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Abstract 

 

Global health is becoming increasingly reliant on our understanding and 

management of wildlife disease. An estimated 60% of emerging infectious 

diseases in humans are zoonotic and with human-wildlife interactions set to 

increase as populations rise and we expand further into wild habitats there is 

pressure to seek modelling frameworks that enable a deeper understanding of 

natural systems.  

Survival and mortality are fundamental parameters of interest when 

investigating the impact of disease with far reaching implications for species 

conservation, management and control. Survival analysis has traditionally been 

dominated by non- and semi-parametric methods but these can sometimes 

miss subtle yet important dynamics. Survival and mortality trajectory analysis 

can alleviate some of these problems by fitting fully parametric functions that 

describe lifespan patterns of mortality and survival. In the first part of this thesis 

we investigate the use of survival and mortality trajectories in epidemiology and 

uncover novel patterns of age-, sex- and infection-specific mortality in a wild 

population of European badgers (Meles meles) naturally infected with 

Mycobacterium bovis, the causative agent of bovine tuberculosis (bTB). 

Limitations of dedicated software packages to conduct such analyses led us to 

investigate alternative methods to build models from first principles and we 

found the NIMBLE package to offer an attractive blend of flexibility and speed. 

We create a novel parameterisation of the Siler model to enable more flexible 

model specification but encounter the common problem of competing models 

having comparable fits to the data. Multi-model inference approaches can 

alleviate some of these issues but require efficient methods to carry out model 

comparisons; we present an approach based on the estimation of the marginal 

likelihood through importance sampling and demonstrate its application through 

a series of simulation- and case-studies. The approach works well for both 

census and capture-mark-recapture (CMR) data, both of which are common 

within ecological research, but we uncover challenges in recording and 

modelling early life mortality dynamics that occur as a result of the CMR 
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sampling process. The final part of the thesis looks at another alternative 

approach for model comparison that doesn’t require direct estimation of the 

marginal likelihood, Reversible Jump Markov Chain Monte Carlo (RJMCMC), 

which is particularly efficient when models to be compared are nested and the 

problem can reduce to one of variable selection. In the final chapter we carry 

out an investigation of age-, sex-, infection- and inbreeding-specific variation in 

survival and mortality in a wild population of European badgers naturally 

infected with bovine Tuberculosis. Using the methods and knowledge presented 

through the earlier chapters of this thesis we uncover patterns of mortality 

consistent with both the mutation accumulation and antagonistic pleiotropy 

theories of senescence but most interestingly uncover antagonistic pleiotropic 

effects of inbreeding on age-specific mortality in a wild population for the first 

time. 

This thesis provides a number of straightforward approaches to Bayesian 

survival analysis that are widely applicable to ecological research and can offer 

greater insight and uncover subtle patterns of survival and mortality that 

traditional methods can overlook. Our investigation into the epidemiology of 

bovine Tuberculosis and in particular the effects of inbreeding have far-reaching 

implications for the control of this disease. This research can also inform future 

conservation efforts and management strategies as all species are likely to be 

at increasing risk of inbreeding in an age of dramatic global change, rapid 

habitat loss and isolation. 
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Chapter 1: Inbreeding, ageing and disease: a challenge for wildlife 

disease epidemiology 

 

Wildlife disease epidemiology 

Wildlife disease is increasingly recognised as being of critical importance to 

global health. The impacts are rarely confined to the conservation and 

management of a particular species (Blanchong et al., 2016) because many of 

the pathogens involved have important implications for the health of humans 

and domestic animals (Daszak et al., 2000; Morens & Fauci, 2013). An 

estimated 60% of emerging infectious diseases in humans are zoonotic; the 

majority with an identified wildlife reservoir (Jones et al., 2008). Future levels of 

human-nature interaction are set to rise, driven by population increase, 

environmental encroachment and climate change, all of which will likely 

accelerate the emergence of future zoonotic diseases (Hassell et al., 2017). It is 

widely accepted that ignoring wildlife hosts of a shared infectious disease will 

render any potential eradication program ineffective (Martin et al., 2011). 

Infectious diseases rank among the most important and common environmental 

challenges faced by both species and individual animals (Daszak et al., 2001; 

Robinson et al., 2010; Weatherall, 2003). Governments and policy-makers are 

faced with the challenge of minimising the knock-on economic and health 

impacts of wildlife disease and to be successful requires an understanding of 

the complete system including routes of transmission and infection combined 

with knowledge of how wildlife populations are affected (McKnight et al., 2017). 

For these reasons there has been an increase in the number of studies focused 

on epidemiological modelling, with developments in both life-course (Ben-

Shlomo & Kuh, 2002; Mishra et al., 2015) and multi-level hierarchical models 

(Gomes et al., 2014; Lanzas & Chen, 2015).  

Mathematical and statistical modelling of infectious diseases allows for 

exploration of the variability, interactions and complexities of disease systems, 

and has contributed to improved understanding and changes in policy and 

management (Lanzas & Chen, 2015). Typically such models focus on specific 

aspects of population or individual level health such as mortality or fecundity to 
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assess disease impact, yet accurate modelling of such complex systems in wild 

populations remains an ongoing challenge; limited data availability, incomplete 

capture histories and substantial heterogeneity from various sources are all 

typical issues associated with wildlife disease research.  Much of the recent 

research in wildlife disease epidemiology has focused on identifying sources of 

variation both within and among wild populations to better target management 

strategies. Modelling wildlife disease systems obliges researchers to make 

decisions about model complexity which satisfy both academic scrutiny and 

managers’ desire to be suitably system-specific (Joseph et al., 2013). Bovine 

tuberculosis is a globally important infectious disease with economic and health 

impacts for humans, livestock and wildlife. In the United Kingdom the European 

badger (Meles meles) is believed to be the primary wild maintenance host for 

the disease and is involved in the persistence of the disease in cattle 

populations (Donnelly et al., 2006). This disease system has been the subject of 

extensive research (for a review see Gallagher & Clifton-Hadley, 2000) and 

highlights the complexities involved with wild disease systems such as the 

sparse nature and quality of the data (often incomplete or censored), diagnostic 

uncertainty and the multiple sources of heterogeneity common in the natural 

world (Stallknecht, 2007). 

Success in the modelling of disease systems in wild populations requires an 

acceptance that the natural world is essentially a stochastic system 

(Heesterbeek et al., 2015) but researchers should seek explanations of 

observed variation to better understand complex disease interactions. Here we 

review the literature on three major sources of variation observed in infectious 

disease epidemiological research: sex, inbreeding and ageing; and present 

current modelling approaches that can deal with the complexity of such 

systems. 

Sex Variation & Disease: 

In humans, sex difference in lifespan is well documented with females 

displaying lower mortality rates throughout life (Austad, 2011). This is a 

common phenomenon across other mammalian and avian species (e.g. 

Badgers - Rogers et al., 1997; Red deer - Loison et al., 1999; Cotton-tail rabbits 

- Bond et al., 2001; Common grackle - Howe, 1977) and explanatory 
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hypotheses focus on sexual-selection theory and the increased cost that males 

incur for attempting to ensure reproductive success (Moore & Wilson, 2002). 

For example, Kraus et al. (2008) demonstrated how increased risk-taking 

behaviours and biased movement patterns of male grey mouse lemurs 

(Microcebus murinus) led to a reduction in survival; Owen-Smith (1993) found 

an increased rate of male predation in Greater kudos (Tragelaphus 

strepsiceros); and Roberts et al. (2004) highlighted the immunosuppressant 

effects of testosterone which leaves males more susceptible to infectious 

diseases in reptiles (also in Hau, 2007). Wilkinson et al. (2000) identified higher 

mortality rates in male European badgers and demonstrated an increase in 

mortality as a result of infection with bovine tuberculosis that was stronger in 

males than females suggesting that there may be sex differences in the mode 

of disease spread and their ability to cope. This study highlights some of the 

issues associated with wildlife disease research in that they struggled with small 

sample sizes in certain categories of disease state and failed to mention the 

poor sensitivity of the diagnostic tests and subsequent impact of false-negative 

badgers. Life-table analysis was used to produce fixed mortality rates that were 

assumed to be time independent, with any disease impact being simply viewed 

as an elevation of these static rates at particular life stages. An increase in the 

number of epidemiological studies looking at sex-related differences in host-

pathogen interactions in humans resulted in two fundamental hypotheses being 

used to explain the often male-biased disease incidence: the physiological 

hypothesis which points at differences in sex hormones and genetic make-up; 

and the behavioural hypothesis which suggests sex differences in exposure 

(Brabin, 1992).  A meta-analysis of ten major pathogens in humans showed that 

physiological differences was the primary driver of sex differences with 

differences in behaviour playing a lesser role (Guerra-Silveira & Abad-Franch, 

2013). 

Similar investigations have been carried out in both laboratory and wild animal 

populations looking at specific pathogens and the drivers of any observed sex 

differences. McDonald et al. (2014) inferred the drivers of sex-specific variation 

in disease response by using mortality trajectories which allow for age-specific 

effects. In doing so they identified a faster rate of increase in mortality, post-
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infection, in male badgers from the point of infection suggesting differences in 

immunological responses between the sexes. An alternative explanation 

includes the possibility that infection modifies male host behaviour, potentially 

increasing aggression which could then explain the increased rate of bite 

wounding in infected male badgers (Jenkins et al., 2012) which in turn affects 

survival. Often disease prevalence shows no pattern of sex variation (e.g. devil 

facial tumour disease in Tasmanian devils (Sarcophilus harrisii) - Lachish et al., 

2009; chronic wasting disease in White-tailed Deer (Odocoileus virginianus) - 

Samuel & Storm, 2016) with male-female differences only becoming apparent 

after the point of infection. The subsequently recorded disease effects are often 

then categorised into different age classes (i.e. juvenile/adult) which can then 

be compared against known physiological changes in an attempt to reveal the 

driving forces behind the observed phenomena. The importance of age-specific 

effects have been highlighted across a variety of different wild species (e.g. 

Hagen et al., 2007; Loison, Festa-Bianchet, et al., 1999) but the common 

approach in wildlife disease epidemiology is to categorise age (e.g. Samuel & 

Storm, 2016) which often fails to capture the complexities of potential age- and 

sex-specific impacts. 

Inbreeding depression & disease: 

The effects of inbreeding on the demography and persistence of wild 

populations has often been questioned, and evidence for inbreeding effects in 

this field is scarce (Keller & Waller, 2002). Wild populations are often assumed 

to be outbred with high genetic variation creating likely effective immune 

responses (Abolins et al., 2011) and a lack of inbreeding depression (ID). ID 

refers to a decline in fitness of offspring of related individuals (Charlesworth & 

Charlesworth, 1987), usually expressed in comparison to outbred individuals.  It 

was long believed that inbreeding and ID would not be evident in wild 

populations as a result of the many inbreeding avoidance mechanisms that 

have been identified (Pusey & Wolf, 1996), and because populations that were 

subject to strong inbreeding could have purged deleterious mutations through 

selection (Robinson et al., 2018). Recent research has shown inbreeding and 

ID to be more common than previously thought, with many wild populations 

exhibiting genome-wide homozygosity displaying exaggerated age-dependent 
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mortality trajectories (Keller et al., 2008; Swindell & Bouzat, 2006). Studies 

comparing inbred and outbred white-footed mice (Peromyscus leucopus 

nooeboracensis) demonstrated significantly lower survival for inbred individuals 

and found that the difference between inbred and outbred individuals was far 

greater when released into the wild compared to those kept in laboratory 

conditions (Jiménez et al., 1994). Evidence remains contradictory, with some 

wild inbred populations showing relatively little sign of ID (e.g. Bilde et al., 2005; 

Kalinowski & Hedrick, 1998) which may suggest that animals are able to 

overcome the deleterious genetic effects before they manifest on a phenotypic 

level through behavioural or physiological means. For example, a study on 

burying beetles (Nicrophorus vespilloides) found evidence of behavioural 

buffering by showing that inbred males increased their competitive effort for a 

reproductive opportunity. They were more risk taking and willing to suffer 

greater injury whilst defending their brood than their outbred counterparts, 

resulting in no difference in the number of grand offspring between the two 

groups (Richardson & Smiseth, 2017). The possible explanations for this 

behaviour are time/life-stage dependent, revolving around the idea that inbred 

individuals are more likely to invest in current reproductive opportunities as the 

likelihood of future opportunities is diminished through potentially worsening 

future health. However there is some evidence to suggest that inbred 

individuals that survive beyond a period of increased juvenile mortality may be 

fitter than outbred individuals (Lacy et al., 1993). Although this may in part be 

due to knock-on impacts of inbred individuals on their outbred counterparts: in 

the case of the burying beetles researchers found outbred individuals had to 

expend more energy to repel inbred intruders with detrimental effects on its own 

brood’s survival.  

There is a high degree of variation in the magnitude of ID both within and 

among populations and although it is often reported as being experienced most 

strongly in juvenile life stages, there is evidence to suggest that deleterious 

effects for adults can be just as severe but harder to detect (Huisman et al., 

2016). The lack of consensus within the research into ID may result from the 

different measures of inbreeding used: traditional pedigree-based coefficients 

are an estimate of genome-wide homozygosity from identity by descent 
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information but are generally not available for wild populations as pedigrees of 

sufficient detail are difficult to construct. This will often result in the exclusion of 

large cohorts of individuals which may bias results. A more common approach 

in wild populations is using average homozygosity at certain genetic markers; 

this approach is often constrained to limited microsatellite data which can 

produce estimates of marker homozygosity which are poorly correlated with the 

more traditional genome-wide measures (Slate et al., 2004) and any 

correlations with phenotypic traits are typically very small. Recent advances in 

genome-wide high density marker data has improved detection of ID across life 

stages by reducing much of the error variance inherent when only small 

numbers of marker loci are analysed (Hoffman et al., 2014). Research looking 

at ID in adult life-stages is relatively rare mainly due to the difficulty of 

monitoring wild populations and the evidence is far from conclusive: for 

example, no evidence of ID in mandrills (Mandrillus sphinx) (Charpentier et al., 

2006) yet clear ID present in red-cockaded Woodpeckers (Picoides borealis) (S. 

J. Daniels & Walters, 2000) for post-juvenile life-history stages. Recent 

arguments suggest that ID research should consider complete life-histories with 

greater effect sizes being correlated with the inclusion of an increasing number 

of life-stages resulting in underestimates when research is limited to a specific 

life-stage (Szulkin et al., 2007).  

The inconsistent effects of inbreeding and ID across different life-stages 

highlights the importance of considering potential age-specific disease impacts. 

Studies looking at the relationship between age, inbreeding and disease in wild 

populations are rare (Benton et al., 2018) but this is likely due to problems 

associated with data collection and the construction of inbreeding measures 

rather than a lack of relationship. With recent advances in statistical and 

genomic methods these challenges are being overcome revealing evidence for 

interactions between sex, age, inbreeding and disease in wild badgers (Benton 

et al., 2018). 

Age effects 

Senescence (the deterioration of physiological function with increasing age) is 

an ongoing evolutionary problem with no universally accepted theory for its 

explanation. The most established theories are the mutation accumulation (MA) 
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(Medawar, 1957), disposable soma (DS) (Kirkwood, 1977) and antagonistic 

pleiotropy (AP) (Williams, 1957) theories. MA and AP both rely on the declining 

force of selection with age: MA suggests that any deleterious mutations that 

have effects felt later in life will be harder for natural selection to eliminate 

whereas AP believes that late life damaging mutations could have been 

favoured in early life if they were initially advantageous. DS is sometimes 

considered a special case of AP but suggests that organisms have to trade-off 

between committing energy to reproduction or investing in maintenance of their 

somas. Senescence is a complex problem and it can affect a variety of different 

traits including fecundity (Reid et al., 2003), behaviour (Chen et al., 2005) and 

physiology (Angelier et al., 2007) yet most commonly it refers to an increase in 

mortality with age known as actuarial senescence (Ricklefs, 2008). 

Most non-human studies assessing senescence hypotheses have involved fruit 

flies (Drosophila) and it was long believed that individuals in wild populations did 

not senesce as they would succumb to environmental pressures (e.g. predation, 

starvation) long before any age-related decline in survival would manifest. 

However, the recent emergence of several exemplary, long-term demographic 

studies, along with some statistical and theoretical advances has revealed 

patterns of actuarial senescence in a variety of wild populations (e.g. Beirne et 

al., 2016; Nussey et al., 2013) and shown previous conclusions to be specious. 

Despite many studies failing to detect senescence in wild populations there is 

now ample evidence to suggest that it exists for a variety of species with 

differing life-histories (see Nussey et al. (2008) for a summary). This has 

prompted an increase in research focused upon understanding the high degree 

of heterogeneity in longevity and ageing rates which is observed between and 

among species in the wild. For example, a study into the survival of female red-

deer used measures of recent and longer-term reproductive effort as individual- 

and time-dependent covariates to model survival (Moyes et al., 2006). Although 

environmental covariates explained a large amount of the variance the inclusion 

of previous reproductive effort significantly improved the model. Successful 

reproduction in repeated seasons had previously been shown to have a 

cumulative and detrimental effect on a variety of health measures (Boyd et al., 

1995; Hanssen et al., 2003), but in this study long-term reproductive effort 
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varied in its effect on survival between different age categories. This study 

highlights the need to include time-varying individual level covariates to 

accurately model and understand complex systems. Although studies focused 

on age related disease effects in wild populations are relatively common 

(e.g.Beirne et al., 2014; Calvete et al., 2004; Childs et al., 1989; McDonald et 

al., 2014) very few include age as a continuous variable and in doing so risk 

losing valuable information. 

Modelling complex disease systems 

Modelling has been used extensively in epidemiological studies to focus on a 

variety of different aspects such as disease propagation (Keeling & Rohani, 

2011), transmission (Craft, 2015), host survival (McDonald et al., 2014) or to 

inform management strategies (Levin et al., 2011). Wildlife systems present a 

unique set of challenges to statisticians and ecologists which are often rooted in 

the difficulties associated with monitoring wild populations. Any model is a 

simplified representation of reality (Maunder, 2004) yet to avoid misleading 

inferences requires an appreciation of environmental and/or demographic 

stochasticity, differential susceptibility to infection, individual level covariates 

and the potential for non-constant mortality. Observational data are commonly 

sourced from long-term capture-mark-recapture (CMR) monitoring projects 

which rely on accurate identification of individuals within a given population. The 

benefits of applying CMR methods to epidemiological studies are well reported 

(e.g. Chang et al., 1995) with the aim being to repeatedly capture and record 

individuals’ disease status along with demographic information to build a picture 

of species survival and disease effects. As a result of imperfect observation 

(which is almost unavoidable in the collection of ecological data) most modern 

statistical methods within this field use a hierarchical structure to separate a 

latent state from the observed data. This state-space model formulation can 

then account for the ecological process being partially hidden (King, 2014) (i.e. 

when individuals are not recaptured). Epidemiological models focus on 

calculating survival rates from CMR data and are often developed from the 

Cormack-Jolly-Seber (CJS) (Cormack, 1964; Jolly, 1965; Seber, 1965) structure 

which defines the probability of capture and survival separately. CJS models 

make a number of assumptions: every marked animal in the population at 
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sampling period 𝑖 has the same probability 𝑝௜ of being captured; every marked 

animal present in the population at sampling period 𝑖 has the same probability 

𝜑௜ of survival until sampling period 𝑖 ൅ 1; marks are neither lost nor overlooked 

and always recorded correctly; sampling periods are instantaneous and 

recaptured individuals are released immediately; all emigration from the 

sampling area is permanent; the fate of each animal with respect to capture and 

survival probability is independent of the fate of any other animal. Violations can 

bias estimates of survival (e.g. Smout et al., 2011) but developments of the CJS 

modeling framework have overcome some of these assumptions. Of particular 

relevance here, capture and survival probabilities can vary as functions of 

environmental and individual covariates (for a review see Pollock, 2002) which 

has led to the emergence of two main approaches: Generalised Linear Models 

(GLMs) and multi-state models (MS) (for a comparison see Bonner & Schwarz, 

2006). Both model structures can incorporate the effects of continuous 

covariates that are both individual- and time-dependent and each can be 

implemented in a frequentist (maximum likelihood) or Bayesian framework.  

The nature and complexity of wild populations has promoted Bayesian methods 

that more readily integrate multiple sources of data and directly model 

uncertainties in the values of model parameters (Heesterbeek et al., 2015). 

Bayesian statistical inference explicitly encapsulates our uncertainty about the 

values of parameters-of-interest through the use of probability distributions. If 

we have some data that we wish to fit a model to, then we begin by specifying a 

prior distribution, 𝑓ሺ𝜃ሻ for the parameters 𝜃, which captures our uncertainty 

about their values before we fit the model to the current data 𝑦. Then we 

calculate the posterior distribution, 𝑓ሺ𝜃|𝑦ሻ for the parameters, where: 

𝑓ሺ θ ∣∣ 𝑦 ሻ ∝ 𝑓ሺ 𝑦 ∣∣ θ ሻ𝑓ሺθሻ. 

The posterior then represents how much our prior beliefs change in the 

presence of the observed data, where the information about the parameters 

contained by the data is captured through the likelihood function 𝑓ሺ𝑦|𝜃ሻ. In this 

way, Bayesian analysis provides a probabilistic representation of our 

uncertainty in the true values of the model parameters. Further support and use 

of Bayesian approaches has been driven by statistical advances and 
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implementation of algorithms such as Markov chain Monte Carlo (MCMC) 

(Diaconis, 2009; Kass et al., 1997), which produce empirical estimates of the 

posterior distribution using random sampling. Within wildlife disease 

epidemiology Bayesian methods have come to the fore as they can provide a 

probabilistic distribution for unobserved infection statuses (Buzdugan et al., 

2016), which can improve lifetime tracking of disease status whilst mediating an 

underestimation of uncertainty into the analysis (McDonald et al., 2018). For 

example, Olive et al. (2017) reconstructed the transmission of Rift Valley Fever 

in Madagascar using Bayesian modelling to estimate the force-of-infection. The 

nature of this system required links to be made between the results of 

serological tests, the true serological status of each individual and the annual 

force of infection; the combination of uncertainties (in terms of true infection 

status) and the hierarchical structure is well suited to the Bayesian framework. 

Pradel (2005) extended the MS framework presenting multi-event models 

based on hidden Markov chains (MacDonald & Zucchini, 1997), which consider 

imperfect state classification when an individual is captured. Conn & Cooch 

(2009) used this approach to study the dynamics of conjunctivitis in the house 

finch (Carpodacus mexicanus) and demonstrated that the inclusion of data with 

unknown disease states dramatically improved parameter estimates. The influx 

of studies using Bayesian approaches has led to comparisons of the different 

methodologies and increasing discussion of the limitations of p values and 

advantages of Bayesian hypothesis testing (for a review see Marden, 2001) 

particularly in wildlife disease epidemiology.  For example,  McDonald et al. 

(2014) used Bayesian survival trajectory analysis to infer the drivers of sex-

specific epidemiology of bovine tuberculosis in a wild population of European 

badgers showing that sex differences were linked to a greater increase in male 

mortality following infection.  

Many studies have demonstrated the importance of including individual 

heterogeneity (Lloyd-Smith et al., 2005; VanderWaal & Ezenwa, 2016) within 

model structures. Although achieved in a variety of ways, the simplicity of 

adding random effects (that can be individual- and time-varying) in the Bayesian 

framework is often the preferred approach. This is because all parameters are 

treated as random variables in a Bayesian model, and thus there is no 
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theoretical difference between a fixed and random effect in the Bayesian 

framework, it’s simply that the latter has parameters that are dependent on 

other parameters. This is referred to as a Bayesian hierarchical model – in this 

way it is possible to account for all sorts of dependence structures between 

parameters, and the uncertainties involved are treated in a straightforward 

manner. The ease of modelling time-varying covariates at the individual-level in 

MS models has led to their predominant use in studies of infectious diseases, 

as it intuitively allows modelling of time-specific progression through different 

disease states. The emergence and subsequent development of a number of 

software packages has simplified the process of implementation for many 

ecologists and enabled increasingly complex dynamics to be modelled; for 

example, in a maximum-likelihood framework through programme MARK (White 

& Burnham, 1999) and software such as E-SURGE (Choquet et al., 2009), and 

for Bayesian models in WinBUGS (Lunn et al., 2000; Thomas et al., 1992), 

JAGS (Plummer, 2003), NIMBLE (de Valpine et al., 2017) or Stan (Carpenter et 

al., 2017) and software such as BaSTA (Colchero et al., 2012). The demand for 

ever more flexible models to deal with increasingly complex systems requires 

ecologists to clarify hypotheses and determine when greater complexity is 

appropriate (Bailey et al., 2014). Over recent years there has been increasing 

interest in studying disease impacts over complete life courses (Hall et al., 

2002) with efforts to include age-specific effects. Commonly this is completed 

using age categories (e.g. juvenile vs adult) rather than using age as a 

continuous variable (e.g. Graham et al., 2013) but this risks masking subtle but 

potentially important mortality dynamics and can lead to potentially erroneous 

inference. The decision over which approach should be taken will depend on 

the question being asked, the study system and the quality of the data. Broad 

comparisons between adults and juveniles may suffice when researchers are 

less concerned about age-specific effects that occur within a given age class 

such as senescence. Collecting longitudinal data that allows detailed age-

specific effects to be investigated is costly and can require many years (for slow 

lived species) which will often result in researchers being forced to crudely 

group information into age classes to retain statistical power. It is important to 

not overlook the potential drawbacks of using discrete age classes; Colchero et 
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al. (2018) demonstrated that categorisation can produce markedly different age-

specific demographic rates and in the 24 species they studied assuming 

constant adult mortality was never appropriate. Mortality trajectory analysis 

considers rates of mortality throughout the entire lifespan, but until recently has 

been difficult to implement in wild populations. It can provide additional 

understanding of complex disease systems and identify age-specific effects but 

requires appropriate selection of a particular mortality function (see following 

section for examples and explanation). The implementation of this approach 

has been made easier with the development of software BaSTA (Colchero et 

al., 2012) but as with many packages its application is limited by its flexibility to 

accommodate the intricacies of specific systems. 

Pressure from policy makers for more detailed understanding of complex 

epidemiological systems has elevated the importance of this area of research – 

to help solve these problems we need to better integrate data from a variety of 

sources. Integrated population models (IPMs) are a recently developed 

approach used for the estimation of population trends and demographic 

parameters which combine multiple independent sources of data into a single 

statistical framework (Besbeas et al., 2002; Tempel et al., 2014). They can offer 

increased parameter precision and potentially improve conservation modelling 

(Fitsum et al., 2010) but so far their use in ‘real-world’ situations has been rare 

(but see Tempel et al., 2014). The next step for wildlife disease epidemiological 

research is to use IPM style frameworks that can utilise data and analysis from 

a range of different sources to build models of disease systems that include all 

sources of possible variation; this approach has the potential to narrow the 

possibility/expectation gap between academic researchers and disease 

managers. 

Commonly used mortality functions 

A range of different functions have been used to model mortality; the simplest of 

which is the exponential model (Cox & Oakes, 1984) which describes constant 

mortality throughout life. The Gompertz model (Gompertz, 1825) is arguably the 

most commonly used function and although developed to describe human 

mortality has been used extensively across a wide variety of species. It uses 2 



25 

 

parameters and describes mortality as increasing exponentially (rate = 𝑏ଵ) from 

an initial level (𝑏଴), with 𝑏ଵ often being interpreted biologically as the 

senescence parameter. The British actuary William Makeham felt that the 

Gompertz model could be improved by partitioning causes of death into age 

dependent (intrinsic) and age independent (extrinsic) sources through the 

addition of a single parameter: the Makeham term (which represents age-

independent mortality) leading to the Gompertz-Makeham mortality model 

(Makeham, 1867). The partitioning of mortality was further developed by William 

Siler who developed the competing risks model for animal mortality by splitting 

lifetime mortality into 3 competing functions (Siler, 1979). The first (a declining 

Gompertz) describes an early life decline in mortality from birth through to the 

second: a baseline level which describes adult mortality (the Makeham term) 

before the third: a senescent increase in mortality dominates in later life (the 

standard Gompertz function) – put together this model describes the classic 

‘bathtub’ shape. At a similar time Pinder et al. (1978) suggested using the 2 

parameter Weibull distribution to describe survivorship data. The shape 

parameter controls the rate of change of the age-specific mortality rate and 

together with the scale parameter it allows a wide variety of shapes to be 

modelled and compared. All of these functions have faced some criticism for not 

accommodating individual heterogeneity which led to the development of the 

logistic model (Vaupel et al., 1979) which uses a specific scaling parameter 

which then allows for heterogeneity in frailty to be modelled, this is often 

categorised by a levelling of mortality rates in very late life. Although many other 

models have been used to describe survivorship data those outlined here are 

the most common and will constitute those used in this thesis. 

Implications and future research 

Modelling wildlife disease has informed management policy in a variety of 

different contexts across the globe (e.g. rabies - for a review see Sterner & 

Smith, 2006; chronic wasting disease - Wasserberg et al., 2009; bovine 

tuberculosis - Stringer & Linklater, 2014) and remains an ongoing challenge 

with the understanding that human, animal and ecosystem health are 

intrinsically linked with regard to emerging zoonotic disease (Alexander et al., 

2012). Accurate modelling of infectious disease allows for the identification and 
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evaluation of management strategies which can broadly be grouped by their 

overall aim: prevention of disease transmission to humans or livestock, or 

conservation of host species and research. In the United States managers 

attempted to eradicate chronic wasting disease in white-tailed deer through 

culling and an extension of the hunting season, whilst still contending with 

uncertainties in certain aspects of the disease system. After five years 

prevalence of the disease was still on the increase (Heisey et al., 2010) 

confirming previous models of the system to be inadequate and highlighting the 

need for a more complete understanding of the system whilst promoting 

evolution of the epidemiological models. 

Here we have identified and reviewed three major sources of variation in 

response to infectious diseases in wild populations. Senescence and inbreeding 

depression have historically been thought of as redundant topics when 

investigating species in the wild, yet recent research has revealed that they 

cannot be ignored. Modelling wildlife disease has seen many advances in 

recent years and consistently identifies age effects as a notable source of 

variation yet the majority of studies continue to model age in discrete categories 

which we believe results in information loss and potentially biased inferences. 

There is an increasing body of evidence for links between inbreeding and 

ageing, inbreeding and disease and sex and disease but very few studies have 

considered the interaction between age, sex, inbreeding and disease 

particularly in a natural population. The monitoring of a population of wild 

badgers naturally infected with bovine Tuberculosis in Woodchester Park, 

Gloucestershire provides an exceptional longitudinal dataset (1975–present) 

describing a wild reservoir of an economically important zoonotic disease. This 

dataset provides the unique opportunity to investigate age- and sex-specific 

effects of inbreeding on an infectious disease in a wild population to better 

inform management strategies whilst advancing epidemiological modelling 

approaches. 
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Aims and structure of thesis 

In this thesis we explore and develop a number of innovative modelling 

frameworks to conduct Bayesian survival and mortality analysis to investigate 

the epidemiology of bovine Tuberculosis in a natural population of European 

badgers. 

In chapter 2 we use a dedicated software package that introduces Bayesian 

survival trajectory analysis and the benefits that it potentially offers. Here we 

investigate sex- and infection-specific variation in survival and mortality but 

uncover limitations in the flexibility of the software. 

Chapter 3 charts the development of flexible modelling techniques to carry out 

Bayesian survival and mortality trajectory analysis from first principles. We also 

conduct a detailed analysis of the Siler (Siler, 1979) competing risks model of 

mortality which describes the classic ‘bathtub’ shape of lifetime mortality. 

In chapter 4 we employ the modelling framework of chapter 3 to analyse 

survival data. Here we focus on model comparison and develop an efficient 

approach based on importance sampling that enables multi-model inference 

techniques such as Bayesian model averaging to be used. 

Chapter 5 extends the approaches presented in chapter 4 making them 

applicable to capture-mark-recapture (CMR) data, common within ecological 

research. We also take a focused look at the challenges of recording and 

reporting early life survival and mortality dynamics using CMR. 

In chapter 6 we compare our importance sampling approach to model 

comparison to another Bayesian method that is rare within ecological research: 

Reversible Jump Markov Chain Monte Carlo (RJMCMC). We demonstrate the 

straightforward nature of its use and highlight potential benefits. 

We then utilise the RJMCMC approach in chapter 7 to investigate inbreeding 

effects on age-, sex- and infection-specific mortality in the same wild population 

of European badgers that we analysed in chapter 2. We provide evidence for 

the two dominant evolutionary theories of senescence with implications for 

wildlife disease management and conservation strategies. 



28 

 

Finally in chapter 8 I provide a synthesis of results, discuss potential 

implications and suggest possible directions for future work. 

 

Throughout this thesis I use the term “we” as per publication standard 

and for consistency. It does not mean that any part of this thesis is not my 

own work. 
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Chapter 2: Analysis of Lifetime Mortality Trajectories in Wildlife 

Disease Research: BaSTA and Beyond 
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Abstract:  

Wildlife hosts are important reservoirs of a wide range of human and livestock 

infections worldwide, and in some instances, wildlife populations are threatened 

by disease. Yet wildlife diseases are difficult to monitor, and we often lack an 

understanding of basic epidemiological parameters that might inform disease 

management and the design of targeted interventions. The impacts of disease 

on host survival are generally associated with age, yet traditional 

epidemiological models tend to use simplistic categories of host age. Mortality 

trajectory analysis provides the opportunity to understand age-specific impacts 

of disease and uncover epidemiological patterns across complete life histories. 

Here, we use Bayesian survival trajectory analysis (BaSTA) software to analyse 

capture-mark-recapture data from a population of wild badgers (Meles 

meles) naturally infected with Mycobacterium bovis, the causative agent of 

tuberculosis in badgers and cattle. We reveal non-constant mortality trajectories 

and show that infection exaggerates an age-dependent increase in late-life 

mortality. This study provides evidence for actuarial senescence in badgers, a 

species previously believed to display constant mortality throughout life. Our 

case study demonstrates the application of mortality trajectory analysis in 

wildlife disease research, but also highlights important limitations. We 

recommend BaSTA for mortality trajectory analysis in epidemiological research, 

but also suggest combining approaches that can include diagnostic uncertainty 

and the movement of hosts between disease states as they age. We 

recommend future combinations of multi-state and multi-event modelling 

frameworks for complex systems incorporating age-varying disease states. 

Introduction 

Investigating the epidemiology of any disease in wild populations is challenging 

because of the practical difficulties in monitoring both infections and their wild 

hosts (Delahay et al., 2009), yet wildlife hosts are important contributors to 

many emergent and widespread infections of humans and livestock worldwide 

(Gortázar et al., 2007). Consequently, any improvements in our understanding 

of wildlife disease epidemiology can be beneficial to human health, animal 

welfare and productivity, as well as to biodiversity conservation (Delahay et al., 

2009; Wiethoelter et al., 2015). Disease-related mortality is a critical parameter 
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in any epidemiological model (Heisey et al., 2006) and methods for its 

estimation, developed for the study of human populations, are now commonly 

used in studies of wildlife (Samuel et al., 2015). Disease can increase rates of 

host mortality (Frick et al., 2010; Kilpatrick et al., 2010) and in extreme cases 

can contribute to decline and risks of species’ extinction (Berger et al., 2016; 

van Riper et al., 1986). Disease-induced mortality is commonly modelled as a 

simple increase in otherwise fixed mortality rates at particular life stages 

(Samuel & Storm, 2016; Wilkinson et al., 2000) but the reality can be much 

more complex. Mortality trajectories reveal patterns in age-specific mortality that 

are often missed when using fixed rates in discrete age classes, yet the 

inclusion of these trajectories in epidemiological models is rare. The ability to 

accurately model factors that influence mortality is fundamental to any 

demographic investigation and the inclusion of mortality trajectories could offer 

greater precision whilst uncovering subtle variations in the patterns of age-

specific mortality. Here we show that the inclusion of disease status, alongside 

full mortality trajectory analysis, can reveal disease-induced changes in the 

shape of lifetime schedules of mortality. 

Predicted increases in the proportion of the global human population living over 

the age of 80 (Fontana et al., 2014) have attracted substantial economic 

investment and scientific interest (Hayflick, 2000) in age-associated diseases in 

humans. Disease effects have been shown to vary with age in both humans 

(Haas et al., 2008) and now non-human animals (Jorgenson et al., 1997). While 

such variation can have a direct impact on population size (Larsen et al., 2007), 

empirical studies of age-specific causes of mortality in wild populations are 

scarce (Koons et al., 2014). The decline of physiological function with age (i.e. 

senescence) can affect fecundity (Reid et al., 2003), morphological traits 

(Reimers et al., 2005), behaviour (Chen et al., 2005) and physiology (Angelier 

et al., 2007) but most commonly it refers to an increase in the rate of mortality 

with age, known as actuarial senescence (Ricklefs, 1998). A long-standing 

belief that environmental factors would result in an animal’s death long before 

the impact of senescence became manifest, has now been shown to be false 

(Nussey et al., 2013). The emergence of several high-quality, long-term 

demographic studies, combined with theoretical and statistical advances, have 
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since revealed senescence in many wild populations of various species, and 

have promoted the study of factors affecting senescence in the wild. Traditional 

approaches in wildlife epidemiology have focused on estimating fixed mortality 

parameters for a finite and predetermined number of age categories (e.g., cubs 

versus adults - Graham et al., 2013) which results in the loss of information and 

risks unnecessarily coarse conclusions. Mortality trajectory analysis, which 

considers rates of mortality through the entire lifespan is a means of mitigating 

some of these problems, but until recently has been difficult to employ with 

wildlife populations. This is because of several statistical challenges (Nussey et 

al., 2008) as well as the requirement to monitor marked individuals through 

entire life histories (Nussey et al., 2013). Furthermore, the accurate 

interpretation of mortality trajectories and their associated parameters requires 

ecological understanding of a species’ behaviour and life strategies (Ricklefs & 

Scheuerlein, 2002), as well as suitable model selection through comparisons of 

model fit. If an inappropriate model is fitted to the data, then subsequent 

conclusions are often specious. 

Several mathematical functions have been used to describe lifetime trajectories 

of age-specific mortality. Historically the preferred choice was the Gompertz 

curve (Gompertz, 1825) which describes mortality as increasing exponentially 

with age from an intercept representative of an initial baseline risk of death. The 

more flexible Weibull distribution (Pinder et al., 1978) has recently been used in 

survivorship analysis and can accommodate accelerating increase, decelerating 

increase, decreasing and constant mortality (Colchero & Clark, 2012) but can 

fail to capture early decelerations in mortality rates. Makeham (Makeham, 1867) 

proposed that death could be separated into age-dependent and age-

independent sources, resulting in the addition of a ‘Makeham’ term (a constant) 

to established mortality functions (e.g. Gompertz-Makeham, Weibull-Makeham 

etc.). Criticism of these models has focused on the omission of individual 

heterogeneity, leading to potentially flawed statistical inference (Cam et al., 

2016): development of the logistic model has been proposed as a solution 

(Vaupel et al., 1979). This model accommodates individual variation as a 

decrease in mortality at advancing ages (i.e. individual frailty; frail individuals 

tend to die younger, leaving more robust individuals as survivors) (Jones et al., 
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2014; Pletcher, 1999; Vaupel et al., 1998). Although these functions have been 

applied across a variety of species (e.g. Barthold et al., 2016; Ricklefs & 

Scheuerlein, 2001), support for them is mixed and it is often difficult to deduce 

whether uncertainty in parameter estimates is evidence of absence (the 

parameter is not important) or absence of evidence (the data do not provide 

sufficient signal to help infer the parameter). Life histories can be split into 

distinct phases each with an individual mortality signature. Caughley (1966) 

identified 3 stages: juvenile (characterised by relatively high mortality), adult 

(with relatively low mortality), and senescent (increasing rates of mortality in 

later life). When combined these stages form a ‘U’ shape or ‘bathtub’ mortality 

curve which can capture complex patterns of mortality over complete life 

histories (e.g. the Siler function - Siler, 1979). The use of mortality trajectories 

and the separation of life stages allows us to unravel subtle changes in mortality 

and identify actuarial senescence, hereafter referred to as senescence. This 

combining of mortality models to accommodate different life stages has found 

support in a variety of species (Bebbington et al., 2007; Klutke et al., 2003; 

Snoke & Promislow, 2003) and has helped to reveal some of the drivers 

(McDonald et al., 2014) of age-specific patterns of mortality and senescent 

variation. 

To evaluate the use of mortality trajectories and investigate patterns of age-

specific mortality, we use data from a long-term study of a population of 

European Badgers (Meles meles) naturally infected with Mycobacterium bovis, 

the causative agent of bovine tuberculosis (bTB). In the United Kingdom, 

badgers are the primary wild maintenance host for bTB (Delahay et al., 2013) 

and in some locations contribute to the persistence of infection in cattle 

populations (Donnelly et al., 2006). Being able to discern patterns of mortality 

and distinguish between groups in terms of disease susceptibility may help 

inform approaches to managing infection in badgers, thereby reducing risks of 

onward transmission to cattle. The epidemiology of bTB in badgers has been 

the focus of many studies (for a review see Gallagher & Clifton-Hadley, 2000) 

yet the use of mortality trajectories, using age as a continuous variable, has to 

our knowledge been implemented only once. McDonald et al. (2014) used 

Bayesian survival trajectory analysis (BaSTA) (Colchero et al., 2012) to identify 
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sex differences in mortality from the point of infection and infer the mechanisms 

underpinning them. Increased mortality as a result of bTB infection in male 

badgers is already known (Graham et al., 2013; Wilkinson et al., 2000) but this 

was further dissected to identify where in the infection process the sex 

differences arose (McDonald et al., 2014). These analyses, however, do not 

capture the full lifetime trajectory of mortality in badgers and cannot reveal 

actuarial senescence. Here we study mortality trajectories by using cubs of 

known age and known infection status to analyse disease-related mortality 

trajectories across entire life histories. Previous analyses of badger mortality 

have suggested that badgers show no evidence of actuarial senescence 

(Wilkinson et al., 2000) but these conclusions were based on static life table 

data so may not be an authentic representation of badger life histories.  

In the following analyses, we use Bayesian approaches to demonstrate the 

benefits of using age-specific mortality trajectories to reveal when and how sex 

differences in disease-induced mortality occur. Research employing mortality 

trajectory analysis commonly recognises sex and individual heterogeneity 

(Colchero et al., 2017; Tidière et al., 2015) as critical drivers of mortality 

although environmental variation has also been considered (Lemaître et al., 

2013; Nussey et al., 2013). Males are often more susceptible to infection (Klein, 

2000), have a weaker immune response (Møller, 1987) and greater disease 

induced mortality (Graham et al., 2013; Wilkinson et al., 2000) stemming from 

physiological variation (Zuk & McKean, 1996) or behavioural and ecological 

differences that result in males being more likely to become infected (McDonald 

et al., 2014). Sex differences are not consistent across all species and our 

understanding of the complex nature of sex-influences on ageing patterns is far 

from complete (Berger et al., 2016). Long-lived species are more likely to 

display negligible or negative patterns of senescence (Baudisch, 2011) but by 

using BaSTA to assess mortality trajectories we uncover complex age- and sex-

specific patterns of mortality that vary with infection status. We also reveal 

important limitations of standard mortality trajectory analysis for epidemiological 

research, including age-dependent predictors (disease state changes with age) 

and diagnostic uncertainty (tests for infection vary in their sensitivity and 

specificity towards the target pathogen (McDonald & Hodgson, 2018). We 
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discuss alternative modelling strategies that will help to deal with these 

limitations. 

Materials and Methods  

Ecological data 

We used capture-mark-recapture (CMR) data from a population of wild badgers 

naturally infected with Mycobacterium bovis in Woodchester Park, 

Gloucestershire. Data for the present study consisted of badgers trapped from 

1982 to 2015 inclusive. The badger population was sampled using live-traps on 

(usually) four occasions per year. All trapped badgers are anesthetised and 

subjected to several diagnostic tests for bTB before being released (for a more 

detailed account of the trapping and testing procedures, see Delahay et al., 

2000; McDonald et al., 2018). On first capture each badger is given a unique 

identifying tattoo so that it can be identified at subsequent captures. Although 

difficult to test completely due to behavioural differences between individual 

badgers, previous studies have shown the probability of recapturing marked 

individuals is no different to unmarked individuals (i.e. no evidence of trap 

shyness/dependence) (Rogers et al., 1997). 

Diagnostic tests 

Samples of sputum, faeces, urine and swabs of any abscesses or wounds were 

taken for M.bovis culture (Gallagher & Horwill, 1977) as well as blood samples 

obtained for antibody tests as follows: 

Brock ELISA (Goodger et al., 1994) - used from 1982 to 2006 

BrockTB Stat-Pak lateral flow immunoassay – Chembio Diagnostics 

Systems, USA;  (Chambers et al., 2008) - used from 2006 to 2015 

We used badgers of known age (i.e. badgers caught as cubs) and categorised 

them as ‘cub-positive’ if they tested positive to either the Brock ELISA, Stat-Pak 

or culture during the first year of their lives, and ‘never-positive’ if they never 

tested positive to any test throughout their lives (sex was also included as a 

categorical covariate for each group). The distinction between these two groups 

allows for the comparison of disease effects on mortality trajectories across 

entire life histories, and identification of where variations occurred. The analysis 
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of age-dependent acquisition of disease requires a more complex modelling 

framework, but for this analysis we filtered out any badgers that acquired test-

positive status beyond the first year of life (see discussion for commentary on 

the risk of bias). We also recognise that the diagnostic tests employed in this 

study have limitations in terms of their sensitivity (Brock ELISA: 40.7% - Clifton-

Hadley et al., 1995; Stat-Pak: 97%; culture: 10% - Drewe et al., 2010), yet all 

the tests used are highly specific (Brock ELISA – 94-98% - Goodger et al., 

1994; Stat-Pak – 97% - Buzdugan et al., 2016; Culture – 100% - Drewe et al., 

2010).  As a result, we are confident that individuals diagnosed as infected are 

very rarely truly uninfected, but can be rather less confident that individuals 

diagnosed as uninfected are truly uninfected. Our classification of ‘never-

positive’ removes some of this uncertainty, as an individual is required to have 

tested negative throughout their capture history and is not reliant on a single 

diagnostic test result - (see discussion for implications). 

Ongoing research seeks to clarify links between diagnostic outcomes and 

infection status (Buzdugan et al., 2016; Wawegama et al., 2016) but for the 

purposes of our analyses here, we worked with diagnostic results rather than 

true infection status. 

Badgers caught and identified as cubs were assigned a birth occasion as the 

first trapping season for the year of first capture, as the majority of cubs are 

born between February and March each year (Kullback & Leibler, 1951). 

Badgers recovered dead were assigned a known death occasion as the time of 

the post-mortem examination.  

Analysis 

To understand age-specific mortality patterns in badgers and how their mortality 

trajectories are affected by diagnosis of bTB infection we used the package 

BaSTA (Colchero et al., 2012) in R (R Core Team, 2019). This package 

implements a hierarchical Bayesian model (for full details and likelihood 

functions see Colchero & Clark, 2012) and draws inference on age specific 

survival from CMR data when large portions of the data consist of unknown 

birth and death years. Age-specific survival analysis requires the definition of 

mortality or hazard rate (for continuity we use the term mortality throughout the 
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remainder of the thesis): we define a random variable 𝑋 for ages-at-death, 

where 𝑋 ൐  0, with any given age represented by (lower case) 𝑥. Standard 

theory of survival models defines the mortality function (i.e. the instantaneous 

rate of death (Kalbfleisch & Prentice, 2002), given survival to age 𝑥) as 

    
0

Pr | ,
| lim ,

x

x X x x X x
x

x


 

   



b

b  (2.1) 

where 𝐛 is a vector of mortality parameters to be estimated and ∆𝑥 is some very 

small time period. The cumulative mortality function 𝐻, at age 𝑥, 𝑡 years later is 

then defined as 

    
0

| |  .
x

H x t dt b b  (2.2) 

From equation (2.1) and (2.2) it is possible to derive the survival function, 𝑆 as 

      | Pr | exp |S x X x H x     b b b  (2.3) 

and the probability density function (pdf) of ages at death as 

         | Pr | |f x x X x x S x x    b b b  (2.4) 

BaSTA allows for comparison of four different functional forms of the mortality 

function in equation (2.1) (Exponential, Gompertz, Weibull and Logistic) as well 

as the extension of the latter three to incorporate more complex shapes. The 

inclusion of a ‘Makeham’ (Makeham, 1867) term models the effect of age-

independent mortality 𝑐. The further addition of a declining Gompertz function 

then allows the exploration of ‘bathtub’ mortality shapes. In total we compared 

ten different forms of mortality function (Table 2.1).  



38 

 

Table 2.1 Basic mortality and survival probability functions available to test in 

BaSTA, namely: exponential, Gompertz, Weibull and logistic. Additional terms 

can be added to each model (except exponential) to test different shapes, 

namely: ‘Makeham’ and bathtub. Parameter constraints are also indicated. 

 Mortality rate 

𝜇௕ሺ𝑥|𝒃ሻ 

Survival probability 

𝑆௕ሺ𝑥|𝒃ሻ 

Parameters 

Exponential 𝑏଴ 𝑒ି௕௫ 𝑏଴ ൐ 0 

Gompertz 

(Gompertz, 1825) 

𝑒𝑥𝑝ሺ𝑏଴ ൅  𝑏ଵ𝑥ሻ 𝑒𝑥𝑝 ቈ
𝑒௕బ

𝑏ଵ
 ሺ1 െ 𝑒௕భ௫ሻ቉ 

െ∞ ൏ 𝑏଴,𝑏ଵ  ൏ ∞ 

Weibull (Pinder et 

al., 1978) 

𝑏଴𝑏ଵሺ𝑏ଵ𝑥ሻ௕బିଵ 𝑒𝑥𝑝ሾെሺ𝑏ଵ𝑥ሻ௕బሿ 𝑏଴,𝑏ଵ  ൐ 0 

Logistic (Vaupel 

et al., 1979) 

𝑒𝑥𝑝ሺ𝑏଴ ൅  𝑏ଵ𝑥ሻ

1 ൅  ൬
𝑒௕బ
𝑏ଵ
൰  𝑏ଶሺ𝑒௕భ௫ െ 1 ൭1 ൅ 𝑏ଶ

𝑒௕బ

𝑏ଵ
ሺ𝑒௕భ௫ െ 1ሻ൱

ିଵ ௕మൗ

 

𝑏଴,𝑏ଵ,𝑏ଶ ൐  0 

 

The Makeham structure consists of adding a constant 𝑐 to the mortality: 

    | |b bx c c x  b, b  (2.5) 

    | , |cx
b bS x c e S xb b  (2.6) 

with c ൐ 0 if 𝜇ሺ𝑥ሻ is declining or c ൐ െ𝜇ሺ0ሻ otherwise. The bathtub structures 

are constructed by adding a declining Gompertz function and a constant to the 

basic mortality: 

    0 1| , , |a a x
b bx a c e c x   b b  (2.7) 

      
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1
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1

| , , exp 1 |
a

a x
b

e
S x b a c e cx S x

a
 

   
 

b  (2.8) 

with െ∞ ൏ 𝑎଴,൏ ∞, 𝑎ଵ ൐ 0, and 𝑐 ൐ െሾ𝑒௔బି௔భ௫೘೔೙ ൅ 𝜇௕ሺ𝑥௠௜௡|𝐛ሻ ሿ, where 𝑥௠௜௡ is 

the age at which equation 5 is at its lowest values. 
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Examples of the shapes of mortality trajectory that can be defined by these 

models are shown in Figure 2.1. 

The models in Table 2.1 define parameters and describe mortality in four 

different ways: 1) exponential, in which the model assumes mortality to be 

constant and independent of age; 2) Gompertz (Gompertz, 1825) in which the 

model describes baseline mortality (𝒃𝟎ሻ and an exponential increase with age 

(𝒃𝟏ሻ; 3) Weibull (Pinder et al., 1978) in which 𝒃𝟎 is the shape parameter and 

𝒃𝟏 is the scale parameter, the model assumes that mortality increases (or 

decreases) as a power function of age; and 4) logistic (Vaupel et al., 1979) in 

which the model consists of an initial exponential increase in mortality that 

decelerates to a plateau after a particular age. The 𝒃𝟐 parameter describes the 

degree of deceleration in mortality with age. Bathtub variants of the models 

include a declining Gompertz function 𝒆𝒂𝟎ି𝒂𝟏𝒙 where 𝒂𝟎 represents initial 

mortality rate at birth and 𝒂𝟏 is the exponential decrease in age-dependent 

mortality from birth. 

Badger sex and infection status (‘cub-positive’ or ‘never-positive) were included 

as categorical covariates and incorporated into the models as linear functions of 

the survival parameters, for example in a Gompertz mortality function: 

    


 
0 1

| exp

b b

x
 
  
 
 

 T Tx a z β z  (2.9) 

Figure 2.1 Possible mortality trajectories, 𝜇ሺ𝑥|𝜽ሻ when θ is a vector of 

mortality parameters to be estimated, resulting from the four models included 

in BaSTA. Mortality rate is shown on the y-axis, with age as a continuous 

variable on the x-axis. The line styles represent examples of each model 

shape that are possible to test: simple, Makeham, and bathtub. The 

exponential model is only applicable in a simple format. 
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where 𝜶𝑻 and 𝜷𝑻are transposed vectors of linear coefficients that link the 

covariate 𝒛 with the survival parameters 𝒃𝟎 and 𝒃𝟏 such that 𝜽 ൌ  ሺ𝜶,𝜷ሻ. 

Covariates are included for all parameters in each model structure. 

To ensure model convergence, initial trials of four Markov Chain Monte Carlo 

(MCMC) chains were run for each model followed by 1,000,000 iterations, with 

a burn-in of 10,001 iterations and thinning every 100 iterations (Gelman et al., 

2014). Convergence was assessed visually ensuring mixing of the chains and 

formally within each model using the potential scale reduction (𝑹෡ ̂) (Colchero & 

Clark, 2012). Convergence is reasonable when 𝑹෡ ൎ 𝟏. We assessed the 

sensitivity of the mortality parameters to the choice of prior distributions (Kass & 

Raftery, 1995) by running the analysis under four different prior structures and 

found there to be no differences in the selection or identification of parameters 

as a result. 

The fits of the ten models were compared using their deviance information 

criterion (DIC) (Spiegelhalter et al., 2002) which is a measure of predictive 

power and criterion for model fit akin to the Akaike information criterion and the 

Bayesian information criterion (for a review of its use see Spiegelhalter et al., 

2014). To evaluate the impact of categorical covariates BaSTA uses an adapted 

version of the Kullback-Liebler discrepancy (Kullback & Leibler, 1951; 

McCulloch, 1989) which estimates the degree of overlap in the posterior 

distributions of the parameter estimates. This indicator provides a value for 𝒌𝛃 ∈

 ሾ𝟎.𝟓,𝟏ሿ for a given parameter 𝛃 (0.5 indicating full overlap, 1 meaning no 

overlap); 𝒌𝛃  ൎ 𝟎.𝟔𝟓 is generally interpreted as indicative of a difference 

between means that is unlikely to occur if the distributions of the two variables 

were the same (Larson et al., 2016). 

Recapture probabilities were modelled as fully time-dependent, allowing the 

parameter estimate to vary for each occasion. Sample sizes for each type of 

datum are provided in Table 2.2. 
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Table 2.2 Summary of capture-mark-recapture datasets describing badgers in 

one of two health states: “cub-positive” (badgers that tested positive in the first 

year of their lives) and “never-positive” (badgers that have never tested positive 

throughout their lives). Known birth years refers to cubs captured and identified 

as being within the first year of their lives. Known death years refers to badgers 

who were recovered dead and subjected to post-mortem. Detections are the 

total number of capture events that took place over the duration of the study. 

 Cub-positive Never-positive 

Total number badgers 428 (M 191; F 237) 1768 (M 833; F 935) 

Number of known birth years 428 1768 

Number of known death years 13 323 

Total number of detections 2515 7588  

 

Results 

The Gompertz bathtub or Siler (Siler, 1979) function was the most supported 

mortality model across both the ‘cub-positive’ (Figure 2.2a) and ‘never-positive’ 

(Figure 2.2b) badger datasets with substantial support as the ‘best’ model and 

clear difference in DIC to the nearest rival model (Table 2.3). The Siler model is 

the sum of three different mortality models: the first describing a decrease in 

mortality over the initial phase of life with 𝑒௔బ being the initial level and 𝑎ଵ 

modelling the rate of decrease. The central ‘Makeham’ term is a constant 

mortality which is independent of age and the final term is a Gompertz function 

which describes mortality as increasing exponentially with a rate of 𝑏ଵ from an 

initial level 𝑒௕బ.  
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Table 2.3 Ranked list of proposed mortality functions fitted to data from a wild 

population of European badgers naturally infected with bovine tuberculosis. 

Badgers were separated into two health states (cub-positive – tested positive in 

the first year of their lives; never-positive – never tested positive throughout 

their lives). Deviance information criterion (DIC) values given for each model 

and corresponding differences (ΔDIC) from the ‘best’ model. Substantial 

support for the ‘best’ model is indicated when rival models have ΔDIC > 3 

(Bronikowski et al., 2011). 

Cub-Positive (in rank order by DIC) Never-Positive 

Model Shape DIC △DIC Model Shape DIC △DIC 

Gompertz Bathtub 4622 0 Gompertz Bathtub 25678 0 

Gompertz Simple 4642 20 Exponential Simple 25693 15 

Logistic Bathtub 4661 39 Weibull Bathtub 25695 17 

Weibull Bathtub 4669 47 Weibull Makeham 25954 276 

Weibull Makeham 4675 53 Logistic Makeham 25975 297 

Logistic Makeham 4682 60 Logistic Simple 25982 304 

Weibull Simple 4689 67 Gompertz Makeham 26004 326 

Logistic Simple 4697 75 Logistic Bathtub 26048 370 

Gompertz Makeham 4710 88 Gompertz Simple 26136 458 

Exponential Simple 4741 119 Weibull Simple 26235 557 
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Having revealed sex-, disease- and age-specific patterns of mortality we then 

analysed the entire dataset using the Siler function with disease status and sex 

as individual level categorical covariates creating four different groups (cub-

positive male, cub-positive female, never-positive male, never-positive female). 

We assessed model fit by producing Kaplan-Meier plots of observed survival 

against predicted survival trajectories (Appendix 1) and were satisfied that the 

Siler function and posterior parameter estimates were appropriate. We 

compared the posterior distributions between groups for each mortality 

parameter both visually and using an adapted version of the Kullback-Liebler 

discrepancy (Kullback & Leibler, 1951) proposed by McCulloch (McCulloch, 

1989) (Figure 2.3). The discrepancy measure works on the log of estimated 

Figure 2.2 Age-specific survival and mortality trajectories of European 

badgers from a wild population naturally infected with bovine tuberculosis. (a) 

‘cub-positive’ individuals (badgers that tested positive in the first year of their 

lives). (b) ‘never infected’ individuals (badgers that never tested positive 

throughout their lives). Female (red) and male (blue) estimated survival and 

mortality curves of the Siler function. Coloured areas surrounding the curve 

represent 95% credible intervals. Age in ¼ years. 
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probabilities and due to the posterior densities of the 𝑎ଵ parameters between 

‘cub-positive’ and ‘never-positive’ female badgers being so different the 

estimated probability produced zeroes which in turn produced NA in the 

Kullback-Liebler calculations.  

Badgers diagnosed as infected shared very similar patterns of age-dependent 

mortality with the only gender difference in mortality trajectories lying within the 

Makeham/age-independent parameter (𝑐). ‘Never-positive’ badgers displayed a 

greater degree of dissimilarity between the sexes. Male badgers had greater 

age independent mortality (𝑐) and initial ‘at birth’ mortality rates (𝑎଴) which 

follows previous research (Delahay et al., 2006; Wilkinson et al., 2000); 

however, we also uncovered sex variation in the senescent phase (𝑏଴ and 𝑏ଵ) of 

the mortality trajectory. ‘Never-positive’ male badgers fail to display any 

evidence of a senescent decline in survival whereas female badgers spend the 

majority of their lives with a comparatively lower mortality rate until the later 

phase of their lives, when they display a much clearer pattern of senescence.  

Infection raised the initial mortality rate (𝑎଴) and intensified the senescent 

decline (𝑏ଵ) in survival for both sexes, inducing a pattern of senescence in male 

badgers. 

The parameter estimates also uncovered a lack of any real decline in mortality 

during the juvenile phase of the life history (𝑎ଵ) for ‘never-positive’ individuals 

(male 𝑎ଵ = 0.05, female 𝑎ଵ = 0.06) as well as extremely flat posteriors for ‘cub-

positive’ individuals suggesting a lack of certainty. This pattern of mortality is 

further supported by the second ‘best’ model being the simple exponential 

(‘never-positive’) and simple Gompertz (‘cub-positive’), neither of which define 

an initial phase of reducing mortality for uninfected badgers. 
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Figure 2.3.  Posterior distributions of mortality trajectory parameter estimates 

for a population of wild European badgers naturally infected with bovine 

tuberculosis. Female (red) and male (blue) posterior distributions of mortality 

parameters of the Siler function, split by infection status. “Cub-positive” refers 

to individuals who tested positive in the first year of their life. “Never-positive” 

refers to individuals who never tested positive throughout their lives. Adapted 

Kullback–Liebler discrepancy measures are shown in black, indicating the 

degree of distribution overlap between classifications of sex and disease 

status. Measures over 0.65 are considered important (0.5 = distributions are 

identical, 1 = no overlap). Iterations = 1,000,000; burn in = 10,001; thinning = 

200; number of chains = 4. (For table of estimates and 95% confidence 

intervals, see Appendix 1) 
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Discussion 

Mortality trajectory analysis has revealed complex, age-specific patterns of 

mortality, and provided evidence of actuarial senescence in badgers, a species 

previously believed to display near-constant rates of mortality throughout life. 

Our results discern the impact of bTB infection on wild badgers and has allowed 

us to estimate where in a species’ life history disease- and sex-differences 

occur. 

The inclusion of age as a continuous variable enabled us to generate mortality 

trajectories and clarify age-specific sex differences. In our case study, we found 

“never positive” male badgers to have a higher initial mortality rate (compared to 

females), which appears to decline with age, yet “never-positive” females show 

a more intense increase in later life (senescence). Higher rates of mortality in 

males resemble the sex bias evidenced across other mammalian 

species (Bronikowski et al., 2011). Explanations for higher rates of mortality 

among males include differences in intra-sexual reproductive competition 

(Beirne et al., 2015), physiology (Zuk & McKean, 1996) and behaviour (Byrnes 

et al., 1999) and ecology (Delahay et al., 2006). In addition to an age-

independent sex difference, the male bias in juvenile mortality hints at 

differences in physiology being the key driver: although behavioural differences 

could appear, ecological explanations are unlikely to have come into effect at 

this early stage of a badger’s life. An unanticipated result was the more intense 

senescent increase in mortality with age found in female badgers. Males do not 

live as long as females (11% reduction in lifespan irrespective of infection 

status), and it is possible that this reduced lifespan removes or reduces the 

potential to exhibit detectable signs of senescence. There is a growing body of 

evidence reporting sex differences in senescence (e.g. Descamps et al., 2008; 

Greiner et al., 2014) with the majority indicating a greater effect in males. A 

number of reasons have been proposed, mostly associated with a greater 

impact of sexual selection in males, although this has been challenged in a 

study of herbivores (Lemaitre & Gaillard, 2013).  The pattern of ‘never-positive’ 

male mortality found here is more in line with previous findings that show 

negligible actuarial senescence in badgers (McDonald et al., 2014). 
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It was already known that bTB infection, as indicated from several diagnostic 

tests, results in increased male mortality in badgers (Graham et al., 2013; 

Wilkinson et al., 2000), but our analysis provides evidence for a similar effect in 

females. Mortality trajectories of the ‘cub-positive’ individuals revealed novel 

patterns of senescence and indicated that infection promotes a senescent 

increase in late-life mortality, this effect being more pronounced in male 

badgers thus homogenizing the shape of the mortality trajectories and removing 

any signature of age-dependent sex differences. Recent work has revealed a 

diversity of age specific patterns of mortality both within and amongst species 

(Jones et al., 2014) with sex and individual differences in frailty being 

highlighted as the most important sources of variation in survival parameters 

(Noonburg et al., 2015). Our analyses found only limited support for individual 

heterogeneity amongst badgers, indicated by the low ranking of the logistic 

model (3rd for infected badgers and 5th for uninfected). Males and females on 

the other hand do display differences in individual heterogeneity and may in fact 

be better described by sex-specific models (Wilson, 1994). Our combined sex 

analysis may have masked such variation suggesting that any reduction in 

mortality with advancing age could be representative of real change (Pletcher, 

1999) or be an artefact of heterogeneity among individuals in the population 

(Vaupel et al., 1979). Previous studies have suggested that ignoring frailty may 

result in biased parameter estimates (e.g. Vaupel & Yashin, 1985), but with only 

moderate support for the logistic mortality model it is difficult to draw any firm 

conclusions. Should individual heterogeneity in frailty exist then the more frail 

individuals with higher mortality should be removed from the population as a 

result of within-cohort selection (Dahlgren et al., 2016). The lack of evidence for 

individual heterogeneity in the present study may in part be due to aspects of 

badger ecology. Most badgers give birth between mid-January and mid-March 

(Kynaston et al., 2006) then cubs spend their first few weeks underground and 

unavailable for capture. Previous research has estimated pre-capture mortality 

at 24% (Rogers et al., 1997) and perhaps it is at this stage when the majority of 

weaker individuals are lost from the population. Pre-capture mortality has not 

been included in our analysis and with trapping not taking place during March 

and April cubs may be upwards of 6 months old when they are first captured 
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and tested for bTB. Consequently, our estimates of initial mortality are likely to 

be underestimates and in reality the downward curve assumed in the juvenile 

phase of the Siler function would be more pronounced than presented here. 

We used the package BaSTA with age-specific survival data and a hierarchical 

structure within a Bayesian framework to draw inference from censored CMR 

data in order to investigate survival and mortality in a badger population 

naturally infected with bTB. Our study has demonstrated the benefits of this 

approach to mortality trajectory analysis for the study of wildlife disease 

epidemiology and clarified age-specific sex and disease variation in patterns of 

mortality. There are however inherent weaknesses in our modelling framework, 

and to overcome them will require a more flexible modelling approach. 

BaSTA dictated our categorisation of badgers into two fixed groups of ‘cub-

positive’ and ‘never positive’ individuals, as it is unable to assess the influence 

of time-varying disease states on mortality parameters. This restriction meant 

filtering out badgers first that tested positive after their first year of life and 

leaves unanswered questions regarding the mortality trajectories of such 

individuals. The inability to model time-varying disease states also forced us to 

use a binary disease classification. Recent research into the epidemiology of 

bTB in badgers has identified at least  four different states of infection 

(susceptible, test positive, single site excretor, multi-site/occasion excretor) with 

differing mortality rates at each stage (Wilkinson et al., 2000) and high levels of 

individual heterogeneity in disease progression over time (Graham et al., 2013). 

This adds further complexity and suggests the potential for differing mortality 

trajectories at each disease state, as well as for each age-at-infection/state if for 

example, older badgers are more likely to become infected and experience 

more rapid disease progression. To model this system more completely will 

require a more flexible multi-state framework that allows for time-varying 

transition through multiple disease states. Further complications relevant to 

studies of bTB are the limitations of diagnostic tests and changes in the 

prevailing tests employed in studies over time (Clifton-Hadley et al., 1995; 

Dalley et al., 2008). False positive diagnosis would potentially weaken the 

signal of mortality in ‘cub-positive’ badgers whereas the more likely false 

negatives could strengthen the signal in the ‘never-positive’ individuals. Our 
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results may therefore be more conservative for ‘cub-positive’ yet potentially 

overstated for ‘never-positive’ individuals. We are confident that any impact is 

minimal due to tests being highly specific (low chance of false positive) and 

recapture being common, with an average 5.9 capture/testing occasions per 

badger (therefore reducing the chance of any individual being wrongly included 

in either category). There was no bias in the recapture rate between categories 

which reduces any impact of selective disappearance. The issue of test 

performance could be explicitly addressed by the further development of 

mixture models that can incorporate diagnostic uncertainty generated from 

false-positive and false-negative test results (McDonald & Hodgson, 2018). 

Multi-event methods have been developed to deal with such problems (Conn & 

Cooch, 2009; Koons et al., 2014; Pradel et al., 1997) often implementing the 

software package E-Surge (Choquet et al., 2009). To fully address all the 

difficulties outlined here requires the combination of these methods and a need 

to develop more complex hierarchical state-space models developed from first 

principles using MCMC software such as BUGS, JAGS, NIMBLE or Stan which 

also allow for the inclusion of age as a continuous covariate. 

We have demonstrated the use of relatively simple mortality trajectory analysis 

in the study of wildlife disease epidemiology. We recommend widespread use of 

this approach, in systems that have sufficient information to infer patterns of 

mortality across the whole life cycle. Despite senescence being notoriously 

difficult to detect in wild populations (Nussey et al., 2008), the present study has 

provided credible evidence of actuarial senescence in badgers. Furthermore, it 

has revealed that senescence can be intensified in diseased individuals. 

Understanding the physiological, evolutionary and ecological drivers of these 

mortality trajectories remains an ongoing challenge (Nussey et al., 2013). 

BaSTA is a powerful tool to begin exploration whilst accommodating many of 

the problems associated with CMR data. However, there are limitations 

associated with age-dependence and diagnostic uncertainty of disease states, 

and we are now developing similar Bayesian methods with more complex 

hierarchical and multi-state frameworks. 
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Chapter 3: Flexible model specification for Bayesian survival 

analysis 

  



51 

 

Abstract 

Estimating survival in wild systems relies on robust monitoring strategies such 

as capture-mark-recapture (CMR) but without consideration of the sampling 

process within the modelling framework results will be inaccurate. A variety of 

software packages have been developed to accommodate such data, each with 

advantages and disadvantages but often they lack the flexibility and 

transparency that researchers require. We advocate the use of NIMBLE (de 

Valpine et al., 2017) which has been shown to perform well against competing 

software and offers a plethora of adjustments to suit specific requirements. 

Survival analysis in wild systems presents a number of specific challenges to 

modellers (e.g. censorship, incomplete records) which are often overcome by 

fitting parametric models and constructing survival and mortality trajectories. 

Data regarding young individuals are generally scarce meaning research often 

focuses on later life dynamics such as senescence and bathtub shaped 

mortality trajectories are overlooked as researchers strive for parsimony. We 

highlight the potential for erroneous conclusions should early life patterns of 

mortality be ignored and recommend the fitting of bathtub shaped functions, 

such as the Siler function to survival data (should the data allow). Having 

presented a novel parameterisation of the Siler function we conclude with a 

case study analysis of CMR data to expose the competing nature of the Siler 

parameters highlighting the need for caution when interpreting parameter 

estimates independently. 

Modelling survival in the wild 

Our knowledge of survival gleaned from laboratory studies and captive 

populations is restricted in the depth of understanding it can provide of wild 

systems as environmental pressures cannot be easily replicated. It is therefore 

important to utilise methods that have been designed for monitoring species in 

their natural environment despite the challenges that can be presented in the 

wild (Cooch et al., 2012; Delahay et al., 2009). The possibility to collect census 

data are rare within ecological research and more commonly a Capture-Mark-

Recapture (CMR) study design is employed which involves the repeated 

sampling of a population – at first capture individuals are marked and released, 

on subsequent sampling occasions individuals are either recaptured, not 
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detected or recovered dead (Catchpole et al., 1998). CMR has been extensively 

used across ecological research (see Lindberg, 2012 for a review of CMR study 

design) but the data generated requires diligent modelling strategies to ensure 

accurate inference and predictions  (Conn & Cooch, 2009).  

There exists a variety of different software programs for the analysis of CMR 

data. Program MARK (White & Burnham, 1999) is often considered one of the 

most comprehensive (Laake et al., 2013), using maximum-likelihood 

techniques.  There is also a large number of more specialised stand-alone 

packages or libraries for R (R Core Team, 2019) which target specific 

applications. BaSTA (Colchero et al., 2012) focuses on a Bayesian approach to 

the analysis of CMR data, recognising the inherent uncertainty common within 

ecological data which makes the Bayesian methodology attractive (Durban & 

Elston, 2005). These dedicated packages generally aim to simplify statistical or 

programming challenges and in doing so broaden the analyst’s toolbox, leading 

to widespread usage that is evident from the high number of citations that 

associated explanatory articles have received. Despite the benefits, these 

software packages do have potential drawbacks: first, a proportion of the code 

and analysis remains ‘under-the-hood’ and happens automatically (although 

source code is available) meaning it is possible to overlook elements of the 

analysis such as ‘default’ inputs leading to potentially specious inference (e.g. 

see Warner et al., 2016 and comment from Keevil, n.d.). Second, the specific 

niche to which a given package is targeted may not offer the full flexibility 

required by the researcher leading to potentially restricted analysis (Hudson et 

al., 2019) and a reduced depth of understanding of the system in question (de 

Valpine et al., 2017). The solution is to construct models from first principles. 

Within the Bayesian paradigm this is generally completed using a dedicated 

model-specification language such as that from the BUGS project (Bayesian 

inference Using Gibbs Smpling - Gilks et al., 1994) which has been widely 

implemented through a number of different programs (e.g. WinBUGS - Lunn et 

al., 2000; OpenBUGS - Spiegelhalter et al., 2007). Despite the utility of 

Bayesian methods, a key challenge is that the posterior distribution can often 

not be evaluated analytically. Instead numerical algorithms such as Markov 

Chain Monte Carlo (MCMC) can be used, in which empirical estimates of the 
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posterior distributions can be derived through random sampling. The 

development of more efficient and effective MCMC algorithms (and other 

alternative numerical methods) remains an ongoing area of methodological 

research. The goal of the BUGS project was to provide flexible software to allow 

straight-forward Bayesian analysis of complex statistical models using MCMC 

methods. A number of other software platforms have developed the BUGS 

language or used it as inspiration for their own model specification language 

(e.g. JAGS -   Plummer, 2003; Stan - Carpenter et al., 2017; NIMBLE - de 

Valpine et al., 2017) and although there are differences among them, all share 

the common goal of providing efficient running of MCMC analyses. 

The continued development of software has coincided with increases in 

computing power and enabled huge improvements in the efficiency of fitting 

complex Bayesian models using a variety of MCMC algorithms and optimisers. 

These programmes are continually being developed and there now exists a 

wide range of algorithms each with strengths and weaknesses in different 

areas. The challenge for developers is balancing increased flexibility without 

sacrificing computational performance. NIMBLE (de Valpine et al., 2017) is a 

recently developed software package which makes use of the flexible BUGS 

language (and extends it) for model specification, but also allows a variety of 

different MCMC algorithms to be used, and the ability to customise algorithms if 

required. Separating model specification and model computation into higher- 

and lower-level languages has meant that flexibility and efficiency have not 

been compromised. Numerous speed comparisons have been carried out 

between the different programmes but the majority are confined to statistical 

blogs and usually restricted to very specific situations. Beraha et al. (2021) 

carried out a more comprehensive comparison of NIMBLE, JAGS and Stan, 

finding NIMBLE to be considerably faster in terms of runtime and iterations per 

second across a variety of different situations. They did temper this with a 

warning of autocorrelation among samples noting the number of effective 

samples was lower than the other programmes. This comparative analysis was 

conducted using only the default samplers within NIMBLE, thus ignoring the 

modular nature of the package, which further adds to its appeal. NIMBLE offers 

a broad range of sampling algorithms and fine-tuning options that allows the 
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user to overcome a spectrum of different issues (including autocorrelation) 

without sacrificing computational efficiency. In our analyses we have found 

NIMBLE to outperform OpenBUGS and JAGS, meanwhile the flexibility and 

control offered by NIMBLE’s sampling setup is straight-forward to utilise and 

has overcome many mixing issues that we have come across with a variety of 

different datasets. Stan uses a specific MCMC sampler called Hamiltonian 

Monte Carlo, which can be very efficient for a wide-variety of models, but 

cannot be applied to sample discrete parameters (such as the various latent 

indicator variables required for our models). For these reasons we have 

transferred to NIMBLE for our remaining analyses.  

Survival Analysis & Mortality Trajectories 

With increased modelling flexibility comes the ability to fit more complex models 

and better understand complex natural systems. For survival analysis, 

complexity can come from additional explanatory variables, incorporating 

individual- and time-specific variations and in the structure chosen to fit these 

variables. Our understanding of ageing and mortality in wild populations has 

developed in recent years with a move away from life-table methods which 

failed to fully accommodate the complex dynamics of wild systems (Coulson et 

al., 2004; Gimenez et al., 2015), but there are many questions relating to the 

evolutionary, ecological and physiological causes of variation that remain 

unanswered (see e.g. Nussey et al., 2013). Virtually all survival analysis 

requires the accommodation of censored data, but when analysis is focused 

upon wild populations, especially CMR studies, there are additional 

considerations such as imperfect detection that must be incorporated to ensure 

unbiased survival estimates (George et al., 2014; Gimenez et al., 2015). The 

non-parametric Kaplan-Meier method to estimate survival (Kaplan & Meier, 

1958) and semi-parametric Cox proportional hazards model (Cox, 1972) have 

both been used extensively but fitting fully-parametric models remains less 

common despite offering several advantages (Nardi & Schemper, 2003).  

The ability to describe the complete lifetime mortality functions means that 

estimation of survival and mortality is more straightforward, projected 

trajectories are smoother as they draw information from the whole data, and the 

insight offered can be greater when compared to alternative methods. The main 
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drawback of the fully parametric approach revolves around how to choose an 

appropriate function that best describes the survival and mortality of individuals 

in a population, and how this choice can be validated. Many distributions may fit 

the data well, making the task of selecting between mortality models a 

challenge. Increased numbers of parameters may improve fit but often 

penalised metrics such as the Bayesian information criterion (Schwarz, 1978) or 

deviance information criterion (Spiegelhalter et al., 2002) are used to select 

between mortality models, thus selecting the model that best balances model fit 

with model parsimony according to the specific criterion of interest. The use of 

such metrics remains controversial (Spiegelhalter et al., 2014) but when 

different models provide comparable fits to the data, analysts should avoid 

methods that simply select one ‘best’ model: with such methods, any 

uncertainty in model choice is immediately ignored leading to overconfidence 

and greater potential for statistical bias (Parrish et al., 2012). Multi-model 

inference (Burnham & Anderson, 2002; Harrison et al., 2018) can alleviate 

issues of model uncertainty and has the potential to offer greater insight (Hobbs 

et al., 2006). Within the Bayesian paradigm this can be achieved by averaging 

across candidate models in a technique known as Bayesian Model Averaging 

(Kass & Raftery, 1995); this requires the additional calculation of posterior 

model weights and there is yet to be a consensus on the most appropriate 

method to use, and in the following chapters we explore a number of 

alternatives. 

Mortality models and exploration of the Siler function 

Ageing and mortality has historically been modelled by the Gompertz 

(Gompertz, 1825) or Gompertz-Makeham (Makeham, 1867) distributions and 

both have been shown to adequately fit the survival data for a broad range of 

wild species (Kirkwood, 2015) despite the fact they ignore early life changes. 

The view that mortality follows a ‘bathtub’ shape (initially decreasing, then 

approximately constant and finally increasing) is well established in humans and 

many animals but the early life decrease remains poorly understood (Levitis, 

2011).  

When considering natural populations, the practical difficulties of monitoring 

species in the wild are well known (e.g. Delahay et al., 2009). Sampling 
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strategies such as CMR together with statistical methods to deal with imperfect 

detection have helped alleviate some of these issues (e.g. Cormack Jolly Seber 

(CJS) models - Cormack, 1964; Jolly, 1965; Seber, 1965) but the challenge of 

monitoring and thus estimating survival is amplified for younger individuals: 

birthing events are often hidden from observers (e.g. within subterranean dens), 

live trapping is often suspended during birthing seasons to avoid disturbance 

and in general, encounters with very young individuals are rare. Without the 

ability to accurately monitor the number of births taking place it is impossible to 

estimate the number of deaths occurring, deaths will go undetected as 

individuals die prior to any capture event taking place and mortality rates for 

early life stages are likely underestimated. The Siler model (Siler, 1979) 

considers mortality across individuals’ complete life history, and encompasses 

early life decreases that describe the classic ‘bathtub’ shape. However, its use 

has been sporadic. The majority of research focused upon age-specific 

mortality has centred on late-life changes and senescence (e.g. Carnes et al., 

2006; Snoke & Promislow, 2003) which has resulted in researchers overlooking 

the importance of early life dynamics for later-life mortality. The Gompertz and 

Gompertz-Makeham models both assume ageing to begin at the age of first 

reproduction (Hamilton, 1966; Williams, 1957) and ignore early life changes 

prior. The Siler model with additional parameters relevant to early life is often 

overlooked as researchers strive for parsimony and often lack signal in the data 

from this period of individuals’ lives. Recent research has demonstrated 

considerable variation in when ageing commences among mammals (Gaillard & 

Lemaître, 2017), questioning previous analyses and advocating for models that 

consider complete life history (when data are available) no matter what life 

stage is being focused upon (Ronget et al., 2020 and e.g. Lemaître et al., 

2020).  

The Siler model is somewhat unique in its structure: by combining three 

different functions (a declining Gompertz, a ‘Makeham’ constant and a 

Gompertz) it presents a 5-parameter model for mortality with each parameter 

having an explicit biological interpretation. 

 1 2
1 2( ) b t b th t a e c a e    (3.1) 
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Here we slightly adjust Siler’s original notation for additional clarity: 𝑎ଵ 

represents the ‘at-birth’ mortality rate, 𝑏ଵ is the exponential rate at which 

mortality decreases from birth into maturity, 𝑐 is the age-independent mortality 

rate (notation adopted from the Gompertz-Makeham model) with the final term 

then describing senescence: 𝑎ଶ being the intercept for the senescent increase 

(set at time = 0) and 𝑏ଶ representing the exponential rate of senescent increase 

in mortality in later life (Fig. 3.1). 

 

The ability to interpret each parameter has led researchers to view them 

independently and it is common to see comparisons of individual parameter 

estimates using statistical tests such as Kullback-Leibler (Kullback & Leibler, 

1951) discrepancy measures to indicate the impact of covariates (e.g. 

Spagopoulou et al., 2020). In Siler’s original paper (Siler, 1979) he describes 

the model as ‘A competing-risk model for animal mortality’ but often the 

competing element is overlooked. The correlated structure of the Siler 

parameters means that parameters will compete to describe mortality during a 

specific life phase. If parameter estimates are taken and used independently 

then there is potential for inaccurate conclusions to be drawn. To demonstrate 

this point we constructed a Shiny app (Web Application Framework for R [R 

Package Shiny Version 1.6.0], 2021) to allow a full exploration of the Siler 

Figure 3.1. The Siler (Siler, 1979) competing risks mortality model; a. showing 

the 5 parameters and their influence on the resulting mortality curve b. 



58 

 

mortality models (Hudson, 2019) and it is clear that the influence of each 

individual parameter is not necessarily constrained to a specific age-specific 

portion of the mortality trajectory. Figure 3.1a. shows that for much of the 

mortality curve the mortality rate could be described by a number of competing 

parameters - in the example below (Fig. 3.2) we demonstrate that a change in 

one parameter can have an impact on the overall shape of the mortality 

trajectory.  

By adjusting 𝑎ଶ it is clear to see that the scope of its influence extends across a 

large proportion of the mortality curve. In this way it is possible to see that when 

fitting the Siler function to real data the parameters will compete with one 

another to describe underlying mortality patterns. Inference from studies where 

parameter estimates are analysed independently should thus be treated with 

caution. Parameter estimates need to be considered as part of a ‘set’ and 

interpreted as such—an increase in one parameter may correspond to a 

compensatory decrease in a different parameter meaning summary statistics of 

posterior distributions may not accurately reflect the dynamics of the underlying 

mortality trajectory. The safest method to analyse survival and mortality inferred 

Figure 3.2: Mortality trajectories constructed using the Siler (Siler, 1979) 

function with fixed parameter values for , ,  and , and adjusting . 
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from the Siler model is to use the 5 parameter estimates from each iteration of 

the MCMC process to calculate estimates of age-specific mortality and/or 

survival and then combine these to form median survival/mortality rates and 

associated credible intervals to be interpreted accordingly. Covariates may 

differentially impact individual parameters but unless all 5 parameters are 

considered together then the subtleties of the processes involved may go 

undiscovered. 

Parameterising the Siler function 

Straight-forward yet flexible model specification requires definition of the 

accompanying probability distributions. The bathtub nature of the Siler function 

with a combination of increasing and decreasing exponential rates make this a 

non-trivial computational task when considering the quantile (and random 

number generator) function. The inverse transform method is the most straight 

forward method to produce random samples from a probability distribution given 

its cumulative distribution function (CDF) which also defines its survivor 

function. Inverse sampling takes samples from a uniform distribution between 0 

and 1 and returns the largest number x from the given distribution ( )P X where 

( )P X x   . To use this method requires a closed-form expression for the 

quantile function which to our knowledge is absent in the literature for the Siler 

distribution. We instead made use of the Lambert W function in a similar way to 

Jodrá (2009) who constructed a closed-form expression for the quantile function 

of the Gompertz-Makeham distribution to provide a novel method of producing 

random samples from the Siler distribution.  

The full Siler survivor function can be defined as: 

   1 21 2

1 2

exp 1 1b t b ta a
S t e ct e

b b
 

           
 

, (3.2) 

where 𝑎ଵ, 𝑎ଶ, 𝑏ଵ, 𝑏ଶ, 𝑐 ൐ 0. Since the survivor function is not monotonic with 

respect to 𝑡, it cannot be analytically inverted to allow a simple use of inverse 

transform sampling. It is possible to invert this numerically, but at an additional 

computational cost and the requirement to monitor the convergence of the 
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numerical optimiser. Instead, there is a trick that we can consider if it is possible 

to write a survivor function as a product of 𝑀 independent survivor functions, i.e. 

      1 ... MS t S t S t . (3.3) 

In this case, if we are then able to take random samples, 𝑡ଵ, … , 𝑡ெ from 

distributions 1, … ,𝑀 independently, then t∗ ൌ 𝑚𝑖𝑛ሺ𝑡ଵ, … , 𝑡ெሻ will be a random 

draw from a distribution with survivor function 𝑆ሺ𝑡ሻ as required. The proof of this 

is as follows. For sample t∗ generated as above, we have: 
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  

      

  





since 1,..., Mt t independent      (3.4) 

from (3.3) and since the survivor function uniquely determines a probability 

distribution, the proof is complete.  

In the case of the Siler distribution, the survivorship function given in equation 

(S1) can be decomposed into a product of three independent functions where 

𝑆ଵሺ𝑡ሻ ൌ exp ቀ௔భ
௕భ
ሾ𝑒ି௕భ௧ െ 1ሿቁ, 𝑆ଶሺ𝑡ሻ ൌ expሺെ𝑐𝑡ሻ and 𝑆ଷሺ𝑡ሻ ൌ exp ቀ௔మ

௕మ
ሾ1 െ 𝑒௕మ௧ሿቁ as 

per the original derivation in Siler (1979). The final two components are 

straightforward to sample from using inverse transform sampling (the second 

being a standard exponential survivor function and the third being a standard 

Gompertz survivor function). However, as noted in Siler (1983), 𝑆ଵሺ𝑡ሻ is not a 

proper survivor function, and thus does not define a proper probability 

distribution when considered independently of 𝑆ଶሺ𝑡ሻ and 𝑆ଷሺ𝑡ሻ, despite the 

product survivor function 𝑆ሺ𝑡ሻ being proper. We can see this most evidently by 

taking the limit as 𝑡 → ∞: 

   11 1
1

1 1

lim lim exp 1 exp 0b t

t t

a a
S t e

b b


 

   
         

   
 (3.5) 

as expected. Hence we cannot decompose the composite survivor function (2) 

into three independent proper survivor functions. Instead we choose to 
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decompose into two components, such that 𝑆ଵሺ𝑡ሻ ൌ 𝑒𝑥𝑝 ቀ௔భ
௕భ
ሾ𝑒ି௕భ௧ െ 1ሿ  െ 𝑐𝑡ቁ 

and 𝑆ଶሺ𝑡ሻ ൌ 𝑒𝑥𝑝 ቀ௔మ
௕మ
ሾ1 െ 𝑒௕మ௧ሿቁ. In this case the second component is a standard 

Gompertz survivor function as before, and the first component now defines a 

proper survivor function. Hence if we can generate independent random 

samples from distributions 1 and 2, then the minimum of the two samples will be 

a draw from the desired Siler distribution (as proved above). Distribution 2 is 

straightforward to sample from using inverse transform sampling, but 

distribution one is trickier. Jodrá (2009) provides a clever approach for 

evaluating the quantile function for a Gompertz-Makeham distribution using 

Lambert’s W function, and we adapt that approach here that enables us to use 

inverse transform sampling to sample from distribution 1.  

Drawing from distribution 1: 

The Lambert W function is defined as the solution of the equation: 

    W zW z e z  (3.6) 

where 𝑧 is a complex number. For real values of 𝑊ሺ𝑧ሻ the Lambert W function 

has only two real branches and 𝑧 ൒ െ1/𝑒. Here we restrict attention to the 

principal branch, 𝑊଴ሺ𝑧ሻ where െ1 ൑ 𝑊଴ሺ𝑧ሻ ൏  ∞. 

If we consider an equation of the form  

 bxx ae c   (3.7) 

where , 0a b  and c , then we can rearrange this as: 

  
   

bx

bx

b x c bc

x c ae

x c e a

b x c e abe



 

 

 

 

 (3.8) 

Since , 0a b  , the right hand side is 0 always, and the equation is thus of the 

form 

    W zW z e z  (3.9) 
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and a solution is provided by Lambert’s W function. Since 0z   this has only 

one real solution, given by the principal branch, such that: 

 

   

 
0

0

W

1
W

bc

bc

abe b x c

x c abe
b





 

 
 (3.10) 

For a detailed and clear description of this approach, the reader is referred to 

Jodrá (2009). 

For inverse transform sampling, at some probability, p , we wish to determine 

the quantile function to allow us to invert the relationship: 
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1

1

F t p

S t p

S t p



 
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 (3.11) 

Substituting in the survivor function for distribution 1 we have: 
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 (3.12) 

This has the form of (3.6), and thus has solution 

    1 1 1 1
0

1 1 1

1 1
log 1 exp log 1

a a b a
t p W p

c b b c c b

     
                  

 (3.13) 

Therefore we can sample  1 U 0,1u  and generate a random sample 

   1 1 1 1
1 0 1

1 1 1

1 1
log 1 exp log 1

a a b a
t u W u

c b b c c b

     
                  

,                (3.14) 
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and 𝑡 is distributed according to distribution 1 as required. 

Sampling from distribution 2: 

Now if we consider: 

    22
2

2

exp 1 b ta
S t e

b

 
  

 
 (3.15) 

which is a proper Gompertz survivor function that can be sampled from using 

the inverse transform method. 

Hence, if  2 U 0,1u  , then calculate 
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 
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 (3.16) 

and thus 𝑡ଶ will be a random sample from the required Gompertz distribution. A 

random sample from the Siler distribution can be calculated as: 𝑡 ൌ minሺ𝑡ଵ, 𝑡ଶሻ.  

We have used the above method to construct R code (R Core Team, 2019) for 

the full set of Siler probability distribution functions.  These can be registered 

and used in NIMBLE (de Valpine et al., 2017) as custom distribution functions 

allowing complete flexibility in model specification and removing the constraints 

felt within the BaSTA analysis of the previous chapter. 

Case Study: Analysis of Capture Mark Recapture (CMR) data from a natural 

population of European Badgers (Meles meles) 

To demonstrate, using the above parameterisation, the true competing nature of 

the Siler parameters we carried out a brief analysis of CMR data from a long-

term monitoring project of a natural population of European badgers in 

Woodchester Park, Gloucestershire. Data analysed here consists of badgers (n 

= 2754) trapped from 1977 to 2020 inclusive; (live) trapping events occur 
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(usually) four times per year and upon first capture each badger is given an 

identifying tattoo (for a more complete account of the trapping procedure see 

Delahay et al., 2000; McDonald et al., 2018). The capture history of each 

individually marked badger makes up the CMR data and forms the basis for the 

survival analysis carried out here – the full statistical process is omitted for 

clarity and to allow the reader to focus on the internal correlation structure of the 

Siler parameters (for a comprehensive account of the statistical procedure used 

see Chapter 5). We used Bayesian methods to generate posterior parameter 

samples which can be used to infer estimates of age-specific mortality and 

survival from the badger CMR data. Of importance here is the correlation 

structure of the parameter samples. The pairs plots (Fig. 3.3) indicate a strong 

correlation between 1a and c, and between 2a and 2b which clearly 

demonstrates how the parameters compete with one-another to describe the 

underlying mortality patterns. When using a more complex model, such as 

when assessing the effects of covariates, it may be that e.g. sex (being male or 

female) is associated with an increase in the mean parameter estimates for 

both 1a and cwhich could, if viewed independently, be interpreted as 

males/females having a higher rate of mortality at birth and higher age-

independent mortality throughout life. However, when considered together, an 

increase in 1a may be associated with a decrease in c, and so it is important to 

consider differences in the estimated survival and mortality trajectories as a 

whole in order to get a feel for where biological differences in survival lie. 
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For these reasons it is important to assess posterior parameter estimates with 

due care, linking with and drawing from suitably calculated (i.e. from sets of 

posterior samples) survival and mortality trajectories will ensure any inferences 

made are as appropriate as possible. 

Concluding remarks 

Accurately estimating survival and mortality in the wild is a challenge but it 

remains a critical parameter within evolutionary and conservation biology. 

Having demonstrated that early-life mortality dynamics can have impacts in later 

life – despite potentially weak signal within data, we recommend researchers fit 

‘bathtub’ shaped models (when analysing lifespan data) that allow early life 

changes to occur as they may have impacts felt later in life. The Siler model 

describes the classic ‘bathtub’ shape and we present a novel parameterisation 

that can be implemented in the flexible software package NIMBLE which we 

hope will broaden its appeal and allow more complex models to be constructed. 

But, it is important that the Siler function be employed with heed to Siler’s 

Figure 3.3: Pairs plots of posterior parameter samples from the analysis of 

CMR data from a natural population of European badgers (Meles meles) 

fitted to the Siler model. 
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original description as a ‘competing risks’ model for animal mortality. In our 

case-study analysis we have highlighted the often overlooked correlated 

structure of the parameters which can lead to erroneous inferences when 

parameter estimates are viewed independently. Armed with appropriate tools 

and a deeper understanding of lifetime mortality and survival trajectories, in 

particular the Siler model, we can focus our future analyses on developing 

straightforward methods to carry out robust survival analysis and uncovering 

subtle variations that may help inform our evolutionary understanding of 

mortality changes such as senescence. 
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Chapter 4: Bayesian model selection for survival analysis 
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Abstract 

Empirical research in ecology and evolution usually relies on model-comparison 

techniques to investigate competing hypotheses. Many traditional approaches 

target one ‘best-fitting’ model to explain particular phenomena, which ignores 

model uncertainty and can lead to overconfident inference and prediction. Multi-

model inference has become more popular as a method to account for model 

uncertainty.  

Despite a variety of model comparison techniques being available to the 

Bayesian ecologist there remains a lack of consensus on the most appropriate 

tools to use. Bayes’ Factors and posterior model weights are powerful options, 

but remain underused, usually due to complexities associated with calculation 

of the required marginal likelihood terms. Here we present a straightforward and 

efficient approach to estimate the marginal likelihood using importance 

sampling, and in turn calculate Bayes’ Factors and posterior model weights that 

can be used to guide e.g. Bayesian model averaging. 

Survival analysis is a vital tool in population biology but is often plagued by 

incomplete data, censoring and latency. Through simulations of censused and 

censored survival data we demonstrate the efficacy of Bayesian model 

selection to deal with such situations. We conclude with a case study 

investigation of sex-specific survival in banded mongooses, which highlights the 

power of these approaches. 

Ignoring model uncertainty can lead to inaccurate inferences which adds weight 

to arguments in favour of model averaging but also focuses attention on the 

lack of agreement for which model comparison technique is most applicable. 

We introduce a clear and flexible approach which is particularly efficient when 

dealing with missing data and so lends itself to ecological studies, particularly 

survival analysis, where missingness and censoring are prevalent. 

Introduction 

The fields of ecology and evolution now rely heavily on model comparison 

techniques (Johnson & Omland, 2004) which allow the researcher to formulate 

a set of competing statistical models and then evaluate the relative strength of 

evidence in the data supporting different hypotheses (Plummer, 2008). Many 
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traditional approaches tend to target the ‘best-fitting’ model from a pre-

determined set of models, but this is known to overestimate confidence and 

increase the statistical bias of forecasts if some of the competing models are 

similarly supported under the data (Parrish et al., 2012). Recent approaches 

use multi-model inference to account for uncertainty in model choice (Burnham 

& Anderson, 2002; Harrison et al., 2018). This development has broadened the 

range of questions that ecologists can address and has led to a deeper 

understanding of complex ecological systems (Hobbs et al., 2006). Ecological 

research is often based on data from field observations which results in large 

amounts of missing or incomplete data, varying degrees of unknown 

measurement error, or data uncertainty (Martin et al., 2005). Bayesian statistical 

inference is regularly advocated as a powerful approach when dealing with 

missing data, since it provides a coherent framework to account for and 

characterise the uncertainties associated with the missing information (Durban 

& Elston, 2005). There are various ways to approach the challenge of Bayesian 

multi-model inference, and here we focus on Bayes’ Factors and posterior 

model weights as a flexible and powerful paradigm. 

Bayesian model selection 

Common approaches to model selection include the use of e.g. Akaike 

information criterion (AIC) (Akaike, 1974) or Bayesian information criterion (BIC) 

(Schwarz, 1978). However, these both rely on maximum likelihood point 

estimates and hence have limited utility in a Bayesian context where we 

consider distributions (Hooten et al., 2015; Millar, 2009). The deviance 

information criterion (DIC) (Spiegelhalter et al., 2002) is a popular analogous 

Bayesian metric that is straightforward to calculate, and hence is a popular 

choice (for example it is used for model comparison by the survival analysis 

software BaSTA, Colchero et al., 2012). However, it can perform poorly when 

dealing with missing-data models (Celeux et al., 2006). Watanabe proposed the 

Watanabe-Akaike or Widely Applicable information criterion (WAIC) (Watanabe, 

2010) for Bayesian models, which has received support for its use on 

hierarchical models (e.g. Gelman et al., 2014). However, the calculation of 

WAIC depends on an independence assumption of the data given the 

parameters so has faced criticism for spatial models where this assumption is 
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often violated (Hooten et al., 2015; although see Ando & Tsay, 2010, for a 

method to relax the assumption). 

The Bayesian paradigm offers an alternative approach to model choice through 

consideration of the marginal likelihood of the data for a given model (Jeffreys, 

1961). This is sometimes known as the model evidence. Model comparison can 

then be conducted either by calculating Bayes’ Factors (Jeffreys, 1961) or 

posterior model weights. Although this approach is not new, it is often 

overlooked due to complexities in calculating the marginal likelihood, which we 

address in this paper by employing a straightforward and flexible approach 

using importance sampling.  

For a given model, Bayesian statistical inference estimates a posterior 

probability distribution,  |f y , for parameters  given data y . The posterior 

distribution satisfies: 

      
 

|
|

f f
f

f


 


y
y

y
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where  |f y   is the likelihood function (the distribution of the data given the 

parameters) and  f   is the prior distribution (representing our belief in the 

values of the parameters in the absence of data). The denominator,  f y , is 

the marginal likelihood, and is defined as the (multidimensional) integral of the 

numerator of equation (1) with respect to all parameters: 

      |f f f d


   y y   (4.2) 

This is only solvable analytically for very simple models, and so to avoid 

evaluation of  f y  it is common to derive an empirical estimate of the posterior 

distribution  |f y  using numerical techniques such as Markov Chain Monte 

Carlo (MCMC) (see e.g. Kass et al., 1997; Kéry & Royle, 2009). However, the 

marginal likelihood is fundamental to various forms of Bayesian model 

comparison, since it represents the probability density of the data given the 

model after integrating (averaging) over the parameter space (as opposed to 
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methods like AIC that ignore uncertainty in the parameters). For clarity we can 

make explicit that all inferences from equation (4.1) are in fact dependent on 

some model 𝑀 i.e. 

      
 
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Bayes’ Factors (Jeffreys, 1961) are defined as the ratio of the posterior odds to 

prior odds, which equates to the ratio of marginal likelihoods from the competing 

models: 
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Where 𝐵௜,௝ is the Bayes’ Factor for 𝑀௜versus 𝑀௝. Bayes’ Factors are very 

general, not requiring competing models to be nested, but are also naturally 

parsimonious, and will select simpler models when more complex models offer 

little or no gain in predictive power therefore acting as a fully automatic Occam’s 

razor (Smith & Spiegelhalter, 1980). An alternative approach to model 

comparison is to calculate posterior model weights, which can also be used as 

weighting probabilities in Bayesian model averaging (Hoeting et al., 1999; Kass 

& Raftery, 1995). Consider 𝐾 competing models denoted 𝑀ଵ, . . . ,𝑀௄. We can 

derive a posterior probability for model 𝑀௞ as: 
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where  | kf My is the marginal likelihood given in equation (4.2), and  kP M is 

the prior probability weight for model kM  such that  
1

1
K

k
k

P M


 . It is common 

to set   1
kP M K , thus assuming that there is no a priori reason to prefer one 

model over another (although this can be changed).  

It is sensible to apply the Occam’s window approach of Madigan & Raftery 

(1994) to select a subset of the models initially considered. If a model is far less 

likely a posteriori than the most likely model, it is discredited and should no 
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longer be considered thus reducing the number of models to average over and 

allowing straight forward communication of model uncertainty. 

The key challenge to using these approaches is the computation of the marginal 

likelihood terms. There exists a wide range of competing methods, e.g. the 

Gelfand-Dey estimator (Gelfand & Dey, 1994); harmonic mean (Newton & 

Raftery, 1994); bridge sampling (Meng & Wong, 1996) and importance 

sampling (see e.g. Geweke, 1989) among others.  Methods have been 

compared for varying situations (e.g. Bhat et al., 2010; Bos, 2002; Touloupou et 

al., 2018; Zeng et al., 2018) but there remains no definitive consensus on the 

optimal method to use. Here we advocate importance sampling (IS), which is 

straightforward to implement, and has been shown to work well compared to 

competing methods, in particular when dealing with large amounts of missing 

data, which is common in certain areas of ecological research (Mckinley et al., 

2020; Touloupou et al., 2018; Tran et al., 2014). 

Importance sampling 

IS belongs to a collection of Monte Carlo methods where a mathematical 

expectation with respect to a target distribution is approximated by a weighted 

average of random draws from another distribution (see e.g. Tokdar & Kass, 

2010). We follow the two-stage approach of Touloupou et al. (2018) in which a 

model is fitted to observed data via MCMC to collect posterior samples, which 

are then used to inform a tractable importance distribution from which we can 

estimate the marginal likelihood. Hence—with a slight abuse of notation—we 

draw 𝑛 random samples from the importance distribution,  i q  , for 1, ...,i n

, where  q  denotes the probability density function for the importance 

distribution. We then estimate the marginal likelihood of a given model as: 
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Posterior model weights for all competing models can then be estimated by 

substituting estimates from (4.6) into (4.5). For this approach to work well, we 

need to choose an importance distribution,  q  , that a) is straightforward to 
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sample from; b) has a tractable probability density function; and c) is a good, 

but overdispersed, representation of the posterior distribution. This last 

requirement can be difficult to achieve; Vehtari et al. (2015) developed the idea 

of Pareto-smoothed importance sampling (PSIS) to stabilize the importance 

weights when aspects of the target distribution are not well captured by the 

approximating distribution but here we illustrate that finite mixture modelling - a 

process which approximates a non-standard probability distribution through a 

mixture of simpler parametric distribution functions—can provide a flexible and 

easily implementable approach to finding a suitable form for  q  .  

Survival analysis 

Estimation of demographic parameters is key to any investigation in population 

biology of wildlife species (Sandercock, 2020) hence survival analysis remains 

a highly active area of research with the objective often being to understand 

factors that affect the timings of particular events of interest (commonly death) 

(Wang et al., 2019). Survival data are frequently censored, when 

measurements or observations are only partially known. For example, if some 

deaths occur after the study period has ended, then those individuals provide 

only partial information about mortality by surviving at least to the end of the 

study (so-called right-censoring). Similarly for left- and interval-censoring. 

Failing to account for missingness in the data correctly can lead to biased 

inferences and potentially ill-advised conservation management strategies 

(Martin et al., 2005).  

In survival analysis the problem of censoring is generally overcome by fitting a 

parametric model that adequately describes the data (Wilson, 1994), which can 

then be used to generate probabilities of events happening at some point during 

the censoring period. Many models have been developed for this purpose (e.g. 

Gompertz - Gompertz, 1825; Gompertz-Makeham - Makeham, 1867; Weibull - 

Pinder, Wiener, & Smith, 1978; logistic – Vaupel et al., 1979; Siler - Siler, 1979; 

used by e.g. Bronikowski et al., 2011; Damos & Soulopoulou, 2015; Hudson, et 

al., 2019; Gao & Dong, 2020) yet historically the Gompertz model was assumed 

to provide an adequate fit for most mammalian species (Pletcher, 1999; 

Kirkwood, 2015; although see Ronget et al., 2020). Best-fit parameter estimates 
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for a single model will often be compared between populations to determine 

survival differences as a result of genetic or environmental manipulation but the 

data from these different groups may be better fit by altogether different 

functions (Wilson, 1994). This realisation has led to researchers needing 

efficient and reliable methods to compare the fit of competing survival models 

(e.g. Larson et al., 2016). 

The aim of this paper is threefold: (1) to broaden the appeal of model 

comparison via marginal likelihoods (specifically estimated using IS) to 

ecologists and conservation biologists for whom imperfect detection and 

sampling methodologies often result in incomplete data; (2) develop case 

studies and provide open code that performs survival model comparisons; and 

(3) demonstrate through simulations the impact that varying degrees of 

censorship have on the inferences made. 

Material and methods 

Complete annotated code is available via our GitHub repository and can be 

found in Appendix 3. 

(https://github.com/davehudson67/BayesianModelComparisonsRCode). 

Survival Models 

Mortality trajectories describe the pattern of mortality through an organism’s 

lifespan, using age as a continuous predictor, with actual longevity an emergent 

property of avoiding, and then not avoiding, these age-dependent hazards. The 

use of mortality trajectories can allow greater precision and uncover subtle 

variations in patterns of age-specific mortality that can be missed when using 

comparisons of fixed rates of mortality in lumped age classes (Hudson et al., 

2019). We used four different mortality functions to simulate longevity data: (i) 

Exponential (Cox & Oakes, 1984); (ii) Gompertz (Gompertz, 1825); (ii) 

Gompertz Makeham (Makeham, 1867); and (iv) Siler (Siler, 1979). These 

functions are hierarchical in nature and vary in their complexity, allowing a 

range of different mortality curves to be described.  
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Table 4.1: Mortality functions used as proposal models to simulate and fit data. 

Model Mortality rate  | x  Parameters 

Exponential r  0r   

Gompertz  bxae  , 0a b   

Gompertz-Makeham bxae c  , , 0a b c   

Siler 1 2

1 2

b x b xa e c a e   1 2 1 2, , , , 0a a b b c  

The models in Table 4.1 define parameters and describe mortality in four 

different ways: (1) the exponential model assumes constant mortality 

throughout life, independent of age; (2) the Gompertz model describes mortality 

as exponentially increasing with age; (3) the Gompertz-Makeham is an 

extension of the Gompertz model that aims to capture near-constant early- to 

mid-life mortality, followed by exponentially increasing mortality due to 

senescence; and (4) the Siler model which extends the Gompertz-Makeham 

model with an additional declining early-life mortality—leading to “bathtub-

shaped” mortality curves. The basic forms of each model are conceptualised in 

Fig. 4.1. 

Figure 4.1: Possible mortality trajectories  where  is age and is a 

vector of mortality parameters to be estimated, resulting from the four models 

we compared. The set of parameters required by each model is shown in 

each plot.  
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We created custom probability distributions for the Gompertz, Gompertz-

Makeham and Siler functions that could be implemented in package NIMBLE 

(de Valpine et al., 2017) in R (R Core Team, 2019). Making use of the Lambert 

W function in a similar fashion to Jodrá (2009) enabled us to create a random 

number generator for the Siler model which we believe is new to the literature 

(see derivation and proof in chapter 3). We can use this approach to generate 

simulated survival times from Siler distributions without having to use discrete-

time approximations. 

Simulations 

Parameter Values 

We chose parameter values for each of the mortality models that generated 

distinctive shapes of mortality trajectory and were also representative of values 

from real populations. As a result we expect our posterior model probability 

analysis to find clear evidence for the data-generating model for sufficient data, 

and reduce to less complex models otherwise. The exponential model was 

simulated with constant mortality rate of 0.01 (Hydra - Schaible et al., 2015); the 

Gompertz model used values of 𝑎 ൌ  0.121 and 𝑏 ൌ  0.105 (bighorn sheep - 

Gaillard et al., 2004); the Gompertz-Makeham model used values of 𝑎 ൌ

 6.7 ൈ  10ି଺, 𝑏 ൌ  0.125 and 𝑐 ൌ  0.011 (Homo sapiens - Gurven & Kaplan, 

2007); and the Siler model used 𝑎ଵ  ൌ  expሺെ2ሻ, 𝑎ଶ  ൌ  expሺെ11ሻ, 𝑏ଵ  ൌ  1.2, 

𝑏ଶ  ൌ  0.11  and 𝑐 ൌ  expሺെ5ሻ (Homo sapiens - derived from Engelman, et al., 

2014). 

 

Uncensored data 

We randomly simulated a vector y of individual survival times for 10 different 

homogenous populations of varying size (n = 1000, 500, 100) using each of the 

four mortality functions described above. The exponential and Gompertz 

models can be simulated using simple inverse-transform sampling (Devroye, 

1986); the Gompertz-Makeham model uses the approach of Jodrá (2009), and 

the Siler model uses a novel approach that uses the ideas of Jodrá (2009)—see 

chapter 3 for details.  
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Right-censored data 

We randomly simulated a vector y of survival times for a homogeneous 

population (n = 500) and then adjusted the number of right censored individuals 

(censorship rate = 0.1, 0.2, 0.5). Censoring times were generated by randomly 

selecting an occasion between birth and death times. We then have two 

vectors: (1) indicating whether individuals are censored or not; and (2) a vector 

of times consisting of either times of death or the times the individual was last 

seen alive. This could represent individuals who survive beyond the end of a 

study or are lost during the study.  

Case study: banded mongoose survival 

We modelled life history data from a habituated population of wild banded 

mongooses (Mungos mungo) living on and around the Mweya Peninsula in 

Queen Elizabeth National Park, western Uganda. This population has been 

continuously monitored since 1995, with some individual records going back to 

1992 (for full details of the field site and population see Cant, Vitikainen, & 

Nichols, 2013). Each monitored group is visited for at least 20 minutes every 1–

3 days to record the presence and absence of individuals in each group. 

Animals disperse in same sex cohorts, usually after violent evictions, allowing 

death to be distinguished from dispersal as a cause for permanent absence 

from a group (Thompson et al., 2016). We only included records with a known 

birth date (removing 140 individuals from a total of 3380), and all death dates 

were modelled as right- or interval-censored. Individuals with a recorded death 

date were considered interval-censored with the lower boundary being 3 days 

prior to the recorded death date; individuals with no recorded death date were 

considered right censored from the last seen alive date.  

We then conducted two separate analyses: first we fitted four different mortality 

functions to the life-history data of 3,240 individuals assuming no sex 

differences and applied Occam’s Window to select any models with a log-

marginal likelihood value within log(20) of the best model (Kass & Raftery, 

1995). Second, we took the selected model(s) and fitted variations allowing sex-

specific differences in survival on each of the parameters in turn. Pups that died 

prior to being sexed were included in the model, with the unknown sex 
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becoming an additional latent variable inferred by the model. In this instance it 

is reasonable to assume that the probability of a pup not being sexed was 

independent of its sex, and as such we used a Bernoulli distribution to capture 

whether individuals were male or female, and used a Uniform(0, 1) prior 

distribution on the probability of being male. The ability to include missing 

covariate information and robustly characterise the uncertainty associated with 

the missing information emphasises the flexibility of the Bayesian approach and 

avoids data being unnecessarily discarded. For both analyses we also 

calculated the DIC and WAIC of each model and compared the subsequent 

ranking of the proposed models to the results from our IS approach. 

 

Process 

Step 1: Fit the proposal model 1M to the data y , estimating the posterior 

distribution  1| ,f My using MCMC.  

Step 2: Find a suitable importance distribution by fitting a series of multivariate 

finite Gaussian mixture models of increasing complexity to the posterior 

samples from Step 1. Find the best-fitting mixture model using e.g. BIC, and 

check that this gives a good approximation of the posterior density (see Fig. 2). 

To do this step, we used the R package “mclust” (Scrucca et al., 2016). It is 

sensible in practice to ensure that the importance distribution is overdispersed 

with respect to the target distribution to ensure that the variance of the 

importance sample estimator is finite; we do this here by using a “defensive 

mixture” (Hesterberg, 1995) of the form: 

        1 1 1| | 1 |Mq M pq M p f M      (4.7) 

where  1|Mq M is the p.d.f. of the finite Gaussian mixture model described 

above, and  1|f M  is the prior distribution. We set the mixing proportion 

0.95p  . 
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Step 3: Estimate the marginal likelihood of the model  1|f y M using the 

defensive mixture importance distribution and equation (4.6). 

Step 4: We then repeat Steps 1–3 for any number of alternate proposal models 

2,..., KM M  and compare the posterior model probabilities as defined in equation 

  (4.5). We use uniform prior model weights for each competing model such that

  1
kP M

K
 . The process for right-censored data is the same but requires an 

adjustment to the likelihood function (Kalbfleisch & Prentice, 2002). 

Figure 4.2: Example pairs plot of the posterior samples from MCMC (blue) 

showing sample values and distribution density from the importance 

distribution 𝑞ெሺ⋅ሻ (red) generated from the selected mixture model 

overlayed. This example is for the Gompertz model fitted to the entire 

banded mongoose data. 
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Priors 

We specified weakly informative exponential distributions (rate = 1) for the 

priors of the model parameters. Bayes’ Factors are sometimes criticised for 

their sensitivity to the priors used so we repeated the mongoose analysis using 

more diffuse exponential distributions (rate = 0.1); this had negligible effect on 

any outcomes of the model comparisons, so we present the Exp(1) results here. 

Results 

When applying Occam’s Window, we generate confidence intervals for the log-

marginal likelihood estimates using bootstrapping, and to be conservative we 

retain any model that has an upper confidence interval within log(20) (Kass & 

Raftery, 1995) of the lower confidence interval of the most supported model. 

Simulations 

For log marginal likelihood plots see Appendix 3. 

Uncensored data 

Across 120 simulated datasets, there was only one occasion when the data 

generating model was not selected as the ‘best fitting’ (see Table 4.2). The one 

occasion occurred with Gompertz-Makeham simulated data and a small 

population size ( 100n ). In this instance the data more closely resembled a 

Gompertz mortality curve given the small sample size; the data-simulating 

model was however within the threshold to be included in any further analysis. 

The distinctive shape of the exponential and Siler mortality models meant that 

there was only one occasion where any other model was retained by the 

Occam’s Window threshold. The Gompertz and Gompertz-Makeham models 

are much harder to accurately distinguish, particularly with small sample sizes, 

which explains the increased number of plausible models suggested within the 

threshold of the ‘best’ fitting, since simpler models can fit the data similarly well 

for certain parameter values. 
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Table 4.2: Results from repeated model comparisons of uncensored data. Each 

population size (n = 1000, 500, 100) simulated 10 times for each of the 4 data 

simulating models (Exponential, Gompertz, Gompertz-Makeham, Siler). 

Threshold represents the log marginal likelihood value within log(20) of the best 

fitting model. 

Data simulating model 
Population 

size 

Proportion of 
times correct 

model selected 
as ‘best’ fitting 

Simulating 
model within 

threshold if not 
chosen as ‘best’ 

Proportion of 
times alternate 

models are 
within threshold 

Exponential 1000 10/10 Best 1/10 

Exponential 500 10/10 Best 0 

Exponential 100 10/10 Best 0 

Gompertz 1000 10/10 Best 5/10 

Gompertz 500 10/10 Best 5/10 

Gompertz 100 10/10 Best 8/10 

Gompertz-Makeham 1000 10/10 Best 0 

Gompertz-Makeham 500 10/10 Best 4/10 

Gompertz-Makeham 100 9/10 1/1 9/10 

Siler 1000 10/10 Best 0 

Siler 500 10/10 Best 0 

Siler 100 10/10 Best 0 
 

Censored data 

The addition of censoring saw little change in the accuracy of our approach (see 

Table 4.3), the data generating model being selected as the ‘best’ fitting on 

every occasion (120 simulated datasets). The exponential and Siler models 

were almost exclusively selected without another model within the threshold 

value but as censorship increased with the Gompertz and Gompertz-Makeham 

simulated data so too did the variety of models suggested within the threshold.  
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Table 4.3: Results from repeated model comparisons of right censored data. 

Each censorship rate (0.2, 0.5, 0.7) simulated 10 times for each of the 4 data 

simulating models (Exponential, Gompertz, Gompertz-Makeham, Siler). 

Threshold represents the log marginal likelihood value within log(20) of the best 

fitting model, population size was kept constant throughout (n = 500). 

Data simulating model Censorship rate 

Proportion of times 
correct model 

selected as ‘best’ 
fitting 

Proportion of times 
alternate models are 

within threshold 

Exponential 0.1 10/10 0 

Exponential 0.2 10/10 0 

Exponential 0.5 10/10 1/10 

Gompertz 0.1 10/10 0 

Gompertz 0.2 10/10 0 

Gompertz 0.5 10/10 2/10 

Gompertz-Makeham 0.1 10/10 1/10 

Gompertz-Makeham 0.2 10/10 3/10 

Gompertz-Makeham 0.5 10/10 4/10 

Siler 0.1 10/10 0 

Siler 0.2 10/10 0 

Siler 0.5 10/10 0 

 

Case study: banded mongoose survival 

We applied the methodology to life history data from a long-term monitoring 

project of banded mongooses. NIMBLE allows for different sampling algorithms 

to be employed: we achieved satisfactory mixing and convergence of chains 

using a combination of slice and adaptive slice samplers on different 

parameters (see appendix 3 for details of R code). The initial mortality model 

comparisons using our IS approach clearly selected the Siler model as the best 

fitting model (see Fig. 4.3a) – this result was supported by both the DIC and 

WAIC scores which indicated the Siler model as substantially better than any 

other competing models (see table 4.2). As before, we employed Occam’s 

Window to exclude any competing models that have a difference in log marginal 

likelihood greater than log(20) , which is indicated on the plot with a dashed line. 

The predicted survival trajectory from the Siler model matched the Kaplan-Meier 
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plot of actual survival (Fig 4.3b.) very closely, further validating the result of the 

model comparison process. 

Figure 4.3 a. Comparison of log marginal likelihood values of 4 competing 

mortality models: Exponential, Gompertz, Gompertz-Makeham and Siler 

fitted to survival data from a population of banded mongoose. Dashed line 

represents a value log(20) less than the most supported model. Samples 

bootstrapped 1000 times to provide 95% confidence intervals. b. Kaplan-

Meier plot of mongoose survival with predicted survival curve from the most 

supported model from the comparison process overlaid. c. Mortality curve for 

the banded mongoose generated by the Siler model. 
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Table 4.4. Deviance Information Criterion (DIC) and Widely Applicable 

Information Criterion (WAIC) scores for competing models. Substantial support 

for one model over another is considered when the ∆DIC / ∆WAIC > 3 – this 

refers to the difference in DIC or WAIC score compared to the next best model. 

Model DIC Rank ∆DIC WAIC Rank ∆WAIC 

Siler 30493 1  30494 1  

Gompertz-Makeham 34109 2 3616 34159 2 3665 

Exponential 34156 3 47 34158 3 1 

Gompertz 34158 4 2 34160 4 2 

 

We then carried out an analysis of sex-specific survival differences within the 

mongoose data, carrying out a comparison of 6 variants of the Siler model: first 

with no sex-specific differences and then allowing sex-specific differences to 

occur on each of the 5 parameters in turn (Fig. 4.4a).  
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The best supported model was the Siler model with no sex-specific differences, 

no other model was within the required threshold, although a model allowing 

sex-specific differences in the 𝑐ଵ parameter was extremely close. To assess the 

Figure 4.4a: Comparison of log marginal likelihood values of 6 competing 

mortality models fitted to survival data from a population of banded 

mongoose; all are variants of the Siler model firstly with no sex-specific 

differences and then allowing sex-specific differences on each parameter in 

turn. Dashed line represents a value log(20) less than the best supported 

model. Samples bootstrapped 1000 times to provide 95% confidence 

intervals. Please note the collapsed Y-axis.  b. Kaplan-Meier plot of sex 

specific survival with survival curve from the most supported model from Fig. 

4a. overlaid. 
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model fit but accounting for the unknown sex individuals we took random 

samples from the posterior distributions for each missing sex variable, and then 

generated an empirical Kaplan-Meier curve for each set of samples. The points 

shown in Fig 4.5b are the posterior means from this posterior predictive K-M 

curve. The predicted survival trajectory from our parametric model fits very well 

to these data, further supporting the selected model as a reasonable descriptor 

of the data – we have omitted the mortality curve from this plot as it is the same 

as Fig 4.4c. 

We calculated DIC and WAIC scores for the competing sex-specific models 

(see Table 4.3) – the results from both methods were very similar to that of our 

IS approach. Neither DIC or WAIC suggested that the model allowing sex-

specific differences on 𝑐ଵ  performed substantially better than one that allowed 

no sex-specific differences, but both of these models scored considerably better 

than all other competing models which mirrors our IS approach. 

Table 4.5: Deviance Information Criterion (DIC) and Widely Applicable 

Information Criterion (WAIC) scores for competing sex-specific survival models. 

Models have been ranked and the ∆ score represents the difference to the next 

best mode. Substantial support for one model over another is considered when 

the ∆DIC or ∆WAIC > 3. 

Model DIC Rank ∆DIC WAIC Rank ∆WAIC 

Siler sex diff 𝑐ଵ 33432.66 1 2.46 33432.51 1 2.38 

Siler no sex diff 33435.12 2 2727.7 33434.89 2 2737.13 

Siler sex diff 𝑎ଵ 36162.82 3 3.98 36172.02 3 46.15 

Siler sex diff 𝑎ଶ 36166.80 4 7.29 36218.17 4 2.04 

Siler sex diff 𝑏ଵ 36174.09 5 39.39 36220.21 5 0.46 

Siler sex diff 𝑏ଶ 36213.48 6  36220.67 6  

 

Discussion 

In this chapter we have introduced an accurate and accessible method to carry 

out Bayesian model comparisons through the use of an efficient two-stage 

approach to the estimation of the marginal likelihood which can be used to 



87 

 

calculate posterior model weights. For ecologists and evolutionary biologists, 

this makes the now-familiar techniques of multi-model inference more 

accessible for Bayesian models. We have demonstrated the straightforward 

nature of the method and provide annotated code in the hope that it can be 

adapted to suit a wide range of situations and datasets. Our analyses have 

focused on survival trajectory analysis where datasets will often include missing 

or incomplete data. We have developed a novel random sampling algorithm for 

the Siler function (to accompany similar ones for other standard survival 

models) and implemented all of these ideas in the open-source R statistical 

language using the NIMBLE MCMC package. 

With no censoring the method correctly selected the data-simulating model in all 

but one of our replicated simulations, even when population size was small. We 

took parameters from previously published research on real populations where 

authors had selected a particular model to represent the survival or mortality 

(Gaillard et al., 2004; Gurven & Kaplan, 2007; Schaible et al., 2015), but for 

nested models the ability to select more complex model forms will also depend 

on the parameters used in the simulations. The shape of the exponential and 

Siler models are distinctive and it is perhaps no surprise that when simulating 

data from these models with appropriate parameters that on only one occasion 

is a rival model selected within threshold of the correctly selected simulating 

model. When the data are simulated from the Gompertz and Gompertz-

Makeham models with the chosen parameters, then there is more uncertainty in 

the model form, with simpler models providing similar fits in some cases. 

Makeham (1867) and Gompertz (1871) acknowledged that their original 

equations may not apply to the entire age range, but despite this many 

researchers have continued to use them in this way (e.g. Pietrzak et al., 2015). 

Although the 𝑐 parameter in the Gompertz-Makeham model represents age-

independent extrinsic mortality it will compete with the 𝑎ଵ parameter to describe 

the baseline mortality level. The results from the Gompertz and Gompertz-

Makeham simulations offer support for the idea that ignoring model uncertainty 

and simply selecting a single model to describe mortality could lead to 

overconfident inferences when compared to model averaging approaches; 

unless there is overwhelming evidence in favour of a single model over all 
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others compared (as is the case with the mongoose investigation carried out 

here).  

The naturally parsimonious nature of the method is shown by our investigation 

into the Gompertz-Makeham simulated data: although the GM model was 

correctly selected on every occasion the number of times other models fell 

within threshold was greater, when the survival and mortality curves for the 

competing models are very similar. The introduction of right-censoring to the 

simulated data mimics ecological data more closely and demonstrates the 

flexibility of this approach. As the censoring rate increases, a greater number of 

models are proposed within the threshold value of the most supported model 

indicating a greater degree of model uncertainty. Despite the loss of information 

as a result of censoring this method still correctly selected the data simulating 

model on every replication for these parameters. 

The mongoose data are censused in nature which greatly reduces the risk of 

under-estimating prematurity mortality but as the interval in recording/sampling 

increases in length then this risk will increase. We found only limited support for 

models that allow sex specific differences in survival with none of the alternative 

models returning a marginal likelihood estimate within the threshold to be 

included. The model allowing sex-specific variation in the 𝑐 parameter did come 

close suggesting there may be a difference in the underlying age-independent 

mortality but there is not enough information within the data to support the 

inclusion of the additional parameter. Although this is contrary to previous 

analyses (see Cant et al., 2016) where longevity was compared for individuals 

who had survived over a year our predictions are based on entire life history 

and match parametric tests on the same data (see appendix 3). We compared 

the IS results with more traditional model comparison techniques (i.e. DIC and 

WAIC) and in both the initial model and sex-specific investigations they 

supported the results of our IS approach. In the sex-specific analysis, DIC and 

WAIC selected a model allowing sex-specific variation on 𝑐ଵas the best fitting 

model but the difference in score suggested that the fit was not considerably 

better than the model that allowed no sex-specific variation. In this instance it 

would be left to the researcher to decide on which model would be most 
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appropriate. There remains no justified method to approximate model weights 

using DIC or WAIC scores (Hooten et al., 2015 - although see Hoeting et al., 

1999) meaning BMA is not possible when using these model selection 

approaches. The slight difference in the results of DIC/WAIC when compared to 

our IS approach suggest that they penalise model complexity (i.e. the number of 

parameters) differently although this requires further investigation. 

Predicted survival curves from the best fitting models match Kaplan-Maier plots 

of recorded survival (Fig. 4.3b and 4.4b) suggesting they are suitable predictive 

models. Had the situation arisen whereby the marginal likelihood value for any 

of the competing models was within the threshold of the best fitting model, then 

the posterior model probabilities calculated would be available for Bayesian 

model averaging, and this is much more likely to happen in smaller data sets 

with less information available to distinguish between models.  

Criticisms of the Bayes’ Factor approach often focus on their sensitivity to the 

choice of priors (Kass, 1993) and challenges in their calculation (Xie et al., 

2011). We found negligible differences with alternative priors when investigating 

the banded mongoose data but would recommend this safety check in any 

analyses. Efficient calculation of the marginal likelihood remains an ongoing 

area of research in statistics (Wang et al., 2018) but here we demonstrated the 

straightforward nature of our two-stage approach and the flexibility with which 

competing models can be compared. It also demonstrates the ability to model 

time of death on a continuous scale by assuming that all the data are censored 

to some extent (in addition to right censored individuals, those with a known 

dead record are considered interval censored). In this way we remove issues 

and inaccuracies relating to discretisation of the data. We are currently working 

on an extension of this method which can investigate capture-mark-recapture 

data which inherently contains greater proportions of missing data.  

Concluding remarks:  

Developments in computing power and software flexibility has meant that 

complex models are now routinely fitted using Bayesian approaches (Friel & 

Wyse, 2012). Ignoring model uncertainty can lead to inaccurate inferences 

(Parrish et al., 2012) which inevitably adds weight to arguments in favour of 
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model averaging but also focuses attention on the lack of agreement for which 

model comparison technique is most applicable. We have introduced a clear 

and flexible method to estimate the marginal likelihood via importance sampling 

which then allows simple and interpretable model comparison through the 

calculation of Bayes’ factors or posterior model probabilities. This approach is 

particularly efficient when dealing with missing data (Touloupou et al., 2018) 

and so lends itself to ecological studies, particularly survival analysis, where 

missingness and censoring are prevalent. 
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Chapter 5: Bayesian Model Comparison of Capture Mark Recapture 

data for Survival Analysis 
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Abstract 

Survival analysis is of increasing importance in wildlife research. The 

challenges of monitoring wild populations are often alleviated by using sampling 

strategies such as capture-mark-recapture (CMR), but this must be correctly 

accounted for to ensure accurate survival estimates. It is widely recognised that 

multiple models can have comparable fits to data leading to an increased use of 

multi-model inference techniques such as Bayesian model averaging (BMA). 

These techniques require efficient methods to compare models and having 

previously introduced a straightforward Bayesian approach that estimates the 

marginal likelihood based on importance sampling, here we extend this method 

to deal with CMR data – common within ecological research. Through a series 

of simulations we demonstrate the accuracy of the approach in identifying the 

data generating model in most situations but also uncover previously 

unreported difficulties of detecting ‘bathtub’ shaped mortality from CMR data. 

We explore different situations that affect the detection of the Siler function and 

comment on its use in ecological research. Finally, we carry out a case-study 

investigation of sex-specific mortality in a natural population of European 

badgers (Meles meles) using CMR data – we advocate the use of ‘bathtub’ 

shaped functions when analysing life-history data and comment that early-life 

mortality rates detected by CMR data are likely underestimates of true values. 

Introduction 

The modelling and accurate estimation of survival is critical to many areas of 

wildlife research (e.g. evolutionary pressures in the wild - Roulin et al., 2010; 

conservation of populations - Morris & Doak, 2002; wildlife disease - Benton et 

al., 2018). Emergence and re-emergence of a variety of pathogens of wild origin 

that cause disease in both humans and livestock (Ostfeld & Holt, 2004; Webster 

et al., 2006) has resulted in increased pressure to improve our understanding of 

the demography of wild populations. Any estimation of demographic parameters 

(e.g. survival, dispersal, fecundity) requires the analysis of individual 

observation data (Dey et al., 2019) which can be challenging to obtain due to 

the practical difficulties involved in monitoring wild populations (Delahay et al., 

2009). A common approach is to use capture-mark-recapture (CMR) which 

requires the repeated sampling of a population in which individuals are first 



93 

 

marked and released, and, at each subsequent occasion they are either 

recaptured, not detected, or recovered dead (Catchpole et al., 1998).  

Studying survival rates in this manner presents a number of key challenges. 

First, detection is often far from perfect so there are many occasions when we 

are unaware of individuals’ fates (Kery & Schaub, 2012). Second, the duration 

of monitoring projects often does not span the entire life of many individuals, 

resulting in relatively few records of old individuals (Metcalf et al., 2009). Third, 

a proportion of individuals are likely to have unknown times of birth and/or death 

(Frederiksen et al., 2004) and fourth, juveniles are especially hard to monitor 

resulting in imprecise records of early-life deaths making survival estimates for 

this age category particularly challenging. To ensure survival estimates are as 

accurate as possible it is essential to consider the observation process in any 

analysis of CMR data. The prevailing approach is to jointly estimate survival and 

recapture probabilities using an open population capture-recapture model such 

as a Cormack-Jolly-Seber (CJS) model (Cormack, 1964; Jolly, 1965; Seber, 

1965 and see Lebreton et al., 1992). Models of this class utilise information 

from individual capture histories generated by the CMR process to estimate 

survival rates which can then be compared among groups or against 

environmental conditions to uncover subtleties within demographic ecological 

processes. CJS models rely on a number of assumptions that can bias 

estimates, some of which can be addressed through study design: marks/tags 

must not be lost; capture should be instantaneous; individuals are identified 

without error; individuals are a random sample from the population. There are a 

further set of assumptions that can appear as a consequence of model 

specification (e.g. individuals from a specific age class have the same survival 

and recapture probabilities) but most can be dealt with in the modelling process 

(e.g. Pradel et al., 1997). The frequency of resampling occasions will often 

depend on the research question or target species but as mortality and 

permanent emigration are generally confounded, survival can only be reported 

as apparent survival which will be lower than true survival when permanent 

emigration is non-zero (Kery & Schaub, 2012 although see Schaub & Royle, 

2014). The most appropriate method to achieve unbiased estimates of survival 

remains an area of ongoing debate (see e.g. Abadi et al., 2013; Cooch et al., 
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2012) particularly when inferring demographic parameters (Gimenez & 

Choquet, 2010).  

Ecological data, and in particular CMR data, is plagued by varying degrees of 

unknown measurement error and missingness (Cressie et al., 2009) which if not 

accounted for correctly can result in biased estimates of population parameters 

and cause general problems with inference to the target population (Williams et 

al., 2002). Within survival analysis this usually manifests in the form of 

censorship where measurements or observations are only partially known (see 

Fig.5.2 for further explanation): some births will occur before the study begins 

(left truncation); some deaths may occur after the study has ended (right 

censored); some deaths occur between a certain interval and we lack precise 

information (interval-censored). Although records from individuals that fall into 

one of these 3 categories suffer from missing information they can all contribute 

to survival estimates albeit in different ways. Bayesian approaches 

accommodate uncertainty from missing and/or incomplete data in a natural way 

(Daniels & Hogan, 2008) and the recent proliferation of Markov Chain Monte 

Carlo (MCMC) approaches and software makes it possible to analyse complex 

likelihood and prior structures. The Bayesian approach has thus become the 

default for many applied problems (Fragoso et al., 2018) particularly for the 

analysis of ecological systems (Clark et al., 2005). It is common within survival 

analysis to fit a parametric model to the data to overcome problems associated 

with censorship (Wilson, 1994) and there now exists a variety of survival 

trajectory models that have been applied variously to different species (e.g. 

Gompertz - Gompertz, 1825; Gompertz-Makeham - Makeham, 1867; Weibull - 

Pinder, Wiener, & Smith, 1978; logistic – Vaupel et al., 1979; Siler - Siler, 1979; 

used by e.g. Bronikowski et al., 2011; Damos & Soulopoulou, 2015; Hudson, et 

al., 2019; Gao & Dong, 2020) 

Multiple models can often provide comparable descriptions of the distributions 

that may have generated the observed data (Fragoso et al., 2018) and for these 

reasons multi-model inference (Burnham & Anderson, 2002) has become a 

widely accepted approach. Incorporating model uncertainty has broadened the 

range of questions ecologists can address and deepened our understanding of 

complex ecological systems (Hobbs et al., 2006), but requires efficient methods 
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to compare the fits of competing models. Adopting a Bayesian approach to 

model comparison methods is well supported (e.g. see Berger & Pericchi, 2001) 

and has led to the use and development of methods such as the deviance 

information criterion (DIC) (Spiegelhalter et al., 2002), the Watanabe-Akaike or 

widely-applicable information criterion (WAIC) (Watanabe, 2010), reversible 

jump MCMC (RJMCMC) (Green, 1995) and Bayes Factors (Kass & Raftery, 

1995). Despite the attention received there is yet to be a consensus on the most 

appropriate method to use and we point the reader to several reviews; see 

Alston et al., 2004; Hooten et al., 2015 for more in depth comparisons.  

Bayes’ Factors (BF) are defined as the ratio of posterior odds to prior odds 

which equates to the ratio of marginal likelihoods from competing models if the 

models are equally supported a priori. The complexity of calculating the 

marginal likelihood has resulted in comparatively limited use of BF within the 

ecological literature as researchers lean towards more off-the shelf solutions 

such as DIC which are simpler to compute although not suitable for all types of 

model. The interpretation of BF with respect to support for particular models 

remains contentious (Hoijtink et al., 2019). An alternative approach is to use the 

marginal likelihoods to calculate posterior model weights which can be used as 

weighting probabilities in Bayesian model averaging (BMA) leading to lower risk 

predictions that can be averaged over all considered models (Fragoso et al., 

2018). The marginal likelihood is fundamental for model comparisons when 

calculating either BF or posterior model weights but its calculation is non-trivial. 

This has led to the development of many competing methods for its estimation 

e.g. Gelfand-Dey estimator (Gelfand & Dey, 1994), harmonic mean (Newton & 

Raftery, 1994), bridge sampling (Meng & Wong, 1996) and importance 

sampling (see e.g. Geweke, 1989) but there remains no consensus as to which 

should be considered the preferred option. In previous work analysing census 

data, we implemented the straightforward two-stage approach of Touloupou, et 

al. (2018), demonstrating the flexibility and efficiency of Importance sampling 

(IS) for marginal likelihood estimation particularly when dealing with missing 

data (See Chapter 4 and Touloupou et al. (2018) for full details of the 

algorithm). Here we extend our IS approach for CMR data in an effort to further 

broaden its appeal to ecologists and conservation biologists. We first 
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demonstrate the efficiency of the approach through simulations and then its 

flexibility with a case study investigation of long-term monitoring data from a 

wild population of European badgers (Meles meles) naturally infected with 

bovine tuberculosis. 

Materials and Methods 

Survival Models 

The basis for our approach is to model time of death as a latent random 

variable in continuous time that we assume can be described by one of four 

different mortality models (Table 5.1).   

Table 5.1: Mortality functions used as proposal models to simulate and fit data. 

Model Mortality rate  | x  Parameters 

Exponential r  0r   

Gompertz  bxae  , 0a b   

Gompertz-Makeham bxae c  , , 0a b c   

Siler 1 2

1 2

b x b xae c a e   1 2 1 2, , , , 0a a b b c  

The models in Table 5.1 define parameters and describe mortality in four 

different ways: (1) the exponential model (Cox & Oakes, 1984) assumes 

constant mortality throughout life, independent of age; (2) the Gompertz model 

(Gompertz, 1825) describes mortality as exponentially increasing with age; (3) 

the Gompertz-Makeham (Makeham, 1867) is an extension of the Gompertz 

model that aims to capture near-constant early- to mid-life mortality, followed by 

exponentially increasing mortality due to senescence; and (4) the Siler model 

(Siler, 1979) which extends the Gompertz-Makeham model with an additional 
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declining early-life mortality—leading to “bathtub-shaped” mortality curves. The 

basic forms of each model can be seen in Fig. 5.1. 

Importance sampling for model comparisons 

For a more detailed explanation of the theory behind the Importance Sampling 

method we refer the reader to the previous chapter; here we focus on a step-by-

step guide. To summarise, first consider for a given model M , standard 

Bayesian statistical inference estimates a posterior probability distribution 

 |f y , for parameters  given data y . The posterior distribution satisfies: 

      
 

|
|

f f
f

f | M

 





 


y
y,

y
  (5.1) 

where  |f y  is the likelihood function (the distribution of the data given the 

parameters) and  f   is the prior distribution (representing our belief in the 

values of the parameters in the absence of any data). The denominator, 

 f My| , is the marginal likelihood and defined as the (multidimensional) 

integral of the numerator of equation (5.1) with respect to all parameters 

      | | |f f f d


      y y  (5.2) 

Figure 5.1: Possible mortality trajectories  where  is age and is a 

vector of mortality parameters to be estimated, resulting from the four models 

we compared. The set of parameters required by each model is shown in 

each plot. 
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and represents the probability density of the data given the model, averaging 

over the parameter space. This is in contrast to criteria such as AIC that fix the 

parameters at the maximum likelihood estimates and thus ignore parameter 

uncertainty. The posterior distribution is only solvable analytically for very 

simple models so it is common to sample from the posterior distribution using 

numerical techniques such as Markov Chain Monte Carlo (MCMC) (see e.g. 

Kass et al., 1997; Kéry & Royle, 2009) and this forms step one: 

Step 1: Fit a proposal model 1M to the data y , estimating the posterior 

parameter distributions  1| ,f My using MCMC. 

Step 2: Fit a series of multivariate finite Gaussian mixture models of increasing 

complexity to the posterior samples from Step 1 and find the best-fitting model 

using e.g. BIC and check that this gives a good approximation of the posterior 

density. The exact form of the distribution is unimportant as long as it is a good 

representation of the posterior; hence, it is appropriate to use BIC to choose a 

parsimonious but well-fitting distribution. We make use of R package mclust 

(Scrucca et al., 2016) to do this. It is sensible in practice to ensure that the 

importance distribution is overdispersed with respect to the target distribution to 

ensure that the variance of the importance sample estimator is finite; we do this 

here by using a “defensive mixture” model (Hesterberg, 1995) of the form: 

        1 1 1| | 1 |Mq M pq M p f M     , (5.3) 

where  1|Mq M is the p.d.f. of the finite Gaussian mixture model described 

above, and  1|f M  is the prior distribution. We set the mixing proportion 

0.95p  . 

Step 3: Take 𝑛 random samples from the defensive mixture distribution (5.3), 

and then estimate the marginal likelihood of the model  1|f y M  using the 

defensive mixture importance distribution as 

      
 

1 1
1

1 1

| ,1ˆ
n

i i

i i

f M f |M
f |M

n q |M

 


 
y

y . (5.4) 
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Step 4: We then repeat Steps 1–3 for any number of alternate proposal models 

2,..., kM M  and compare the posterior model probabilities 

      

   
1

|
|

|

k k
k K

i i
i

f M P M
P M

f M P M





y

y
y

. (5.5) 

We use uniform priors for each competing model such that   1
kP M

K
 .  

Incorporating the CMR sampling process 

Extending our previous work, the sampling process inherent in any CMR model 

must be correctly incorporated within the likelihood function. Individual capture 

histories provide information on the number of times each individual is captured 

( iy ). If we assume a constant capture probability p , given that an individual is 

alive at some time point t , then the likelihood reduces to a function of iy  and 

tM , where tM is the final time point of the study. If we then assume that 

capture events occur at each discrete time point t (in units of 1), then the 

likelihood contribution for individual iwith known birth and death times, tBand 

tDrespectively can be written as: 

 
min( , )(1 ) ( | )i i i ii tD tB tM tB yy

i ip p f tD tB             (5.6) 

where the notation x   corresponds to rounding 𝑥 down to the nearest integer. 

Here ( | )i if tD tB  is the p.d.f of the survival distribution. This is of the general 

form: 

 ( | , , ) ( | )i i i i iP y tD tB tM f tD tB    (5.7) 

If survival time is right-censored then the only information we have is itL , the 

time point when the individual was last captured. In these cases we can model 

itDas a latent variable and the likelihood contribution becomes: 

 ( | , , ) ( | )
i

i i i i i i

tL

P y tD tB tM f tD tB dtD


    . (5.8) 
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We can numerically estimate (5.8) by including itD as a latent variable in our 

MCMC. Alternatively, this integral can be calculated analytically. In our analyses 

we model time of death as a continuous variable and consider all the data to be 

censored - adjusting the likelihood accordingly. Those individuals recovered 

dead at time itU are considered interval censored with i i itL tD tU   requiring 

only a minor adjustment to (5.8): 

 ( | , ) ( | )
i

i

tU

i i i i

tL

P y tD f tD dtD   . (5.9) 

Fig.5.2 represents the different individual scenarios that appear in our analysed 

dataset: individuals 1, 3 and 4 are captured and identified as cub (which 

enables time of birth to be estimated and an age calculated); individual 2 dies 

prior to being captured and so contributes nothing to survival estimation; 

individuals 1 and 4 are both considered right censored as we only have 

information about survival up to a certain point (last captured alive). Individual 3 

contributes the most information and is considered interval censored (died at 

some point between interval 6 and 7). 

 

Figure 5.2: Representation of the types of censorship evident in the badger 

dataset. Individual 1 and 4 are both right censored, individual 3 is interval 

censored, individual 2 is never recorded. 
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Our analysis is split into 2 sections: First, we generate survival data from four 

different known distributions and format it to represent CMR data with known 

recapture probability. Any records where the individual has died prior to being 

captured are removed from the analysis to correspond with real data where 

these individuals would never have been recorded. Using our IS approach we 

then analyse the remaining capture histories, comparing the fits of the four 

mortality models to identify the data generating model. Second, we analyse 

CMR data originating from a wild population of European badgers fitting and 

comparing a variety of models to investigate sex-specific differences in survival 

and mortality. 

 

Simulations 

Parameter Values 

We chose parameter values for each of the mortality models that generated 

distinctive shapes of mortality trajectory and were also representative of values 

from real populations. As a result we expect our posterior model probability 

analysis to find clear evidence for the data-generating model for sufficient data, 

and reduce to less complex models otherwise. The exponential model was 

simulated with constant mortality rate of 0.01 (Hydra - Schaible et al., 2015); the 

Gompertz model used values of 𝑎 ൌ  0.121 and 𝑏 ൌ  0.105 (bighorn sheep - 

Gaillard et al., 2004); the Gompertz-Makeham model used values of 𝑎 ൌ

 6.7 ൈ  10ି଺, 𝑏 ൌ  0.125 and 𝑐 ൌ  0.011 (Homo sapiens - Gurven & Kaplan, 

2007); and the Siler model used 𝑎ଵ  ൌ  𝑒𝑥𝑝ሺെ2ሻ, 𝑎ଶ  ൌ  𝑒𝑥𝑝ሺെ11ሻ, 𝑏ଵ  ൌ  1.2, 

𝑏ଶ  ൌ  0.11  and 𝑐 ൌ  𝑒𝑥𝑝ሺെ5ሻ (Homo sapiens - derived from Engelman, et al., 

2014). 

Capture-Mark-Recapture data 

We randomly simulated a vector y  of individual survival times for 10 different 

homogenous populations of varying size (n = 1000, 500) using each of the four 

mortality functions. The exponential and Gompertz models can be simulated 

using simple inverse-transform sampling; the Gompertz-Makeham model uses 

the approach of Jodrá (2009), and the Siler model uses a novel approach that 
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we previously introduced (see Chapter 4) that also uses the ideas of Jodrá 

(2009). 

We then set a population recapture rate ( 0.7p  ) and dead recovery rate (

0.1r  ) to create a capture history for each individual and removing any that 

failed to be captured (i.e. dying before an alive capture occasion - these 

individuals would never have been recorded in a wild situation). This resulted in 

a series of vectors corresponding to each individual: 

𝒚 Number of alive captures 

𝒕𝑴 Maximum possible number of captures (from birth until dead recovery or 

end of study) 

𝒕𝑳 Last alive capture occasion 

𝒕𝑼 Recovered dead occasion 

Case Study 

We used data from badgers trapped between 1982 and 2020 inclusive. The 

badger population is sampled using live traps on (usually) four occasions per year 

with all trapped badgers anaesthetized and subjected to several diagnostic tests 

for bTB before being released (for a detailed account of the trapping and testing 

procedures see Wilkinson et al., 2000). On first capture, each badger is given a 

unique tattoo so it can be identified without error on subsequent capture 

occasions. We used badgers of known age (i.e. badgers caught and identified as 

cubs or yearlings which is readily identifiable from size, pelage and tooth wear; 

(Delahay et al., 2013) and then completed a series of different analyses. First, we 

fitted the 4 mortality models to the entire data set; then, using the best fitting 

model(s) we then allowed sex variation on combinations of parameters to 

determine a set of one or more models that describes sex differences (or 

similarities) in lifetime survival and mortality trajectories.  
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Results 

Simulations: 

In the analysis of the exponential and Gompertz simulated survival data our 

approach correctly selected the data generating model on every occasion at 

both population sizes with no other model coming within the threshold to be 

considered. The Gompertz-Makeham model was correctly selected as the best 

fitting model on every occasion for the Gompertz-Makeham simulated data at 

both population sizes but the Siler model was suggested as a plausible option, 

coming within the threshold of the best fitting model on 5 occasions, once with a 

population of 500 and 4 times with a population of 1000. The accuracy of these 

results contrasts with the investigation of the Siler simulated data. The Siler 

model was only selected as the optimal model on one occasion out of the 20 

replications. With population size at 500 individuals the Siler model was within 

the threshold of the optimal model on only 3 occasions and with a population of 

1000 the Siler model was within threshold on 7 occasions (Gompertz-Makeham 

selected as the optimal model on every occasion). 

To investigate the detection of the Siler model further we adjusted the dead 

recovery rate (r = 0.4, 0.6, 0.8; p = 0.7; n = 1000) and found it to have little 

impact on the Siler model being selected as the optimal model. At all dead 

recovery rates the Gompertz-Makeham was consistently favoured with the Siler 

model being within threshold on 4, 6 and 5 occasions at recovery rates of 0.4, 

0.6 and 0.8 respectively. We then adjusted the recapture probability (p = 0.4, 

0.6, 0.8; r = 0.1; n = 1000) and again the Gompertz-Makeham model was 

favoured on all but one occasion at p = 0.6 and one occasion at p = 0.8. The 

Siler model was within threshold on 1, 5 and 7 occasions at recapture rates of 

0.4, 0.6 and 0.8 respectively. Throughout these simulations the Gompertz-

Makeham model was chosen as the best fitting model or at least suggested 

within the threshold of the optimal model, suggesting that the early-life mortality 

changes were failing to be detected. We elevated the 1a  parameter to 

accentuate the early-life downtick in mortality and when set at 0.2 (originally 

0.1353) the Siler model was within the threshold of the optimal model on every 

occasion and selected as the optimal on 5 occasions (dead recovery = 0.1, 
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recapture = 0.7). We then set 1a  at 0.25 which resulted in the Siler model being 

selected as the optimal model on every occasion and the Gompertz-Makeham 

being within threshold on 6 occasions. Finally we adjusted the 𝑏ଵ parameter 

(originally 1.2) by 0.5 thus increasing and decreasing the rate at which early life 

mortality decays. With the rate decreased the Siler model was selected as the 

optimal model on every occasion (with no other model within threshold) and 

with the rate sped up the Gompertz-Makeham model remained the preferred 

model throughout with no other model within threshold. 

Case Study: Badger Analysis 

We initially compared the fit of the four different mortality models to all the 

badgers together (n = 2617) and found the best fitting model to be the 

Gompertz-Makeham with the Siler model selected within the threshold. Having 

demonstrated that the Siler model is difficult to detect and yet in this case still 

within the threshold value of the best fitting model, our further analyses used the 

Siler model to allow the opportunity for early life mortality patterns to be inferred. 

We therefore investigated sex specific differences in lifetime mortality 

trajectories using the Siler model. It is worth noting that as the parameters 𝑎ଵ 

and 𝑏ଵreduce towards zero the shape of the Siler becomes more similar to a 

Gompertz-Makeham shape, so by using the Siler model we are not preventing 

the data from fitting this shape. We used a regression style model construction 

to allow parameters to vary according to sex, for example: 

 1 1 2 1 2

1

~ Siler( , , , , )

log( ) × sex

M
i

M
i

tD a a a b b c

a 




, (5.10) 

where tD is actual time of death on a continuous scale and described by the 

Siler model allowing sex specific variation on  𝑎ଵ. The parameter 𝑎ଵ
ெ is modelled 

on the log scale to ensure the resulting parameter is positive and represents a 

multiplier of any difference between males and females in the parameter 𝑎ଵ. We 

constructed the 32 different models that allow sex specific variation on every 

possible combination of the 5 parameters, and compared the resulting log 

marginal likelihoods, see Fig.5.3. 
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The best fitting model chosen by the importance sampling approach was one 

allowing for sex specific variation on c1, suggesting that there is evidence for an 

underlying age independent difference in mortality between males and females. 

Several models were within the threshold of the best fitting model but the Siler 

model with no sex-specific variation was dismissed, suggesting that there is 

strong evidence for some sex specific variation in mortality across the lifespan 

of badgers. We calculated DIC and WAIC scores for all models compared (see 

Table 5.2) and found WAIC to be in support of the results of our IS approach – 

no clear ‘best model’ and multiple models within 3 points of one another. The 

DIC scores were slightly different and suggested strong support for a model 

allowing sex-specific variation on 𝑏ଶ – a model that in all other model 

comparisons had performed poorly. 

Figure 5.3: Log marginal likelihoods for all proposed models used to fit the 

badger data. Dotted line represents a value log(20) from the lower credible 

interval of the most supported model: following Kass & Raftery (1995) we 

consider all models lying above this threshold to be credible models that can 

be used in BMA. 
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Table 5.2: Deviance Information Criterion (DIC) and Widely Applicable 

Information Criterion (WAIC) scores for competing models. Substantial support 

for one model over another is considered when the ∆DIC / ∆WAIC > 3 – this 

refers to the difference in DIC or WAIC score compared to the next best model. 

All of the competing models are variants of the Siler model with each allowing 

sex specific variation on a combination of parameters. 

Parameter DIC Rank ∆DIC WAIC Rank ∆WAIC 
a1  42434.02  12  0.46  42469.48  1   
c1  42438.32  15  2.01  42469.54  2  0.07 
a1c1  42390.43  4  21.01  42469.88  3  0.34 
a1a2  42433.56  11  9.26  42469.90  4  0.02 
a1b1  42447.28  17  2.55  42470.34  5  0.44 
a2b1c1  42453.58  19  3.62  42470.44  6  0.10 
a1a2b1c1  42417.14  8  0.06  42470.55  7  0.11 
a1a2b1  42456.93  23  0.96  42470.76  8  0.21 
a1b2  42457.26  24  0.32  42470.76  9  0.00 
a1b1c1  42404.84  5  14.41  42470.84  10  0.08 
a2b2c1  42444.73  16  6.40  42471.12  11  0.28 
a2c1  42461.53  26  3.09  42471.21  12  0.09 
a1a2c1  42455.39  20  1.81  42471.25  13  0.05 
b1c1  42458.44  25  1.19  42471.32  14  0.07 
b2c1  42455.50  21  0.11  42471.52  15  0.19 
a2b1b2c1  42449.95  18  2.67  42471.80  16  0.28 
b1b2c1  42424.30  10  6.92  42471.88  17  0.09 
a1b1b2  42455.97  22  0.48  42471.92  18  0.04 
a1a2b1b2  42436.31  14  1.05  42472.05  19  0.12 
a1b1b2c1  42369.42  3  91.83  42472.61  20  0.57 
a1a2b2  42417.38  9  0.25  42472.63  21  0.02 
ALL  42417.08  7  7.01  42473.06  22  0.43 
a1a2b2c1  42277.59  2  81.08  42473.84  23  0.78 
a2b1b2  42470.07  28  2.03  42477.85  24  4.01 
a2b2  42468.05  27  6.52  42478.85  25  1.00 
b1b2  42477.55  29  7.48  42487.98  26  9.12 
b1  42435.26  13  1.24  42489.05  27  1.07 
a2b1  42410.06  6  5.22  42493.86  28  4.81 
a2  42492.04  31  13.05  42494.31  29  0.45 
No sex diff.  42478.99  30  1.44  42516.19  30  21.88 
b2  42196.52  1    42521.50  31  5.31 
a1b2c1  42700.47  32  208.43  42756.72  32  235.21 

 

We then used three different approaches to produce survival and mortality 

trajectories (Fig. 5.4). First, we chose the most complicated model that was 

within threshold of the best fitting model (this was the full model allowing sex 

specific variation on all parameters); second we chose the outright optimal 
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model (one that allows sex specific variation on 𝑐) and finally we conducted 

Bayesian model averaging across all models that were within threshold of the 

best fitting model. There are negligible differences between the approaches in 

the shape of the survival and mortality curves for both sexes, with all indicating 

sex specific variation across the entire lifetime trajectory.  

Figure 5.4: Sex specific predicted (a) Survival and (b) Mortality curves using 

models selected using our Importance sampling approach. Colour indicates 

different sex and the model selection method: Most complicated model alone 

(Siler model allowing sex specific variation on all parameters); the most 

supported model (Siler model allowing sex specific variation on ); 

Bayesian model averaged (parameters averaged according to posterior 

model probabilities across all models within log(20) of the most supported 

model). 
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The only major difference lies within the male mortality curves, here the Siler 

model with sex specific variation on all parameters suggests a reduced rate of 

senescence as compared to the other approaches. This is the only model which 

allowed any variation on the 𝑏ଶ parameter which primarily describes this region 

of the curve. Whilst analysing the badger data we also studied the underlying 

structure of the Siler model to detect the dynamics of the model parameters. 

The correlated nature of some of the parameters suggests that the parameters 

compete with one another to describe the patterns of survival and mortality. 

This is most evident between 𝑎ଵ, which describes ‘at birth’ mortality rates and 𝑐, 

which describes age-independent mortality (see Fig.5.5). 

 

 

Figure 5.5: Pairs plot of 𝑎ଵ and 𝑐 MCMC samples when fitting a Siler model 

with no sex-specific variation to the badger data, colour representing the 2 

chains run. 
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Discussion 

In this chapter we have developed a straightforward Bayesian approach for the 

estimation of the marginal likelihood that we introduced in chapter 4 and made it 

applicable to CMR data which is common in ecological research. We openly 

provide all code in the hope that this will allow researchers to adapt it to suit 

individual requirements and research questions. 

Through the investigation of simulated data we demonstrated the accuracy of 

the approach particularly when the shape of the mortality and survival curves 

are distinctive and there is little change in early life mortality (i.e. when 

simulating from the exponential and Gompertz models). The impacts of the 

CMR sampling process become more apparent when attempting to detect early 

life changes in mortality. Any early life downtick in mortality is suppressed by 

individuals failing to survive long enough for an initial capture event to take 

place, so their existence goes unrecorded and initial mortality estimates are 

underreported. The resulting lack of signal within the data in support of bathtub 

shaped mortality trajectories explains why our approach had difficulty in 

correctly selecting the Siler model as the data generating model, instead 

choosing the Gompertz-Makeham. This result has wider implications for survival 

analysis when using CMR data and offers a potential explanation as to why 

bathtub shaped mortality (e.g. Siler model) is rarely reported in wild systems, 

with simpler models generally being favoured (e.g. Dukas, 2008). We 

demonstrated that increasing recapture and/or dead recovery rates (even to 

levels unlikely to be achievable in the wild) had little impact on the detection of 

early life mortality changes, suggesting that truly accurate descriptions of 

lifetime mortality requires detailed information on juvenile survival which 

remains difficult to achieve in the field (Delahay et al., 2009). Directly adjusting 

the parameters that describe early mortality (𝑎ଵ and 𝑏ଵሻ allows a deeper 

understanding of the challenge involved in inferring the Siler parameters. An 

increase in the initial mortality rate 𝑎ଵ serves to extend the length of time that 

the early life downtick in mortality lasts, this allows some individuals to survive 

long enough to be captured and therefore adds information that can inform 

parameter estimates. A similar effect can be seen when adjusting 𝑏ଵ- the Siler 

model only became the optimal model when the 𝑏ଵ parameter was reduced, not 
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increased. Again, this serves to elongate the shape of the mortality decrease 

through early life and thus increases the chance of individuals surviving long 

enough to be captured. When analysing data from natural populations it is 

important to remember that the two parameters will interact so there are no set 

limits which can be deemed truly detectable and likely to infer a Siler or bathtub 

shaped mortality curve. To accurately estimate the dynamics of early life 

mortality it is crucial to consider the frequency of capture events in conjunction 

with the speed of life history of the target species. Researchers will need to 

balance data collection with the potential negative impacts of repeated captures 

if they are to accurately estimate the shape of early life survival and mortality. In 

some simple situations it may be possible to utilise remote/ less invasive 

recording/capture methods (e.g. camera traps, photographic ID, radio frequency 

identification) to alleviate potential negative impacts of increased captures but 

often the research question will require physical capture (e.g. to carry out 

diagnostic tests on the individual). 

A further complication associated with the Siler model is caused by the 

correlated structure of the model parameters and in particular 𝑎ଵ and 𝑐. These 

two parameters are often highly correlated (see Fig. 5.5) and compete against 

each other to describe underlying mortality levels albeit with differing 

explanations: set at birth (in the case of 𝑎ଵ) or acting across entire lifetime but 

independently of age (in the case of 𝑐). Distinguishing between the origins of 

survival and mortality rates requires high quality data and the issue will have 

greatest impact when information regarding births and early life deaths is 

sparse, as is often the case with CMR data. When carrying out model 

comparisons in these instances it is unsurprising that the Gompertz-Makeham 

model is chosen over more complicated bathtub shaped models (here the Siler 

model) as even moderate levels of early life mortality can be absorbed by the 

age-independent parameter 𝑐 rendering the additional parameters redundant.  

We warn against dismissing mortality models that ignore the potential for early 

life variation, for accurate descriptions of mortality and survival trajectories we 

recommend bathtub shaped models be considered as a matter of course when 

analysing lifetime CMR data. Should analysis identify only subtle changes in 
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early life mortality then it is feasible that these changes are being underreported 

and more complicated models are dismissed speciously. Pre-capture mortality 

has been estimated in the past (e.g. Cheesman et al., 1987; Harris & Cresswell, 

1987) which could be readily incorporated into Bayesian analyses with 

biological justification as a result of our investigations here. 

When analysing the badger data the Gompertz-Makeham model was identified 

as optimal but the Siler model remained within the threshold to be included and 

returned a posterior model probability of approximately 10%. For the reasons 

outlined above we chose to use the Siler model to investigate sex specific 

differences in mortality which although more complicated could still allow a 

Gompertz-Makeham shape to be described if necessary (when parameters 𝑎ଵ 

and 𝑎ଶ reduce towards 0). We found considerable evidence for sex specific 

variation in mortality with all 23 of the models within threshold of the best fitting 

model allowing sex specific variation on at least one parameter and a Siler 

model with no sex variation dismissed with a posterior model probability of zero. 

Our results from the badger analysis matches previous investigations into sex 

specific differences in badgers (Rogers et al., 1997; Hudson et al., 2019). The 

results from our IS approach were mirrored by the WAIC scores but the DIC 

scores were less consistent. DIC has faced some criticism in the literature, and 

is known not to work well for some types of model due to the fact it relies on 

point estimates of the parameters, whereas WAIC uses measures that average 

over the posterior distribution, and our posterior model weights use the marginal 

likelihood averaged over the prior distribution (see e.g. Plummer, 2008; Celeux 

et al., 2006 and summarised in Spiegelhalter et al., 2014). We investigated the 

posterior parameter distributions of the model with sex-specific variation 

included and found some evidence of multi-modality (see Appendix 4 for an 

example), suggesting that a single point estimate (i.e. the posterior mean) is 

unlikely to be a robust choice in this case. The WAIC analysis highlights a 

fundamental issue of using WAIC (and DIC) for model comparisons. When 

there is no clear ‘best’ model the researcher is left with a judgement call as to 

which model is most appropriate to select and there is no justified method to 

generate model weights to allow e.g. BMA to incorporate this 

uncertainty (Hooten et al., 2015 - although see Hoeting et al., 1999), although 
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there is interesting work being done towards this using Bayesian predictive 

stacking (Yao et al. 2018), which we do not explore here. 

Conclusions 

Survival and mortality research often focuses on a particular life phase and 

commonly the focus is upon senescence. Historically the Gompertz equation 

has been the most commonly used model to describe age-specific mortality 

(Pletcher, 1999) and is often the choice when comparing mortality across 

species (e.g. Tidière et al., 2015). Although this has been a result of data 

recorded often consisting only of individuals that have reached maturity, as 

monitoring projects improve the quality and depth of information available it is 

crucial to not overlook early life mortality changes that could be impacting other 

phases of life. An over-reliance on the Gompertz model may result in erroneous 

inference as it ignores early life mortality changes but the Siler model or in more 

general terms ‘bathtub’ shaped mortality curves are difficult to detect and 

remain rare when describing wild populations (although see e.g. Hudson et al., 

2019; Lemaître et al., 2020 and the recommendations of Ronget et al. (2020). 

The frequency of capture events should be given careful consideration in the 

planning of any monitoring project to ensure the dynamics of early life mortality 

can be recorded and accurate estimates of survival and mortality inferred, 

including the detection of bathtub shapes. In our analysis we chose to compare 

a series of nested models of increasing complexity (the Siler model has the 

exponential, Gompertz and Gompertz-Makeham models nested within it) which 

allows a wide range of mortality curves to be described. We highlighted the 

correlated structure of the parameters and show that only minor changes in one 

parameter value can impact the entire mortality trajectory (see Hudson, 2019) 

further emphasising the need to assess mortality over entire lifespan to gain the 

most accurate estimate of mortality at any chosen stage of life. 
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Chapter 6: Efficient Bayesian model comparisons for nested models 

– from importance sampling to reverse jump Markov chain Monte 

Carlo 
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Abstract 

Model comparison is a fundamental aspect of statistical analysis. Being able to 

quantify the weight of support in the data for a particular model is increasingly 

important as researchers favour multi-model inference techniques such as 

Bayesian model averaging (BMA) which reduce bias by incorporating model 

uncertainty. Methods usually require estimation of the marginal likelihood of 

each competing model – the so-called model evidence, from which posterior 

model probabilities can be calculated. A variety of methods, of differing 

complexity have been proposed and we previously presented a straightforward 

and flexible approach based on importance sampling. Reverse Jump Markov 

chain Monte Carlo (RJMCMC) is an alternative method that avoids direct 

estimation of the marginal likelihood and instead naturally offers posterior model 

probabilities which can be used for model comparison and BMA. RJMCMC is 

particularly efficient for comparing nested models or in variable selection, 

survival analysis provides a suitable situation to implement this method. Here 

we present a comparison of our IS approach with RJMCMC in an analysis of 

sex-specific variation in mortality from capture-mark-recapture data from a 

natural population of European badgers (Meles meles). The results show that 

both methods produce comparable results but the RJMCMC is notably faster 

and requires less coding effort. We therefore advocate the use of RJMCMC for 

survival analysis when model comparison can reduce to a variable selection 

problem. 

Introduction 

Comparing the fits of potential models to data remains a core element of 

statistical analyses, whether researchers are attempting to select one optimal 

model or wanting to estimate the strength of support in favour of a range of 

models, thus allowing multi-model inference (Burnham & Anderson, 2002; 

Harrison et al., 2018; Kass & Raftery, 1995) techniques to be employed. 

Adopting a Bayesian approach to model selection and comparison has many 

natural advantages (see Berger & Pericchi, 1996, 2001) which has led to a 

variety of different methods being proposed, yet there is no consensus over 

which performs best (Robert & Wraith, 2009). Penalised loss functions such as 

the deviance information criterion (DIC) (Spiegelhalter et al., 2002) and 
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Watanabe-Akaike information criterion (WAIC) (Watanabe, 2010) are 

straightforward to calculate which has led to widespread use despite some 

criticism (e.g. Plummer, 2008; and see chapter 4). Both these methods can be 

viewed as approximations to different versions of a process known as cross-

validation (Stone, 1977) – a resampling method that uses different portions of 

the data to train and then test a proposed model. The goal of cross-validation 

(CV) is to evaluate a model’s predictive ability (usually measured using the 

mean-squared error) and highlight problems like overfitting or selection bias 

(Cawley et al., 2010). A popular version of CV is leave-one-out CV (LOO-CV) 

which repeatedly uses all but one observation as training data – the left out 

observation then being used to test the proposal model. CV is a popular choice 

but can be computationally expensive and is not always well defined in 

dependent data settings (Gelman et al., 2013). An alternative approach within 

the Bayesian paradigm requires consideration of the marginal likelihood of the 

data given a model (Jeffreys, 1961) – sometimes referred to as the model 

evidence. Calculating the marginal likelihood is computationally intractable for 

all but the most trivial models, meaning it is often approximated using numerical 

methods (Xie et al., 2011 and see Llorente et al., 2020 for a comprehensive 

review). Having estimated the marginal likelihood, model comparisons can then 

be carried out by calculating Bayes’ Factors (Jeffreys, 1961), which equates to 

the ratio of marginal likelihoods of competing models, or by calculating posterior 

model probability weights that can also be used in Bayesian model averaging 

(BMA) to efficiently incorporate any model uncertainty into inference and 

prediction (Fragoso et al., 2018). In the previous two chapters we presented a 

method for the accurate estimation of a model’s marginal likelihood based on 

importance sampling (IS), which performs well when dealing with a large 

amount of missing data (Touloupou et al., 2018; and see chapters 4 & 5) – a 

common feature of ecological research. This versatile approach has a wide 

range of applications and is not limited by models having to be nested. 

However, as the number of competing models increases the time taken to 

calculate the marginal likelihoods for each and every model can quickly become 

prohibitively large. 
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An alternative approach to calculating posterior model weights is to use 

reversible jump Markov Chain Monte Carlo (RJMCMC) (Green, 1995). 

RJMCMC is a flexible technique that computes the joint posterior distribution of 

a latent model indicator and associated parameters given the data by extending 

the posterior space and allowing the Markov chain to jump between models with 

potentially different dimensions (Green & Hastie, 2009). The number of 

iterations when the chain is within a particular model space is proportional to the 

marginal likelihood of that particular model and equates to posterior model 

probabilities (Hastie & Green, 2012). RJMCMC has faced some criticism 

(Brooks et al., 2003) as the MCMC can be difficult to tune and suffer with poor 

mixing, particularly as competing models become more distinct (in terms of the 

number and interpretation of parameters). However, if well tuned it can often 

perform more efficiently than other approaches (O’Hara & Sillanpaa, 2009).  It is 

becoming a more popular choice in recent years, partly due to the availability of 

general-purpose software to facilitate its implementation (Hooten et al., 2015). 

In many instances model selection problems can reduce to a simpler framework 

of variable selection, where the question becomes: which subset of variables 

should be included within a model? A variety of algorithms have been proposed 

to complete this task (see O’Hara & Sillanpaa, 2009 for a review) but RJMCMC 

performs particularly well in these instances where models are nested and 

transition rules are simpler to define (Touloupou et al., 2018). A common 

approach for variable selection involves defining the most complex model with 

latent binary indicators attached to each explanatory variable – the RJMCMC 

algorithm then includes (and excludes) different combinations of explanatory 

variables by switching the indicators ‘on‘ and ‘off’ (see e.g. Dellaportas et al., 

2002). A “model” is then defined by each unique combination of indicator 

variables, whereas the marginal posterior probabilities of inclusion for each 

variable can also be directly calculated (Hoeting et al., 1999; Kass & Raftery, 

1995; Viallefont et al., 2001). 

Survival analysis often involves the exploration of potential impacts of 

explanatory variables on individuals’ survival and therefore presents a situation 

well suited to RJMCMC analysis. Our previous analysis investigated sex-

specific effects on age-specific survival of the European badger (Meles meles) 
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using the Siler (Siler, 1979) mortality model. Our IS approach required the 

construction and analysis of 32 different versions of the 5-parameter Siler model 

to fully analyse the potential impact of sex. As the number of explanatory 

variables increases, the number of models that are required increases 

exponentially and thus reduces the efficiency of the process. Framed within a 

RJMCMC variable selection problem the same investigation only requires the 

construction of one large model, which is not dependent on the number of 

potential explanatory variables to be investigated. Here we introduce RJMCMC 

as a variable selection tool that is simpler to implement than our IS approach 

particularly as the number of explanatory variables increases and when the 

models to be compared are nested. 

Methods 

To demonstrate the accuracy of the RJMCMC process we chose to repeat the 

analysis of the previous chapter – investigating sex-specific variation in age-

specific mortality in a population of European badgers (Meles meles). The data 

are collected as part of a long-term monitoring project of a natural population of 

badgers in Woodchester Park, Gloucestershire; the analysis here consists of 

capture history records from individuals sampled on (usually) four occasions 

each year between 1982–2020 inclusively. For a detailed account of the 

trapping and testing procedures see Wilkinson et al. (2000). We have previously 

completed the same analysis using our IS method in chapter 5 so omit the 

methodology used to generate the posterior model probabilities using that 

approach here and focus instead on the RJMCMC. All our analysis is carried 

out using software package NIMBLE (de Valpine et al., 2017) implemented in R 

(R Core Team, 2019). We provide full model code in Appendix 5 and describe 

the steps taken here. 

We first define the full model 

 ~Siler( 1 1 , 2 2 , 1 1 , 2 2 , )M M M M M
i i i i i itD a a a a b b b b cc   (6.1) 

where 𝑡𝐷௜ is the latent variable ‘age at death’ and each parameter multiplier is 

described by e.g. 
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 1 1log( 1 ) sexM
i a i aa z    (6.2) 

where 𝑧௔భ is the binary indicator variable that switches the effect of sex on 

parameter 𝑎ଵ (in this example), on and off. Similarly for the other parameters. 

The setup and run code remains the same as a standard MCMC analysis in 

NIMBLE except for the configuration of the samplers. The reversible jump 

sampler is an extension of the Metropolis-Hastings algorithm and must be used 

to update the indicator variable (and corresponding coefficient) within the 

MCMC chain. 

We ran two MCMC chains for 50,000 iterations with a burn in of 10,000 and no 

thinning. We confirmed satisfactory mixing and convergence by visually 

inspecting the posterior trace plots and calculating the Gelman-Rubin Rhat 

value for each parameter. The total computation time for this method was 

recorded at 2284 seconds as compared to 3091 seconds taken to estimate the 

marginal likelihood for the simplest of the 32 models using the IS approach, 

meaning that the full IS analysis would require approximately 27 hours to 

complete. The MCMC chain produces a point estimate for each posterior model 

weight, and so we bootstrapped the posterior samples to generate 95% 

confidence intervals to give us some idea about the uncertainty of the 

estimates.  

Priors 

For the RJMCMC analysis we set weakly informative exponential (rate = 1) 

priors on the Siler parameters, the recapture rate had a uniform prior (min = 0, 

max = 1), the inclusion indicators were set with a Bernoulli (p = 0.5) distribution 

and all beta coefficients were set with an uninformative Normal (mean = 0, sd = 

1) prior which in turn acts as a regularisation method. 

Interpretation 

We make use of the posterior probability categorisations outlined by Kass & 

Raftery (1995) to correspond to the strength of association between two 

variables. 
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Table 6.1: Bayesian model averaging: categorisation of posterior probabilities 

from (Kass & Raftery, 1995) 

Evidence for an association with Y Posterior probability 

Weak 50-75% 

Positive 75-95% 

Strong 95-99% 

Very strong > 99% 

 

Results 

Having already calculated the posterior model probabilities (and confidence 

intervals) using our IS approach in the previous chapter, we combined the 

estimates with those generated here via RJMCMC (Fig. 6.1). Figure 6.1 shows 

good agreement across the two methods with every confidence interval 

overlapping to some degree and many with near identical ranges given the finite 

number of samples.  
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These approaches should converge to the same answer in probability. There 

are three models that do not appear in the RJMCMC analysis (SexDiffa2, 

SexDiffb2, SilerNoSexDiff) – this is a result of the RJMCMC sampler not 

accepting any jumps into the posterior space for these models as the posterior 

probability was deemed too low. This corresponds with the negligible posterior 

model probability generated by the IS approach. 

Discussion 

Model comparison is a fundamental part of data analysis and there are a wide 

variety of methods that have been proposed to complete this task (Plummer, 

2008). Variable selection is a special case of model comparison and a 

fundamental part of survival analysis, where the list of potential explanatory 

variables can be long (Li et al., 2005). Analysts will often begin with a large 

number of possible predictors but aim for a more parsimonious model to 

improve interpretation and to prevent possible overfitting. Therefore having 

Figure 6.1: Comparison plot of median posterior model probabilities and 95% 

credible intervals generated via importance sampling (red) and reversible 

jump Markov chain Monte Carlo (blue) methods. Competing models are 

investigating sex-specific variation in age specific mortality for a natural 

population of European badgers fitted to the Siler (Siler, 1979) function. 
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efficient methods to select important variables is vital for model building. Here 

we have presented a comparison of our previously introduced IS approach and 

RJMCMC. In cases where the models to be compared are nested and the 

problem can be reduced to one of variable selection we have found 

implementation of the RJMCMC analysis to be the more efficient method. The 

results from both analyses are comparable with only minor differences in 

posterior model probabilities which are due to numerical sampling error, and we 

expect these differences to disappear if we increased the number of samples in 

each case. The main advantage of the RJMCMC approach is in the amount of 

time taken to carry out the analysis as compared to the IS approach. With 

appropriate sampling strategies employed, running the full RJMCMC analysis of 

the maximal model takes comparable time to the analysis of one proposed 

model when using IS, as the number of predictors increases the time saving 

can quickly become palpable. Variable selection via RJMCMC is straightforward 

to implement within the software package NIMBLE (de Valpine et al., 2017) 

which offers a range of sampling algorithms that can be explored to ensure 

satisfactory mixing of the MCMC chains. Output is interpretable and a 

transparent reflection of model uncertainty. This model uncertainty is easily 

dealt with through the use of multi-model inference techniques such as BMA but 

it is also possible to calculate posterior inclusion probabilities (i.e. in our 

example, the proportion of iterations that are within models that include sex 

variation) for each predictor which may be more interpretable in such situations. 

BMA and more specifically model comparison using marginal likelihoods has 

faced criticism due to the sensitivity to the specific prior specification in each 

model. This has led to alternatives being developed – e.g. Yao et al. (2018) 

extended the idea of stacking from minimising the squared error to maximising 

scoring rules therefore making the approach applicable to combining posterior 

predictive distributions generated using LOO-CV techniques. CV methods will 

fail if the current data are not representative of future data or if the observations 

are not exchangeable conditional on the model parameters – for this reason CV 

must be used with caution when assessing models with temporal, spatial or 

multi-level structure (Vehtari et al., 2018). The stacking (using PSIS LOO-CV) 

approach has faced some criticism (Gronau & Wagenmakers, 2019) and in 
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future work we hope to carry out a more in-depth comparison of these 

techniques for survival analysis. Throughout this thesis we have focused our 

attention on model comparisons based on marginal likelihoods and always 

recommend to fit proposal models with different prior specifications to check for 

any inherent sensitivity. Marginal likelihood methods, such as those we 

propose, weight the proposed models in a probabilistic way conditional on the 

given dataset and will always select the model which best fits the data – it is 

then up to the researcher to determine if this fit is adequate. 

Survival analysis is increasingly important within conservation and population 

ecology but the understanding that has come from laboratory studies or captive 

populations is often not reflective of wild systems.  Uncovering the subtle 

dynamics of various predictors in natural populations remains an ongoing 

challenge. There is an increasing demand for tools that can facilitate variable 

selection over many predictors particularly as data rich monitoring projects of 

wild populations are becoming more common. RJMCMC is not new and we do 

not claim RJMCMC to be the panacea of Bayesian model comparison – in 

many cases IS, for example, can solve problems that are difficult to implement 

using RJMCMC (Touloupou et al., 2018). Applications of RJMCMC are diverse 

but it is yet to reach mass appeal with the majority of research implemented by 

‘experts’ (Green & Hastie, 2009) and confined to statistical journals. Using 

RJMCMC as a variable selection tool for survival analysis is rare (although see 

Karapanagiotis et al., 2018; Newcombe et al., 2014) and we believe this to be 

the first instance of its use on data from a wild population. We hope that by 

providing the complete code for the analysis carried out here we can further 

broaden its appeal and use in applied settings. 
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Chapter 7: Investigating the impact of inbreeding on lifetime survival 

and mortality trajectories of European badgers 
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Abstract 

Inbreeding depression (ID) is a fundamental concept in evolutionary biology and 

refers to a decrease in fitness caused by inbreeding. Traditionally, ID has been 

studied under laboratory conditions or with captive populations but the 

environmental stressors present in wild systems are difficult to replicate so 

comparisons to natural populations can lead to specious inference. The use of 

large scale molecular genetic data is in its infancy but has removed the 

necessity to conduct parentage analysis to provide a measure of inbreeding and 

shown the effects of ID to be dynamic across life stages and more severe and 

widespread in the wild than first thought. Our understanding of ID in the wild 

remains limited as studies generally focus on individual traits (as indicators of 

fitness) at specific phases of life – full life course effects are often overlooked. 

Here we employ Bayesian techniques and make use of microsatellite data to 

investigate the effects of inbreeding on age-, sex- and infection-specific survival 

and mortality in a wild population of European badgers (Meles meles) naturally 

infected with bovine Tuberculosis. We use survival and mortality trajectory 

analysis to view life course effects and uncover antagonistic pleiotropic effects 

of inbreeding on mortality in a wild species for the first time. Our analysis 

provides evidence for both the mutation accumulation and antagonistic 

pleiotropy evolutionary theories of senescence suggesting they are not mutually 

exclusive mechanisms. The results of this study can help inform wildlife disease 

management strategies as well as potential conservation efforts and we provide 

full annotated code in the hope that other systems can be analysed to help 

improve our understanding of ID in wild populations. 

Introduction 

Evidence for the damaging effects of inbreeding is both widespread (Bozzuto et 

al., 2019; Charlesworth & Willis, 2009; Crnokrak & Roff, 1999; Keller & Waller, 

2002) and controversial (e.g. Bulger & Hamilton, 1988; Hoogland, 1992). 

Decreased fitness caused by inbreeding, known as inbreeding depression (ID), 

has been a fundamental premise of evolutionary ecology since the writings of 

Darwin (1876). ID is caused by an increase in homozygosity at loci that carry 

rare recessive deleterious alleles or exhibit overdominance as a result of mating 

between relatives (Charlesworth & Charlesworth, 1987).  
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Empirical research into inbreeding depression has traditionally focused upon 

captive animals (Boakes et al., 2006; Ralls & Ballou, 1986) or laboratory 

populations (e.g. Bijlsma, Bundgaard, & Boerema, 2000; Swindell & Bouzat, 

2006) and generally concentrates upon specific life stages or single 

components of fitness (Hoeck et al., 2015; Ralls et al., 1988). Artificial 

conditions have the capacity to affect the strength and genetic architecture of ID 

(Bijlsma et al., 1999) making any comparisons to wild populations, where 

environmental conditions will likely be more stressful, potentially specious. Our 

understanding of the mechanisms at play in the wild is limited and requires 

critical attention: from a conservation perspective, continued habitat destruction 

and fragmentation are making many wild populations smaller, more isolated 

(Haddad et al., 2015) and likely more susceptible to inbreeding (Stoffel et al., 

2021). In evolutionary terms, improving our understanding of how genetic 

variation affects individual fitness in populations is paramount to our core 

understanding of evolution (Ellegren & Sheldon, 2008; Merilä & Crnokrak, 

2001). Analysis of ID in the wild has demonstrated its detrimental impact on a 

variety of traits such as juvenile survival, adult longevity, fecundity, birth weight 

and egg-hatching rates (for a review see Keller & Waller, 2002) but whole life-

course effects are generally overlooked meaning our understanding of some of 

the fundamental principles remains limited (Kardos et al., 2016; Stoffel et al., 

2021).  

Analyses of associations between inbreeding and fitness have traditionally 

relied on pedigree based measures of inbreeding (e.g. Pemberton, 2004) but 

the generation of large-scale molecular genetic data has presented alternatives 

and removed the need to conduct parentage analysis over many generations, 

which can be challenging in natural populations. The use of genomic data for 

the analysis of ID is still in its infancy but studies have shown that ID is both 

more severe and more widespread in natural populations than had originally 

been thought and the effects can be state-dependent and dynamic across life 

stages (Bérénos et al., 2016; Chen et al., 2016; Harrisson et al., 2019; Hoffman 

et al., 2014; Huisman et al., 2016; Niskanen et al., 2020). One state of particular 

interest is individual age (Brooks & Kemp, 2001) and the understanding that 
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fitness often declines in old age, a process known as senescence (Partridge & 

Mangel, 1999).  

Evolutionary theories of senescence are based on the assumption that the force 

of selection declines with age and hence will be more efficient at eliminating 

genetic variants (alleles) that have detrimental effects in early life than those 

whose detrimental effects are not felt until later life (Hamilton, 1966; Medawar, 

1957). These alleles then accrue in populations, causing age-related effects on 

fitness. The two leading genetic explanations are mutation-accumulation (MA): 

which refers to the process of accumulation of late acting deleterious mutations 

by any organism, caused by weak selection against late-acting genes; and 

antagonistic pleiotropy (AP): which assumes that detrimental mutations 

affecting late-life survival or reproduction are retained in populations thanks to 

pleiotropic effects that are beneficial in early life. Efforts to tease apart AP and 

MA as alternative genetic mechanisms responsible for senescence have 

generally been confined to laboratory studies (e.g. Hughes et al., 2002) which 

have found greater support for AP (Nussey et al., 2013). Despite an increasing 

number of information-rich demographic-monitoring projects contributing to our 

understanding of age related declines in mortality and other fitness related traits 

in wild populations (for a review see Nussey et al., 2013) comparatively few 

have made links with ID (although see e.g. Charmantier et al., 2006; Wilson et 

al., 2007; Keller et al., 2008; Harrison et al., 2011; Benton et al., 2018). These 

isolated studies of wild populations generally focus on changes in a specific 

fitness related trait (e.g. fecundity) across life-course rather than age-specific 

survival, and evidence in favour of AP and/or MA is less conclusive with support 

for both theories and suggestions that the mechanisms may co-exist (Harrison, 

et al., 2011). 

Inbreeding is challenging to study in the wild (Huisman et al., 2016) particularly 

as evolutionary mechanisms such as inbreeding avoidance (Pusey & Wolf, 

1996) make inbred individuals rare. The most straightforward approach to 

measuring inbreeding, in the absence of pedigree information, is to consider the 

prevalence of heterozygosity/homozygosity across multiple loci in each 

individual’s genome. Large scale studies tend to use single-nucleotide 

polymorphisms or microsatellite data to measure multiple-locus heterozygosity 
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and then look for statistical associations with specific fitness traits (Marta 

Szulkin et al., 2010) although the compliment to multiple-locus heterozygosity – 

multiple-locus homozygosity has also been used (e.g. Benton et al., 2018). The 

validity of marker-based measures of inbreeding has been questioned (Slate et 

al., 2004) but many of the early studies utilising the approach used only a small 

numbers of markers: the utility of the approach depends on both the number of 

loci used and their expected heterozygosity (Miller et al., 2013). More recent 

research has found that fitness traits are more strongly correlated with marker-

based measures of inbreeding, compared to pedigree-based measures (e.g. 

Forstmeier et al., 2012).  

Survival is a key fitness trait when assessing animal population size yet it 

remains a difficult parameter to estimate in the wild (Murray & Paterson, 2006; 

Mccallum, 2008; Delahay, Smith, & Hutchings, 2009). Some of the issues 

associated with traditional life-table methods of monitoring survival (e.g. 

accommodating individual variability in mortality risk; discretisation of 

continuous time) are being overcome by the use of survival and mortality 

trajectories (Jones et al., 2008; Colchero & Clark, 2012). Lifetime trajectories 

can be used to describe survival and mortality patterns across entire lifespans 

in continuous time and often allow a deeper understanding of life history 

through the uncovering of subtle variations that could be missed by alternative 

approaches (Gaillard et al., 1994; and e.g. McDonald et al., 2014).  Several 

functions have been used to describe mortality trajectories (e.g. Gompertz - 

Gompertz, 1825; Gompertz-Makeham - Makeham, 1867; Siler - Siler, 1979) and 

in humans and laboratory animals the standard shapes are well established 

(Bebbington et al., 2007; Eberhardt, 1985). The typical pattern for many species 

is a ‘bathtub’ shape: an initial drop in mortality risk from high early-life mortality, 

followed by a flat phase of relatively low mortality through early adult life and 

finally an accelerating, senescent increase in mortality in late life, also known as 

actuarial senescence. Evidence for bathtub shapes in natural populations is 

less prevalent particularly as research generally focuses solely on senescence 

(e.g. Nussey et al., 2008) often relying on the Gompertz function (Ronget et al., 

2020), but may potentially be due to sampling procedures used to collect data. 

For example, Capture Mark Recapture (CMR) studies will miss individuals that 
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die prior to being caught (see chapter 5), and commonly suffer small sample 

sizes of older individuals.  Even if wild populations tend to have bathtub-shaped 

mortality trajectories, as described by the Siler function, they are difficult to 

detect.  

Our aim here is to employ a combination of statistical techniques to uncover 

novel patterns in the effects of ID on survival across the entire life-history of a 

free-living mammal and in doing so improve our understanding of how ID 

evolves. Employing survival (and mortality) trajectory analysis on data from a 

long-term monitoring project of a wild population of European badgers (Meles 

meles), naturally infected with the pathogen Mycobacterium bovis which is 

responsible for bovine tuberculosis (bTB), we investigate the influence of ID on 

the risk of mortality throughout the lifespan. Age-, sex-, and infection-specific 

variations in badger mortality have previously been evidenced (McDonald et al., 

2014) including the detection of a senescent increase in mortality in later life 

(Hudson et al., 2019). We have shown elsewhere that the risk of acquiring 

disease increases with increasing multi-locus homozygosity (Benton et al., 

2018). Here we ask, using Bayesian approaches to survival-trajectory analysis, 

whether multi-locus homozygosity influences survival during early-, mid- or late-

life. If ID exists among badgers, then the MA hypothesis provides the prediction 

of a positive association between late-life increases in mortality and increasing 

multi-locus homozygosity. If AP plays a role, we predict a similar association in 

late-life, coupled with a negative association between early-life mortality and 

multi-locus homozygosity (MLH). 

Materials and Methods: 

Badger sampling 

Data used in these analyses were collected from a long-term CMR study of a 

wild population of badgers at Woodchester Park in Gloucestershire (Delahay et 

al., 2013). Badgers are live trapped up to four times a year and on the occasion 

of first capture are given a unique identifying tattoo. All captured badgers were 

anaesthetised and subjected to several diagnostic tests for bTB before being 

released (for a detailed account of capture and testing procedures see Delahay 

et al., 2000; McDonald et al. 2018). A range of clinical samples (sputum, faeces, 
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urine, swabs of bite wounds or abscesses) have been routinely taken for the 

detection of M. bovis by culture (Gallagher & Horwill, 1977) as well as blood 

samples obtained for antibody tests. Between 1990 and 2005 the Brock ELISA 

(enzyme-linked immunosorbent assay) test was used (Goodger et al., 1994), 

this was replaced with the Brock TB Stat-Pak lateral flow immunoassay 

(Chembio Diagnostics Systems, USA - Chambers et al., 2008) test in 2006. A 

gamma-interferon assay for the cytokines associated with the cell mediated 

response to M. bovis (Dalley et al., 2008) was also used from 2006. 

We only used badgers of known age (i.e. first trapped and identified as cubs or 

yearlings) and for which we had a genotype. Although difficult to test completely 

due to behavioural differences between individual badgers, previous studies 

have shown the probability of recapturing marked individuals is no different to 

unmarked individuals (i.e. no evidence of trap shyness/dependence) (Rogers et 

al., 1997). Limitations in the sensitivity of the diagnostic tests are well known 

(Drewe et al., 2010) but all tests are highly specific and so we are confident that 

those individuals who do test positive in this study are not truly uninfected. We 

created two distinct infection categories: Cub-positive (individuals that tested 

positive to at least one diagnostic test during the first year of their life) and 

Never-positive (individuals that never tested positive to any diagnostic test 

throughout their life). For the purpose of our analyses we worked with 

diagnostic test results rather than true infection status, ongoing research seeks 

to clarify the link between the two (Buzdugan et al., 2016; Wawegama et al., 

2016) 

Genotyping and measures of inbreeding 

A hair sample was taken at first capture and stored in 80% ethanol prior to DNA 

extraction and genotyping (Carpenter et al., 2005). Genotyping involved the use 

of 22 microsatellite markers, each with 4-7 alleles.  

All data processing and analysis was completed in R (R Core Team, 2019). We 

used the MicroDrop Programme (Wang & Rosenberg, 2012) to impute missing 

microsatellite data and tested for deviations from Hardy-Weinberg equilibrium 

for each of the 22 microsatellite makers using the hwtest function in R package 

Adegenet (Jombart, 2008) with none being found. There has been considerable 
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debate questioning whether a subset of molecular markers can accurately 

reflect genome wide homozygosity (DeWoody & DeWoody, 2005) but this 

uncertainty can be partially addressed through calculation of the parameter 𝑔ଶ 

(David et al., 2007) which measures the degree to which a set of markers 

reflects variation in inbreeding among individuals. We calculated the parameter 

using the g2_microsats function in R package inbreedR (Stoffel et al., 2016) 

and for our set of markers 
2g  was significantly different from zero (

2 0.002g  , 

0.001p  ) meaning that the marker set can be said to reflect genome-wide 

effects of homozygosity (Szulkin et al., 2010). 

We calculated a number of different measures of inbreeding: initially being 

inferred using a measure of multi-locus heterozygosity (Keller & Waller, 2002) 

using the MLH function in the InbreedR package (Stoffel et al., 2016). An 

individual inbreeding coefficient can also be estimated directly from the 

microsatellite data – defined as the probability of an individual inheriting 2 

identical alleles from a single ancestor (calculated using the Adegenet package 

in R - Jombart, 2008). Finally we calculated a measure of multi-locus 

homozygosity – the proportion of genotyped loci that are homozygous. We 

checked the robustness of our analysis by repeating with each different 

measure of inbreeding and found negligible differences. 

Statistical modelling 

All R code is provided in Appendix 6.  

We jointly estimate survival and recapture probabilities in a similar fashion to 

Cormack-Jolly-Seber (CJS) (Cormack, 1964; Jolly, 1965; Seber, 1965) models 

which accounts for the sampling process and subsequent missing data inherent 

in CMR studies. We made use of the Siler (Siler, 1979) mortality function to 

model age at death in continuous time. The Siler function consists of 5 

parameters that describes the mortality rate  at age x 

 1 2
1 2( ) b x b xx ae c a e     (7.1) 
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with parameters 1 2 1 2, , , , 0a a b b c . We have previously coded the full Siler function 

as a custom distribution function (chapter 3) that can be implemented in the 

package NIMBLE (de Valpine et al., 2017) which allows flexible and straight 

forward model specification. We employed a Reversible Jump Markov Chain 

Monte Carlo (Green, 1995) (RJMCMC) approach to variable selection to 

investigate sex-, infection- and inbreeding-specific effects by constructing a 

maximal model with indicator nodes attached to each variable. RJMCMC is a 

general framework in which the dimension of the parameter space can vary 

between iterations of the Markov-chain; this allows variables to be switched on 

and off by the reverse jump sampler and thus included or excluded from the 

model as the chain runs. The amount of time (number of iterations) that the 

MCMC chain spends within a given model space can then be used to calculate 

posterior model probabilities in favour of any possible model and inform model 

comparisons/choice. In models that include a large number of possible 

combinations of included variables the posterior model probabilities can quickly 

become diluted by the sheer volume of possible models unless the signal within 

the data is particularly strong in favour of a small number of models. In these 

instances it is more straightforward and interpretable to generate posterior 

inclusion probabilities for each of the variables and use the posterior model 

probabilities to inform multi-model inference techniques such as Bayesian 

model averaging (BMA) to account for the uncertainty in model choice when 

constructing survival and mortality trajectories. 

Priors 

We used weakly informative exponential distributions (rate = 1) for the priors of 

the five Siler parameters. We specified uninformative normal distributions 

(mean  = 0, sd = 1) for all of the sex-, infection- and inbreeding-specific 

coefficients and used Bernoulli distributions (p = 0.5) for the inclusion 

probabilities giving each variable equal prior chance of being included in a 

model.  

Model Specification 
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We set the core structure of the model such that age at death is distributed 

according to the Siler model with each parameter then allowing for 

combinations of sex-, infection- and inbreeding specific variations. For example, 

in a model allowing effects of sex-, infection- and inbreeding-specific variation 

(and 2-way interactions) 

 ~Siler(a1 , a2 , b1 , b2 , c )M M M M M
i i i i i itD  (7.2) 

where tD is age at death and each parameter is then described  
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 (7.3) 

We ensured the interaction terms could not be included in the model unless 

both associated main effects were included by using the constraint function in 

NIMBLE. This returns a probability of zero for the set of parameter estimates 

should the constraint not be true (i.e. we set the 𝑧 indicator for the interaction 

term such that it must be less than or equal to the multiplication of the 𝑧 terms of 

the main effects). 

Results 

We began our investigation with the maximal model which includes main effects 

of sex, infection and inbreeding and interaction terms for sex:infection, 

sex:inbreeding, infection:inbreeding (Eq. 7.2 & 7.3). To judge the importance of 

each variable we used the inclusion probability levels as described in Viallefont 

et al., (2001), who consider anything over p = 0.5 to be informative. Sex (male, 

female), infection (test positive cub, never positive) and inbreeding (greater than 

or equal to median, lower than median) are fitted as categorical variables. When 

estimating the effects of inbreeding depression the consensus has been to 

perform a linear regression with a fitness component as the response (Keller & 

Waller, 2002; Morton et al., 1956). When estimating survival from CMR data the 

only information we have details individual capture histories and we infer the 
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latent, unseen variable – age at death, which informs survival estimates. 

Although our measure of inbreeding is continuous and we are able to run the 

analysis using inbreeding as a continuous variable in doing so we are then 

assuming a linear relationship is correct. For this reason we now split the 

analysis into two sections, first treating inbreeding as a categorical variable 

which ensures we don’t make assumptions regarding the relationship between 

inbreeding and the Siler parameters; and second, modelling inbreeding as 

continuous accepting that we are then assuming a linear relationship is correct.  

Categorical inbreeding 

With over 3000 different models visited by the RJMCMC algorithm and no one 

model having a posterior probability greater than 1% it is sensible to look at the 

proportion of models that include each variable and calculate posterior inclusion 

probabilities (Fig. 7.1).  

Figure 7.1: Posterior variable inclusion probabilities from all possible models 

allowing main effects of sex, infection and inbreeding and interactions 

between sex:infection, sex:inbreeding and infection:inbreeding. Sex, infection 

and inbreeding fitted as categorical variables. 
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Figure 7.1 indicates that main effects of sex and infection are important across 

all parameters except 2b , none of the interaction effects are informative and 

inbreeding is only of importance for parameters 1b (exponential rate of decrease 

in mortality from birth) and c(age-independent mortality). We also constructed 

violin plots to highlight the impact of the covariates on the five Siler parameters 

(Fig. 7.2), these are drawn using only the sample estimates when the particular 

covariate is included in the model as indicated by the associated indicator node. 

With reference to the two parameters considered important by the inclusion 
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probabilities, figure 7.2 suggests that being inbred reduces the 𝑏ଵ and 𝑐 

parameters. 

As we have shown in previous chapters (see Ch.3 & Ch.5), the Siler parameters 

compete with one another to describe the patterns of mortality and this is 

particularly apparent with parameters 𝑎1 and 𝑐. As a result it is difficult to 

accurately interpret the effects of the coefficients independently and it is more 

appropriate to view the model-averaged survival and mortality trajectories (Fig. 

Figure 7.2: Posterior distributions of coefficient estimates from a Reverse 

Jump Markov chain Monte Carlo (RJMCMC) analysis of capture-mark-

recapture data from a population of wild European badgers naturally infected 

with bovine tuberculosis. The coefficient estimates refer to the additional 

effect of being: 1. Inbred; 2. male and 3. cub positive, on each of the five 

Siler parameters. The distributions consist only of samples from the 

RJMCMC chain when the covariate is included within the model as indicated 

by the associated indicator node. 



136 

 

7.3). Figure 7.3 highlights the subtle impacts of inbreeding with little difference 

in age-specific survival between the inbred and outbred individuals. 

The mortality trajectories are more sensitive and suggest that there are several 

inbreeding-specific differences in the dynamics of mortality across entire 

lifespan. The slower reduction in mortality from birth shown by parameter 𝑏ଵ for 

inbred individuals suggests a negative impact of inbreeding in the early stages 

of life. The importance of inbreeding on parameter c also suggests that there 

are age-independent effects throughout life. The coefficient distribution of the 

effect of inbreeding on parameter 𝑐 (Fig. 7.2) is centred just below zero 

suggesting that being inbred reduces age-independent mortality. This effect is 

not clearly visible in the mortality trajectories with the inbred trajectory generally 

Figure 7.3. Model averaged, posterior predictive mortality (a. and b.) and 

survival trajectories (c.) of a natural population of European badgers (Meles 

meles). Badgers have been split by sex and ‘infection’ status (infected (cub) = 

test positive for bTB during first year of life; uninfected = never tested positive 

for bTB throughout life). Inbreeding fitted as a categorical covariate (above and 

below population median level of inbreeding). Time is in years. Shaded areas 

in (a.) and (c.) represent 95% credible intervals. Plot (b.) is focused on the early 

changes in mortality and is a zoomed in version of (a.). 
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displaying higher rates of mortality except for the very early stages of life – 

further highlighting the correlated structure of the parameters and the 

importance of viewing the model averaged trajectories. It is worth noting here 

that c does not affect the shape of the trajectory; it only serves to raise or lower 

the underlying mortality rates. Despite the posterior inclusion probabilities 

indicating the effect of inbreeding is unimportant for parameter 𝑎ଵ, 𝑎ଶ, and 𝑏ଶ, 

the model averaged trajectories reveal a number of subtle variations: a lower 

initial, ‘at-birth’ mortality rate among inbred badgers; and a more intense 

increase in mortality throughout life (from approximately age 3 for uninfected 

badgers and from birth for infected badgers). The results here show that 

inbreeding has both age-specific and age-independent effects on mortality 

across badgers lifespan. If we consider the model-averaged mortality 

trajectories as well then we find that the effects of inbreeding can be both 

positive and negative at different times of life. 

Continuous inbreeding 

We approach this analysis with some caution because we have no clear 

method to judge the validity of the assumption of linearity in the relationship 

between our latent parameter and inbreeding. 

The posterior inclusion probabilities (Fig. 7.4) indicate that, when modelled as a 

continuous variable, inbreeding has an important impact across all 5 of the Siler 

parameters and therefore both age-dependent and age-independent effects 

across the entire lifespan of badgers. None of the interactions are considered 

important and the main effects of sex and infection mirror that of the previous 

analysis. The trajectories (Fig. 7.5) demonstrate the impact of inbreeding across 

a badger’s lifetime and are similar in shape to that of the previous categorical 

analysis. The survival curves (Fig. 7.5c) indicate reduced survival with 

increased inbreeding throughout life for all groups of badger but the effect is 

most pronounced for the cub positive badgers. The shape of each trajectory 

describes a similar pattern of survival and mortality to that of the categorical 

analysis but the posterior inclusion probabilities indicate a stronger relationship 

with inbreeding across all 5 Siler parameters. 



138 

 

  

Figure 7.4: Posterior variable inclusion probabilities from all possible models 

allowing main effects of sex, infection and inbreeding and interactions 

between sex:infection, sex:inbreeding and infection:inbreeding. Sex and 

infection fitted as categorical variables, inbreeding fitted as a continuous 

variable. 
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Traditional model validation tools to check the linear assumption, such as 

residual checks, cannot be employed here since the linearity assumptions 

affects variables other than the mean and in complex ways. There are a number 

of supportive analyses that we can complete. An argument against assuming a 

linear relationship is that there could be a number of outliers that have high 

leverage and thus falsely provide support for the linear relationship, or indeed 

simply that the relationship to inbreeding coefficient is not linear on the log-scale 

for these parameters. Figure 7.6 indicates an approximately normal distribution 

of inbreeding scores for the badger population suggesting the chance of any 

individual having high leverage is small. 

Figure 7.5: Model averaged, posterior predictive mortality (a. and b.) and 

survival trajectories (c.) of a natural population of European badgers (Meles 

meles). Badgers have been split by sex and ‘infection’ status (infected (cub) 

= test positive for bTB during first year of life; uninfected = never tested 

positive for bTB throughout life). Inbreeding fitted as a continuous covariate, 

trajectories drawn at 4 different levels of increasing inbreeding (0.2, 0.4, 0.6, 

0.8). Time is in years. Shaded areas in (a.) and (c.) represent 95% credible 

intervals. Plot (b.) is focused on the early changes in mortality and is a 

zoomed in version of (a.). 
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As a final more focused check we looked specifically at the effect of inbreeding 

on what is considered the senescence parameter 𝑏ଶ. The Bayesian paradigm 

offers the advantage of being able to extract posterior distributions for each 

individual’s age at death – another latent variable, which we generate (and then 

use the median as inferred age at death) using a model that allows sex- and 

infection-specific variation with an individual level random effect but does not 

include inbreeding. Judging the mortality trajectories (Fig. 7.3 & 7.5) it appears 

that the senescent increase in mortality begins to take effect when badgers are 

approximately 8 years of age, so we are only concerned with those individuals 

we believe have died after this age. We attempt here to validate our linear 

regression between 𝑏ଶ and inbreeding by plotting the inferred age at death of 

each individual against MLH and comparing the model averaged predictions of 

age at death from models that also include inbreeding as a categorical or 

continuous covariate (Fig. 7.7). 

Figure 7.6: Distribution of individual inbreeding scores from the population of 

European badgers (Meles meles) used in this analysis. 
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Figure 7.7 suggests that a linear assumption is not unreasonable when 

attempting to explain the relationship between inbreeding and senescence, or at 

least that there is no discernible difference in the goodness of fit of the 

continuous vs categorical treatment of MLH. 

Discussion 

A number of studies have linked inbreeding with juvenile or fitness-related traits 

in wild populations but comparatively few have investigated impacts across 

lifespan (although see Keller, 1998; Slate et al., 2000; Szulkin et al., 2007). 

Here we have found evidence for novel impacts of inbreeding on age-, sex- and 

Figure 7.7: Plot of inferred age at death against multi-locus homozygosity for 

a population of wild European badgers naturally infected with bovine 

Tuberculosis. Plot only shows individuals who survive beyond age 8. Inferred 

ages at death are generated from a Bayesian investigation of capture mark 

recapture data and a model allowing sex- and infection-specific variation and 

an individual level random effect. Fitted lines indicate predicted age at death 

generated from models that allow sex-, infection- and inbreeding-specific 

variation fitted to the same dataset and conditional on having survived to age 

8. Red (inbred) and blue (outbred) lines are generated from a model that fits 

inbreeding as a categorical covariate, the black line is generated from a 

model that fits inbreeding as a continuous covariate. 



142 

 

infection-specific mortality in a population of wild badgers using a measure of 

inbreeding derived from genome-wide data. The Siler (Siler, 1979) model allows 

assessment of the impacts of inbreeding across entire lifespan but should be 

carefully investigated through the posterior inclusion probabilities in conjunction 

with the model averaged mortality trajectories. Although the Siler parameters 

can be interpreted biologically and related to a specific phase of life: early, late, 

and independent of age, due to the correlated structure of the function (see 

Ch.3 & 5) their influence can be felt across much larger age ranges. 

The RJMCMC analysis generated posterior inclusion probabilities that indicated 

an important effect of inbreeding on parameters 𝑏ଵ and 𝑐 suggesting both age-

dependent and age-independent effects (Fig. 7.1). Although interpretation of the 

parameters independently can help suggest where in an individual badgers 

lifetime the impacts of being inbred maybe felt, it is safer to accommodate 

model uncertainty (Raftery et al., 1994) and produce model averaged survival 

and mortality trajectories (Fig. 7.3). The survival trajectories show little variation 

between groups but the mortality trajectories are better able to capture subtle 

differences. As suggested by the inclusion probabilities, the impacts of being 

classed as inbred can be felt across individuals’ complete life history and is not 

limited to the phases of life that are primarily connected with parameters 𝑏ଵ and 

𝑐 . For the ‘never-positive’ individuals the initial mortality rate appears to be 

lower at birth (for inbred individuals), the drop from this rate is slower (𝑏ଵ) but is 

followed by an earlier onset of senescence. The rate of senescent increase in 

mortality is similar for both inbred and outbred individuals but it occurs sooner 

for the inbred badgers. The shape of mortality trajectory for the ‘cub-positive’ 

individuals is markedly different with no initial downtick in mortality from birth, 

instead characterised by a consistent increase in mortality rate from birth with 

only minor differences between the inbred and outbred individuals being evident 

with the female badgers where there is a slightly lower rate of mortality at birth 

but an earlier onset of senescence for inbred individuals. The patterns of 

‘infection’ -specific differences in mortality have been evidenced previously 

(Hudson et al., 2019) –  a more intense senescent increase in mortality 

although previously we had uncovered a small downtick in early mortality that 

was not found here for this group of badgers. We found no evidence for any 
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two-way interactions between sex, infection and inbreeding indicating any 

effects were being felt independently from one another. Previous research has 

found evidence for sex:inbreeding interactions but analyses have been confined 

to older individuals (Fox et al., 2006; Reid et al., 2007). Harrisson et al. (2019) 

analysed lifetime fitness costs of inbreeding and found, as we have, no 

evidence for an interaction between homozygosity and sex. Evidence for 

inbreeding:disease interactions are less common, particularly in wild 

populations. The research generally focuses on the impact of inbreeding on 

susceptibility to disease – using this as a measure of fitness as opposed to 

looking for links with survival and mortality (Benton et al., 2018; Queirós et al., 

2016; Trinkel et al., 2011) as we have done here. 

Having noted the caveat that we are unable to conclusively validate the linearity 

assumption when fitting inbreeding as a continuous variable it is still important 

to view these results. The posterior inclusion probabilities for inbreeding 

increased consistently across all the five parameters (Fig. 7.4) but more 

crucially, the model averaged survival and mortality curves (Fig. 7.5) were 

supportive of the previous categorical analysis showing similar relationships 

across the badger’s lifespan which adds weight to our analysis and conclusions.  

Although we have demonstrated support for both evolutionary models of 

senescence, strengthening the argument that they may co-exist in natural 

populations (Wilson et al., 2007; also shown in laboratory experiments - Service 

et al., 1988; Snoke & Promislow, 2003), the mortality trajectories indicate a 

stronger influence of inbreeding consistent with AP. MA theory suggests that ID 

will increase with age (Charlesworth & Hughes, 1996) which can be seen in the 

earlier onset of senescence across all inbred badgers and the more intense 

increase in the rate of senescence, although this is only weakly apparent and 

confined to the ‘cub-positive’ badgers. Support for AP is stronger with 

differential impacts of inbreeding on survival felt across lifespan – beneficial 

initially and then detrimental. Previous research has generally made use of 

recorded trade-offs (Stearns, 1989) among life-history traits as evidence for AP 

with most focused on negative associations between lifespan and reproduction 

(e.g. Robinson et al., 2006; Marshall et al., 2017). But these results do not 

cleanly support AP (Austad & Hoffman, 2018) and can also be attributed to the 
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disposable soma theory (Kirkwood, 1977) which suggests organisms have to 

trade-off between committing energy to reproduction or investing in 

maintenance of their somas. To our knowledge our analysis has for the first 

time demonstrated antagonistic pleiotropic effects of inbreeding on individual 

mortality in a wild population – highlighted by the beneficial, lower rate of 

mortality at birth followed by the negative effects of a slower reduction in 

mortality, earlier onset of senescence and more intense senescent increase in 

mortality in later life. These effects are not easily attributable to a trade-off 

scenario and therefore suggest that late-acting deleterious mutations may have 

been favoured by selection as they have early-acting beneficial effects as 

Williams (1957) originally described. The beneficial effects are only apparent in 

the very early phase of life however and are quickly overtaken by the 

detrimental slow rate of reduction in mortality towards maturity. It is possible 

that the apparent early benefit of being inbred may be a result of differential 

levels of maternal care provided to offspring that are more similar to the 

parents. Pilakouta et al. (2015) demonstrated that parental care can moderate 

the severity of ID in burying beetles (Nicrophorus vespilloide) and a similar 

study indicated that ID could be buffered by either parental care or group living 

in a subsocial spider (Anelosimus cf. jucundus, currently Anelosimus arizona) 

(Avils & Bukowski, 2005). Although experimental investigations of this 

hypothesis found no support for maternal care reducing the impact of 

inbreeding in the European earwig (Forficula auricularia) (Meunier & Kölliker, 

2013). 

Here we have provided further evidence that ID can vary across life-history 

stages as has been shown in different species (e.g. Huisman et al., 2016; 

Harrisson et al., 2019) but for the first time we have uncovered antagonistic 

pleiotropic effects on individual mortality in a wild population consistent with the 

AP evolutionary theory of senescence. We are unable to dismiss the alternative 

MA theory having also identified some age-dependent effects of inbreeding and 

therefore believe that the two theories should not be considered mutually 

exclusive – each playing its part in the evolution of senescence. Any beneficial 

effects of inbreeding are quickly overtaken by the detrimental effects which take 

control as early as aged 3 for ‘never-positive’ badgers. We also highlighted the 
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additional effect of being a ‘test-positive’ cub: here the detrimental effects of 

inbreeding occur much sooner (aged 1). The magnitude of ID across life history 

has rarely been quantified (Trask et al., 2021) and our understanding of the 

processes involved remains limited (Kardos et al., 2016). We have 

demonstrated a straightforward method for the analysis of life-history impacts of 

inbreeding in a natural population which we hope will encourage further similar 

research on other species. Of greatest importance is understanding how ID at 

the individual level effects population growth and viability, particularly due to the 

rapid progression of global change and habitat fragmentation (Stoffel et al., 

2021) which will likely lead to increased levels of inbreeding across a large 

proportion of wild species.  
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Chapter 8: General Discussion 
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Overview 

Wildlife disease is of increasing importance to conservation biology and 

recognised as a critical factor in ongoing global health. Survival analysis 

conducted on wild populations is unsurprisingly a very active area of research 

as it has the potential to uncover subtleties of complex epidemiological 

interactions that often exist in natural systems. Within this thesis I have 

presented a number of different Bayesian approaches to survival analysis that 

are well suited to the challenges posed by wild populations. 

We made use of the software package BaSTA (Bayesian Survival Trajectory 

Analysis - Colchero et al., 2012) to uncover previously unreported sex- and 

infection-specific patterns of age-specific mortality in the European badger – 

Meles meles (Chapter 2); for the first time reporting ‘bathtub’ shaped mortality 

patterns across all groups of badger. Cubs categorised as ‘test-positive’ (used 

as an indicator of disease status) displayed a more intense senescent increase 

in mortality in later life but to investigate this relationship further required a more 

flexible modelling approach than that offered by BaSTA. We investigated a 

number of different programmes (e.g. WinBUGS, JAGS, NIMBLE) that allow 

models to be built from first principles and analysed within the Bayesian 

framework (Chapter 3). We settled on NIMBLE which we found offered the 

flexibility required without compromising efficiency. We developed a novel 

algorithm, new to the literature, for generating random samples from the Siler 

(Siler, 1979) distribution, extending the ideas in Jodrá (2009). This facilitates 

more straightforward simulation studies and allows for more straightforward 

predictions. We carried out an in-depth investigation of the Siler function, 

creating a Shiny (Web Application Framework for R [R Package Shiny Version 

1.6.0], 2021) app (Hudson, 2019); noting an internal correlation structure that is 

often overlooked in the literature.  

Having established a framework that allows flexible model construction the 

challenge became one of model comparison and how best to select the most 

credible model or set of rival models. It is widely recognised that a variety of 

models can often provide comparable fits to the data. This has led to the 

development of multi-model inference techniques such as Bayesian model 

averaging (BMA) (Kass & Raftery, 1995; Burnham & Anderson, 2002; Harrison 
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et al., 2018) which readily accommodate model uncertainty. Despite a wide 

range of methods used for model comparison, there is no consensus over 

which should be preferred. We presented a method for the estimation of the 

marginal likelihood based on importance sampling which works well when 

proportions of the data are missing – a common feature of ecological research. 

The process enables straightforward model comparisons to be made via the 

calculation of Bayes’ Factors or posterior model probabilities which can also act 

as weighting probabilities in BMA. We demonstrated the efficiency and 

accuracy of this approach through a series of simulations and case studies: 

first, on censused data and banded Mongoose (Chapter 4) and second, on 

capture-mark-recapture (CMR) data and European badgers (Chapter 5). Our 

analysis of CMR data highlighted the difficulties of recording dynamics of early-

life mortality suggesting why ‘bathtub’ shaped mortality such as the Siler 

function remain underused in wildlife research and why the reported levels of 

early-life mortality are likely underestimates.  

Datasets from long-term monitoring projects of wild populations are recording 

an increasing number of potential explanatory variables, allowing more complex 

models to be fitted to the data. Although caution should be taken to avoid over-

fitting, many model comparison problems can reduce to variable selection. In 

these instances our IS approach can become time consuming, due to the large 

number of potential covariate combinations. This led us to investigate Reverse 

Jump Markov chain Monte Carlo (RJMCMC) (Green, 1995) methods as an 

alternative approach to generate posterior model probabilities.  We compared 

our IS analysis of sex-specific variation in age-specific mortality in badgers from 

Chapter 5 with an RJMCMC analysis of the same data and found the results to 

be comparable, but with a considerable time saving (Chapter 6). Finally, we 

presented a detailed analysis of the effects of inbreeding on age-, sex- and 

infection-specific mortality in badgers using RJMCMC methods. Our 

understanding of the characteristics underlying the Siler model allowed us to 

identify antagonistic pleiotropic effects of inbreeding on individual mortality rates 

in a wild population for the first time (Chapter 7). 
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Methodological advances for Survival Analysis 

Studies completing survival analysis within the Bayesian paradigm are still 

relatively rare compared to the number using frequentist methodologies (Brard 

et al., 2016). Survival analysis generally focuses on non-parametric (e.g. 

Kaplan-Meier survival plots) or semi-parametric (e.g Cox proportional hazards 

framework) modelling, but both methods can struggle with increasing levels of 

censorship – something that is common when monitoring wild populations. 

Adopting a Bayesian approach has both advantages and disadvantages which 

have been widely discussed (e.g. Berry, 2006; Gelman, 2008) but the natural 

ability to incorporate and quantify all levels of uncertainty make it particularly 

well suited to datasets from systems that are challenging to monitor perfectly. 

There can be confusion between the interpretation of survival and mortality 

rates (Ellis et al., 2014), and although linked it is often the mortality rates that 

exhibit higher sensitivity to subtle changes and therefore have the potential to 

add greater depth to our understanding of the underlying processes involved. 

Traditionally, mortality rates have been analysed using static life tables which 

give mortality at given ages or discrete life phases, but these are limited in the 

information they offer and can mask subtle mortality patterns. Mortality (and 

survival) trajectories offer a greater depth of information when describing the 

dynamics of natural systems and as a result may offer a deeper level of 

understanding. The challenge for analysts wishing to employ survival and 

mortality trajectory analysis lies in the comparison and selection of potential 

mortality functions. Within this thesis we have presented two different 

approaches that perform well with the types of data common within ecological 

research. Our IS approach allows straightforward comparison of any competing 

models that the analyst deems appropriate and the RJMCMC approach can 

offer significant time savings when the models to be compared are nested or 

the investigation can be reduced to one of variable selection. Both approaches 

utilise the benefits of working within the Bayesian paradigm and its natural 

handling of multiple sources of uncertainty and include the option to generate 

posterior model probabilities that facilitate multi-model inference techniques 

such as BMA. Posterior predictive, model averaged survival and mortality 

trajectories can then offer straightforward graphical representations of covariate 
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effects that are easy to interpret. We hope that by providing annotated code for 

all methods and analysis included within this thesis we can broaden the 

statistical toolbox of the ecological researcher.  

Evolutionary perspective on Senescence 

Our analysis of the impacts of inbreeding on age-, sex- and infection-specific 

survival and mortality in badgers suggested it to be an important explanatory 

covariate. Using our knowledge of the Siler function (specifically the correlated 

nature of its parameters), survival and mortality trajectory analysis allowed us to 

uncover full life history effects of ID. Our approach revealed antagonistic-

pleiotropic effects on mortality previously unreported in wild populations. 

Although there is a weight of evidence that argues in favour of the antagonistic 

pleiotropy (AP) evolutionary theory of senescence (Williams, 1957) they are 

generally based on trade-offs among life-history traits (Stearns, 1989) and 

cannot be exclusively attributed to AP as Kirkwood's (1977) disposable soma 

theory cannot be dismissed. Our results also offered some support for the 

alternative evolutionary theory of senescence, mutation accumulation (MA), 

adding weight to the argument that the two theories may co-exist in natural 

populations (Harrison et al., 2013). 

Future Research - Left censoring 

Survival analyses conducted on natural systems will always suffer from some 

degree of censorship where the fate of certain individuals is unknown. 

Censoring can occur in three different ways for a given event of interest: left-

censoring – the event happens prior to the start of a study; right-censoring – the 

event happens after the end of the study; and interval-censoring – the event 

occurs within a given timeframe. In this thesis we have accommodated right- 

and interval-censored death times in our modelling framework (Chapters 4 & 5) 

to infer survival and mortality estimates. However, when analysing longitudinal 

monitoring data in this manner there are two events of interest: birth and death. 

If we do not have information regarding an individual’s birth (i.e. it occurred prior 

to the study start and is therefore left-censored) then we cannot easily calculate 

an age at death to inform survival and mortality estimates. This is a common 

problem and often results in researchers having to discard valuable data (as we 

did after Chapter 2) and lose statistical power in their analyses.  
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In Chapter 2 we used the software package BaSTA (Colchero & Clark, 2012) 

which addresses this problem in the same manner as it handles right-censoring 

– by adding birth time as a latent variable and estimating it within the model. As 

we began building models from first principles to achieve the flexibility we 

required (Chapter 3) we initially stripped back the complexity and chose to focus 

on right- and interval- censoring. The dataset that we primarily make use of 

throughout this thesis (CMR data from a natural population of European 

badgers at Woodchester Park, Gloucestershire) has relatively few left-censored 

records; over 85% of the badgers available for our analyses were of known age, 

thus to some degree mitigating potential bias. We developed our models 

without incorporating left-censoring although we have written some preliminary 

code that places a prior distribution on the unknown birth time and estimates it 

within the model which can accommodate such records. We hope to have the 

opportunity to develop this further but provide our code in Appendix 7 for 

reference. Gilbert et al. (2014) carried out an investigation into left-censoring 

and found it can have considerable impact on survival estimates, this is 

something we comment on in Chapter 5 when we address the difficulties in 

monitoring the early stages of life and the problem of individuals dying prior to 

detection. Improving study design and increasing the frequency of sampling 

occasions can reduce the impact of left-censoring but it is unlikely to be 

possible to solve the issues without causing detrimental levels of disturbance to 

the target population. Through careful consideration of the demographics of the 

sample population together with average recapture rates it is quite feasible to 

construct a model that could better estimate initial mortality and survival rates 

but we have not been able to explore this avenue further. 

Future Research - Life-course analysis 

Survival and mortality rates are often the basis of demographic analysis and 

often key in decisions regarding population management (Servanty et al., 2011) 

so any improvement in the accuracy of our estimations may be critical to 

effective conservation or control. As we have discussed throughout this thesis, 

survival analysis is often focused on a particular life phase with the dynamics of 

survival and mortality generally considered independent of other periods of an 

individual’s life. This may be generating specious inferences. The majority of 
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studies looking at late life mortality have used the Gompertz function 

(Gompertz, 1825), particularly when carrying out cross-species comparisons 

(e.g. Nussey et al., 2008). This may seem a logical choice as the Gompertz 

model ignores any early-life changes in mortality and just describes an 

exponential increase from a particular intercept level but as we have 

demonstrated this may be an important oversight. Datasets from intensive long-

term monitoring projects are becoming more common and the depth of 

information concerning the demographics of natural populations more detailed, 

but by using models that ignore some of this information researchers risk 

oversimplified pictures of reality and inaccurate conclusions. We have shown in 

Chapter 3 and again in Chapter 5 that changes in mortality rates through early 

stages of life can have impacts that are felt in later life. We used the Siler model 

throughout our analyses, and compared the fit of this function to others that 

ignore early life changes (e.g. Gompertz, exponential, Gompertz-Makeham); 

despite the difficulties in recording very young individuals the Siler model was 

consistently selected as either the optimal model, or within a pre-determined 

threshold value of the optimal model. This supports the idea that the additional 

parameters describing mortality changes in early life can have an impact in later 

life – something we demonstrated in Chapter 3. We strongly recommend the 

use of bathtub shaped mortality functions when analysing full life-course data 

(see Ronget et al. (2020) for additional arguments in favour of this approach), 

even if the signal within the data is only weakly supportive of early life changes 

they may be having an impact not felt until later life stages. Rather than simply 

focusing on, for example, senescent increases in mortality in later life 

researchers should be considering life-course analysis as the optimal approach 

to any analysis of mortality and survival. 

Future Research - Latent variable model validation 

Survival analysis of wild populations will always be hampered by the fact that 

the parameter of interest, survival, is an unseen latent variable inferred from 

monitoring information such as CMR. Right-censoring compounds the problem 

as crucial information that could provide bounds on individual survival times are 

missing. In Chapter 2 we were able to compare predictive survival trajectories 

with Kaplan-Meier plots of actual survival as levels of censorship were relatively 
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low, as the proportion of censored records increases Kaplan-Meier plots 

become increasingly poor representations of true survival rendering them an 

ineffective tool for model validation. This issue presented itself in Chapter 7 

where we had the ability to fit inbreeding as a continuous variable but no 

method to validate our model and the assumed linear relationships. This led us 

to the more conservative approach of categorising the inbreeding measure. 

Within our analysis in Chapter 7 we chose to investigate potential relationships 

between inbreeding and the individual parameters of the Siler model to allow for 

a more detailed assessment of the age-specificity of any effects. By not 

modelling a more general relationship between inbreeding and mean survival 

rates (as would be the case in e.g. a Cox proportional hazards framework) we 

added further layers of complexity and difficulties in potential validation of any 

linearity assumptions. Survival analyses have used an individual’s Martingale 

(Therneau et al., 1990) or deviance residual in a similar fashion to a residual 

measure in linear regression but neither are applicable here. This is an area of 

ongoing research (e.g. Vieland et al., 2020) but we have been unable to find a 

workable solution. In Chapter 7 we adopted the conservative approach through 

the construction and assessment of model averaged posterior predictive 

mortality and survival trajectories which incorporate our uncertainty and 

illustrates any effects of inbreeding on the patterns of age-specific life-time 

mortality and survival. 

Implications for future epidemiological modelling 

Effective epidemiological modelling is a critical tool within health policy 

development and disease prevention and control (Garner & Hamilton, 2011). 

Methods presented here have been developed primarily for ecological research 

where data often suffers from different degrees of missingness, but are 

transferable to many other fields including human epidemiological research. 

Fitting parametric models to survival data remains an underused approach to 

estimate survival and mortality but has the potential to uncover subtle patterns 

that can be missed by alternative approaches. We have favoured the Siler 

model throughout our research as it offers the flexibility to describe a variety of 

different patterns but this is also an underused function. Throughout this thesis 

we have demonstrated the appeal of parametric models and specifically the 
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Siler function when investigating impacts of a variety of explanatory variables on 

survival and mortality. Working within the Bayesian paradigm offers the 

opportunity to incorporate all levels of uncertainty in the modelling process and 

the resulting, model averaged posterior predictive survival and mortality 

trajectories offer interpretable representations of the effects of any number of 

covariates. We hope that by providing all code throughout, that the approaches 

demonstrated here will not only become more widespread within ecology but 

within all epidemiological research. 

Concluding remarks 

The aim of this thesis was to investigate the effects of inbreeding on the 

epidemiology of bovine tuberculosis in the European badger. At the core of this 

research is a focused development of an appropriate modelling framework to 

carry out survival analysis on naturally occurring populations that is widely 

applicable beyond ecological research. Inbreeding is an important factor in the 

mortality and survival of badgers having apparently antagonistic pleiotropic 

effects that are beneficial in early life and detrimental in later life. Inferred 

infection (i.e. test positive) is well known to increase mortality rates and our 

analysis indicates that increased inbreeding further intensifies this relationship. 

Inbreeding rates are relatively low within our study population but effects are still 

detected. In our rapidly changing world with habitats becoming increasingly 

isolated, inbreeding levels will likely increase. The full impact of current bTB 

control measures on population levels of inbreeding are unknown but if badgers 

are completely removed from certain areas leaving isolated populations then 

inbreeding rates are set to increase further.  
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Appendices 

 

Appendix 1 – Supplementary material from Chapter 2: Analysis of lifetime 

mortality trajectories in wildlife disease research: BaSTA and beyond. 

 Figure A1.1: Kaplan-Meier plots of observed survival on top of 
predicted survival trajectories 

 Table A1.1: Posterior parameter estimates, standard deviations 
and lower/upper 95% confidence intervals of mortality trajectories 

 R code - BaSTA analysis 
 

Appendix 2 – Supplementary material from Chapter 3: Flexible model 

specification for Bayesian survival analysis 

 R code - Case Study investigation 

 R code - Siler distribution 

 
Appendix 3 – Supplementary material from Chapter 4: Bayesian model 

selection for survival analysis. 

 Uncensored simulations Log Marginal Likelihood plots. 
o SF1 – Exponential simulated data 
o SF2 – Gompertz simulated data 
o SF3 – Gompertz-Makeham simulated data 
o SF4 – Siler simulated data 

 Censored simulations Log Marginal Likelihood plots. 
o SF5 – Exponential simulated data 
o SF6 – Gompertz simulated data 
o SF7 – Gompertz-Makeham simulated data 
o SF8 – Siler simulated data 
o SF9 - Kaplan-Meier sex specific survival plot with log rank 

comparison of survival curves 
 R code – Example R code to carry out investigation of sex-specific 

variation on parameter a1 using census data of banded mongoose. 
 

Appendix 4 – Supplementary material from Chapter 5: Bayesian model 

comparison of capture-mark-recapture data for survival analysis 

 R code – Example R code to carry out investigation of sex-specific 
variation on parameter a1 using CMR data of European badgers. 
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Appendix 5 – Supplementary material from Chapter 6: Efficient Bayesian 

model comparisons for nested models: from importance sampling to reversible 

jump Markov chain Monte Carlo. 

 R code – RJMCMC analysis of sex-specific variation in badger 
mortality 

 

Appendix 6 – Supplementary material from Chapter 7: Investigating the impact 

of inbreeding on lifetime survival and mortality trajectories of European badgers. 

 R code – RJMCMC analysis of age-, sex-, infection- and 
inbreeding-specific survival and mortality trajectories of European 
badgers.  
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Appendix 1 – Supplementary material from Chapter 2 :Analysis of 

lifetime mortality trajectories in wildlife disease research: BaSTA and 

beyond. 

 

 

Figure A1.1 Kaplan-Meier plots (in red) of observed survival on top of predicted 

survival trajectories and 95% confidence intervals for a population of European 

badgers naturally infected with bovine tuberculosis.  Split by sex and infection 

status (a) Cub-positive females; (b) Cub-positive males; (c) Never-positive 

females; (d) Never-positive males. 
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Table A1.1 Posterior parameter estimates, standard deviations and lower/upper 

95% confidence intervals of mortality trajectories for a population of wild 

European badgers naturally infected with bovine tuberculosis. 

Parameter Status Gender Estimate S.D Lower Upper 

a0 

Cub 
positive 

Female -4.29 0.59 -5.52 -3.22 

Male -4.07 0.65 -5.41 -2.90 

Never 
positive 

Female -2.35 0.15 -2.70 -2.13 

Male -2.57 0.36 -3.41 -2.06 

a1 

Cub 
positive 

Female 1.02 0.85 0.01 2.85 

Male 0.95 0.88 0.00 2.82 

Never 
positive 

Female 0.06 0.02 0.03 0.09 

Male 0.05 0.02 0.02 0.11 

c 

Cub 
positive 

Female 0.02 0.01 0.00 0.05 

Male 0.04 0.02 0.00 0.08 

Never 
positive 

Female 0.02 0.01 0.00 0.05 

Male 0.04 0.02 0.00 0.09 

b0 

Cub 
positive 

Female -3.72 0.45 -4.76 -3.07 

Male -3.66 0.65 -5.14 -2.69 

Never 
positive 

Female -5.32 0.68 -6.71 -4.04 

Male -4.30 0.79 -5.93 -2.90 

b1 

Cub 
positive 

Female 0.05 0.01 0.03 0.07 

Male 0.04 0.02 0.01 0.08 

Never 
positive 

Female 0.07 0.02 0.04 0.10 

Male 0.03 0.02 0.00 0.07 
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R Code for BaSTA analysis 

library(tidyverse) 
library(BaSTA) 
library(data.table) 
library(snowfall) 

Load Data 

The following code shows the steps to analyse the entire badger data set. In the 
journal article we first analyse ‘Cub‐positive’ and ‘Never positive’ individuals 
separately. The steps are the same as below. 

CH.data<‐ read.table("Hudson_2019_MTA_Data.txt", header = TRUE) 
CH.data<‐ as.data.frame(CH.data) 

Prepare matrices for BaSTA 

Create capture history 

Using BaSTA function CensusToCaptureHist and specifing ID and date column. 

Y.full<‐ CensusToCaptHist(ID=CH.data[,1], d=CH.data[,2])  

Create birth and death year matrix 

Keep only single entry per badger and create birth and death year matrix. 

CH.data<‐ data.table(CH.data) 
CH.data<‐ distinct(CH.data, CH.data$ID, .keep_all = TRUE) 
CH.data <‐ droplevels(CH.data) 
BirthDeath.full<‐ CH.data[,c(1,8:9)] 

Create co-variate matrix 

Specify model co‐variate as status. (This is a 4 category co‐variate: 1. Cub positive 
female; 2. Cub positive male; 3. Never positive female; 4. Never positive male) 

CovMat.full<‐ MakeCovMat(x=~status, CH.data) 

Create input matrix 

Combine the birth/death matirx, co‐variate matrix and full capture history. 

inputMat.aim <‐ as.data.frame(cbind(BirthDeath.full, Y.full[,‐1], CovM
at.full[,‐1])) 

Data check 

newData.aim <‐ DataCheck(inputMat.aim, studyStart = 2,studyEnd = 173, 
autofix = rep(1, 7),silent = FALSE) 
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## No problems were detected with the data. 
##  
## *DataSummary* 
## ‐ Number of individuals         =    2,957  
## ‐ Number with known birth year  =    2,228  
## ‐ Number with known death year  =     764  
## ‐ Number with known birth 
##  AND death years                =     335  
##  
## ‐ Total number of detections 
##  in recapture matrix            =   11,420  
##  
## ‐ Earliest detection time       =       2  
## ‐ Latest detection time         =     173  
## ‐ Earliest recorded birth year  =       6  
## ‐ Latest recorded birth year    =     170  
## ‐ Earliest recorded death year  =       6  
## ‐ Latest recorded death year    =     173 

Begin BaSTA analysis 

All Badgers: 

Analyse all badgers together specifying all models to compare. Recapture probabilities 
allowed to vary on each occasion. The following code takes approximately 10 days to 
run. 

All.badgers.out <‐ multibasta(object = inputMat.aim, studyStart = 2, s
tudyEnd = 173, nsim = 4, niter = 1000000, burnin = 10001, thinning = 1
00, parallel = TRUE, ncpus = 4, models = c("EX", "GO", "LO"), shapes = 
c("simple","Makeham", "bathtub"), recaptTrans = 2:173) 

Most supported model 

The output from the multi‐Basta above for the most supported model has been saved 
in the additional file “All.badger.out.GObt”. Load the output and view the summary. 

load(file="All.badger.out.GObt") 
summary(All.badgers.Go.Bt.long) 

##  
## Output from BaSTA version 1.9.5 
##  
## Call: 
## Model                    : GO 
## Shape                    : bathtub 
## Covars. structure        : fused 
## Minimum age              : 0 
## Cat. covars.             : statusInfected.Female, statusInfected.Ma
le, statusUninfected.Female, statusUninfected.Male 
## Cont. covars.            :    
##  
## Model settings: 
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##    niter   burnin thinning     nsim  
##  1000000    10001      200        4  
##  
## Jumps and priors: 
##                              Jump.sds Prior.means Prior.sds 
## a0.statusInfected.Female   2.44055916       ‐2.00         1 
## a0.statusInfected.Male     2.38855868       ‐2.00         1 
## a0.statusUninfected.Female 0.19053737       ‐2.00         1 
## a0.statusUninfected.Male   0.30052001       ‐2.00         1 
## a1.statusInfected.Female   4.31114061        0.01         1 
## a1.statusInfected.Male     3.65705130        0.01         1 
## a1.statusUninfected.Female 0.02281527        0.01         1 
## a1.statusUninfected.Male   0.05147027        0.01         1 
## c.statusInfected.Female    0.02483013        0.00         1 
## c.statusInfected.Male      0.03606863        0.00         1 
## c.statusUninfected.Female  0.01566606        0.00         1 
## c.statusUninfected.Male    0.01889691        0.00         1 
## b0.statusInfected.Female   0.51199928       ‐3.00         1 
## b0.statusInfected.Male     0.68933530       ‐3.00         1 
## b0.statusUninfected.Female 0.48099634       ‐3.00         1 
## b0.statusUninfected.Male   0.86294360       ‐3.00         1 
## b1.statusInfected.Female   0.02548119        0.01         1 
## b1.statusInfected.Male     0.05096491        0.01         1 
## b1.statusUninfected.Female 0.01379019        0.01         1 
## b1.statusUninfected.Male   0.04614644        0.01         1 
##  
## Mean Kullback‐Leibler 
## discrepancy calibration (KLDC): 
##                                                     a0     a1      
c     b0     b1 
## statusInfected.Male ‐ statusInfected.Female     0.5350 0.5008 0.827
0 0.5689 0.5897 
## statusUninfected.Female ‐ statusInfected.Female 0.9996    NaN 0.505
2 0.9855 0.8917 
## statusUninfected.Female ‐ statusInfected.Male   0.9973    NaN 0.852
9 0.9773 0.8764 
 

SOME ROWS HAVE BEEN REMOVED 
 

## pi.173                      0.03919 0.02235  0.0080401    0.09345  
5.382e‐03     1.0000        0.9999 
##  
## Convergence: 
## Appropriate convergence reached for all parameters. 
##  
## DIC: 
## 30300.98 

Plot mortality trajectory and posterior distributions of parameters. 

plot(All.badgers.Go.Bt.long, fancy = TRUE) 
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Appendix 2 – Supplementary material from Chapter 3: Flexible 

model specification for Bayesian survival analysis 

 

R code for Case study analysis 

Setup 

Load libraries, data, additional functions and seed 

## load libraries 
library(nimble) 
library(tidyverse) 
library(boot) 
library(lamW) 
library(GGally) 
library(coda) 
library(data.table) 
 
## load data 
load("badgerALL.RData") 
 
## load distributions and register with NIMBLE 
source("Dist_Siler.R") 
source("Dist_SilerNim.R") 

## Registering the following user‐provided distributions: dsilerNim 

## load required additional functions 
source("ModelComparison_FUNCTIONS.R") 
 
## set seed 
set.seed(42) 

Prepare for Nimble analysis 

Define model, set constants, data and initial values. The initial values are generated 
inside a function and we add them to the compiled model a little later. 

code <‐ nimbleCode({ 
   
  ## survival components for dead badgers 
  for (i in 1:nind) { 
     
    ## likelihood for interval‐truncated siler 
    censored[i] ~ dinterval(tD[i], cint[i, ]) 
    tD[i] ~ dsilerNim(a1, a2, b1, b2, c1) 
     
    ## sampling component 
    pd[i] <‐ exp(y[i] * log(mean.p) + (min(floor(tD[i]), tM[i]) ‐ y[i]
) * log(1 ‐ mean.p)) 
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    dind[i] ~ dbern(pd[i]) 
  } 
   
  ## priors 
  a1 ~ dexp(1) 
  a2 ~ dexp(1) 
  b1 ~ dexp(1) 
  b2 ~ dexp(1) 
  c1 ~ dexp(1) 
  mean.p ~ dunif(0, 1) 
   
}) 
 
## set up data 
consts <‐ list(nind = nind, tM = tM) 
 
data <‐ list( 
  y = y, cint = cint, censored = censored, tD = tD, dind = dind) 
 
## find overdispersed initial values 
tinitFn <‐ function(cint, censored) { 
  apply(cbind(cint, censored), 1, function(x) { 
    if(x[3] == 2) { 
      y <‐ x[2] + rexp(1, 1) 
    } else { 
      y <‐ runif(1, x[1], x[2]) 
    } 
    y 
  }) 
} 
initFn <‐ function(cint, censored, model) { 
  ## get ML estimates as initial values 
  optFn <‐ function(pars, t) { 
    if(any(pars[1:5] < 0)) { 
      return(NA) 
    } 
    ll <‐ sum(dSiler(t, a1 = pars[1], a2 = pars[2], b1 = pars[3], b2 = 
pars[4], c1 = pars[5], log = TRUE))   
  } 
  valid <‐ 0 
  while(valid == 0) { 
    pars <‐ list(convergence = 1) 
    k <‐ 0 
    while(pars$convergence != 0 & k < 20) { 
      ## sample missing values 
      tD <‐ tinitFn(cint, censored) 
      pars <‐ optim(rexp(5, 10), optFn, t = tD, control = list(fnscale 
= ‐1)) 
      k <‐ k + 1 
    } 
    if(k == 20) { 
      stop("Can't sample initial values") 
    } 
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    pars <‐ pars$par 
     
    ## output initial values 
    inits <‐ list( 
      tD = tD, 
      a1 = pars[1], 
      a2 = pars[2], 
      b1 = pars[3], 
      b2 = pars[4], 
      c1 = pars[5], 
      mean.p = runif(1, 0, 1) 
    ) 
    model$setInits(inits) 
    valid <‐ ifelse(!is.finite(model$calculate()), 0, 1) 
  } 
  return(inits) 
} 

Build the model in NIMBLE. 

We do not supply the initial values here. This will throw an initialization error at this 
stage but do not worry, it is safer to add them to the compiled model in a few steps 
time. 

## build the model 
model <‐ nimbleModel(code, constants = consts, data = data) 

## defining model... 

## building model... 

## setting data and initial values... 

## running calculate on model (any error reports that follow may simpl
y reflect missing values in model variables) ... Error in if (a1 < 0 | 
a2 < 0 | b1 < 0 | b2 < 0 | c1 < 0) { :  
##   missing value where TRUE/FALSE needed 
##  
## checking model sizes and dimensions... This model is not fully init
ialized. This is not an error. To see which variables are not initiali
zed, use model$initializeInfo(). For more information on model initial
ization, see help(modelInitialization). 
## model building finished. 

Compile the model 

We now compile the model into C++ and then add the initial values argument. 

## compile the model 
cModel <‐ compileNimble(model) 

## compiling... this may take a minute. Use 'showCompilerOutput = TRUE
' to see C++ compilation details. 
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## compilation finished. 

## find list of valid initial values (needs compiled model) 
inits <‐ list() 
for(k in 1:2) { 
  inits[[k]] <‐ initFn(cint, censored, cModel) 
} 

Configure the MCMC 

We can now make adjustments to the default sampler settings in NIMBLE. 

## define the configuration 
config <‐ configureMCMC(model) 

## ===== Monitors ===== 
## thin = 1: a1, a2, b1, b2, c1, mean.p 
## ===== Samplers ===== 
## RW sampler (2760) 
##   ‐ a1 
##   ‐ a2 
##   ‐ b1 
##   ‐ b2 
##   ‐ c1 
##   ‐ mean.p 
##   ‐ tD[]  (2754 elements) 

## remove default samplers 
config$removeSamplers(c("a1", "a2", "b1", "b2", "c1")) 
 
## add required samplers 
config$addSampler(target = c("a1","a2", "b2", "c1"), type = 'AF_slice'
) 
config$addSampler(target = c("b1"), type = 'slice', control = list(sli
ceWidth = 1.5, adaptInterval = 50)) 

Build and compile 

We now build our model with the updated configuration and compile again. 

knitr::opts_chunk$set(echo = TRUE) 
# load in custom RJ‐MCMC samplers 
rMCMC <‐ buildMCMC(config) 
cMCMC <‐ compileNimble(rMCMC, project = model) 

## compiling... this may take a minute. Use 'showCompilerOutput = TRUE
' to see C++ compilation details. 

## compilation finished. 

Run the MCMC 

Here we set our MCMC options: iterations, burnin, chains etc. 
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run <‐ runMCMC(cMCMC,  
                           niter = 50000,  
                           nburnin = 20000,  
                           nchains = 2,  
                           inits = inits[[1]], 
                           progressBar = TRUE,  
                           summary = TRUE,  
                           samplesAsCodaMCMC = TRUE,  
                           thin = 1) 

## running chain 1... 

## |‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐| 
## |‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐| 

## running chain 2... 

## |‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐| 
## |‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐| 

Now save the output samples as a matrix 

samples <‐ as.matrix(run$samples) 

And plot 

samples <‐ samples[sample.int(nrow(samples), ceiling(nrow(samples) * 0
.1)), ] 
samples %>% 
  as.data.frame() %>% 
  ggpairs(upper = list(continuous = wrap("cor", size = 5))) + 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), axis.line = element_line(c
olour = "black")) + 
  theme(strip.text = element_text(size = 14)) 
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Siler Distribution 

# Truncated Siler distribution: 
 
## zL = lower truncation point 
## zU = upper truncation point 
 
## load libraries 
library(lamW) 
 
## R function to run optimiser 
optimiseR <‐ function(interval, a1, a2, b1, b2, c1, zL, zU, p) { 
  silerRootFn <‐ function(x, a1, a2, b1, b2, c1, zL, zU, p) { 
    abs(pSiler(x, a1, a2, b1, b2, c1, zL, zU) ‐ p) 
  } 
  optimise(silerRootFn, interval, a1, a2, b1, b2, c1, zL, zU, p)$minim
um 
} 
 
## probability density function 
dSiler <‐ function(x, a1, a2, b1, b2, c1, zL = NA, zU = NA, 
                   log = FALSE) { 
   
  ## all parameters length = 1 or length(x) 
  ntot <‐ length(x) 
  if ((length(a1) != 1 & length(a1) != ntot) |  
      (length(a2) != 1 & length(a2) != ntot) |  
      (length(b1) != 1 & length(b1) != ntot) |  
      (length(b2) != 1 & length(b2) != ntot) |  
      (length(c1) != 1 & length(c1) != ntot)) { 
    stop("Length of parameters must be = 1 or length(x)") 
  } 
  if ((length(zL) != 1 & length(zL) != ntot) |  
      (length(zU) != 1 & length(zU) != ntot)) { 
    stop("Length of zL/zU must be = 1 or length(x)") 
  } 
   
  ## expand entries 
  x <‐ cbind(x, zL, zU, a1, a2, b1, b2, c1) 
  colnames(x) <‐ NULL 
   
  ## run checks (first column of checkPass corresponds to invalid 
  ## inputs [so should return NA]; second column is x outside range 
  ## [so should return 0 p.d.f. outside the range]) 
  checkPass <‐ (is.na(x[, 2]) | is.na(x[, 3]) | x[, 2] < x[, 3]) 
  checkPass <‐ checkPass & (rowSums(x[, ‐c(1:3), drop = FALSE] > 0) == 
5) 
  checkPass <‐ cbind(checkPass, (x[, 1] >= 0) & (is.na(x[, 2]) | x[, 1
] >= x[, 2]) & (is.na(x[, 3]) | x[, 1] <= x[, 3])) 
   
  ## extract vectors as needed 
  zL <‐ x[, 2] 
  zU <‐ x[, 3] 
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  a1 <‐ x[, 4] 
  a2 <‐ x[, 5] 
  b1 <‐ x[, 6] 
  b2 <‐ x[, 7] 
  c1 <‐ x[, 8] 
  x <‐ x[, 1] 
   
  ## No truncation 
  logS <‐ rep(NA, length(x)) 
  logH <‐ rep(NA, length(x)) 
  zN_ind <‐ which(checkPass[, 1] & checkPass[, 2]) 
  logS[zN_ind] <‐ (a1[zN_ind] / b1[zN_ind]) * (exp(‐b1[zN_ind] * x[zN_
ind]) ‐ 1) ‐  
      c1[zN_ind] * x[zN_ind] + (a2[zN_ind] / b2[zN_ind]) * (1 ‐ exp(b2
[zN_ind] * x[zN_ind])) 
  logH[zN_ind] <‐ log(a1[zN_ind] * exp(‐b1[zN_ind] * x[zN_ind]) + c1[z
N_ind] + a2[zN_ind] * exp(b2[zN_ind] * x[zN_ind])) 
  logProb <‐ logH + logS 
   
  ## Left truncation 
  zL_ind <‐ which(!is.na(zL) & is.na(zU) & checkPass[, 1] & checkPass[
, 2]) 
  if(length(zL_ind) > 0) { 
      logS_zL <‐ (a1[zL_ind] / b1[zL_ind]) * (exp(‐b1[zL_ind] * zL[zL_
ind]) ‐ 1) ‐ c1[zL_ind] * zL[zL_ind] + (a2[zL_ind] / b2[zL_ind]) * (1 
‐ exp(b2[zL_ind] * zL[zL_ind])) 
      logProb[zL_ind] <‐ logProb[zL_ind] ‐ logS_zL 
  } 
   
  ## Right truncation 
  zU_ind <‐ which(is.na(zL) & !is.na(zU) & checkPass[, 1] & checkPass[
, 2]) 
  if(length(zU_ind) > 0) { 
      logS_zU <‐ (a1[zU_ind] / b1[zU_ind]) * (exp(‐b1[zU_ind] * zU[zU_
ind]) ‐ 1) ‐ c1[zU_ind] * zU[zU_ind] + (a2[zU_ind] / b2[zU_ind]) * (1 
‐ exp(b2[zU_ind] * zU[zU_ind])) 
      logProb[zU_ind] <‐ logProb[zU_ind] ‐ log(1 ‐ exp(logS_zU)) 
  } 
   
  ## Interval truncation 
  zI_ind <‐ which(!is.na(zL) & !is.na(zU) & checkPass[, 1] & checkPass
[, 2]) 
  if(length(zI_ind) > 0) { 
      logS_zL <‐ (a1[zI_ind] / b1[zI_ind]) * (exp(‐b1[zI_ind] * zL[zI_
ind]) ‐ 1) ‐ c1[zI_ind] * zL[zI_ind] + (a2[zI_ind] / b2[zI_ind]) * (1 
‐ exp(b2[zI_ind] * zL[zI_ind])) 
      logS_zU <‐ (a1[zI_ind] / b1[zI_ind]) * (exp(‐b1[zI_ind] * zU[zI_
ind]) ‐ 1) ‐ c1[zI_ind] * zU[zI_ind] + (a2[zI_ind] / b2[zI_ind]) * (1 
‐ exp(b2[zI_ind] * zU[zI_ind])) 
      S_zL <‐ exp(logS_zL) 
      S_zU <‐ exp(logS_zU) 
      logProb[zI_ind] <‐ logProb[zI_ind] ‐ log(S_zL ‐ S_zU) 
  } 
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  ## return correctly 
  logProb[!checkPass[, 2]] <‐ ‐Inf 
  logProb[!checkPass[, 1]] <‐ NA 
   
  if(log) { 
      return(logProb) 
  } else { 
      return(exp(logProb)) 
  } 
} 
 
## cumulative distribution function (and survivor function) 
pSiler <‐ function(q, a1, a2, b1, b2, c1, zL = NA, zU = NA, 
                   lower.tail = TRUE, log.p = FALSE) { 
   
  ## all parameters length = 1 or length(x) 
  ntot <‐ length(q) 
  if ((length(a1) != 1 & length(a1) != ntot) |  
      (length(a2) != 1 & length(a2) != ntot) |  
      (length(b1) != 1 & length(b1) != ntot) |  
      (length(b2) != 1 & length(b2) != ntot) |  
      (length(c1) != 1 & length(c1) != ntot)) { 
    stop("Length of parameters must be = 1 or length(q)") 
  } 
  if ((length(zL) != 1 & length(zL) != ntot) |  
      (length(zU) != 1 & length(zU) != ntot)) { 
    stop("Length of zL/zU must be = 1 or length(q)") 
  } 
   
  ## expand entries 
  x <‐ cbind(q, zL, zU, a1, a2, b1, b2, c1) 
  colnames(x) <‐ NULL 
   
  ## run checks (first column of checkPass corresponds to invalid 
  ## inputs [so should return NA]; second column is x below lower 
  ## bound and third column is x above upper bound 
  ## [so should return 0 c.d.f. before the lower bound and 1 above  
  ## the upper bound]) 
  checkPass <‐ (is.na(x[, 2]) | is.na(x[, 3]) | x[, 2] < x[, 3]) 
  checkPass <‐ checkPass & (rowSums(x[, ‐c(1:3), drop = FALSE] > 0) == 
5) 
  checkPass <‐ cbind(checkPass, (x[, 1] >= 0) & (is.na(x[, 2]) | x[, 1
] >= x[, 2])) 
  checkPass <‐ cbind(checkPass, is.na(x[, 3]) | x[, 1] <= x[, 3]) 
   
  ## extract vectors as needed 
  zL <‐ x[, 2] 
  zU <‐ x[, 3] 
  a1 <‐ x[, 4] 
  a2 <‐ x[, 5] 
  b1 <‐ x[, 6] 
  b2 <‐ x[, 7] 
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  c1 <‐ x[, 8] 
  q <‐ x[, 1] 
   
  ## No truncation 
  logS <‐ (a1 / b1) * (exp(‐b1 * q) ‐ 1) ‐ c1 * q + (a2 / b2) * (1 ‐ e
xp(b2 * q)) 
  S <‐ exp(logS) 
   
  ## Left truncation 
  zL_ind <‐ which(!is.na(zL) & is.na(zU) & checkPass[, 1] & checkPass[
, 2] & checkPass[, 3]) 
  if(length(zL_ind) > 0) { 
      logS_zL <‐ (a1[zL_ind] / b1[zL_ind]) * (exp(‐b1[zL_ind] * zL[zL_
ind]) ‐ 1) ‐ c1[zL_ind] * zL[zL_ind] + (a2[zL_ind] / b2[zL_ind]) * (1 
‐ exp(b2[zL_ind] * zL[zL_ind])) 
      logS[zL_ind] <‐ logS[zL_ind] ‐ logS_zL 
  } 
   
  ## Right truncation 
  zU_ind <‐ which(is.na(zL) & !is.na(zU) & checkPass[, 1] & checkPass[
, 2] & checkPass[, 3]) 
  if(length(zU_ind) > 0) { 
      logS_zU <‐ (a1[zU_ind] / b1[zU_ind]) * (exp(‐b1[zU_ind] * zU[zU_
ind]) ‐ 1) ‐ c1[zU_ind] * zU[zU_ind] + (a2[zU_ind] / b2[zU_ind]) * (1 
‐ exp(b2[zU_ind] * zU[zU_ind])) 
      S_zU <‐ exp(logS_zU) 
      logS[zU_ind] <‐ log(S[zU_ind]‐S_zU) ‐ log(1 ‐ S_zU) 
  } 
   
  ## Interval truncation 
  zI_ind <‐ which(!is.na(zL) & !is.na(zU) & checkPass[, 1] & checkPass
[, 2] & checkPass[, 3]) 
  if(length(zI_ind) > 0) { 
      logS_zLi <‐ (a1[zI_ind] / b1[zI_ind]) * (exp(‐b1[zI_ind] * zL[zI
_ind]) ‐ 1) ‐ c1[zI_ind] * zL[zI_ind] + (a2[zI_ind] / b2[zI_ind]) * (1 
‐ exp(b2[zI_ind] * zL[zI_ind])) 
      logS_zUi <‐ (a1[zI_ind] / b1[zI_ind]) * (exp(‐b1[zI_ind] * zU[zI
_ind]) ‐ 1) ‐ c1[zI_ind] * zU[zI_ind] + (a2[zI_ind] / b2[zI_ind]) * (1 
‐ exp(b2[zI_ind] * zU[zI_ind])) 
      S_zLi <‐ exp(logS_zLi) 
      S_zUi <‐ exp(logS_zUi) 
      logS[zI_ind] <‐ log(S[zI_ind] ‐ S_zUi) ‐ log(S_zLi ‐ S_zUi) 
  } 
 
  ## return correctly 
  logS[!checkPass[, 2]] <‐ 0 
  logS[!checkPass[, 3]] <‐ ‐Inf 
  logS[!checkPass[, 1]] <‐ NA 
   
  if(!lower.tail) {  
    if(log.p) return(logS) 
    else return(exp(logS)) 
  } else { 
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    p <‐ 1 ‐ exp(logS) 
    if(!log.p) return(p) 
    else return(log(p)) 
  } 
} 
 
## quantile function 
qSiler <‐ function(p, a1, a2, b1, b2, c1, zL = NA, zU = NA, 
                   lower.tail = TRUE, log.p = FALSE) { 
  ## all parameters length = 1 or length(x) 
  ntot <‐ length(p) 
  if ((length(a1) != 1 & length(a1) != ntot) |  
      (length(a2) != 1 & length(a2) != ntot) |  
      (length(b1) != 1 & length(b1) != ntot) |  
      (length(b2) != 1 & length(b2) != ntot) |  
      (length(c1) != 1 & length(c1) != ntot)) { 
    stop("Length of parameters must be = 1 or length(p)") 
  } 
  if ((length(zL) != 1 & length(zL) != ntot) |  
      (length(zU) != 1 & length(zU) != ntot)) { 
    stop("Length of zL/zU must be = 1 or length(p)") 
  } 
   
  ## check log and lower tail arguments and  
  ## adjust p accordingly 
  if(log.p) p <‐ exp(p) 
  if(!lower.tail) p <‐ 1 ‐ p 
   
  ## expand entries 
  x <‐ cbind(p, zL, zU, a1, a2, b1, b2, c1) 
  colnames(x) <‐ NULL 
   
  ## run checks (first column of checkPass corresponds to invalid 
  ## inputs [so should return NA]; second column is p outside range 
  ## [so should return NA if p not in (0, 1)]) 
  checkPass <‐ (is.na(x[, 2]) | is.na(x[, 3]) | x[, 2] < x[, 3]) 
  checkPass <‐ checkPass & (rowSums(x[, ‐c(1:3), drop = FALSE] > 0) == 
5) 
  checkPass <‐ cbind(checkPass, x[, 1] >= 0 & x[, 1] <= 1) 
   
  whichPass <‐ which(checkPass[, 1] & checkPass[, 2]) 
  if(length(whichPass) > 0) { 
    ## extract valid entries 
    x <‐ x[whichPass, , drop = FALSE] 
     
    ## extract vectors as needed 
    zL <‐ x[, 2] 
    zU <‐ x[, 3] 
    a1 <‐ x[, 4] 
    a2 <‐ x[, 5] 
    b1 <‐ x[, 6] 
    b2 <‐ x[, 7] 
    c1 <‐ x[, 8] 
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    p <‐ x[, 1] 
     
    ## Left truncation 
    zL_ind <‐ which(!is.na(zL) & is.na(zU)) 
     
    ## Right truncation 
    zU_ind <‐ which(is.na(zL) & !is.na(zU)) 
     
    ## Interval truncation 
    zI_ind <‐ which(!is.na(zL) & !is.na(zU)) 
     
    ## No truncation 
    zN_ind <‐ which(is.na(zL) & is.na(zU)) 
     
    ## set lower bound 
    qL <‐ rep(0, times = length(p)) 
    qL[zL_ind] <‐ zL[zL_ind] 
    qL[zI_ind] <‐ zL[zI_ind] 
     
    ## set/find upper bound 
    qU <‐ qL + 10 
    qU[zU_ind] <‐ zU[zU_ind] 
    qU[zI_ind] <‐ zU[zI_ind] 
     
    ## amend upper bound if necessary 
    zNo_ind <‐ c(zN_ind, zL_ind) 
    while(length(zNo_ind) > 0) { 
      pTarget <‐ p[zNo_ind] 
      pU <‐ pSiler(qU[zNo_ind], a1[zNo_ind], a2[zNo_ind], b1[zNo_ind], 
b2[zNo_ind], c1[zNo_ind], zL[zNo_ind], zU[zNo_ind]) 
      zNo_ind <‐ zNo_ind[pU < pTarget] 
      pU <‐ pU[pU < pTarget] 
      if(length(zNo_ind) > 0) { 
        qU[zNo_ind] <‐ qU[zNo_ind] + 10 
      } 
    } 
     
    data <‐ cbind(qL, qU, a1, a2, b1, b2, c1, zL, zU, p) 
    out <‐ rep(NA, ntot) 
    out[whichPass] <‐ apply(data, 1, function(x) { 
      optimiseR(x[1:2], x[3], x[4], x[5], x[6], x[7], x[8], x[9], x[10
]) 
    }) 
  } else { 
    out <‐ rep(NA, ntot) 
  } 
  return(out) 
} 
 
 
## combined function 
rSiler <‐ function(n, a1, a2, b1, b2, c1, zL = NA, zU = NA) { 
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  ## all parameters length = 1 or length(x) 
  if(length(n) > 1) { 
    n <‐ length(n) 
    message("Since 'n' is a vector, 'length(n)' is taken to be the num
ber of samples required.") 
  } 
  if ((length(a1) != 1 & length(a1) != n) |  
      (length(a2) != 1 & length(a2) != n) |  
      (length(b1) != 1 & length(b1) != n) |  
      (length(b2) != 1 & length(b2) != n) |  
      (length(c1) != 1 & length(c1) != n)) { 
    stop("Length of parameters must be = 1 or n") 
  } 
  if ((length(zL) != 1 & length(zL) != n) |  
      (length(zU) != 1 & length(zU) != n)) { 
    stop("Length of zL/zU must be = 1 or n") 
  } 
   
  ## expand entries 
  x <‐ cbind(zL, zU, a1, a2, b1, b2, c1) 
  if(n == nrow(x)) { 
      x <‐ cbind(1, x) 
  } else { 
      if(nrow(x) != 1) { 
          stop("Error we're not catching") 
      } else { 
          x <‐ matrix(rep(c(1, x[1, ]), n), nrow = n, byrow = TRUE) 
      } 
  } 
  colnames(x) <‐ NULL 
   
  ## run checks (corresponds to invalid 
  ## inputs [so should return NA]) 
  checkPass <‐ (is.na(x[, 2]) | is.na(x[, 3]) | x[, 2] < x[, 3]) 
  checkPass <‐ checkPass & (rowSums(x[, ‐c(1:3), drop = FALSE] > 0) == 
5) 
   
  ## extract vectors as needed 
  zL <‐ x[, 2] 
  zU <‐ x[, 3] 
  a1 <‐ x[, 4] 
  a2 <‐ x[, 5] 
  b1 <‐ x[, 6] 
  b2 <‐ x[, 7] 
  c1 <‐ x[, 8] 
   
  ## set up output vector 
  rs <‐ rep(NA, n) 
   
  ## no truncation and/or left‐truncation 
  zN_ind <‐ which(is.na(zL) & is.na(zU) & checkPass) 
  zL_ind <‐ which(!is.na(zL) & is.na(zU) & checkPass) 
  zNL_ind <‐ c(zN_ind, zL_ind) 
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  nNL <‐ length(zNL_ind) 
  if(nNL > 0) { 
    ## sample from distribution 1 
    u1 <‐ runif(nNL, 0, 1) 
    u2 <‐ runif(nNL, 0, 1) 
     
    ## distribution 1 
    logS_zNL <‐ (a1[zNL_ind] / b1[zNL_ind]) * (exp(‐b1[zNL_ind] * zL[z
NL_ind]) ‐ 1) ‐ c1[zNL_ind] * zL[zNL_ind] 
    S_zNL <‐ exp(logS_zNL) 
     
    ## distribution 2 
    logS_zNL2 <‐  (a2[zNL_ind] / b2[zNL_ind]) * (1 ‐ exp(b2[zNL_ind] * 
zL[zNL_ind])) 
    S_zNL2 <‐ exp(logS_zNL2) 
     
    ## left truncation 
    zL_ind1 <‐ match(zL_ind, zNL_ind) 
    if(length(zL_ind1) > 0) { 
      u1[zL_ind1] <‐ u1[zL_ind1] * S_zNL[zL_ind1] 
      u2[zL_ind1] <‐ u2[zL_ind1] * S_zNL2[zL_ind1] 
    } 
     
    ## sample from distribution 1 
    w0 <‐ (a1[zNL_ind] / c1[zNL_ind]) * exp((log(u1) + a1[zNL_ind] / b
1[zNL_ind]) * (b1[zNL_ind] / c1[zNL_ind])) 
    w0 <‐ lambertW0(w0) 
    x1 <‐ (‐1 / c1[zNL_ind]) * (log(u1) + a1[zNL_ind] / b1[zNL_ind]) + 
w0 / b1[zNL_ind] 
    ## sample from distribution 2 
    x2 <‐ log(1 ‐ log(u2) * (b2[zNL_ind] / a2[zNL_ind])) / b2[zNL_ind] 
     
    rs[zNL_ind] <‐ ifelse(x1 < x2, x1, x2) 
  } 
   
  ## Right truncation 
  zU_ind <‐ which(is.na(zL) & !is.na(zU) & checkPass) 
  if(length(zU_ind) > 0) { 
    rs[zU_ind] <‐ qSiler(runif(length(zU_ind), 0, 1), a1[zU_ind], a2[z
U_ind], b1[zU_ind], b2[zU_ind], c1[zU_ind], zL[zU_ind], zU[zU_ind]) 
  } 
   
  ## Interval truncation 
  zI_ind <‐ which(!is.na(zL) & !is.na(zU) & checkPass) 
  if(length(zI_ind) > 0) { 
    rs[zI_ind] <‐ qSiler(runif(length(zI_ind), 0, 1), a1[zI_ind], a2[z
I_ind], b1[zI_ind], b2[zI_ind], c1[zI_ind], zL[zI_ind], zU[zI_ind]) 
  } 
   
  ## return correctly 
  return(rs) 
}   
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Appendix 3 – Supplementary material from Chapter 4: Bayesian 

model selection for survival analysis 

 

Uncensored simulations Log Marginal Likelihood plots. 

Figure A3.1: Log marginal likelihood plots of fitted mortality models to 

exponential simulated survival data of various population size: a. 100n ; b.

500n  ; c. 1000n  . Dashed line represents a value log(20) less than the best 

supported model. Samples bootstrapped 1000 times to provide 95% confidence 

intervals. 



177 

 

Figure A3.2: Log marginal likelihood plots of fitted mortality models to Gompertz 

simulated survival data of various population size: a. 100n ; b. 500n  ; c.

1000n  . Dashed line represents a value log(20) less than the best supported 

model. Samples bootstrapped 1000 times to provide 95% confidence intervals. 
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Figure A3.3: Log marginal likelihood plots of fitted mortality models to 

Gompertz-Makeham simulated survival data of various population size: a. 

100n ; b. 500n  ; c. 1000n  . Dashed line represents a value log(20) less than 

the best supported model. Samples bootstrapped 1000 times to provide 95% 

confidence intervals. 
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Figure A3.4: Log marginal likelihood plots of fitted mortality models to Siler 

simulated survival data of various population size: a. 100n ; b. 500n  ; c.

1000n  . Dashed line represents a value log(20) less than the best supported 

model. Samples bootstrapped 1000 times to provide 95% confidence intervals. 
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Censored simulations Log Marginal Likelihood plots.  

Figure A3.5: Log marginal likelihood plots of fitted mortality models to 

exponential simulated survival data with different censorship rates: a. 

censorship = 0.1; b. censorship = 0.2; c. censorship = 0.5. Dashed line 

represents a value log(20) less than the best supported model. Samples 

bootstrapped 1000 times to provide 95% confidence intervals. 
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Figure A3.6: Log marginal likelihood plots of fitted mortality models to Gompertz 

simulated survival data with different censorship rates: a. censorship = 0.1; b. 

censorship = 0.2; c. censorship = 0.5. Dashed line represents a value log(20) 

less than the best supported model. Samples bootstrapped 1000 times to 

provide 95% confidence intervals. 
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Figure A3.7: Log marginal likelihood plots of fitted mortality models to 

Gompertz-Makeham simulated survival data with different censorship rates: a. 

censorship = 0.1; b. censorship = 0.2; c. censorship = 0.5. Dashed line 

represents a value log(20) less than the best supported model. Samples 

bootstrapped 1000 times to provide 95% confidence intervals. 
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Figure A3.8: Log marginal likelihood plots of fitted mortality models to Siler 

simulated survival data with different censorship rates: a. censorship = 0.1; b. 

censorship = 0.2; c. censorship = 0.5. Dashed line represents a value log(20) 

less than the best supported model. Samples bootstrapped 1000 times to 

provide 95% confidence intervals. 
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Figure A3.9: Kaplan-Meier plot of mongoose sex specific survival, vertical lines 

correspond to right-censored individuals, dashed line indicates median age. 

Survival curves compared using log-rank comparison - 

 2 1, 3240 1.7, 0.2N p    . 
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Example R code – This code calculates the log marginal likelihood of a 

model that allows sex-specific variation on parameter a1. 

Setup  

Load libraries, data, additional functions and set seed 

## load libraries 
library(nimble) 
library(tidyverse) 
library(mvtnorm) 
library(boot) 
library(lamW) 
library(GGally) 
library(coda) 
library(mclust) 
library(parallel) 
library(survminer) 
library(survival) 
rm(list = ls()) 
 
## source necessary R distributions 
source("../../Distributions/Dist_Gompertz.R") 
source("../../Distributions/Dist_GompertzNim.R") 

## Registering the following user‐provided distributions: dgompzNim 

source("../../Distributions/Dist_GompertzMakeham.R") 
source("../../Distributions/Dist_GompertzMakehamNim.R") 

## Registering the following user‐provided distributions: dgompzMakeNi
m 

source("../../Distributions/Dist_Siler.R") 
source("../../Distributions/Dist_SilerNim.R") 

## Registering the following user‐provided distributions: dsilerNim 

source("../../Distributions/Dist_Expo.R") 
 
## source additional R functions 
source("../../ModelComparison_FUNCTIONS.R") 
 
## load data 
load("mong.RData") 
 
## set seed according to model 
set.seed(42) 
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Prepare for Nimble analysis  

Define model, set constants, data and initial values.  

code <‐ nimbleCode({ 
  ## survival components for dead badgers 
  for (i in 1:nind) { 
    ## likelihood for interval‐truncated Siler 
    censored[i] ~ dinterval(tD[i], cint[i, ]) 
    tD[i] ~ dsilerNim(a1[sex[i] + 1], a2, b1, b2, c1) 
    sex[i] ~ dbern(Pm) 
  } 
   
  for (j in 1:g){ 
    ## priors 
    a1[j] ~ dexp(1) 
  } 
   
  a2 ~ dexp(1) 
  b1 ~ dexp(1) 
  b2 ~ dexp(1) 
  c1 ~ dexp(1) 
  Pm ~ dunif(0,1) 
   
}) 
 
## set up other components of model 
consts <‐ list(nind = nind, g = g) 
 
data <‐ list(cint = cint, censored = censored, tD = tD, sex = sex) 
 
## find overdispersed initial values 
tinitFn <‐ function(cint, censored) { 
  apply(cbind(cint, censored), 1, function(x) { 
    if(x[3] == 2) { 
      y <‐ x[2] + 1 
    } else { 
      y <‐ runif(1, x[1], x[2]) 
    } 
    y 
  }) 
} 
initFn <‐ function(cint, censored, sex) { 
  ## get ML estimates as initial values 
  optFn <‐ function(pars, t, sex) { 
    if(any(pars < 0)) { 
      return(NA) 
    } 
    llM <‐ sum(dSiler(t[sex == 0], a1 = pars[1], a2 = pars[3], b1 = pa
rs[4], b2 = pars[5], c1 = pars[6], log = TRUE)) 
    llF <‐ sum(dSiler(t[sex == 1], a1 = pars[2], a2 = pars[3], b1 = pa
rs[4], b2 = pars[5], c1 = pars[6], log = TRUE)) 
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    llM + llF 
  } 
  pars <‐ list(convergence = 1) 
  k <‐ 0 
  while(pars$convergence != 0 & k < 20) { 
    ## sample missing values 
    tD <‐ tinitFn(cint, censored) 
    ## sample sex proportion 
    Pm <‐ runif(1, 0.4, 0.6) 
    ## sample missing sex indicators 
    sexI <‐ rbinom(length(censored), size = 1, prob = Pm) 
    sexI[!is.na(sex)] <‐ sex[!is.na(sex)] 
    ## optimise to interval‐censored only 
    pars <‐ optim(rexp(6, 100), optFn, t = tD, sex = sexI, control = l
ist(fnscale = ‐1)) 
    k <‐ k + 1 
  } 
  if(k == 20) { 
    stop("Can't sample initial values") 
  } 
  pars <‐ pars$par 
  ## check log‐likelihoods 
  ll <‐ sum(dSiler(tD[sexI == 0], a1 = pars[1], a2 = pars[3], b1 = par
s[4], b2 = pars[5], c1 = pars[6], log = TRUE)) 
  ll <‐ ll + sum(dSiler(tD[sexI == 1], a1 = pars[2], a2 = pars[3], b1 
= pars[4], b2 = pars[5], c1 = pars[6], log = TRUE)) 
  stopifnot(is.finite(ll)) 
  ## reformat sex initial conditions correctly 
  sexI[!is.na(sex)] <‐ NA 
  ## output initial values 
  list( 
    tD = tD, 
    sex = sexI, 
    Pm = Pm, 
    a1 = c(pars[1], pars[2]), 
    a2 = pars[3],  
    b1 = pars[4], 
    b2 = pars[5], 
    c1 = pars[6] 
  ) 
} 

Build the model in NIMBLE 

## compile the model 
## define the model, data, inits and constants 

model <‐ nimbleModel(code = code, constants = consts, data = data, ini
ts = initFn(cint, censored, sex)) 

## defining model... 

## building model... 
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## setting data and initial values... 

## running calculate on model (any error reports that follow may simpl
y reflect missing values in model variables) ...  
## checking model sizes and dimensions... 
## model building finished. 

Compile the model  

We now compile the model into C++. 

## compile the model 
cmodel <‐ compileNimble(model) 

## compiling... this may take a minute. Use 'showCompilerOutput = TRUE
' to see C++ compilation details. 

## compilation finished. 

Configure the MCMC  

We can now make adjustments to the default sampler settings in NIMBLE. 

## set monitors 
config <‐ configureMCMC(cmodel, monitors = c("a1", "a2", "b1", "b2", "
c1", "Pm"), thin = 1) 

## ===== Monitors ===== 
## thin = 1: a1, a2, b1, b2, c1, Pm 
## ===== Samplers ===== 
## RW sampler (3247) 
##   ‐ a1[]  (2 elements) 
##   ‐ a2 
##   ‐ b1 
##   ‐ b2 
##   ‐ c1 
##   ‐ Pm 
##   ‐ tD[]  (3240 elements) 
## binary sampler (1097) 
##   ‐ sex[]  (1097 elements) 

## remove default samplers and add the required ones 
config$removeSamplers(c("a1", "a2", "b1", "b2", "c1")) 
config$addSampler(target = c("a1", "b1"), type = 'AF_slice') 
config$addSampler(target = c("a2", "c1"), type = 'AF_slice') 
config$addSampler(target = c("b2"), type = 'slice') 
 
#Check monitors and samplers 
config$printMonitors() 

## thin = 1: a1, a2, b1, b2, c1, Pm 

config$printSamplers(c("a1", "a2", "b1", "b2", "c1", "Pm")) 
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## [1]    RW sampler: Pm 
## [4339] AF_slice sampler: a1, b1 
## [4340] AF_slice sampler: a2, c1 
## [4341] slice sampler: b2 

Build and compile  

We now build our model with the updated configuration and compile again. 

#Build the model 
built <‐ buildMCMC(config) 
cbuilt <‐ compileNimble(built) 

## compiling... this may take a minute. Use 'showCompilerOutput = TRUE
' to see C++ compilation details. 

## compilation finished. 

Run	the	MCMC Here we set our MCMC options: iterations, burnin, chains etc. 

#Run the model 
run <‐ runMCMC(cbuilt,  
                           niter = 50000,  
                           nburnin = 20000,  
                           nchains = 2,  
                           progressBar = TRUE,  
                           summary = TRUE,  
                           samplesAsCodaMCMC = TRUE,  
                           thin = 1) 

## running chain 1... 

## |‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐| 
## |‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐| 

## running chain 2... 

## |‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐| 
## |‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐| 

Plot trace plots to check mixing etc 

Need to check mixing here, you may need to adjust configuration of samplers and 
re-run. 

#Plot mcmcm 
samples <‐ run$samples 
plot(run$samples) 
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Predictive plots against the data  

## predictive plot against data 
t_pred <‐ seq(0, max(cint), length.out = 100) 
 
predsM <‐ as.matrix(samples)[1:2000, ‐1] %>% 
  apply(1, function(pars, t) { 
    pSiler(t, a1 = pars[2], a2 = pars[3], b1 = pars[4], b2 = pars[5], 
c1 = pars[6], lower.tail = FALSE) 
  }, t = t_pred) %>% 
  apply(1, function(x) { 
    quantile(x, probs = c(0.025, 0.5, 0.975)) 
  }) %>% 
  t() %>% 
  as_tibble() %>% 
  set_names(c("LCI", "Median", "UCI")) %>% 
  mutate(t = t_pred, ) 
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predsF <‐ as.matrix(samples)[1:2000, ‐1] %>% 
  apply(1, function(pars, t) { 
    pSiler(t, a1 = pars[1], a2 = pars[3], b1 = pars[4], b2 = pars[5], 
c1 = pars[6], lower.tail = FALSE) 
  }, t = t_pred) %>% 
  apply(1, function(x) { 
    quantile(x, probs = c(0.025, 0.5, 0.975)) 
  }) %>% 
  t() %>% 
  as_tibble() %>% 
  set_names(c("LCI", "Median", "UCI")) %>% 
  mutate(t = t_pred, ) 
 
## plot posterior predictive K‐M plots against the posterior predictiv
e survival curve 
pred_sex <‐ mclapply(as.matrix(samples)[1:2000, 1], function(p, temp_d
at) { 
  temp_dat$sex[temp_dat$sex == "P"] <‐ ifelse(rbinom(sum(temp_dat$sex 
== "P"), size = 1, prob = p) == 1, "M", "F") 
  temp_dat$sex <‐ factor(as.character(temp_dat$sex)) 
  temp_fit <‐ surv_fit(Surv(tD, cens) ~ sex, data = temp_dat) 
  tibble(time = temp_fit$time, surv = temp_fit$surv, sex = rep(names(t
emp_fit$strata), temp_fit$strata)) 
}, temp_dat = mong_km_dat, mc.cores = 20) %>% 
  bind_rows() %>% 
  mutate(sex = ifelse(sex == "sex=F", "F", "M")) %>% 
  group_by(time, sex) %>% 
  summarise( 
    Median = median(surv), 
    LCI = quantile(surv, probs = 0.025), 
    UCI = quantile(surv, probs = 0.975) 
  ) 
pred_plot <‐ ggplot(pred_sex, aes(x = time)) + 
  geom_point(aes(y = Median, colour = sex)) + 
  geom_ribbon(aes(ymin = LCI, ymax = UCI, fill = sex), alpha = 0.3) + 
  geom_line(aes(x = t, y = Median), data = predsM, alpha = 0.7) + 
  geom_line(aes(x = t, y = LCI), data = predsM, linetype = "dashed", a
lpha = 0.7) + 
  geom_line(aes(x = t, y = UCI), data = predsM, linetype = "dashed", a
lpha = 0.7) + 
  geom_line(aes(x = t, y = Median), data = predsF, alpha = 0.7) + 
  geom_line(aes(x = t, y = LCI), data = predsF, linetype = "dotted", a
lpha = 0.7) + 
  geom_line(aes(x = t, y = UCI), data = predsF, linetype = "dotted", a
lpha = 0.7) + 
  xlab("Time") + ylab("Survival") + labs(colour = "Sex", fill = "Sex") 
+  
  ggtitle("Comparison Survival Curves", subtitle = "KM plots of actual 
data against predicted sex specific differences in a1") 
pred_plot 
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Pairs plot to check for correlations among parameters  

## pairs plot 
samples <‐ as.matrix(samples) 
colnames(samples) <‐ c("Pm", "a1f", "a1m", "a2", "b1", "b2", "c1") 
samples <‐ samples[sample.int(nrow(samples), ceiling(nrow(samples) * 0
.1)), ] 
samples %>% 
  as.data.frame() %>% 
  ggpairs() 
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Find suitable mixture models to match posteriors  

## fit range of finite mixture models 
mod <‐ densityMclust(samples) 
 
## summary of finite mixture models 
summary(mod) 

## ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐  
## Density estimation via Gaussian finite mixture modeling  
## ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐  
##  
## Mclust VVV (ellipsoidal, varying volume, shape, and orientation) mo
del with 9 
## components:  
##  
##  log‐likelihood    n  df      BIC      ICL 
##        181110.1 6000 323 359410.3 356233.7 

plot(mod, what = "BIC") 

Create importance distribution and check against posteriors  

## take random samples from mixture 
nimp <‐ 10000 
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nmix <‐ rbinom(1, size = nimp, prob = 0.95) 
props <‐ sim(mod$modelName, mod$parameters, nmix) 
props <‐ props[, ‐1] 
colnames(props) <‐ c("Pm", "a1f", "a1m", "a2", "b1", "b2", "c1") 
 
## take random samples from prior (to create defense mixture) 
defense <‐ matrix(runif(nimp ‐ nmix, 0, 1), ncol = 1) 
defense <‐ cbind(defense, matrix(rexp(6 * (nimp ‐ nmix), 1), ncol = 6)
) 
colnames(defense) <‐ c("Pm", "a1f", "a1m", "a2", "b1", "b2", "c1") 
 
## check IS distribution against posterior samples 
as.data.frame(props) %>% 
  mutate(type = "IS") %>% 
  rbind(as.data.frame(samples) %>% 
          mutate(type = "Post")) %>% 
  ggpairs(mapping = aes(colour = type, alpha = 0.5), upper = list(cont
inuous = "density"), columns = 1:7) 
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Create defensive mixture  

## combine defense and importance samples 
props <‐ rbind(props, defense) 

Generate importance weights  

## generate importance weights 
 
## log‐likelihood function 
## REQUIRES BOTH RIGHT‐ AND INTERVAL‐CENSORED INDIVIDUALS 
## AND MISSING SEX INDIVIDUALS 
stopifnot(all(dim(table(sex, censored)) == 2)) 
stopifnot(length(table(is.na(sex))) == 2) 
log.like <‐ function(zL, zU, censored, sex, pars) { 
  ## calculate log‐likelihoods 
   
  ## interval‐censored, known sex 
  llI_f <‐ log(pSiler(zU[censored == 1 & sex == 0 & !is.na(sex)], pars
[2], pars[4], pars[5], pars[6], pars[7]) ‐ pSiler(zL[censored == 1 & s
ex == 0 & !is.na(sex)], pars[2], pars[4], pars[5], pars[6], pars[7])) 
+ log(1 ‐ pars[1]) 
  llI_m <‐ log(pSiler(zU[censored == 1 & sex == 1 & !is.na(sex)], pars
[3], pars[4], pars[5], pars[6], pars[7]) ‐ pSiler(zL[censored == 1 & s
ex == 1 & !is.na(sex)], pars[3], pars[4], pars[5], pars[6], pars[7])) 
+ log(pars[1]) 
   
  ## right‐censored, known sex 
  llR_f <‐ pSiler(zL[censored == 2 & sex == 0 & !is.na(sex)], pars[2], 
pars[4], pars[5], pars[6], pars[7], log = TRUE, lower.tail = FALSE) + 
log(1 ‐ pars[1]) 
  llR_m <‐ pSiler(zL[censored == 2 & sex == 1 & !is.na(sex)], pars[3], 
pars[4], pars[5], pars[6], pars[7], log = TRUE, lower.tail = FALSE) + 
log(pars[1]) 
   
  ## interval‐censored unknown sex 
  llI_miss <‐ (1 ‐ pars[1]) * (pSiler(zU[censored == 1 & is.na(sex)], 
pars[2], pars[4], pars[5], pars[6], pars[7]) ‐ pSiler(zL[censored == 1 
& is.na(sex)], pars[2], pars[4], pars[5], pars[6], pars[7])) 
  llI_miss <‐ llI_miss + pars[1] * (pSiler(zU[censored == 1 & is.na(se
x)], pars[3], pars[4], pars[5], pars[6], pars[7]) ‐ pSiler(zL[censored 
== 1 & is.na(sex)], pars[3], pars[4], pars[5], pars[6], pars[7])) 
  llI_miss <‐ log(llI_miss) 
   
  ## right‐censored unknown sex 
  llR_miss <‐ (1 ‐ pars[1]) * pSiler(zL[censored == 2 & is.na(sex)], p
ars[2], pars[4], pars[5], pars[6], pars[7], lower.tail = FALSE) 
  llR_miss <‐ llR_miss + pars[1] * pSiler(zL[censored == 2 & is.na(sex
)], pars[3], pars[4], pars[5], pars[6], pars[7], lower.tail = FALSE) 
  llR_miss <‐ log(llR_miss) 
   
  ## return log‐likelihood 
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  sum(llI_f) + sum(llR_f) + sum(llI_m) + sum(llR_m) + sum(llI_miss) + 
sum(llR_miss) 
} 
 
## calculate log‐likelihoods in parallel 
logimpweight <‐ apply(props, 1, list) 
logimpweight <‐ purrr::map(logimpweight, 1) 
logimpweight <‐ mclapply(logimpweight, 
                         function(pars, zL, zU, censored, sex) { 
                           log.like(zL, zU, censored, sex, pars) 
                         }, zL = zL, zU = zU, censored = censored, sex 
= sex, mc.cores = 24) 
logimpweight <‐ reduce(logimpweight, c) 

Add priors and importance distributions  

## priors 
logimpweight <‐ logimpweight + dunif(props[, 1], 0, 1, log = TRUE) 
for(j in 2:ncol(props)) { 
  logimpweight <‐ logimpweight + dexp(props[, j], 1, log = TRUE) 
} 
 
## importance distributions 
logimpweight <‐ logimpweight ‐  
  log(0.95 * dens(mod$modelName, props, FALSE, mod$parameters) + 0.05 
* exp(dunif(props[, 1], 0, 1, log = TRUE) + 
                                                                              
dexp(props[, 2], 1, log = TRUE) + dexp(props[, 3], 1, log = TRUE) + 
                                                                              
dexp(props[, 4], 1, log = TRUE) + dexp(props[, 5], 1, log = TRUE) + 
                                                                              
dexp(props[, 6], 1, log = TRUE) + dexp(props[, 7], 1, log = TRUE))) 

Run final checks, calculate log-marginal likelihoods and then bootstrap and 

create plots  

Plots are created by additonal functions sourced at the start, this code is 

accessible via our github repository. 

## final checks 
summary(props[is.finite(logimpweight), ]) 

##        Pm              a1f                a1m                 a2            
##  Min.   :0.5095   Min.   :0.007838   Min.   :0.001196   Min.   :7.0
00e‐10   
##  1st Qu.:0.5468   1st Qu.:0.270042   1st Qu.:0.157081   1st Qu.:1.0
53e‐05   
##  Median :0.5551   Median :0.341982   Median :0.212694   Median :6.9
35e‐05   
##  Mean   :0.5552   Mean   :0.349762   Mean   :0.218974   Mean   :3.0
01e‐04   
##  3rd Qu.:0.5636   3rd Qu.:0.423980   3rd Qu.:0.272534   3rd Qu.:4.0
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65e‐04   
##  Max.   :0.5982   Max.   :0.981793   Max.   :0.861547   Max.   :2.2
58e‐03   
##        b1                b2                  c1            
##  Min.   : 0.5535   Min.   :2.000e‐10   Min.   :7.789e‐06   
##  1st Qu.: 3.6925   1st Qu.:3.553e‐06   1st Qu.:1.724e‐03   
##  Median : 4.3715   Median :2.060e‐05   Median :2.054e‐03   
##  Mean   : 4.4930   Mean   :1.252e‐04   Mean   :1.836e‐03   
##  3rd Qu.: 5.1778   3rd Qu.:1.146e‐04   3rd Qu.:2.118e‐03   
##  Max.   :12.2479   Max.   :2.300e‐03   Max.   :2.265e‐03 

summary(props) 

##        Pm                a1f               a1m                a2            
##  Min.   :0.001414   Min.   :‐0.1232   Min.   :‐0.1059   Min.   :‐0.
001306   
##  1st Qu.:0.546048   1st Qu.: 0.2692   1st Qu.: 0.1568   1st Qu.: 0.
000009   
##  Median :0.555009   Median : 0.3451   Median : 0.2149   Median : 0.
000072   
##  Mean   :0.552962   Mean   : 0.3827   Mean   : 0.2511   Mean   : 0.
046040   
##  3rd Qu.:0.563994   3rd Qu.: 0.4345   3rd Qu.: 0.2802   3rd Qu.: 0.
000515   
##  Max.   :0.999932   Max.   : 8.4542   Max.   : 5.9753   Max.   : 7.
114943   
##        b1                  b2                  c1            
##  Min.   : 0.001389   Min.   :‐0.000907   Min.   :‐0.000961   
##  1st Qu.: 3.553864   1st Qu.: 0.000003   1st Qu.: 0.001761   
##  Median : 4.285046   Median : 0.000020   Median : 0.002071   
##  Mean   : 4.314832   Mean   : 0.048251   Mean   : 0.047489   
##  3rd Qu.: 5.126025   3rd Qu.: 0.000139   3rd Qu.: 0.002132   
##  Max.   :13.456856   Max.   : 7.695171   Max.   : 5.107370 
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## calculate log‐marginal likelihood 
logmarg <‐ log_sum_exp_marg(logimpweight) 
 
## bootstrap the importance weights and create 95% intervals 
BootsPlot(logimpweight, 5000, trace = TRUE) 

##     logmarg       LCI       UCI 
## 1 ‐18143.08 ‐18143.11 ‐18143.05 
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Appendix 4 – Supplementary material from Chapter 5: Bayesian 

model comparison of capture-mark-recapture data for survival 

analysis 

 

SilerSexDiffa1BadgerCMR 

Setup Load libraries, data, additional functions and seed 

## load libraries 
library(nimble) 
library(tidyverse) 
library(mvtnorm) 
library(boot) 
library(lamW) 
library(GGally) 
library(coda) 
library(mclust) 
library(parallel) 
library(survminer) 
library(survival) 
rm(list=ls()) 
 
## source necessary R functions 
source("../../../FirstPaperFiles/Distributions/Dist_Gompertz.R") 
source("../../../FirstPaperFiles/Distributions/Dist_GompertzNim.R") 

## Registering the following user‐provided distributions: dgompzNim 

source("../../../FirstPaperFiles/Distributions/Dist_GompertzMakeham.R"
) 
source("../../../FirstPaperFiles/Distributions/Dist_GompertzMakehamNim
.R") 

## Registering the following user‐provided distributions: dgompzMakeNi
m 

source("../../../FirstPaperFiles/Distributions/Dist_Siler.R") 
source("../../../FirstPaperFiles/Distributions/Dist_SilerNim.R") 

## Registering the following user‐provided distributions: dsilerNim 

source("../../../FirstPaperFiles/Distributions/Dist_Expo.R") 
source("../../../FirstPaperFiles/ModelComparison_FUNCTIONS.R") 
 
## load data 
load("badgerSex.RData") 
 
## set seed 
set.seed(42) 
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Prepare for Nimble analysis Define model, set constants, data and initial 

values. 

code <‐ nimbleCode({ 
   
  ## survival components for dead badgers 
  for (i in 1:nind) { 
     
    ## likelihood for interval‐truncated Siler 
    censored[i] ~ dinterval(tD[i], cint[i, ]) 
    tD[i] ~ dsilerNim(a1[sex[i] + 1], a2, b1, b2, c1) 
    sex[i] ~ dbern(Pm) 
     
    ## sampling component 
    pd[i] <‐ exp(y[i] * log(mean.p) + (min(floor(tD[i]), tM[i]) ‐ y[i]
) * log(1 ‐ mean.p)) 
    dind[i] ~ dbern(pd[i]) 
 
  } 
   
  ## priors 
  for (j in 1:g){ 
    a1[j] ~ dexp(1) 
  } 
  a2 ~ dexp(1) 
  b1 ~ dexp(1) 
  b2 ~ dexp(1) 
  c1 ~ dexp(1) 
  mean.p ~ dunif(0, 1) 
  Pm ~ dunif(0,1) 
   
}) 
 
## set up other components of model 
consts <‐ list(nind = nind, tM = tM) 
data <‐ list(y = y, cint = cint,  
             censored = censored, tD = tD, dind = dind, sex = sex) 
 
## find overdispersed initial values 
tinitFn <‐ function(cint, censored) { 
  apply(cbind(cint, censored), 1, function(x) { 
    if(x[3] == 2) { 
      y <‐ x[2] + 1 
    } else { 
      y <‐ runif(1, x[1], x[2]) 
    } 
    y 
  }) 
} 
initFn <‐ function(cint, censored, sex) { 
  ## get ML estimates as initial values 
  optFn <‐ function(pars, t, sex) { 
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    if(any(pars < 0)) { 
      return(NA) 
    } 
    llM <‐ sum(dSiler(t[sex == 0], a1 = pars[2], a2 = pars[3], b1 = pa
rs[4], b2 = pars[5], c1 = pars[6], log = TRUE)) 
    llF <‐ sum(dSiler(t[sex == 1], a1 = pars[1], a2 = pars[3], b1 = pa
rs[4], b2 = pars[5], c1 = pars[6], log = TRUE)) 
    llM + llF 
  } 
  pars <‐ list(convergence = 1) 
  k <‐ 0 
  while(pars$convergence != 0 & k < 20) { 
    ## sample missing values 
    tD <‐ tinitFn(cint, censored) 
    ## sample sex proportion 
    Pm <‐ runif(1, 0.4, 0.6) 
    ## sample missing sex indicators 
    sexI <‐ rbinom(length(censored), size = 1, prob = Pm) 
    sexI[!is.na(sex)] <‐ sex[!is.na(sex)] 
    ## optimise to interval‐censored only 
    pars <‐ optim(rexp(6, 100), optFn, t = tD, sex = sexI, control = l
ist(fnscale = ‐1)) 
    k <‐ k + 1 
  } 
  if(k == 20) { 
    stop("Can't sample initial values") 
  } 
  pars <‐ pars$par 
  ## check log‐likelihoods 
  ll <‐ sum(dSiler(tD[sexI == 0], a1 = pars[1], a2 = pars[3], b1 = par
s[4], b2 = pars[5], c1 = pars[6], log = TRUE)) 
  ll <‐ ll + sum(dSiler(tD[sexI == 1], a1 = pars[2], a2 = pars[3], b1 
= pars[4], b2 = pars[5], c1 = pars[6], log = TRUE)) 
  stopifnot(is.finite(ll)) 
  ## reformat sex initial conditions correctly 
  sexI[!is.na(sex)] <‐ NA 
  ## output initial values 
  list( 
    tD = tD, 
    sex = sexI, 
    Pm = Pm, 
    a1 = c(pars[1], pars[2]), 
    a2 = pars[3], 
    b1 = pars[4], 
    b2 = pars[5], 
    c1 = pars[6], 
    mean.p = runif(1, 0, 1) 
  ) 
} 
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Build the model in NIMBLE 

## define the model, data, inits and constants 
model <‐ nimbleModel(code = code, constants = consts, data = data, ini
ts = initFn(cint, censored, sex)) 

## defining model... 

## building model... 

## setting data and initial values... 

## running calculate on model (any error reports that follow may simpl
y reflect missing values in model variables) ...  
## checking model sizes and dimensions... 
## model building finished. 

Compile the model We now compile the model into C++. 

## compile the model 
cModel <‐ compileNimble(model, showCompilerOutput = TRUE) 

## compiling... this may take a minute. On some systems there may be s
ome compiler warnings that can be safely ignored. 

## compilation finished. 

Configure the MCMC We can now make adjustments to the default sampler 

settings in NIMBLE. 

## try with adaptive slice sampler 
config <‐ configureMCMC(cModel, monitors = c("a1", "a2", "b1", "b2", "
c1", "mean.p", "Pm"), thin = 1) 

## ===== Monitors ===== 
## thin = 1: a1, a2, b1, b2, c1, mean.p, Pm 
## ===== Samplers ===== 
## RW sampler (2625) 
##   ‐ a1[]  (2 elements) 
##   ‐ a2 
##   ‐ b1 
##   ‐ b2 
##   ‐ c1 
##   ‐ mean.p 
##   ‐ Pm 
##   ‐ tD[]  (2617 elements) 
## binary sampler (9) 
##   ‐ sex[]  (9 elements) 

config$removeSamplers(c("a1", "a2", "b1", "b2", "c1")) 
config$addSampler(target = c("a1", "a2", "b1", "b2", "c1"), type = 'AF
_slice') 
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Build and compile We now build our model with the updated configuration and 

compile again. 

#Build the model 
built <‐ buildMCMC(config) 
cbuilt <‐ compileNimble(built) 

## compiling... this may take a minute. Use 'showCompilerOutput = TRUE
' to see C++ compilation details. 

## compilation finished. 

Run the MCMC Here we set our MCMC options: iterations, burnin, chains etc. 

#Run the model 
run <‐ runMCMC(cbuilt,  
                           niter = 50000,  
                           nburnin = 20000,  
                           nchains = 2,  
                           progressBar = TRUE,  
                           summary = TRUE,  
                           samplesAsCodaMCMC = TRUE,  
                           thin = 1) 

## running chain 1... 

## |‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐| 
## |‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐| 

## running chain 2... 

## |‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐| 
## |‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐| 

Plot trace plots to check mixing etc 

#Plot mcmcm 
samples <‐ run$samples 
plot(run$samples) 
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Pairs plot to check for correlations among parameters  

## pairs plot 
samples <‐ as.matrix(samples) 



207 

 

samples <‐ samples[sample.int(nrow(samples), ceiling(nrow(samples) * 0
.1)), ] 
samples %>% 
  as.data.frame() %>% 
  ggpairs() 

 

Find suitable mixture models to match posteriors  

## fit range of finite mixture models 
mod <‐ densityMclust(samples) 
 
## summary of finite mixture models 
summary(mod) 

## ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐  
## Density estimation via Gaussian finite mixture modeling  
## ‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐  
##  
## Mclust VVV (ellipsoidal, varying volume, shape, and orientation) mo
del with 9 
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## components:  
##  
##  log‐likelihood    n  df      BIC      ICL 
##          199384 6000 404 395253.4 393403.8 

plot(mod, what = "BIC") 

 

Create importance distribution and check against posteriors  

## take random samples from mixture 
nimp <‐ 10000 
nmix <‐ rbinom(1, size = nimp, prob = 0.95) 
props <‐ sim(mod$modelName, mod$parameters, nmix) 
props <‐ props[, ‐1, drop = FALSE] 
colnames(props) <‐ c("Pm", "a1f", "a1m", "a2", "b1", "b2", "c1", "mean
.p") 
 
## take random samples from prior (to create defense mixture) 
dmp <‐ runif((nimp ‐ nmix), 0, 1) 
dpm <‐ runif((nimp ‐ nmix), 0, 1) 
defense <‐ as.data.frame(matrix(rexp(6 * (nimp ‐ nmix), 1), ncol = 6)) 
defense <‐ defense %>% 
  mutate(mean.p = dmp) %>% 
  mutate(pM = dpm)  
colnames(defense) <‐ c("a1f", "a1m", "a2", "b1", "b2", "c1", "mean.p", 



209 

 

"Pm") 
 
## adjust column names of samples to match IS 
colnames(samples) <‐ c("Pm", "a1f", "a1m", "a2", "b1", "b2", "c1", "me
an.p") 
 
## check IS distribution against posterior samples 
as.data.frame(props) %>% 
  mutate(type = "IS") %>% 
  rbind(as.data.frame(samples) %>% 
          mutate(type = "Post")) %>% 
  ggpairs(mapping = aes(colour = type, alpha = 0.5), upper = list(cont
inuous = "density"), columns = 1:8) 

 

Create defensive mixture  

## combine defense and importance samples 
props <‐ rbind(props, defense) 

Generate importance weights  

## this next function takes vectors for y, zL, zU, and censored 
## and scalar tM and parameters and calculates log‐likelihood 
loglike <‐ function(y, zL, zU, censored, tM, a1f, a1m, a2, b1, b2, c1, 



210 

 

p, sex, Pm) { 
  ## loop over individuals 
  fsurv1 <‐ pmap_dbl(list(y, zL, zU, censored, tM, sex), function(y, z
L, zU, censored, tM, a1f, a1m, a2, b1, b2, c1, p, sex, Pm) { 
     
    ll <‐ y * log(p) + (zL ‐ y) * log(1 ‐ p) 
     
    if(censored == 1){                             #interval 
      t <‐ (zL + 1):zU 
      if (sex == 0 & !is.na(sex)){                #female 
        temp <‐ pSiler(t, a1f, a2, b1, b2, c1) ‐ pSiler(t ‐ 1, a1f, a2
, b1, b2, c1) 
        temp1 <‐ log(temp) + (t ‐ 1 ‐ zL) * log(1 ‐ p) 
        ll <‐ ll + log_sum_exp_marg(temp1, mn = FALSE) 
        ll <‐ ll + log(1 ‐ Pm) 
      } else { 
        if (sex == 1 & !is.na(sex)){         #male 
          temp <‐ pSiler(t, a1m, a2, b1, b2, c1) ‐ pSiler(t ‐ 1, a1m, 
a2, b1, b2, c1) 
          temp1 <‐ log(temp) + (t ‐ 1 ‐ zL) * log(1 ‐ p) 
          ll <‐ ll + log_sum_exp_marg(temp1, mn = FALSE) 
          ll <‐ ll + log(Pm) 
        } else {                                   #unknown 
          t <‐ (zL + 1):zU 
          temp <‐ Pm * (pSiler(t, a1m, a2, b1, b2, c1) ‐ pSiler(t ‐ 1, 
a1m, a2, b1, b2, c1)) 
          temp1 <‐ (1 ‐ Pm) * (pSiler(t, a1f, a2, b1, b2, c1) ‐ pSiler
(t ‐ 1, a1f, a2, b1, b2, c1)) 
          temp2 <‐ log(c(temp, temp1)) + (t ‐ 1 ‐ zL) * log(1 ‐ p) 
          ll <‐ ll + log_sum_exp_marg(temp2, mn = FALSE) 
        } 
      } 
    } else {                                     #right censored 
      if(zL < tM) { 
        t <‐ (zL + 1):tM 
        if (sex == 0 & !is.na(sex)){                #female 
          temp <‐ pSiler(t, a1f, a2, b1, b2, c1) ‐ pSiler(t ‐ 1, a1f, 
a2, b1, b2, c1) 
          temp1 <‐ log(temp) + (t ‐ 1 ‐ zL) * log(1 ‐ p) 
          ## tail component (after last capture time) 
          temp <‐ pSiler(tM, a1f, a2, b1, b2, c1, lower.tail = FALSE) 
          temp <‐ log(temp) + (tM ‐ zL) * log(1 ‐ p) 
          temp1 <‐ c(temp1, temp) 
          ll <‐ ll + log_sum_exp_marg(temp1, mn = FALSE)         
          ll <‐ ll + log(1 ‐ Pm) 
        } else { 
          if (sex == 1 & !is.na(sex)){         #male 
            temp <‐ pSiler(t, a1m, a2, b1, b2, c1) ‐ pSiler(t ‐ 1, a1m
, a2, b1, b2, c1) 
            temp1 <‐ log(temp) + (t ‐ 1 ‐ zL) * log(1 ‐ p) 
            ## tail component (after last capture time) 
            temp <‐ pSiler(tM, a1m, a2, b1, b2, c1, lower.tail = FALSE
) 
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            temp <‐ log(temp) + (tM ‐ zL) * log(1 ‐ p) 
            temp1 <‐ c(temp1, temp) 
            ll <‐ ll + log_sum_exp_marg(temp1, mn = FALSE)         
            ll <‐ ll + log(Pm) 
          } else {                                    #unknown 
            temp <‐ Pm * pSiler(t, a1m, a2, b1, b2, c1) ‐ pSiler(t ‐ 1
, a1m, a2, b1, b2, c1) 
            temp1 <‐ (1 ‐ Pm) * pSiler(t, a1f, a2, b1, b2, c1) ‐ pSile
r(t ‐ 1, a1f, a2, b1, b2, c1) 
            temp2 <‐ log(c(temp, temp1)) + (t ‐ 1 ‐ zL) * log(1 ‐ p) 
            ## tail component (after last capture time) 
            temp <‐ (1 ‐ Pm) * pSiler(tM, a1f, a2, b1, b2, c1, lower.t
ail = FALSE) 
            temp1 <‐ Pm * pSiler(tM, a1m, a2, b1, b2, c1, lower.tail = 
FALSE) 
            temp3 <‐ log(c(temp, temp1)) + (tM ‐ zL) * log(1 ‐ p) 
            temp4 <‐ c(temp2, temp3) 
            ll <‐ ll + log_sum_exp_marg(temp4, mn = FALSE)       
          } 
        } 
      } else {                                      #zL = tM 
        if (sex == 0 & !is.na(sex)){                #female 
          temp <‐ pSiler(tM, a1f, a2, b1, b2, c1, lower.tail = FALSE) 
          ll <‐ ll + log(temp) + (tM ‐ zL) * log(1 ‐ p) 
          ll <‐ ll + log(1 ‐ Pm) 
        } else { 
          if (sex == 1 & !is.na(sex)){         #male 
            temp <‐ pSiler(tM, a1m, a2, b1, b2, c1, lower.tail = FALSE
) 
            ll <‐ ll + log(temp) + (tM ‐ zL) * log(1 ‐ p) 
            ll <‐ ll + log(Pm) 
          } else {                                    #unknown 
            temp <‐ (1 ‐ Pm) * pSiler(tM, a1f, a2, b1, b2, c1, lower.t
ail = FALSE) 
            temp <‐ Pm * pSiler(tM, a1m, a2, b1, b2, c1, lower.tail = 
FALSE) 
            ll <‐ ll + log(temp) + (tM ‐ zL) * log(1 ‐ p) 
          } 
        } 
      } 
      ll} 
  }, p = p, Pm = Pm, a1f = a1f, a1m = a1m, a2 = a2, b1 = b1, b2 = b2, 
c1 = c1) 
  sum(fsurv1) 
} 
 
## calculate log‐likelihoods in parallel 
logimpweight <‐ apply(props, 1, list) 
logimpweight <‐ purrr::map(logimpweight, 1) 
logimpweight <‐ mclapply(logimpweight, 
                         function(pars, y, zL, zU, censored, tM, p, se
x, Pm) { 
                           loglike(y, zL, zU, censored, tM, pars[2], p
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ars[3], pars[4], pars[5], pars[6], pars[7], pars[8], sex, pars[1]) 
                         }, y = y, zL = zL, zU = zU, censored = censor
ed, tM = tM, sex = sex, mc.cores = 24) 
logimpweight <‐ reduce(logimpweight, base::c) 

Add priors and importance distributions  

## add prior densities 
logimpweight <‐ logimpweight + dunif(props[, 1], 0, 1, log = TRUE) +  
  dexp(props[, 2], 1, log = TRUE) + dexp(props[, 3], 1, log = TRUE) + 
  dexp(props[, 4], 1, log = TRUE) + dexp(props[, 5], 1, log = TRUE) +  
  dexp(props[, 6], 1, log = TRUE) + dexp(props[, 7], 1, log = TRUE) +  
  dunif(props[, 8], 0, 1, log = TRUE) 
 
## importance distributions 
logimpweight <‐ logimpweight ‐  
  log(0.95 * dens(mod$modelName, props, FALSE, mod$parameters) + 0.05 
* exp(dunif(props[, 1], 0, 1, log = TRUE) + 
                                                                              
dexp(props[, 2], 1, log = TRUE) + 
                                                                              
dexp(props[, 3], 1, log = TRUE) + 
                                                                              
dexp(props[, 4], 1, log = TRUE) + 
                                                                              
dexp(props[, 5], 1, log = TRUE) + 
                                                                              
dexp(props[, 6], 1, log = TRUE) + 
                                                                              
dexp(props[, 7], 1, log = TRUE) + 
                                                                              
dunif(props[, 8], 0, 1, log = TRUE))) 

Run final checks, calculate log-marginal likelihoods and then bootstrap 

and create plots  

Plots are created by additonal functions sourced at the start, this code is 

accessible via our github repository. 

## final checks 
summary(props[is.finite(logimpweight), ]) 

##        Pm              a1f                 a1m                a2            
##  Min.   :0.1393   Min.   :0.0000914   Min.   :0.02327   Min.   :0.0
000007   
##  1st Qu.:0.4718   1st Qu.:0.0246238   1st Qu.:0.05389   1st Qu.:0.0
001470   
##  Median :0.4784   Median :0.0421031   Median :0.07096   Median :0.0
003638   
##  Mean   :0.4783   Mean   :0.0419307   Mean   :0.07080   Mean   :0.0
008811   
##  3rd Qu.:0.4849   3rd Qu.:0.0585973   3rd Qu.:0.08674   3rd Qu.:0.0
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010152   
##  Max.   :0.5174   Max.   :1.7944641   Max.   :1.51321   Max.   :0.4
200564   
##        b1                  b2                c1                mean
.p       
##  Min.   :0.0000022   Min.   :0.01221   Min.   :0.0000203   Min.   :
0.4467   
##  1st Qu.:0.0101653   1st Qu.:0.10416   1st Qu.:0.0201834   1st Qu.:
0.4554   
##  Median :0.0150729   Median :0.12649   Median :0.0364165   Median :
0.4576   
##  Mean   :0.0165196   Mean   :0.12725   Mean   :0.0367010   Mean   :
0.4576   
##  3rd Qu.:0.0206587   3rd Qu.:0.14663   3rd Qu.:0.0532918   3rd Qu.:
0.4597   
##  Max.   :2.2588190   Max.   :0.19551   Max.   :0.0793902   Max.   :
0.5043 

summary(props) 

##        Pm                 a1f                a1m                 a2            
##  Min.   :0.0005045   Min.   :‐0.02013   Min.   :0.004153   Min.   :
‐0.001451   
##  1st Qu.:0.4714270   1st Qu.: 0.02529   1st Qu.:0.054315   1st Qu.: 
0.000149   
##  Median :0.4783599   Median : 0.04476   Median :0.073040   Median : 
0.000392   
##  Mean   :0.4793485   Mean   : 0.08853   Mean   :0.117193   Mean   : 
0.046985   
##  3rd Qu.:0.4852523   3rd Qu.: 0.06196   3rd Qu.:0.090202   3rd Qu.: 
0.001202   
##  Max.   :0.9997140   Max.   : 6.38471   Max.   :7.826938   Max.   : 
9.854459   
##        b1                 b2                c1               mean.p         
##  Min.   :‐0.01741   Min.   :0.00122   Min.   :‐0.02746   Min.   :0.
001932   
##  1st Qu.: 0.01008   1st Qu.:0.10504   1st Qu.: 0.01978   1st Qu.:0.
455281   
##  Median : 0.01532   Median :0.12860   Median : 0.03770   Median :0.
457586   
##  Mean   : 0.06558   Mean   :0.16666   Mean   : 0.08800   Mean   :0.
459599   
##  3rd Qu.: 0.02176   3rd Qu.:0.15007   3rd Qu.: 0.05561   3rd Qu.:0.
459848   
##  Max.   : 5.97225   Max.   :6.88589   Max.   : 8.75672   Max.   :0.
999376 

## bootstrap the importance weights to create 95% intervals 
imp.boot <‐ BootsPlot(logimpweight, 5000, TRUE) 
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Appendix 5 – Supplementary material from Chapter 6: Efficient 

Bayesian model comparison for nested models: from importance 

sampling to reversible jump Markov chain Monte Carlo. 

 

R code for RJMCMC analysis 

Setup Load libraries, data, additional functions and seed 

## load libraries 
library(nimble) 
library(tidyverse) 
library(mvtnorm) 
library(boot) 
library(lamW) 
library(GGally) 
library(coda) 
library(mclust) 
library(parallel) 
library(survminer) 
library(survival) 
library(data.table) 
rm(list=ls()) 
 
## source necessary R functions 
source("../../../FirstPaperFiles/Distributions/Dist_Siler.R") 
source("../../../FirstPaperFiles/Distributions/Dist_SilerNim.R") 

## Registering the following user‐provided distributions: dsilerNim 

source("../../../FirstPaperFiles/ModelComparison_FUNCTIONS.R") 
 
## load data 
load("badgerSex.RData") 
 
## set seed 
set.seed(42) 

Prepare for Nimble analysis Define model, set constants, data and initial 

values. 

code <‐ nimbleCode({ 
   
  ## survival components for dead badgers 
  for (i in 1:nind) { 
     
    ## likelihood for interval‐truncated gompertz 
    censored[i] ~ dinterval(tD[i], cint[i, ]) 
    tD[i] ~ dsilerNim(a1 * a1mult[i], a2 * a2mult[i], b1 * b1mult[i], 
b2 * b2mult[i], c1 * c1mult[i]) 
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    log(a1mult[i]) <‐ beta[1] * sex[i] * z[1] 
    log(a2mult[i]) <‐ beta[2] * sex[i] * z[2] 
    log(b1mult[i]) <‐ beta[3] * sex[i] * z[3] 
    log(b2mult[i]) <‐ beta[4] * sex[i] * z[4] 
    log(c1mult[i]) <‐ beta[5] * sex[i] * z[5] 
     
    ## sampling component 
    pd[i] <‐ exp(y[i] * log(mean.p) + (min(floor(tD[i]), tM[i]) ‐ y[i]
) * log(1 ‐ mean.p)) 
    dind[i] ~ dbern(pd[i]) 
  } 
   
  for (j in 1:5) { 
    beta[j] ~ dnorm(0, sd = 1) 
    z[j] ~ dbern(0.5) 
#    psi[j] <‐ dunif(0, 1) 
  } 
   
  a1 ~ dexp(1) 
  a2 ~ dexp(1) 
  b1 ~ dexp(1) 
  b2 ~ dexp(1) 
  c1 ~ dexp(1) 
  mean.p ~ dunif(0, 1) 
   
   
}) 
 
## set up data 
consts <‐ list(nind = nind, tM = tM, sex = sex) 
data <‐ list(y = y, cint = cint,  
             censored = censored, tD = tD, dind = dind) 
 
## find overdispersed initial values 
tinitFn <‐ function(cint, censored) { 
  apply(cbind(cint, censored), 1, function(x) { 
    if(x[3] == 2) { 
      y <‐ x[2] + rexp(1, 1) 
    } else { 
      y <‐ runif(1, x[1], x[2]) 
    } 
    y 
  }) 
} 
 
initFn <‐ function(cint, censored, sex) { 
  ## get ML estimates as initial values 
  optFn <‐ function(pars, t, sex) { 
    if(any(pars[c(1:5)] < 0)) { 
      return(NA) 
    } 
    llM <‐ sum(dSiler(t[sex == 1], a1 = pars[1] * exp(pars[6]), a2 = p
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ars[2] * exp(pars[7]), b1 = pars[3] * exp(pars[8]),  
                      b2 = pars[4] * exp(pars[9]), c1 = pars[5] * exp(
pars[10]), log = TRUE)) 
    llF <‐ sum(dSiler(t[sex == 0], a1 = pars[1], a2 = pars[2], b1 = pa
rs[3], b2 = pars[4], c1 = pars[5], log = TRUE)) 
    llM + llF 
  } 
  pars <‐ list(convergence = 1) 
  k <‐ 0 
  while(pars$convergence != 0 & k < 50) { 
    ## sample missing values 
    tD <‐ tinitFn(cint, censored) 
    pars <‐ optim(c(rexp(5, 10), rnorm(5, 0, 1)), optFn, t = tD, sex = 
sex, control = list(fnscale = ‐1)) 
    k <‐ k + 1 
  } 
  if(k == 50) { 
    stop("Can't sample initial values") 
  } 
  pars <‐ pars$par 
 list( 
    tD = tD, 
    a1 = pars[1], 
    a2 = pars[2], 
    b1 = pars[3], 
    b2 = pars[4], 
    c1 = pars[5], 
    mean.p = runif(1, 0, 1), 
    beta = c(pars[6], pars[7], pars[8], pars[9], pars[10]), 
    z = rep(0, times = 5) 
  ) 
} 

Build the model in NIMBLE 

## define the model, data, inits and constants 
rIndicatorModel <‐ nimbleModel(code, constants = consts, 
                               data = data,  
                               inits = initFn(cint, censored, sex)) 

## defining model... 

## building model... 

## setting data and initial values... 

## running calculate on model (any error reports that follow may simpl
y reflect missing values in model variables) ...  
## checking model sizes and dimensions... 
## model building finished. 

Configure the MCMC We can now make adjustments to the default sampler 

settings in NIMBLE. 
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## try with adaptive slice sampler 
config <‐ configureMCMC(rIndicatorModel) #, monitors = c("beta0a1", "b
eta1a1", "a2", "b1", "b2", "c1", "mean.p"), thin = 1) 

## ===== Monitors ===== 
## thin = 1: beta, z, a1, a2, b1, b2, c1, mean.p 
## ===== Samplers ===== 
## RW sampler (2399) 
##   ‐ beta[]  (5 elements) 
##   ‐ a1 
##   ‐ a2 
##   ‐ b1 
##   ‐ b2 
##   ‐ c1 
##   ‐ mean.p 
##   ‐ tD[]  (2388 elements) 
## binary sampler (5) 
##   ‐ z[]  (5 elements) 

config$removeSamplers(c("a1", "a2", "b1", "b2", "c1")) 
config$addSampler(target = c("a1", "a2", "b1", "b2", "c1"), type = 'AF
_slice', control = 50) 
config$addSampler(target = c("a1", "c1"), type = 'AF_slice', control = 
20) 
config$addSampler(target = c("b2"), type = 'slice') 
 
## Add reversible jump 
configureRJ(conf = config,   ## model configuration 
            targetNodes = c("beta[1]", "beta[2]","beta[3]", "beta[4]", 
"beta[5]"),    ## coefficients for selection 
            indicatorNodes = c("z[1]", "z[2]", "z[3]", "z[4]", "z[5]")
,    ## indicators paired with coefficients 
            control = list(mean = 0.5, scale = .5)) 
 
config$addMonitors("beta[1]", "beta[2]","beta[3]", "beta[4]", "beta[5]
", "z[1]", "z[2]", "z[3]", "z[4]", "z[5]") 

## thin = 1: beta, z, a1, a2, b1, b2, c1, mean.p 

Build and compile We now build our model with the updated configuration and 

compile again. 

rIndicatorMCMC <‐ buildMCMC(config) 
cIndicatorModel <‐ compileNimble(rIndicatorModel) 

## compiling... this may take a minute. Use 'showCompilerOutput = TRUE
' to see C++ compilation details. 

## compilation finished. 

cIndicatorMCMC <‐ compileNimble(rIndicatorMCMC, project = rIndicatorMo
del) 
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## compiling... this may take a minute. Use 'showCompilerOutput = TRUE
' to see C++ compilation details. 
## compilation finished. 

Run the MCMC Here we set our MCMC options: iterations, burnin, chains etc. 

#Run the model 
run <‐ runMCMC(cIndicatorMCMC,  
                           niter = 50000,  
                           nburnin = 10000,  
                           nchains = 2,  
                           progressBar = TRUE,  
                           summary = TRUE,  
                           samplesAsCodaMCMC = TRUE,  
                           thin = 1) 

## running chain 1... 

## |‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐| 
## |‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐| 

## running chain 2... 

## |‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐| 
## |‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐| 

Plot trace plots to check mixing etc 

#Plot mcmcm 
samples <‐ as.matrix(run$samples) 
plot(run$samples) 
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Look at posterior inclusion probabilities and bootstrap for CIs  Extract indicator 

information 

## Marginal probabilities of inclusion for each variable 
zNames <‐ c("z[1]", "z[2]", "z[3]", "z[4]", "z[5]") 
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zCols <‐ which(colnames(samples) %in% zNames) 
binary <‐ as.data.table((samples[, zCols] != 0) + 0) 
colnames(binary) <‐ c("a1", "a2", "b1", "b2", "c1") 

Set up bootstrapping functions  

boots <‐ function(samples, nboot){ 
  lists <‐ list() 
   
  for(i in 1:nboot) { 
    samp_ints <‐ sample(1:50000, 50000, replace = TRUE) 
    temp_post <‐ binary[samp_ints, ] 
    res <‐ temp_post[ , .N, by=names(temp_post)] 
    res <‐ res[order(N, decreasing = T)] 
    res <‐ res[, prob := N/dim(temp_post)[1]] 
    res$model <‐ paste(res$a1, res$a2, res$b1, res$b2, res$c1) 
    res$bootn <‐ i 
    res <‐ select(res, prob, model, bootn) 
    lists[[i]] <‐ res 
  } 
   
  t <‐ as.data.frame(do.call(rbind, lists)) 
  l <‐ pivot_wider(t, names_from = model, values_from = prob) 
   
  return(l) 
} 
 
## run function 
out <‐ boots(samples, 1000) 
out 

## # A tibble: 1,000 × 29 
##    bootn `0 0 0 0 1` `0 0 1 0 1` `1 0 0 0 1` `0 1 0 0 1` `1 0 1 0 1
` `0 1 1 0 1` 
##    <int>       <dbl>       <dbl>       <dbl>       <dbl>       <dbl
>       <dbl> 
##  1     1       0.105      0.0799      0.0779      0.0724      0.069
1      0.0676 
##  2     2       0.108      0.0809      0.0793      0.0717      0.067
7      0.0665 
##  3     3       0.105      0.0827      0.0807      0.0713      0.067
4      0.0666 
##  4     4       0.105      0.0812      0.0811      0.0722      0.068
8      0.0692 
##  5     5       0.107      0.0783      0.0810      0.0717      0.070
1      0.0655 
##  6     6       0.106      0.0816      0.0801      0.0728      0.066
7      0.0686 
##  7     7       0.106      0.0815      0.0813      0.0725      0.066
5      0.0683 
##  8     8       0.107      0.0810      0.0798      0.0714      0.066
3      0.0673 
##  9     9       0.105      0.0817      0.0811      0.0711      0.067
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7      0.0691 
## 10    10       0.106      0.0805      0.0816      0.0737      0.068
2      0.0685 
## # … with 990 more rows, and 22 more variables: 1 0 1 0 0 <dbl>, 
## #   1 0 0 0 0 <dbl>, 1 1 1 0 1 <dbl>, 1 1 0 0 1 <dbl>, 1 1 1 0 0 <d
bl>, 
## #   1 1 0 0 0 <dbl>, 0 0 1 1 1 <dbl>, 0 1 1 1 1 <dbl>, 0 0 0 1 1 <d
bl>, 
## #   0 1 0 1 1 <dbl>, 1 1 1 1 1 <dbl>, 1 1 0 1 1 <dbl>, 1 0 0 1 1 <d
bl>, 
## #   1 1 1 1 0 <dbl>, 1 0 1 1 1 <dbl>, 1 0 1 1 0 <dbl>, 1 0 0 1 0 <d
bl>, 
## #   1 1 0 1 0 <dbl>, 0 1 1 1 0 <dbl>, 0 1 0 1 0 <dbl>, 0 0 1 0 0 <d
bl>, 
## #   0 1 1 0 0 <dbl> 

out[is.na(out)] <‐ 0 

Create CIs  

## create CIs 
ModProbs <‐ out[‐1] %>% 
  apply(2, function(x) { 
    quantile(x, probs = c(0.025, 0.5, 0.975)) 
  }) %>% 
  t() %>% 
  as_tibble() %>% 
  set_names(c("LCI", "Median", "UCI")) %>% 
  mutate(model = colnames(out[‐1])) 
 
m <‐ ModProbs$model #extract model codes 
m <‐ gsub(" ", "", m) #remove spaces 

Adjust names  

## create function to convert codes to names 
names <‐ function(codes){ 
  lists <‐ list() 
 
    for (i in 1:length(codes)){ 
    name <‐ rep(NA,5) 
    name[1] <‐ ifelse(substr(codes[i], 1, 1) == 1, "a1", "") 
    name[2] <‐ ifelse(substr(codes[i], 2, 2) == 1, "a2", "") 
    name[3] <‐ ifelse(substr(codes[i], 3, 3) == 1, "b1", "") 
    name[4] <‐ ifelse(substr(codes[i], 4, 4) == 1, "b2", "") 
    name[5] <‐ ifelse(substr(codes[i], 5, 5) == 1, "c1", "") 
    name <‐ str_c(name, collapse = "") 
    lists[[i]] <‐ name 
    } 
  names <‐ unlist(lists) 
  return(names) 
} 
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## run function 
out <‐ names(m) 
 
## add "SexDiff" to each code 
out <‐ paste("SexDiff", out, sep = "") 
FULL <‐ which(out == "SexDiffa1a2b1b2c1") 
out[FULL] <‐ "SexDiffFULL" 
 
## add to df 
ModProbs$model <‐ out 
ModProbs$Method <‐ "RJMCMC" 

Plot results  

ggplot(ModProbs,aes(x = model, y = Median)) + 
  geom_point() +  
  geom_errorbar(data = ModProbs, aes(ymax = UCI, ymin = LCI)) + 
  theme(axis.text.x = element_text(angle = 90)) + 
  xlab("Model") + ylab("Posterior Model Probability") + 
#  scale_colour_discrete(name = "Method", labels = c("IS", "RJMCMC")) 
+ 
  theme(axis.text=element_text(size=12)) + 
  theme(axis.title=element_text(size=15)) + 
  theme(legend.text=element_text(size=10)) + 
  theme(legend.title=element_text(size=15)) + 
  theme(panel.grid.major = element_blank(), panel.grid.minor = element
_blank(), 
        panel.background = element_blank(), axis.line = element_line(c
olour = "black")) 
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Appendix 6 – Supplementary material from Chapter 7: Investigating 

the impact of inbreeding on lifetime survival and mortality trajectories 

of European badgers 

 

R code for Inbreeding Analysis 

Setup Load libraries, data, additional functions and seed 

## load libraries 
library(nimble) 
library(tidyverse) 
library(mvtnorm) 
library(boot) 
library(lamW) 
library(GGally) 
library(coda) 
library(mclust) 
library(parallel) 
library(survminer) 
library(survival) 
library(coda) 
library(mcmcplots) 
library(MCMCvis) 
library(scales) 
library(data.table) 
 
rm(list=ls()) 
 
## load data 
load("Data/badgerSexInb_ICubvUninf.RData") 
 
## load distributions 
source("../SimulationStudy/FirstPaperFiles/Distributions/Dist_Siler.R"
) 
source("../SimulationStudy/FirstPaperFiles/Distributions/Dist_SilerNim
.R") 

## Registering the following user‐provided distributions: dsilerNim 

source("../SimulationStudy/FirstPaperFiles/ModelComparison_FUNCTIONS.R
") 
 
## set seed 
set.seed(seeds[15]) 
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Prepare for Nimble analysis Define model, set constants, data and initial 

values. 

code <‐ nimbleCode({ 
   
  ## survival components for dead badgers 
  for (i in 1:nind) { 
     
    ## likelihood for interval‐truncated siler 
    censored[i] ~ dinterval(tD[i], cint[i, ]) 
    tD[i] ~ dsilerNim(a1mult[i], a2mult[i], b1mult[i], b2mult[i], c1mu
lt[i]) 
     
    log(a1mult[i]) <‐ log(a1) + betaSEX[1] * sex[i] * zSEX[1] +  
      betaINFCUB[1] * infection[i] * zINF[1] +  
      betaSEXINFCUB[1] * sex[i] * infection[i] * zSEXINF[1] + 
      betaINBR[1] * inbr[i] * zINBR[1] + 
      betaSEXINBR[1] * sex[i] * inbr[i] * zSEXINBR[1] + 
      betaINFINBRCUB[1] * infection[i] * inbr[i] * zINFINBR[1] 
     
    log(a2mult[i]) <‐ log(a2) + betaSEX[2] * sex[i] * zSEX[2] +  
      betaINFCUB[2] * infection[i] * zINF[2] +  
      betaSEXINFCUB[2] * sex[i] * infection[i] * zSEXINF[2] + 
      betaINBR[2] * inbr[i] * zINBR[2] + 
      betaSEXINBR[2] * sex[i] * inbr[i] * zSEXINBR[2] + 
      betaINFINBRCUB[2] * infection[i] * inbr[i] * zINFINBR[2] 
     
    log(b1mult[i]) <‐ log(b1) + betaSEX[3] * sex[i] * zSEX[3] +  
      betaINFCUB[3] * infection[i] * zINF[3] +  
      betaSEXINFCUB[3] * sex[i] * infection[i] * zSEXINF[3] + 
      betaINBR[3] * inbr[i] * zINBR[3] + 
      betaSEXINBR[3] * sex[i] * inbr[i] * zSEXINBR[3] + 
      betaINFINBRCUB[3] * infection[i] * inbr[i] * zINFINBR[3] 
     
    log(b2mult[i]) <‐ log(b2) + betaSEX[4] * sex[i] * zSEX[4] +  
      betaINFCUB[4] * infection[i] * zINF[4] +  
      betaSEXINFCUB[4] * sex[i] * infection[i] * zSEXINF[4] + 
      betaINBR[4] * inbr[i] * zINBR[4] + 
      betaSEXINBR[4] * sex[i] * inbr[i] * zSEXINBR[4] + 
      betaINFINBRCUB[4] * infection[i] * inbr[i] * zINFINBR[4] 
     
    log(c1mult[i]) <‐ log(c1) + betaSEX[5] * sex[i] * zSEX[5] +  
      betaINFCUB[5] * infection[i] * zINF[5] +  
      betaSEXINFCUB[5] * sex[i] * infection[i] * zSEXINF[5] + 
      betaINBR[5] * inbr[i] * zINBR[5] + 
      betaSEXINBR[5] * sex[i] * inbr[i] * zSEXINBR[5] + 
      betaINFINBRCUB[5] * infection[i] * inbr[i] * zINFINBR[5] 
     
    ## sampling component 
    pd[i] <‐ exp(y[i] * log(mean.p) + (min(floor(tD[i]), tM[i]) ‐ y[i]
) * log(1 ‐ mean.p)) 
    dind[i] ~ dbern(pd[i]) 
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  } 
   
  ## priors 
  for (k in 1:5) { 
    betaSEX[k] ~ dnorm(0, sd = 1) 
    betaINFCUB[k] ~ dnorm(0, sd = 1) 
    betaINBR[k] ~dnorm(0, sd = 1) 
    betaSEXINFCUB[k] ~ dnorm(0, sd = 1) 
    betaSEXINBR[k] ~ dnorm(0, sd = 1) 
    betaINFINBRCUB[k] ~ dnorm(0, sd = 1) 
    zSEX[k] ~ dbern(0.5) 
    zINF[k] ~ dbern(0.5) 
    zINBR[k] ~ dbern(0.5) 
    zSEXINF[k] ~ dbern(0.5) 
    zSEXINBR[k] ~ dbern(0.5) 
    zINFINBR[k] ~ dbern(0.5) 
    constraint_dataSEXINF[k] ~ dconstraint(zSEXINF[k] <= zSEX[k] * zIN
F[k]) 
    constraint_dataSEXINBR[k] ~ dconstraint(zSEXINBR[k] <= zSEX[k] * z
INBR[k]) 
    constraint_dataINFINBR[k] ~ dconstraint(zINFINBR[k] <= zINF[k] * z
INBR[k]) 
     
  }   
  a1 ~ dexp(1) 
  a2 ~ dexp(1) 
  b1 ~ dexp(1) 
  b2 ~ dexp(1) 
  c1 ~ dexp(1) 
  mean.p ~ dunif(0, 1) 
   
}) 
 
## set up data 
consts <‐ list(nind = nind, tM = tM, sex = sex, infection = infection, 
inbr = inbrCAT) 
 
data <‐ list( 
  y = y, cint = cint, censored = censored, tD = tD, dind = dind, 
  constraint_dataSEXINF = rep(1, 5), constraint_dataSEXINBR = rep(1, 5
), 
  constraint_dataINFINBR = rep(1, 5)) 
 
## find overdispersed initial values 
tinitFn <‐ function(cint, censored) { 
  apply(cbind(cint, censored), 1, function(x) { 
    if(x[3] == 2) { 
      y <‐ x[2] + rexp(1, 1) 
    } else { 
      y <‐ runif(1, x[1], x[2]) 
    } 
    y 
  }) 
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} 
initFn <‐ function(cint, censored, sex, model) { 
  ## get ML estimates as initial values 
  optFn <‐ function(pars, t, sex, infection3) { 
    # browser() 
    if(any(pars[1:5] < 0)) { 
      return(NA) 
    } 
    ll <‐ sum(dSiler(t, a1 = pars[1], a2 = pars[2], b1 = pars[3], b2 = 
pars[4], c1 = pars[5], log = TRUE))   
  } 
  valid <‐ 0 
  while(valid == 0) { 
    pars <‐ list(convergence = 1) 
    k <‐ 0 
    while(pars$convergence != 0 & k < 20) { 
      ## sample missing values 
      tD <‐ tinitFn(cint, censored) 
      pars <‐ optim(rexp(5, 10), optFn, t = tD, sex = sex, control = l
ist(fnscale = ‐1)) 
      k <‐ k + 1 
    } 
    if(k == 20) { 
      stop("Can't sample initial values") 
    } 
    pars <‐ pars$par 
     
    ## output initial values 
    inits <‐ list( 
      tD = tD, 
      a1 = pars[1], 
      a2 = pars[2], 
      b1 = pars[3], 
      b2 = pars[4], 
      c1 = pars[5], 
      mean.p = runif(1, 0, 1), 
      betaSEX = rnorm(5, 0, 1), 
      betaINFCUB = rnorm(5, 0, 1), 
      betaSEXINFCUB = rnorm(5, 0, 1), 
      betaINBR  = rnorm(5, 0, 1), 
      betaSEXINBR = rnorm(5, 0, 1), 
      betaINFINBRCUB = rnorm(5, 0, 1), 
      zSEX = rep(0, 5), 
      zINF = rep(0, 5), 
      zSEXINF = rep(0, 5), 
      zINBR = rep(0, 5), 
      zSEXINBR = rep(0, 5), 
      zINFINBR = rep(0, 5) 
    ) 
    model$setInits(inits) 
    valid <‐ ifelse(!is.finite(model$calculate()), 0, 1) 
  } 
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  return(inits) 
} 

Build the model in NIMBLE 

## build the model without initial values 
## (will throw an initialisation warning) 
 
model <‐ nimbleModel(code, constants = consts, data = data) 

## defining model... 

## building model... 

## setting data and initial values... 

## running calculate on model (any error reports that follow may simpl
y reflect missing values in model variables) ... Error in if (a1 < 0 | 
a2 < 0 | b1 < 0 | b2 < 0 | c1 < 0) { :  
##   missing value where TRUE/FALSE needed 
##  
## checking model sizes and dimensions... This model is not fully init
ialized. This is not an error. To see which variables are not initiali
zed, use model$initializeInfo(). For more information on model initial
ization, see help(modelInitialization). 
## model building finished. 

Compile the build and calculate the inits 

## compile the model 
cIndicatorModel <‐ compileNimble(model) 

## compiling... this may take a minute. Use 'showCompilerOutput = TRUE
' to see C++ compilation details. 

## compilation finished. 

## find list of valid initial values (needs compiled model 
## for some reason) 
inits <‐ list() 
for(k in 1:2) { 
  inits[[k]] <‐ initFn(cint, censored, sex, cIndicatorModel) 
} 

Configure the MCMC We can now make adjustments to the default sampler 

settings in NIMBLE. 

## configure MCMC 
config <‐ configureMCMC(model) 

## ===== Monitors ===== 
## thin = 1: betaSEX, betaINFCUB, betaINBR, betaSEXINFCUB, betaSEXINBR
, betaINFINBRCUB, zSEX, zINF, zINBR, zSEXINF, zSEXINBR, zINFINBR, a1, 
a2, b1, b2, c1, mean.p 
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## ===== Samplers ===== 
## RW sampler (1642) 
##   ‐ betaSEX[]  (5 elements) 
##   ‐ betaINFCUB[]  (5 elements) 
##   ‐ betaINBR[]  (5 elements) 
##   ‐ betaSEXINFCUB[]  (5 elements) 
##   ‐ betaSEXINBR[]  (5 elements) 
##   ‐ betaINFINBRCUB[]  (5 elements) 
##   ‐ a1 
##   ‐ a2 
##   ‐ b1 
##   ‐ b2 
##   ‐ c1 
##   ‐ mean.p 
##   ‐ tD[]  (1606 elements) 
## binary sampler (30) 
##   ‐ zSEX[]  (5 elements) 
##   ‐ zINF[]  (5 elements) 
##   ‐ zINBR[]  (5 elements) 
##   ‐ zSEXINF[]  (5 elements) 
##   ‐ zSEXINBR[]  (5 elements) 
##   ‐ zINFINBR[]  (5 elements) 

config$removeSamplers(c("a1", "a2", "b1", "b2", "c1")) 
config$addSampler(target = c("a1"), type = 'slice', control = list(sli
ceWidth = 0.5, adaptInterval = 50)) 
config$addSampler(target = c("a2"), type = 'slice', control = list(sli
ceWidth = 1.5, adaptInterval = 20)) 
config$addSampler(target = c("b1"), type = 'slice', control = list(sli
ceWidth = 0.5, adaptInterval = 50)) 
config$addSampler(target = c("b2"), type = 'slice', control = list(sli
ceWidth = 1.5, adaptInterval = 20)) 
config$addSampler(target = c("c1"), type = 'slice', control = list(sli
ceWidth = 0.5, adaptInterval = 50)) 
 
configureRJ(conf = config,   ## model configuration 
                  targetNodes = c("betaSEX", "betaINFCUB", "betaINBR", 
"betaSEXINFCUB", "betaSEXINBR", "betaINFINBRCUB"), 
                  indicatorNodes = c("zSEX", "zINF", "zINBR", "zSEXINF
", "zSEXINBR", "zINFINBR"), 
                  control = list(mean = 0, scale = 1)) 
 
config$addMonitors("betaSEX", "betaINFCUB", "betaINBR", "betaSEXINFCUB
", "betaSEXINBR", "betaINFINBRCUB") 

## thin = 1: betaSEX, betaINFCUB, betaINBR, betaSEXINFCUB, betaSEXINBR
, betaINFINBRCUB, zSEX, zINF, zINBR, zSEXINF, zSEXINBR, zINFINBR, a1, 
a2, b1, b2, c1, mean.p 

config 

## ===== Monitors ===== 
## thin = 1: betaSEX, betaINFCUB, betaINBR, betaSEXINFCUB, betaSEXINBR
, betaINFINBRCUB, zSEX, zINF, zINBR, zSEXINF, zSEXINBR, zINFINBR, a1, 
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a2, b1, b2, c1, mean.p 
## ===== Samplers ===== 
## slice sampler (5) 
##   ‐ a1 
##   ‐ a2 
##   ‐ b1 
##   ‐ b2 
##   ‐ c1 
## RW sampler (1607) 
##   ‐ mean.p 
##   ‐ tD[]  (1606 elements) 
## RJ_toggled sampler (30) 
##   ‐ betaSEX[]  (5 elements) 
##   ‐ betaINFCUB[]  (5 elements) 
##   ‐ betaINBR[]  (5 elements) 
##   ‐ betaSEXINFCUB[]  (5 elements) 
##   ‐ betaSEXINBR[]  (5 elements) 
##   ‐ betaINFINBRCUB[]  (5 elements) 
## RJ_indicator sampler (30) 
##   ‐ zSEX[]  (5 elements) 
##   ‐ zINF[]  (5 elements) 
##   ‐ zINBR[]  (5 elements) 
##   ‐ zSEXINF[]  (5 elements) 
##   ‐ zSEXINBR[]  (5 elements) 
##   ‐ zINFINBR[]  (5 elements) 

Build and compile We now build our model with the updated configuration and 

compile again. 

rIndicatorMCMC <‐ buildMCMC(config) 
cIndicatorMCMC <‐ compileNimble(rIndicatorMCMC, project = model) 

## compiling... this may take a minute. Use 'showCompilerOutput = TRUE
' to see C++ compilation details. 

## compilation finished. 

Run the MCMC Here we set our MCMC options: iterations, burnin, chains etc. 

#Run the model 
run <‐ runMCMC(cIndicatorMCMC,  
                           niter = 50000,  
                           nburnin = 10000,  
                           nchains = 2,  
                           inits = inits[[1]], 
                           progressBar = TRUE,  
                           summary = TRUE,  
                           samplesAsCodaMCMC = TRUE,  
                           thin = 1) 

## running chain 1... 

## |‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐| 
## |‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐| 
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## running chain 2... 

## |‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐|‐‐‐‐‐‐‐‐‐‐‐‐‐| 
## |‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐| 

Plot trace plots to check mixing etc 

#Plot mcmcm 
run <‐ readRDS("outputs/FullModel_z_all_runsamples_infCubVuninfLife_IN
BRCont.rds") 
 
samples <‐ as.matrix(run$samples) 
plot(run$samples) 
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Look at posterior inclusion probabilities 

Extract indicator information 

## Marginal probabilities of inclusion for each variable 
zNames <‐ model$expandNodeNames(c('z', 'zSEX', 'zINF', 'zINBR', 'zSEXI
NF', 'zSEXINBR', 'zINFINBR')) 
zCols <‐ which(colnames(samples) %in% zNames) 
binary <‐ as.data.table((samples[, zCols] != 0) + 0) 
res <‐ binary[ , .N, by=names(binary)] 
res <‐ res[order(N, decreasing = T)] 
res <‐ res[, prob := N/dim(samples)[1]] 

Prepare for plot  

samples <‐ as.data.frame(samples) 
 
z_indicators <‐ samples %>% 
  select(c(37:66)) %>% 
  colSums() 
 
z_indicators <‐ data.frame(z_indicators/sum(res$N)) 
 
z_indicators$z <‐ rownames(z_indicators) 
colnames(z_indicators) <‐ c("Inclusion_Prob", "z") 
z_indicators$variable <‐ rep(c("Inbreeding", "Infection", "Infection:i
nbreeding", "Sex", "Sex:Inbreeding", "Sex:Infection"), each = 5) 
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z_indicators$Parameter <‐ rep(c("a1", "a2", "b1", "b2", "c"), times = 
6) 

Plot results  

ggplot(z_indicators, aes(x = variable, y = Inclusion_Prob)) + 
  geom_point() +  
  geom_hline(yintercept = 0.5, colour = "red") + 
  scale_y_continuous(limits = c(0,1)) +  
  theme(axis.text.x = element_text(angle = 90)) + 
  geom_point() + 
  facet_grid(~Parameter) + 
  geom_hline(yintercept = 0.5, colour = "red") + 
  theme(strip.text.x = element_text(size = 15)) + 
  theme(axis.text=element_text(size=12)) + 
  theme(axis.title=element_text(size=15)) + 
  theme(legend.text=element_text(size=10)) + 
  theme(legend.title=element_text(size=15)) + 
  labs(y = "Inclusion Probability", x = "Variable") + 
  theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) 
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Appendix 7 – Supplementary material from Chapter 8: General 

Discussion 

 

R code for double censored individuals 

## load libraries 

library(nimble) 

library(coda) 

library(mcmcplots) 

library(GGally) 

 

## run simulation 

rm(list = ls()) 

source("SimulateData/SimSilerCMRdata_500indiv.R") 

 

## load custom distributions 

source("../../Distributions/Dist_Siler.R") 

 

## read in data 

tKD <- readRDS("tKD.rds") 

CH <- readRDS("CH.rds") 

tKB <- readRDS("cub.rds") 

CH[is.na(CH)] <- 0 

 

## extract last alive time 

tL <- apply(CH, 1, function(x) max(which(x == 1))) 
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names(tL) <- NULL 

 

## extract first alive time 

tF <- apply(CH, 1, function(x) min(which(x == 1))) 

names(tF) <- NULL 

 

## define censoring matrices for birth time 

cintB <- cbind(tF - 4, tF) 

cintB[is.na(tKB), 1] <- cintB[is.na(tKB), 2] 

cintB[is.na(tKB), 2] <- cintB[is.na(tKB), 2] + 1 

colnames(cintB) <- NULL 

censoredB <- ifelse(is.na(tKB), 0, 1) 

tB <- rep(NA, length(tKB)) 

 

## define censoring matrices for death time 

cintD <- cbind(tL, tKD) 

cintD[is.na(tKD), 2] <- cintD[is.na(tKD), 1] 

cintD[is.na(tKD), 1] <- 0 

colnames(cintD) <- NULL 

censoredD <- ifelse(!is.na(tKD), 1, 2) 

tD <- rep(NA, length(tKD)) 

 

## extract max possible capture time 

tM <- ifelse(is.na(tKD), ncol(CH), tKD) 
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## extract min possible capture time 

tm <- ifelse((tF - 3) < 0, 0, tF - 3) 

 

## some checks 

stopifnot(all(tL >= tF)) 

stopifnot(all(tKD[!is.na(tKD)] > tL[!is.na(tKD)])) 

stopifnot(all(tM >= tL)) 

stopifnot(all(tm <= tF)) 

 

## set up dummy variables 

dind <- rep(1, length(tKD)) 

 

## extract number of captures 

y <- apply(CH, 1, sum) 

names(y) <- NULL 

 

## some checks 

stopifnot(all(tM - tm >= y)) 

 

## set up nind 

nind <- length(y) 

 

## code for NIMBLE model with censoring 
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code <- nimbleCode({ 

     

    ## survival components for dead badgers 

    for (i in 1:nind) { 

       

      ## likelihood for interval-truncated Siler 

      censoredB[i] ~ dinterval(tB[i], cintB[i, ]) 

      tB[i] ~ dflat() 

      censoredD[i] ~ dinterval(tD[i], cintD[i, ]) 

      tD[i] ~ dsiler(a1, a2, b1, b2, c, tB[i]) 

       

      ## sampling component 

      nm[i] <- max(ceiling(tB[i]), tm[i]) 

      nM[i] <- min(floor(tD[i]) - nm[i], tM[i] - nm[i]) 

      pd[i] <- exp(y[i] * log(mean.p) + (nM[i] - y[i]) * log(1 - mean.p)) 

      dind[i] ~ dbern(pd[i]) 

    } 

     

    ## priors 

    a1 ~ dexp(1) 

    a2 ~ dexp(1) 

    b1 ~ dexp(1) 

    b2 ~ dexp(1) 

    c ~ dexp(1) 
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    mean.p ~ dunif(0, 1) 

     

  }) 

   

  ## set up other components of model 

consts <- list(nind = nind, tM = tM, tm = tm) 

data <- list(y = y, cintB = cintB, cintD = cintD, 

                 censoredB = censoredB, censoredD = censoredD,  

                 tD = tD, tB = tB, dind = dind) 

     

    ## set initial values 

    tBinit <- apply(cbind(cintB, censoredB), 1, function(x) { 

      if(x[3] == 0) { 

        y <- x[1] - rexp(1, 0.1) 

      } else { 

        y <- runif(1, x[1], x[2]) 

      } 

      y 

    }) 

    tDinit <- apply(cbind(cintD, censoredD), 1, function(x) { 

      if(x[3] == 2) { 

        y <- x[2] + rexp(1, 0.1) 

      } else { 

        y <- runif(1, x[1], x[2]) 
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      } 

      y 

    }) 

inits <- list( 

        tD = tDinit, 

        tB = tBinit, 

        a1 = 0.1,  

        a2 = 0.1,  

        b1 = 0.1, 

        b2 = 0.1, 

        mean.p = runif(1, 0, 1), 

        c = 0.05 

      ) 

       

## define the model, data, inits and constants 

model <- nimbleModel(code = code, constants = consts, data = data, inits = 

inits) 

       

## compile the model 

cModel <- compileNimble(model) 

       

## try with adaptive slice sampler 

config <- configureMCMC(cModel, monitors = c("a1", "a2", "b1", "b2", "c", 

"mean.p", "tB", "tD"), thin = 1) 

config$removeSamplers(c("a1", "a2", "b1", "c","b2")) 
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config$addSampler(target = c("a1", "b1"), type = 'AF_slice') 

config$addSampler(target = c("a2", "c", "b2"), type = 'AF_slice') 

       

#Check monitors and samplers 

config$printMonitors() 

config$printSamplers(c("a1", "a2", "b1", "b2", "c")) 

 

#Build the model 

built <- buildMCMC(config) 

cBuilt <- compileNimble(built) 

 

#Plot mcmcm0 

system.time(runAF <- runMCMC(cBuilt,  

                             niter = 10000,  

                             nburnin = 2000,  

                             nchains = 2,  

                             progressBar = TRUE,  

                             summary = TRUE,  

                             samplesAsCodaMCMC = TRUE,  

                             thin = 1)) 

 

## extract birth and death times 

samples <- runAF$samples 
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tBpost <- as.matrix(samples) %>% 

  as_tibble() %>% 

  select(starts_with("tB")) 

tDpost <- as.matrix(samples) %>% 

  as_tibble() %>% 

  select(starts_with("tD")) 

 

## examine first few just to check 

tBpost[, 1:6] %>% 

  gather(ind, value) %>% 

  ggplot(aes(x = value)) + 

  geom_density() + 

  facet_wrap(~ ind) 

 

tBpost[, 1:6] %>% 

  gather(ind, value) %>% 

  group_by(ind) %>% 

  summarise(min = min(value), max = max(value)) 

 

tDpost[, 1:6] %>% 

  gather(ind, value) %>% 

  ggplot(aes(x = value)) + 

  geom_density() + 

  facet_wrap(~ ind) 
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tDpost[, 1:6] %>% 

  gather(ind, value) %>% 

  group_by(ind) %>% 

  summarise(min = min(value), max = max(value)) 

 

## plot mcmcm 

samples <- runAF$samples[, 1:6] 

#mcmcplot(samples) 

# png("traceAF%d.png") 

plot(samples) 

# dev.off() 

## throw away burnin 

samples <- window(samples, start = 4000) 

plot(samples) 

## compare posteriors to true parameters 

p1 <- samples %>% 

  as.matrix() %>% 

  as_tibble() %>% 

  gather(parameter, value) %>% 

  ggplot(aes(x = value)) + 

  geom_density() + 

  facet_wrap(~parameter, scales = "free")   

truepars <- as.data.frame(t(readRDS("simpars.rds"))) %>% 
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  rename(`mean.p` = mean_p) %>% 

  gather(parameter, value)   

p1 <- p1 + geom_point(aes(x = value, y = 0), data = truepars) 

p1 + ggtitle(paste0("Mean.p = ", truepars$value[truepars$Parameter == 

"mean.p"])) 

ggsave("comppost.pdf") 

 

## joint posteriors 

p1 <- samples %>% 

  as.matrix() %>% 

  as_tibble() %>% 

  ggpairs(lower = list(continuous = "density"), upper = list(continuous = "points")) 

p1 

ggsave("jointpost.png") ## just png here to save on file size 

## save samples 

saveRDS(samples, "newSiler.rds") 

#Set age variable (quarter years) 

x <- 0:80 

## extract samples 

samples <- as.matrix(samples)[, 1:5] 

#Siler survival function 

surv <- apply(samples, 1, function(pars, x) { 

  ## extract pars 

  a1 <- pars[1] 
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  a2 <- pars[2] 

  b1 <- pars[3] 

  b2 <- pars[4] 

  c <- pars[5] 

   

  ## return predictions 

  psiler(x, a1, a2, b1, b2, c, lower.tail = 0) 

}, x = x) 

#Siler Mortality rate 

mort <- apply(samples, 1, function(pars, x) { 

  ## extract pars 

  a1 <- pars[1] 

  a2 <- pars[2] 

  b1 <- pars[3] 

  b2 <- pars[4] 

  c <- pars[5] 

   

  ## return predictions 

  dsiler(x, a1, a2, b1, b2, c) 

}, x = x) 

mort <- mort / surv 

## extract mean and 95% intervals 

mort <- apply(mort, 1, function(x) { 
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  c(mean = mean(x), LCI = quantile(x, probs = 0.025), UCI = quantile(x, probs = 

0.975)) 

}) 

## extract mean and 95% intervals 

surv <- apply(surv, 1, function(x) { 

  c(mean = mean(x), LCI = quantile(x, probs = 0.025), UCI = quantile(x, probs = 

0.975)) 

}) 

## produce plots 

pdf("survcurves.pdf", width = 10, height = 5) 

par(mfrow = c(1, 2)) 

#Draw mortality curve 

plot(x, mort[1, ], type = 'l', main = "Hazard function") 

lines(x, mort[2, ], lty = 2) 

lines(x, mort[3, ], lty = 2) 

#Draw survival curve 

plot(x, surv[1, ], type = "l", main = "Survivor function") 

lines(x, surv[2, ], lty = 2) 

lines(x, surv[3, ], lty = 2)  
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