continuously pumped into the upper |e〉 state at a rate
R. The lasing action occurs for a large enough R. The radiation
pressure force FradðtÞ ¼ �_ξNphotonðtÞ exerted on the movable
mirror leads to the parametric coupling between optical and
mechanical degrees of freedom of the cavity. Here, NphotonðtÞ ¼
jaðtÞj2 accounts for the intracavity photon number.

The generic scheme described in Fig. 1a is actually a four-level
optomechanical laser, which is feasible by means of current
atomic and photonic technologies, for instances, active optical
clocks with gaseous alkali-metal atoms35,36 and whispering-
gallery-mode microresonators doped by rare-earth ions37,38 and
organic molecules39,40. In what follows, we take neutral caesium
atoms, whose external motion and internal states can be
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Fig. 1 Active optomechanics in the macroscopic limit. a Schematic of a generic cavity optomechanical system that operates in an active fashion. An
ensemble of two-level (upper jei and lower jgi) atoms is coupled to an optical cavity with a single-photon coupling strength μ. A pump light excites the
atoms onto jei at a rate R. The total decay rate of jei is γ0e, wherein the decay rate of the atom from jgi to jei is γe. The fast decay rate γg of jgi ensures the
population inversion between jei and jgi. The active atoms emit photons into the optical cavity. The position of one cavity mirror is fixed while the other
mirror is movable. The motion of the movable mirror is modelled as a mechanical oscillator with a displacement xðtÞ, oscillation frequency Ω, and damping
rate Γ. The radiation pressure of the intracavity field drives the mechanical oscillator. b Steady-state photon number Nphoton;ss (in units of the saturation
photon number NðsatÞ

photon) as a function of the detuning Δ ¼ ωC � ωA between the cavity mode frequency ωC and the atomic transition frequency ωA. The
pump rate is set at R ¼ 103R0 with the minimum pump threshold R0 and the cavity quality factor is Q ¼ 107. The cavity loss rate κ ¼ ωC=Q is chosen as the
frequency unit in the plot. The solid curves denote the stable steady-state solutions while the dashed lines correspond to the unstable steady-state
solutions. c Time evolutions of the mechanical-displacement-induced detuning δðtÞ and the intracavity photon number NphotonðtÞ for the optomechanical
system operating at an unstable steady state. The dashed line corresponds to the average value of δðtÞ. d, e Dependences of the steady-state Nphoton;ss on
the detuning Δ and the pump rate R for Q ¼ 105 and Q ¼ 107, respectively. The boundaries of unstable steady-state regions have been plotted. The red
shading denotes the stable steady states while the blue shading corresponds to the unstable steady states. f, g Photon differences ΔNphoton;ss between the
active optomechanical system and the corresponding conventional laser for Q ¼ 105 and Q ¼ 107, respectively.
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manipulated and controlled at a high degree of precision by using
laser beams in experiments41, as the intracavity gain medium
with the laser transition between |e〉� (5p67s) 2S1/2 and |g〉�
(5p66p) 2P3/2 (Supplementary Note 1). The transition frequency is
ωA ¼ 2π ´ 204 THz (wavelength of 1470 nm) and the relevant

decay rates42 are γe ¼ 2π ´ 1:8 MHz, γ’e ¼ 2π ´ 2:8 MHz, γg ¼
2π ´ 5:2 MHz, and γeg ¼ 2π ´ 4:0 MHz. A pump laser at 455 nm
continuously drives the atoms from the ground (5p66s) 2S1/2 to
the excited (5p67p) 2P3/2 state. The atoms are accumulated in |e〉
via the rapid decay from (5p67p) 2P3/2 to |e〉 with the
corresponding spontaneous emission rate of 2π ´ 0:7 MHz. The
pump rate R can be as high as 2π ´ 13 GHz for 2 ´ 104 atoms
located inside the cavity. We further assume the cavity mode
volume Veff=ð2πc=ωAÞ3 ¼ 2:5 ´ 103, which is experimentally
feasible for various microcavities43–45. Here, c denotes the speed
of light in vacuum. The atom–cavity coupling strength is then
computed as μ ¼ 20γeg.

The cavity Q factor depends on the specific cavity structure.
Fabry–Pérot46 and whispering-gallery-mode47 (micro)cavities
may have an ultrahigh quality factor of the order of 1010. The
corresponding photon loss rate κ � 2π ´ 20:4 kHz is much
smaller than the decay rate γeg of the medium polarization. As a
result, the laser system accesses the good-cavity regime with
κ � γeg. In contrast, the attainable Q factor of micropillar48 and
photonic crystal49 microcavities is relatively low, ranging from
103 to 106, and thus the optomechanical laser operates in the bad-
cavity limit with κ � γeg. Without losing the generality, we
restrict ourselves to the range of 105 ≤Q≤ 107 in this work. On
the other hand, the vibrational frequency Ω and quality factor Qm
of the mechanical oscillator also depend on the specific structure
of the optical cavity, for examples, Ω=2π of 10 � 102 MHz and
Qm of 103 for whispering-gallery-mode microcavities11,27, Ω=2π
of 10�2 � 102 MHz and Qm of 10 � 104 for cantilevers50–52, and
Ω=2π of 10�2 � 1 MHz and Qm of 103 for nanowires53,54. In this
work, we study both macroscopic (i.e. atomic ensemble) and
microscopic (i.e. one atom) active optomechanical systems. For
the macroscopic optomechanics, without losing the generality, we
choose Ω ¼ 2π ´ 10 MHz and Qm ¼ 102 and hence the system
stands outside the so-called sideband-resolved regime, i.e. κ>Ω.
We further assume the entire system is operated at the cryogenic
temperature55 T ¼ 1 K. The average number of thermal photons
approximates zero due to kBT=_ωC � 0 with the Boltzmann
constant kB. In contrast, the mechanical degree of freedom has a
thermal occupation of nthrm ¼ 1=ðe_Ω=kBT � 1Þ � 2083, whose
influence on the lasing dynamics is non-negligible. The assump-
tion of cryogenic temperature facilitates the performance of the
numerical simulation. For a higher T , for example, room
temperature, nthrm goes up strongly and the analysis presented
below may be extended accordingly. For the microscopic
optomechanics, in order to carry out the numerical simulation,
we set Ω ¼ 2π ´ 100 MHz, Qm ¼ 102 and the cryogenic
temperature56,57 T ¼ 10 mK with nthrm � 1:6. Vastly reducing
nthrm is highly desirable because it highlights the quantum nature
of phonons. In addition, to reveal the quantum behaviour of the
photon–phonon interface, we set the cavity Q factor at 107 and as
a result, the microscopic system accesses the sideband-resolved
regime, i.e. κ<Ω.

Macroscopic optomechanics. We first consider the macroscopic
system with an optical cavity simultaneously interacting with a
large number of active atoms and a classical mechanical oscillator.
The light–matter interaction inside the cavity is described by a set
of Heisenberg–Langevin equations while the mechanical

displacement xðtÞ follows a second-order differential equation
(i.e. spring–mass oscillator) driven by the radiation pressure force
FradðtÞ (see Methods). It is worth noting that the macroscopic
system may be also studied by using the density matrix method58.
However, the huge dimension of the Hilbert space makes it
challenging to perform the investigation, especially on the power
spectral densities of the intracavity field and mechanical oscilla-
tion. In contrast, the Heisenberg–Langevin method strongly
simplifies the mathematical modelling of the macroscopic system,
allowing one to numerically simulate the lasing dynamics in an
optomechanical cavity. In active optomechanics, the mechanical
displacement xðtÞ introduces an extra detuning δðtÞ to the
atom–cavity interaction, thereby affecting the intracavity photon
number NphotonðtÞ. This further changes the force FradðtÞ exerted
on the movable mirror and in return affects xðtÞ. Thus, the
optomechanical dynamics can be solved through a self-consistent
method.

The system reaches the steady-state (denoted by the subscript
ss) when the optical pump R is balanced by the total energy loss
experienced by the photons and atoms inside the cavity and the
mechanical oscillator. The steady-state intracavity photon
number is derived as (Supplementary Note 2)

Nphoton;ss � hNphotonðt ! 1Þi ¼ N ðsatÞ
photon

� R
R0

� 1
sin2φss

�
; ð1Þ

with the saturation photon number N ðsatÞ
photon ¼ ðγeg=2μ2Þγ0eγg=ðγ0e þ γg � γeÞ and the minimum pump threshold

R0 ¼ ðγeg=2μ2Þγ0eγg=ðγg � γeÞ. Here, h¼ i accounts for the
expected value operation and φss denotes the relative phase
difference of the intracavity field with respect to the medium
polarization. We have

sinφss ¼ �½1þ 4ðΔþ δssÞ2=ðκþ 2γegÞ2�
�1=2

; ð2Þ

with the steady-state mechanical-displacement-induced detuning
δss � hδðt ! 1Þi ¼ ξxss ¼ �δ0Nphoton;ss ≤ 0, δ0 � 2δ2ZPF=Ω, and
the zero-point-fluctuation-induced detuning δZPF � ξxZPF. It is
seen that the steady-state mechanical displacement xss � hxðt !
1Þi ¼ �ðδ0=ξÞNphoton;ss is positive and proportional to the
photon number Nphoton;ss. Equation (1) is actually a quadratic
equation with the variable Nphoton;ss and only one solution is
physically acceptable for the system parameters chosen in this
work. Setting δss ¼ 0 in Eq. (2), one obtains a conventional laser
with fixed cavity mirrors (ξ ¼ 0) and the corresponding steady-
state photon number is given by N ðconvlÞ

photon;ss � Nphoton;ssjδss¼0
.

Without losing the generality, in what follows, we choose δ0 ¼
2π ´ 40 MHz, leading to δZPF ¼ �2π ´ 14:1 MHz. Such large δZPF
is accessible in an experiment by reducing the cavity length and
the effective mass of the mechanical oscillator53. It should be also
noted that even reducing δ0 (or δZPF) by a factor of 10 does not
affect the main conclusions derived in this work.

Due to the nonzero δss, Nphoton;ss lacks the symmetry between
red-detuned Δ< 0 and blue-detuned Δ> 0 regimes (Fig. 1b). The
maximum of Nphoton;ss occurs in the blue-detuned regime. Unlike
the conventional lasers whose steady-state solutions are always
stable, the steady-state solution of the optomechanical laser may
be unstable to a small perturbation. One may perform the linear
stability analysis to examine the stability of the steady-state
solution in the lasing phase with Nphoton;ss > 0 (Supplementary
Note 2). At an unstable steady state,

�
δðtÞ� undergoes a nearly

harmonic oscillation around a nonzero average value (Fig. 1c).
Whenever

�
δðtÞ� passes across zero,

�
NphotonðtÞ

�
increases

abruptly and then descends to zero in an oscillatory manner
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because the cavity loss rate κ greatly exceeds the damping rate Γ
of the mechanical oscillation. Figure 1d and e shows the photon
number Nphoton;ss in the R� Δ plane for different Q factors. There
exist several unstable zones, whose areas depend closely on the
cavity Q factor, in the lasing phase (Supplementary Movie 1). A
large Q increases the intracavity photon number and thus boosts
the radiation pressure force. The resulting enhanced mechanical
oscillation strongly affects the laser dynamics in return. Conse-
quently, a steady-state that is stable for a low Q may become
unstable for a high Q and the unstable zones are expanded.
We consider the difference ΔNphoton;ss � Nphoton;ss � N ðconvlÞ

photon;ss

between the steady-state photon numbers of the optomechanical
laser Nphoton;ss and the corresponding conventional laser N ðconvlÞ

photon;ss

with fixed mirrors (ξ ¼ 0). As illustrated in Fig. 1f, g, ΔNphoton;ss

is mainly positive (negative) in the red-detuned Δ< 0 (blue-
detuned Δ> 0) regime, indicating that the optomechanical
coupling facilitates (supresses) the lasing action. It is also found
that the ratio of ΔNphoton;ss to NðconvlÞ

photon;ss is less than 1 percent for a
low-Q cavity and thus, the influence of the mechanical oscillation
on the lasing dynamics may be viewed as a perturbation. In
contrast, ΔNphoton;ss=N

ðconvlÞ
photon;ss can be over 20% for a high-Q

cavity due to the strong optomechanical coupling, and the
mechanical oscillation cannot be treated as a perturbation to the
lasing dynamics.

Besides the stability of steady-state solutions, the effects of the
optomechanical coupling can be also revealed by the power
spectral density SphotonðωÞ of the laser light. According to the
Wiener–Khinchin theorem, when the system undergoes a
stationary random process, one has SphotonðωÞ / hjF½aðtÞ�j2i with
the Fourier transform F½aðtÞ� � Rþ1

�1aðtÞe�iωtdt and the normal-

ization Nphoton;ss ¼
Rþ1
�1SphotonðωÞdω. For the conventional laser

with fixed mirrors, the fluctuations of the macroscopic polariza-
tion of active atoms primarily contribute to the spectral
broadening of the laser light59. For the optomechanical laser,
the mechanical oscillation of the movable mirror may strongly
affect SphotonðωÞ. We numerically simulated the amplitude aðtÞ of
the intracavity field (see Methods) and computed SphotonðωÞ
accordingly. As shown in the panel of Q ¼ 105 in Fig. 2a, for a
low-Q cavity, SphotonðωÞ consists of the main peak surrounded by
equally separated sidebands. Indeed, these sideband spikes
directly result from the mechanical oscillator modulating the
laser dynamics and the separation between two adjacent
sidebands approximates Ω. The main spectral peak is character-
ized by the central oscillation frequency ωL of the laser light and a
full width at half maximum ΔωL. The cavity pulling effect60 shifts
ωL away from the atomic transition frequency ωA. However,
unlike conventional laser whose central frequency ωL is
independent of the photon number Nphoton;ss, the frequency
difference jωL � ωAj of the optomechanical laser goes up linearly
as Nphoton;ss is enhanced because of the extra mechanical-
displacement-induced detuning δss. In the low-Q limit, the
perturbation approximation leads to

ωL � ωA � Δþ δss
1þ κ=2γeg

; ð3Þ

whose validity can be confirmed by the panel of Q ¼ 105 in Fig. 2b.
The above equation allows one to evaluate δss (or the steady-state
mechanical displacement xss) by measuring the laser frequency ωL.
The sensitivity is given by ∂xss=∂ωL ¼ ξ�1ð1þ κ=2γegÞ, which,
interestingly, can be enhanced by increasing the cavity loss rate κ.

The spectral broadening ΔωL of the laser light may be predicted by
using the Schawlow–Townes formula61

ΔωL ¼
_ωL

2
κ2

Pout

Ne;ss

Ne;ss � Ng;ss

�
1þ

�
Δþ δss
γeg þ κ=2

	2
� γeg
γeg þ κ=2

	2

;

ð4Þ
with the laser output power Pout=_ωL ¼ κNphoton;ss and the
steady-state population Nu;ss of atoms in the ju ¼ e; gi state. The
panel of Q ¼ 105 in Fig. 2b confirms the match between Eq. (4)
and numerical results. When jΔj � jδssj, increasing R (or
Nphoton;ss) reduces ΔωL. We also computed the power spectral
density of the mechanical-displacement-induced detuning,
SδðωÞ ¼ hjF½δðtÞ�j2i. Actually, SδðωÞ=ξ2 corresponds to the
spectral density of the mechanical displacement xðtÞ. For a low
Q, the spectrum SδðωÞ is single peaked at Ω (the panel of Q ¼ 105

in Fig. 2c).
As the cavity Q factor is increased, the main spectral peak in

SphotonðωÞ is strongly broadened, i.e. ΔωL exceeds Ω, and
consequently the optomechanical-coupling-induced sidebands
vanish (the panel of Q ¼ 106 in Fig. 2a). This is attributed to
the fact that a high Q boosts the intracavity field and the resulting
enhanced optomechanical-coupling maps more thermal fluctua-
tions of the mechanical oscillator onto the lasing dynamics,
thereby broadening the laser spectrum. Both Eqs. (3) and (4) fail
in estimating ωL and ΔωL since the perturbation approximation
becomes invalid (the panel of Q ¼ 106 in Fig. 2b). Deriving the
analytical expressions for ωL and ΔωL is impractical. The
mechanical spectrum SδðωÞ also becomes broadened and,
interestingly, the sideband peaks emerge at ω ¼ mΩ with m 2
Z (the panel of Q ¼ 106 in Fig. 2c). For a high enough Q, the
spectrum SphotonðωÞ apparently violates the Lorentzian line shape
as shown in the panel of Q ¼ 107 in Fig. 2a. It is seen that
SphotonðωÞ consists of a narrow high peak, corresponding to the
lasing dynamics, and a wide background that arises from the
thermal mechanical fluctuations. The linewidth ΔωL grows as R is
increased (the panel of Q ¼ 107 in Fig. 2b). The sideband peaks in
the mechanical spectrum SδðωÞ become more distinct (the panel
of Q ¼ 107 in Fig. 2c).

We are interested in the efficiency of the optical energy transfer
to the spring–mass oscillator. Let us assume that the positions of
both cavity mirrors are initially fixed, i.e. xðt ¼ 0Þ ¼ 0 and none
energy is stored in the spring–mass oscillator, and the intracavity
field reaches the steady state at a certain pump rate R (Fig. 3a).
Then, we let the mechanical oscillator (i.e. the movable mirror)
free to move. Under the radiation pressure FradðtÞ, the mechanical
displacement xðtÞ goes towards the steady-state value xss.
The work done by FradðtÞ during this process is given by
W ¼ R t¼1

t¼0 FradðtÞdxðtÞ, which relies on the specific route of the
movable mirror moving from xðt ¼ 0Þ ¼ 0 to xðt ¼ 1Þ ¼ xss. A
portion of W is dissipated through the damping of the
spring–mass oscillator while the rest is converted to the elastic
potential energy U ¼ meffΩ

2x2ss=2 ¼ _δ2ss=2δ0 of the spring. One
may define the efficiency of the optomechanical coupling as
η ¼ U=W. Figure 3b illustrates the dependence of η on the pump
rate R for different cavity Q factors. It is seen that η grows strongly
in the low-R regime (still above the threshold) and then gradually
declines after reaching a maximum that is close to unity. The
efficiency η is eventually saturated in the high-R regime, denoting
W scales as x2ss for a large R. The saturation value of η is about 0.5
for a low Q while it approximates unity for a high Q.

Let us further examine the influence of optomechanical
coupling on laser frequency stability. We assume that in
addition to the radiation pressure FradðtÞ an extra environmental
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noise force FxtraðtÞ that arises from, for example, the ground
vibration is exerted on the mechanical oscillator. We focus on
the dimensionless signal yðtÞ ¼ ωLðtÞ=ωA with the laser fre-
quency ωLðtÞ perturbed by the mechanical vibration. The power
spectral density of laser frequency fluctuations is given by
SyðωÞ ¼ hjF½yðtÞ�j2i, which can be measured by means of
standard optical techniques in experiments27. The stability of
yðtÞ is commonly quantified by the Allan deviation σyðτÞ with a
sampling time τ. We numerically simulated the optomechanical
laser dynamics and extracted yðtÞ from the trajectories of the
laser amplitude aðtÞ.

For a low cavity Q factor, the spectrum SyðωÞ scales as ω0

(Fig. 4a), that is, the white frequency noise plays the predominant
role, and the corresponding Allan deviation follows the scaling law
σyðτÞ / 1=

ffiffiffi
τ

p
(Fig. 4b). When FxtraðtÞ ¼ 0, the atom–cavity

interface induces a wide peak located at ω ¼ 2μ in SyðωÞ and the
optomechanical coupling gives rise to the other narrow peak at
ω ¼ Ω (Fig. 4a). In comparison, we also computed the spectral
density of frequency fluctuations of the corresponding conventional
laser with fixed cavity mirrors (ξ ¼ 0). Due to the weak
optomechanical coupling in the low-Q limit, optomechanical and
conventional lasers have a similar spectral density of frequency
fluctuations, except the spectral peak at ω ¼ Ω (Fig. 4a). As a result,
their Allan deviations are close to each other, making it hardly to
analyze mechanical fluctuations from the measurement of the laser
frequency stability (Fig. 4b). Additionally, in the practical measure-
ment the photon shot noise whose spectral density of frequency
fluctuations is given by ðκ2 þ 4Ω2Þ=4ω2

AκNphoton;ss sets the standard
quantum limit to the photodetector’s sensitivity2. As shown in
Fig. 4a, only the spectral peaks at ω ¼ Ω and ω ¼ 2μ in SyðωÞ
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Fig. 2 Power spectral densities of laser field and mechanical oscillation. a Numerically simulated spectrum SphotonðωÞ of the intracavity light field for
different cavity Q factors and pump rates R. The atom–cavity detuning is set at Δ ¼ �κ with the cavity loss rate κ, and R0 denotes the minimum pump
threshold. At Δ ¼ �κ, the optomechanical laser has stable steady-state solutions for different Q and R. The laser frequency ωL is shifted from the atomic
transition frequency ωA and the laser linewidth (i.e. full width half maximum) is ΔωL. The mechanical oscillation frequency Ω is chosen as the frequency
unit. b Dependence of laser frequency shift ðωL � ωAÞ and linewidth ΔωL on the pump rate R for different Q factors with Δ ¼ �κ. Symbols corresponds to
the numerical results. The curves derived from the cavity pulling effect and Schawlow–Townes formula are also plotted for comparison. c Numerically
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exceed the shot-noise limit. The Allan deviation of the low-Q
optomechanical laser is below the shot-noise-limited Allan
deviation (Fig. 4b), impeding the detection of mechanical motion.

When FxtraðtÞ≠ 0, the extra environmental noise source
strongly elevates SyðωÞ above the shot noise (Fig. 4a). The
spectral peak at ω ¼ 2μ in SyðωÞ disappears while the peak at
ω ¼ Ω is retained. The Allan deviation σyðτÞ with FxtraðtÞ≠ 0 may
exceed the shot-noise-limited σyðτÞ, providing a way to study the
optomechanical coupling from the measurement of the laser
frequency stability. Due to the frequency band-pass filtering
feature of the mechanical oscillator, the noise force FxtraðtÞ in a
certain color does not lead to the corresponding scaling of σyðτÞ
with respect to τ. For instance, the pink-colored FxtraðtÞ with a
power spectrum scaling as ω�1 may not lead to the scaling
σyðτÞ / τ0 (Fig. 4b).

For a high cavity Q factor, the enhanced intracavity field
suppresses the shot noise and both SyðωÞ and σyðτÞ with FxtraðtÞ ¼ 0

exceed the shot-noise limit (Fig. 4c, d), allowing for detecting the
mechanical vibration. A spectral peak is presented at ω ¼ Ω in
SyðωÞ of the optomechanical laser. The strong optomechanical
coupling lifts the spectral density of frequency fluctuations of the
optomechanical laser well above that of the corresponding
conventional laser. That is, the laser frequency stability degrades
since more mechanical fluctuations are mapped onto the lasing
dynamics. This paves a way to evaluate the mechanical vibration
from the measurement of the Allan deviation.

One-atom active optomechanics. In the above, we have dis-
cussed the active optomechanics in the macroscopic limit, where
a large number of active atoms contribute to the intracavity field.
We now consider the optomechanical microlaser with only one
atom placed inside the optical cavity. Such a one-atom microlaser
is feasible by means of current atom optical techniques62–65. The
maximum pump rate R is limited by half of the spontaneous
emission rate of the atom from (5p67p) 2P3/2 to jei, i.e. R �
2π ´ 0:35 MHz. In the one-atom active optomechanics, the
quantum nature of light plays the main role in the atom–cavity
interaction since the intracavity field is significantly reduced. In
addition, the quantum behaviour of the mechanical oscillator is
highlighted at an extremely low temperature. Thus, the
Heisenberg–Langevin method becomes invalid and the full
quantum-mechanical treatment (based on the density matrix
method) is necessarily employed. The complex field amplitude
aðtÞ is replaced with the photon annihilation operator â whose
conjugate transpose gives the photon creation operator ây. The
harmonic mechanical oscillation is modelled as a vibrational

mode with creation b̂
y
and annihilation b̂ operators of phonons

(see Methods). The coordinate operator takes the form x̂ ¼
xZPFðb̂þ b̂

yÞ and the optomechanical interaction is written as

_δZPFâ
yâðb̂þ b̂

yÞ with the vacuum optomechanical-coupling
strength δZPF ¼ ξxZPF. The dynamics of the microscopic system
is governed by the master equation of the density matrix operator
ρ̂ðtÞ of the system (Supplementary Note 3). The photon and
phonon numbers are given by NphotonðtÞ ¼ Tr½âyâρ̂ðtÞ� and

NphononðtÞ ¼ Tr½b̂yb̂ρ̂ðtÞ�, respectively, with the trace operation
Trð¼ Þ. We set the cavity Q factor at 107 and the phonon fre-
quency Ω is chosen as 2π ´ 100 MHz. That is, the optomechanical
system accesses the sideband-resolved regime with κ<Ω, high-
lighting the quantum features of the photon–phonon interface.
We numerically study this one-atom optomechanical microlaser.

The dependences of the steady-state photon Nphoton;ss and
phonon Nphonon;ss numbers on the atom–cavity detuning Δ are
shown in Fig. 5a and b, respectively. It is seen that Nphoton;ss

differs much from that of the corresponding common one-atom
microlaser with fixed mirrors (i.e. ξ ¼ 0). Due to κ<Ω, the
transitions between the product states jnphotoni 	 jei 	 jnphononi
and jnphoton þ 1i 	 jgi 	 jn0phononi are well resolved. Here,
jnphotoni and jnphononi denote the Fock (number) states of
photons and phonons, respectively. Consequently, several sub-
maxima of Nphoton;ss are presented in the Nphoton;ss � Δ curve and
the separation between two adjacent submaxima approximates Ω.
For a large Δ, Nphonon;ss decreases strongly because of the
weakened atom–cavity interaction. The Nphonon;ss � Δ curve also
exhibits several submaxima/subminima. Comparing Nphonon;ss

with the average number nthrm of thermal quanta, one obtains the
heating regime with Nphonon;ss >nthrm and the cooling regime with
Nphonon;ss <nthrm (Fig. 5b). The boundary between two regimes is
located on the blue-detuned side of the atomic transition. Tuning
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Fig. 3 Efficiency of the optomechanical coupling. a Energy transfer from
the laser light to the spring–mass oscillator. Initially, the positions of two
mirrors of the optical cavity are fixed and the intracavity field reaches the
steady state. Then, the moveable mirror is free to move. The radiation
pressure FradðtÞ pushes the movable mirror away from the initial position
xðt ¼ 0Þ ¼ 0. As the time goes infinity, t ! 1, the position of the movable
mirror approaches the steady-state displacement xðt ¼ 1Þ ¼ xss. During
this process, the radiation pressure does the work W ¼ R t¼1

t¼0 FradðtÞdxðtÞ.
When the moveable mirror is displaced at xss, the potential energy stored in
the spring–mass oscillator is U. The energy conversion efficiency fromW to
U is given by η ¼ U=W. b Efficiency η vs. the pump rate R for different
cavity Q factors. Here, R0 is the minimum pump threshold. The atom–cavity
detuning is set at Δ ¼ �κ with the cavity loss rate κ.
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Δ allows for exciting/suppressing the mechanical oscillation. Due
to the huge difference between the lifetimes of photons and
phonons, κ � Γ, the intracavity photons are mainly distributed in
the vacuum state jnphoton ¼ 0i while the phonons can be
populated on the high number states (Fig. 5c). The phonon
distribution, especially the probability in jnphonon ¼ 0i, strongly
depends on the detuning Δ (Supplementary Note 4).

We employ the second-order correlation function gð2ÞphotonðτÞ ¼�
âyðtÞâyðt þ τÞâðt þ τÞâðtÞ�=�âyðtÞâðtÞ�2 at the zero-time delay

τ ¼ 0 to characterize the photon statistics. Here, âyðtÞ and âðtÞ are
the photon operators in the Heisenberg picture. As shown in Fig. 5d,
gð2Þphotonðτ ¼ 0Þ is well below unity, indicating the antibunching of
photon emission, and appears an oscillatory behaviour vs. the
atom–cavity detuning Δ due to the well-resolved phonon states (i.e.
κ<Ω). In comparison to the common one-atom microlaser with
fixed mirrors (i.e. ξ ¼ 0), one finds that gð2Þphotonðτ ¼ 0Þ is lower
(higher) than that of the common one-atom microlaser in the
red-detuned (blue-detuned) regime with Δ< 0 (Δ> 0). We also
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compute the second-order correlation function gð2ÞphononðτÞ ¼�
b̂
yðtÞb̂yðt þ τÞb̂ðt þ τÞb̂ðtÞ�=�b̂yðtÞb̂ðtÞ�2 of phonons. It is found

that unlike gð2Þphotonðτ ¼ 0Þ, gð2Þphononðτ ¼ 0Þ is always above unity,
i.e. the bunching of phonons. As illustrated in Fig. 5e,
gð2Þphononðτ ¼ 0Þ exhibits a dispersion behaviour around Δ ¼ 0.
For an ensemble of thermal quanta, the corresponding second-
order correlation function gð2Þthrmðτ ¼ 0Þ is equal to two66. The

function gð2Þphononðτ ¼ 0Þ is lower (higher) than gð2Þthrmðτ ¼ 0Þ
mainly in the red-detuned (blue-detuned) regime with Δ< 0
(Δ> 0). We further examine the Cauchy–Schwarz inequality67

χ � ½gð2Þphoton�phononð0Þ�
2
=gð2Þphotonð0Þgð2Þphononð0Þ< 1 with the cross-

correlation function gð2Þphoton�phononðτÞ ¼
�
âyðtÞb̂yðt þ τÞb̂ðt þ

τÞâðtÞ�=�âyðtÞâðtÞ��b̂yðtÞb̂ðtÞ� between photons and phonons.
Figure 5f shows that χ is larger than unity within the detuning
regime of interest. This violation of the Cauchy–Schwarz
inequality is a concrete measure for the nonclassical
photon–phonon pair generation68,69. The minimum of χ
approaches unity and occurs at the heating–cooling boundary.
Compared to nonclassical correlations for photon pairs70,
generating nonclassical correlations between single photons
and phonons with six orders of magnitude difference in
frequency is more challenging, and here we provide a potential
way. The nonclassical photon–phonon pairs can be used to
remotely control mechanical states and allow for mechanics-
based long-distance quantum communication71.

The first-order correlation functions of photons and phonons
are defined as gð1ÞphotonðτÞ ¼

�
âyðtÞâðt þ τÞ�=�âyðtÞâðtÞ� and

gð1ÞphononðτÞ ¼
�
b̂
yðtÞb̂ðt þ τÞ�=�b̂yðtÞb̂ðtÞ�, respectively. It is seen

from Fig. 6a that gð1ÞphotonðτÞ rapidly decays from unity to zero

while gð1ÞphononðτÞ experiences a long-term damped oscillation
process. That is, the phonons possess a lifetime much longer than
that of the photons. The Fourier transform of gð1ÞphotonðτÞ gives the
spectrum of photons, SphotonðωÞ / F½gð1ÞphotonðτÞ�. We find that the
spectrum of the one-atom optomechanical microlaser is more
complex than that of the corresponding one-atom microlaser
with fixed mirrors (Fig. 6b). Multiple peaks exhibit in SphotonðωÞ
of the one-atom optomechanical microlaser. Two central peaks
result from the atom–cavity coupling while others are located at
ω ¼ ±mΩ with a non-negative integer m and correspond to the
photon–phonon interaction. The appearance of photon–phonon-
interaction-induced spectral peaks is a direct consequence of the
system operating in the resolved-sideband regime κ<Ω. We also
calculated the spectrum SphononðωÞ / F½gð1ÞphononðτÞ� of phonons
and found SphononðωÞ is always single peaked (Fig. 6c). The
linewidth and central frequency of SphononðωÞ depends less on the
atom–cavity detuning Δ (Fig. 6d), that is, SphononðωÞ is mainly
determined by the thermal fluctuations.

Discussion
Besides the frequency shift and optical phase measurements that
are usually employed in passive optomechanics, the mechanical
motion may be also detected by measuring the laser intensity,
spectral broadening, and laser frequency stability in the active
optomechanics. Generally, the intracavity field in the typical
passive optomechanics comes from an external driving beam and
can be adjusted freely by changing the driving power and the

detuning between the optical cavity and the driving beam. In
contrast, the energy source in active optomechanics is the intra-
cavity active medium. The lasing action occurs when the optical
gain exceeds the optical loss. Thus, an active optomechanical
system may act as a light source, whose output can be tuned by
controlling the mechanical motion, in a photonic integrated
circuit30. In addition, the passive optomechanical system may
exhibit a bistable behaviour, i.e. two stable steady-state solutions
and one unstable steady-state solution2. However, the active
optomechanical system has at most one stable steady-state. This
may be ascribed to the extra condition imposed by the lasing
threshold. Moreover, in passive optomechanics, when the cavity
is pumped in a detuned manner, the radiation pressure force
exerted on the mechanical oscillator becomes viscous, i.e.
dynamic backaction. This effect has been applied to suppress the
mechanical motion of the optical cavity, i.e. optomechanical
cooling11. However, the situation becomes more complicated in
macroscopic active optomechanics. Since the intracavity field is
completely determined by the active optomechanical system itself,
it is challenging to fulfil the optomechanical-cooling condition72

Nphoton;ssΔωL � κ. Furthermore, unlike the passive opto-
mechanics, the active operation manner reveals the intrinsic
properties (such as stability and temporal coherence) of the
optomechanical systems.

Up to now, the active optomechanics has been only demon-
strated on the vertical-cavity surface-emitting lasers30–32.
Other laser platforms that are potentially utilized to implement
the active optomechanics include Fabry–Pérot resonators
with neutral atom gases36,73, whispering-gallery-mode
microcavities74–76/droplets77,78 doped with ions and mole-
cules, and fibre microcavities79,80. The one-atom microlaser has
been demonstrated based on the schemes of an atom/ion trap-
ped in a high-finesse optical cavity62,63, a quantum dot
embedded in a nanocavity64, and a nitrogen-vacancy centre in
diamond65. The optomechanical coupling may be induced by
inserting a nanorod/nanowire into the optical cavity53 or
bringing a silicon nitride nanomechanical string close to a sili-
con microdisk/microtoroid81,82. These nano-scaled objects have
an effective mass as small as a few pictograms or even a few
femtograms54 and a mechanical oscillation frequency of the
order of megahertz. The single-photon optomechanical-cou-
pling strength can reach � 2π ´ 1 MHz. Another possible plat-
form is soap bubbles83, which may be further extended to
optomechanical single-molecule detection19. Although here we
only discussed the coupling between one optical cavity mode
and one mechanical mode, the analysis can be extended to the
active optomechanics with multiple mechanical modes27. The
inter-mechanical-mode coupling mediated by light may lead to
nonlinear phenomena.

In order to suppress the influence of thermal fluctuations on
the active optomechanical dynamics, the average number nthrm of
thermal quanta should be sufficiently reduced by means of, for
examples, raising the mechanical oscillation frequency and
operating at cryogenic temperature. An integrated optical and
nanomechanical resonator formed on a microchip can have
a mechanical oscillation frequency Ω of a few gigahertzs15.
Despite the difficulty, a cryogenic temperature below 10 mK is
feasible84,85. When Ω � 2π ´ 1 GHz, nthrm is much less than
unity68, highlighting the quantum nature of phonons and
enabling quantum control of single phonons through single
optical photons. Besides optical modes, mechanical oscillators
also coherently interact with other physical quantum systems,
such as spins86 and superconducting circuits87, allowing for the
mechanics-based quantum information transfer and remote
quantum state control.
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Fig. 6 Photon and phonon spectra of one-atom optomechanical microlaser. a First-order correlation functions gð1ÞphotonðτÞ of intracavity photons and
gð1ÞphononðτÞ of phonons with the atom–cavity detuning Δ ¼ 0. Here, τ denotes with the time delay and Γ is the decay rate of phonons. b Dependence of the
power spectral density SphotonðωÞ of photons on Δ. The mechanical oscillation frequency Ω is chosen as the frequency unit. By comparison, the spectrum of
the common one-atom microlaser with zero optomechanical constant ξ ¼ 0 is also plotted. c Spectrum SphononðωÞ of phonons with Δ ¼ 0. d Dependence of
the linewidth and shift of SphononðωÞ on Δ. Linewidth and shift are in units of the damping rate Γ of the mechanical oscillator. For all curves, the cavity Q
factor is 107 and the pump rate is set at R � 2π ´0:35 MHz.
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Methods
Classical optomechanical system. The dynamics of a macroscopic laser system is
governed by a set of c-number Heisenberg–Langevin equations69

_NeðtÞ ¼ R� γ0eNeðtÞ � iμ½M*ðtÞaðtÞ � a*ðtÞMðtÞ�; ð5aÞ

_NgðtÞ ¼ �γgNgðtÞ þ γeNeðtÞ þ iμ½M*ðtÞaðtÞ � a*ðtÞMðtÞ�; ð5bÞ

_MðtÞ ¼ �γegMðtÞ þ iμ½NeðtÞ � NgðtÞ�aðtÞ þ FMðtÞ; ð5cÞ

_aðtÞ ¼ ½�κ=2� iΔ� iδðtÞ�aðtÞ � iμMðtÞ þ FaðtÞ: ð5dÞ
Here, Nu¼e;gðtÞ denotes the population of atoms in the ju ¼ e; gi state, MðtÞ
accounts for the macroscopic polarization of atoms, and δðtÞ corresponds to
the mechanical-displacement-induced detuning. In above equations, we have
only included the Langevin force FMðtÞ associated with MðtÞ and omitted the
Langevin forces acting on Nu¼e;gðtÞ since the laser spectral broadening arises
predominantly from the fluctuations in MðtÞ. The noise FMðtÞ has the corre-
lation functions hFMðtÞi ¼ 0, hFMðtÞFMðt0Þi ¼ 2iμhMðtÞaðtÞiδðt � t0Þ, and
hF*

MðtÞFMðt0Þi ¼ ½ð2γeg � γ0eÞhNeðtÞi þ R�δðt � t0Þ. Further, the Langevin force
FaðtÞ acting on the optical cavity is negligible under the assumption of low
temperature T .

The mechanical displacement xðtÞ is driven by the radiation pressure force
FradðtÞ ¼ �_ξNphotonðtÞ with the intracavity photon number NphotonðtÞ ¼ jaðtÞj2.
The equation of motion of the mechanical-displacement-induced detuning δðtÞ ¼
ξxðtÞ is given by

€δðtÞ þ Γ _δðtÞ þΩ2δðtÞ ¼ ξ½FradðtÞ þ FthrmðtÞ þ FxtraðtÞ�=meff : ð6Þ
In above equation, the thermal force noise FthrmðtÞ ¼ ð_ ffiffiffi

Γ
p

=xZPFÞf thrmðtÞ acting
on the movable mirror has been included. The white noise f thrmðtÞ has the
correlation functions

�
f thrmðtÞ

� ¼ 0 and
�
f thrmðtÞf thrmðt0Þ

� ¼ nthrmδðt � t0Þ with
the average number nthrm of thermal quanta. The extra environmental force FxtraðtÞ
is introduced to include all other noise sources such as ground vibrations. For the
macroscopic optomechanics, we choose the frequency Ω ¼ 2π ´ 10 MHz and
Qm ¼ 102 of the mechanical oscillator and the environmental temperature T ¼ 1
K with nthrm � 2083. The active optomechanics can be investigated by self-
consistently solving Eqs. (5) and (6).

Setting _Nu¼e;gðtÞ ¼ _MðtÞ ¼ _AðtÞ ¼ €δðtÞ ¼ _δðtÞ ¼ 0 and dropping all Langevin
noises, one obtains the steady-state solutions Nphoton;ss � hNphotonðt ! 1Þi and
δss � hδðt ! 1Þi from Eqs. (5) and (6). The stability of the derived steady-state
solutions can be examined by performing the linear analysis. We write each
variable as a sum of its steady-state value and a small fluctuation, e.g.
NeðtÞ ¼ Ne;ss þ ϵNe

ðtÞ. Then, Eqs. (5) and (6) are reduced to a matrix linear

differential equation _ϵ ¼ Lϵ with ϵ ¼ ðϵNe
¼ ϵδÞT (Supplementary Note 2). A

stable steady-state solution requires that the real parts of all eigenvalues of the 7 ´ 7
matrix L are all negative.

One-atom optomechanical microlaser. The active optomechanical system with
only one atom placed inside the optical cavity can be described by the Hamiltonian

Ĥ=_ ¼ ωCâ
yâþ ωA

2
ðσ̂ee � σ̂ggÞ þΩb̂

y
b̂þ μðσ̂egâþ âyσ̂geÞ þ δZPFâ

yâðb̂þ b̂
yÞ;
ð7Þ

with the photon creation (ây) and annihilation (â) operators and the phonon

creation (b̂
y
) and annihilation (b̂) operators of the quantum-mechanical oscillator.

The population operators of the atom are given by σ̂ee ¼ jeihej and σ̂gg ¼ jgihgj.
The atomic lowering operator is defined as σ̂ge ¼ jgihej and the raising operator

takes the form σ̂eg ¼ jeihgj. The first three terms in Ĥ denote the free energies of

photons, atom, and phonons, respectively. The fourth term in Ĥ corresponds to the
atom–cavity interaction while the last them in Ĥ gives the optomechanical
coupling between photons and phonons. The Hilbert space is spanned by
fjnphotoni 	 jui 	 jnphononi; nphoton; nphonon 2 Zþ

0 ; u ¼ e; g; sg with the photon
number state jnphotoni, the atomic state jui, and the phonon number state jnphononi.
Here, an extra atomic state jsi is introduced to model the pumping process of the
atom88. The symbol Zþ

0 denotes the non-negative integers. The dynamics of the
one-atom optomechanical system follows the Lindblad master equation89

d
dt ρ̂ ¼ �i½Ĥ=_; ρ̂� þ κ

2D½â�ρ̂þ Γ
2 ðnthrm þ 1ÞD½b̂�ρ̂þ Γ

2 nthrmD½b̂
y�ρ̂

þ R
2D½σ̂se�ρ̂þ

ðγ0e�γeÞ
2 D½σ̂es�ρ̂þ γe

2 D½σ̂eg�ρ̂þ
γg
2 D½σ̂gs�ρ̂;

ð8Þ

where ρ̂ is the system’s density operator and the dissipative term, for example,
D½â�ρ̂ ¼ 2âρ̂ây � âyâρ̂� ρ̂âyâ denotes the photons escaping from the optical
cavity. The photon and phonon numbers are given by NphotonðtÞ ¼

�
âyðtÞâðtÞ� ¼

Tr½âyâρ̂ðtÞ� and NphononðtÞ ¼
�
b̂
yðtÞb̂ðtÞ� ¼ Tr½b̂yb̂ρ̂ðtÞ�, respectively. When the

pump laser is strong enough, the pump rate R approximates the half of the decay

rate of the atom from (5p67p) 2P3/2 to jei, i.e. R � 2π ´ 0:35 MHz. For the
microscopic optomechanics, in order to carry out the numerical simulation we
choose the mechanical frequency Ω ¼ 2π ´ 100 MHz and Qm ¼ 102 of the
mechanical oscillator and the environmental temperature56,57 T ¼ 10 mK with the
average number nthrm � 1:6 of thermal quanta. The master Eq. (8) may be solved
by using the diagonalization method89. The two-time correlation function�
ÂðtÞB̂ðt þ τÞ� between two arbitrary operators Â and B̂ can be calculated by using
the quantum regression theorem66.

Data availability
All data supporting the findings of this study are available from the corresponding
authors upon reasonable request.

Code availability
The computer code to simulate the dynamics is available from the corresponding authors
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