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ABSTRACT
We provide a theoretical analysis of spin-selective recombination processes in clusters of n ≥ 3 radicals. Specifically, we discuss how spin
correlation can ensue from random encounters of n radicals, i.e., “F-clusters” as a generalization of radical F-pairs, acting as precursors of
spin-driven magnetic field effects. Survival probabilities and the spin correlation of the surviving radical population, as well as transients,
are evaluated by expanding the spin density operator in an operator basis that is closed under application of the Haberkorn recombination
operator and singlet–triplet dephasing. For the primary spin cluster, the steady-state density operator is found to be independent of the details
of the recombination network, provided that it is irreducible; pairs of surviving radicals are triplet-polarized independent of whether they are
actually reacting with each other. The steady state is independent of the singlet–triplet dephasing, but the kinetics and the population of sister
clusters of smaller size can depend on the degree of dephasing. We also analyze reaction-induced singlet–triplet interconversion in radical
pairs due to radical scavenging by initially uncorrelated radicals (“chemical Zeno effect”). We generalize previous treatments for radical triads
by discussing the effect of spin-selective recombination in the original pair and extending the analysis to four radicals, i.e., radical pairs
interacting with two radical scavengers.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0052573

I. INTRODUCTION

Spin dynamics can render chemical reactions magnetosensi-
tive.1–3 The Radical Pair Mechanism (RPM) is such an example.4–6

Here, magnetosensitivity emerges as the result of the magnetic field-
dependent interconversion of electronic singlet and triplet states
of a pair of radicals in combination with spin state-discriminating
reaction pathways. These magnetic field effects are not a result of
equilibrium states affected by the presence of the magnetic field
but are attributed to the decoherence of non-equilibrium electronic
spin states, such as the singlet or triplet states, while coupling to
their surroundings, e.g., nuclear spins via hyperfine interactions.
The magnetic field alters the spin dynamics of these processes by
biasing the energy levels of the combined electron and nuclear spin
system. As the spins are only weakly coupled to the space degrees
of freedom and, thus, noise processes, the spin correlations can be
long-lived, which allows sensitivity to weak magnetic fields even if
the Zeeman interaction energy of the field with an electron spin
is entirely negligible compared to kBT.7 This puts the radical pair

mechanism in the spotlight of quantum biology,8 where it is pre-
dominantly discussed in the context of the avian, cryptochrome-
based, visual compass.9 However, the mechanism has been broadly
researched since the 1960s, with many examples of magnetosen-
sitive radical reactions provided in the literature.1 The reader is
directed to one of several excellent review articles on this topic for
details.1,2,5,6

The central element of the RPM is the spin-correlated radi-
cal pair.1,2,5,6 These non-equilibrium spin states most often result
from the chemical reactions that generate the radical pair, e.g., elec-
tron and hydrogen transfer processes or homolytic bond cleavage.
In the absence of marked spin–orbit coupling, these reactions con-
serve the total electron spin. Thus, diamagnetic precursors give rise
to radical pairs in the singlet state, while triplet precursors, such
as photo-excited molecular triplet states of chromophores, lead to
triplet radical pairs. Emanating from a common reaction process,
such radical pairs are referred to as geminate radical pairs.

Geminate processes are not the only source of spin cor-
relation. Radical encounters of uncorrelated radicals can give
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rise to non-equilibrium spin configurations when spin-selective
recombination pathways exist. These F-pair radicals (“F” for freely
diffusing) initially encounter one another with a random relative
spin orientation, which corresponds to the thermalized state of
such systems, expressible as a mixture of 3/4 triplet and 1/4 singlet
electron spin pairs.2,10,11 If such pairs predominantly recombine in
one angular momentum state, spin correlation can still ensue by
depopulating one spin configuration relative to the other. Thus,
assuming an efficient singlet recombination process, in the first
encounter of uncorrelated radicals, 1/4 of the pairs will recombine,
while the 3/4 corresponding to triplet encounters will survive, poised
to undergo potentially magnetosensitive spin dynamics affecting
subsequent encounters. Although spin dynamics and recombina-
tion will often happen simultaneously, this schematic picture still
provides a qualitative understanding of the ensuing magnetic field
sensitivity.

The potential magnetosensitivity of the recombination dynam-
ics is not an exclusive feature of radical pairs. Systems of n radicals
(n ≥ 3) have been suggested to acquire magnetosensitivity as a
result of their mutual electron–electron dipolar coupling, even
in the absence of the otherwise crucial hyperfine interactions or
differences in electron g-factors.12,13 This mechanism, here referred
to as DnM, has been suggested to underpin magnetic field effects in
lipid peroxidation14 and to perturb or boost the avian compass.15

Clusters, instead of pairs, of radicals are also conceivable in pro-
cesses implicated with high local radical concentrations, such as
ferroptosis16 or spurs of ionizing radiation.17,18 Radiation spurs
typically contain more than two free radicals in a narrow spatially
correlated distribution, usually generated with an overall singlet
configuration.17 Spin effects on the fast, diffusion-controlled
recombination kinetics of such radical clusters have been studied at
various levels of approximation.17,19–22 Most notably, the coherent
buildup of electron polarization has been studied by a simultane-
ous random flight simulation of diffusive trajectories and integration
of the time-dependent Schrödinger equation (including Zeeman
and exchange interactions) for four radicals.22 Comparable effects
could, in principle, contribute to the multi-polaron recombination
in organic semiconductors.6,23

The reaction-induced dynamics of spin systems are surpris-
ingly rich in features. If a radical pair reacts with a third, initially
uncorrelated radical, the reaction induces singlet–triplet conversion
in the original pair, even in the absence of coherent interconver-
sion pathways.24 This effect, which was suggested by Letuta and
Berdinskii and was dubbed the “chemical Zeno effect” (although the
chemical anti-Zeno effect might better reflect its properties), can give
rise to large magnetic field effects when combined with the usual
hyperfine-driven spin dynamics, as we have shown in the context
of the avian compass model,25,26 and can be used to teleport spin
states.27 For more than three spin-selectively recombining radicals,
even richer effects are expected. Green et al. pointed out that for a
configuration of four radicals in an overall singlet state composed
of singlet pairs, pairs are subject to unexpected non-local correla-
tions.19 If, for example, pairs (1, 2) and (3, 4) in such a radical clus-
ter are singlet, then all the other possible pairings [including (1, 3),
(1, 4), (2, 3), and (2, 4)] are random (with a singlet probability of
1/4). Then, if pair (1, 3) was randomly encountered and was found
in the singlet, i.e., reactive, state, the collapse of the wavefunction
would cause the disjoint pair (2, 4) to also become singlet.

This contribution addresses a simple question: Given a sys-
tem of n radicals subject to an arbitrary reaction network of
mutually spin-selective recombination processes, what is the non-
equilibrium spin configuration of the radical population surviving
the encounter? We are interested in fast-recombination effects that
generate spin correlation merely by spin-selective recombination,
without significant coherent dynamics. The resulting correlated spin
configurations could however be the starting point of subsequent
slower spin dynamics, potentially leading to versatile magnetic field
effects.

II. MODEL
Our model aims to describe the reaction-induced spin correla-

tion created in encounters of reactive radicals. We consider clusters
of n radicals subject to pairwise recombination in the singlet state
and neglect coherent evolution and spin relaxation. The dynamics of
these systems can be described in the direct product Hilbert space of
the n electron spins. The electronic spin density operator ρ̂(t) obeys
an equation of motion of the form

dρ̂(t)
dt
= −∑

i<j

ˆ̂Ki,jρ̂(t) = −∑
i<j
(

ˆ̂K i,j +
ˆ̂K′i,j)ρ̂(t), (1)

where ˆ̂Ki,j accounts for the recombination of the radical pair labeled
i and j. ˆ̂Ki,j can be written as the sum of the Haberkorn reaction
operator, ˆ̂K i,j, and a term that accounts for additional, reaction-
induced singlet–triplet dephasing of the (i, j)-pair, ˆ̂K′i,j.28 For a
singlet recombination reaction, the former is given by29

ˆ̂K i,jρ̂(t) =
ki,j

2
{P̂(i,j)S , ρ̂(t)}, (2)

where {} denotes the anticommutator and P̂(i,j)S denotes the singlet
projection operator, i.e.,

P̂(i,j)S = ∑
{γ}
∣Si,j,{γ}⟩⟨Si,j,{γ}∣ =

1
4

1̂ −
1
h̵2 Ŝi ⋅ Ŝj, (3)

with {γ} denoting quantum numbers other than those specifying
spins i and j and ∣Si,j⟩ =

1√
2
(∣↑⟩i∣↓⟩j − ∣↓⟩i∣↑⟩j), where ∣ ↑⟩i and ∣ ↓⟩i

are the eigenstates of Ŝ2
i and Ŝi,z with projections h̵/2 and −h̵/2,

respectively. As triplet recombination could always be reformu-
lated as a homogeneous decay and singlet growth, it does not add
additional intricacies; this case will not be considered.

ˆ̂K′i,j can be written as30

ˆ̂K′i,jρ̂(t) = k′i,j(P̂
(i,j)
S ρ̂(t)P̂(i,j)T + P̂(i,j)T ρ̂(t)P̂(i,j)S )

= k′i,j({P̂(i,j)S , ρ̂(t)} − 2P̂(i,j)S ρ̂(t)P̂(i,j)S ), (4)

with P̂(i,j)T = 1̂ − P̂(i,j)S denoting the triplet projection operator
associated with spin pair (i, j). The singlet–triplet decoherence rate
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constant k′i,j is expected to depend on the characteristics of the
recombination processes.28 For the particular choice k′i,j = ki,j/2,
Eq. (1) reduces to the Jones–Hore model.31,32 Haberkorn’s orig-
inal phenomenological model assumed k′i,j = 0, i.e., minimal
singlet–triplet dephasing (ST-dephasing).29 While this minimal
model has some theoretical backing,33–35 it has also been criticized
for underestimating the degree of singlet–triplet decoherence.36

Nonetheless, likely because sources of singlet–triplet decoherence
are ample and not readily distinguishable in most practical cases,37

the Haberkorn model is most frequently employed. The reaction-
induced ST-dephasing is also a central theme of an alternative
approach by Kominis.38,39

Here, we solve Eq. (1) for F-pair-like encounters of n radicals,
“F-cluster,” i.e., random initial spin distributions given by

ρ̂(t = 0) ≡ ρ̂(F)0 =
1
2n 1̂. (5)

In addition, we will provide results for the case that one spin
pair is born in a singlet or triplet configuration within a bath of
(n − 2) uncorrelated spins, i.e., ρ̂(0) ∝ P̂(i,j)S or ρ̂(0) ∝ P̂(i,j)T . We
will evaluate the survival probability of the n-spin system,

p = lim
t→∞

Tr[ρ̂(t)], (6)

and the survived singlet probability of pairs of spins,

p(i,j)S = lim
t→∞

Tr[P̂(i,j)S ρ̂(t)]. (7)

The singlet probability conditioned on survival is p(i,j)S /p.

III. A SIMPLE EXAMPLE
We provide a simple, illustrative example; the general approach

will be outlined in Sec. IV. Let us consider a system of three radi-
cals in a linear configuration for which nearest neighbors recombine
in the singlet state at the same rate, i.e., n = 3, k1,2 = k2,3 = k, and
k1,3 = 0. Let us also neglect ST-dephasing, i.e., k′i,j = 0. Thus, the
pertinent equation of motion is

dρ̂(t)
dt
= −

k
2
{P̂(1,2)

S , ρ̂(t)} −
k
2
{P̂(2,3)

S , ρ̂(t)}

= −
k
2
{P̂(1,2)

S + P̂(2,3)
S , ρ̂(t)}

≡ −
k
2
{R̂, ρ̂(t)}, (8)

where we have introduced R̂ ≡ P̂(1,2)
S + P̂(2,3)

S . The solution of this
system can formally be expressed as a Maclaurin series,

ρ̂(t) =
∞

∑
m=0

tm

m!
ρ̂(m)(t = 0). (9)

This series is guaranteed to converge for all t because the solu-
tion of Eq. (1) or (8) is entire, i.e., expressible as the exponent of the
Liouvillian, which is entire. For ρ̂(t = 0) ≡ ρ̂(F)0 , the m-th derivative
at time t = 0 is given by

ρ̂(m)(t = 0) =
(−1)mkm

2m+n−1 {R̂,{R̂, . . .{R̂, R̂}}}
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(m−1) anticommutators

. (10)

The nested anticommutator comprises a total of m R̂ terms
(obviously, the nested anticommutators could be rewritten as the
m-th power of R̂; we retain the anticommutator form as it more
closely resembles the general approach outlined below). The form
of Eq. (10) suggests that Eq. (8) could be solved by finding a set
of operators {B̂ℓ} that contains ρ̂(0) and is closed under repeated
application of the anticommutator, i.e.,

⎧⎪⎪
⎨
⎪⎪⎩

B̂ℓ

RRRRRRRRRRR

{R̂, B̂ℓ} = ∑
j

bjB̂j, bj ∈ C
⎫⎪⎪
⎬
⎪⎪⎭

⊇ {ρ̂(0)}. (11)

We can then solve Eq. (8) using the ansatz

ρ̂(t) = ∑
ℓ

cℓ(t)B̂ℓ. (12)

An explicit calculation shows that

ρ̂(2)(t) ∝
1
2
{R̂, R̂} = R̂ + {P̂(1,2)

S , P̂(2,3)
S }. (13)

Further application of the anticommutator, thus, gives rise
to a term of the already encountered form {R̂, R̂} and the one
proportional to

1
2
{R̂,{P̂(1,2)

S , P̂(2,3)
S }} = {P̂(1,2)

S , P̂(2,3)
S } + P̂(1,2)

S P̂(2,3)
S P̂(1,2)

S

+ P̂(2,3)
S P̂(1,2)

S P̂(2,3)
S . (14)

This result is actually closed in the set of operators already
encountered. A detailed analysis of the recoupling behavior of three
spins, which is provided in the Appendix and utilized in the general
approach, reveals that the last two terms are, in fact, given by

P̂(1,2)
S P̂(2,3)

S P̂(1,2)
S + P̂(2,3)

S P̂(1,2)
S P̂(2,3)

S =
1
4

R̂. (15)

Taken together, Eqs. (13)–(15) show that in solution (11),
only terms proportional to 1̂, R̂ ≡ P̂(1,2)

S + P̂(2,3)
S , and {P̂(1,2)

S , P̂(2,3)
S }

occur. Hence, we write

ρ̂(t) = c1(t)1̂ + c2(t)R̂ + c3(t){P̂(1,2)
S , P̂(2,3)

S }, (16)

which upon inserting in Eq. (8) and requiring that the result-
ing equations are individually fulfilled for the multipliers of every
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basis operator (which is a necessity resulting from their linear
independence) yields the following system of equations for the
coefficients:

ċ1 = 0,

ċ2 = −k(c1 + c2 +
1
4

c3), (17)

ċ3 = −k(c2 + c3).

Note that these equations result from the direct comparison
of the coefficients associated with individual basis operators, i.e.,
regardless of their lacking orthonormality. Solving subject to
the initial condition corresponding to ρ̂(F)0 , i.e., c1(0) = 1/8 and
c2(0) = c3(0) = 0, gives

ρ̂(t) =
1
8

1̂ + (
1

24
e−

3
2 kt
+

1
8

e−
1
2 kt
−

1
6
)(P̂(1,2)

S + P̂(1,2)
S )

+ (
1

12
e−

3
2 kt
−

1
4

e−
1
2 kt
+

1
6
){P̂(1,2)

S , P̂(2,3)
S }, (18)

which for t →∞ corresponds to a survival probability of p = 1/2
and vanishing singlet probabilities p(1,2)

S = p(2,3)
S = p(1,3)

S = 0. We will
discuss further details in the context of the general solution below.

IV. GENERAL APPROACH AND RESULTS
A. The general approach

The general approach and results are derived from the follow-
ing relations, which we present upfront:

{P̂(i,j)S , 1̂} = 2P̂(i,j)S , (19a)

{P̂(i,j)S , P̂(i,j)S } = 2P̂(i,j)S , (19b)

{P̂(i,j)S , P̂(j,k)S } =
1
2
(P̂(i,j)S + P̂(j,k)S − P̂(i,k)S ), (19c)

{P̂(i,j)S , P̂(i,k)S P̂(j,l)S } =
1
2
(P̂(i,k)S P̂(j,l)S + P̂(i,j)S P̂(k,l)

S − P̂(j,k)S P̂(i,l)S ),
(19d)

P̂(i,j)S 1̂P̂(i,j)S = P̂(i,j)S , (20a)

P̂(i,j)S P̂(i,j)S P̂(i,j)S = P̂(i,j)S , (20b)

P̂(i,j)S P̂(j,k)S P̂(i,j)S =
1
4

P̂(i,j)S , (20c)

P̂(i,j)S P̂(i,k)S P̂(j,l)S P̂(i,j)S =
1
4

P̂(i,j)S P̂(k,l)
S . (20d)

Here, we have assumed that i ≠ j ≠ k ≠ l. The order of the spin
indices in the superscripted brackets is immaterial. The non-trivial

identities result from the recoupling relations of three and four spins,
as shown in the Appendix. The trivial relations have been included
for completeness.

In order to solve Eq. (1), we again strive to derive an operator
basis that is closed under application of all ˆ̂Ki,j. Starting from the
identity operator 1̂, Eq. (19) reveals that for a general recombina-
tion network connecting n spins obeying Eq. (2), a suitable (but not
orthonormal) basis is composed from all singlet projection operators
and their (commuting) products such that every spin index appears
at most once. In particular, the basis comprises the n(n − 1)/2 sin-
glet projectors P̂(i,j)S and products of up to ⌊n/2⌋mutually orthogonal
singlet projection operators,

⌊n/2⌋

⋃
m=0

n(n−1)/2

⋃
(i1 ,j1)≠...≠(im ,jm)

P̂(i1 ,j1)

S P̂(i2 ,j2)

S . . . P̂(im ,jm)

S ≡
d
⋃
ℓ=1

B̂ℓ, (21)

where the product over singlet projection operators involves no
spin index more than once. For m = 0, this basis includes the iden-
tity operator; m = 1 corresponds to the set of all singlet projection
operators, {P̂(i,j)S ∀1 ⩽ i < j ⩽ n}. Introducing P̂(i,j)S ≡ (i, j) for suc-

cinctness, for n = 3, the operator basis is thus provided by {1̂, (1, 2),
(1, 3), (2, 3)} and for n = 4, it is provided by {1̂, (1, 2), (1, 3), (1, 4),
(2, 3), (2, 4), (3, 4), (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}. Because
of Eq. (19), the basis given by Eq. (21) is closed under application of
ˆ̂K i,j. Specifically, the reaction involving a particular spin pair acting
on the basis with zero, one, or two indices in common will gener-
ate a linear combination of basis operators again involving products
of P̂(i,j)S with no spin index appearing twice. Furthermore, based
on the representation of the dephasing term ˆ̂K′i,j in terms of the
Lindbladian, Eq. (4), and Eq. (20), one finds that it is also closed
under ˆ̂K′i,j.

The basis given by Eq. (21) comprises a total of

d = 1 + (
n
2
) +

1
2!
(

n
4
)(

4
2
) +

1
3!
(

n
6
)(

6
2
)(

4
2
) + ⋅ ⋅ ⋅

=

⌊n/2⌋

∑
m=0
(

n
2m
)
(2m)!
2mm!

=

⌊n/2⌋

∑
m=0

n!
2mm!(n − 2m)!

(22)

operators, including the identity, to model the recombination
dynamics of n radicals. Here, each term corresponds to the number
of ways to choose 2 m spin indices from the integers up to n multi-
plied with the number of ways to arrange these indices in mutually
exclusive pairs (as expressed in terms of the number of ways of pick-
ing two at a time and divided by the number of permutations of
pairs, i.e., m!). d is also equal to the number of partitions of a set
of n elements into singletons or pairs, the number of involution per-
mutations on n letters, or the number of standard Young tableaux
with n cells. The number of required operators or operator combi-
nations steeply rises with n; yet, for moderate n, the dimension of the
basis amounts to only ≈ 1% of the complete basis of the dimension
22n (the relative size is larger for small n, minimal for n = 12, and
rises again for larger n; see Fig. S1).
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The following ansatz, with the basis operators taken from
Eq. (21), can thus be used to solve Eq. (1):

ρ̂(t) =
d

∑
ℓ=1

cℓ(t)B̂ℓ. (23)

In particular, inserting Eq. (23) in Eq. (1) and requiring that the
coefficient relations associated with each basis operator are indepen-
dently fulfilled, we obtain a system of first-order ordinary differential
equations of dimension d, which can be written as

d
dt

c(t) = −A c(t). (24)

Here, c(t) collects all expansion coefficients cℓ(t) and the matrix
A depends on the recombination and ST-dephasing rate constants.

The form of Eq. (1) further suggests that, independent of n, the coef-
ficient associated with the identity 1̂, henceforth denoted by c1(t), is
constant, i.e.,

d
dt

c1(t) = 0. (25)

The relations for the other coefficients depend on n and the
reaction topology of the system.

B. Results for n = 3
Exemplarily, we provide the result for n = 3 assuming that all

pairwise singlet recombination reactions of spins i and j are realized
with rate constants ki,j and k′i,j (see the supplementary material for
n = 4). With the help of Eqs. (19) and (20), we find that in the basis
of {1̂, P̂(1,2)

S , P̂(1,3)
S , P̂(2,3)

S },

A =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

k1,2
1
4
(4k1,2 + k1,3 + k2,3)

1
4
(k1,2 − k2,3)

1
4
(k1,2 − k1,3)

k1,3
1
4
(k1,3 − k2,3)

1
4
(k1,2 + 4k1,3 + k2,3)

1
4
(k1,3 − k1,2)

k2,3
1
4
(k2,3 − k1,3)

1
4
(k2,3 − k1,2)

1
4
(k1,2 + k1,3 + 4k2,3)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

+

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0

0
1
2
(k′1,3 + k′2,3) −

1
2

k′2,3 −
1
2

k′1,3

0 −
1
2

k′2,3
1
2
(k′1,2 + k′2,3) −

1
2

k′1,2

0 −
1
2

k′1,3 −
1
2

k′1,2
1
2
(k′1,2 + k′1,3)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(26)

The general solution of this system of differential equations
is complicated and not particularly revealing. However, assuming
that k′i,j = 0 and that all non-zero rate constants are equal, simple
results can be obtained for the triangular configuration (k1,2 = k1,3
= k2,3 = k) and the linear chain (k1,2 = k2,3 = k and k1,3 = 0). Assum-
ing that the initial state is random, ρ̂(0) = ρ̂(F)0 , we find

ρ̂(t) =
1
8

1̂ +
1

12
(e−

3
2 kt
− 1)(P̂(1,2)

S + P̂(1,3)
S + P̂(2,3)

S ) (27)

and

ρ̂(t) =
1
8

1̂ +
1

12
(e−

3
2 kt
− 1)(P̂(1,2)

S + P̂(2,3)
S )

+
1

24
(3e−

1
2 kt
− e−

3kt
2 − 2)P̂(1,3)

S (28)

for the linear chain and the triangular configuration, respectively.
For both scenarios, the steady-state density operator, ρ̂∞ = lim

t→∞
ρ̂(t),

is given by

ρ̂∞ =
1
8

1̂ −
1

12
(P̂(1,2)

S + P̂(1,3)
S + P̂(2,3)

S ). (29)

For this state, the singlet probability of any pair of spins
vanishes, i.e., p(i,j)S = 0.

C. Steady states
The steady state of any reaction system is contained in the null

space (kernel) of A, i.e.,

dρ̂∞
dt
= 0 ⇒ A c∞ = 0. (30)

The null space, ker(A) = {x ∈ Rd
∣Ax = 0}, will, in general,

depend on the structure of the reaction network. Let us assume the
most general reaction network with ki,j ≠ 0 and k′i,j ≠ 0 and attempt
to find a vector in the kernel. For arbitrary ki,j and k′i,j, a sufficient
condition for x to be in ker(A) is that for the associated density
operator, ρ̂x = ∑ xℓB̂ℓ, individually

ˆ̂K i,jρ̂x = 0 and ˆ̂K′i,jρ̂x = 0. (31)

If these conditions were simultaneously fulfilled for all pairs of
spins, a null vector independent of the actual values of ki,j and k′i,j
would have been found. Postulating that conditions of the form of
Eq. (31) exist for any pair of spins i and j suggests furthermore that
the associated ρ̂x has to be symmetric to permutations of the indices,
i.e., no pair of indices must be special. This implies that all coeffi-
cients xℓ of ρ̂x related to products of m P̂S terms ought to be identical
in the steady state. Once this condition is applied, ˆ̂K′i,jρ̂x = 0 is always

fulfilled, as the non-zero contributions from applying ˆ̂K′i,j cancel
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in pairs. For example, ˆ̂K′1,2P̂(1,3)
S = −

ˆ̂K′1,2P̂(2,3)
S and ˆ̂K′1,2P̂(1,3)

S P̂(2,4)
S

= −
ˆ̂K′1,2P̂(1,4)

S P̂(2,3)
S follow from Eqs. (19) and (20) and the definition

of ˆ̂K′i,j [Eq. (4)], which implies ˆ̂K′i,jρ̂x = 0 for any linear combination
of the basis operators employing the same coefficients for all
operators of the same P̂S-multiplicity. Thus, ˆ̂K i,jρ̂x = 0 alone spec-
ifies ρ̂x in this general setting. Indeed, in combination with the
permutation symmetry, any particular condition of this form, e.g.,
ˆ̂K1,2ρ̂x = 0, allows us to evaluate the sought null vector. A construc-
tive proof of the existence of this symmetrized null vector is provided
in the supplementary material. This null vector is commensurable
with the most general reaction network. Specific reaction networks
may have larger null spaces, but the vector obtained above has to
be contained within the null space. This is so because it applies
to the most general reaction network, which contains any specific
n-member reaction network by fixing the rate constants, possibly
equating selected rate constants to zero. As long as the reaction
network has a one-dimensional null space, the null vector estab-
lished above fully specifies the steady state, i.e., ρ̂∞ ∝ ρ̂x. This steady
state is then unique and independent of the initial condition except
for scaling. A detailed study of the coefficient matrices for n = 3
and n = 4 indicates that for these systems, the nullity is actually 1,
independent of the choice of the ki,j’s except for if the reaction
network is reducible, i.e., if the system can be decomposed into
smaller, independent spin clusters (each with its own null space).
This leads us to the somewhat surprising proposition that the steady
state depends only on the number of reacting spins—and the initial
condition in terms of scaling—and is independent of the details
of the reaction network as long as the graph of reaction-coupled
spins is irreducible. In the supplementary material, we show that
this is a general feature of irreducible reaction networks. Specifically,
we demonstrate that adding an unreactive radical to an irreducible
(n − 1)-spin system yields a two-dimensional kernel. Upon intro-
ducing a single reaction (or multiple reactions) between the reactive
and initially unreactive spins, the kernel is contracted to the single

null vector introduced above. Building up the reactive system in this
way starting from two radicals, we observe that any reaction network
that is described as a tree of order n (or is more densely coupled)
exhibits a one-dimensional kernel, which gives rise to the described
steady-state behavior. See the supplementary material for a detailed
derivation.

c1 is coupled to the coefficients related to the higher terms
by necessarily non-zero entries, i.e., the rate constants, in A. Con-
sequently, the null vector, if it exists, has to have a non-zero
component corresponding to the 1̂ operator. Furthermore, as c1 is
constant [cf. Eq. (25)], the weight of the null vector in ρ̂∞ is entirely
determined from the initial condition. Let us assume a radical pair,
without loss of generality assigned to indices (1, 2), in an envi-
ronment of (n − 2) random spins. We adopt the following initial
condition parameterized by s0, the initial singlet probability of the
spin-correlated pair:

ρ̂(0) =
1

2n−2 (s0P̂(1,2)
S +

1
3
(1 − s0)P̂(1,2)

T )

=
1

2n−23
((1 − s0)1̂ + (4s0 − 1)P̂(1,2)

S ). (32)

Equation (32) includes the random initial configuration
(ρ̂(0) = ρ̂(F)0 ∝ 1̂) for s0 = 1/4 and the radical pair generated as sin-
glet and triplet in an environment of random spins for s0 = 1 and
s0 = 0, respectively. Expressing ρ̂∞ as a multiple of the (unique) null
vector, we can conclude that

ρ̂∞(s0) =
4
3
(1 − s0)ρ̂(F)∞ , (33)

where ρ̂(F)∞ = ρ̂∞(s0 = 1/4) is the steady-state spin density operator
of the completely random initial configuration, ρ̂(F)0 . Equation (33)
predicts a linear scaling of the survival probability with s0. Impor-
tantly, if one spin pair is initially in the singlet state (s0 = 1), the

TABLE I. Steady-state survival probability, p(F), and density operator, ρ̂(F)∞ , of irreducible F-clusters of size n. d is the number

of operators in the operator basis given by Eq. (21). The multiplier of 1̂ is 2−n and that of Ŵ(n)1 is −1/(2n−1n). See the
supplementary material for a derivation.

n d p(F) ρ̂(F)∞

2 2 3
4

1
4 1̂ − 1

4 P̂(1,2)
S = 1

4 1̂ − 1
4 Ŵ(2)

1

3 4 1
2

1
8 1̂ − 1

12 Ŵ(3)
1

4 10 5
16

1
16 1̂ − 1

32 Ŵ(4)
1 + 1

48 Ŵ(4)
2

5 26 3
16

1
32 1̂ − 1

80 Ŵ(5)
1 + 1

160 Ŵ(5)
2

6 76 7
64

1
64 1̂ − 1

192 Ŵ(6)
1 + 1

480 Ŵ(6)
2 − 1

960 Ŵ(6)
3

7 232 1
16

1
128 1̂ − 1

448 Ŵ(7)
1 + 1

1344 Ŵ(7)
2 − 1

3360 Ŵ(7)
3

8 764 9
256

1
256 1̂ − 1

1024 Ŵ(8)
1 + 1

3584 Ŵ(8)
2 − 1

10752 Ŵ(8)
3 + 1

26880 Ŵ(8)
4

9 2620 5
256

1
512 1̂ − 1

2304 Ŵ(9)
1 + 1

9216 Ŵ(9)
2 − 1

32256 Ŵ(9)
3 + 1

96768 Ŵ(9)
4

10 9496 11
1024

1
1024 1̂ − 1

5120 Ŵ(10)
1 + 1

23040 Ŵ(10)
2 − 1

92160 Ŵ(10)
3 + 1

322560 Ŵ(10)
4 − 1

967680 Ŵ(10)
5
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survival probability of the irreducible n-radical system will tend to
zero, even if the initially generated singlet pair is unreactive, i.e.,
k1,2 = 0 (but coupled to the reaction network). If s0 < 1, a fraction
of the radical pair system will always survive for t →∞.

Following the approach outlined above, we have evaluated the
steady-state density operator for connected reaction networks of up
to n = 10 spins. Table I summarizes our results for the random initial
condition; the supplementary material provides details of the con-
struction of the unique null vector, which leads to these results. For
conciseness, we denote the sum of all basis terms involving products
of m orthogonal, singlet projection operators as Ŵ(n)

m ,

Ŵ(n)
m = ∑

unique combinations

m

∏
p

P̂(ip ,jp)

S .

Using Tr[P̂(i,j)S ρ̂] = Tr[P̂(i,j)S ρ̂P̂(i,j)S ] and Eqs. (20), the survival
probability of the spin cluster, p, and the singlet probability of any
pairs of spins, p(i,j)S , can be easily evaluated. For the random initial
state, p is summarized in Table I. For a spin-correlated initial state of
the form given by Eq. (32), p(s0) follows from Eq. (33), i.e.,

p(s0) =
4
3
(1 − s0)p(F), (34)

where p(F)
= p(s0 = 1/4). In general, the survival probabilities

decrease with increasing n. The singlet probability in the steady
states is zero for any pair of spins, again independent of the topol-
ogy of the (connected) reaction network and whether the spins are
directly connected by a reaction.

V. MORE RESULTS AND DISCUSSION
We have demonstrated how spin effects of recombining

n-radical systems can be rigorously described. Our analysis has
provided a transparent interpretation of results that are intuitive
and results that are surprising. As one would assume, the pairs of
mutually reacting spins that survive the recombination event are
triplet polarized. However, this principle appears to apply to any
pair of spins of the reactive network, even those that are not directly
reacting with each other. It is furthermore surprising that the spin
state realized in the surviving spin system in the long-time limit
is independent of the reaction topology of the network and the
actual values of the rate constants as long as all spins are mem-
bers of one reaction network. This steady state is directly correlated
with the weight of the identity operator, i.e., the operator represent-
ing random encounters, in the initial state expressed in terms of
the basis operators. This leads to another unanticipated realization:
a singlet initial state will result in the complete decay of the n-spin
cluster, again independent of the reaction topology even if the
associated spin pair itself is not reactive. This “propagation of sin-
glet spin correlation,” or “spin crystallization,” effect has earlier
been implied for specific systems by Green and co-workers but here
emerges as a general feature of coupled reaction networks.21,22 Note
also that the intransigency of the steady state (in terms of being
proportional to a well-defined null vector independent of reaction

details) does not imply that the dynamics that lead to this steady state
or the reaction yields realized (for any time and the limit t →∞) are
independent of the details of the reaction network.

A. Overall reaction yields
The overall reaction yield can be calculated by considering the

n radical system and all n − 2, n − 4, . . . sister radical systems that
originate from the n-radical system by recombination of pairs of
spins. In particular, recombination of pair (i, j), e.g., gives rise to the
(n − 2) spin system, obeying the equation of motion

dρ̂(n−2)
(i,j) (t)

dt
= Tr(i,j)[ ˆ̂K i,jρ̂(n)(t)] − ∑

a,b∉{i,j}

ˆ̂Ka,bρ̂(n−2)
(i,j) (t). (35)

Here, ρ̂(n−2)
(i,j) (t) is understood to be defined in the Hilbert space of

the spins {1, 2, . . . , n}/{i, j}. For every pair of recombining spins, an
equation of this form applies. As the equation of motion is linear,
essentially identical subsystems that result along different recombi-
nation paths of the reaction network can be treated independently.
The reaction product yields, which can easily be calculated by evalu-
ating the dynamics of all coupled systems in the suggested operator
basis, depend on the actual rate constants and the network topology.
For a linear chain of n = 3 initially uncorrelated radicals recom-
bining in the singlet state with the same rate constant k, a simple
calculation using the Laplace transformed equations of motion and
the final value theorem shows that 1/2 of the population will remain
as a triplet-polarized three-spin system with the density matrix given
by Eq. (29), while 1/4 of each will remain as the n − 2 = 1 radical
system comprising only one of the terminal radicals. Instead, if all
radicals can react with each other (triangular topology) with the
same rate constant, the surviving, triplet-polarized n = 3 state is
unaltered, but all three different single radical states are generated
with an equal weight of 1/6. For n = 4, let us consider three scenar-
ios of initially uncorrelated spins: the mutual reaction of all six pairs
of spins, the square/ring topology, and the linear chain. In all cases,
the survival probability of the n = 4 spin system approaches 5/16;
the resulting states are given in Table I. In addition, n = 2 radical
systems survive the recombination event. For the linear chain, the
two triplet-polarized pairs of terminal spins are (1, 2) or (3, 4), pro-
duced with probability 3/16 each, and an uncorrelated pair of spins
1 and 4 (p(1,4)

S /p = 1/4), generated with probability 1/4. All spins
recombine in the 1/16th fraction of the cases. For the square and
densely coupled system, on the other hand, the surviving two-spin
systems are always triplet polarized, involve any pair of the reacting
four and six pairs, and occur with the probability of 9/64 and 3/32,
respectively. For both cases, the total survival probability of a two-
spin configuration is 9/16; a fraction of 1/8 recombines completely
(n = 0). Figure 1 summarizes the survival probabilities of the n′ ≤ n
spin systems resulting from the random encounter of n spins for
which all pairwise recombination processes occur at the same rate.
It is interesting to note that while the expected number of surviving
radicals increases from 3/2 to 1067/256 ≈ 4.2 for n = 2 to n = 10, the
radical yield per radical input is largest for n = 2. It decreases from
3/4 for n = 2 to 1067/2560 ≈ 0.42 for n = 10. Thus, at least for these
configurations, encounter pairs are, in principle, more efficient to
yield triplet-polarized radicals.
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FIG. 1. Survival probabilities, p, of the n′ ≤ n spin configurations resulting from
n-spin clusters with random initial configuration (“F-clusters”) and an equal recom-
bination rate constant of all pairs of spins. The bars give the cumulative survival
probability of the n′ spin systems starting with n′ = 0 at the bottom. For odd (even)
n, only spin systems with odd (even) n′ are populated.

ST-dephasing does not alter the steady-state results for the lin-
ear and symmetric spin system with n = 3 spin and equal rates.
For n = 4, the steady-state survival probability is independent of
ST-dephasing for the symmetric ring and the all-to-all topol-
ogy. However, for the linear four-spin chain, ST-dephasing alters
the steady-state survival and singlet probabilities of the ensuing
two-spin system comprising spins 1 and 4 and the probability
of complete recombination, which become dependent on the rate

constant of ST-dephasing. For k′i,j = ki,j/2 = k/2, we find that for the
(1, 4)-two-radical system, p = 59/240 (vs 1/4 for k′ = 0) and p(1,4)

S
= 7/120 (vs 1/16 for k′ = 0), i.e., the additional dephasing slightly
increases the triplet probability in this pair (to 14/59 instead of the
random 1/4). For the totally symmetric all-to-all spin systems, the
entire kinetics turn out to be independent of the ST-dephasing rate
constant k′. For the other systems mentioned, the kinetics lead-
ing to the steady states are altered even if the steady states are
not impacted by the dephasing process. Figure 2 illustrates the
dependence of the recombination kinetics in linear n = 3 and n = 4
spin systems on the ST-dephasing rate (ranging from 0 to ∞).
The pronounced effect of the ST-dephasing is in line with a pre-
vious suggestion to use radical triads to experimentally discrimi-
nate the Haberkorn and Jones–Hore approaches to spin-selective
recombination.40 However, only for the n = 4 system, this is reflected
in the steady-state yield.

B. Radical scavenging for n = 3
The dynamics of radical systems undergoing spin-selective

recombination reactions can be remarkably complex. A particularly
intriguing aspect of this kind is the “chemical Zeno effect” as
described by Letuta and Berdinskii.24 The essence of this effect is
that spin-selective recombination reactions of a member of a radical
pair with a third, independent radical can drive singlet–triplet-
interconversions in the radical pair alone, i.e., even in the absence of
coherent interconversion pathways (e.g., hyperfine interactions). In
certain scenarios relevant to the avian compass model, the effect can
be utilized to enhance the directional response to the geomagnetic
field, and it provides a feasible pathway to accommodate quickly

FIG. 2. Time-dependent survival prob-
abilities, p(t), of spin configurations
resulting from linear three- and four-spin
systems with a random initial state and
equal recombination/ST-dephasing rate
constants of adjacent spins. (a) and (b)
Populations of the initial three-radical
state or four-radical state of the spin
chains. (c) and (d) Population of the rad-
ical pair states resulting from recombina-
tion of the linear spin chain with n = 4.
(c) and (d) give the population of the
terminal (1, 2) radical pair and the
central (2, 3) radical pair, respectively.
The inset of (d) illustrates the steady-
state survival probability as a function of
k′/k. The legends from (a) and (b) apply
throughout. The analytical results under-
pinning these plots are provided in the
supplementary material.
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relaxing species, such as superoxide, which would not elicit
low-field magnetosensitivity in the RPM.25,26 Letuta and Berdinskii
used a simple model to introduce the effect: a triplet-born radi-
cal pair, one radical of which exclusively reacts with an initially
uncorrelated third radical. Assigning the radical pair to indices
1 and 2 and the radical scavenger to index 3, in the nomenclature of
this manuscript, this corresponds to ρ̂(0) = P̂(1,2)

T /6, k2,3 ≠ 0, while
ki,j = 0 for all other pairs, including the (1, 2) pair. This kinetic net-
work is reducible, and unlike the scenarios discussed above, the
kernel of A has dimension two (cf. the supplementary material).
When the results of Table I do not apply, we can still use the out-
lined approach to construct A and solve Eq. (24) for the steady state.
Using an initial condition of the form of Eq. (32), we find

ρ̂∞ =
1 − s0

6
1̂ +

4s0 − 1
12
(P̂(1,2)

S + P̂(1,3)
S ) −

1
8

P̂(2,3)
S . (36)

This ρ̂∞ corresponds to a survival probability of 3/4 (indepen-
dent of s0) and a survived, singlet probability of

p(1,2)
S
p
=

1
12
(1 + 8s0), (37)

which is smaller (larger) than s0 = p(1,2)
S (t = 0) for s0 > 1/4

(s0 < 1/4), indicative of the induced singlet–triplet conversion. In
view of the analysis carried out above, it becomes apparent though
that this scenario is special insofar as the presence of any other
reaction, radical pair recombination or simultaneous scavenging of

both radicals, even if present at a slow rate, changes the steady-state
outcome to one of all radical pairs being triplet polarized and a lower
survival probability as indicated in Table I.

Figure 3 summarizes the effect of a non-zero k1,2 for different
initial states; the underlying analytical results are summarized in
the supplementary material. For a singlet initial state of radical pair
(1, 2), additional reaction channels have the effect of accelerating
the reaction-induced singlet–triplet interconversion and obliterat-
ing the survival of the system. For the triplet initial state, the singlet
probability is initially attenuated and eventually reduced to zero,
while the survival is only reduced by a little. If the system is short-
lived and the radical recombination k1,2 is slow, the behavior is still in
qualitative agreement with the original description, i.e., the k1,2 = 0
limit. In addition, note that the transient effects will still reflect in the
reaction yields if the radical system undergoes a competing reaction,
e.g., spin-independent decay. Then, in combination with coher-
ent evolution, a rich array of phenomena can still be expected for
k1,2 ≠ 0, despite the very uniform, even dull, steady state given by
Eq. (29). Finally, we also note that the steady-state results in Eqs. (36)
and (37) are independent of the ST-dephasing rate in the (2, 3)-
radical pair. This also applies for the decay of the three-radical
population. Yet, the kinetics of the singlet probability are strongly
influenced by k′2,3, as shown in Fig. 4.

C. Radical scavenging for n = 4
The approach outlined here allows for a straightforward treat-

ment of n-spin chemical Zeno scenarios. For an unreactive radical
pair [spin indices (1, 2)] scavenged by two initially uncorre-
lated radicals, the singlet–triplet interconversion yield in the pair

FIG. 3. Time-dependent survival prob-
abilities, p(t) (a) and (b), and sin-
glet fractions of the survived population,
p(1,2)

S (t)/p(t) (c) and (d), of a radical
pair [(1, 2)] born as singlet (a) and (c)
or triplet (b) and (d) in the presence of a
radical scavenger reacting with radical 2
in the singlet state with the rate k2,3. The
colors indicate different recombination
rate constants in the (1,2)-pair, as sum-
marized in the legend for (b). k1,2 = 0
is the classical “chemical Zeno”-scenario
from Ref. 24.
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FIG. 4. Time-dependence of the singlet fractions of the survived population,
p(1,2)

S (t)/p(t), of a radical pair [(1, 2)], born as (a) singlet or (b) triplet in the
presence of a radical scavenger reacting with radical 2 in the singlet state with rate
constant k2,3 = k for various k′2,3 = k′ ∈ {0, k/10, k/2, k, 5k, 10k}.

(1, 2) exceeds that induced by the three-spin chemical Zeno
effect. Figure 5 illustrates the reaction-induced spin conversion in
4-radical systems (analytical results are summarized in the
supplementary material). For a singlet-born radical pair, if one of
the radicals is scavenged by radicals 3 and 4 (with the same rate
constant, blue lines), p(1,2)

S is 1/3. The same limiting singlet proba-
bility is obtained if the scavengers, in addition, react with each other;
however, the limit is reached faster (light blue lines). The scenario of
each of the radicals of (1, 2) reacting with one of the scavengers is
hardly distinguishable from the former—yet, the long-time limit is
slightly different with p(1,2)

S = 21/64 (orange lines). Eventually, if, in
addition to pairs (1, 2) and (2, 4), the scavenger pair (3, 4) is reac-
tive, the reaction network is again connected, the kernel has nullity
1, and the steady state is reached with p(1,2)

S = 0, in line with the
description from above (see Table I, red lines).

D. Consequences for magnetic field effects
The recombination in networks of radicals as described here

could also have surprising consequences on the observed magnetic

FIG. 5. Time-dependence of the survival probability, p(t), and the singlet frac-
tions of the survived population, p(1,2)

S (t)/p(t), of a radical pair [(1, 2)] born in
the presence of two radical scavengers reacting with the radicals of the (1, 2)
pair in the singlet state. The recombination rate constants between pairs of spins,
as indicated in the legend, have been set equal to k; pairs not explicitly stated
are assumed unreactive. The underlying analytical results are summarized in the
supplementary material.

field effect, not only due to the effects discussed above but even on
a simpler level. If radicals encounter at random, 1/4 of the pairs
will meet in the singlet configuration. Assuming that these pairs effi-
ciently recombine forming a singlet product, as is often the case, the
majority of the singlet encounters will immediately lead to product
formation in a magnetic field independent manner. The remaining
3/4 that meet as triplets are potentially susceptible to the influence of
an applied magnetic field.10 Yet, the size of the relative magnetic field
effects on the recombination product is limited by the field indepen-
dent recombination of 1/4 of the population in the first encounter.
If we assume, on the other hand, that the recombining radicals prior
to their encounter interact with a radical scavenger or a reactive net-
work of radicals, e.g., as the result of being produced in temporospa-
tial vicinity, the pairs of radicals surviving the initial recombination
stage will be fully triplet polarized upon a subsequent encounter even
if they did not directly encounter and potentially react with their
partner radical. In principle, this enhanced triplet population of the
encounter pair could subsequently give rise to larger relative mag-
netic field effects that exceed those resulting from comparable F-pair
encounters.
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VI. CONCLUSIONS

We have provided a rigorous description of the recombina-
tion kinetics of n radicals. This has been realized by determining an
operator basis that comprises the initial state and is closed under the
action of the phenomenological Haberkorn recombination superop-
erator and the ST-dephasing superoperator. The recoupling proper-
ties of spins form such a basis in the form of all singlet projection
operators, and their products not involving any spin index more
than once, augmented by the identity operator. This model can be
used to predict the outcome of encounters of n radicals when coher-
ent interconversion processes and spin relaxation are irrelevant or
slow on the timescale of the recombination. In particular, it allows
the evaluation of survival probabilities and spin correlation result-
ing from highly reactive “F-clusters,” the logical extension of F-pairs
to n > 2 radicals. In this paper, we have used a description in terms
of fixed rate constants, but a generalization to diffusion-modulated
processes is obvious, in principle.

The recombination of clusters of radicals can produce
spin-correlated states, which could form the starting point of
spin-dependent processes and magnetic field effects. This could be
due to the RPM or due to the electron–electron dipolar coupling,
as suggested in the context of the DnM,12,13 on a slower timescale.
Surprisingly, we found that the spin-correlated state that is eventu-
ally realized in the surviving n-radical systems in the long-time limit
is independent of the details of the reaction network, e.g., the specific
rate constants and topology of reactive interactions, provided that all
radicals remain kinetically coupled. The survival probability is then
only a function of the initial configuration. For an initial singlet state,
the system is determined to recombine, even if the singlet pair is not
intrinsically reactive. More predictably, the radicals surviving in the
initial cluster are mutually triplet polarized.

The formalism allows the calculation of the yields and
kinetics of the entire recombination process, including its sister
systems comprising n − 2, n − 4, . . . radicals. These details do, in
general, depend on the reaction details, including the degree of
ST-dephasing. For example, in the linear 4-spin chain, both the
recombination dynamics and yields [of the surviving (1, 4)-radical
pair system] are impacted by the ST-dephasing rate constant. On
the other hand, for the totally symmetric reaction network (every
radical reacting with every other radical at the same rate), the steady-
state yields and kinetics have been found to be independent of
ST-dephasing.

We have used the approach to revisit the chemical Zeno effect,
i.e., the spin dynamics induced in a spin-correlated radical pair due
to scavenging with a third, initially uncorrelated radical. Gener-
alizing the original description by allowing recombination in the
initially correlated radical pair, we find that in the steady state,
the extended reaction network expectedly gives way to the kind of
kinetics described above for coupled reaction networks, i.e., strongly
departing from the dynamics of the original description of the effect.
In particular, for a singlet-born pair, the survival probability will
tend to zero, despite the singlet–triplet conversion induced by the
chemical Zeno effect. However, the reaction-induced singlet–triplet
conversions are evident in the transients. If the system under-
goes secondary reactions, e.g., a spin-independent conversion, these
effects could still be seen in the reaction yields. We have also studied
the chemical Zeno paradigm in systems of four radicals. Provided

that the nullity of the reaction system is larger than 1, similar
reaction related singlet–triplet conversion can be observed, with
details depending on the reaction topology. Analytical expressions
have been provided for several simple scenarios.

SUPPLEMENTARY MATERIAL

See the supplementary material for an existence proof of the
symmetrized null vector of (irreducibly) reaction systems, a discus-
sion of the nullity of the reaction operator, and additional analytical
results.

ACKNOWLEDGMENTS
I gladly acknowledge the EPSRC (Grant Nos. EP/R021058/1

and EP/V047175/1) and the Leverhulme Trust (Grant No. RPG-
2020-261) for financial support. I also thank Katja Kattnig, Jess
Ramsay, and Luke Smith for proofreading.

APPENDIX: DERIVATION OF EQS. (19) AND (20)

The proof of Eq. (19c) relies on the recoupling properties of
three angular momenta, henceforth denoted as j1, j2, and j3. In par-
ticular, the two sets of states resulting from either first coupling j1
and j2 to j12 and next coupling j12 to the total angular momentum
J, i.e., ∣((j1j2)j12j3)JM⟩, or first coupling j2 and j3 to j23 and next
coupling j23 with j1 to yield the total angular momentum J, i.e.,
∣(j1(j2j3)j23)JM⟩, are related by41

∣((j1j2)j12j3)JM⟩ = ∑
J23

∣(j1(j2j3)j23)JM⟩

× ⟨(j1(j2j3)j23)J∣((j1j2)j12j3)J⟩, (A1)

where the M-independent recoupling coefficient, ⟨(j1, (j2j3)j23)

J∣((j1j2)j12j3)J⟩, can be expressed in terms of a Wigner 6-j symbol

⟨(j1(j2j3)j23)J∣((j1j2)j12j3)J⟩ =
√
(2j12 + 1)(2j23 + 1)

× (−1)j1+j2+j3+J

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

j1 j2 j12

j3 J j23

⎫⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎭

. (A2)

The 6-j symbol can be re-expressed as a sum over prod-
ucts of four Clebsch–Gordan coefficients.41 A similar expression
relates ∣((j1j2)j12j3)JM⟩ and ∣((j1j3)j13j2)JM⟩. In what follows, as
j1 = j2 = j3 = 1/2, we will suppress the dependence on the individual
ji’s. We require the following coefficients:

⟨ j23 = 0, J = 1/2∣ j12 = 0, J = 1/2⟩ = −⟨ j13 = 0, J = 1/2∣ j12 = 0, J = 1/2⟩

= −
1
2

(A3)

and
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⟨ j23 = 0, J = 1/2∣ j12 = 1, J = 1/2⟩ = ⟨ j13 = 0, J = 1/2∣ j12 = 1, J = 1/2⟩

=

√
3

2
. (A4)

Note that the coefficients in Eq. (A3) differ in sign, which
can be traced back to the symmetry property ⟨ j1, m1; j2, m2∣J, M⟩
= (−1)j1+j2−J

⟨ j2, m2; j1, m1∣J, M⟩. For succinctness, let us first iden-
tify the indices i, j, and k in Eq. (19c) with 1, 2, and 3, respectively.
The left-hand side of the equation is thus

{P̂(1,2)
S , P̂(2,3)

S } = P̂(1,2)
S P̂(2,3)

S + P̂(2,3)
S P̂(1,2)

S

= (∑
M
∣ j12 = 0, J = 1/2, M⟩⟨ j12 = 0, J = 1/2, M∣)

× (∑
M′
∣ j23 = 0, J = 1/2, M′⟩⟨ j23 = 0, J = 1/2, M′∣)

+ h.c.

= −
1
2∑M
∣ j12 = 0, J = 1/2, M⟩⟨ j23 = 0, J = 1/2, M∣

+ h.c., (A5)

where h.c. stands for the Hermitian conjugate of the expression pre-
ceding it, and we have made use of Eq. (A3). For more than three
spins, the sum over M has to be extended to cover all relevant quan-
tum numbers of the remaining spins. We shall rewrite all states in
terms of states with specified j12 as

∣ j23 = 0, J = 1/2, M⟩ = −
1
2
∣ j12 = 0, J = 1/2, M⟩

+

√
3

2
∣ j12 = 1, J = 1/2, M⟩, (A6)

∣ j13 = 0, J = 1/2, M⟩ = +
1
2
∣ j12 = 0, J = 1/2, M⟩

+

√
3

2
∣ j12 = 1, J = 1/2, M⟩. (A7)

Using the first expression, we obtain

{P̂(1,2)
S , P̂(2,3)

S } =
1
2

P̂(1,2)
S −

√
3

4 ∑M
(∣ j12 = 0, J = 1/2, M⟩

× ⟨ j12 = 1, J = 1/2, M∣ + h.c.). (A8)

Expanding P̂(1,3)
S and P̂(2,3)

S in a similar fashion in the j12-states, one
finds that

1
2
(P̂(2,3)

S − P̂(1,3)
S ) = −

√
3

4 ∑M
(∣ j12 = 0, J = 1/2, M⟩

× ⟨ j12 = 1, J = 1/2, M∣ + h.c.), (A9)

which essentially results from the sign change in Eq. (A3), as a con-
sequence of which the terms corresponding to projectors on the
j12 = 0 and j12 = 1 states cancel when forming the difference, while
the transition operators on the right-hand side add up. Combining
Eqs. (A8) and (A9), the sought identity [Eq. (19c)] is found. It is easy
to convince oneself of the fact that the result is independent of the
permutation of indices 1, 2, and 3 and thus applies for any triple of
indices, which completes the proof.

Along the same lines,

P̂(1,2)
S P̂(2,3)

S P̂(1,2)
S = ∑

M
∣ j12 = 0, J = 1/2, M ⟩⟨ j12 = 0, J = 1/2∣ j23 = 0, J = 1/2 ⟩⟨ j23 = 0, J = 1/2 ∣ j12 = 0, J = 1/2⟩⟨ j12 = 0, J = 1/2, M ∣

= ∣⟨ j12 = 0, J = 1/2 ∣ j23 = 0, J = 1/2 ⟩∣2∑
M
∣ j12 = 0, J = 1/2, M⟩⟨ j12 = 0, J = 1/2, M ∣

=
1
4

P̂(1,2)
S , (A10)

which demonstrates the validity of Eq. (20c) for this set of indices. It applies in general, because the expression depends on the square of the
recoupling coefficient and, thus, is independent of the order of the spin indices, which governs its sign.

In order to prove Eq. (19d), we proceed in an analogous fashion. In this case, we require the recoupling of four spins, which can be
expressed in terms of a 9-j symbol as

⟨((jajb)jab, (jcjd)jcd)J∣((jajc)jac, (jbjd)jbd)J⟩ =
√
(2jab + 1)(2jcd + 1)(2jac + 1)(2jbd + 1)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ja jb jab

jc jd jcd

jac jbd J

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (A11)

Here, again, the sign of the recoupling coefficient will depend on the order of the labels. For indices (1, 2, 3, and 4), the right-hind side of
Eq. (19d) can be evaluated as follows:
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{P̂(1,3)
S , P̂(1,2)

S P̂(3,4)
S } = (∣ j12 = 0, j34 = 0, J = 0, M = 0⟩⟨ j12 = 0, j34 = 0, J = 0, M = 0∣)

×
⎛

⎝
∑

J′ ,M′
∣ j13 = 0, j24 = J′, J′, M′⟩⟨ j13 = 0, j24 = J′, J′, M′∣

⎞

⎠
+ h.c.

=
1
2

P̂(12)
S P̂(34)

S + (

√
3

4
∣ j12 = 0, j34 = 0, J = 0, M = 0⟩⟨ j12 = 1, j34 = 1, J = 0, M = 0∣ + h.c.), (A12)

where we have used that

∣ j13 = 0, j24 = 0, J = 0, M = 0⟩ =
1
2
∣ j12 = 0, j34 = 0, J = 0, M = 0⟩

+

√
3

2
∣ j12 = 1, j34 = 1, J = 0, M = 0⟩.

(A13)

Note that J = 0 is realized either by combining j12 = j34 = 0 or
j12 = j34 = 1. Together with

∣ j14 = 0, j23 = 0, J = 0, M = 0⟩ = −
1
2
∣ j12 = 0, j34 = 0, J = 0, M = 0⟩

+

√
3

2
∣ j12 = 1, j34 = 1, J = 0, M = 0⟩,

(A14)

Eq. (A12) allows us to finally show that Eq. (19d) holds, whereby
we proceed in analogy to the approach used for three spins above
but expand all terms in the basis with well-defined j12 and j34.
Equation (20d) can be derived in a similar fashion.
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