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ABSTRACT
In systems of more than two reactive radicals, the radical recombination probability can be magnetosensitive due to the mere effect of the
inter-radical electron–electron dipolar coupling. Here, we demonstrate that this principle, previously established for three-radical systems,
generalizes to n-radical systems. We focus on radical systems in the plane and explore the effects of symmetry, in particular its absence, on the
associated magnetic field effects of the recombination yield. We show, by considering regular configurations and slightly distorted geometries,
that the breaking of geometric symmetry can lead to an enhancement of the magnetosensitivity of these structures. Furthermore, we demon-
strate the presence of effects at low-field that are abolished in the highly symmetric case. This could be important to the understanding of the
behavior of radicals in biological environments in the presence of weak magnetic fields comparable to the Earth’s, as well as the construction
of high-precision quantum sensing devices.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0041552., s

INTRODUCTION

Many theoretical models exist that attempt to describe how
magnetism and biology interact. For the domain of low magnetic
fields, i.e., fields comparable to the geomagnetic field (≈50 μT) and
ranging to a few mT, the most widely accepted premise is that of
the Radical Pair Mechanism (RPM).1–3 The RPM is actualized in the
magnetosensitivity of the reaction yields and kinetics of chemical
processes involving transient, spin-correlated pairs of radicals.4 In
this model, the magnetic field modulates the coherent interconver-
sion of electronic singlet and triplet states of the radical pair, which
is driven by hyperfine interactions with magnetic nuclei in the rad-
icals. The resulting magnetic field effects (MFEs) on chemical reac-
tions are now very well-established.1,5–8 The RPM has also been in
the spotlight recently due to its putative underpinning of a protein-
based magnetic compass sense (involving the protein cryptochrome)
in various organisms,9,10 which makes it a central contender of the
emerging field of quantum biology.11,12

In contrast to the two-radical systems of the classical RPM,
larger systems have attracted comparably little attention. Systems of
three electron spins have been discussed: in the context of spin catal-
ysis,13 the chemical Zeno effect,14,15 and quantum teleportation16

and as a decoherence pathway.17 In spin catalysis, the exchange
coupling of the radical pair with the spin catalyst is the main
interaction motif. As the Zeeman part of the Hamiltonian com-
mutes with the exchange Hamiltonian, this interaction alone cannot
produce MFEs. However, mutual exchange coupling can facilitate
near level-crossings at certain strengths of an external magnetic
field, whereupon hyperfine-driven spin conversion can proceed
efficiently18,19 and may also transmit the effect of a quickly relax-
ing third radical.20 A perturbative approach based on a Hubbard–
trimer Hamiltonian has been used to show that this additional
radical can further enhance the intersystem crossing rate.21 Quan-
tum teleportation and spin coherence transfer in three-radical sys-
tems have actually been realized experimentally.21,22 Furthermore,
the spin-selective reaction of a radical pair with a scavenger radical
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has been shown to boost anisotropic magnetic field effects in the
geomagnetic field23 and provide resilience to spin relaxation in one
of the radicals of the triad,15 thereby providing decisive advantages
over the classical RPM model of magnetoreception. To the best
of the authors’ knowledge, such three-radical systems have only
been discussed in the biological context in Refs. 15, 16, and 23.
These models have however disregarded the effects of electron–
electron dipolar (EED) interactions. As we have previously shown
by symmetry considerations, the EED interaction alone is suffi-
cient for MFE genesis in systems of three radicals and so clearly
should not be neglected in the consideration of biological radical
dynamics.24

The EED coupling of the electrons is an unavoidable conse-
quence of their intrinsic magnetic moment.4 As the interaction is
averaged to zero for a spherical distribution of inter-radical vec-
tors, it is often neglected for radicals diffusing freely in solution. On
the other hand, for immobilized radical systems (such as the radical
pairs implicated in models of cryptochrome magnetoreception25,26)
or radicals diffusing in a reduced dimension (such as peroxyl
radicals in a lipid bilayer27), they are almost certainly not negligi-
ble, as the interaction energy decays only slowly, i.e., by r−3, with
inter-radical distance r. Thus, for distances of 1.5 nm (typical for
flavin/tryptophan radical pairs in cryptochrome) and 0.7 nm (the
contact distance of peroxyl radicals), the interaction amounts to
15 MHz or 150 MHz, respectively, which exceeds the Larmor pre-
cession frequency of the free electron in the geomagnetic field
(∼1.4 MHz for B = 50 μT) and often typical hyperfine interaction
frequencies (∼1 MHz–50 MHz). The mutual compensation of EED
and exchange interactions has often been argued to justify neglecting
inter-radical interactions in magnetoreceptor systems.26 However,
this simplifying assumption was recently shown to not always be
appropriate.25

Alternative sources of magnetosensitivity in radical reaction
processes have been suggested. We have recently proposed a mech-
anism, named D3M, that highlights the EED coupling as a possi-
ble source of MFEs on radical recombination reactions in (partly)
ordered, i.e., immobilized, systems of three radicals. The mecha-
nism requires that more than two radicals simultaneously interact
via the EED interaction, which can be the case even at low radi-
cal concentrations due to the slow decay of the dipolar interaction
with distance.24 D3M is distinct from other three-radical effects,
such as the chemical Zeno effect and its use for quantum tele-
portation,16,22 as it realizes an intrinsic magnetic field-sensitivity
independent of hyperfine interactions.24 The effect has been sug-
gested to explain the putative magnetic field sensitivity of lipid
autoxidation,27 which is characterized by the recombination of rad-
icals for which the hyperfine interaction is small compared to the
EED coupling, and to enhance the cryptochrome compass sensitiv-
ity by a nonreactive bystander radical.25 These findings are note-
worthy insofar as in the RPM the effect of the EED interaction is
well known to suppress MFEs in weak magnetic fields by energeti-
cally uncoupling the singlet and triplet manifolds, thereby suppress-
ing their coherent coupling. On the other hand, the D3M effects
appear to persist in the presence of both hyperfine and exchange
interactions.24,25,27

Here, we generalize D3M to treat larger systems of n spins, with
n ≥ 3, which we call DnM. To the best of the authors’ knowledge,
MFEs in systems of more than three radicals have not been studied

at all, and it is on these systems that we focus primarily. We have
considered three-spin systems as a baseline for the DnM mechanism
and build from there to observe new, surprising, and potentially
biologically relevant MFEs in these n ≥ 3 systems.

This manuscript is structured as follows: in model and com-
putation, we generalize the D3M model to DnM, with n ≥ 3, sum-
marize the pertinent parameters and assumptions of the model,
and detail how we solved the Liouville–von Neumann equation for
these systems. We also present a qualitative model for DnM based
on an equipartitioning argument over accessible states for the case
that one radical pair recombines. In Sec. IV, we present the char-
acteristic features of DnM for the selected systems, whereby we
focus on planar systems, as inspired in Ref. 27. The core theme
is that systems with small geometric irregularities show stronger,
more diverse MFEs, including new effects at the low-field, when
compared with their counterpart, highly symmetric systems. We
first explore regular polygons, and their distorted counterparts,
and then move on to the special case of the linear chain. In
the main text, we focus on the four-spin configuration, with fur-
ther results for three to six spins shown in Figs. S4–S7 of the
supplementary material. Finally, we discuss our results, their signif-
icance, and their potential applications to various areas of quantum
biology.

MODEL AND COMPUTATION

Here, we work from the premise of the recently proposed D3M
mechanism24 and extend it to DnM with n > 3, where n is the
number of interacting radicals. We consider the effect of the oft-
neglected electron–electron dipolar interaction as the main contrib-
utor to MFEs. The DnM Hamiltonian (in angular frequency units)
is thus

Ĥ = Ĥdd + Ĥex + ĤZe

=∑N
i<j Ŝi ⋅Di,j ⋅ Ŝj −∑N

i<j Ji,j(
1
2

+ 2Ŝi ⋅ Ŝj) + γB ⋅∑N
i Ŝi, (1)

where the individual summands account for the electron–electron
dipolar (Ĥdd), exchange (Ĥex), and Zeeman interactions (ĤZe). B
denotes the applied magnetic field, B denotes its intensity, and
γ = gμB

h̵ , with g denoting the electron g-factor. The Larmor preces-
sion frequency is γB/2π. Here, we have assumed that the Zeeman
interaction is isotropic and identical for all radicals on account of
our focus on the MFEs of organic radicals in weak magnetic fields,
i.e., g ≈ 2; the anisotropies of g are negligible for moderate B.

The dipolar interaction Hamiltonian, calculated within the
point-dipole approximation, is of the following form:

Ŝi ⋅Di,j ⋅ Ŝj = di,j(ri,j)[Ŝi ⋅ Ŝj − 3(Ŝi ⋅ ei,j)(Ŝj ⋅ ei,j)], (2)

where ei ,j is a unit vector in the direction of the vector connecting
radical i and j at distance rij and

d(rij) = μ0g2μ2
B

4πh̵r3
ij

. (3)
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Finally, the exchange Hamiltonian is

Ĥex = −
N

∑
i<j

J(∣rij∣)(1
2

+ 2Ŝi ⋅ Ŝj), (4)

where J(∣rij∣) is the exchange coupling constant between the ith and
jth radical.

We consider pairwise recombination in our model. Making use
of the Haberkorn approach,28 this gives rise to a master equation of
the following form:

dρ̂
dt
= −i[Ĥ, ρ̂] − [K̂, ρ̂]

+
− keρ̂, (5)

where the bracket []+ denotes the anti-commutator and the recom-
bination operator K̂ is given by

K̂ =∑
i<j

kS(∣rij∣)
2

P̂(S)i,j , (6)

where kS(∣r∣ij) represents the singlet recombination rate constant
between radicals i and j. Here, P̂(S)i,j is the projection operator onto
the singlet subspace of radicals i and j, which can be written in the
following form:

P̂(S)i,j =
1
4

1̂ − Ŝi ⋅ Ŝj. (7)

Equation (5) allows us to formulate the time-dependent density
matrix as

ρ̂(t) = exp(−ket) exp(−iÂt)ρ̂(0) exp(iÂ†t), (8)

where ke is the escape rate constant and Â is a non-Hermitian effec-
tive Hamiltonian operator that accounts for coherent evolution and
recombination,

Â = Ĥ − iK̂. (9)

In Eq. (8), we use an initial density matrix, ˆρ(0) = 1̂/2n, pro-
portional to the identity matrix to simulate a random initial spin
configuration.

The reaction yields can be evaluated by finding the eigenvalues
and eigenvectors of the effective Hamiltonian, denoted by λ and T,
respectively, and then computing the time-integrated density matrix
from

∫
∞

0
ρij(t) = ∑

k,l,m,n
Ti,kT

−1
k,l ρl,m(0)(T−1)∗k,mT

∗
j,n

1
ke + i(λk − λ∗k )

, (10)

where subscript indices denote matrix elements. Taking these quan-
tities together, we calculate the singlet recombination yield

φS = 2Tr[∫ ρ̂(t)dtK̂], (11)

which we use to quantify the effect that the applied magnetic field
has on the recombination yield by defining the magnetic field effect
(MFE) as

χS(B) = φS(B) − φS(0)
φS(0) , (12)

where φS(B) is the singlet yield at an applied field of intensity B and
φS(0) is the same quantity at zero-field.

In general, the MFE depends on the geometry of the recom-
bining radicals due to the distance-dependence of the EED inter-
action and of the parameters kS and J. For the latter parameters,
both are assumed to have an exponential fall-off in keeping with
the typical distance dependence of the electron coupling matrix ele-
ment dictating electron transfer reactions. These take the following
form:

kS(∣rij∣) = kS,0 exp(−β(∣rij∣ − 2R)) (13)

and

J(∣rij∣) = J0 exp(−β(∣rij∣ − 2R)). (14)

In both of the above, we have used the same decay rate, β = 1.4
Å−1. R is a reference distance, which can be interpreted as the rad-
ical radius; here, it was fixed at 7.5 Å. For rij = 2R, d1,2 thus was
15 MHz. k−1

S,0 was 200 ns, and k−1
e was 1 μs. B was varied on a logarith-

mic scale between 0.001 mT and 1000 mT, and it was perpendicular
to the plane of the reacting radicals. We have implemented solving
Eq. (5) in Python, whereby we rely on an MKL-based implementa-
tion for solving the eigenvalue problem for non-Hermitian matrices.
The computer code used is a generalization of that described in
Ref. 24 for more than three-radicals. It covers an arbitrary num-
ber of radicals including all interactions named above, in addition
to hyperfine interactions, if desirable. Being based on the eigen-
value decomposition of the effective Hamiltonian, it aims at sys-
tems of moderate size. Larger systems could, in principle, be treated
by a Monte Carlo wavefunction approach29 but are beyond this
presentation.

A QUALITATIVE MODEL OF MAGNETOSENSITIVITY
OF A RADICAL PAIR RECOMBINING
IN AN ENVIRONMENT OF RADICALS

We want to offer a qualitative model that accounts for the MFEs
of the kind discussed here. To this end, consider a pair of electron
spins (radicals devoid of hyperfine interactions) poised to undergo
a spin-selective recombination reaction in the singlet state. Assume
further that a reactive pair of spins interacts with an environment
of radicals, which are assumed unreactive, e.g., due to being too dis-
tant to react or intrinsically unreactive. All n = ℓ + 2 radicals are
assumed to interact via EED interactions. Assuming that a reactive
radical pair is born in the singlet configuration, we ask with which
probability it will still be in the singlet configuration at the moment
of reaction. If the radical system is long-lived, the recombination
reaction slow and decoherent channels are insignificant, we can
assume that in the first approximation, the singlet probability upon
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recombination is obtained by equipartitioning the initial population
over all accessible spin states. In weak magnetic fields for a random,
i.e., asymmetric, geometric arrangement of spins with equally arbi-
trary magnetic field orientation, all spin states will be coupled by
the EED interaction. Consequently, the long-time singlet probabil-
ity will be 1

4 . This also applies to an arbitrary, i.e., non-special, spin
configuration in a plane. While here the Hamiltonian can be decom-
posed into two blocks (assume that the plane is perpendicular to the
z-direction; the EED direction then only couples states with a differ-
ence of total spin projection of ΔM = ±2, giving rise to two blocks),
the singlet probability still turns out as 1

4 . In high magnetic fields,
on the other hand, the Zeeman interaction is dominant and states of
different total spin projection M = ∑imi are energetically separated
such that no spin mixing, i.e., singlet state redistributing, is possible
between these states (while it remains intact within). The number
of ways by which the additional spins (with index 3 to n) can pro-
duce a combined spin projection of M3,...,n = ∑n

i=3 mi is ( ℓ
M3,...,n+ ℓ

2
).

A particular M can then be realized by combining the singlet state
of the reactive radical pair with the M3,. . . ,n = M states of radical
3 to n, combining the T0 state of the reactive radical pair with the
M3,. . . ,n = M states of radical 3 to n, combining the T+ state of the
reactive radical pair with the M3,. . . ,n = M − 1 states of radical 3
to n, or combining the T− state of the reactive radical pair with the
M3,. . . ,n = M + 1 states of radical 3 to n. Thus, the number of states of
projection M is

s(k) = ( ℓ

k − 1
) + 2(ℓ

k
) + ( ℓ

k + 1
), (15)

where k = M3,...,n + ℓ
2 . As the singlet configuration of spins 1 and 2

with projection specified by k is initially generated in (ℓk) ways, and
the total number of initial singlet states is 2ℓ and only the singlet
pairs recombine, the singlet fraction in the equilibrated system is

pS→S(high field) = 1
2ℓ

ℓ

∑
k=0

1
s(k)(

ℓ

k
)

2

= ℓ2 + 3ℓ + 4
4(ℓ2 + 3ℓ + 2)
= 1

4
+

1
2n(n − 1) . (16)

Finally, the magnetic field effect is

χS→S = pS→S(high field) − pS→S(low field)
pS→S(low field)

= 2
n(n − 1) . (17)

This suggests that the MFE ought to decrease with n, which is
exactly what is found here for systems of related geometry. Prac-
tically, as we are going to see below, in systems of diverse mutual
reaction possibilities and a symmetric or broken symmetrical con-
figuration, a rich variety of MFEs ensues, which cannot possibly
be grasped by the argument presented here. Yet, this discussion

provides at least a qualitative description of the origin of the MFEs
(in a particular scenario). An analogous analysis can be carried out
for a radical pair born in the triplet configuration and recombining
as a singlet state. As pT→S = 1

3(1 − pS→S), the singlet probability in
low fields is 1

4 and in high fields

pT→S(high field) = 1
4
− 1

6n(n − 1) . (18)

The naïvely predicted MFE is

χT→S = − 2
3n(n − 1) . (19)

RESULTS
In this section, we have considered planar systems of up to six

radicals with the magnetic field applied perpendicular to the plane
of the radicals. While it may seem most natural to consider regular
polygons, simplexes, or an evenly spaced linear arrangement (spin
chain) when generalizing D3M to more than three radicals, we find
that the MFE profiles of such systems can be markedly changed,
and often enhanced, with respect to the weak-field sensitivity by the
introduction of a small imperfection.

We have considered regular polygons of up to six spins (point
group Dnh) and linear spin chains of three to six spins. The schemat-
ics of the considered geometries and small imperfections introduced
into the regular structures are shown in Fig. 1 (polygons) and Fig. 2
(linear chains). The distortions we used were small and enacted
upon one spin at a time. An example pertinent to the distortions in
regular polygons is the square systems presented in Fig. 1, which dif-
fer geometrically only in the position of one spin. We have explored
the case of both a small tangential distortion and a radial distortion.
The quantity d = 2R is representative of the distance between rad-
icals and was fixed to 15 Å for all but displaced neighboring spins.
Similar small distortions were applied to the other polygons stud-
ied. The coordinates of all geometries are reported in Sec. S3 of the
supplementary material.

With regard to the linear chains, we considered two generic
cases: that of a distortion occurring at the end of the chain (Ln ,n
in Fig. 2) and that of a shift in the chain originating at a location
within it [Ln ,m (m ≠ n) in Fig. 2]. For the latter case, for in-axis dis-
placements, all spins following the displaced radical were likewise
rearranged to preserve the inter-spin distances between all but one
pair of spins in the chain (in the same way as moving the end spin
would affect only one pair, i.e., the terminal spin and its only neigh-
bor). For all distortions, the minimal distance of radicals was 2R.
Within these two generic cases, we considered distortions in each
axial direction independently of each other, that is, a distortion along
either x, y, or z, the latter of which agrees with the direction of the
applied magnetic field.

We begin our analysis by considering the MFEs predicted for
the polygonal structures. For the square-geometries of four spins,
Fig. 3 shows the MFE on the recombination yield in the singlet
state, χS(B), as a function of the applied magnetic field, B, and the
exchange interaction J0. The MFE here is reproduced for the regu-
lar square geometry (D4) and the radial (D4,r) and tangential (Dn ,t)
distortions. In addition, Fig. 4 shows MFE data for the regular and
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FIG. 1. Schematics of the distortions introduced into the regular polygon geome-
tries. The spins highlighted in red show the areas in which a distortion was applied.
The shadowy regions denote the undistorted geometries. The distorted geometries
are shown next to the regular geometries (labeled Dn) to illustrate how minor the
applied distortions are in comparison with the regular structure, with guiding lines
between spin pairs included to highlight subtle changes in the overall symmetry of
the shape and thus the interaction parameters in the spin Hamiltonian. In essence,
we consider radial and tangential displacements of one spin, indicated by the sub-
script labels r and t, respectively. Here, a displacement of 0.05 and 0.1 parts of the
inter-spin distance (2R) was assumed for the t and r-variants, respectively. For the
triangular geometry, we have considered a smaller radial displacement (0.1 × 2R;
D3, r ) and a larger radial displacement (0.133 × 2R; D′3,r).

radially distorted pentagon. In the supplementary material, we pro-
vide similar data for the other geometries, as summarized in Fig. 1.
We find that all structures considered exhibit a rich variety of MFEs,
whereby the recombination yield is attenuated in high fields. This
is in line with the predictions of the naive, qualitative model intro-
duced above, provided that (within this model) the initial state is
assumed to be the triplet state of the recombining pair. While the
detailed simulations assumed a random initial spin configuration,
fast recombination in the singlet state is indeed expected to give
rise to spin dynamics resembling that of a triplet-born pair. The
detailed calculations also reproduce the naive prediction insofar as
the high-field MFEs are decreasing with the increasing number of
interacting spins, n. Indeed, we find MFEs of up to −0.28, −0.17,
−0.11, and −0.06 for the regular polygons with n ranging from 3 to 6.

FIG. 2. Schematics of the distortions introduced into the linear chain geome-
tries. The Ln case at the top shows the generic labeling convention for a linear
chain of n spins, and the spins highlighted in red show the areas in which a dis-
tortion was applied. The shadowy regions highlight the difference between the
regular and distorted geometries. We consider distortions for which the red spin
is displaced perpendicular (labeled y and z, which are perpendicular and paral-
lel to the applied magnetic field direction) or parallel (x) to the spin chain axis.
For the x-displacements of the ith spin, all spins following the ith were also dis-
placed in order to maintain the same inter-spin distance of 2R for all but the
(i − 1, i)-pair.

What is unexpected though is the behavior upon minor geometrical
distortions, as described next.

With reference to Figs. 3 and 4 and the data collected in the
supplementary material (see Fig. S2 for the full version of the pen-
tagonal case—abbreviated here for clarity), it is apparent that for
the undistorted geometries, e.g., D4 and D5, the strongest MFEs are
confined to regions of weak exchange and that there are very few
regions, if any, of low-field sensitivity. However, applying minor
geometrical distortions, such as D4,r , D4,t , or D5,r in Figs. 3 and
4, we see the emergence of new regions of strong sensitivity to
moderate-to-high field intensities at moderate exchange and new
regions of weak-field sensitivity. In particular, it is remarkable that
the distortions often span new low-field effects below 1 mT and,
in part, at field intensities comparable to the Earth’s magnetic field
and lower, which were completely abolished in the high-symmetry
case. What is particularly noteworthy here is that these low-field
effects can emerge for comparably strong exchange coupling con-
stants. For the distorted D5-geometries, e.g., the low-field effects
clearly extend beyond the considered window of |J0| < 3d1,2 (see
Fig. 4). In higher fields, we likewise find that the primary peak of
sensitivity is split to yield several regions of strong moderate-to-high
field sensitivity extending to larger, in absolute value, exchange cou-
pling. Taken together, these observations suggest that the distortion
grants resilience to the suppressive effects that the exchange inter-
action usually exerts by energetically decoupling singlet and triplet
states. Of further interest is the fact that the effects produced by
Dn ,r , Dn ,t , are very different. This suggests that it not only matters
that axes of symmetry are broken, but how this symmetry-breaking
occurs. As for the magnitude of the maximal effects, we find that in
the majority of cases studied, the maximal |χS(B)| are comparable
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FIG. 3. Heatplots showing the MFE, χS(B) of the square geometries as a func-
tion of the exchange coupling parameter J0 and the magnetic field flux density, B.
Panel (a) shows the profile obtained for the perfect square geometry D4, (b) from
distortion D4, t , and (c) from D4, r . It can be seen that the two distorted geometries
show numerous new regions of sensitivity across all magnetic field strengths and
exchange interactions studied.

FIG. 4. Heatplots showing the MFE, χS(B) of two pentagonal geometries as a func-
tion of the exchange coupling parameter J0 and the magnetic field flux density, B,
pentagonal geometries. Panel (a) shows the profile obtained from the perfect pen-
tagonal geometry D5 and panel (b) that from D5, t . It can be seen that the distorted
geometry shows numerous new regions of sensitivity not available in the highly
symmetric case.

for distorted and regular geometries. In some cases, however, even
minor distortions can somewhat enhance the effect (e.g., for D3,r , the
maximal absolute MFEs increase from 0.28 to 0.34 employing only a
minor radial displacement of 5% of the inter-radical distance; similar
effects are seen for the central x-displacements of linear chains; see
below).

Similar conclusions can be drawn for the triangular geometry,
and larger polygons, in that applying a small distortion and thus
breaking some of the axes of symmetry again amplifies the effects
at low-field and produces sensitivity to fields of geomagnetic field
strength and even lower, at more diverse values of the exchange
parameter. See Figs. S1 and S3 of the supplementary material for fig-
ures analogous to the presented pentagonal and square cases. See
also Figs. S11–S13 of the supplementary material for an illustration
that even a radial distortion as small as 0.75 Å is sufficient to produce
the effects shown here for 0.75 Å displacements.
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We continue our analysis with a discussion of the linear spin
chains. Figure 5 shows the recombination yield in the singlet state
as a function of the applied magnetic field and the exchange interac-
tion J0 between pairs of spins in both perfect (evenly spaced) and
imperfect variations (see Fig. 2 for illustrations of the nature of
the distortions). Data for spin chains of different length, including
n = 3, are summarized in Figs. S4–S7 of the supplementary material.
The latter system has attracted particular interest in the perfect case
due to the emergence of a sharp spike of the singlet yield resulting
from a level crossing in low magnetic fields.24 Such spikes in MFE
profiles are indicative of a region of high magnetic sensitivity, as
could potentially be realized in an optimized quantum navigational
device design.

The linear chains share common features that are evident for
all n studied. In the symmetric case [exemplified by L4 in Fig. 5(a)],
the MFE is characterized by a sharp feature of positive χS for nega-
tive J0, which extends to low-field intensities, and a broad plateau of
negative χS for positive J0 and large B. With increasing n, the max-
imal absolute value of the MFE is reduced (in agreement with the
qualitative model from above), the sharp low-field feature of posi-
tive χS is split into an increasing number of components extending
over an increasingly larger range of J0, and the high-field plateau
of negative χS broadens. Again, distortions, even if only minor (by
less than 10% of the inter-spin distance), can have marked effects
on the MFE. For example, L4,3x [Fig. 5(b)] shows an overall ampli-
fication of the MFEs relative to the symmetric case, as well as a new
region of weak-field sensitivity not accessible for the latter. L4,4x also
shows new (but different) areas of weak-field sensitivity, again show-
ing that the particulars of the distortion are actually important to the

alterations in the MFE profile. The y-distortions, e.g., L4,4y [see
Fig. 5(c)] on the other hand are overall attenuating the MFE but do
still produce a new region of sensitivity to moderate-to-high field
intensities at strong exchange, thus providing exchange resilience
not afforded by the symmetric case. Finally, z-distortions, e.g., L4,3z
[Fig. 5(d)], show more subtle effects, the most significant deviation
from the symmetric case consisting in the emergence of moderate-
intensity weak-field effects at strong exchange. As summarized in
the supplementary material, the other linear chains show effects in
a similar pattern to that described for L4 (for a much larger, more
comprehensive, version in Fig. 5, see Fig. S5). For example, for n = 5
too, the most notable amplifications is provided by the x-distortions,
L5,4x and L5,5x (see Fig. S6 of the supplementary material). In general,
considering the combined data, we see three effects of small-scale
distortions: (a) the onset of MFEs is more pronounced and occurs
at more diverse exchange interactions for distorted geometries. (b)
Distorted geometries produce new MFEs at high fields. (c) Distorted
geometries are more resilient to strong exchange interactions. As for
the mechanistic underpinning of the effect, we observe that weak-
field MFEs are strongly impacted by quantum level (anti-)crossings
as a function of the applied magnetic field. By distorting the geome-
try, these interactions become more diverse, and in some cases, true
crossings become avoided crossings.24 Such points are the regions
of highest sensitivity and are represented as the sharpest regions in
the MFE profile of a system. For a qualitative illustration of how
level crossings are influenced, see Fig. S10 of the supplementary
material. We also provide qualitative discussions of the mechanis-
tic origin of the enhancing effect of small distortions in Sec. S2 of the
supplementary material.

FIG. 5. MFE profiles, i.e., χS as a func-
tion of J0 and B, obtained from distort-
ing the four-spin linear geometry. Panel
(a) shows the control case of the evenly
spaced chain, L4. Panels (b)–(d) show
the distortions L4,3x , L4,4y , and L4,3z ,
respectively.
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In order to quantitatively capture the observations qualitatively
summarized above, we introduce a new measure M(B), defined by

M(B) = 1
ΔJ ∫ ∣χS(B, J)∣dist − ∣χS(B, J)∣perdJ, (20)

where |χS(B, J)|dist is the absolute value of the MFE at a particular
value of field B of the distorted geometry and |χS(B, J)|per is the same
quantity for the perfect geometry. ΔJ is the range of exchange values
that the integral is evaluated for; we use the same exchange region
as used in the density plots above, i.e., J0 ranging from −3d1,2 to
3d1,2 and, thus, ΔJ = 6d1,2. A positive value of M(B) indicates that
at the magnetic field B, on the average, the MFE is enhanced by the
distortion for the considered range of exchange interactions.

We have evaluated M(B) for the analyzed geometries (using
the Simpson quadrature). The results are shown in Fig. 6. In this
figure, we can see that M(B) is almost always positive for weak
to moderate magnetic fields, showing the improvement that geo-
metric distortions can give. For weak fields—in particular around
the Earth’s magnetic field intensity—the distorted geometry almost
always outperforms the perfect geometry. The one exception to this
pattern is the distortion in the y-direction for the special case of
the linear geometry, which is overall detrimental to the weak-field
MFEs. In general for the linear geometries, one can see that M(B)
is strongly positive for distortions in the x-direction and slightly
positive for those in the z-direction across all field intensities. For
the regular polygons, weak field and high-field results are generally
positive, showing the distorted geometry outperforming the perfect
geometry. Results are mixed for moderate field intensities, being
the triangular geometry’s most impressive region of amplification,

but an area where the square and pentagonal measures are negative
before returning to positivity at the high field; the hexagonal measure
is positive everywhere. The fact that the measures for the different
distortions of the same individual geometries are so varied is fur-
ther evidence that it is not only the breaking of the symmetry that
matters to the magnetosensitivity of a spin system but also how the
symmetry is broken. Note furthermore that extending the integral
to a larger J0-range would give a larger M(B) for many of the cases
studied.

With this new measure, we note that the distorted triangle is a
particularly impressive case, with the distortion reducing the min-
imum field required to see a strong effect by a factor of 10 (see
Tables S1 and S2 of the supplementary material) and producing
an Earth-strength MFE where previously this was forbidden by the
symmetry.

DISCUSSION OF ROBUSTNESS OF THE RESULTS
PRESENTED

Here, we focus on structures that have distorted, non-
symmetric equilibrium structures that preserve a degree of asym-
metry. In many scenarios, e.g., the radially distorted hexagon, the
enhancing effect can be observed for displacements both in the pos-
itive and negative radial direction. This is, e.g., for D4,r and D6,r ,
shown in Fig. S14 of the supplementary material. Therefore, the
effect presented here is expected to survive if the system comprises
ensembles of structures with various, i.e., both positive and nega-
tive, displacements if the interconversion between such structures
is slow on the spin-dynamics timescale. If, on the other hand, fast
(e.g., vibrational) dynamics realize an average undistorted system

FIG. 6. Enhancement measures M(B),
calculated using the perfect geometry as
the reference value, shown for the dis-
torted triangle (a) and square geometry
(b) and the linear chain systems with
n = 3 and n = 4 [(c) and (d)]. For (b),
we show data for the radial displacement
of one spin by 1.5 Å (blue solid line)
and 0.75 Å (blue dotted line) and the
tangential displacement by 0.75 Å (red
solid line). For the linear chains, the dis-
placement was 1.5 Å applied as laid out
in Fig. 2. Data for the other geometries
studied are collected in Figs. S8 and S9
of the supplementary material.
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on a timescale faster than the spin dynamics, then, trivially, it is
the latter that dictates the spin dynamics and DnM applies in its
symmetric form. The motion of radicals on a timescale compara-
ble to the spin dynamics is clearly an important question, which is,
however, beyond this work.

Figure 6(a) shows the effect of two radial distortions to a dif-
ferent extent. To ensure the robustness of our conclusions, we have
further undertaken a systematic evaluation, which we summarize in
Figs S14 and S15 of the supplementary material. For a lifetime of
the radical pair on the order of 1 μs, the dynamics are expected to
be sensitive to changes of the eigenvalues of the Hamiltonian of the
order of 1 MHz.30 As for the typical inter-radical distances here, an
increase of the distance by 0.34 Å gives rise to a change in the dipolar
coupling constant di ,j of 1 MHz, distortions of at least a few tenths of
Angstroms are necessary to elicit a significant effect (see Fig. S14 of
the supplementary material). Larger displacements may or may not
give rise to a decrease in the MFE depending on the properties of the
“remaining” spin system. However, as this is essentially a different
system, a general assessment is not possible.

In addition, we have shown that random displacements of sev-
eral spins likewise preserve the enhancing effect deduced for the
displacement of a single spin. In particular, the average enhance-
ment measure of an ensemble of randomly distorted 4-spin systems
is shown in Fig. S15 of the supplementary material, which is qualita-
tively the same as for the radical or tangential distortion of a single
spin location shown in Fig. 6(b). We therefore conclude that the
effect is not peculiar to the selected distortions, as summarized in
Figs. 1 and 2, but applies more generally. This conclusion is fur-
ther corroborated by the distance dependence of the enhancement,
as shown in Fig. S14.

GENERAL DISCUSSION

Symmetry is central to nature. It is also essential to many
branches of science because the discovery (or imposition) of cer-
tain symmetries upon a system of interest can serve to dramatically
simplify the theoretical analysis. Thus, symmetry is often the first
port of call when tackling daunting problems, and indeed many such
problems are considered only in special, high-symmetry, formula-
tions due to the analytical/computational intractability of the general
case. This also applies to the spin dynamics of systems of radicals,
which often requires a high level of abstraction and/or symmetry to
be tractable.31–34

Although symmetry can be a powerful tool, the break-
ing of symmetry can produce new and often interesting results.
Spontaneous symmetry-breaking is a widely known phenomenon,
observed, e.g., the Ginzburg–Landau theory of phase transitions,
systems described by the so-called “Mexican hat” potential, the
Jahn–Teller effect, and indeed present even in many everyday sit-
uations.35–37

Examples of semiconductor quantum devices38 show how tech-
nological applications, e.g., in sensing, can be revolutionized by
deliberately breaking symmetries, and our work reported here sug-
gests that similar principles might apply for magnetic sensing as it,
e.g., pertains to biological MFEs or more generally to spin chemi-
cal phenomena.15,39 In particular, we argue that a natural symmetry
absence may go some way to explaining the remarkable sensitivity of

these systems to weak magnetic fields, and also how such effects can
be sustained under realistic scenarios involving, e.g., large exchange
coupling.

MFEs that originate from the coherent dynamics of more than
two radicals are a new topic of interest. These have been supposed
to enhance the magnetosensitivity of the lipid peroxidation and the
directionality in the cryptochrome compass for which preliminary
theoretical results have been obtained.27 It is not inconceivable that
the mechanism could apply broadly, in isolation or in combina-
tion with hyperfine-driven intersystem crossing, to many scenar-
ios of MFEs in biological systems for which the EED interaction
is typically not averaged by motion due to the reduced mobility of
radicals or radicals being parts of larger, ordered compounds and
for which radicals are sometimes plentiful. While highly symmetric
structures of n radicals are at this stage of study a logical extension of
the previously explored model, it is surprising to realize that virtue
in fact lies in imperfection. One would expect that the geometries
from random encounters of radicals as well as the average biolog-
ical structure are much more likely to be distorted than regular,
suggesting that our finding adds an important piece to the puz-
zle of understanding biological magnetosensitivity, where imper-
fect geometries are statistically far more likely to arise than perfect
order.

We have shown in a previous work that the re-introduction of
hyperfine interactions does not significantly dampen DnM magnetic
field effects if the dipolar interaction is the dominant term of the
spin Hamiltonian, and so we are confident that all effects shown here
would persist in the presence of coupled nuclei.27

It is obvious that the simulations described here describe sce-
narios that are difficult to realize in practice. Obviously, aligning
six spins in a perfect hexagonal arrangement to then undergo reac-
tive quantum spin dynamics might be difficult to actualize. How-
ever, considering one pair of radicals to be in an initial singlet state
(between which d1,2 would be defined) in the presence of other,
stable radicals acting as an external “bath” is not unrealistic. One
way to realize this chemically would be to generate radical pairs
in the presence of more stable radicals. As soon as the constraint
upon perfection (symmetry) is removed, the practicality of realiza-
tion increases significantly and indeed may even occur naturally or
at random. Though we do not consider this particular scenario in
the present work, it would be a way to build up the kind of configu-
ration we explored. We hope that this motivates more experimental
research into this idea.

It is interesting to note that the MFEs in radical pairs and
dipolarly coupled n-spin systems can also be viewed a result of
the absence of symmetry in their own right. The missing symme-
try here is a permutation symmetry of two electron spins poised
to recombine to form a diamagnetic state.24 In the conventional
radical pair mechanism, this symmetry is broken by hyperfine inter-
actions with magnetic nuclei. In D3M, this asymmetry is provided
by the electron–electron dipolar interaction in systems of more than
two radicals. In this sense, for both scenarios remarkable, MFEs can
result from this natural symmetry absence.

Practically, the amplifications observed here could also be used
to make quantum devices more sensitive, easier to make, and eas-
ier to control. Quantum devices made using the principles of this
mechanism would not be subject to a precise positional confinement
of the reacting radicals, and so small distortions would work to the
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advantage of the engineer. Such devices would be more sensitive
due to the extra features available in the MFE profiles that, as we
have illustrated in this work, appear when a system’s geometric equi-
librium is removed. The effects could furthermore be optimized
by tuning the exchange interaction and moving the anti-crossings
responsible for the MFE spikes to lower field values, thereby realizing
optimal sensitivity at the projected field intensity.

CONCLUSION

We here have introduced the mechanism, DnM, for an abstract
scenario and tried to elucidate some of its properties. DnM treats
the oft-neglected electron–electron dipolar interaction as the main
contributor to MFEs rather than the conventionally used hyper-
fine interaction. This mechanism thus applies to radicals without
dominant hyperfine interactions but can impact the spin dynam-
ics in classical radical pair systems with non-negligible hyperfine
and/or exchange interactions, as recently demonstrated for lipid per-
oxidation and the avian compass. This interaction pattern of three
or more radicals thus provides a robust additional mechanism for
radical systems at concentrations for which multi-radical correla-
tions cannot be neglected. Here, we have explored the possibility
of this mechanism for systems comprising more than the previ-
ously considered three radicals. We have demonstrated that a rich
variety of magnetosensitivity can, in principle, ensue for n-radical
systems coupled by the long-range electron–electron dipolar inter-
action. We have further explored these effects in configurations that
are more statistically likely to occur in nature by comparing the per-
fect theoretical systems of regular geometries with slightly distorted
geometries that break various rotation and reflection symmetries.
In the large majority of cases considered, such imperfections have
enhanced the magneto-sensitivity. In particular, we have observed
increasing sensitivity to weak magnetic fields for the selected val-
ues of the exchange parameter and an increase in the number,
and range, of exchange parameters for which low-field sensitivity
manifests.

These findings are important because they further suggest that
the D3M model and its generalization discussed here, DnM, can
provide large magnetosensitivity in a variety of circumstances. The
prediction of new MFEs in such systems allows the consideration of
processes and conditions that had previously been thought impos-
sible due to the constraints of the RPM and further inspires experi-
mental endeavors into the study of magnetic field effects in ordered
systems and at high radical concentrations or the production of
devices that utilize n-spin processes as a measuring tool. Here, many
questions about realizability remain open. However, it is not our
aim to guide future experiments yet but to instigate the princi-
pal possibility to observe magnetic field effects in radical recom-
bination reactions due to the electron–electron dipolar interaction
alone of three or more radicals and to highlight that imposing per-
fect geometries might reduce the sensitivity toward weak magnetic
fields.

While the mechanism has been presented in abstract terms,
we think that real-world scenarios that involve the aspects of the
model as laid out here are not inconceivable. We speculate that
the effect could play a role in lipid peroxidation of membranes
where, e.g., for the Lo phase, local hexagonal packings could realize

transient encounters of peroxyl radicals that resemble the scenario
described.40 As the lateral diffusion is slow, these systems would
resemble immobilized and, naturally, distorted geometries on the
time scale of the spin dynamics.27 Furthermore, the model could
apply with small adjustments to recombination reactions of pairs of
radicals generated in an environment of radicals. This could, e.g.,
be relevant in the context of arrays of cryptochrome sensors, which
form long-lived radicals following their magnetosensitive photo-
activation. Here, the question arises whether the crosstalk of cryp-
tochrome radical pairs and adjacent, more persistent radicals could
play a role either adversely or possibly even as an enhancing fac-
tor. Other applications could be found in the context of organic
spintronic materials and devices,41 where asymmetry could be intro-
duced via lattice defects. Here, effects beyond the bipolaron picture
can be expected for large charge carrier densities. While the model
here is abstract, it paves the path to addressing these and related
questions in a concrete context.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional data on the mag-
netic field dependence of the recombination yield of distorted and
undistorted structures, data in support of the robustness of the claim
that symmetry distortion can boost the magnetosensitivity, exem-
plary level crossing-diagrams, and a qualitative discussion of the
mechanistic underpinning.
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